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INTRODUCTION

Partial differential equations are used to simulate a wide range of phenomena in the
physical and engineering disciplines. However, However, various more complex nonlinear
problems can be described by variational inequalities (VIs), such as contact problems in
mechanics, heat control problems in engineering, leak phenomena in fluid dynamics and
in financial mathematics. The first problem involving VI was studied In 1933 by Signorini
[Sig33], which describes the contact of a deformable elastic body with a rigid frictionless
foundation. In [Fic64] (1964) the rigorous analysis of the Signorini problem was given
by Fichera in the form of an inequality. Duvaut & Lions (1976) formulated and studied
many problems in mechanics and physics in the framework of VIs [DLT76].

One of these variational inequalities is the obstacle problem of Euler Bernoulli beam
which is modeled by a fourth-order elliptic VI of the first kind. For these types of prob-
lem, the existence and uniqueness of the problem solution was studied in various works,
for example by Stampacchia. However when it comes to finding analytical solutions, it
is difficult to find them, and this is why numerical methods like finite elements, finite
differences... etc, have great importance in applications.

For solving fourth-order elliptic problems the conforming FE spaces need to be contained
in C!, which what our work will focus on, particularly Hermite P3 finite elements. And
instead of focusing on the classical formulation we’ll study an alternative variational for-
mulation based on Lagrange multipliers, which has the advantage of providing a physical
value by being an approximation for the contact force and the unknown contact domain,
plus it lends to leads naturally to use semi-smooth methods like primal dual active set
(PDAS).

Our work will be composed of four chapters. In the first chapter we introduce the
variational form of the obstacle problem of Euler Bernoulli beam, we apply asymptotic
analysis on the three dimensional Signorini problem for a beam to derive and justify the



model. This allows us to obtain a one-dimensional approximate model which includes the
obstacle problem for Euler Bernoulli beam.

In the second chapter we’ll first show the problem is well posed, and next we study
the regularity of the solution, which we’ll show that while the solution is in the space
C? N H3, but the full regularity or H* regularity isn’t true in general.

In the third chapter we’ll present the classical finite element formulation and we try
to find a prior error estimate, but we’ll find out that the lack of full regularity makes it
very hard to derive error estimates. And that’s why we introduce new continuous and
discrete formulations more suitable for numerical analysis. The continuous formulation
is a mixed formulation based on Lagrange multipliers, and the discrete formulations are
stable mixed formulations which verify inf-sup condition, one of is the mixed formulation
based on biorthogonal dual space, which will be very useful to implement PDAS method
later. Plus we give priori and posteriori error estimates of the alternative formulation.

Finally in the fourth chapter, we introduce the two methods used to find the discrete
solution: Uzawa Method and the primal dual active set method, and later we implement
them in Freefem++ and we present numerical tests to validate the results.



CHAPTER 1

ASYMPTOTIC MODELLING OF THE
OBSTACLE PROBLEM FOR
EULER-BERNOULLI BEAM




1.1 INTRODUCTION

The classical models of elastic beams, rods, and plates in solid mechanics are derived
from a priori theories about displacements and/or stress fields [Via85]. These theories,
when substituted in the constitutive and equilibrium equations of three-dimensional elas-
ticity, result in helpful simplifications. However, most of the models derived this manner
require mathematical justification for their validity from both a constitutive and geomet-
ric perspective. So in this chapter we introduce the obstacle problem for the classical
Euler-Bernoulli beam, and then we motivate and justify it mathematically following the
application of the asymptotic method to the three-dimensional Signorini problem.

1.2 THE CLASSICAL MODEL OF ELASTIC BEAMS ON A RIGID FOUN-
DATION

The most known one-dimensional model for bending of clamped elastic beams above an
obstacle corresponds to assume that a beam of length L. which starts at z = 0, and that
each point x of the central line of the beam is situated initially to a distance s (x) of the
obstacle, and the total loading applied at the same point is F' (z). Then the model can
be written as follows (see [Cim73]):

EI (W)™ =F+ ), in (0,L)

(1.1)

where

e u is the bending of the central line,

e ) is the (unknown) reaction of the foundation ,
e [ is the inertia moment

e [ is Young’s modulus

The final sentence in (1.1) translates to the requirement for non-penetration and states
that the reaction is only strictly positive in the event that contact with the obstacle is
made.

The variational formulation of problem (1.1) can be easily obtained and is as follows:

{ welU:={ve H0,L):v>sae. in(0,L)} (1.2)

BI [ (w)" (v—u)"dz > [*F (v —u)dz, forall v € U

4



1.3 MOTIVATION

We’ll show that the previous model can be seen as an approximation of the three-
dimensional Signorini problem using the asymptotic method, and this is based on the
article [Via85|. Also, in what follows we will use the summation convention on repeated
indices of tensor calculus; moreover, Latin indices take their values in the set {1, 2,3} and
Greek indices (except ¢ ) in {2, 3}.

1.3.1 The Signorini problem

FE

~
ﬁ
hf')

Figure 1.1: 3d beam ()¢

Let w be an open, bounded and connected set in R? with area A(w). Given € € R,0 <
£ <1, and L > 0, we define

w® =cw, 7 =0w® =cedw

and we also define Q¢ = (0, L) x w® which we will identify as the reference configuration
of the actual beam.

We note by z¢ = (25, 25, 25) = (21, exq, x3) an arbitrary point in Q° and by n® = (nf)
the outer unit normal vector on 0€)°. The parameter ¢ represents the diameter of the

transversal section w?, that has area A (w®) = e2A(w). We denote the edges of Q° by:

I'f ={0} xw®, TI'7={L}xuw’

We also assume the boundary ~¢ is divided into two nonempty disjoint parts denoted
by 7& and 7%. Accordingly, we denote I = I'y, UTE, with I'y, = (0,L) x 7% and
I'?, = (0,L) x 4. The part I'Z, of the boundary can have a contact without friction
with an obstacle. We denote by s° (2°) the distance of the point 2 € I';, to the obstacle
measured in the normal direction of vector n°. We assume s° : I', - R € L* (I'g,). For
convenience, we drop the superindex € when ¢ =1, i.e.:

ngl, FOZI—%,

The beam is assumed to be made from homogeneous and isotropic material with
Young’s modulus E and Poisson’s ratio v. Also, we’ll use Lamé’s coefficients \ and p,
related with E and v by the formulae



vE E
(1+v)(1-2v) 2(1+v)
We suppose that the beam is clamped in both ends I'j and I'7, and under the action

of body forces of volume density f¢ = (ff) and surface forces acting on I'S; of density
g° = (¢5). We assume the following regularity for the forces:

o= (1.3)

fie? (), g€ L*(Ty) (1.4)

In linear elasticity, the classical model used for this situation is known as the Signorini

problem and it is written as (see [DL76]): Find uf : Q¢ — R3 such that:

—@UU (UE) = f, in Q°
oij (u)n5 = g7, onTYy
u; =0, onlgulf (1.5)
u, <s°, o7, <0, o;=0, onl}g
o; (u;, —s°) =0, onlg
where
e 0° = o (u®) = (0y; (u®)) is the stress tensor, related with the displacement field

u® = (uf) by the Hooke’s generalized law

vE
(1+v)(1—2v

oij (uf) =

e ¢(u®) = (e;; (u)) is the linearized strain tensor

)epp (uf) 655 +

T35 (u)

1
3 3 3
e;j (u°) = 5 (8ius + 0jus)
o uS =uinS,o° = oy (uf)nins and of, = oy (u°) NS — o=ns
n — Y'Y Yn T Y1) Y] ti — Y1) 7 n'v:

The two last conditions in (1.5) describes the well-known unilateral contact without
friction. When introducing the space of admissible displacements,

V()

&

(vf) € [ ()] =0in TjUTE |

the following variational formulation of problem (1.5) can be easily obtained:

uwe K(Q) ={v eV
/ 0ij (u7) €55 (v° — ') da® >
for all v* € K (Q°)

Qe

(Q°) s vy, < s°at. on I'g}
IE

£ (@ — ) dat + /

g5 (vi — uj) da® (1.6)

I'y



The problem (1.6) is written as a classical variational inequality of the following form:

u® € K ()
a. (uf, v —uf) > I (v° —uf), for all v° € K ()

where, for all w®,v° € [H* ()] we note:

a. (we,v%) = / oij (W) e;; (v°) dz®, I (vF) = / fivida® +/ gsvsida®
5 Qe T

&
N

(1.7)

Because of the continuity of the linear form [, the continuity and the coercivity of the
bilinear form a. (from the Korn’s inequality), the problem (1.7) has a unique solution for

each ¢ (see [LS67]).

1.3.2 The asymptotic method

We introduce the change of variable

IF: Q— Q°, (21,29, 23) = 2° = (21, 79,6x3)

Also, we scale the unknown, test functions s°:

vo(e)(z) = evf, (2°) ,v1(e)(x) = v§ (z°), for all v° : QF — R>.

We also assume
1°) = efo(z), fi (2°) = fi(x)
%) = ega(x), g7 (2°) = egr (x)

where the functions

fi € L*(Q),9; € L* (Ty),s € L™ (I'¢)

are independent of the parameter ¢.

Consequently, the following result can be obtained via a simple computations.

(1.8)

(1.9)
(1.10)

(1.11)

(1.12)

Theorem 1.1 The scaled displacement u(e) obtained by means the transforma tion (1.9)
of the solution u® of problem (1.7) is the unique solution of the following variational

problem in ) :

ue) e K(Q)={veV(Q):v, <sae onTc}

co(u(e),v —u(e)) + e2ca(ule), v — u(e)) + etes(ule), v — u(e))

>t | fo fi (v = wie)) do + fi_gi (01 = ui(e)) du
for allv € K(Q)

(1.13)



where for all w,v € V(Q) the bilinear forms ¢y, ca and ¢4 are defined by
eo(1,0) = | Neanlw)esn(v) + 2cap(i)eas )] da
ca(w,v) = /Q [Aeaa(w)err (v) + dperq(w)erq(v) + Aepr(w)eqn (v)] da
ca(w,v) = /Q(/\ +2p)eqr (u)eqr (v)de

We notice that the powers of €2 in (1.13), so it’s natural to use asymptotical techniques
to approximate u(e), when ¢ is small, by means of an expansion of the form

Such that

u® e V(Q), ¥ e K(Q), u® <0, p=1,2,... (1.15)

In general, for a symmetric bilinear form ¢ : V(Q) x V() — R, and for all v € V(Q)
we obtain the following decomposition according to the expansion (1.14)-(1.15):

c(u(e),v —ule)) =c (u(o), v— u(o)) +e%c (u(2), v — QU(O)) +

1.16
+ & [c (u(4), v — 2u(0)) —c (u(2), u(Q))} +0 (56) . (1.16)

Substituting the expansion (1.14) into (1.13) while taking into account (1.16) for the
bilinear forms cg, ¢z, ¢4, we obtain the following inequality:

o (u(o), v — u(o)) + ¢ (u(Q), v — 2u(0)) + &t [co (u(4), v — 2u(0)) — o (u(2), u(z))]
+ &% (u v —u®) + ety (u?, v —2u?) + ey (w0 —u?)

