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Introduction

Partial differential equations are used to simulate a wide range of phenomena in the
physical and engineering disciplines. However, However, various more complex nonlinear
problems can be described by variational inequalities (VIs), such as contact problems in
mechanics, heat control problems in engineering, leak phenomena in fluid dynamics and
in financial mathematics. The first problem involving VI was studied In 1933 by Signorini
[Sig33], which describes the contact of a deformable elastic body with a rigid frictionless
foundation. In [Fic64] (1964) the rigorous analysis of the Signorini problem was given
by Fichera in the form of an inequality. Duvaut & Lions (1976) formulated and studied
many problems in mechanics and physics in the framework of VIs [DL76].

One of these variational inequalities is the obstacle problem of Euler Bernoulli beam
which is modeled by a fourth-order elliptic VI of the first kind. For these types of prob-
lem, the existence and uniqueness of the problem solution was studied in various works,
for example by Stampacchia. However when it comes to finding analytical solutions, it
is difficult to find them, and this is why numerical methods like finite elements, finite
differences... etc, have great importance in applications.

For solving fourth-order elliptic problems the conforming FE spaces need to be contained
in C1, which what our work will focus on, particularly Hermite P3 finite elements. And
instead of focusing on the classical formulation we’ll study an alternative variational for-
mulation based on Lagrange multipliers, which has the advantage of providing a physical
value by being an approximation for the contact force and the unknown contact domain,
plus it lends to leads naturally to use semi-smooth methods like primal dual active set
(PDAS).

Our work will be composed of four chapters. In the first chapter we introduce the
variational form of the obstacle problem of Euler Bernoulli beam, we apply asymptotic
analysis on the three dimensional Signorini problem for a beam to derive and justify the

1



model. This allows us to obtain a one-dimensional approximate model which includes the
obstacle problem for Euler Bernoulli beam.

In the second chapter we’ll first show the problem is well posed, and next we study
the regularity of the solution, which we’ll show that while the solution is in the space
C2 ∩H3, but the full regularity or H4 regularity isn’t true in general.

In the third chapter we’ll present the classical finite element formulation and we try
to find a prior error estimate, but we’ll find out that the lack of full regularity makes it
very hard to derive error estimates. And that’s why we introduce new continuous and
discrete formulations more suitable for numerical analysis. The continuous formulation
is a mixed formulation based on Lagrange multipliers, and the discrete formulations are
stable mixed formulations which verify inf-sup condition, one of is the mixed formulation
based on biorthogonal dual space, which will be very useful to implement PDAS method
later. Plus we give priori and posteriori error estimates of the alternative formulation.

Finally in the fourth chapter, we introduce the two methods used to find the discrete
solution: Uzawa Method and the primal dual active set method, and later we implement
them in Freefem++ and we present numerical tests to validate the results.
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Chapter 1

Asymptotic Modelling of the
obstacle problem for
Euler-Bernoulli beam
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1.1 Introduction

The classical models of elastic beams, rods, and plates in solid mechanics are derived
from a priori theories about displacements and/or stress fields [Via85]. These theories,
when substituted in the constitutive and equilibrium equations of three-dimensional elas-
ticity, result in helpful simplifications. However, most of the models derived this manner
require mathematical justification for their validity from both a constitutive and geomet-
ric perspective. So in this chapter we introduce the obstacle problem for the classical
Euler-Bernoulli beam, and then we motivate and justify it mathematically following the
application of the asymptotic method to the three-dimensional Signorini problem.

1.2 The classical model of elastic beams on a rigid foun-
dation

The most known one-dimensional model for bending of clamped elastic beams above an
obstacle corresponds to assume that a beam of length L which starts at x = 0, and that
each point x of the central line of the beam is situated initially to a distance s (x) of the
obstacle, and the total loading applied at the same point is F (x). Then the model can
be written as follows (see [Cim73]):

EI (u)(4) = F + λ, in (0, L)

u(0) = u(L) = 0

(u)′ (0) = (u)′ (L) = 0

u ≥ s, λ ≥ 0, (u− s)λ = 0, in (0, L)

(1.1)

where

• u is the bending of the central line,

• λ is the (unknown) reaction of the foundation ,

• I is the inertia moment

• E is Young’s modulus

The final sentence in (1.1) translates to the requirement for non-penetration and states
that the reaction is only strictly positive in the event that contact with the obstacle is
made.

The variational formulation of problem (1.1) can be easily obtained and is as follows:{
u ∈ U := {v ∈ H2

0 (0, L) : v ≥ s a.e. in (0, L)}
EI
∫ L

0
(u)′′ (v − u)′′ dx ≥

∫ L

0
F (v − u) dx, for all v ∈ U

(1.2)
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1.3 Motivation

We’ll show that the previous model can be seen as an approximation of the three-
dimensional Signorini problem using the asymptotic method, and this is based on the
article [Via85]. Also, in what follows we will use the summation convention on repeated
indices of tensor calculus; moreover, Latin indices take their values in the set {1, 2, 3} and
Greek indices (except ε ) in {2, 3}.

1.3.1 The Signorini problem

x1

x2

x3
ωε

LΓε
0 Γε

L

Figure 1.1: 3d beam Ωε

Let ω be an open, bounded and connected set in R2 with area A(ω). Given ε ∈ R, 0 <
ε ≤ 1, and L > 0, we define

ωε = εω, γε = ∂ωε = ε∂ω

and we also define Ωε = (0, L)×ωε which we will identify as the reference configuration
of the actual beam.

We note by xε = (xε1, x
ε
2, x

ε
3) = (x1, εx2, εx3) an arbitrary point in Ωε and by nε = (nε

i )
the outer unit normal vector on ∂Ωε. The parameter ε represents the diameter of the
transversal section ωε, that has area A (ωε) = ε2A(ω). We denote the edges of Ωε by:

Γε
0 = {0} × ωε, Γε

L = {L} × ωε

We also assume the boundary γε is divided into two nonempty disjoint parts denoted
by γεC and γεN . Accordingly, we denote Γε = Γε

N ∪ Γε
C , with Γε

N = (0, L) × γεN and
Γε
C = (0, L) × γεC . The part Γε

C of the boundary can have a contact without friction
with an obstacle. We denote by sε (xε) the distance of the point xε ∈ Γε

C to the obstacle
measured in the normal direction of vector nε. We assume sε : Γε

C → R+ ∈ L∞ (Γε
C). For

convenience, we drop the superindex ε when ε = 1, i.e.:

Ω = Ω1, Γ0 = Γ1
0, . . .

The beam is assumed to be made from homogeneous and isotropic material with
Young’s modulus E and Poisson’s ratio ν. Also, we’ll use Lamé’s coefficients λ and µ,
related with E and ν by the formulae
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λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(1.3)

We suppose that the beam is clamped in both ends Γε
0 and Γε

L, and under the action
of body forces of volume density f ε = (f ε

i ) and surface forces acting on Γε
N of density

gε = (gεi ). We assume the following regularity for the forces:

f ε
i ∈ L2 (Ωε) , gεi ∈ L2 (Γε

N) (1.4)

In linear elasticity, the classical model used for this situation is known as the Signorini
problem and it is written as (see [DL76]): Find uε : Ω̄ε → R3 such that:

−∂jσij (uε) := f ε
i , in Ωε

σij (u
ε)nε

j = gεi , on Γε
N

uεi = 0, on Γε
0 ∪ Γε

L

uεn ≤ sε, σε
n ≤ 0, σε

ti = 0, on Γε
C

σε
n (u

ε
n − sε) = 0, on Γε

C

(1.5)

where

• σε = σ (uε) = (σij (u
ε)) is the stress tensor, related with the displacement field

uε = (uεi ) by the Hooke’s generalized law

σij (u
ε) =

νE

(1 + ν)(1− 2ν)
epp (u

ε) δij +
E

1 + ν
eij (u

ε)

• e (uε) = (eij (u
ε)) is the linearized strain tensor

eij (u
ε) =

1

2

(
∂iu

ε
j + ∂ju

ε
i

)
• uεn = uεin

ε
i , σ

ε
n = σij (u

ε)nε
in

ε
j and σε

ti = σij (u
ε)nε

j − σε
nn

ε
i .

The two last conditions in (1.5) describes the well-known unilateral contact without
friction. When introducing the space of admissible displacements,

V (Ωε) =
{
vε = (vεi ) ∈

[
H1 (Ωε)

]3
: vε = 0 in Γε

0 ∪ Γε
L

}
the following variational formulation of problem (1.5) can be easily obtained:

uε ∈ K (Ωε) := {vε ∈ V (Ωε) : vεn ≤ sε a.t. on Γε
C}∫

Ωε

σij (u
ε) eij (v

ε − uε) dxε ≥
∫
Ωε

f ε
i (v

ε
i − uεi ) dx

ε +

∫
Γε
N

gεi (v
ε
i − uεi ) da

ε

for all vε ∈ K (Ωε)

(1.6)

6



The problem (1.6) is written as a classical variational inequality of the following form:{
uε ∈ K (Ωε)
aε (u

ε, vε − uε) ≥ lε (v
ε − uε) , for all vε ∈ K (Ωε)

(1.7)

where, for all wε, vε ∈ [H1 (Ωε)]
3 we note:

aε (w
ε, vε) =

∫
Ωε

σij (w
ε) eij (v

ε) dxε, lε (v
ε) =

∫
Ωε

f ε
i v

ε
i dx

ε +

∫
Γε
N

gεi v
ε
i da

ε

Because of the continuity of the linear form lε, the continuity and the coercivity of the
bilinear form aε (from the Korn’s inequality), the problem (1.7) has a unique solution for
each ε (see [LS67]).

1.3.2 The asymptotic method

We introduce the change of variable

Πε : Ω −→ Ωε, (x1, x2, x3) → xε = (x1, εx2, εx3) (1.8)

Also, we scale the unknown, test functions sε:

uα(ε)(x) = εuεα (x
ε) , u1(ε)(x) = uε1 (x

ε) , (1.9)
vα(ε)(x) = εvεα (x

ε) , v1(ε)(x) = vε1 (x
ε) , for all vε : Ω̄ε → R3. (1.10)

We also assume
f ε
α (x

ε) = εfα(x), f
ε
1 (x

ε) = f1(x)

gεα (x
ε) = ε2gα(x), g

ε
1 (x

ε) = εg1(x)

sε = ε−1s(x),

(1.11)

where the functions

fi ∈ L2(Ω), gi ∈ L2 (ΓN) , s ∈ L∞ (ΓC) (1.12)

are independent of the parameter ε.
Consequently, the following result can be obtained via a simple computations.

Theorem 1.1 The scaled displacement u(ε) obtained by means the transforma tion (1.9)
of the solution uε of problem (1.7) is the unique solution of the following variational
problem in Ω :

u(ε) ∈ K(Ω) = {v ∈ V (Ω) : vn ≤ s a.e. on ΓC}
c0(u(ε), v − u(ε)) + ε2c2(u(ε), v − u(ε)) + ε4c4(u(ε), v − u(ε))

≥ ε4
[∫

Ω
fi (vi − ui(ε)) dx+

∫
ΓN
gi (vi − ui(ε)) du

]
for all v ∈ K(Ω)

(1.13)
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where for all w, v ∈ V (Ω) the bilinear forms c0, c2 and c4 are defined by

c0(w, v) =

∫
Ω

[λeαα(w)eββ(v) + 2µeαβ(w)eαβ(v)] dx

c2(w, v) =

∫
Ω

[λeαα(w)e11(v) + 4µe1α(w)e1α(v) + λe11(w)eαα(v)] dx

c4(w, v) =

∫
Ω

(λ+ 2µ)e11(u)e11(v)dx

We notice that the powers of ε2 in (1.13), so it’s natural to use asymptotical techniques
to approximate u(ε), when ε is small, by means of an expansion of the form

u(ε) = u(0) + ε2u(2) + ε4u(4) + . . . (1.14)

Such that

u(2p) ∈ V (Ω), u(0) ∈ K(Ω), u(2p)n ≤ 0, p = 1, 2, . . . (1.15)

In general, for a symmetric bilinear form c : V (Ω)× V (Ω) → R, and for all v ∈ V (Ω)
we obtain the following decomposition according to the expansion (1.14)-(1.15):

c(u(ε), v − u(ε)) = c
(
u(0), v − u(0)

)
+ ε2c

(
u(2), v − 2u(0)

)
+

+ ε4
[
c
(
u(4), v − 2u(0)

)
− c

(
u(2), u(2)

)]
+O

(
ε6
)
.

(1.16)

Substituting the expansion (1.14) into (1.13) while taking into account (1.16) for the
bilinear forms c0, c2, c4, we obtain the following inequality:

c0
(
u(0), v − u(0)

)
+ ε2c0

(
u(2), v − 2u(0)

)
+ ε4

[
c0
(
u(4), v − 2u(0)

)
− c0

(
u(2), u(2)

)]
+ ε2c2

(
u(0), v − u(0)

)
+ ε4c2

(
u(2), v − 2u(0)

)
+ ε4c4

(
u(0), v − u(0)

)
≥ ε4

∫
Ω

fi
(
vi − u0i

)
dx+ ε4

∫
ΓN

gi
(
vi − u0i

)
da+O

(
ε6
)
, for all v ∈ K(Ω).

(1.17)

1.3.3 The first order terms in the asymptotic expansion

Next we introduce some constants and functions which only depend on the geometry of
the transversal section ωε. For simplicity, we assume ε = 1.

• Second moments of area of ω : Iα =
∫
ω
x2αdω.

• Functions Φαβ and δα :

8



Φ22 (x2, x3) =
1

2

(
x22 − x23

)
= −Φ33 (x2, x3)

Φ23 (x2, x3) = Φ32 (x2, x3) = x2x3

δ2 (x2, x3) = x3, δ3 (x2, x3) = −x2

(1.18)

• Warping function w is the unique solution of the following problern:

w ∈ H1(ω),

∫
ω

wdω = 0∫
ω

∂αw∂αφdω =

∫
ω

(x3∂2φ− x2∂3φ) dω, for all φ ∈ H1(ω)

(1.19)

• Timoshenko’s functions ηβ and θβ are the unique solution of the following problems,
respectively:

ηβ ∈ H1(ω),

∫
ω

ηβdω = 0,∫
ω

∂αηβ∂αφdω = −2

∫
ω

xβφdω, for all φ ∈ H1(ω).

