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NOTATIONS AND CONVENTIONS

The symbols:

e ¢ : a small parameter representing the size of the period

e w C C N :w strongly included in €, that’s to say ,w is compact and w C €2 .

The operators:

« (.):moyenne operator : (f) = ‘%' Iy fdy.

Y| : The measurement of Y.

o V : denotes the full gradient operator.

o V. : denotes the gradient in the slow variable.

e V, : denotes the gradient in the fast variable.

o div: denotes the full divergence operator.



NOTATIONS AND CONVENTIONS vi

e div, : denotes the divergence in the slow variable.
 div, : denotes the divergence in the fast variable.

e curl , : denotes the rotation vector in the slow variable in two dimensions, such that:

__0
curl, = ( g”)
1

« curl , : denotes the rotation vector in the fast variable in two dimensions, such that:

_ 0

_ Oy2
curl, = ( 5 )

oy

e 0= %: Partial differentiation with respect to x;.
o« 0 = 8%: Partial differentiation with respect to 3.

e 0, = 1,04 The directional derivative along the outer normal v = (v,,).

The spaces:

« LZ(Y) : denotes the subspace of functions in L. (R"), which are Y-periodic.

loc
« Hi(Y) : denotes the subspace of functions in Hj, (R™, which are Y-periodic.
o L2(Q) : The space of square integrable functions for the Lebesgue dx measure.

o MP*™ : denotes the set of n X n symmetric matrices.

Mu(o, 5,9) = {A € L= (@ M) 10l < A(z)€.£ < BIEJ* for any € €R"}

o D(Q) :The class C* function space , with compact support in €.



NOTATIONS AND CONVENTIONS vii

o« H™(Q) :={v e L*Q), D* € L*(Q),V|a| < m}

o Wme(Q) :={fe€L>®Q):Df € L*(Q),V|a|] < m}

o L*°(Q2): Space of bounded functions on §2.

o C™(Q): Space of m—times continuously differentiable functions on €, for m € Ny.



INTRODUCTION

Periodic homogenization is a mathematical technique used to analyze composite materials with
periodic micro structures. These materials can be thought of as having a repeating pattern of inclu-
sions or holes on a microscopic scale. While the material properties may vary significantly at this
small scale, homogenization aims to find effective, constant material properties that can be used to
model the overall behavior of the composite on a larger scale.

However, there’s a gap between the exact solution for a heterogeneous material and the solu-
tion obtained using the homogenized model. Here’s where error estimates come in,They quantify
the difference between the solutions obtained using the homogenized model and the solutions of the
original problem with the composite material.

Homogenization theory for second-order elliptic equations in divergence form with rapidly oscillating
periodic coefficients is well-developed. Among several basic techniques in homogenization theory we
are concerned in this thesis with the two-scale asymptotic expansions method.

The introduction of error estimates in periodic homogenization involves quantifying the dis-
crepancy between the solutions obtained from the homogenized model and those from the original
heterogeneous system.

The error estimate in periodic homogenization problems was presented for the first time in
Bensoussan,Lions and Papanicolaou [3], Oleinik, Shamaev, and Yosifian [8], and Cioranescu and
Donato [11, 16, 23] These results typically assumed a certain level of regularity for the material
properties within the micro-structure.Piezothermoelasticity has gained a lot of attention over the
past decades thanks to its importance in the industrial section. Our purpose in this thesis to present
the error estimates of the-order with or without boundary layer terms in the periodic homogenization
of elliptic equations in divergence form with Dirichlet boundary conditions comes as a mathematical-
oriented study to build a better understanding of the theoretical justification of this phenomenon.
The thesis is divided into three chapters, each has a main focus and purpose [26].

Let us shortly describe the contents of this dissertation. After this introduction, in chapter one,
we give the general setting of the problem. In chapter tow we present an overview of some results
obtained in the first and the second order corrections with and without boundary layer terms beside
to establishing the second order error estimates. Finally in chapter three, we present all the results
obtained in the third order corrections with and without boundary layer terms beside to establishing
establish the third order error estimates.

Rabab Belkacem
rababbelkacem6@gmail.com



CHAPTER 1

INTRODUCTION TO HOMOGENIZATION AND
CORRECTORS
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Many problems encountered in different scientific fields depend on parameters having great
spatial variability. Solving this type of problem on the scale of variation of these parameters can be
very difficult due to the size of the meshes used. The aim of homogenization is to reformulate these
problems in the form of a so-called homogenized problem by introducing defined effective parameters
on a coarser spatial scale. The resolution of this second problem on this scale is then less expensive.
In this chapter,we consider a classic boundary problem in homogenization, posed on a periodic
structure of period e, which presents the small parameter scale of the problem.