(1.17)
254/fi (vi—u?) dx—|—54/ Ji (vi—u?) da+0(66), for all v € K(Q).
Q 'y

1.3.3 The first order terms in the asymptotic expansion

Next we introduce some constants and functions which only depend on the geometry of
the transversal section w®. For simplicity, we assume ¢ = 1.

e Second moments of area of w : I, = [ 22dw.

e Functions ®,5 and 4, :



1
Doy (19, 73) = 3 (23 — 23) = — P33 (w2, 23)

o3 (12, 73) = P3y (72, 3) = 2273 (1.18)
Oy (T2, m3) = w3, 03 (T2, 73) = — T2
e Warping function w is the unique solution of the following problern:
w e H' (w), /wdw:()
@ (1.19)

/Gawﬁagodw = / (23000 — 22030) dw, for all ¢ € H(w)

e Timoshenko’s functions 73 and 63 are the unique solution of the following problems,
respectively:

ng € H'(w), /ngdw:(),

(1.20)
/&ﬂ?ﬁ@a(pdw = -2 / zapdw, for all p € H' (w).
(95 EHl(w), /diwzo,

“ (1.21)

/ (0ab5 + Pop) Oatpdw = 0, for all p € H"(w)

We also introduce the spaces:

Vi(Q) ={v e V(Q) : eqp(v) = 0} (1.22)
V() = Ven(2) = {v € V(Q) : eas(v) = €14(v) = 0} (1.23)

The elements of Vpy(§2) are called the Bernoulli-Navier displacements. We have the
following equivalent definitions for for V;(2) and V5(12).

Lemma 1.2 ([TV96]). The following characterization for the spaces Vi(§2) and Vo(2)
hold:

(@) ={ve [H@]": (124)

Vo (21, %9, 3) = Xa (1) + 0o (22, 23) X1 (1), X1, Xa € Hy(0,L)}
Vo(Q2) = Vpa(Q2) = {v € [HI(Q)}S Vo (T1, T2, 23) = Yo (T1)

(1.25)
v (w1, 22, 23) = X1 (1) — TaXh (1), X1 € Hy(0, L), xa € HZ(0,L)}



We also use the following sets of functions with separated variables.

3 .

Wr(Q) = {v = (0,v5,v3) € [H'())]
Vo (71, T2, T3) = 0o (T2, 23) X (1) : @0 € Hl(w),x € HOI(O,L)}

: 1.26
= {(Ug,’U3) € [HI(Q)} : ( )
Vo (21, %2, 3) = pa (T2, 23) X (1), pa € H' (W), x € Hy(0,L)}
WL(Q) = {v = (13,0,0) € [H'(2))]”:
vy (11,19, 13) = @ (19, 73) X (71), 0 € H (W), x € H}(0, L)} (1.27)

={v; € H'(Q):
vy (11,19, 13) = @ (19, 73) X (71), 0 € H' (W), x € H}(0, L)}

Knowing that the outward unit normal vector in I' = I'c U 'y is of the form (0, ny, n3),
we have

K(Q) = W1 () x K5() (1.28)

where
Ky () = {(vﬁ) € [Hl(Q)}Z tvg=0o0nTyUTI',vgng < s a.e. on Fc} (1.29)
Wi(Q)={vi € H(Q) :v; =00on T UT} (1.30)

We also define the following transversal forces F; and moments M, and the function
w*® (for simplicity, € = 1 is assumed):

E:/fidw+/ gid, Maz/xaflder/ Tagrdy, (1.31)
w TN w TN

w® € L*(0,L; H'(w)) and ae. in (0,L), [ w9dw=0

I Do O pdw = L, frpdw + fw grpdy — mﬂ [, wdw (1.32)

for all p € H'(w).

Theorem 1.3 Let us suppose the forces satisfy the condition (1.12) and also

fie H' (0,L; L*(w)) ,g1 € H' (0, L; L? (7)) (1.33)

Then, the variational inequality (1.17) yields the following inequalities involving u(® :
Co (u(o), v — u(o)) >0, forallv e K(Q) (1.34)
Co (u(2), v— QU(O)) + ¢ (u(o), v — u(o)) >0, for allv e K(Q). (1.35)

Co (u(4), v — Qu(o)) —Cp (U(Q), u(Q)) +c (u@), v — ZU(O)) + ¢4 (u(o), v — u(o))

1.36
> / fi ('Ui — u50)> dx +/ Ji (vi — u§0)> da, for allv € K(Q). ( )
Q 'y

10



(i) The displacement u*) € K(Q) is uniquely determined, it belongs to the space Vin(Q)
and it has the following form

Ug)) (71, T2, 73) = & (71), u&o) (1, 0, w3) = & (11) — 2E, (1) (1.37)
where the flexions (&) are the only solution of the following coupled elliptic variational
mequality:
(&) € [H3(0, L))" N [Hig. (0, L))" N ()
E]OCL[() ﬂ; (on - ga)” dwl Z fO Fa (Xa - ga) dxl ) (138)
=y Mo (Xa = &) dzy, for all (xa) € [H3(0,L)]" N Kx(9)

and the stretching &1 is the only solution of the following variational problem:

& € H3(0,L) N H*(0, L)
Logr L 1 (1.39)
EA(w) [y &iX'dxy = [, Fsxdxzy, for all x € Hy(0, L)
(ii) The term u® e [HY(Q)]® with u?) <0 and it is characterized as follows:
ul? (1, 29, 23) = 2o (v1) + UD (21, 9, 23) (1.40)
u§2) (x1, 0, 21) = 21 (1) — T2, (1) + U1(2) (21, T2, x3) (1.41)
where U?) = <UZ-(2)> has the following form
UC(YQ) (21, 29,m1) = 0o (1) — v [:Eafi () — @aﬁfg (ml)} (1.42)
(2) / Ly 2 1 1
U™ (w1, @2, 23) = —wr' (z1) + v { 5 (12 + $3) — 5 L+ 1) p & (1)
2 2A(w) (1.43)
2(1
[0+ )0+ 18 () + 2L 0

E
with z, € H*(0,L),r € H'(0,L) and 2 € H}(0,L).

Proof. We will present the proof in several steps.
Step 1. Passing to the limit as € tends to zero in inequality (1.17), we obtain (1.34),
which is: for all v € K(Q) :

/Q Neaa (19) g5 (0= u®) + 2105 (u®) s (v —u@)]dz >0 (1.44)
Taking successively v = 2u(® and v = 0 € K(Q) in (1.44) we have:
| e (u®) 35 (u) + 2105 (1) 0 ()] d =0
and, consequently, u(®) € Vi(Q) N K () :

11



eas (u?) =0, u” < sonTe. (1.45)

Condition (1.45) restricts the form of the transversal components of u(?) to the following
one (from lemma (1.2)):

Ug)) (21,22, 23) = &a (1) 4 0o (@2, 33) £ (21),  &a, € € Hy(0, L) (1.46)
Hence, inequality (1.34) is equivalent to the equation
Co (u(o), v— u(o)) =0, for all v € K(Q) (1.47)

Step 2. Taking the limit as ¢ — 0 on the combination of inequalities %[ (1.17)- (1.47)]
we obtain the inequality (1.35). Taking into account the conditions (1.45), the inequality
(1.30) can be written as:

/Q [Aeaa (“(2)) eps(v) + 2ueqp (U(Q)) eas(v)] d

+ / Dert (u®) eqa(v) + 4pe1y (@) ey (v —u®@) dz >0 (1.48)
Q
for all v € K(Q)
Equation (1.48) evaluated successively in v = 2u(®) and v = 0 produces:
[ s (u) re () e =0
Q
which gives us

era (u®) =0 (1.49)

Properties (1.45) and (1.49) mean the term u(®) belongs to the space V() = Vpn(2) of
Bernoulli-Navier displacements and also to K (£2). Specifically,

ne € VBN(Q) N K(Q)

O)(z) = ¢, . € H2(0,L
u?0)<x) § (xl) ) 5 0( ) ) 1 (150)
uy (z) = & (1) — &y, (11), & € Hy (0, L),
o (1) N (T2, 3) < 8 (21,22, 23) ae. on Lo
Then, by the corresponding identifications, we have
(€) € [H2(0,1))" N Ks(Q) (1.51)

Now, by substituting (1.49) in inequality (1.48), we deduce, for all v € K(f2) :

/Q [)\eaa (u(z)) egp(v) + 2peqns (u(2)) eag(v)] dx + /Q)\en (u(o)) Caa(V)dr >0  (1.52)

12



Hence, taking test functions v € Wr(Q) N K () in (1.52) we have:

/oL {/w [Neaa (u?) eg5(9) + 2pas (1P) eap()] dw

+ / Aer (U(O)) 666(90)dw} xdx1 > 0, for all ¢ = (pa) € [HI(W)F;
and x € Hy(0,L) s.t. 0ang < sae. on Lo, x >0 ae. in (0, L).
We conclude that the following equation holds a.e. in (0, L) :

/ [Aeaa (u(Q)) esp(p) + 2peaqs (u(Q)) eas(p) + Aenr (u(o)) €aa(p)] dw >0

for all p = (p,) € [Hl(w)]2 st Yane < s ae. on o

(1.53)

Taking ¢, € D(w) in (1.53) we conclude the following equality:
ey, (u(Q)) dap + 2/1€ap (u(2)) = —Xen (u(o)) dop, a.€. in Q= (0,L) x w (1.54)

Since e1; (ul?) =& — z,& (see (1.50)), from (1.54) the expressions (1.40) and (1.42)
of ut? are deduced (see [TV96],Th. 4.5). We note that conditions z,,r € H'(0,L) are
necessary but not sufficient in order to have v’ € Wy(Q). Then u'? € H(Q) but, in

@mﬂma¢M(ﬁmWM>¢K()
From (1.53), we see that u(? is a solution of the following equation, for all v € K () :

/ [)\eaa (u(Z)) epp(v) + 2peqs (u(Q)) eaﬁ(v)] dr + / Aeqr (u(o)) Caa(V)dr =0  (1.55)
Q Q
and, from (1.49) and (1.55) we deduce that

co (u®, v —2u?) + ¢y (W@, v —u®) =0, for all v € K(Q) (1.56)

Step 3. Passing to the limit as e — 0 in the combination of inequalities %[ (1.17) - (1.47) —
£2(1.56)] we deduce the following inequality (see (1.36)):

Co (u(4), v — 2u(0)) — ¢ (u(z), u(2)) + ¢y (u(Q) v — 2u(0)) + ¢y (u(o), v — u(o))

Z/in(vi—ugo)>dx+/mgi<vz—u )da for all v € K(Q)

So, taking into account the properties deduced in the previous steps, mainly (1.54), the
equation (1.57) is written as:

/ [Aeaa (u(4)) epp(v) + 2peqp (u(4)) eap(v)] da

+/ [Aeaa (u?) erq (v — ul ) + err (u 2)) €aa(v)] dz

(1.57)

»

(1.58)
+ / 4,uela ela( Ydx + /Q()\ + 2u)en (u(o)) €11 (v — u(o))