(1.20)

θβ ∈ H1(ω),

∫
ω

θβdω = 0,∫
ω

(∂αθβ + Φαβ) ∂αφdω = 0, for all φ ∈ HL(ω)

(1.21)

We also introduce the spaces:

V1(Ω) = {v ∈ V (Ω) : eαβ(v) = 0} (1.22)
V2(Ω) = VBN(Ω) = {v ∈ V (Ω) : eαβ(v) = e1α(v) = 0} (1.23)

The elements of VBN(Ω) are called the Bernoulli-Navier displacements. We have the
following equivalent definitions for for V1(Ω) and V2(Ω).

Lemma 1.2 ([TV96]). The following characterization for the spaces V1(Ω) and V2(Ω)
hold:

V1(Ω) =
{
v ∈

[
H1(Ω)

]3
:

vα (x1, x2, x3) = χα (x1) + δα (x2, x3)χ1 (x1) , χ1, χα ∈ H1
0 (0, L)

} (1.24)

V2(Ω) = VBN(Ω) =
{
v ∈

[
H1(Ω)

]3
: vα (x1, x2, x3) = χα (x1)

v1 (x1, x2, x3) = χ1 (x1)− xαχ
′
α (x1) , χ1 ∈ H1

0 (0, L), χα ∈ H2
0 (0, L)

} (1.25)
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We also use the following sets of functions with separated variables.

WT (Ω) =
{
v = (0, v2, v3) ∈

[
H1(Ω)

)]3
:

vα (x1, x2, x3) = φα (x2, x3)χ (x1) : φα ∈ H1(ω), χ ∈ H1
0 (0, L)

}
≡
{
(v2, v3) ∈

[
H1(Ω)

]2
:

vα (x1, x2, x3) = φα (x2, x3)χ (x1) , φα ∈ H1(ω), χ ∈ H1
0 (0, L)

}
(1.26)

WL(Ω) =
{
v = (v1, 0, 0) ∈

[
H1(Ω)

)]3
:

v1 (x1, x2, x3) = φ (x2, x3)χ (x1) , φ ∈ H1(ω), χ ∈ H1
0 (0, L)

}
≡
{
v1 ∈ H1(Ω) :

v1 (x1, x2, x3) = φ (x2, x3)χ (x1) , φ ∈ H1(ω), χ ∈ H1
0 (0, L)

}
.

(1.27)

Knowing that the outward unit normal vector in Γ = ΓC ∪ ΓN is of the form (0, n2, n3),
we have

K(Ω) = W1(Ω)×K2(Ω) (1.28)

where

K2(Ω) =
{
(vβ) ∈

[
H1(Ω)

]2
: vβ = 0 on Γ0 ∪ ΓL, vβnβ ≤ s a.e. on ΓC

}
(1.29)

W1(Ω) =
{
v1 ∈ H1(Ω) : v1 = 0 on Γ0 ∪ ΓL

}
(1.30)

We also define the following transversal forces F ε
i and moments M ε

i , and the function
wε(0) (for simplicity, ε = 1 is assumed):

Fi =

∫
ω

fidω +

∫
γN

gidγ, Mα =

∫
ω

xαf1dω +

∫
γN

xαg1dγ, (1.31)


w(0) ∈ L2 (0, L;H1(ω)) and a.e. in (0, L),

∫
ω
w(0)dω = 0∫

ω
∂αw

(0)∂αφdω =
∫
ω
f1φdω +

∫
γN
g1φdγ − 1

A(ω)
F1

∫
ω
φdω

for all φ ∈ H1(ω).

(1.32)

Theorem 1.3 Let us suppose the forces satisfy the condition (1.12) and also

f1 ∈ H1
(
0, L;L2(ω)

)
, g1 ∈ H1

(
0, L;L2 (γN)

)
(1.33)

Then, the variational inequality (1.17) yields the following inequalities involving u(0) :

c0
(
u(0), v − u(0)

)
≥ 0, for all v ∈ K(Ω) (1.34)

c0
(
u(2), v − 2u(0)

)
+ c2

(
u(0), v − u(0)

)
≥ 0, for all v ∈ K(Ω). (1.35)

c0
(
u(4), v − 2u(0)

)
− c0

(
u(2), u(2)

)
+ c2

(
u(2), v − 2u(0)

)
+ c4

(
u(0), v − u(0)

)
≥
∫
Ω

fi

(
vi − u

(0)
i

)
dx+

∫
ΓN

gi

(
vi − u

(0)
i

)
da, for all v ∈ K(Ω).

(1.36)
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(i) The displacement u(0) ∈ K(Ω) is uniquely determined, it belongs to the space VBN(Ω)
and it has the following form

u(0)α (x1, x2, x3) = ξα (x1) , u
(0)
1 (x1, x2, x3) = ξ1 (x1)− xαξ

′
α (x1) (1.37)

where the flexions (ξα) are the only solution of the following coupled elliptic variational
inequality: 

(ξα) ∈ [H2
0 (0, L)]

2 ∩ [H3
loc(0, L)]

2 ∩K2(Ω)

EIα
∫ L

0
ξ′′α (χα − ξα)

′′ dx1 ≥
∫ L

0
Fα (χα − ξα) dx1

−
∫ L2

0
Mα (χα − ξα)

′ dx1, for all (χα) ∈ [H2
0 (0, L)]

2 ∩K2(Ω)

(1.38)

and the stretching ξ1 is the only solution of the following variational problem:{
ξ1 ∈ H1

0 (0, L) ∩H2(0, L)

EA(ω)
∫ L

0
ξ′1χ

′dx1 =
∫ L

0
F3χdx1, for all χ ∈ H1

0 (0, L)
(1.39)

(ii) The term u(2) ∈ [H1(Ω)]
3 with u(2)n ≤ 0 and it is characterized as follows:

u(2)α (x1, x2, x3) = zα (x1) + U (2)
α (x1, x2, x3) (1.40)

u
(2)
1 (x1, x2, x1) = z1 (x1)− xαz

′
α (x1) + U

(2)
1 (x1, x2, x3) (1.41)

where U (2) =
(
U

(2)
i

)
has the following form

U (2)
α (x1, x2, x1) = δαr (x1)− ν

[
xαξ

′
1 (x)− Φαβξ

′′
β (x1)

]
(1.42)

U
(2)
1 (x1, x2, x3) =− wr′ (x1) + ν

{
1

2

(
x22 + x23

)
− 1

2A(ω)
(I2 + I3)

}
ξ′′1 (x1)

+ [(1 + ν)ηα + νθα] ξ
′′′
α (x1) +

2(1 + ν)

E
w(0)

(1.43)

with zα ∈ H2(0, L), r ∈ H1(0, L) and z1 ∈ H1
0 (0, L).

Proof. We will present the proof in several steps.
Step 1. Passing to the limit as ε tends to zero in inequality (1.17), we obtain (1.34),

which is: for all v ∈ K(Ω) :∫
Ω

[
λeαα

(
u(0)
)
eββ
(
v − u(0)

)
+ 2µeαβ

(
u(0)
)
eαβ
(
v − u(0)

)]
dx ≥ 0 (1.44)

Taking successively v = 2u(0) and v = 0 ∈ K(Ω) in (1.44) we have:∫
Ω

[
λeαα

(
u(0)
)
eββ
(
u(0)
)
+ 2µeαβ

(
u(0)
)
eαβ
(
u(0)
)]
dx = 0

and, consequently, u(0) ∈ V1(Ω) ∩K(Ω) :

11



eαβ
(
u(0)
)
= 0, u(0)n ≤ s on ΓC . (1.45)

Condition (1.45) restricts the form of the transversal components of u(0) to the following
one (from lemma (1.2)):

u(0)α (x1, x2, x3) = ξα (x1) + δα (x2, x3) ξ (x1) , ξα, ξ ∈ H1
0 (0, L) (1.46)

Hence, inequality (1.34) is equivalent to the equation

c0
(
u(0), v − u(0)

)
= 0, for all v ∈ K(Ω) (1.47)

Step 2. Taking the limit as ε→ 0 on the combination of inequalities 1
ε2
[ (1.17)- (1.47)]

we obtain the inequality (1.35). Taking into account the conditions (1.45), the inequality
(1.30) can be written as:∫

Ω

[
λeαα

(
u(2)
)
eββ(v) + 2µeαβ

(
u(2)
)
eαβ(v)

]
dx

+

∫
Ω

[
λe11

(
u(0)
)
eαα(v) + 4µe1α

(
u(0)
)
e1α
(
v − u(0)

)
dx ≥ 0

for all v ∈ K(Ω)

(1.48)

Equation (1.48) evaluated successively in v = 2u(0) and v = 0 produces:∫
Ω

4µe1α
(
u(0)
)
e1α
(
u(0)
)
dx = 0

which gives us
e1α
(
u(0)
)
= 0 (1.49)

Properties (1.45) and (1.49) mean the term u(0) belongs to the space V2(Ω) = VBN(Ω) of
Bernoulli-Navier displacements and also to K(Ω). Specifically,

u(0) ∈ VBN(Ω) ∩K(Ω)

u(0)α (x) = ξα (x1) , ξα ∈ H2
0 (0, L)

u
(0)
3 (x) = ξ1 (x1)− xαξ

′
α (x1) , ξ1 ∈ H1

0 (0, L),

ξα (x1)nα (x2, x3) ≤ s (x1, x2, x3) a.e. on ΓC

(1.50)

Then, by the corresponding identifications, we have

(ξα) ∈
[
H2

0 (0, L)
]2 ∩K2(Ω) (1.51)

Now, by substituting (1.49) in inequality (1.48), we deduce, for all v ∈ K(Ω) :∫
Ω

[
λeαα

(
u(2)
)
eββ(v) + 2µeαβ

(
u(2)
)
eαβ(v)

]
dx+

∫
Ω

λe11
(
u(0)
)
eαα(v)dx ≥ 0 (1.52)
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Hence, taking test functions v ∈ WT (Ω) ∩K(Ω) in (1.52) we have:∫ L

0

{∫
ω

[
λeαα

(
u(2)
)
eββ(φ) + 2µeαβ

(
u(2)
)
eαβ(φ)

]
dω

+

∫
ω

λe11
(
u(0)
)
eββ(φ)dω

}
χdx1 ≥ 0, for all φ = (φα) ∈

[
H1(ω)

]2
,

and χ ∈ H1
0 (0, L) s.t. φαnα ≤ s a.e. on ΓC , χ ≥ 0 a.e. in (0, L).

We conclude that the following equation holds a.e. in (0, L) :∫
ω

[
λeαα

(
u(2)
)
eββ(φ) + 2µeαβ

(
u(2)
)
eαβ(φ) + λe11

(
u(0)
)
eαα(φ)

]
dω ≥ 0

for all φ = (φα) ∈
[
H1(ω)

]2 s.t. φαnα ≤ s a.e. on ΓC

(1.53)

Taking φα ∈ D(ω) in (1.53) we conclude the following equality:

λeρρ
(
u(2)
)
δαβ + 2µeαβ

(
u(2)
)
= −λe11

(
u(0)
)
δαβ, a.e. in Ω = (0, L)× ω (1.54)

Since e11
(
u(0)
)
= ξ′1 − xαξ

′′
α (see (1.50)), from (1.54) the expressions (1.40) and (1.42)

of u(2)α are deduced (see [TV96],Th. 4.5). We note that conditions zα, r ∈ H1(0, L) are
necessary but not sufficient in order to have u(2)α ∈ W1(Ω). Then u

(2)
α ∈ H1(Ω) but, in

general, u(2)α /∈ W1(Ω) and
(
u
(2)
α

)
/∈ K2(Ω).

From (1.53), we see that u(2) is a solution of the following equation, for all v ∈ K(Ω) :∫
Ω

[
λeαα

(
u(2)
)
eββ(v) + 2µeαβ

(
u(2)
)
eαβ(v)

]
dx+

∫
Ω

λe11
(
u(0)
)
eαα(v)dx = 0 (1.55)

and, from (1.49) and (1.55) we deduce that

c0
(
u(2), v − 2u(0)

)
+ c2

(
u(0), v − u(0)

)
= 0, for all v ∈ K(Ω) (1.56)

Step 3. Passing to the limit as ε→ 0 in the combination of inequalities 1
ε4
[ (1.17) - (1.47) −

ε2(1.56)] we deduce the following inequality (see (1.36)):

c0
(
u(4), v − 2u(0)

)
− c0

(
u(2), u(2)

)
+ c2

(
u(2), v − 2u(0)

)
+ c4

(
u(0), v − u(0)

)
≥
∫
Ω

fi

(
vi − u

(0)
i

)
dx+

∫
ΓN

gi

(
vi − u

(0)
i

)
da, for all v ∈ K(Ω)

(1.57)

So, taking into account the properties deduced in the previous steps, mainly (1.54), the
equation (1.57) is written as:∫

Ω

[
λeαα

(
u(4)
)
eββ(v) + 2µeαβ

(
u(4)
)
eαβ(v)

]
dx

+

∫
β

[
λeαα

(
u(2)
)
e11
(
v − u(0)

)
+ λe11

(
u(2)
)
eαα(v)

]
dx

+

∫
Ω

4µe1α
(
u(2)
)
e1α(v)dx+

∫
Ω

(λ+ 2µ)e11
(
u(0)
)
e11
(
v − u(0)

)
≥
∫
Ω

fi

(
vi − u

(0)
i

)
dx+

∫
ΓN

gi

(
vi − u

(0)
i

)
da, for all v ∈ K(Ω).