1.1 Periodic Homogenization

This section aims to examine classical homogenization results for periodic media, with a focus
on the role of boundary layers.

1.1.1 Setting of the problem

Let Q be a bounded open subset of R” with Lipschitz continuous boundary. Let A(y) be a
square symmetric matrix with entries a;;(y) which are Y-periodic functions belonging to L>*(Y"). We
assume that there exist two constants 0 < A < A < 400 such that, for a.e. y € Y,

MEP < ai&iy < A€, VE € R™

Let A, (x) = A(E ) be a periodically oscillating matrix of coefficients. For a given function f €
€

L%(€),We consider the following well posed problem:

—divA.Vu, = f in Q,
(P) (1.1)
u, =0 on 0.

1.1.2 Existence and uniqueness

The desired goal out of this subsection is to prove existence and uniqueness of weak solutionu,
of the preblem (p.),the proof will be done in several steps.

Step 1:
Variational problem:

To determine an appropriate weak formulation to our problem, we find firstly a variational
formulation of the problem .
Let us introduce the Hilbert space V such that:

V = Hy(Q) == {v e H'(Q),v]p0 = 0.}

By multiplying the first equation(1.1) by v belonging to the space V, we obtain the following vari-
ational formulation after using Green’s formula.

Find u® € H}(Q) such as ,
a(u®,v) = L(v),Yv € H}(Q)
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With: ;
. . ouov
a(u,v) = /QA VuVudr = i;1/9aij : <x)(9xjc9xi dx.
and,
L(v) = | fuda.
(v) = | fode
Step 2:

continuty of a(.,.) :
o It is clear that a(.,.) is a symmetric and bilinear form on H'(2)x H!'((Q).

« we show that a(.,.) is continuous .

a(u,v))| < [ |A*@)Vu Vo da
<A @) e [ 1V | da
< c|[Ve| 2 [[ Vo 2
< C“UE“Hé HUHH(%
So a(.,.) is continuous.

Step 3:

coercivity of a(.,.) :
a(v,0) = [ A“@)(T0)de > a [ |(V0)Pd = al Vol = (ol

From this we conclude that a(.,.) coercive.

Step 4:
continuity of L(.,.) :

Now we prove that L(.,.) is a continuous bilinear form:

@) < [ 1folde <0 leel vl
< &l flle2 [IVol[ 2 (Poincare inequality)
= | [ z2l[v] 2 -

Where C,, stands for the Poincare constant.

-So according to the Theorem of Lax Milligram, the problem(1.1) admits a unique solution u,
in H(Q).
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1.2 Setting of the problem:

To find the homogenized problem we use an asymptotic expansion method, the principle of this
method is to write the solution of (1.1) in the form of the following ansatz:

us(x) = g <x, as) + cuy (x, $) + 2uy <x, x) + 3us <x, x) +.... (1.2)
£ £ 5 £

Where each function u;(x, y) is Y-periodic with respect to the fast variable y.

Suppose that a function ¢°(z) = ¢(z,y) , with y = £, so we obtain the following relations :
0¢°(x,y) _ 0¢x,y)  10¢(x,y) =
Ox Ox e dy €
1
dive® () = diveo(x,y) + gdiqub(x, ), (1.3)
1

By substituting the asymptotic expansion (1.2) into (1.3), while considering (1.3) and
discerning the various powers of €, we get a cascade of equations .We Defining an operator L. by:

L.¢ = —divA.V.

we may write :
L.=c¢2Ly+¢e 'L + L.

where;
0 0
Lo = —— | a: (1) —
0 ayZ <al] (y) ay])

0 0 0 0
L= —— .. | = — .. -
1 8yi (az] (y) 8:15]) 8:151 (az] (y) ayj)

0 0
Ly = ~ o5 (aij(y)ax]) .

The two space variables x and y are taken as independent, and at the end of the computation y is
replaced by £. Equation (1.1) is therefore equivalent to the following system.

Loug =0

Louy + Liug =0

Lous + Lyuy + Loug = f (1.4)
Loug + Liug + Lou; =0

L0U4 + L1U3 + LQUQ = 0.
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we obtain at successive powers of €, the following equations:

Loug=0 onY,
Ordre £2 o (P1)

ug 1s Y — periodic.