/ filvi — u dx —|—/ Ji (vl- — u§0)> da, for all v € K ().
'y

o)
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Evaluating (1.58) in v € Vgn(2) N K(€2) we obtain:

/ Aeaa (u(2)) en (v— u(o)) dr + /()\ + 2u)en (u(o)) e (v— u(O))
Q Q

(1.59)
> / fi (vi — u§0)> dx —|—/ i (vi — u§0)> da, for all v € Vgy(Q2) N K ()
Q I'n
We notice that for any v € Vpn(€Q2) N K(£2) we have
2
Vo ('rla I, ‘7“3> = Xa (I’l) ’ (on) € |:H2(07 L)] N K2(Q) (160)
vs (21,22, 23) = X1 (¥1) — TaXg (21) s x1 € Hy(0, L)
Now, as a consequence of (1.37) and (1.40), we get
Y (u(2)) + (N4 2u)en (u(o)) = FE & — 1.&7] (1.61)

Then, by substituting (1.61) into (1.59), the problems (1.38) and (1.39) are derived.
Existence, unicity and regularity of solution of problem (1.38) are exhibited in [BS68|:
Step 4. We restrict now (1.58) to v € K(2) N V1(2), or, eqs(v) = 0. We have:

/ [)\eaa (u(2)) e11 (v — u(o)) + 4pen (u(z)) €la (v — u(o))] dz
0

+ / (/\ + 2/!)611 (U(O)) €11 (U — U(O))
Q

> /in (vi — ul(.o)> dx + /FN Ji <v,~ — u§0)> da

for all v € K(Q) s.t. eqp(v) =0

(1.62)

By taking in (1.62) respectively v = (u{ + v1,0,0) and v = (ud — vy1,0,0),v; € W1(Q), we
get

/,uaauf)@avldx = —/ Aeoa (u@)) O1vider — / /L@lug)aavld:c
Q Q Q

—/(A—i—?,u)@lugo)@lvldx—i—/flvldx—I—/ qruida (1.63)
Q Q r

N

for all v; € W1(Q)
Evaluating (1.63) in v € W;(Q2) we find:

L L
/ {/ u@au?)@agodw} xdx, = —/ [/ Aeaa (u?) gpdw} X' dxy
0 w 0 w
L L[ L
-/ { / ualug”aasodw} o~ [ { Jcs: 2u>81u§°’sodw] Vi,
L s LL (1,64

+ /OL {/w flgodw} xdzy + /OL {/W gupdv} xdxy

for all ¢ € H*(w), for all y € H;(0, L)
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Using now equalities (1.61), (1.40) and (1.42), the following equation in the sense of
distributions in (0, L) is derived:

E
/8 Uy Oppdw = — [ 1’/ pdw — £ xagodw} — z;/ﬁagodw
ILL w w

—r /(5 Oupdw + vE] /xa Oapdw — v | Paplapdw (1.65)

w

/flcpdw + - / grpdry, for all ¢ € HY(w)

For each z; € (0,L) the problem (1.65) is a Laplacian problem in w with Neumann
conditions in all boundary . The compatibility condition for ¢ such that d,p = 0 is
verified because of the equation (1.39) for the traction. Then, there exists a (non-unique)
solution of (1.65) and it has the form given by expressions (1.41) and (1.43) (see [TV96],
Sect. 8). =

1.3.4 The limit model to the current beam

Having in mind that (9 is a first order approximation of u(g) in €, we propose a first
order approximation, u%, of u° in Q¢, obtained by undoing the change of variable (1.8)
and the scalings (1.9), (1.10) and (1.11).

ug, (2°) = e ua(e) (2) ~ ) (2) = u (2%) (1.66)
ui () = wie) () ~ ui (2) = uf () (1.67)
From (1.37) we immediately deduce that u2° and u%° are of the following form:
u® (%) = el (z) = e 71, (1) =: € (1) (1.68)
af® (1) = 0 (2) = & (1) — 2ol (1) = & (1) =2, (€)' (@) (1.69)
where we put & = &;.

Using now problems (1.38) and (1.39) we obtain a complete characterization of the
first order displacements u% by means a well-posed "one-dimensional" model.

Theorem 1.4 The first order displacements field u% defined by (1.68)-(1.69) is a Bernoulli-
Navier displacement, i.e.:

ug (29) =& (v1), & € Hy(0,L) (1.70)

« «

&1 (21) — 25, (62)" (21) . & € Hy(0,L) (1.71)

ul® (o)
where
(i) The flexions (&5,&5) are the only solution of the following coupled variational in-
equality:
(&) € K°(0,L),
BIZ [y (6" (6 — &) dar > [) F2 (G — &) day (1.72)
— Jo M (G = €)' day, for all (x;) € K#(0, L),
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where
Ke(0,L) := {(X‘;) € [Hg(O,L)}Q cxene < 85 ae. on TG =5 X (O,L)} (1.73)
(i1) The stretching & is the only solution of the following problem:

{ & e H)(0,L) N H?(0, L), (1.74)
EA (wf) fOL (&) (x°) dx, = fOL Fixedxy, for all x° € H}(0,L). ’

Proof. It is a direct consequence of equations (1.38)-(1.39) and definitions (1.68)-
(1.69) and (1.31). m

Equation (1.74) is the classical model for the stretching of a clamped beam without
any obstacles. The problem (1.72) represents a general bending model for a beam which
may become in contact with a rigid obstacle. We notice that we can also define K<(0, L)
as follows:

€ g 2 g g g (3 13 g (3
K (07 L) = {(Xa) € [HS(O, L)} “Xa (xl) ng (xbml) <s <$1,$2,$3) )
for all 27 € (0,L) and a.e. (z5,25) € 7%}

(1.75)

If we take the contact surface I'z: is plane and normal to one of the inertia axes of
the beam (Oz,, to fix the ideas). Consequently, the outward unit normal vector to I', is
constant and it has one of the form (0, +1,0) or (0,—1,0). Let us assume n = (0, —1,0).

From (1.75) one deduces that the convex set K°(0, L) for this case is:

K®(0,L) = U5(0, L) x HZ(0, L) (1.76)

where ,
US(0,1) = {¢* € B0, 1) : ¢* (1) > 5° (1,23, 05) -
for all z; € (0,L) and a.e. (x§,25) € v&} '

We assume that the beam and the obstacle are regular enough in such a way the
following function §° : [0, L] — R, is well defined and $° € L>(0, L) :

§(x1)= inf s (x1,25,25), x1 € (0,L)
(25.25) €7

Then, we have an equivalent definition of U¢(0, L)
Us(0,L) = {¢° € H}(0,L) : ¢° > & a.ein (0,L)} (1.78)
Setting in (1.72) successively (x3,X5) = (x3,&5) and (x5, x5) = (&, x3), with x5 €

U5(0,L) and x§ € HZ(0,L), we prove that, in this case, the limit problem (1.72) is
equivalent to the following two problems:
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& € U3(0,L)

EI; [} (8)" (x5 — &)" duy > [} F5 (x5 — &) ds (1.79)
— fOL M5 (x5 — &) dxy, for all x5 € U5(0, L),

& € H5(0, L)

EIf [y ()" (x5)" dx1 = [y F5xida (1.80)
— fOL M5 (x5) dxy, for all x5 € HZ(0,L).

We observe that (1.80) is the usual variational model for bending in the direction Oz
and (1.79) is the classical one-dimensional obstacle problem (1.2). So we have mathemati-
cally justified this classical model as the first order approximation of the three-dimensional
Signorini problem for an elastic beam when the boundary of contact is assumed to be plane
and normal to one inertia axis.

1.4 CONCLUSION

Our work in this chapter was two folds: We justified mathematically the Euler Bernoulli
obstacle problem and at the same time we got an approximate problem of the Signorini
problem which should be far easier to solve than the classic one. Thus it is of interest to
further study Euler Bernoulli obstacle problem and try solve it numerically and efficiently.
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CHAPTER 2

MATHEMATICAL ANALYSIS OF THE
OBSTACLE PROBLEM FOR
EULER-BERNOULLI BEAM
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2.1 INTRODUCTION

In the last chapter we approximated Signorini problem and that lead us to find that it
involves find the solution of obstacle problem for the Euler-Bernoulli beam, but before
doing that we need to figure out some mathematical proprieties of the solution which are
important the numerical analysis. In chapter we investigate the existence of the solution
and its regularity, and later we introduce an alternative variational form appropriate for
finite element analysis.

2.2 EXISTENCE, UNIQUENESS AND PROPRIETIES OF THE SOLU-
TION

Let Q = (0,L), L > 0, and 1 represents the obstacle. We reintroduce the obstacle
problem of Euler-Bernoulli Beam but this time we omit the constants since they don’t
affect the mathematical analysis:

{ we K:={veHQ) :v>sae inQ} (2.1)

fOL (w)" (v —u)"dv > fOL f(w—u)dz, forallve K
2.2.1 Existence and Uniqueness

We first provide some useful definitions

Definition 2.1 Let V be a Hilbert space. The bilinear form a(.,.) is continuous on V xV
if there exists M > 0 such that :

|a(u, v)| < Mlullv[jv]lv

Definition 2.2 Let V' be a Hilbert space. The bilinear form a(.,.) is coercive on V x V
if there exists m > 0 such that :

a(v,v) > mlfv||},
We also need the following theorem

Theorem 2.3 (Stampacchia’s Theorem)

Assume that a(u,v) is a continuous coercive bilinear form on Hilbert space H. Let
K C H be a nonempty closed and convex subset. Then, given any ¢ € H*, there exists a
unique element u € K such that

a(u,v —u) > (p,v —u) Yve kK (2.2)

19



Moreover, if a is symmetric, then u is characterized by the property:

u e K and %a(u,v) — (¢, u) = min{a(v,v)/2 — (P, u)} (2.3)

veK

Proof. See [Brell] m
Now we can prove the well posedness of the problem

Theorem 2.4 The problem (2.1) has a unique solution
Proof. We apply the previous theorem (2.3)
1. K is convex: Indeed, let u,v € K and t € [0, 1]
stut+(l—thv>tp+(1—-t)y =1
o tu(0) +(1—t)w(0)=t-0+(1—4)-0=0
o tu(L)+ (1 —t)v(L)=t-04+(1—1t)-0=0
Thus for all ¢ € [0, 1], we have tu + (1 —t)v € K

2. Kis closed. Let g(v) = [v(0)| + |v(L)| + ||(v — ¥)_]|. g is continuous on HZ()) and
g1 ({0}) = K, thus K is closed

3. a 18 continuous :

< Julpolvla < lullzellvlze

alu, v) = ‘/u"v”d:c
Q

4. a is coersive : We apply Poincaré inequqlity multiple times
a(v,v) == V"3 q

1 1 1
= "I + 510180 + 510

1 1 1 1
> §||U"||(2>,Q + 3 @HU/H(Q),Q + 3 C’_gHUHg’Q

> m”“”?qg(ﬂ)

Thus the existence and uniqueness are proven. m

Remark 2.5 Because a(u,v) is symmetric, Stampacchia Thoerem gives us the equivalent
minimization problem of (2.1) as well

{ Find uw € K such that (2.4)

J(u) < Jw) Vv e K
Where J : H? — R is defined as follows :

J(v) = %/ﬁJv”Fdx - /Qf v dx (2.5)
2
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Remark 2.6 We also notice that the functional (2.5) looks similar to the energy of the
elastic obstacle. Indeed, in the elastic obstacle the displacement is constrained by an
obstacle, denoted by 1), which is allowed to be elastic. The energy resulting from contact
with an elastic obstacle can be written as

1
2e J,

(u— ) da, (2.6)
where € > 0 is the inverse of an appropriately scaled "spring constant” and
(u— 1) = min(u — 1, 0).
The loading consists of a distributed load f € L*(2) with the energy
() = /Q fodz. (2.7)

The total energy thus reads as

J(v) = %a(v,v) + 2—16/9(1) — )2 dr — L(v). (2.8)

The space of kinematically admissible displacements is V = HZ(Q) and the displacement
function u is thus obtained minimising the energy, viz.