(1.58)
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Evaluating (1.58) in v ∈ VBN(Ω) ∩K(Ω) we obtain:∫
Ω

λeαα
(
u(2)
)
e11
(
v − u(0)

)
dx+

∫
Ω

(λ+ 2µ)e11
(
u(0)
)
e11
(
v − u(0)

)
≥
∫
Ω

fi

(
vi − u

(0)
i

)
dx+

∫
ΓN

gi

(
vi − u

(0)
i

)
da, for all v ∈ VBN(Ω) ∩K(Ω)

(1.59)

We notice that for any v ∈ VBN(Ω) ∩K(Ω) we have

vα (x1, x2, x3) = χα (x1) , (χα) ∈
[
H2(0, L)

]2 ∩K2(Ω)

v3 (x1, x2, x3) = χ1 (x1)− xαχ
′
α (x1) , χ1 ∈ H1

0 (0, L)
(1.60)

Now, as a consequence of (1.37) and (1.40), we get

λeαα
(
u(2)
)
+ (λ+ 2µ)e11

(
u(0)
)
= E [ξ′1 − xαξ

′′
α] (1.61)

Then, by substituting (1.61) into (1.59), the problems (1.38) and (1.39) are derived.
Existence, unicity and regularity of solution of problem (1.38) are exhibited in [BS68]:

Step 4. We restrict now (1.58) to v ∈ K(Ω) ∩ V1(Ω), or, eαβ(v) = 0. We have:∫
Ω

[
λeαα

(
u(2)
)
e11
(
v − u(0)

)
+ 4µe1α

(
u(2)
)
e1α
(
v − u(0)

)]
dx

+

∫
Ω

(λ+ 2µ)e11
(
u(0)
)
e11
(
v − u(0)

)
≥
∫
Ω

fi

(
vi − u

(0)
i

)
dx+

∫
ΓN

gi

(
vi − u

(0)
i

)
da

for all v ∈ K(Ω) s.t. eαβ(v) = 0

(1.62)

By taking in (1.62) respectively v = (u01 + v1, 0, 0) and v = (u01 − v1, 0, 0) , v1 ∈ W1(Ω), we
get ∫

Ω

µ∂αu
(2)
1 ∂αv1dx = −

∫
Ω

λeαα
(
u(2)
)
∂1v1dx−

∫
Ω

µ∂1u
(2)
α ∂αv1dx

−
∫
Ω

(λ+ 2µ)∂1u
(0)
1 ∂1v1dx+

∫
Ω

f1v1dx+

∫
ΓN

g1v1da

for all v1 ∈ W1(Ω)

(1.63)

Evaluating (1.63) in v ∈ WL(Ω) we find:∫ L

0

[∫
ω

µ∂αu
(2)
1 ∂αφdω

]
χdx1 = −

∫ L

0

[∫
ω

λeαα
(
u(2)
)
φdω

]
χ′dx1

−
∫ L

0

[∫
ω

µ∂1u
(2)
α ∂αφdω

]
χdx1 −

∫ L

0

[∫ L

ω

(λ+ 2µ)∂1u
(0)
1 φdω

]
χ′dx1

+

∫ L

0

[∫
ω

f1φdω

]
χdx1 +

∫ L

0

[∫
γN

g1φdγ

]
χdx1

for all φ ∈ H1(ω), for all χ ∈ H1
0 (0, L)

(1.64)
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Using now equalities (1.61), (1.40) and (1.42), the following equation in the sense of
distributions in (0, L) is derived:∫

ω

∂αu
(2)
1 ∂αφdω =

E

µ

[
ξ′′1

∫
ω

φdω − ξ′′′α

∫
ω

xαφdω

]
− z′α

∫
ω

∂αφdω

− r′
∫
ω

δα∂αφdω + νξ′′1

∫
ω

xα∂αφdω − νξ′′′β

∫
ω

Φαβ∂αφdω

+
1

µ

∫
ω

f1φdω +
1

µ

∫
γN

g1φdγ, for all φ ∈ H1(ω)

(1.65)

For each x1 ∈ (0, L) the problem (1.65) is a Laplacian problem in ω with Neumann
conditions in all boundary γ. The compatibility condition for φ such that ∂αφ = 0 is
verified because of the equation (1.39) for the traction. Then, there exists a (non-unique)
solution of (1.65) and it has the form given by expressions (1.41) and (1.43) (see [TV96],
Sect. 8).

1.3.4 The limit model to the current beam

Having in mind that u(0) is a first order approximation of u(ε) in Ω, we propose a first
order approximation, u0ε, of uε in Ωε, obtained by undoing the change of variable (1.8)
and the scalings (1.9), (1.10) and (1.11):

uεα (x
ε) = ε−1uα(ε)(x) ∼ ε−1u(0)α (x) =: u0εα (xε) (1.66)

uε1 (x
ε) = u1(ε)(x) ∼ u

(0)
1 (x) =: u0ε1 (xε) (1.67)

From (1.37) we immediately deduce that u0εα and u0ε1 are of the following form:

u0εα (xε) = ε−1u(0)α (x) = ε−1ξα (x1) =: ξεα (x1) (1.68)

u0ε1 (xε) = u
(0)
1 (x) = ξ1 (x1)− xαξ

′
α (x1) = ξε1 (x1)− xεα (ξ

ε
α)

′ (x1) (1.69)

where we put ξε1 = ξ1.
Using now problems (1.38) and (1.39) we obtain a complete characterization of the

first order displacements u0ε by means a well-posed "one-dimensional" model.

Theorem 1.4 The first order displacements field u0ε defined by (1.68)-(1.69) is a Bernoulli-
Navier displacement, i.e.:

u0εα (xε) = ξεα (x1) , ξεα ∈ H2
0 (0, L) (1.70)

u0ε1 (xε) = ξε1 (x1)− xεα (ξ
ε
α)

′ (x1) , ξε3 ∈ H1
0 (0, L) (1.71)

where
(i) The flexions (ξε1, ξ

ε
2) are the only solution of the following coupled variational in-

equality: 
(ξεα) ∈ Kε(0, L),

EIεα
∫ L

0
(ξεα)

′′ (χε
α − ξεα)

′′ dx1 ≥
∫ L

0
F ε
α (χ

ε
α − ξεα) dx1

−
∫ L

0
M ε

α (χ
ε
α − ξεα)

′ dx1, for all (χε
α) ∈ Kε(0, L),

(1.72)
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where

Kε(0, L) :=
{
(χε

α) ∈
[
H2

0 (0, L)
]2

: χε
αn

ε
α ≤ sε a.e. on Γε

C = γεC × (0, L)
}

(1.73)

(ii) The stretching ξε1 is the only solution of the following problem:{
ξε1 ∈ H1

0 (0, L) ∩H2(0, L),

EA (ωε)
∫ L

0
(ξε1)

′ (χε)′ dx1 =
∫ L

0
F ε
1χ

εdx1, for all χε ∈ H1
0 (0, L).

(1.74)

Proof. It is a direct consequence of equations (1.38)-(1.39) and definitions (1.68)-
(1.69) and (1.31).

Equation (1.74) is the classical model for the stretching of a clamped beam without
any obstacles. The problem (1.72) represents a general bending model for a beam which
may become in contact with a rigid obstacle. We notice that we can also define Kε(0, L)
as follows:

Kε(0, L) =
{
(χε

α) ∈
[
H2

0 (0, L)
]2

: χε
α (x1)n

ε
α (x

ε
1, x

ε
1) ≤ sε (x1, x

ε
2, x

ε
3) ,

for all x1 ∈ (0, L) and a.e. (xε2, x
ε
3) ∈ γεC}

(1.75)

If we take the contact surface Γε
C is plane and normal to one of the inertia axes of

the beam (Ox2 , to fix the ideas). Consequently, the outward unit normal vector to Γε
C is

constant and it has one of the form (0,+1, 0) or (0,−1, 0). Let us assume n = (0,−1, 0).
From (1.75) one deduces that the convex set Kε(0, L) for this case is:

Kε(0, L) = U ε
2 (0, L)×H2

0 (0, L) (1.76)

where
U ε
2 (0, L) = {φε ∈ H2

0 (0, L) : φ
ε (x1) ≥ sε (x1, x

ε
2, x

ε
3)

for all x1 ∈ (0, L) and a.e. (xε2, x
ε
3) ∈ γεC}

(1.77)

We assume that the beam and the obstacle are regular enough in such a way the
following function ŝε : [0, L] → R, is well defined and ŝε ∈ L∞(0, L) :

ŝε (x1) = inf
(xε

2,x
ε
3)∈γε

C

sε (x1, x
ε
2, x

ε
3) , x1 ∈ (0, L)

Then, we have an equivalent definition of U ε(0, L)

U ε
2 (0, L) =

{
φε ∈ H2

0 (0, L) : φ
ε ≥ ŝε a.e in (0, L)

}
(1.78)

Setting in (1.72) successively (χε
2, χ

ε
3) = (χε

2, ξ
ε
3) and (χε

2, χ
ε
3) = (ξε2, χ

ε
3), with χε

2 ∈
U ε
2 (0, L) and χε

3 ∈ H2
0 (0, L), we prove that, in this case, the limit problem (1.72) is

equivalent to the following two problems:
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
ξε2 ∈ U ε

2 (0, L)

EIε2
∫ L

0
(ξε2)

′′ (χε
2 − ξε2)

′′ dx1 ≥
∫ L

0
F ε
2 (χ

ε
2 − ξε2) dx1

−
∫ L

0
M ε

2 (χ
ε
2 − ξε2)

′ dx1, for all χε
2 ∈ U ε

2 (0, L),

(1.79)


ξε3 ∈ H2

0 (0, L)

EIε3
∫ L

0
(ξε3)

′′ (χε
3)

′′ dx1 =
∫ L

0
F ε
3χ

ε
3dx1

−
∫ L

0
M ε

3 (χ
ε
3)

′ dx1, for all χε
3 ∈ H2

0 (0, L).

(1.80)

We observe that (1.80) is the usual variational model for bending in the direction Ox2
and (1.79) is the classical one-dimensional obstacle problem (1.2). So we have mathemati-
cally justified this classical model as the first order approximation of the three-dimensional
Signorini problem for an elastic beam when the boundary of contact is assumed to be plane
and normal to one inertia axis.

1.4 Conclusion

Our work in this chapter was two folds: We justified mathematically the Euler Bernoulli
obstacle problem and at the same time we got an approximate problem of the Signorini
problem which should be far easier to solve than the classic one. Thus it is of interest to
further study Euler Bernoulli obstacle problem and try solve it numerically and efficiently.
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Chapter 2

Mathematical Analysis of the
obstacle problem for
Euler-Bernoulli beam
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2.1 Introduction

In the last chapter we approximated Signorini problem and that lead us to find that it
involves find the solution of obstacle problem for the Euler-Bernoulli beam, but before
doing that we need to figure out some mathematical proprieties of the solution which are
important the numerical analysis. In chapter we investigate the existence of the solution
and its regularity, and later we introduce an alternative variational form appropriate for
finite element analysis.

2.2 Existence, Uniqueness and Proprieties of The Solu-
tion

Let Ω = (0, L), L > 0, and ψ represents the obstacle. We reintroduce the obstacle
problem of Euler-Bernoulli Beam but this time we omit the constants since they don’t
affect the mathematical analysis:{

u ∈ K := {v ∈ H2
0 (Ω) : v ≥ s a.e. in Ω}∫ L

0
(u)′′ (v − u)′′ dx ≥

∫ L

0
f (v − u) dx, for all v ∈ K

(2.1)

2.2.1 Existence and Uniqueness

We first provide some useful definitions

Definition 2.1 Let V be a Hilbert space. The bilinear form a(., .) is continuous on V ×V
if there exists M > 0 such that :

|a(u, v)| ≤M∥u∥V ∥v∥V

Definition 2.2 Let V be a Hilbert space. The bilinear form a(., .) is coercive on V × V
if there exists m > 0 such that :

a(v, v) ≥ m∥v∥2V

We also need the following theorem

Theorem 2.3 (Stampacchia’s Theorem)
Assume that a(u, v) is a continuous coercive bilinear form on Hilbert space H. Let

K ⊆ H be a nonempty closed and convex subset. Then, given any ϕ ∈ H⋆, there exists a
unique element u ∈ K such that

a(u, v − u) ≥ ⟨ϕ, v − u⟩ ∀v ∈ K (2.2)
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Moreover, if a is symmetric, then u is characterized by the property:

u ∈ K and
1

2
a(u, v)− ⟨ϕ, u⟩ = min

v∈K
{a(v, v)/2− ⟨ϕ, u⟩} (2.3)

Proof. See [Bre11]
Now we can prove the well posedness of the problem

Theorem 2.4 The problem (2.1) has a unique solution

Proof. We apply the previous theorem (2.3)

1. K is convex: Indeed, let u, v ∈ K and t ∈ [0, 1]

• tu+ (1− t)v ≥ tψ + (1− t)ψ = ψ

• tu(0) + (1− t)v(0) = t · 0 + (1− t) · 0 = 0

• tu(L) + (1− t)v(L) = t · 0 + (1− t) · 0 = 0

Thus for all t ∈ [0, 1], we have tu+ (1− t)v ∈ K

2. K is closed. Let g(v) = |v(0)|+ |v(L)|+ ∥(v − ψ)−∥. g is continuous on H2
0 (Ω) and

g−1({0}) = K, thus K is closed

3. a is continuous :

a(u, v) =

∣∣∣∣∫
Ω

u′′v′′dx

∣∣∣∣ ≤ |u|2,Ω|v|2,Ω ≤ ∥u∥2,Ω∥v∥2,Ω

4. a is coersive : We apply Poincaré inequqlity multiple times

a(v, v) = = ∥v′′∥20,Ω

=
1

3
∥v′′∥20,Ω +

1

3
∥v′′∥20,Ω +

1

3
∥v′′∥20,Ω

≥ 1

3
∥v′′∥20,Ω +

1

3
· 1

Cp

∥v′∥20,Ω +
1

3
· 1

C2
p

∥v∥20,Ω

≥ m∥v∥2H2
0 (Ω)

Thus the existence and uniqueness are proven.