Lou; = —Lyu onyY
Ordre £7* o o (P2)

uy 1s Y — periodic.

Lous = f — Lyuy — Loug  on Y,
Ordre £ : ot = J = L 0 (P3)

uy is Y-periodic .

To solve the preceding system of equations,we need to recall the Fredholm Alternative lemma.

Fredholm Alternative lemma
Lemma 1.2.1

[6]

Let f € L*(Q) y-periodic function we consider the following problem:

Lo¢p = f(y) on Y

¢ is Y-periodic.

So, there is a solution ¢ if and only if: < f >= ﬁ J, f(y)dy = 0.

- If there is a solution, then it is unique to an additive constant.

1.2.1 The cell and the homogenized problems

In using the Freedholm alternative lemma for periodic elliptic problem on (1.4), we are able to

establish that every equation within (1.4) has a unique solution w;(x, y) (up to a constant u; that
depends on x only).

v'For the initial problem (P1) :

—divA(y)(Vyuo(z,y)) =0
ug is Y-periodic in Y.

Indicates that ug(z,y) = up(z), does not depend on the y variable.

The second equation in (1.4) gives uy:

wa,y) = —xﬂ'<y>§§fj<x> (@), (15)

Where ?(y) are the unique solutions in Hj (Y) of the first cell problem:
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i Oa; .
Lox'(y) = =5 =(y)  inY
Yi (1.6)
I(y)dy =0
/Y X’ (y)dy
The third equation in (1.4) gives us:
2 ~
z :m(f) 0"u _j<fv)8m y ]
2 (I7 5) 3 8%8% (ZL') X g 8[Ej (l') T (ZE) ( 7)
where 1y() is an additive constant and x’(y),j = 1,...,n, are the unique solutions in Htil (Y') with
zero average of the cell equation:
Lox’ = bij — Jy biy(y)dy  inY;
(1.8)
Jy X (y)dy = 0 y — X’ (y)Y -periodic.
With: i 5
X’ :
bij(y) = aij(y) — az‘k(y)ai - a—(am(y)x’)-
yk yk
The fourth equation in (1.4) gives ug:
y Pu o 0% () . o0u
— ijk 0 ij 1 g oz - 1
us(z,y) = X (y)iaxiaxj 9o T X () driom; X () o, (z) + as(x). (1.9)
Where x*/*(y) are the unique solutions in H, (") of the first cell problem:
LoXijk(Z/) = Cijk —/ cijr(y)dy  inY
Y (1.10)

/ X7*(y)dy = 0.
Y

With : A
o*
Oym ’

0 )
Cijk = —aink + ai(aimxjk) + aim
ym

The fifth equation in (1.4) gives uy:

: 04u0 : 8361 (ZL’) 821172(1’) ; (9113
— A tmp ijk ij NI () 222
ua(z,y) = X" (y) G 0undn, X () Fridw;oe X (v) drir, X () o, (z) L11)

where : x7™ € H}(Y') are the unique solutions of the fourth cell problem:
Lox7™ = dijmp — /Y dijmp(y)dy ~ InY

(1.12)
/Y X" (y)dy = 0.
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With:

a X] mp

0 )
di imp — Q; 'me + aikamp + Qpp——.
Jmp j ( ) Dur

Oy

The homogenized problem of (P¢) is obtained by averaging the third equation in (1.4). It is given by:

—divA*Vuy = f  in €,
(Pm) (1.13)
ug =0 on Of.

where the coefficients of the homogenized matrix A* are given by:

—/ [aw alka (y) dy. (1.14)

Yk

such that (afj) is bounded, symmetric and uniformly elliptic. The problem (Py) is well-posed

in H}(Q).
The functions 11,19, U3 and 1y are non-oscillating functions which represent the average of
Uy, ug, ug and uy respectively and are solutions in €2 of the equations:

NI Pu
—div [A Vul(:z:)] =< Cjji, > Woaxk (115)
iO%;
o aeee dtu 01
7 7 ? J
85U0 841~L1
_divIA*Va —< Ciinim d;; 7
v [ATVi ()] =< eiju 8m axjaxkﬁxlﬁa:m+ < Gkt > 0,02 ;01,0
L (1.17)
0°1u
ts Ciik = 8%8%8@
where
0 . 0 .
€ijhim = @i X" + o, (aier klm) + % B (XJ klm) '
and
8671,0 85’&1
—div [A*V @ = hz mn tjkim
v [ATViy(2)] =< g axzaxjaxkﬁxl(?xmﬁxn+ < Cigktm = 0x;02;0x,02,0x, (1.18)
ikl axiaxjﬁxkﬁxl ik 0x;0x ;0
where
B _ .~ klmn i ~ Jklmn 2 (dklmn
ijklmn — asz + 8?} (aZTX ) + azra (X )
r Y

such that y7kmn ¢ H ﬁl(Y) are the unique solutions of the fifth cell problem:
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ikl
Lox”™™"(y) = €ijkim— < €ijkim >

| (1.19)
/Y XM (y)dy = 0

Remark 1.2.1

R

[24]

i) The functions w ,us,us and iy are not uniquely defined since the equations (1.15), (1.16),(1.17),
and (1.18) haven’t any boundary conditions, and it is very difficult to determine them. However,
there is a special geometric case allows us to find out the boundary conditions for only ;.

ii) It is technically complicated to keep track of boundary conditions when seeking u in the
form(1.2), especially near the boundary, so we expect u. to behave like:

ue(w) = o) + € [ua (2, ) + 1" ()] + € ua(,) + 0 *(@)] 4 (1.20)
Where each boundary layer term u?l’e satisfies
—divA.Vul* =0 in Q,

(1.21)

(2

bl T
w, C = —uy (x, ) on 0f).
5

emark 1.2.2

of

of

[24]

1. Each term (uZ +u ) in the new ansatz (1.20) satisfies a homogeneous Dirichlet boundary
condition, which is the advantage of this approach.

bl,e

i

2. The coefficients and Dirichlet boundary data in equation (1.21) exhibit periodic and fast
oscillations.

3. As 9Q is Lipschitz continuous , and u."* belongs to H'o(Q) , the equation (1.21) is guaranteed
to have a unique solution.

4. Both the coefficients and the Dirichlet boundary data in (1.21) are periodic and rapidly os-
cillating.

5. The case where the boundary data in (1.21) is not oscillating and belongs to LP(0N2),
1 < p < oo, was studied by Avellaneda and Lin [5].

bl,e

i

6. The asymptotic analysis of (1.21) turns out to be more difficult than that of (P.) since u
is not uniformly bounded in the usual energy space H*(2).

The problem of analyzing the asymptotic behavior of equation (1.21) is known to be highly chal-
lenging and has only been studied extensively for a specific type of domain. This particular type

domain is characterized by having hyperplanes as boundaries, as mentioned in reference [12] and

the sources cited therein. A significant breakthrough in this field was achieved through the ground-
breaking work of Gérard-Varet and Masmoudi [19]. They focused on solutions to elliptic systems

divergence type, assuming that the domain €2 is smooth, bounded, and uniformly convex in R"

(where n is greater than or equal to 2). Their research demonstrated that as e approaches zero, the
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unique solution u?l’* of equation (1.21) converges strongly in the L?*(2) space to a function denoted

bl o . , _
as u;", which itself satisfies a certain equation:

—divA VUl () = 0, in Q
(1.22)
ul* = —i;(x) on 99,

-where A*=a,;; defined in (1.14),and w; is the homogenized Dirichlet boundary data that depends
non trivially on wu;.



CHAPTER 2

FIRST AND SECOND ORDER ERROR ESTIMATES

2.1 An overview of error estimates

Within this section,we present some known results on the error estimates in periodic homogen-
ization ,of the first and second order with and without boundary layer terms , such as interested by
the elliptic equation in divergence form with Dirichlet boundary conditions.

Firstly we start with the error estimate between wu. and ug the unique solutions of (P.) and
(Pg) respectively, to do this, one common approach is to use the two scale convergence technique or
homogenization convergence framework. This framework allows us to establish convergence results
between wu. and g, As € tends to zero [See chapter one]. Secondly we study the error estimate
between u. and u; and up with and without boundary layers [24] .

Hus - UOHLoo(Q) S Ca. (21)
And for x?/ € L>(y),we obtain :

||ue — uol|r2) < C. (2.2)

2.2 First order error estimate :

2.2.1 First order error estimate without boundary layer:

The error approximation using a first order corrector in the periodic homogenization of
problem (P.) was provided with further regularity conditions on ug or the cell functions x?. Assuming

that x’ belongs to W1°°(Y), Bensoussan et aL. [2] derived the estimation:

11
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Theorem 2.1 [2]

Let u. be the solution of the problem (P.),And Let ug be the solution of the problem (Pg).