J(u) < J(v) (2.9)
or by solving the weak formulation : find u € V' such that
1
a(u,v) + g((u —Y)_,v) =L(v), YveV, (2.10)

From this last problem, we can see the relationship between the elastic and rigid obstacle.
When € — 0 in the problem (2.10), we get the the rigid obstacle problem (2.1).

2.2.2 Proprieties of the solution

We introduce the following definition:

Definition 2.7 Let v in H*(Q). v is called a supersolution if for all w € HZ(S) such
that w > 0 we have

L
/ V'w"dx — (f,w) >0 (2.11)
0
Then we can prove the following theorem.

Theorem 2.8 The solution of the problem (2.1) is a supersolution.
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Proof. In fact, if w € HZ, such that w > 0 then u + w € K. Taking v =u+w € K,
and replacing it in (2.1) we find

L
/ u'w’"dx > (f, w)
0
Therefore fOL w'w’dr — (f,w) > 0 for all w € HZ, w > 0. And u is a supersolution. m

Theorem 2.9 Let u be a supersolution then it satisfies the following equation in the
distribution sense

u(4) - f = Hu

where |1, 1S a positive measure on ).

Proof. From theorem (2.8), we obtain that for any positive test function n € D(Q2) we
have:

/u/’n” —(fim) >0

so (u")"— f > 0 in the sense of distributions. Let us consider the following linear operator
on the space D({),

An) = / u'n" —(f,n)

Then A is a continuous linear operator on C§°(€2), therefore it is a distribution. Ac-
cording to Riesz-Schwartz theorem [Sch66], A represents a positive measure. let us denote
this measure by p,. Then (u”)” — f = pu, in the sense that

/ u'n" = (f,n) = / Nt
Q Q
for every n € D(Q2). m

Another interesting point is the contact set, or where the solution touches the obstacle.
While in general the contact set can’t be known a priori, the following theorem can be
helpful to find it in specific circumstances

Theorem 2.10 Let u be a solution of the problem (2.1) and suppose ¥ is a supersolution.
Ifa<beC={z|xe|0,L]},u(z) =1(x)}, then |a,b] C A.

Let a,b € A, and let

u  on Q—]a,b]

It’s clear that v € K, u — v = 0 on [a,b] and u — v = 0 on Q—]a, b|.
We take w = u — v, then w € H2(Q2) and w > 0 on €. Since 1 is a supersolution, so
will be v and we obtain

Y {w on [a,b]

/L V" (W =" dr — (f,ug —v) >0 (2.12)
0
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Taking v = v in (2.1) we get

L
/ (") (V" = u")dx + (f,v—u) >0 (2.13)
0
Adding (2.12) and (2.13) term by term addition, we obtain
L
/ — (" —udx >0
0

Which means u = v = v on [a, b]. Therefore [a,b] C A.
Remark 2.11 From the last theorem we deduce that if 1 is a supersolution, the beam
touches the obstacle in either exactly one point or over one closed interval. This observa-

tion can be useful to find the solution and the contact set, and we’ll use it in next section
to make a counterexample.

2.3 REGULARITY OF THE SOLUTION

2.3.1 H}_regularity

Lemma 2.12 Suppose that f € L*(]0, L[). Then any supersolution v(z) we have:
o v € C?*(|0, L])
e v € L2 (]0,L]) and the limits v" (z+), v""(x—) exist for all x €]0, L], plus

loc

V" (x+) > 0" (x—) for all x €]0, L]

Proof. Since v is a supersolution, then by theorem (2.9), the distribution p, = oW —f,
is a positive measure. Let a €]0, L[, we define

¢:10, L[— R, ¢(z) = {—uv([:c,a)) ifr<a

wy((a,z])  ifzx>a

We can easily verify that ¢ is non decreasing, locally integrable and (¢) = p,. On top
of that we have

fer*(o.L]) c L0, L) = 3F = /Oz f(t)dt € C°([0, L]) : f(z) = (F(z))

Taking all that into consideration we obtain:

oW =, + f=20" =6+ F 4O,
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where C} is some constant. Then v is bounded on [z, 5] for all z1, x5 €]0, L[, which
implies v € L2 (]0, L]) and the limits v"(x+), v"(x—) exists for all # €]0, L[, such that

loc

V" (z+) > 0" (x—) for all x €]0, L]

We continue integrating
() = / (6(8) + F(t) + C1] dt + Cs

then v” is continuous for x €] — L, L[. m

Theorem 2.13 Assuming f € L*(]0, L[) and

U(x) € C°([0. L)), (0) <0, (L)<0
Then the solution of problem (2.1) u € C*([0, L]) N H} ([0, L])

Proof. u € C*(]0, L[) N H} (]0, L]) follows immediately from theorem (2.8) and lemma

(2.12). From the continuity of u, 1) we obtain:

w(0) =0 > ¥(0) = e > 0,Vx € [0, €] : u(x) > (x)
=Vre[0,€¢:p, =0
= Vx €[0,¢ : ¢(x) is constant

= u"(0) = / [6(t) + F(t) + Cy] dt + /0 [6(t) + F(t) + Cy] dt + C,

=l
Therefore «” is continuous on z = 0 and u® is bounded in the neighberhood of 0.

In similar fashion we can show u” is continuous on = = L and u® is bounded in the
neighberhood of L, thus proving the theorem. m

2.3.2 The lack of H* regularity

The question to ask next: Can we have higher regularity for u than H} 7

Unfortunately, even with smooth f and ¢, u in general does not belong to H*, not

even H}! . As the next example will show

Example 2.14 Let f =0, L =1 and v = —3(2x — 1)*> + 1 in the problem (2.1). We'll
exploit the fact that (1 — x) = ¢ (x), let

TV =V
vi— To(z) =v(l — )
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It’s easy to verify T(K) =K and T =T~ '. Let w=Tu and and v € K

1 0 1
a(w,v) = / w'" = —/ (Tw)"(Tw)" = / u'(Tv)" >0
0 1 0

Which means w is a solution to (2.1), hence w(z) = u(1 —z) = u(z), because the problem
has a unique solution. We also notice that 1 is supersolution as well which means accord-
ing to theorem (2.10) and the fact that u(1 — x) = u(x), either the contact zone is in the
form of [, 1 — o] such that o €]0, 5[, or the contact zone is one single point © = 1.

lets assume the contact zone is a closed interval, then

az® + ba? z €[0,0q]
u(r) =¢ =302z —-1)2+1 x €la, 1 — af
a(l—x2)3+b(1—2)* z€]l—a,l]

For some a,b € R. However taking into account the theorem (2.12), that u is C* in the

neighborhood of a we find o = %; contradiction.

Hence the contact zone is {3}, and we obtain
(z) = —1623 + 1222 z € 0,3]
| -16(1—2)? +12(1 —3)? x € L]

Therefore
M$:—$6xema
96 x €l3,1]

So u®) is not continuous in €2, hence u & Hyoc*(52).

The optimal regularity is still an open question [Ale19], and at the time of publication of
this thesis no example of H* regularity can found publicly in the case where the obstacle
intersects but is not tangent on the solution. This lack of H* has big implication when
performing finite element which we’ll discuss in the next chapter.

Remark 2.15 If we go back to the elastic obstacle problem (2.10), we can see that the
reaction force between the obstacle and the plate is given by

wﬂ—f:A:—ém—w). (2.14)

Hence the Lagrange multiplier \ belongs to L*()) and the solution u belongs to H*(Q).
So even though the solution u. € H*(Q) approaches u when € — 0, the limit doesn’t have
the same reqularity of that of u..
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2.4 CONCLUSION

In this chapter we presented mathematical analysis of the problem: we proved it’s well
posed so it has a unique solution, we investigated some proprieties of this solution and
and showed that in general it doesn’t belong to H* space. Now we're to apply the finite
element method on the problem.
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FINITE ELEMENT METHOD ON THE
OBSTACLE PROBLEM FOR
EULER-BERNOULLI BEAM
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3.1 INTRODUCTION

In this chapter we’re interested in having a finite element formulation suitable for numer-
ical analysis. In previous chapter we hinted at the importance of H* regularity and here
we’ll show it. And then later we’ll discuss a different formulation of problem of which we’ll
apply finite element method on it and discuss the error estimates, priori and posteriori.

3.2 CLASSIC FORMULATION

Let’s consider the uniform discretisation of the intervalle [0, L],

O=zxo<m<-<zp,=1, zj—x;i1=h=1/n; n>2
and the finite space

Vi i={vn €V : Upjjos 121 € P3 ([wiz1,@]),Vi=1,... ,n} = P?Iferm“ N HS(Q)

Such that PHemit js the Hermite finite element space generated by the basis:

20 — X + T
O;(x) =D 3.2
() = (2T (3:2)
20 — X1 + Tig
U,(x) =WV 3.3
(o) —w () (3.3
With &, ¥ being the reference basis in the interval [—1, 1] defined as follows:
1-32*—22° if —1<2<0
®(z) =< 1—32%+22° ifo<zr<1 (3.4)
L0 otherwise
(z+222 +2°  if —1<2<0
U(x) = o — 227 + 23 ifo<z<1 (3.5)
0 otherwise

\
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Figure 3.1: Hermite P3 reference element

Let’s assume ¢ € H*(2), then the convex K can approximated by :

Ky = {vy, € Vi, v, > Uy}

Such that 1, = Z (1)) is hermite interpolant of 1 in V. It’s easy to verify Kj, is
non-empty closed convex in Vj,.
We define the following discrete problem

(3.6)

Find u;, € K}, s.t
a(up,vp —up) > (fyop —up) Vo, € K,

Theorem 3.1 The problem (3.6) has a unique solution.
3.2.1 Periori error estimate in case of full regularity

Let u be solution of continous problem (2.1) and u; the solution of the discrete problem.
We'll assume u € H*(9Q).