Remark 2.5 Because a(u, v) is symmetric, Stampacchia Thoerem gives us the equivalent
minimization problem of (2.1) as well{

Find u ∈ K such that
J(u) ≤ J(v) ∀v ∈ K

(2.4)

Where J : H2
0 −→ R is defined as follows :

J(v) =
1

2

∫
Ω

|v′′|2dx−
∫
Ω

f · v dx (2.5)
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Remark 2.6 We also notice that the functional (2.5) looks similar to the energy of the
elastic obstacle. Indeed, in the elastic obstacle the displacement is constrained by an
obstacle, denoted by ψ, which is allowed to be elastic. The energy resulting from contact
with an elastic obstacle can be written as

1

2ε

∫
ω

(u− ψ)2−dx, (2.6)

where ε > 0 is the inverse of an appropriately scaled "spring constant" and

(u− ψ)− = min(u− ψ, 0).

The loading consists of a distributed load f ∈ L2(Ω) with the energy

ℓ(v) =

∫
Ω

fvdx. (2.7)

The total energy thus reads as

J(v) =
1

2
a(v, v) +

1

2ε

∫
Ω

(v − ψ)2−dx− ℓ(v). (2.8)

The space of kinematically admissible displacements is V = H2
0 (Ω) and the displacement

function u is thus obtained minimising the energy, viz.

J(u) ≤ J(v) (2.9)

or by solving the weak formulation : find u ∈ V such that

a(u, v) +
1

ε
((u− ψ)−, v) = ℓ(v), ∀v ∈ V, (2.10)

From this last problem, we can see the relationship between the elastic and rigid obstacle.
When ε→ 0 in the problem (2.10), we get the the rigid obstacle problem (2.1).

2.2.2 Proprieties of the solution

We introduce the following definition:

Definition 2.7 Let v in H2(Ω). v is called a supersolution if for all w ∈ H2
0 (Ω) such

that w ≥ 0 we have ∫ L

0

v′′w′′dx− ⟨f, w⟩ ≥ 0 (2.11)

Then we can prove the following theorem.

Theorem 2.8 The solution of the problem (2.1) is a supersolution.
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Proof. In fact, if w ∈ H2
0 , such that w ≥ 0 then u+ w ∈ K. Taking v = u+ w ∈ K,

and replacing it in (2.1) we find ∫ L

0

u′′w′′dx ≥ ⟨f, w⟩

Therefore
∫ L

0
u′′w′′dx−⟨f, w⟩ ⩾ 0 for all w ∈ H2

0 , w ≥ 0. And u is a supersolution.

Theorem 2.9 Let u be a supersolution then it satisfies the following equation in the
distribution sense

u(4) − f = µu

where µu is a positive measure on Ω.

Proof. From theorem (2.8), we obtain that for any positive test function η ∈ D(Ω) we
have: ∫

u′′η′′ − ⟨f, η⟩ ≥ 0

so (u′′)′′−f ≥ 0 in the sense of distributions. Let us consider the following linear operator
on the space D(Ω),

Λ(η) =

∫
u′′η′′ − ⟨f, η⟩

Then Λ is a continuous linear operator on C∞
0 (Ω), therefore it is a distribution. Ac-

cording to Riesz-Schwartz theorem [Sch66], Λ represents a positive measure. let us denote
this measure by µu. Then (u′′)′′ − f = µu in the sense that∫

Ω

u′′η′′ − ⟨f, η⟩ =
∫
Ω

ηdµu

for every η ∈ D(Ω).
Another interesting point is the contact set, or where the solution touches the obstacle.
While in general the contact set can’t be known a priori, the following theorem can be
helpful to find it in specific circumstances

Theorem 2.10 Let u be a solution of the problem (2.1) and suppose ψ is a supersolution.
If a ≤ b ∈ C = {x|x ∈ [0, L]}, u(x) = ψ(x)}, then [a, b] ⊂ A.

Let a, b ∈ A, and let

v =

{
ψ on [a, b]

u on Ω−]a, b[

It’s clear that v ∈ K, u− v ≧ 0 on [a, b] and u− v = 0 on Ω−]a, b[.
We take w = u− v, then w ∈ H2

0 (Ω) and w ≥ 0 on Ω. Since ψ is a supersolution, so
will be v and we obtain ∫ L

0

v′′ (u′′ − v′′) dx− ⟨f, u0 − v⟩ ≥ 0 (2.12)
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Taking v = v in (2.1) we get∫ L

0

(u′′) (v′′ − u′′) dx+ ⟨f, v − u⟩ ≥ 0 (2.13)

Adding (2.12) and (2.13) term by term addition, we obtain∫ L

0

− (v′′ − u′′0)
2
dx ≥ 0

Which means u = v = ψ on [a, b]. Therefore [a, b] ⊂ A.

Remark 2.11 From the last theorem we deduce that if ψ is a supersolution, the beam
touches the obstacle in either exactly one point or over one closed interval. This observa-
tion can be useful to find the solution and the contact set, and we’ll use it in next section
to make a counterexample.

2.3 Regularity of The Solution

2.3.1 H3
loc regularity

Lemma 2.12 Suppose that f ∈ L2(]0, L[). Then any supersolution v(x) we have:

• v′′ ∈ C2(]0, L[)

• v′′′ ∈ L2
loc(]0, L[) and the limits v′′′(x+), v′′′(x−) exist for all x ∈]0, L[, plus

v′′′(x+) ≥ v′′′(x−) for all x ∈]0, L[

Proof. Since v is a supersolution, then by theorem (2.9), the distribution µv = v(4)−f ,
is a positive measure. Let a ∈]0, L[, we define

ϕ : ]0, L[→ R, ϕ(x) =

{
−µv([x, a)) if x < a

µv((a, x]) if x ≥ a

We can easily verify that ϕ is non decreasing, locally integrable and (ϕ)′ = µv. On top
of that we have

f ∈ L2(]0, L[) ⊂ L1(]0, L[) ⇒ ∃F =

∫ x

0

f(t)dt ∈ C0([0, L]) : f(x) = (F (x))′

Taking all that into consideration we obtain:

v(4) = µv + f ⇒ v′′′ = ϕ+ F + C1,
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where C1 is some constant. Then v′′′ is bounded on [x1, x2] for all x1, x2 ∈]0, L[, which
implies v′′′ ∈ L2

loc(]0, L[) and the limits v′′′(x+), v′′′(x−) exists for all x ∈]0, L[, such that

v′′′(x+) ≥ v′′′(x−) for all x ∈]0, L[

We continue integrating

v′′(x) =

∫ x

a

[ϕ(t) + F (t) + C1] dt+ C2

then v′′ is continuous for x ∈]− L,L[.

Theorem 2.13 Assuming f ∈ L2(]0, L[) and

ψ(x) ∈ C0([0, L]), ψ(0) < 0, ψ(L) < 0

.
Then the solution of problem (2.1) u ∈ C2([0, L]) ∩H3

loc([0, L])

Proof. u ∈ C2(]0, L[) ∩ H3
loc(]0, L[) follows immediately from theorem (2.8) and lemma

(2.12). From the continuity of u, ψ we obtain:

u(0) = 0 > ψ(0) ⇒ ∃ϵ > 0,∀x ∈ [0, ϵ] : u(x) > ψ(x)

⇒ ∀x ∈ [0, ϵ] : µu = 0

⇒ ∀x ∈ [0, ϵ] : ϕ(x) is constant

⇒ u′′(0) =

∫ ϵ

a

[ϕ(t) + F (t) + C1] dt+

∫ 0

ϵ

[ϕ(t) + F (t) + C1] dt+ C2

= lim
x→0

u(x)

Therefore u′′ is continuous on x = 0 and u(3) is bounded in the neighberhood of 0.
In similar fashion we can show u′′ is continuous on x = L and u(3) is bounded in the
neighberhood of L, thus proving the theorem.

2.3.2 The lack of H4 regularity

The question to ask next: Can we have higher regularity for u than H3
loc?

Unfortunately, even with smooth f and ψ, u in general does not belong to H4, not
even H4

loc. As the next example will show

Example 2.14 Let f = 0, L = 1 and ψ = −3(2x − 1)2 + 1 in the problem (2.1). We’ll
exploit the fact that ψ(1− x) = ψ(x), let

T :V → V

v 7→ Tv(x) = v(1− x)
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It’s easy to verify T (K) = K and T = T−1. Let w = Tu and and v ∈ K

a(w, v) =

∫ 1

0

w′′v′′ = −
∫ 0

1

(Tw)′′(Tv)′′ =

∫ 1

0

u′′(Tv)′′ ≥ 0

Which means w is a solution to (2.1), hence w(x) = u(1−x) = u(x), because the problem
has a unique solution. We also notice that ψ is supersolution as well which means accord-
ing to theorem (2.10) and the fact that u(1− x) = u(x), either the contact zone is in the
form of [α, 1− α] such that α ∈]0, 1

2
[, or the contact zone is one single point x = 1

2
.

lets assume the contact zone is a closed interval, then

u(x) =


ax3 + bx2 x ∈ [0, α]

−3(2x− 1)2 + 1 x ∈]α, 1− α]

a(1− x)3 + b(1− x)2 x ∈]1− α, 1]

For some a, b ∈ R. However taking into account the theorem (2.12), that u is C2 in the
neighborhood of α we find α = 1

2
; contradiction.

Hence the contact zone is {1
2
}, and we obtain

u(x) =

{
−16x3 + 12x2 x ∈ [0, 1

2
]

−16(1− x)3 + 12(1− x)2 x ∈ [1
2
, 1]

Therefore

u(3) =

{
−96 x ∈ [0, 1

2
[

96 x ∈]1
2
, 1]

So u(3) is not continuous in Ω, hence u /∈ Hloc
4(Ω).

The optimal regularity is still an open question [Ale19], and at the time of publication of
this thesis no example of H4 regularity can found publicly in the case where the obstacle
intersects but is not tangent on the solution. This lack of H4 has big implication when
performing finite element which we’ll discuss in the next chapter.

Remark 2.15 If we go back to the elastic obstacle problem (2.10), we can see that the
reaction force between the obstacle and the plate is given by

u(4) − f = λ = −1

ε
(u− ψ)−. (2.14)

Hence the Lagrange multiplier λ belongs to L2(Ω) and the solution u belongs to H4(Ω).
So even though the solution uε ∈ H4(Ω) approaches u when ε→ 0, the limit doesn’t have
the same regularity of that of uε.
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2.4 Conclusion

In this chapter we presented mathematical analysis of the problem: we proved it’s well
posed so it has a unique solution, we investigated some proprieties of this solution and
and showed that in general it doesn’t belong to H4 space. Now we’re to apply the finite
element method on the problem.
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Chapter 3

Finite Element Method on the
obstacle problem for
Euler-Bernoulli beam
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3.1 Introduction

In this chapter we’re interested in having a finite element formulation suitable for numer-
ical analysis. In previous chapter we hinted at the importance of H4 regularity and here
we’ll show it. And then later we’ll discuss a different formulation of problem of which we’ll
apply finite element method on it and discuss the error estimates, priori and posteriori.

3.2 Classic Formulation

Let’s consider the uniform discretisation of the intervalle [0, L],

0 = x0 < x1 < · · · < xn = 1, xi − xi−1 = h = 1/n; n ≥ 2

and the finite space

Vh := {vh ∈ V : vh|[xi−1,xi] ∈ P3 ([xi−1, xi]) ,∀i = 1, . . . , n
}
= PHermit

3 ∩H2
0 (Ω)

Such that PHermit
3 is the Hermite finite element space generated by the basis:

Bh = {Φi,Ψi : i = 1...n− 1} (3.1)

Φi(x) = Φ

(
2x− xi−1 + xi+1

2h

)
(3.2)

Ψi(x) = Ψ

(
2x− xi−1 + xi+1

2h

)
(3.3)

With Φ, Ψ being the reference basis in the interval [−1, 1] defined as follows:

Φ(x) =


1− 3x2 − 2x3 if − 1 ≤ x ≤ 0

1− 3x2 + 2x3 if 0 ≤ x ≤ 1

0 otherwise
(3.4)

Ψ(x) =


x+ 2x2 + x3 if − 1 ≤ x ≤ 0

x− 2x2 + x3 if 0 ≤ x ≤ 1

0 otherwise
(3.5)
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Figure 3.1: Hermite P3 reference element

Let’s assume ψ ∈ H4(Ω), then the convex K can approximated by :

Kh = {vh ∈ Vh, vh ≥ ψh}

Such that ψh = Iher
h (ψ) is hermite interpolant of ψ in Vh. It’s easy to verify Kh is

non-empty closed convex in Vh.
We define the following discrete problem{

Find uh ∈ Kh s.t
a (uh, vh − uh) ≥ ⟨f, vh − uh⟩ ∀vh ∈ Kh

(3.6)

Theorem 3.1 The problem (3.6) has a unique solution.

3.2.1 Priori error estimate in case of full regularity

Let u be solution of continous problem (2.1) and uh the solution of the discrete problem.
We’ll assume u ∈ H4(Ω).