Then u. converge weakly to ug in H% (Q).If furthermore vy € W»°°(Q),then:

e — ug — eur| gy < Cv/e. (2.3)

Where u; given by (1.5).

This estimate is obtained by Jikov and AL [8],Under the asymptions that vy € C?(Q2), and
V,x? € L>(Y), and by Allair And Amar [10] Under the asymption that uy € W?2°(Q)

The estimate of this theorem has a general character since it holds for a wide range of boundary
value problems , and not only for the Dirichlet problem.

 The proof of this theorem is completely standard (see e.g. [24]).

Remark: [24]
Without any regularity assumptions on 7, and under the hypothesis that vy € H*(2) where Q is

bounded domain in R” with C™! regularity Griso [14] using the periodic unfolding method introduced

in [13] and further developed in [16], proved this estimates :
|ue — uo — ewi [ 0) < CVElluol|m2()- (2.4)

2.2.2 First order estimate with boundary layer

In this part, we will look for minimal hypotheses on ug necessary to prove classical error estim-
ates.
Our interest lies in the first boundary layer ul{l’e, which is equivalently defined by:

—divA. Vi< =0 in Q,
(2.5)

ud () = 7 (E) Ou (2) — @y (x)  on ON. |

e) Oxj

Theorem 2.2

Let u. and ug be the unique solutions of (1.1) and (1.13) respectively [See Chapter 1]. Assume
that u € W2°(1). Let uy,u?" be defined by (1.5) and (1.21). Then:

Allair And Amar proved this theorem in [10].

us(x) — up(z) — euy (:I:, i) — cul (z)

< Ce (2.6)
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Proof [10]

As in [9], defining :7.(z) = 7! (ug(x) — u(x) — euy(z, z/e) — eul (z )), it satisfies

—divA.Vr. = e ' (f + divA.Vu) + divA.Vu;  in Q
re =10 on 0f).

Taking into account system (1.4), for any ¢ € H}(£2), we have:

|
‘ / L (f + divA.Vu) + divAavul} iz

{—dlvyA Vyus ( ) + div, A.V,uy < )} (ﬁdx’

< odx

[lemA Vyus ( ) + leyA Vyus (x )

’/[dwavW( >+d1vaVu1( )

‘/ AV uy ( )V(bdx + Cll9llmi @) < Cllél mao

Passing to the supremum when |[|¢|[ 1) = 1, we obtain that:

odx

<C.

11
Aoion < < 1= (f + divA. V) + divA.V
Il < 5 |2 O +divAvo) +divav|

which implies the desired result.

Remark: [25]

« Holds for any choice of :1;, since the H'(2)-norm of ety (z) is precisely of order e. In truth,

l

Theorem 2.3 is not satisfactory since the boundary layer ulf ° is not explicit with respect to e.

,E

To find the asymptotic behavior of ubl , i.e. to homogenize (1.12), is a very difficult problem

that has been addressed only for very special domains € .

e To improve Theorem 2.3 by removing the boundary layer term at the price of getting merely
interior estimates. Indeed if ul{l’e is really oscillating only near the boundary, one can expect

that it does not play any role for interior estimates.

o Unfortunately, it is impossible to achieve the problem without further assumptions. Indeed,
obtained optimal interior estimates mainly in two different cases: first, for a general domain €2

with either the maximum principle or smooth coefficients, and second, for general L>-coefficients
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with a rectangular domain 2.We now treat the former case.

o Namely we assume one of the following assumptions:

v (H1) Equation (1.2) is a scalar equation, i.e. it’s solution u. is a real-valued function, and

therefore the maximum principle applies.

v (H2) The boundary of Q is smooth, say C?, and the coefficients a;;(y) in equation (1.2) are

Holder continuous, i.e. there exists v € (0, 1] such that:

sup ’@ij(x) — Qi ()]

€Rn |z — y| - HainC’Y(R") <+oo Vi,j=1,...,n.
Z‘7y

Therefore the results of Avellaneda-Lin apply (weaker assumptions on the boundary of 2 are possible).

The error estimates in the H! norm:

For the study carried out in this part we need the following results.
Lemma 2.2.1

A function v € L{(Y)?,(v € L;(Y)?) , satisfies:

divy = O,and/ v=0.
Y

iff there exists a function ¢ € H}(Y')* , (H}(Y')?),such that,

v = curle.