Theorem 3.2 If f € L*(Q) and ¢ € H*(Q), we have :
= | g2y < OB (Jul o) + 1 f ]l 2) + [¥]a10))

Proof. If f € L*(Q) and u € H*(Q), the la solution u will satisfy the following comple-
mentary problem in the strong sense:

u(4)—f20 a.e in €

u—1 >0 a.e %n Q (3.7)
(u® — fllu—1) =0 aein

u=20 in 692
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Using the characterization of u in (3.7), we proceed to prove the error estimate.
a(u—up,u—up) =a(u—up,u—uvy)+a(u—upv, —up)
<a(u—up,u—uvy) — (u(4),vh — uh) — (f,vn — up)
=a(u—upu—uvy) — (u(4) + f, o — U + Uy —uh)
=a(u—upu—vy) — (W + fop — ) — (W + £, — up)

We use the fact that (u(4) + fon — uh) >0, we get

) — (™ + £, — )
) - (u4>+f,vh—u+u—w+w ¥n)
=a(u—upu—vy) — (W + fiop —u) — (W + fu—) — (W + f0— )
) = (W + foon =) = (u + £ —vn)

a(u—up,u—up) <a

by using this inequality
2

a 19
b< L 152 veso
Wsoo b Ve

With e = <5, a = M |[u — un| g2 (), b = |lu — vall 2(q) We obtain:
m ||U unl[3p2 ey < @ (= up, u — )
M2
A [y M (3.5)

+ Hu + 2o (||vh — sy + 1 = Vil 2y )
And recalling Hermite interpolant characteristics :
v —Zp (v)|| w2y < CR*|vgagy, Yo € HY(Q) (3.9)
v —Zr" (v)| 120 < C h*olga), Yo € HY(Q) (3.10)
Then by inserting v, = Z/"*"(u) in (3.8) we obtain
I = ey < € (Il = T @) gy + N + Flzz (07 ) = ll gy + 0 = 2 ) )
<C <h4|u|?{4<m + (1 2@ + 12 @) B* (lulas@) + WH“(Q)))
< Ch* (Julgaey + 1 fllz2) + [¥laey)”

3.2.2 The implication of the lack of full regularity

As seen in the previous chapter, we can’t assume u € H*(2), so the previous error estimate
can’t be used in practice. Hence the lack of H* is serious issue and the main difficulty
for deriving the optimal O(h) rate, and numerical analysis on the problem may became
challenging. So different ideas and formulations are needed.
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3.3 MIXED FORMULATION

We introduce a new formulation for the problem which is based on [GSV17, GSV19] which
exploits the Lagrange multiplier from the strong complementary form (3.7). However the
strong form isn’t correct since u¥ — f € H~2(Q) is a positive measure and it doesn’t
belong in general to L?*(€)), and the actual equivalent (weak) complementary form can
represented as follows

(u® — £ v) >0 Yo >0 € HZ(Q)
u—1v >0 a.e in €2 (3.11)
u=>0 in 62
We introduce the Lagrange Multiplier \ defined as
A=u — fe H?(Q) = (Hj(Q))'
Therefore we obtain )
u® — =
(\v)y >0 Yo >0 € HZ(Q)
u—1 >0 a.e in € (3.12)
Au—9)=0
(u=0 in 62
We introduce the following spaces
V= H}
Q:=H7?2*(Q) =V
A={pe@ | (wv)y>0, YveV, v>0aeinQ}

Using the usual math manipulations we can easily verify (3.12) is equivalent to the fol-
lowing mixed variational inequality:

Find (u,\) € V x A s.t:
a(u,v) — (v, \) = (f,v) YveV (3.13)
(U= Xy > (P, = A) VpeA

To establish the equivalence between (2.1) and (3.13), we need the following theorem

Theorem 3.3 [BHR7S8/
Suppose that there exists a constant § > 0 such that

inf SUPM > B, mq#0.
HEQ yey ||U||V||M||Q
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Then problems (2.1) and (3.13) have at most one solution. If either problem has a so-
lution, then they both have solutions. Furthermore if (u, \) solves (3.13), then u solves
(2.1).

And know we’re ready to show well posedness of the mixed variational inequality.

Theorem 3.4 The problem (3.13) has a unique solution (u,\), and u is the solution of
(2.1)

Proof. We know that the problem (2.1) has a unique solution, so by theorem (3.3) to
complete the proof we only need to show such § > 0 exists.

Let p # 0 € Q = (HF(Q2)). By Riesz representation theorem, there exists v, € HZ(Q2) =
V' such that:

Vo € Vi (v, 1) = (v,0)v

loallv = llullo
So
sng)w,m > (s 1) = (Vs v)v = [[oully = lvallvllulle
Therefore
inf supM >1, wu,q#0.
neQ vev [[vllv|lullq
|

Let H := V x @, and define the bilinear form &7 : H x H — R and the linear form
% :H — R through

A ((v,€); (w, 1) = av,w) = (& w) = (n,v) = (V" w0") = (§,w) = (,v)
ZL(w, p) = (f,w) = (¥, 1)

Problem (3.13) can now be written in a compact way as follows

Find (u,A) € V- x A such that (3.14)
o ((u, ) (w, 1= N)) < L(w,p=N), Y(w,p) €V x A '
Theorem 3.5 For all (v,§) € V x Q there exists w € V' such that :
o ((0,€); (w, =€) Z ([[vllz + [1€]]-2)° (3.15)
[wll2 S [vll2 + [1€]] -2 (3.16)

Proof. Let the pair (v,&) € . By Riesz representation theorem, there exists a unique
q € V which satisfies

(2,6) = (¢, 2)v = (", ") + (¢, ) + (¢,2) VzeV. (3.17)
lgllz = [I€]]—2- (3.18)
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Let w = v — q. Using (3.17), (3.18), Poincaré’s and Cauchy-Schwarz inequalities, we

obtain
A, &w, =§) = (v, w") = (w,§) + (v,€)
= (", 0") = (", ¢") + (¢, €)
> [lo"[15 = 1" llollg"llo + (g, @)v
> [vf3 — [v]allqll2 + ll4ll3

> = (Jols + il

> C(|v]s + [[€]]-2)*
And finally, it follows from the triangle inequality that

[wlla = flv = qll2 < vl + llgllz = llvll2 + I€]l -2

3.3.1 The mixed finite element

Let consider the the uniform discretisation of the interval Q = [0, L],

O=zo<m<-<z,=L, z;—xi1=h=L/n; n>2

Let also define the finite spaces V},, ), and the set A, as follows:

Vi i=A{vn €V vpjiay 12 € Ps ([, 2]) , Vi=1,... ,n} = PpHemit A F2(Q)
Qh = {Mh € Q : /l’h\[mi_l,mi] € ]P)O ([l’ifl?*xi]) ,VZ = 1a S 7n}
Ay i={un € Qn:pp>0 dans Q}.

(3.19)
We're ready to present the corresponding discrete problem of (3.14)
Find (uh, )\h> e Vi, x Ay, s.t: (3 20)
A ((uny An) 5 (Vs i — An)) < L (0n, pin — M)V (0n, i) € Vi X Ay, .

For this mixed finite element method of variational inequality, the finite element spaces
must satisfy the "Babuska-Brezzi" condition, also called inf-sup condition:

U 9
Ve, € Qn: sup LB > e (3.21)
vREVY thHz

In order to prove the inf-sup condition is verified for the choosen spaces, we introduce the
following discrete H 2 norm:

n Z; )
s, = S0t / & = (1216lo)’, Ven € Qn
i=1 Ti-1
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Lemma 3.6
AC >0, o], < Ch=2 ||Uh||()7Q7 Yv eV, (3.22)

Proof. We know that there exists ¢ > 0 such that
Jonll < ch™" [Jua

Therefore
[onlly < ¢ Jonly = ¢ Nlupll < edh™ v, || < Ch™2 |Jua

Lemma 3.7 There exists two strictly positive constants C, Cy such that:

Vé, € Qp 2 sup (v, &)

v €V th”2

> Cy[|€nll—y = Co1€nll o, (3.23)

Proof. Recall the definition of negative norm

Ve Q. €] a = sup o) (3.24)
S0 Yl

But Q, C Q, therefore for all &, € @, (3.24) imply the existence of w # 0 € HZ(Q2) and
C > 0 such that :

(w,&n) = Cllwllz [l

Let wy, be the hermit interpolant of w, then we obtain :

(Wh, &) = (wn — w, &n) + (W, &n)
(wp —w, &) + Cllwll2 [|§nll o
— (P2 lwn — wlly) (* 1€nllo) + Cllwllz 1€n]l _,

B2 fup — ]
ﬂmm( 0 Jl6ullyn + C Il
ol

Recall the following proprieties of hermit interpolant:

AVARLY,

[wn — wllog < C'RPlwllag,  lwillyg < C"lwllze
Then, we deduce
(wh, &)
== > C ||&ll o — Co I€nll o
1wl
Therefore (on. €0)
Uh, Gh
sup ~——— > C1 |6l — C2 1€l 5
v EVR thH2
]
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Lemma 3.8 There exists a constant C3 > 0 such that

b (o)

UhEVh H h”2

V& € Qn > (s th”flh (325)

Proof. Let &, = > p_; &fxw where {x; = 1j;, , 4,1 - @ = 1...n} is the basis of Q)

e Case 1: n = 2k
Let v, € V}, such that

k 2i 2i—1
14 21 1 h ~ Sh
Uh = h ;( +£ )q)Qifl + T\I}%il
Hence we obtain
k 2 ¢2i—1 ‘ ‘
(vn, &) = h* Z(( F 4+ ) Py + hTh‘lfgz’—hﬁ?f_lez’_l + E2xg)
i=1
_ h4Z§22 1/ 71( 2i—1 +€ )(I)%il + }211 — i2zi71 \Ijgi,ld.ﬂ
T2i—2 h
. [Fad 2% ¢2i—1
+ 5%2; ( it +€ )q)Qi—l + hTh\IIQi_leE
T2i—1
_h426211 xzill(%l_l_g ) 1(2i_ 2i—1)d$
maiss 2 1225 o
o [ 1 i 2i _ 21y,
+ &, 2( +&0) + (& =& de
> h4zh 21 20)2 4 p (2 21y

—h4Zh 21 l 1)2)
—h4Z/ (&) 2dx

= [I&nl12,
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At the same time

2 _ ¢2i—1 2
|Uh||0 =h Z/ ( it +f )CI)Qi—l + hTh\I’Qi—l) dx
24—

2% ¢2i—1
_hSZ/xQL 21, 1 ) (q)Qz 1) (%)2(\1j2i—1)2d1’
ko
26, o ‘ 2 . .
— }8 S ¢2i—1 2i\2 2 (e2i #2112
hZ/ D ) 6 -
< hSZ/ 2Z 1 )2 _,_( f2L7, - }QLi—l)le,
T2j—
S G,

By using the estimate from (3.22), we get
lonlly < CR2 [lonlly S l1nl1 5,0

Hence we deduce

sup (vn, &n)

vhEVR ||Uh||2,§2

2
> C|&nl1Zs

e Case 2: n = 2k+1
For all &, € @), we have either

2k+1

2k .