Theorem 3.2 If f ∈ L2(Ω) and ψ ∈ H4(Ω), we have :

∥u− uh∥H2(Ω) ≤ Ch4
(
|u|H4(Ω) + ∥f∥L2(Ω) + |ψ|H4(Ω)

)
Proof. If f ∈ L2(Ω) and u ∈ H4(Ω), the la solution u will satisfy the following comple-
mentary problem in the strong sense:

u(4) − f ≥ 0 a.e in Ω

u− ψ ≥ 0 a.e in Ω

(u(4) − f)(u− ψ) = 0 a.e in Ω

u = 0 in δΩ

(3.7)
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Using the characterization of u in (3.7), we proceed to prove the error estimate.

a (u− uh, u− uh) = a (u− uh, u− vh) + a (u− uh, vh − uh)

≤ a (u− uh, u− vh)−
(
u(4), vh − uh

)
− (f, vh − uh)

= a (u− uh, u− vh)−
(
u(4) + f, vh − ψh + ψh − uh

)
= a (u− uh, u− vh)−

(
u(4) + f, vh − ψh

)
−
(
u(4) + f, ψh − uh

)
We use the fact that

(
u(4) + f, ψh − uh

)
≥ 0, we get

a (u− uh, u− uh) ≤ a (u− uh, u− vh)−
(
u(4) + f, vh − ψh

)
= a (u− uh, u− vh)−

(
u(4) + f, vh − u+ u− ψ + ψ − ψh

)
= a (u− uh, u− vh)−

(
u(4) + f, vh − u

)
− (u(4) + f, u− ψ)−

(
u(4) + f, ψ − ψh

)
= a (u− uh, u− vh)−

(
u(4) + f, vh − u

)
−
(
u(4) + f, ψ − ψh

)
by using this inequality

ab ≤ a2

2ε
+
ε

2
b2, ∀ε > 0

With ε = M2

m
, a =M ∥u− uh∥H2(Ω), b = ∥u− vh∥H2(Ω) we obtain:

m ∥u− uh∥2H2(Ω) ≤ a (u− uh, u− uh)

≤ m

2
∥u− uh∥2H2(Ω) +

M2

2α
∥u− vh∥2H2(Ω)

+ ∥u(4) + f∥L2(Ω)

(
∥vh − u∥L2(Ω) + ∥ψ − ψh∥L2(Ω)

) (3.8)

And recalling Hermite interpolant characteristics :

∥v − Iher
h (v)∥H2(Ω) ≤ C h2|v|H4(Ω), ∀v ∈ H4(Ω) (3.9)

∥v − Iher
h (v)∥L2(Ω) ≤ C h4|v|H4(Ω), ∀v ∈ H4(Ω) (3.10)

Then by inserting vh = Iher
h (u) in (3.8) we obtain

∥u− uh∥2H2(Ω) ≤ C
(∥∥u− Iher

h (u)
∥∥2
H2(Ω)

+ ∥u(4) + f∥L2

(∥∥Iher
h (u)− u

∥∥
L2(Ω)

+ ∥ψh − ψ∥L2(Ω)

))
≤ C

(
h4|u|2H4(Ω) +

(
∥u(4)∥L2(Ω) + ∥f∥L2(Ω)

)
h4
(
|u|H4(Ω) + |ψ|H4(Ω)

))
≤ Ch4

(
|u|H4(Ω) + ∥f∥L2(Ω) + |ψ|H4(Ω)

)2

3.2.2 The implication of the lack of full regularity

As seen in the previous chapter, we can’t assume u ∈ H4(Ω), so the previous error estimate
can’t be used in practice. Hence the lack of H4 is serious issue and the main difficulty
for deriving the optimal O(h) rate, and numerical analysis on the problem may became
challenging. So different ideas and formulations are needed.
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3.3 Mixed Formulation

We introduce a new formulation for the problem which is based on [GSV17, GSV19] which
exploits the Lagrange multiplier from the strong complementary form (3.7). However the
strong form isn’t correct since u(4) − f ∈ H−2(Ω) is a positive measure and it doesn’t
belong in general to L2(Ω), and the actual equivalent (weak) complementary form can
represented as follows 

⟨u(4) − f, v⟩ ≥ 0 ∀v ≥ 0 ∈ H2
0 (Ω)

u− ψ ≥ 0 a.e in Ω

⟨u(4) − f, u− ψ⟩ = 0

u = 0 in δΩ

(3.11)

We introduce the Lagrange Multiplier λ defined as

λ = u(4) − f ∈ H−2(Ω) = (H2
0 (Ω))

′

Therefore we obtain 

u(4) − f = λ

⟨λ, v⟩ ≥ 0 ∀v ≥ 0 ∈ H2
0 (Ω)

u− ψ ≥ 0 a.e in Ω

⟨λ, u− ψ⟩ = 0

u = 0 in δΩ

(3.12)

We introduce the following spaces

V := H2
0

Q := H−2(Ω) = V ′

Λ := {µ ∈ Q | ⟨µ, v⟩ ≥ 0, ∀v ∈ V, v ≥ 0 a.e in Ω}

Using the usual math manipulations we can easily verify (3.12) is equivalent to the fol-
lowing mixed variational inequality:

Find (u, λ) ∈ V × Λ s.t:
a(u, v)− ⟨v, λ⟩ = (f, v) ∀v ∈ V

⟨u, µ− λ⟩ ≥ ⟨ψ, µ− λ⟩ ∀µ ∈ Λ

(3.13)

To establish the equivalence between (2.1) and (3.13), we need the following theorem

Theorem 3.3 [BHR78]
Suppose that there exists a constant β > 0 such that

inf
µ∈Q

sup
v∈V

⟨v, µ⟩
∥v∥V ∥µ∥Q

≥ β, µ, q ̸= 0.
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Then problems (2.1) and (3.13) have at most one solution. If either problem has a so-
lution, then they both have solutions. Furthermore if (u, λ) solves (3.13), then u solves
(2.1).

And know we’re ready to show well posedness of the mixed variational inequality.

Theorem 3.4 The problem (3.13) has a unique solution (u, λ), and u is the solution of
(2.1)

Proof. We know that the problem (2.1) has a unique solution, so by theorem (3.3) to
complete the proof we only need to show such β > 0 exists.
Let µ ̸= 0 ∈ Q = (H2

0 (Ω))
′. By Riesz representation theorem, there exists vµ ∈ H2

0 (Ω) =
V such that:

∀v ∈ V : ⟨v, µ⟩ = (v, vµ)V

∥vµ∥V = ∥µ∥Q

So
sup
v∈V

⟨v, µ⟩ ≥ ⟨vµ, µ⟩ = (vµ, vµ)V = ∥vµ∥2V = ∥vµ∥V ∥µ∥Q

Therefore
inf
µ∈Q

sup
v∈V

⟨v, µ⟩
∥v∥V ∥µ∥Q

≥ 1, µ, q ̸= 0.

Let H := V × Q, and define the bilinear form A : H × H → R and the linear form
L : H → R through

A ((v, ξ); (w, µ)) = a(v, w)− ⟨ξ, w⟩ − ⟨µ, v⟩ = (v′′, w′′)− ⟨ξ, w⟩ − ⟨µ, v⟩
L (w, µ) = (f, w)− ⟨ψ, µ⟩

Problem (3.13) can now be written in a compact way as follows{
Find (u, λ) ∈ V × Λ such that
A ((u, λ); (w, µ− λ)) ≤ L (w, µ− λ), ∀(w, µ) ∈ V × Λ

(3.14)

Theorem 3.5 For all (v, ξ) ∈ V ×Q there exists w ∈ V such that :

A ((v, ξ); (w,−ξ)) ≳ (∥v∥2 + ∥ξ∥−2)
2 (3.15)

∥w∥2 ≲ ∥v∥2 + ∥ξ∥−2 (3.16)

Proof. Let the pair (v, ξ) ∈ H . By Riesz representation theorem, there exists a unique
q ∈ V which satisfies

⟨z, ξ⟩ = (q, z)V = (q′′, z′′) + (q′, z′) + (q, z) ∀z ∈ V. (3.17)
∥q∥2 = ∥ξ∥−2. (3.18)
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Let w = v − q. Using (3.17), (3.18), Poincaré’s and Cauchy-Schwarz inequalities, we
obtain

A(v, ξ;w,−ξ) = (v′′, w′′)− ⟨w, ξ⟩+ ⟨v, ξ⟩
= (v′′, v′′)− (v′′, q′′) + ⟨q, ξ⟩
≥ ∥v′′∥20 − ∥v′′∥0∥q′′∥0 + (q, q)V

≥ |v|22 − |v|2∥q∥2 + ∥q∥22

≥ 1

2
(|v|2 + ∥ξ∥−2)

2

≥ C (|v|2 + ∥ξ∥−2)
2

And finally, it follows from the triangle inequality that

∥w∥2 = ∥v − q∥2 ≤ ∥v∥2 + ∥q∥2 = ∥v∥2 + ∥ξ∥−2.

3.3.1 The mixed finite element

Let consider the the uniform discretisation of the interval Ω = [0, L],

0 = x0 < x1 < · · · < xn = L, xi − xi−1 = h = L/n; n ≥ 2

Let also define the finite spaces Vh, Qh and the set Λh as follows:


Vh := {vh ∈ V : vh|[xi−1,xi] ∈ P3 ([xi−1, xi]) ,∀i = 1, . . . , n

}
= PHermit

3 ∩H2
0 (Ω)

Qh := {µh ∈ Q : µh|[xi−1,xi] ∈ P0 ([xi−1, xi]) ,∀i = 1, . . . , n
}

Λh := {µh ∈ Qh : µh ≥ 0 dans Ω} .
(3.19)

We’re ready to present the corresponding discrete problem of (3.14){
Find (uh, λh) ∈ Vh × Λh s.t:
A ((uh, λh) ; (vh, µh − λh)) ≤ L (vh, µh − λh) ∀ (vh, µh) ∈ Vh × Λh

(3.20)

For this mixed finite element method of variational inequality, the finite element spaces
must satisfy the "Babuska-Brezzi" condition, also called inf-sup condition:

∀ξh ∈ Qh : sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≳ ∥ξh∥−2 (3.21)

In order to prove the inf-sup condition is verified for the choosen spaces, we introduce the
following discrete H−2 norm:

∥ξh∥2−2,h =
n∑

i=1

h4
∫ xi

xi−1

ξ2h =
(
h2∥ξh∥0

)2
, ∀ξh ∈ Qh
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Lemma 3.6
∃C > 0, ∥vh∥2 ≤ Ch−2 ∥vh∥0,Ω , ∀v ∈ Vh (3.22)

Proof. We know that there exists c > 0 such that

∥v′h∥ ≤ ch−1 ∥vh∥

Therefore
∥vh∥2 ≤ c′ |vh|2 = c′ ∥v′′h∥ ≤ cc′h−1 ∥v′h∥ ≤ Ch−2 ∥vh∥

Lemma 3.7 There exists two strictly positive constants C1, C2 such that:

∀ξh ∈ Qh : sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C1 ∥ξh∥−2 − C2 ∥ξh∥−2,h (3.23)

Proof. Recall the definition of negative norm

∀ξ ∈ Q, ∥ξ∥−2 = sup
w∈V

⟨ξ, w⟩
∥w∥V

(3.24)

But Qh ⊂ Q, therefore for all ξh ∈ Qh (3.24) imply the existence of w ̸= 0 ∈ H2
0 (Ω) and

C > 0 such that :

⟨w, ξh⟩ ≥ C∥w∥2 ∥ξh∥−2

Let wh be the hermit interpolant of w, then we obtain :

⟨wh, ξh⟩ = ⟨wh − w, ξh⟩+ ⟨w, ξh⟩
≥ ⟨wh − w, ξh⟩+ C∥w∥2 ∥ξh∥−2

≥ −
(
h−2 ∥wh − w∥0

) (
h2 ∥ξh∥0

)
+ C∥w∥2 ∥ξh∥−2

= −∥w∥2
(
h−2 ∥wh − w∥0

∥w∥2
∥ξh∥−2,h + C ∥ξh∥−2

)
Recall the following proprieties of hermit interpolant:

∥wh − w∥0,Ω ≤ C ′h2∥w∥2,Ω, ∥wh∥2,Ω ≤ C ′′∥w∥2,Ω

Then, we deduce
⟨wh, ξh⟩
∥wh∥2

≥ C1 ∥ξh∥−2 − C2 ∥ξh∥−2,h

Therefore
sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C1 ∥ξh∥−2 − C2 ∥ξh∥−2,h
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Lemma 3.8 There exists a constant C3 > 0 such that

∀ξh ∈ Qh : sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C3 ∥ξh∥−2,h (3.25)

Proof. Let ξh =
∑n

k=1 ξ
k
hχk where {χi = 1]xi−1,xi[ : i = 1...n} is the basis of Qh

• Case 1: n = 2k
Let vh ∈ Vh such that

vh = h4
k∑

i=1

(ξ2i−1
h + ξ2ih )Φ2i−1 +

ξ2ih − ξ2i−1
h

h
Ψ2i−1

Hence we obtain

⟨vh, ξh⟩ = h4
k∑

i=1

⟨(ξ2i−1
h + ξ2ih )Φ2i−1 +

ξ2ih − ξ2i−1
h

h
Ψ2i−1, ξ

2i−1
h χ2i−1 + ξ2ih χ2i⟩

= h4
k∑

i=1

ξ2i−1
h

∫ x2i−1

x2i−2

(ξ2i−1
h + ξ2ih )Φ2i−1 +

ξ2ih − ξ2i−1
h

h
Ψ2i−1dx

+ ξ2ih

∫ x2i

x2i−1

(ξ2i−1
h + ξ2ih )Φ2i−1 +

ξ2ih − ξ2i−1
h

h
Ψ2i−1dx

= h4
k∑

i=1

ξ2i−1
h

∫ x2i−1

x2i−2

1

2
(ξ2i−1

h + ξ2ih )−
1

12
(ξ2ih − ξ2i−1

h )dx

+ ξ2ih

∫ x2i

x2i−1

1

2
(ξ2i−1

h + ξ2ih ) +
1

12
(ξ2ih − ξ2i−1

h )dx

≳ h4
k∑

i=1

h(ξ2i−1
h + ξ2ih )

2 + h(ξ2ih − ξ2i−1
h )2

= h4
k∑

i=1

h
(
(ξ2i−1

h )2 + (ξ2ih )
2
)

= h4
k∑

i=1

∫ x2i

x2i−2

(ξh)
2dx

= ∥ξh∥2−2,h
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At the same time

∥vh∥20 = h8
k∑

i=1

∫ x2i

x2i−2

(
(ξ2i−1

h + ξ2ih )Φ2i−1 +
ξ2ih − ξ2i−1

h

h
Ψ2i−1

)2

dx

= h8
k∑

i=1

∫ x2i

x2i−2

(ξ2i−1
h + ξ2ih )

2(Φ2i−1)
2 + (

ξ2ih − ξ2i−1
h

h
)2(Ψ2i−1)

2dx

= h8
k∑

i=1

∫ x2i

x2i−2

26

35
(ξ2i−1

h + ξ2ih )
2 +

2

105
(ξ2ih − ξ2i−1

h )2dx

≲ h8
k∑

i=1

∫ x2i

x2i−2

(ξ2i−1
h + ξ2ih )