In the sequel of this section, we assume that f € H?(2), which implies, according to the
regularity theory that ug € H*(Q). It is straightforward to verify that (P.) can be written as:

ANu, —v. =0
—divv, = f

We expected that v. behaves like:

x xr . xr
Ve = (x,>+6vl (a:,)+..+5]vj (x,)—l—....
€ 5 5

where each v; is Y-periodic in the fast variable " y = £ ".
Remark: [25]

The benefit of finding an equivalent problem to (P.) is to compute v; which are very important in

the proof of our first main result.

By taking into account that V =V, + %Vy and div = div, + édivy together with identifying the
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different powers of ¢ we get:

a(y)V,ug =0
(6_1) (y)Vyuo
—divyvy = 0,
a(y)Vayuo + a(y)Vyus —vg =0
—divgvy — divyv; = f,
a(y)vxul + a(y)Vyu2 — U1 = O
—divgvy — divyvy = 0,
( 2) a(y)Vzuz + a(y)Vyus —va =0
€

—divgvg — divyvz = 0.

vy = a(y)Vyuo + a(y)Vyu

By formally identifying powers of £,we obtain:

a(y)vuo = 07
—Vyvo = O, (27)
a(y)Vyur + a(y)Vaug — vo =0, (2.8)
—Vyvl - vao = f, (29)

Under the assymption that 2 is bounded domain in R", uy € H?(Q) ,Shari Moskow and
Michael Vogelius[9] proved the following proposition:

Proposition 2.2.1

Let u. and g be the unique solution of (1.1) and (1.13)respectively ,set uy(z,y) = —Xj(y)g%?(x),and
bl,e

let uy*(z) € H'(Q), There exists a constant C, independent of uy and € such that:

us(x) — up(w) — euy (x, x) + eul* <:1:, j)’
5

Hg (%)

Proof: [9
Define v by:
’Ug(.ﬁlﬁ, y) = @(y)vxuo(l') + a(y)Vyul(x, y)7 (211)



2.2. FIRST ORDER ERROR ESTIMATE : 16

(0l ) = 000 G0 0) = (1) 5

8U0

(?/)aTCj(x) = (aij(y) _ aik(y)an> dug

Oyx ) Ox;’

Note that this definition ensures that (2.11) and (2.8) are satisfied,It is easy to see that:
ox?) 0
—divy (vg), = —div, {a” Qi ——— } al

o7 ) Ou
dy 8:1:] = —div, {a,]} + div, {a,k } 0

Oyy, | Ox;

Ju
= {—divya;; + divyazj} a—o
=0
since e we are in two dimensions, it follows immediately that there exists q(x, y) so that:

(qu)J_ = Vo — AVUO,
where L indicates rotation by angle 7 counterclockwise. Owing to the fact that each entry of

— AVup,has Y-integral zero ( (due to the definition of A) simple manipulations immediately give
that q(x, y) is periodic in y. Since the operations to construct q are operations in the y-variable
entirely, it is clear that we may select q such that:

Sup IVq(z,y)] C’Z ailg;j a.e.x € €.
If we take vy (z,y) = (Voq(z,y))", then
V1 =V, (V,q)*
v 212

= _erO - f ’
in other words, the pair vy, v; solves (2.9). Due to our previous estimate of V,q, it follows that

(92'&0

sup |vi(z,y)] < C> a.e.x € €.
yEY Z]

From the definition of v;, we also immediately get that;
V.vi(z,y) = 0inf.

Now define;
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A simple calculation then gives:

—a(=)Vu.(z) + vo(z, g) + vy (z, g)
= —a(2)Vauo(z) — Ea(g)vxul(:c, g) — a(Z)Vyui (2, =) + vo(z, =) + evn (z, =)

Here we have again used the notation V for the full gradient and V, and V, for derivatives in the
first and second variables, respectively. In the last identity we used (2.11). From the above identities

and our estimate of sup,cy ’vl (z,2)],it follows that:

We may also calculate:

Viela) = Va()Vuela) - Vaooe, ) = 2V,0(5)
—€v Ul(g> VU1(5>
= —f(x) — Vvy(x, g) Vyvl(x,g)—evxvl(x,g) (2.14)

x
= vz T
eV, 01 (z 6)

= 0.