T; 1
St gz glal o ot [ gz glalt,
i=1 Ti-1

In the first case we take the same v, as earlier, and the second we take

k 21+1

v = A Z( _|_€2H—1) SO M . fh Sho T Shoy,
i=1
Either way, we obtain
Un; &n 1
sup Y5 o2,
vp€Vh ||Uh”2,9 2

Finally taking C3 = %C’ , then for all n > 2

< h7€h>
sup
v €V thH2Q

2
> Cs [|6nll =5

]
Now we have all the prerequisites to prove inf-sup condition
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Theorem 3.9 For all &, € Qp,, there exists C' > 0

<Uh7 €h>
sup
vpE€EVY HUHHQ

> Clgnll—y

Proof. Let ¢ > 0. Using the results of lemma (3.7) and lemma (3.8) we get:

b (vn: &n) ~ ¢ sup (vn: &n) +(1—1t) sup (vn: &n)
v €V HUhHZ VR EVR thHQ vRE€EVR thH2

>t (C16hlls = Ca hll_s,) + (1 = )C3 Il
=tC1 ||&nll_y + (C3 =t (Co + C1) [I&nll o

Cs
Ci1+C2?

the second term vanishes and we obtain

(Vn, &n) C1Cs
su >
Uhegh HUhHZ — O+ 0y ||€h||_2

If we choose t =

3.3.2 Existence, Uniqueness and Stability

Here we’ll see the importance of inf-sup condition
Theorem 3.10 The problem (3.20) is well posed

Proof. Thanks to stability of the pair (V}, @) proven earlier, we deduce

inf sup M >C
En€Qn vy eV, thHz thHfz

Then as direct consequence of theorem (3.3) and (3.10), the mixed finite element problem
has a unique solution (up, Ap) and wy, is a solution of the problem discrete naive problem
(3.6). m

The inf-sup condition also implies the following discrete stability estimate.

Theorem 3.11 For all (v, &) € H, there exists wy, € Vy, such that :

2

A ((0n, &) 5 (W, =) 2 (lonlly + €01l ) (3.26)
lwnlly S lvonlly + 1€nll_y (3.27)

Proof.
Let &, € Q. Let’s consider the following auxiliary problem :

Find g, € V}, s.t
a(qn, zn) + (qn, 20) g0 = (€n, 2n) ,  Vzp € Vjy
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This is a typical elliptic variational equality, with a unique solution which satisfies

lanll3 = (&n, an)

Because the inf-sup condition (3.21) is verified, then

Jeully S sup (o2t gy L2 L 2
- NZhGVh ||Zh|h/ 2R €Vp th|h/ - 2
However )
||Qh||2 _ ||qh||2 _ <€h7Qh> < ||€h||—2||Qh||2 _ ”§h|| )
lanll2  llgnllz = llgnll2

Now, if we take wy, = v, — qp,

A ((vn, &) 5 (wn, =€) = A ((vn, &n) 5 (vh — qny —En))
= a (vn,vn) — a (v, qn) — (&n, vh — an) + (&, Vn)
= a (Vn, vn) — @ (Un, qn) + (€, qn)

ZM%—A%%HW@

1 2 2
5 (lonlly + lanll)

Vv

1 2 2
5 (lonlls + llanll3)

2
2 2
2 (lonlly + l16nl1=2)

And we he have
lwnlly < Nvnlly + lanlly S lvally + 1160l —s

3.3.3 A priori error estimate

Theorem 3.12 Let (u, \) be the solution of the continuous problem (3.14) and (up, \p)
the solution of the discrete problem (3.20), then the following estimate error holds

= wnlly + 1A= Mll_p S inf llu—willy + inf (1IN = gl + V= 6 m)) (3.28)
v €VR unEAR
Proof. Let (vp, upn) € Vi, X Ay By the previous theorem, there exists wy, € Vj, such that

lwnlly S llun = onlly + 120 = pnll

and
(lun = wnlly + 1% = sl ) S A (un = 0ny An = ); (wWny o — M)
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Considering the discrete problem statement and by exploiting the bilinearity of A, we
obtain

A ((un = vny An = )i (was i — An)) = A ((wns An); (whs i — An)) — A((On, pa); (W, pn — An))
< A((u = vn, A = )i (Wn, i — An)) + L (wny pin — An)
— A ((u, A); (W, pn — An))
= «4((“ — Uy A = i ); (Why fin — An)) + (u — ¥, i — An)
A((w—vp, A = ) (wn, o, — An)) + (u — 9, )

+ (u — 1, —A\p)
<0

< A((w = vp, A= pa); (Whsy oo, — An)) + (=2, pp)

The bilinear form A is continuous, therefore

A (u —vp, A — pn3 wa, i — An)
< (= wally + 11X = pall o) (wnlly + An = pall )
S (lw = wnlly + 11X = all ) (lun = vally + 1A = pall )

Combining the previous estimates, we obtain

2
(ller, — vnlly + [|An = gl _5)
S A((u = v A= pin); (Whsy o, — An)) + (w — 0, fin)
S (lu = wnlly + 11X = pall ) (lun = onlly + 1A = pall _y) + (u =, )
2 2
u— vp|ly + (| A = pall_ € (JJun — vnlly + || An — mal| —
e e Y (e PR P Y I
2€ 2
2
< (ller — vnlly + (A = pall5)
~ 2e

2
o (= vnlly + 12 = sanll_y + /(= 0 1am))
This implies

[un = vnlly + 10 = pall oy S llw = vnlly + A = pnll o + v/ w = g, i)
The triangle inequality gives:

u —wnlly + I = Anll_g < flu—wvnlly + [Jun — vnlly + X = pall Zy + A0 — pal] s
Sllu—wplly + 1A = gl + vV (w — g, )

Finally, since the choice of (vy, 1) was arbitrary we conclude

= wnlly + 1A = Aull 5 S inf flu—willy + it (A= pually + v/ g, )
v EVR NhEAh
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3.3.4 A posteriori Error Estimate

Next we derive the a posteriori estimate. We define the following error indicators

n—1

= h*{[An + f||§,]$i,1,xi[7 = ZU?

=1

h H(l/z—uh)JrH?)—l— <(1/1—uh)+,/\h>, where (¢ —uy), = max {¢ — up, 0}

We also introduce and prove some useful lemmas

Lemma 3.13 There exists w € V and wy, € V), such that
= wnll5 + 1A = Mall?y S -2 (w = wn, An = A) = ((un, M) s (w = wn, Ay = X)) (3.29)
Proof. We know from theorem (3.5), there exists w € V such that:

A (= wn, A= M) (w0, = ) 2 (= unlly + 1A= Ml p)°
Let wj, be the Hermit interpolant of w, hence we obtain

(lu = unlly + 1A = Ml _s)°
SJA((U—U;“)\ )\h) (w )\h_)\))
= A((u, N); (w0, Ay = A)) = A (s An) 5 (w, A — N))
< A((u, N); (w, A — X)) = A ((un, M) (0, 3 = N)) + £ (=w, 0) = A((un, M) 3 (—wy, 0))

g

A((u, A); (w, Ap = X)) = A((un, An) s (w — wn, A — A)) + L (—wp, 0)
A((u, A); (w, Aw = A)) = A((un, An) 5 (w = wn, Aw — X)) + L (—wp, 0)
—L(w,\p — A)+ L (w, A\, — A)
= A((u, \); (w, A, — )) L(w, Ay = A) =A((un, An) 5 (w = wp, Ap = X)) + L (w — wy, 0)

Sﬁ(w—wh,)\h—)\) —A((uh,)\h) (’LU wh,)\h—)\))

[ ]
Lemma 3.14 The following estimate holds:
(un — 0, 0 = A) < [0 = un) ||, 1IN = Al _y + (@ — un) ., An) (3.30)

Proof.
If we take v, = 0 in the discrete problem (3.20) we get:

— (Uny i — An) < — (Un, i — An) (3.31)



For the choices p, = 0 and pj, = 2)p, in (3.31) we find that : (u, — ¥, \y) = 0. Hence,

(up =, Ap — A) =

< — Un, >
§< —uh+,)\ )\h>+< _Uh) 7)\h>
<@ = un) [, 1IN = Al + (& = un) o An)

]
We proceed to prove the reliability and efficiency of the proposed error indicators.

Theorem 3.15 (Reliability)
The following posteriori error estimate holds

lu = unlly + A=Al s S0+ (3.32)

Proof. From Lemma (3.13)

(lw = unlly + 1A = Ml 5)°
,Sﬁ(w—wh,)\h—)\)—A((uh,/\h) (U} wh,)\h—)\))
= (f,w —wp) — (Y, \p = A) — a (up, w —wp) + (A, w —wp) + A, — A, up)

We have:

Tit1 A Tit1 . 5 Zi Tit1 Ny
/ uPvdx —/ (u( )) vdr = [u( )U]x, —/ uP'de

3 7 K3

— [u(3)v] Tit1 [UQ)U’] Tiyl n /IHrl W dor

Ty Ty

We also have w (z;) = wy, (2;) , w' (2;) = wj, (x:) et unly, ..., € P? Therefore

Ti+1 Ti+1
a(uh,w—wh)ZZ/ ug(w—wh)"dizz:/ uﬁf)(w—wh)d:v:()

Consequently, by using lemma (3.14)
(e = wnlly + A = Allp)” S (F + Anow = wn) + (= A, — )

—E/Iiﬂff(f—k)\h)h2(w—wh)d:c+<)\h—)\,uh—w>
z::fll 1/2

< (Zn?) lw = wrllo + [[ (¥ = un) . ||, 1A = Anll_y + (& — wn)y, An)
i=0

=\ I =) 2 e lr =l
(Zw) ol + Tl FRTIE (), )
7=0
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Reminder of estimates of Hermite interpolant

[wally < Cllwll20

W2 lw —willgq < Cllwll2e

And we also have
[wll2 S llu —unlly + [[A = Anll

By using this last inequality we obtain the desired result. =

Theorem 3.16 (efficiency)
The following estimate holds:

1S = il + 12 = Ay + o5c() (3.33)
Proof. We use the the bubble functions b; € HZ([z;_1, x;]), and we define 7; by
vi = b A+ fr) i [zioy,2]  and =0 in Q\[zi_1, 2]
Taking v, = ; in (3.13) we get:
(") = (i A) = (f, %) (3.34)

Using the above and the characteristics of bubble functions we get

Bl g S 0|0 O+ 0|

= (A\n + fn, vi)
= (A, %) + (f ) + (fa = fon)

( + An, %) (W’ 9) = (v A) + (fr = frm)
((w—wn)" %) + iy A = A) + (fa = fo0)

0,[xi—1,%4)

Defining v = Z?:_ll v;, and summing over all intervals we get:

n—1
Z W | + fall
-1

n—

—_

{((U’_Uh)//?’%{/) + <’Vi7)‘h - )‘> + (fh - f?’yz)}

V) 4 A=A+ (frn = f,7) (3.35)

A
(]

I
A~~~ .
—
Q

[NIES

n—1

< = wunlly [[vll2 + 1An = Al [[7]]2 + ose(f) (Z h“HvH%,[x“,xi])
i=1

S (llu = unlly + 1M = M|y +o0se(£)) =2 [1¥llo
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However:

n—1
A vIIE = h”Z il
=1
n—1
=1 b (n + )l (3.36)
=1

n—1
S Z W+ fh”g
i=1
Thus we conclude
n S llu—unlly + [|An — All 5 + osc(f)

3.4 MIXED FORMULATION USING BI-ORTHOGONAL DUAL

In this section we introduce new space of the discrete Lagrangian, based on the works
of Barbara Wohlmuth [Woh11, Woh01|. We apply similar idea of deriving bi-orthogonal
basis of P,, elements, and we derive a bi-orthogonal basis for C* NP3 Hermite elements.
Let V}, be Hermite finite element space generated by Bpys = {¢;,¢; : i = 1..n — 1}, and
@ the dual space generated by B = {®;, ¥, : i = 1..n — 1}. We want the basis to satisfy
the following properties :

e Locality of the support -
supp ®, = supp @,

_ (3.37)
supp ¥, = supp ¥,
e Local biorthogonality relation
/(1%6] - 51]
/\Ilzﬁj - (51]
(3.38)
e Best approximation property:
inf lp— ] S B2l (3.39)
HhERQR
e Uniform inf-sup condition
b(vp,
sup 200 o (3.40)

v €Xp HUhH?
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The key idea is to write ®, as linear combination of elements Bpys, and because we want
supp ®, = supp ®,, we obtain:

ai = (al(bi -+ ag‘I’i -+ Clg(bifl + a4\Ifi,1 + &5(131'4,1 + GG\I}iJrl) in supp (I),L', 0 Otherwise.