2 + (ξ2ih − ξ2i−1
h )2dx

≲ h4 ∥ξh∥2−2,h

By using the estimate from (3.22), we get

∥vh∥2 ≤ Ch−2 ∥vh∥0 ≲ ∥ξh∥2−2,h

Hence we deduce
sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2,Ω

≥ C ∥ξh∥2−2,h

• Case 2: n = 2k+1
For all ξh ∈ Qh we have either

2k∑
i=1

h4
∫ xi

xi−1

ξ2h ≥ 1

2
∥ξh∥2−2,h or

2k+1∑
i=2

h4
∫ xi

xi−1

ξ2h ≥ 1

2
∥ξh∥2−2,h

In the first case we take the same vh as earlier, and the second we take

vh = h4
k∑

i=1

(ξ2ih + ξ2i+1
h )Φ2i +

ξ2i+1
h − ξ2ih

h
Ψ2i

Either way, we obtain

sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2,Ω

≥ 1

2
C ∥ξh∥2−2,h

Finally taking C3 =
1
2
C, then for all n ≥ 2

sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2,Ω

≥ C3 ∥ξh∥2−2,h

Now we have all the prerequisites to prove inf-sup condition
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Theorem 3.9 For all ξh ∈ Qh, there exists C > 0

sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C ∥ξh∥−2

Proof. Let t > 0. Using the results of lemma (3.7) and lemma (3.8) we get:

sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

= t sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

+ (1− t) sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ t
(
C1 ∥ξh∥−2 − C2 ∥ξh∥−2,h

)
+ (1− t)C3 ∥ξh∥−2,h

= tC1 ∥ξh∥−2 + (C3 − t (C2 + C1)) ∥ξh∥−2,h

If we choose t = C3

C1+C2
, the second term vanishes and we obtain

sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C1C3

C1 + C2

∥ξh∥−2

3.3.2 Existence, Uniqueness and Stability

Here we’ll see the importance of inf-sup condition

Theorem 3.10 The problem (3.20) is well posed

Proof. Thanks to stability of the pair (Vh, Qh) proven earlier, we deduce

inf
ξh∈Qh

sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2 ∥ξh∥−2

≥ C

Then as direct consequence of theorem (3.3) and (3.10), the mixed finite element problem
has a unique solution (uh, λh) and uh is a solution of the problem discrete naive problem
(3.6).
The inf-sup condition also implies the following discrete stability estimate.

Theorem 3.11 For all (vh, ξh) ∈ H , there exists wh ∈ Vh such that :

A ((vh, ξh) ; (wh,−ξh)) ≳
(
∥vh∥2 + ∥ξh∥−2

)2 (3.26)
∥wh∥2 ≲ ∥vh∥2 + ∥ξh∥−2 (3.27)

Proof.
Let ξh ∈ Qh. Let’s consider the following auxiliary problem :{

Find qh ∈ Vh s.t
a (qh, zh) + (qh, zh)H1 = ⟨ξh, zh⟩ , ∀zh ∈ Vh
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This is a typical elliptic variational equality, with a unique solution which satisfies

∥qh∥22 = ⟨ξh, qh⟩

Because the inf-sup condition (3.21) is verified, then

∥ξh∥−2 ≲ sup
zh∈Vh

⟨ξh, zh⟩
∥zh∥V

= sup
zh∈Vh

a (qh, zh) + (qh, zh)H1

∥zh∥V
≤ ∥qh∥2

However
∥qh∥2 =

∥qh∥22
∥qh∥2

=
⟨ξh, qh⟩
∥qh∥2

≤ ∥ξh∥−2∥qh∥2
∥qh∥2

= ∥ξh∥−2

Now, if we take wh = vh − qh,

A ((vh, ξh) ; (wh,−ξh)) = A ((vh, ξh) ; (vh − qh,−ξh))
= a (vh, vh)− a (vh, qh)− ⟨ξh, vh − qh⟩+ ⟨ξh, vh⟩
= a (vh, vh)− a (vh, qh) + ⟨ξh, qh⟩

≥ ∥v′′h∥
2
0 −

∫
Ω

v′′hq
′′
h + ∥qh∥22

≥ 1

2

(
∥vh∥20 + ∥qh∥20

)
≳

1

2

(
∥vh∥22 + ∥qh∥22

)
≳
(
∥vh∥22 + ∥ξh∥2−2

)
And we he have

∥wh∥2 ≤ ∥vh∥2 + ∥qh∥2 ≲ ∥vh∥2 + ∥ξh∥−2

3.3.3 A priori error estimate

Theorem 3.12 Let (u, λ) be the solution of the continuous problem (3.14) and (uh, λh)
the solution of the discrete problem (3.20), then the following estimate error holds

∥u− uh∥2 + ∥λ− λh∥−2 ≲ inf
vh∈Vh

∥u− vh∥2 + inf
µh∈Λh

(
∥λ− µh∥−2 +

√
⟨u− ψ, µh⟩

)
(3.28)

Proof. Let (vh, µh) ∈ Vh × Λh. By the previous theorem, there exists wh ∈ Vh such that

∥wh∥1 ≲ ∥uh − vh∥1 + ∥λh − µh∥−1

and (
∥uh − vh∥1 + ∥λh − µh∥−1

)2
≲ A ((uh − vh, λh − µh); (wh, µh − λh))
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Considering the discrete problem statement and by exploiting the bilinearity of A, we
obtain

A ((uh − vh, λh − µh); (wh, µh − λh)) = A ((uh, λh); (wh, µh − λh))−A ((vh, µh); (wh, µh − λh))

≤ A ((u− vh, λ− µh); (wh, µh − λh)) + L (wh, µh − λh)

−A ((u, λ); (wh, µh − λh))

= A ((u− vh, λ− µh); (wh, µh − λh)) + ⟨u− ψ, µh − λh⟩
= A ((u− vh, λ− µh); (wh, µh − λh)) + ⟨u− ψ, µh⟩
+ ⟨u− ψ,−λh⟩︸ ︷︷ ︸

≤0

≤ A ((u− vh, λ− µh); (wh, µh − λh)) + ⟨u− ψ, µh⟩

The bilinear form A is continuous, therefore

A (u− vh, λ− µh;wh, µh − λh)

≤
(
∥u− vh∥2 + ∥λ− µh∥−2

) (
∥wh∥2 + ∥λh − µh∥−2

)
≲
(
∥u− vh∥2 + ∥λ− µh∥−2

) (
∥uh − vh∥2 + ∥λh − µh∥−2

)
Combining the previous estimates, we obtain(

∥uh − vh∥2 + ∥λh − µh∥−2

)2
≲ A ((u− vh, λ− µh); (wh, µh − λh)) + ⟨u− ψ, µh⟩
≲
(
∥u− vh∥2 + ∥λ− µh∥−2

) (
∥uh − vh∥2 + ∥λh − µh∥−2

)
+ ⟨u− ψ, µh⟩

≤
(
∥u− vh∥2 + ∥λ− µh∥−2

)2
2ϵ

+
ϵ
(
∥uh − vh∥2 + ∥λh − µh∥−2

)2
2

+ ⟨u− ψ, µh⟩

≲

(
∥uh − vh∥2 + ∥λh − µh∥−2

)2
2ϵ

+
(
∥uh − vh∥2 + ∥λh − µh∥−2 +

√
⟨u− ψ, µh⟩

)2
This implies

∥uh − vh∥2 + ∥λh − µh∥−2 ≲ ∥u− vh∥2 + ∥λ− µh∥−2 +
√

⟨u− g, µh⟩

The triangle inequality gives:

∥u− uh∥2 + ∥λ− λh∥−2 ≤ ∥u− vh∥2 + ∥uh − vh∥2 + ∥λ− µh∥−1 + ∥λh − µh∥−2

≲ ∥u− vh∥2 + ∥λ− µh∥−1 +
√

⟨u− g, µh⟩

Finally, since the choice of (vh, µh) was arbitrary we conclude

∥u− uh∥2 + ∥λ− λh∥−2 ≲ inf
vh∈Vh

∥u− vh∥2 + inf
µh∈Λh

(
∥λ− µh∥−2 +

√
⟨u− g, µh⟩

)
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3.3.4 A posteriori Error Estimate

Next we derive the a posteriori estimate. We define the following error indicators

η2i = h4 ∥λh + f∥20,]xi−1,xi[
, η2 =

n−1∑
i=1

η2i

S2 = h−4
∥∥(ψ − uh)+

∥∥2
0
+
〈
(ψ − uh)+ , λh

〉
, where (ψ − uh)+ = max {ψ − uh, 0}

We also introduce and prove some useful lemmas

Lemma 3.13 There exists w ∈ V and wh ∈ Vh such that

∥u− uh∥22 + ∥λ− λh∥2−2 ≲ L (w − wh, λh − λ)− A ((uh, λh) ; (w − wh, λh − λ)) (3.29)

Proof. We know from theorem (3.5), there exists w ∈ V such that:

A ((u− uh, λ− λh) ; (w, λh − λ)) ≳ (∥u− uh∥2 + ∥λ− λh∥−2

)2
Let wh be the Hermit interpolant of w, hence we obtain

(∥u− uh∥2 + ∥λ− λh∥−2

)2
≲ A ((u− uh, λ− λh) ; (w, λh − λ))

= A ((u, λ); (w, λh − λ))−A ((uh, λh) ; (w, λh − λ))

≲ A ((u, λ); (w, λh − λ))−A ((uh, λh) ; (w, λh − λ)) + L (−wh, 0)−A ((uh, λh) ; (−wh, 0))︸ ︷︷ ︸
≥0

= A ((u, λ); (w, λh − λ))−A ((uh, λh) ; (w − wh, λh − λ)) + L (−wh, 0)

= A ((u, λ); (w, λh − λ))−A ((uh, λh) ; (w − wh, λh − λ)) + L (−wh, 0)

− L (w, λh − λ) + L (w, λh − λ)

= A ((u, λ); (w, λh − λ))− L (w, λh − λ)︸ ︷︷ ︸
≤0

−A ((uh, λh) ; (w − wh, λh − λ)) + L (w − wh, 0)

≤ L (w − wh, λh − λ)−A ((uh, λh) ; (w − wh, λh − λ))

Lemma 3.14 The following estimate holds:

⟨uh − ψ, λh − λ⟩ ≤
∥∥(ψ − uh)+

∥∥
2
∥λ− λh∥−2 +

〈
(ψ − uh)+ , λh

〉
(3.30)

Proof.
If we take vh = 0 in the discrete problem (3.20) we get:

−⟨uh, µh − λh⟩ ≤ − ⟨ψh, µh − λh⟩ (3.31)
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For the choices µh = 0 and µh = 2λh in (3.31) we find that : ⟨uh − ψ, λh⟩ = 0. Hence,

⟨uh − ψ, λh − λ⟩ = ⟨ψ − uh, λ⟩
≤
〈
(ψ − uh)+ , λ− λh

〉
+
〈
(ψ − uh)+ , λh

〉
≤
∥∥(ψ − uh)+

∥∥
2
∥λ− λh∥−2 +

〈
(ψ − uh)+ , λh

〉
We proceed to prove the reliability and efficiency of the proposed error indicators.

Theorem 3.15 (Reliability)
The following posteriori error estimate holds

∥u− uh∥2 + ∥λ− λh∥−2 ≲ η + S (3.32)

Proof. From Lemma (3.13)(
∥u− uh∥2 + ∥λ− λh∥−2

)2
≲ L (w − wh, λh − λ)−A ((uh, λh) ; (w − wh, λh − λ))

= (f, w − wh)− ⟨ψ, λh − λ⟩ − a (uh, w − wh) + ⟨λh, w − wh⟩+ ⟨λh − λ, uh⟩

We have:∫ xi+1

xi

u(4)vdx =

∫ xi+1

xi

(
u(3)
)′
vdx =

[
u(3)v

]xi+1

xi
−
∫ xi+1

xi

u(3)v′dx

=
[
u(3)v

]xi+1

xi
−
[
u(2)v′

]xi+1

xi
+

∫ xi+1

xi

u′′v′′dx

We also have w (xi) = wh (xi) , w
′ (xi) = w′

h (xi) et uh|[xi,xi+1]
∈ P3 Therefore

a (uh, w − wh) =
n−1∑
i=0

∫ xi+1

xi

u′′h (w − wh)
′′ dx =

n−1∑
i=0

∫ xi+1

xi

u
(4)
h (w − wh) dx = 0

Consequently, by using lemma (3.14)(
∥u− uh∥2 + ∥λ− λh∥−2

)2
≲ (f + λh, w − wh) + ⟨λh − λ, uh − ψ⟩

=
n−1∑
i=0

∫ xi+1

xi

h2 (f + λh)h
−2 (w − wh) dx+ ⟨λh − λ, uh − ψ⟩

≤

(
n−1∑
i=0

η2i

)1/2

∥w − wh∥0 +
∥∥(ψ − uh)+

∥∥
2
∥λ− λh∥−2 +

〈
(ψ − uh)+ , λh

〉
≲

(
n−1∑
i=0

η2i

)1/2

∥w∥2 +
∥∥(ψ − uh)+

∥∥2
2

2ε
+
ε ∥λ− λh∥2−2

2
+
〈
(ψ − uh)+ , λh

〉
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Reminder of estimates of Hermite interpolant

∥wh∥2 ≤ C∥w∥2,Ω
h−2 ∥w − wh∥0,Ω ≤ C∥w∥2,Ω

And we also have
∥w∥2 ≲ ∥u− uh∥2 + ∥λ− λh∥−2

By using this last inequality we obtain the desired result.