We define: ~ _
P,
v;
;4
V = \I/-_l [(I)z \Ilz (I)i—l \Ili—l (I)i+1 \Ili—i-l] (341)
it
[ Di+1]
taking (3.38) into account we get the following matrix equation:
1
aq 0
M|:|=]. (3.42)
Qg 0
Where M is 6 x 6 matrix, and
Tit+1
Ti—1
Or
26 g 9 1w 9 -3
35 , 20 70 420
0 22 13 - 13h  —h°
105 420 14 420 140
9 13 13 11h 0 0
M-n| B E B W (3.44)
20 10 20 s O 0
D 1k 0 0 13 —llh
70 420 35 210
—18h  —h2 0 =lh Rk
420 140 210 105
We easily calculate its inverse
—12 12
2 0 L == 1 3
0 Lo -5 195 15 1%
1 —h125 1h4 —%283 hl —h227
e T A (3.45)
P -1 5 14 32
12 195 27 365 183 1587
h o hZ  2h 202 2n  2h2
Finally, the the coordinates of ®; are
2
aq 1 0
|0 L1
Qg O }1L
12
h



Similarly, the coordinates of U; are

ry 0
0 150

h ! 1

=M |0l =n?| g (3.47)

: h

b 15
0 19
- h

= = ola 02 04 06 08 10
05 x
-5

i 0.2 04 ) 08 10 -10
x
-0.5 -15

Figure 3.2: Graph of the biorthogonal basis of Hermite elements

With this construction of @, basis, the conditions (3.37), (3.38) are clearly verified,
and so is the condition (3.39). Indeed, since & and W are locally linear combination of
Hermite finite element basis we deduce:

inf | — gl < [l = Zh" ] S B*|uls (3.48)
NEQ}L

For the inf-sup condition we use similar method like we used to prove the stability of the
Yy

pair (Permit o) in the previous section. We introduce the following negative discrete

norm:

I, = 30t / & = (12l&ll)>, Ve € Qn
i=1 Ti-1

Now we prove the following:

Lemma 3.17 There exists a constant Cy > 0 such that

VEr € O+ sup Lombn)

vp €V ||UhH2

> Cy[|nll oy, (3.49)

Proof. We need the next formula:
Va,b,c,d €R: (a+b+c+d)?* <4(a® + b+ + d°).
And let ®, ¥, ®, ¥ the reference basis on [—1, 1] of ®;, ¥;, ®;, ¥;, then we can easily verify:
I@illy = Rll@IE,  [1%all = A2[1P]3
1@ill, = b1, [[ill, = A2
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Let fh = 22:11 04262» + BZ-WZ- € Qh, we take:

Then it follows immediately that:

62
ghavh _h4z_+_

Next we estimate the negative discrete norm of ;. For convenience we assume oy = 5y = 0
and q)o = \1’0 =0.

n T
IETED S
i=1 Ti-1

T

= Z h4/ (%‘—161‘—1 + Bim1 Wit + ;@ + Bﬁf
i=1 Ti—1

n—1 z;
< 4h* Z/ (%‘—1@—1)2 + (@'—1@@‘—1)2 + (%‘@)2 + (@@i)z
i i—1
= 4"y " aF || + 57
4 af — T
— 4"y - I2l” + 55 [1Y]

4n1 BQ
SHY G

i=1
= (&n, vn)
Similarly we find
loalle < 2*(&n, vn)

And by employing the inverse inequality (3.22), we get
lonll; < Ch™* [lonlls S ((6ns on)?

Therefore we conclude

sup W55 6 ey,
vREVR ”Uh||2 ’

]

For the rest, we use similar proof of theorem (3.21) since the detail of proof are largely

independent on the space choosen for the dual. Hence by introducing the following spaces

and sets:

Vi i=A{vn €V Uiy 2] € P3 ([wiz1, 2]),Vi=1,... ,n} = PHermit 0 [12(Q))

Qn=<B> (3.50)
Ay = {[LhGQhZ (,uh)Z >0 ‘v’z:ln—l}
We obtain
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Theorem 3.18 The finite element space pair (Vi, Qp) in (3.50) is stable and satisfy inf-
sup condition

b (Vn, &n)

vp €V ||Uh||2

> C||&nll_y

Likewise all results about existence, error estimates from the previous section stays
the same (albeit with different constants) since the proofs are independent from the finite
discrete spaces chosen as long as these spaces are stable and verify inf-sup condition.

3.5 CONCLUSION

As we’ve seen, we derived the naive finite element formulation of the problem and we
showed its inadequacy for numerical analysis. Hence we used another more suitable
stable mixed finite element formulation, which we derived its error estimates, priori and
posteriori. It rests now to test and validate this formulation numerically, which what will
be done in the next chapter.
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CHAPTER 4

NUMERICAL TESTS

48




4.1 INTRODUCTION

In this chapter we’ll give brief description of two methods to solve variational inequalities:
Uzawa Method and Primal Dual Active Set (PDAS). Later we implement Euler Bernoulli
obstacle problems using these methods in Freefem++, and we numerically analyze the
results.

4.2 UzAWA METHOD

Let N = dim(V}), L = dim(Qp,) the discrete problem can formulated as follows: Find
uw € RMN, X\ € A such that

Au+ BTN =f
(n=N"Bu<(n=N"g YpeA

where
A:{,uE]RL: ,ukZO}

Using equation (4.1), we have

u=-A"(B"A- ) (4.3)

Inserting this into our inequality system (4.2), we get

~(p=N"BAT'B"A < (u=NT (9 - BAT'f)
This leaves us with a problem for A only. Setting the Schur complement S = BA~!BT
and right hand side h = BA™1f — g, we obtain

(b—NT(SA=h)>0 VueA (4.4)

The Schur complement S is symmetric as A is symmetric. We also have that A is positive
definite and the rank of B = L, therefore also S is positive definite and there exists
numbers si, So such that

(S, i) = sallul*(Sp, A) < ol lllIA]

Due to this, equation (4.4) is equivalent to minimization problem

F(A) = min F () (4.5)
Where F(u) = 1" Sp — h” . Therefore

V(F(p) =Sp—h

If we have an algorithm to minimize F over A, then we can determine u from the equation
(4.3). In the following, we will need the projection operator Py, which acts from RZ onto

A.
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Lemma 4.1 The components of Py(u) are given by:

Pa(p)r = max (p, 0)

4.2.1 Uzawa’s algorithm

In this subsection, we’ll briefly describe the classical Uzawa algorithm for solving the
inequalities of the form (4.1,4.2). See [Arr58| more details about the algorithm.

Starting with some initial guess, A, can be computed from the constrained minimization
problem (4.5). Then equation (4.3) allows the computation of uj,. A classical method of
this type is the Uzawa algorithm [Arr58|, which relies on an exact solver for the equation
(4.1) and a Jacobi-like iteration for the constrained minimization problem (4.5). Below
we outline the algorithm for this method.

Algorithm 1 Uzawa

give some initial value A(®)

k=0

repeat

A= AB) — a1 (SA®) — p)

Take A5+1 as the projection of A*™ on A : A\*+D .= Py </\S<k+1)>
k=k+1

until |AFFD — AR || < g || G+ ]

up, = —A7H (BTAFEHD — f)

Such that M is the mass matrix of Q).
The convergence of Uzawa algorithm depends The choice of the parameter «, like shown
in the following theorem

Theorem 4.2 Let (u,\) be a solution to the system (4.1,4.2). Let sq,ss denote the
smallest and the largest eigenvalues of M~1S, and let (u(k),/\(k)) be defined by Uzawa’s
method. Then there exists a positive constant & = /\2—2 > 0 such that for each choice
a € (0,a) there holds

u® =, AF N

Proof. see [Arr58| m
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4.3 PRIMAL DUAL ACTIVE SET METHOD

In this section we’ll discuss primal-dual active set strategy |[HIKO02| for the obstacle prob-
lem. Recall the mixed formulation (3.13), we make a slight change by introducing

b(v, ) = —{,v) ,
Hence we can write the problem as

Find (u,\) € V x A
a(u,v) +b(v, A) = f(v), Yo e X (*)
b(U,M_/\)Sg(M_/\), VMGA

Where A ={peV": (v,u) <0, Yv>0¢€V} Weobserve that (x) is an optimization
problem under the constraint of the KKT triple:

u>, A>0, blu,\) =g\ (4.6)

Since the finite spaces can be written as V;, = < ¢, >, @), = < ¥,, >, then in the discrete
problem we obtain

Up = Zap¢p> )\h = Zﬁpg]pv 1/} = 1/Jh = ngqbp

Then the discrete version of the KKT conditions reads:

Qp 2 Gp, By <0, (p —9p)Bp =0 (4.7)
Lemma 4.3 The KKT ' conditions
Qp 2> Gp, B, <0, (O‘p —9p)Bpy =0 (4.8)

is equivalent to C'(ay, B,) = 0 with
C(z,y) =y —min(0,y + c(z — g)), ¢>0 fized
Consequently, we can rewrite the discret version of primal-dual variational inequality as

a non-linear equality formulation.

{Ahoéh—i-Bhﬁh:fh (4.9)

Ch(an, Br) =0

If the nonlinear function C}, is differentiable, applying Newton’s method we get

()-(4) (s o) (5
£+1 ﬁil; aahch 8ﬁh0h Ch(a£>ﬁ£)

Karush-Kuhn-Tucker (KKT) conditions
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Multiplying on both sides of the system with the Jacobian leads to a system of linear
equations to be solved in each Newton step.