Theorem 3.16 (efficiency)
The following estimate holds:

η ≲ ∥u− uh∥2 + ∥λ− λh∥−2 + osc(f) (3.33)

Proof. We use the the bubble functions bi ∈ H2
0 ([xi−1, xi]), and we define γi by

γi = h4bi (λh + fh) in [xi−1, xi] and γi = 0 in Ω\[xi−1, xi]

Taking vh = γi in (3.13) we get:

(u′′, γ′′i )− ⟨γi, λ⟩ = (f, γi) (3.34)

Using the above and the characteristics of bubble functions we get

h4 ∥λh + fh∥20,[xi−1,xi]
≲ h4

∥∥∥√bi (λh + fh)
∥∥∥2
0,[xi−1,xi]

= (λh + fh, γi)

= (λh, γi) + (f, γi) + (fh − f, γi)

=
(
u
(4)
h + λh, γi

)
+ (u′′, γ′′i )− ⟨γi, λ⟩+ (fh − f, γi)

=
(
(u− uh)

′′ , γ′′i
)
+ ⟨γi, λh − λ⟩+ (fh − f, γi)

Defining γ =
∑n−1

i=1 γi, and summing over all intervals we get:

n−1∑
i=1

h4 ∥µh + fh∥20

≲
n−1∑
i=1

{(
(u− vh)

′′ , γ′′i
)
+ ⟨γi, λh − λ⟩+ (fh − f, γi)

}
=
(
(u− vh)

′′ , γ′′
)
+ ⟨γ, λh − λ⟩+ (fh − f, γ)

≤ ∥u− uh∥2 ∥γ∥2 + ∥λh − λ∥−2 ∥γ∥2 + osc(f)

(
n−1∑
i=1

h−4∥γ∥20,[xi−1,xi]

) 1
2

≲
(
∥u− uh∥2 + ∥λh − λ∥−2 + osc(f)

)
h−2∥γ∥0

(3.35)
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However:

h−4∥γ∥20 = h−4

n−1∑
i=1

∥γi∥20

= h4
n−1∑
i=1

∥bi (λh + fh)∥20

≲
n−1∑
i=1

h4 ∥λh + fh∥20

(3.36)

Thus we conclude
η ≲ ∥u− uh∥2 + ∥λh − λ∥−2 + osc(f)

3.4 Mixed Formulation using Bi-orthogonal dual

In this section we introduce new space of the discrete Lagrangian, based on the works
of Barbara Wohlmuth [Woh11, Woh01]. We apply similar idea of deriving bi-orthogonal
basis of Pn elements, and we derive a bi-orthogonal basis for C1 ∩ P3 Hermite elements.
Let Vh be Hermite finite element space generated by BPH3 = {ϕi, ψi : i = 1...n− 1}, and
Qh the dual space generated by B = {Φi,Ψi : i = 1...n− 1}. We want the basis to satisfy
the following properties :

• Locality of the support
supp Φp = supp Φp

supp Ψp = supp Ψp

(3.37)

• Local biorthogonality relation ∫
ΦiΦj = δij∫
ΨiΨj = δij∫
ΦiΨj = 0∫
ΨiΦj = 0

(3.38)

• Best approximation property:

inf
µh∈Qh

∥µ− µh∥ ≲ h2|µ|2 (3.39)

• Uniform inf-sup condition

sup
vh∈Xh

b(vh, µh)

∥vh∥2
≳ ∥µh∥−2 (3.40)
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The key idea is to write Φi as linear combination of elements BPH3, and because we want
supp Φp = supp Φp, we obtain:

Φi = (a1Φi + a2Ψi + a3Φi−1 + a4Ψi−1 + a5Φi+1 + a6Ψi+1) in supp Φi, 0 Otherwise.

We define:

V =


Φi

Ψi

Φi−1

Ψi−1

Φi+1

Φi+1

 [Φi Ψi Φi−1 Ψi−1 Φi+1 Ψi+1] (3.41)

taking (3.38) into account we get the following matrix equation:

M

a1...
a6

 =


1
0
...
0

 (3.42)

Where M is 6× 6 matrix, and

Mij =

∫ xi+1

xi−1

Vijdx (3.43)

Or

M = h



26
35

0 9
70

13h
420

9
70

−13h
420

0 2h2

105
−13h
420

−h2

140
13h
420

−h2

140
9
70

−13h
420

13
35

11h
210

0 0
13h
420

−h2

140
11h
210

h2

105
0 0

9
70

13h
420

0 0 13
35

−11h
210

−13h
420

−h2

140
0 0 −11h

210
h2

105

 (3.44)

We easily calculate its inverse

M−1 = h−1


2 0 1 −12

h
1 12

h

0 150
h2

−15
h

195
h2

15
h

195
h2

1 −15
h

14 −183
2h

−1 −27
2h

−12
h

195
h2

−183
2h

1587
2h2

27
2h

363
2h2

1 15
h

−1 27
2h

14 183
2h

12
h

195
h2

−27
2h

363
2h2

183
2h

1587
2h2

 (3.45)

Finally, the the coordinates of Φi are

a1...
a6

 =M−1


1
0
...
0

 = h−1


2
0
1

−12
h

1
12
h

 (3.46)
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Similarly, the coordinates of Ψi are

b1...
b6

 =M−1


0
1
0
...
0

 = h−2


0
150
h

−15
195
h

15
195
h

 (3.47)

Figure 3.2: Graph of the biorthogonal basis of Hermite elements

With this construction of Qh basis, the conditions (3.37), (3.38) are clearly verified,
and so is the condition (3.39). Indeed, since Φ and Ψ are locally linear combination of
Hermite finite element basis we deduce:

inf
µ∈Qh

∥µ− µh∥ ≤ ∥µ− Iher
h µ∥ ≲ h2|µ|2 (3.48)

For the inf-sup condition we use similar method like we used to prove the stability of the
pair (PHermit

3 , P0) in the previous section. We introduce the following negative discrete
norm:

∥ξh∥2−2,h =
n∑

i=1

h4
∫ xi

xi−1

ξ2h =
(
h2∥ξh∥0

)2
, ∀ξh ∈ Qh

Now we prove the following:

Lemma 3.17 There exists a constant C4 > 0 such that

∀ξh ∈ Qh : sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C4 ∥ξh∥−2,h (3.49)

Proof. We need the next formula:

∀a, b, c, d ∈ R : (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2).

And let Φ,Ψ,Φ,Ψ the reference basis on [−1, 1] of Φi,Ψi,Φi,Ψi, then we can easily verify:

∥Φi∥20 = h∥Φ∥20, ∥Ψi∥20 = h2∥Ψ∥20∥∥Φi

∥∥2
0
= h−1∥Φ̄∥20,

∥∥Ψi

∥∥2
0
= h−2∥Ψ̄∥20
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Let ξh =
∑n−1

i=1 αiΦi + βiΨi ∈ Qh, we take:

vh =
n−1∑
i=1

αi

h
Φi +

βi
h2

Ψi

Then it follows immediately that:

⟨ξh, vh⟩ = h4
n−1∑
i=1

α2
i

h
+
β2
i

h2

Next we estimate the negative discrete norm of ξh. For convenience we assume α0 = β0 = 0
and Φ0 = Ψ0 = 0.

∥ξh∥2−2,h =
n∑

i=1

h4
∫ xi

xi−1

ξ2h

=
n∑

i=1

h4
∫ xi

xi−1

(
αi−1Φi−1 + βi−1Ψi−1 + αiΦi + βiΨi

)2
≤ 4h4

n−1∑
i=1

∫ xi

xi−1

(
αi−1Φi−1

)2
+
(
βi−1Ψi−1

)2
+
(
αiΦi

)2
+
(
βiΨi

)2
= 4h4

∑
α2
i ∥Φi∥2 + β2

i ∥Ψi∥2

= 4h4
∑ α2

i

h
∥Φ∥2 + β2

i

h2
∥Ψ∥2

≲ h4
n−1∑
i=1

α2
i

h
+
β2
i

h2

= ⟨ξh, vh⟩
Similarly we find

∥vh∥20 ≲ h4⟨ξh, vh⟩
And by employing the inverse inequality (3.22), we get

∥vh∥22 ≤ Ch−4 ∥vh∥20 ≲ (⟨ξh, vh⟩)2

Therefore we conclude
sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C4 ∥ξh∥−2,h

For the rest, we use similar proof of theorem (3.21) since the detail of proof are largely
independent on the space choosen for the dual. Hence by introducing the following spaces
and sets:

Vh := {vh ∈ V : vh|[xi−1,xi] ∈ P3 ([xi−1, xi]) ,∀i = 1, . . . , n
}
= PHermit

3 ∩H2
0 (Ω)

Qh := < B >

Λh := {µh ∈ Qh : (µh)i ≥ 0 ∀i = 1...n− 1} .
(3.50)

We obtain
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Theorem 3.18 The finite element space pair (Vh, Qh) in (3.50) is stable and satisfy inf-
sup condition

sup
vh∈Vh

⟨vh, ξh⟩
∥vh∥2

≥ C ∥ξh∥−2

Likewise all results about existence, error estimates from the previous section stays
the same (albeit with different constants) since the proofs are independent from the finite
discrete spaces chosen as long as these spaces are stable and verify inf-sup condition.

3.5 Conclusion

As we’ve seen, we derived the naive finite element formulation of the problem and we
showed its inadequacy for numerical analysis. Hence we used another more suitable
stable mixed finite element formulation, which we derived its error estimates, priori and
posteriori. It rests now to test and validate this formulation numerically, which what will
be done in the next chapter.
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Chapter 4

Numerical tests
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4.1 Introduction

In this chapter we’ll give brief description of two methods to solve variational inequalities:
Uzawa Method and Primal Dual Active Set (PDAS). Later we implement Euler Bernoulli
obstacle problems using these methods in Freefem++, and we numerically analyze the
results.

4.2 Uzawa Method

Let N = dim(Vh), L = dim(Qh) the discrete problem can formulated as follows: Find
u ∈ RN , λ ∈ Λ such that

Au+BTλ = f (4.1)
(µ− λ)TBu ≤ (µ− λ)Tg ∀µ ∈ Λ (4.2)

where
Λ =

{
µ ∈ RL : µk ≥ 0

}
Using equation (4.1), we have

u = −A−1
(
BTλ− f

)
(4.3)

Inserting this into our inequality system (4.2), we get

−(µ− λ)TBA−1BTλ ≤ (µ− λ)T
(
g −BA−1f

)
This leaves us with a problem for λ only. Setting the Schur complement S = BA−1BT

and right hand side h = BA−1f − g, we obtain

(µ− λ)T (Sλ− h) ≥ 0 ∀µ ∈ Λ (4.4)

The Schur complement S is symmetric as A is symmetric. We also have that A is positive
definite and the rank of B = L, therefore also S is positive definite and there exists
numbers s1, s2 such that

⟨Sµ, µ⟩ ≥ s1∥µ∥2(Sµ, λ) ≤ s2∥µ∥∥λ∥

Due to this, equation (4.4) is equivalent to minimization problem

F(λ) = min
µ∈Λ

F(µ) (4.5)

Where F(µ) = 1
2
µTSµ− hTµ. Therefore

∇(F(µ)) = Sµ− h

If we have an algorithm to minimize F over Λ, then we can determine u from the equation
(4.3). In the following, we will need the projection operator PΛ, which acts from RL onto
Λ.
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Lemma 4.1 The components of PΛ(µ) are given by:

PΛ(µ)k = max (µk, 0)

4.2.1 Uzawa’s algorithm

In this subsection, we’ll briefly describe the classical Uzawa algorithm for solving the
inequalities of the form (4.1,4.2). See [Arr58] more details about the algorithm.
Starting with some initial guess, λh can be computed from the constrained minimization
problem (4.5). Then equation (4.3) allows the computation of uh. A classical method of
this type is the Uzawa algorithm [Arr58], which relies on an exact solver for the equation
(4.1) and a Jacobi-like iteration for the constrained minimization problem (4.5). Below
we outline the algorithm for this method.

Algorithm 1 Uzawa
give some initial value λ(0)
k = 0
repeat
λ
(k+1)
∗ := λ(k) − αM−1

(
Sλ(k) − h

)
Take λ(k+1) as the projection of λ(k+1)

∗ on Λ : λ(k+1) := PΛ

(
λ
(k+1)
∗

)
k = k + 1
until

∥∥λ(k+1) − λ(k)
∥∥ ≤ ε

∥∥λ(k+1)
∥∥

uh = −A−1
(
BTλ(k+1) − f

)
Such that M is the mass matrix of Qh.

The convergence of Uzawa algorithm depends The choice of the parameter α, like shown
in the following theorem

Theorem 4.2 Let (u, λ) be a solution to the system (4.1,4.2). Let s1, s2 denote the
smallest and the largest eigenvalues of M−1S, and let

(
u(k), λ(k)

)
be defined by Uzawa’s

method. Then there exists a positive constant ᾱ = 2
λ2

> 0 such that for each choice
α ∈ (0, ᾱ) there holds

u(k) → u, λ(k) → λ.

Proof. see [Arr58]
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4.3 Primal Dual Active Set Method

In this section we’ll discuss primal-dual active set strategy [HIK02] for the obstacle prob-
lem. Recall the mixed formulation (3.13), we make a slight change by introducing

b(v, µ) = −⟨µ, v⟩ ,

Hence we can write the problem as
Find (u, λ) ∈ V × Λ

a(u, v) + b(v, λ) = f(v), ∀v ∈ X

b(u, µ− λ) ≤ g(µ− λ), ∀µ ∈ Λ

(*)

Where Λ = {µ ∈ V ′ : ⟨v, µ⟩ ≤ 0, ∀v ≥ 0 ∈ V }. We observe that (∗) is an optimization
problem under the constraint of the KKT triple:

u ≥ ψ, λ ≥ 0, b(u, λ) = g(λ) (4.6)

Since the finite spaces can be written as Vh = < ϕp >, Qh = < Ψp >, then in the discrete
problem we obtain

uh =
∑

αpϕp, λh =
∑
p

βpΨp, ψ = ψh =
∑
p

gpϕp

Then the discrete version of the KKT conditions reads:

αp ≥ gp, βp ≤ 0, (αp − gp)βp = 0 (4.7)

Lemma 4.3 The KKT 1 conditions

αp ≥ gp, βp ≤ 0, (αp − gp)βp = 0 (4.8)

is equivalent to C(αp, βp) = 0 with

C(x, y) = y −min(0, y + c(x− g)), c > 0 fixed

Consequently, we can rewrite the discret version of primal-dual variational inequality as
a non-linear equality formulation.{

Ahαh +Bhβh = fh

Ch(αh, βh) = 0
(4.9)

If the nonlinear function Ch is differentiable, applying Newton’s method we get(
αℓ+1
h

βℓ+1
h

)
=

(
αℓ
h

βℓ
h

)
−
(

Ah Bh

∂αh
Ch ∂βh

Ch

)−1(
Ahα

ℓ
h +Bhβ

ℓ
h − fh

Ch(α
ℓ
h, β

ℓ
h)

)
1Karush-Kuhn-Tucker (KKT) conditions
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Multiplying on both sides of the system with the Jacobian leads to a system of linear
equations to be solved in each Newton step.{

Ahα
ℓ+1
h +Bhβ

ℓ+1
h = fh

∂αh
Chα

ℓ+1
h + ∂βh

Chβ
ℓ+1
h = ∂αh

Chα
ℓ
h + ∂βh

Chβ
ℓ
h − Ch(α

ℓ
h, β

ℓ
h)

(4.10)

The nonlinear function Ch is called NCP function and it maps Rnh ×Rnh onto Rnh where
nh is the number of vertices

Ch(αh, βh)p = Cp(αp, βp) = βp −min(0, βp + c(αp − gp))

Ignoring the fact that the min function is not differentiable we get:

1. Case p ̸= q
∂Cp

∂αq

=
∂Cp

∂βq
= 0,

2. Case βp + c(αp − gp) > 0. Then, Cp(αp, βp) = βp and thus
∂Cp

∂αp

= 0 and
∂Cp

∂βp
= 1

3. Case βp + c(αp − gp) < 0. Then, Cp(αp, βp) = −c(αp − gp) and thus
∂Cp

∂αp

= −c and
∂Cp

∂βp
= 0

4. Case βp+ c(αp− gp) = 0. This case is not well-defined but thanks to the next result
we can safely treat it as case < 0.

Lemma 4.4 [HIK02]
The mapping y → max(0, y) from Rn to Rn is Newton differentiable on Rn

The system (4.10) reads:(
Ah Bh

∂αh
Ch ∂βh

Ch

)(
αℓ+1
h

βℓ+1
h

)
=

(
fh

∂αh
Chα

ℓ
h + ∂βh

Chβ
ℓ
h − Ch(α

ℓ
h, β

ℓ
h)

)
1. Case βp + c(αp − gp) > 0. Then, Cp(αp, βp) = βp and thus

∂Cp

∂αp

= 0 and
∂Cp

∂βp
= 1

then from the second block line we find for node p

βℓ+1 = βℓ − βℓ = 0

2. Case βp + c(αp − gp) ≤ 0. Then, Cp(αp, βp) = −c(αp − gp) and thus
∂Cp

∂αp

= −c and
∂Cp

∂βp
= 0

and thus,
−cαℓ+1

p = −cαℓ
p − (−c(αℓ

p − gp)) = −cgp
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Algorithm 2 PDAS Algorithm
Let A0

h ⊂ Ph = {x0, ..., xn} be given and I0
h = Ph \ A0

h.
For ℓ = 0, 1, 2, . . .

1. Set

αℓ
p = gp in Aℓ

h (4.11)

βℓ
p = 0 in Iℓ

h (4.12)

2. Solve
Ahα

ℓ +Bhβ
ℓ = f (4.13)

3. Update the active set

Aℓ+1
h = {p ∈ Aℓ

h; βℓ
p ≤ 0} ∪ {p ∈ Iℓ

h; αℓ
p ≤ 0} (4.14)

Iℓ+1
h = Ph \ Aℓ+1

h (4.15)

4. Stop if Aℓ+1
h = Aℓ

h

It is convenient to arrange the coordinates in such a way that the active and inactive
ones occur in consecutive order. In step 2, system (4.13) implies(

AA AAI
AIA AI

)(
gA
αI

)
+

(
DA 0
0 DI

)(
βA
0

)
=

(
fA
fI

)
(4.16)

Note that the diagonal property of Bh results from the fact that biorthogonal basis func-
tions of Vh and Qh have been used.
Then (4.16) implies that:

AAgA + AAIαA +DAβA = fA =⇒ DAβA = fA − AAgA − AAIαA (4.17)

then we write(
AA AAI
AIA AI

)(
gA
αI

)
+

(
fA − AAgA − AAIαA

0

)
=

(
fA
fI

)
(4.18)

this implies (
AA AAI
AIA AI

)(
gA
αI

)
−
(

0 AAI
0 0

)(
gA
αI

)
=

(
AAgA
fI

)
(4.19)

thus (
AA 0
AIA AI

)(
αA
αI

)
=

(
AAgA
fI

)
(4.20)
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or more simply, ( by multiplying both sides by
(
A−1

A 0
0 II

)
) we get

(
IA 0
AIA AI

)(
αA
αI

)
=

(
gA
fI

)
(4.21)

In freefem++ software, system (4.21) must written as :(
tgv IA 0
AIA AI

)(
αA
αI

)
=

(
tgv gA
fI

)
(4.22)

So an alternative algorithm is as follows

Algorithm 3 PDAS Algorithm 2
Let A0

h ⊂ Ph = {x0, ..., xn} be given and I0
h = Ph \ A0

h.
For ℓ = 0, 1, 2, . . .

1. Set

αℓ
p = gp in Aℓ

h

2. Solve equation (4.22) to get the value of αℓ

3. Calculate βℓ from (4.17)

4. Update the active set

Aℓ+1
h = {p ∈ Aℓ

h; βℓ
p ≤ 0} ∪ {p ∈ Iℓ

h; αℓ
p ≤ 0}

Iℓ+1
h = Ph \ Aℓ+1

h

5. Stop if Aℓ+1
h = Aℓ

h
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4.4 Tests and Results

In this section, we’ll solve numerically the obstacle problem using Uzawa method and
PDAS method which were presented earlier in the chapter. Uzawa method will be used
for the stable mixed formulation with (PHermite

3 , P0) couple, while PDAS method will be
used for the mixed formulation with biorthogonal basis. The implementation was prepared
by the FreeFem++, and the graphic representation was done using Python. We’ll present
the results for several examples, and for all these examples:

• We use the interval Ω =]0, 1[,

• The discretisation is uniform,

• The initial value chosen to be the null vector,

• The error stopping criteria was chosen to be ϵ = 10−6.

4.4.1 Example 1: Contact Zone is a closed interval

We take f = 0 and ψ = 4x3 − 9x2 + 6x− 1{
find u ∈ K := {v ∈ H2

0 (Ω) : v ≥ ψ a.e. in Ω}
a(u, v − u) ≥ 0, ∀v ∈ K

The exact solution of this problem is

u(x) =


− 4x3 + 3x2 if x ∈ [0,

1

2
[

4x3 − 9x2 + 6x− 1 if x ∈ [
1

2
, 1]

First we investigate the value of alpha for the Uzawa algorithm. Because in general it’s
hard to find the exact values of eigenvalues of a matrix we ended up guessing some values
and this is what we found

α 1 10 100 500 1000 1100 1150
Number of iterations 13585 6965 714 139 63 56 82

Table 4.1: Number of iterations by for some values α in Uzawa algorithm (N = 10)

Because we saw similar results for different values ofM we ended up choosing α = 1100
as the main value when testing Uzawa Algorithm.
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N 5 10 50 100 500
Number of iterations (Uzawa) 32 56 18739 82195 40502

L2 error (Uzawa) 1.099e-3 9.879e-4 6.670e-05 5.463e-05 4.640e-05
Number of iterations (PDAS) 4 8 44 71 378

L2 error (PDAS) 4.524e-3 6.016e-4 6.162e-05 4.325e-05 1.693e-06
Table 4.2: Number of iterations and L2 Error (Example 1)

Figure 4.1: Contact zone with N = 5

Figure 4.2: Contact zone with N = 100
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4.4.2 Example 2: Contact Zone is a single point

We take f = 0 and ψ = −3(2x− 1)2 + 1{
find u ∈ K := {v ∈ H2

0 (Ω) : v ≥ ψ a.e. in Ω}
a(u, v − u) ≥ 0, ∀v ∈ K

The exact solution of this problem is

u(x) =


− 16x3 + 12x2 if x ∈ [0,

1

2
[

16x3 − 36x2 + 24x− 4 if x ∈ [
1

2
, 1]

Like in the previous example, we perform Uzawa Method using α = 1100

N 5 10 50 100 500
Number of iterations (Uzawa) 14 20 6378 12277 5072

L2 error (Uzawa) 1.992e-03 1.353e-03 2.181e-04 1.867e-04 2.721e-04
Number of iterations (PDAS) 2 5 18 34 162

L2 error (PDAS) 1.236e-02 1.978e-15 3.289e-13 8.091e-12 1.1209e-08
Table 4.3: Number of iterations and L2 Error (Example 2)

Figure 4.3: Contact zone with N = 5
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Figure 4.4: Contact zone with N = 100

Something peculiar happens in this example: the lower the number of discretisation,
the less error the PDAS method achieves, but the error is still so small for almost all cases
which means PDAS is still effective. Worth the investigation in the future to see whether
this affects all the cases of single point contact zone or its something particular to this
case.

4.4.3 Example 3: Obstacle is constant

We take f = −18432 and ψ = −1{
find u ∈ K := {v ∈ H2

0 (Ω) : v ≥ ψ a.e. in Ω}
a(u, v − u) ≥ 0, ∀v ∈ K

The exact solution of this problem is

u(x) =


− 4x2(192x2 − 128x+ 24) if x ∈ [0,

1

4
[

− 1 if x ∈ [
1

4
,
3

4
[

− (2x− 2)2(192x2 − 256x+ 88) if x ∈ [
3

4
, 1]

In this example we choose α = 1000 because it was the fastest to converge (when we tried
α = 1100 like the previous examples, the method doesn’t converge).
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N 5 10 50 100 500
Number of iterations (Uzawa) 500 3444 2857 3202 6860

L2 error (Uzawa) 3.867e-02 1.086e-02 1.214e-03 9.038e-04 5.083e-04
Number of iterations (PDAS) 2 4 14 26 111

L2 error (PDAS) 8.657e-02 1.326e-02 1.274e-04 7.468e-06 6.082e-08
Table 4.4: Number of iterations and L2 Error (Example 3)

Figure 4.5: Contact zone with N = 5

Figure 4.6: Contact zone with N = 100
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Conclusion

We have derived a one dimensional unilateral contact model of obstacle type starting
from the three dimensional Signorini problem by using the asymptotic analysis method.
The obtained problem is governed by a fourth order differential operator. Then we have
developed two new finite element methods for fourth order variational inequalities. For
the case when the complementarity form of the variational inequality, exists in a strong
sense, i.e the solution satisfies the full regularity H4, quasi-optimal error estimate is de-
rived in the same fashion for second order variational inequalities. For the case when
the complementarity system exists only in weak sense, the key for the first method, is to
introduce a new compact formulation to connect the continuous and discrete problems.
When we have used the conforming P3-Hermite element, our compact form doesn’t need
to any extra stabilisation term. For the second method, a biorthogonal dual basis is con-
structed and therefore, a variationaly consistent method is developed. For both methods,
optimal a priori error estimate can be derived by mean of medius analysis and a reliable
a posteriori error estimate of residual type is also obtained.
As perspectives or extensions of the present work, we believe that we can consider the
following problems:

• Variational inequalities of second kind including friction law.

• The Koiter shell model.

• Piezoelectric effects.
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Abstract 

In this work we study finite element methods for obstacle Problem of Euler Bernoulli beam. We 

begin by applying the asymptotic expansion method to the three-dimensional Signorini problem 

for an elastic beam, of which we obtain a one-dimensional model which includes the classical 

bending model of an elastic beam on a rigid obstacle also known as Euler Bernoulli obstacle 

Problem. We study the existence of the solution of the problem and its regularity, then we apply 

the finite element method on the classic formulation and later on the mixed formulation of the 

problem which based on Lagrange multiplier, and we give priori and posteriori error estimates. 

Finally a numerical test with Freefem++ is presented in which we use Uzawa method and PDAS 

method. 

Keywords: Fourth Order Variational Inequalities, Euler Bernoulli Beam, Finite Element 

Method, PDAS. 

Résumé 

Dans ce travail, nous étudions les méthodes d'éléments finis pour le problème d'obstacle de la 

poutre d'Euler Bernoulli. Nous commençons par appliquant la méthode de développement 

asymptotique au problème tridimensionnel de Signorini pour une poutre élastique, dont nous 

obtenons un modèle unidimensionnel qui inclut le modèle classique de flexion d'une poutre 

élastique sur un obstacle rigid. Nous étudions l'existence de la solution du problème et sa 

régularité, puis nous appliquons la méthode des éléments finis sur la formulation classique et 

plus tard sur la formulation mixte du problème basée sur le multiplicateur de Lagrange, et nous 

donnons des estimations d'erreurs a priori et a posteriori. Enfin un test numérique avec 

Freefem++ est présenté dans lequel nous utilisons la méthode Uzawa et la méthode PDAS. 

Mots clés : Inégalités variationnelles du quatrième ordre, poutre d'Euler Bernoulli, méthode des 

éléments finis, PDAS. 

 ملخص 

المقارب  ليلحتأويلر برنولي. نبدأ بتطبيق طريقة ال عارضةفي لمشكلة عائق  ةهينتفي هذا العمل قمنا بدراسة طرق العناصر الم

نموذج الانحناء   ىوي علتحمنها على نموذج أحادي البعد ي نتحصلعلى مسألة سينيوريني ثلاثية الأبعاد للعارضة المرنة، والتي 

أويلر برنولي . قمنا بدراسة وجود حل المشكلة   ئقعايعرف أيضاً بمسألة و ما اعائق صلب   فوقالكلاسيكي للعارضة المرنة 

على   نديعتممعلى الصياغة الكلاسيكية ولاحقاً على الصياغة المختلطة للمسألة  نتهيةوانتظامه، ثم طبقنا طريقة العناصر الم

نستخدم فيه  ++Freefem مضاعف لاغرانج، وأعطينا تقديرات الخطأ القبلية والبعدية. وأخيرا تم تقديم اختبار عددي مع

  PDAS  وطريقة Uzawa طريقة

 PDAS ،نتهيةأويلر برنولي، طريقة العناصر المارضة ع: المتباينات التغايرية من الدرجة الرابعة، الكلمات المفتاحية