Apa™ + BpBt = £
oy O™ + 05, ChBETY = By, Crly + 95, OBl — Chlafy, BE)

The nonlinear function C}, is called NCP function and it maps R™ x R onto R""» where
ny, is the number of vertices

Chlan, Br)p = Cplay, Bp) = By — min(0, B, + c(ay, — gp))

Ignoring the fact that the min function is not differentiable we get:

(4.10)

1. Case p #£q
0, o6,
oa, 0B,
2. Case (3, + ¢(ayp — gp) > 0. Then, Cy(a,, 5,) = B, and thus
% =0 and % =1
oy, 9B,
3. Case S8, + c(a, — gp) < 0. Then, Cy(ay, B,) = —c(ap — gp) and thus
oc, oC,
P _ _ d =2 =
Ja, c an 95, 0

4. Case (B, + c(a, — gp) = 0. This case is not well-defined but thanks to the next result
we can safely treat it as case < 0.

Lemma 4.4 [HIK02]
The mapping y — max(0,y) from R™ to R™ is Newton differentiable on R"

The system (4.10) reads:

Ay, By, aflﬂ . In
90y, Cr 95,Ch W)\ QanChay, + 05,ChBy — ey, By)
1. Case B, + c(ap — gp) > 0. Then, Cy(ay, B,) = B, and thus

% =0 and % =1
Oa,, 0B,
then from the second block line we find for node p
ﬁﬁ—&-lzﬁﬁ_ﬁﬁzo
2. Case (3, + c(ap — gp) < 0. Then, Cpy(ay, 5,) = —c(ay, — gp) and thus
% = —c and % =0
Oay, 0B,
and thus,
—caff! = —cal, — (~clal, ~ g,)) = ~cg
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Algorithm 2 PDAS Algorithm
Let A) € &), = {xg,...,x,} be given and I = &, \ A).

For /=0,1,2,...
1. Set
l : ¢
a, =g, inA, (4.11)
By=0 inZj (4.12)
2. Solve
Aot + Byt = f (4.13)

3. Update the active set

At ={pe Ay, B, <0yU{peI;; o, <0} (4.14)
it =2, \ AT (4.15)

4. Stop if AStH = Af

It is convenient to arrange the coordinates in such a way that the active and inactive
ones occur in consecutive order. In step 2, system (4.13) implies

Aq Az g4 Dy 0 Ba fa
L - 4.16
( Aza Az > < az 0 Dz 0 Iz (4.16)
Note that the diagonal property of By, results from the fact that biorthogonal basis func-
tions of V}, and ()}, have been used.

Then (4.16) implies that:

Apga+Apzan+ Dafa = fa = Dafa= fa— Auga — Auzoa (4.17)

then we write

Ax Auz g4 Ja—Auga—Aazaa \ [ fa
(o ) ()= (oo ) = (1) e

(i ) () () () - (M) o
(i 4 ()-() -

this implies

thus



-1
or more simply, ( by multiplying both sides by ( Aé‘ IO )) we get
7

(z‘{; 121)(2;):(%) (4.21)

In freefem++ software, system (4.21) must written as :

tgv I, 0 ag \ [ tgvga
(o) ()= (%) (422

So an alternative algorithm is as follows

Algorithm 3 PDAS Algorithm 2

Let A) € &), = {xg,...,x,} be given and I = &, \ Al
For { =0,1,2, ...

1. Set

0 _ gl
a, =g, inA,

2. Solve equation (4.22) to get the value of of
3. Calculate 8 from (4.17)
4. Update the active set

Al ={peAl; B<0yuipell; o
L = 2\ A

NS

5. Stop if AST = AL
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4.4 TESTS AND RESULTS

In this section, we’ll solve numerically the obstacle problem using Uzawa method and
PDAS method which were presented earlier in the chapter. Uzawa method will be used
for the stable mixed formulation with (Pje™ite. Py} couple, while PDAS method will be
used for the mixed formulation with biorthogonal basis. The implementation was prepared
by the FreeFem++, and the graphic representation was done using Python. We’ll present
the results for several examples, and for all these examples:

e We use the interval 2 =|0, 1],
e The discretisation is uniform,
e The initial value chosen to be the null vector,

e The error stopping criteria was chosen to be € = 1076,

4.4.1 Example 1: Contact Zone is a closed interval

We take f =0 and ¢ = 423 — 922 + 62 — 1

findue K :={ve H(Q):v>1ae. inQ}
alu,v—u) >0, YvekK
The exact solution of this problem is
3 2 : 1
—4z° 4 3z if z €0, |
u(z) = =
42° — 92° + 61 — 1 ifxe[i,l]

First we investigate the value of alpha for the Uzawa algorithm. Because in general it’s
hard to find the exact values of eigenvalues of a matrix we ended up guessing some values
and this is what we found

a 1 10 | 100 | 500 | 1000 | 1100 | 1150
Number of iterations | 13585 | 6965 | 714 | 139 | 63 56 82
Table 4.1: Number of iterations by for some values « in Uzawa algorithm (N = 10)

Because we saw similar results for different values of M we ended up choosing o = 1100
as the main value when testing Uzawa Algorithm.
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N 5 10 20 100 500
Number of iterations (Uzawa) 32 56 18739 82195 40502
L? error (Uzawa) 1.099¢-3 | 9.879e-4 | 6.670e-05 | 5.463e-05 | 4.640e-05
Number of iterations (PDAS) 4 8 44 71 378
L? error (PDAS) 4.524e-3 | 6.016e-4 | 6.162e-05 | 4.325e-05 | 1.693e-06

Table 4.2: Number of iterations and L? Error (Example 1)
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_02 4

—-0.4 -

_06 4

—0.8 1

_10_

—— appro solution (PDAS)
—— appro solution (UZAWA)
exact solution
obstacle
0.0 0.2 0.4 0.6 0.8 1.0
Figure 4.1: Contact zone with N =5
—— appro solution (PDAS)
—— appro solution (UZAWA)
exact solution
obstacle
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2: Contact zone with N = 100
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4.4.2

We take f =0 and ¢ = =32z — 1)? + 1

Example 2: Contact Zone is a single point

{ﬁnduEK::{UGHg(Q):UZ@Z)a.e. in Q}

a(u,v —u) >0,

The exact solution of this problem is

u(z)

— 1623 + 1222

Yve K

1623 — 3622 + 242 — 4

1
it 1
i xE[O,Q[

) 1
if z € [5,1]

Like in the previous example, we perform Uzawa Method using o = 1100

N 5 10 20 100 500

Number of iterations (Uzawa) 14 20 6378 12277 5072
L? error (Uzawa) 1.992e-03 | 1.353e-03 | 2.181e-04 | 1.867e-04 | 2.721e-04

Number of iterations (PDAS) 2 5 18 34 162
L? error (PDAS) 1.236e-02 | 1.978e-15 | 3.289%¢-13 | 8.091e-12 | 1.1209e-08

Table 4.3: Number of iterations and L? Error (Example 2)
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Figure 4.3: Contact zone with N = 5
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1.0

0.5 A

0.0 A
_05 -
_10 .

—— appro solution (PDAS)
—-1.5 4 —— appro solution (UZAWA)
exact solution
-2.0 - obstacle
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4: Contact zone with N = 100

Something peculiar happens in this example: the lower the number of discretisation,
the less error the PDAS method achieves, but the error is still so small for almost all cases
which means PDAS is still effective. Worth the investigation in the future to see whether
this affects all the cases of single point contact zone or its something particular to this
case.

4.4.3 Example 3: Obstacle is constant

We take f = —18432 and ¢ = —1

findu € K :={v e H}(Q):v>1 ae inQ}
a(u,v —u) >0, YveK

The exact solution of this problem is

( 1
— 42%(1922° — 1287 + 24) if x € [0, 1[
13
u(r) =< —1 ifﬂ?G[lz[
3
— (27 — 2)*(1922® — 2562 +88)  ifx € [Z’ 1]
\

In this example we choose o = 1000 because it was the fastest to converge (when we tried
a = 1100 like the previous examples, the method doesn’t converge).
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N 5 10 20 100 500

Number of iterations (Uzawa) 500 3444 2857 3202 6860
L? error (Uzawa) 3.867¢-02 | 1.086e-02 | 1.214¢-03 | 9.038¢-04 | 5.083e-04

Number of iterations (PDAS) 2 4 14 26 111
L? error (PDAS) 8.657e-02 | 1.326e-02 | 1.274e-04 | 7.468e-06 | 6.082e-08

Table 4.4: Number of iterations and L? Error (Example 3)
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Figure 4.6: Contact zone with N = 100
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CONCLUSION

We have derived a one dimensional unilateral contact model of obstacle type starting
from the three dimensional Signorini problem by using the asymptotic analysis method.
The obtained problem is governed by a fourth order differential operator. Then we have
developed two new finite element methods for fourth order variational inequalities. For
the case when the complementarity form of the variational inequality, exists in a strong
sense, i.e the solution satisfies the full regularity H*, quasi-optimal error estimate is de-
rived in the same fashion for second order variational inequalities. For the case when
the complementarity system exists only in weak sense, the key for the first method, is to
introduce a new compact formulation to connect the continuous and discrete problems.
When we have used the conforming P3;-Hermite element, our compact form doesn’t need
to any extra stabilisation term. For the second method, a biorthogonal dual basis is con-
structed and therefore, a variationaly consistent method is developed. For both methods,
optimal a priori error estimate can be derived by mean of medius analysis and a reliable
a posteriori error estimate of residual type is also obtained.

As perspectives or extensions of the present work, we believe that we can consider the
following problems:

e Variational inequalities of second kind including friction law.
e The Koiter shell model.

e Piezoelectric effects.
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Abstract

In this work we study finite element methods for obstacle Problem of Euler Bernoulli beam. We
begin by applying the asymptotic expansion method to the three-dimensional Signorini problem
for an elastic beam, of which we obtain a one-dimensional model which includes the classical
bending model of an elastic beam on a rigid obstacle also known as Euler Bernoulli obstacle
Problem. We study the existence of the solution of the problem and its regularity, then we apply
the finite element method on the classic formulation and later on the mixed formulation of the
problem which based on Lagrange multiplier, and we give priori and posteriori error estimates.
Finally a numerical test with Freefem++ is presented in which we use Uzawa method and PDAS
method.

Keywords: Fourth Order Variational Inequalities, Euler Bernoulli Beam, Finite Element
Method, PDAS.

Résumé

Dans ce travail, nous étudions les méthodes d'éléments finis pour le probléme d'obstacle de la
poutre d'Euler Bernoulli. Nous commencons par appliquant la méthode de développement
asymptotique au probléme tridimensionnel de Signorini pour une poutre élastique, dont nous
obtenons un modele unidimensionnel qui inclut le modéle classique de flexion d'une poutre
élastique sur un obstacle rigid. Nous étudions I'existence de la solution du probléme et sa
régularité, puis nous appliquons la méthode des éléments finis sur la formulation classique et
plus tard sur la formulation mixte du probléme basée sur le multiplicateur de Lagrange, et nous
donnons des estimations d'erreurs a priori et a posteriori. Enfin un test numérique avec
Freefem++ est présenté dans lequel nous utilisons la méthode Uzawa et la méthode PDAS.

Mots clés : Inégalités variationnelles du quatrieme ordre, poutre d'Euler Bernoulli, méthode des
éléments finis, PDAS.
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