In the second identity, we used the equation for ue and the fact that V, vy = 0; in the last two
identities we used the relation (2.12) and the fact that V,v; = 0,
given g € L*(Q), let w. € H}(Q) denote the solution to:

—Va( Ww. =g in

(2.15)
w, =0 in 0.
Using the facts that Z. + eu} € HY(Q),and that the matrix a is symmetric, we now obtain:
/(Z + eu)gdz _/ (g)(vz + eVl V. de
f z bl.e
—/ — ngdm—ké/ a(=)Vu; *Vw.dx (2.16)
£ Q €
x
= —)\VZ. — p))Vw.dx.
| @V 2. p)Vw.d
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A combination of (2.13) and(2.15),(2.16) now yields:

x
/Q(Ze +eu))gda| < Clla(2)(VZe = pe)ll 2@y |wel ey < Celluolla2lgllm--
By dividing by ||g||g-1 and taking the supremum over all g # 0,we immediately conclude that:

|| Z. + 5u1{l’5|

o) < Celluol|m2(),

which is exactly the estimate claimed in the statement of this proposition. [ |

the error estimate in the L? norm:
Using the first-order boundary layer corrector ul{l’s,under the assumptions that uy € H3(Q)
,Shari Moskow and Michael Vogelius[9] obtained this estimate:

Theorem 2.3 [9]

Let w. and uy be the unique solutions of (1.1) and (1.13) respectivelylet ui(z,y) =

—Xj(y)g%g(x),and let u®(z) € H'(Q),There exists a constant C, independent of ug and &
such that:
z ble z
we(z) — u(@) — eur ($ ) +euth (ac ) < Celluol 3@ (2.17)
€ e/l
Proof: [9]
Define:

x e, L x
We(w) = ue(w) = uo(w) — ew(2) + cull (2) - 82u2(g) < C&?||uo|| g3 (-

and,
x x

&) = a(D)Vue(e) —ve(2) —ena(D) — ().

Here the functions wus, v, v,are as defined just prior to the statement of this theorem. A simple
calculation gives:
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a(x/e)Vif(x) — &.(x)

= alx/e)Vu x) — alx/e)Vuy(x) — ealx/e)Vu, (x, x/c)
— 2a(x/e)Vu,(x, x/e} — al(x/e)Vu,(x) + vg(x, x/c)
+ &0y (x, x/8) + £*v,(x, x/€)

= — alx/e)Vug(x) — calx/e)V u, (x, x/&) — a(x/e)V,u, (x, x/e)

- g*a(x/e)V, us(x, x/e) — ea(x/e)V, uy(x, x/e)

+ volx, x/€) + evy(x, x/€) + 2v,(x, x/¢)

= g%(va(x, x/e) — a(x/e)V, us(x, x/&)).

In the last identity, we used that :
a(y)Vyur(z) +a(y)Veug —vo =0, and aV,uy + aVyuy = vy, are satisfied. From the estimates.
we have on V, us(x,y) and vy(z,y),it follows immediately that.

x
Ha(g)V\IJE — & |2 < Ce||ugl|gs- (2.18)

We may also calculate:

V-&(x) = V-a(z/e)Vue(x) — Vo vo(w/e) — e 'V, vo(2/e)
— eV vi(z/e) = Vy-vi(z/e)
— &2V, va(x/e) — eV va(z/€)
— —2V,-vy(z/e)

=0.

In the second identity, we used the equation for u., plus the fact that (2.8), (2.9) and V,v; —
Vyvo = 0 are all satisfied.

In addition to u}"° | we define . € H'(2) to be the solution to:

V-a(g)V%:O in Q,

Q0€:U2<§> on 0f)

Here we use that ug is in H3(€2), so that has atrace inH 2 (9€2).From the the formula for uy it follows
that:

xr
|pellze < C||U2(g)||L2(BQ < Cl|uol| s
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Given g in L*(Q),let w. € H*(2), denote the solution to

V~a(§)Vw€:g in €,
w. =0 on ON.

Since U, + cule + &2, € H?, and since a is symmetric, integration by parts yield:
1 ¥

/Q(‘Il +eut e + €2 goe)gdx:/ﬂa( NV (T, 4 eul®e)) Vw.da

_ / WU, V. de
13

\&W\H

(2.19)
+alZ D) (eul e + 2p.) Vuwoda

- / a(f)v\lf5~ Vow.dz.
Q 15

0

Here we used the equations for ub “and ¢, , to arrive at the last identity. At the same time, due to

2.19].
xXr s
[ )90 Vude = [ (@(5)V. - &) Vuwds + [ & Vueds
—/ g \Pg—ﬁa)-vwsd:c—/ Vé w.dx (2.20)
€ Q
—/ f &) Vw.dz.
8
Now yields:

. x
(e +eul e + 52905)961:13’ <a(2)Ve = &llzzallellm < Ce|luolls 19l -
After deviding by/||g||z-1 and taking the supremum over g, we may rewrite this estimate as:
[|ue () — 1o — €U1( +euy () — 52U2( +e%p@)|lm < Ce*l[uol| s

Since usandyp are bounded in L*(2) by||uo|| g3, independently of &,it follows immediately that

S CéTHUOHHs(Q)
L3 ()

us(r) — u(r) — euy ( Z) + eult* <a:, x)

£

[
Shari Moskow and Michael Vogelius[9], obtained also the same estimate but under another assump-
tions conditions :
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Theorem 2.4

Let © C RZ%, be a bounded, convex curvilinear polygon of class C* ,andlet u, denote the
solution to the homogenized problem . Suppose that ug € H*™ () for some 0 < w < 1.

and let u?(z) € H'(Q) defined in (1.21),such that:

Where the constant C,, independen of ug and ¢.

T

(@) — u(@) — e (a: 6) +eutte (g; Z) < Ol u|e(©Q). (2.21)

L*(Q)

2.2.3 Second order estimate without boundary layers

In this part we see an estimation that obtained by Doina Cioranescu and Patrizia Donato[11] .

Theorem 2.5

Let f € H71(Q) and let u. the solution of (1.1),where uq is solution of (1.13) ,u; € W,,.(Y) is
defined in (1.5), and wuy is defined in (1.7).

Moreover if f € C*(2) , 02 is of class C*° and , furthermore.

X/, x7 € Wh(Q) | then, there exists a constant C independent of ¢ such that :

< Cez. (2.22)

2
Us — Uy + EU —5u’
£ 0 1 2H1(Q)

Proof: (See page 133 in [11])

2.2.4 Second order estimate with boundary layers terms

Theorem 2.6
Let Q is a cubic domain and uy € W>*°(Q), where u; is defined by (1.5) and u; satisfies

(1.22),Such that:

bl
Ue — Ug — EUT — EUT " — E7Ug (2.23)

In the case of a smooth enough boundary for a convex bounded domain €2, and assuming that:
ug € H3(Q),u; = 1y = 0 and 7, x¥ in WHP(Y) for some p > n, Onofrei and Vernescu [20] proved
the estimate: ’

3
< Ce uoll g3y

bl,e
Us — Uy — EUL — EUY — € Us
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Theorem 2.7

Let u. and ug be the unique solutions of (P.) and (Py) respectively, with Q@ C R™ is a strictly

convex bounded domain with 9Q € C*. Assume that f € C*(Q2) and x¥* € W1*°(Y). Then:

bl,e 2 2 ble
Ue — Uy — EU] — EUP — E U2 — E Uy

2

Proof: The domain 2 is strictly convex if the open straight segment joining any two points of 0f2
lies entirely in €.

Let us define : ro(z) = & (ue — o — euy — eu™ — e2up — c2u3™®), it satisfies:
1 1
—divA.Vr. = = (f + divA.Vug) + ~divA.Vu; +divA.Vuy  in Q
€ € (2.25)
re =0 on 0f)

Using the relations (1.4), (1.2) and the fact that ug is independent of y, we get:

1 1
f + diVAEVUO = f — LQUO — nguo = LOU2 + L1U1 — EL1U0

1 1

diVAEVul == —L2U1 - leul - —2L0u1
9 9
. 1 1

leAEVUQ = —L2U2 - *LIUQ - 7L0U2
9 9
. 1 1

leAEVUQ = —L2U2 — *LllLQ — ?LOU/Q
9 9

So the equation(2.25)is reduced to:

1 1 1 1 1
—diV145v7’6 = (LoUg + L1U1 — L1UO> + - (-Lzul - 7L1u1 - 2L0U1>
9 9 € € €

1 1
+ (—L2u2 — *Ll’LLQ — 2L0U2)
9 9

1
(Louy + Liug) — Lous

1
(Loug + L1u1 — L1u1 — Loug) — g

1
= —g (Ll’LLO + L[)Ul) + ?

= —Lous — Laus
€

Then the variational formulation of (2.25)is:

Find r. € H}(2) such that
Jo AcVr-NVode = L [ (Lous) pdx — [o (Laug) pdz, Vo € Hi ()

We have for all ¢ € H} () the estimate:
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1 : .
‘/QAEVTEngdx = E/Q(LOU?’) gbdx—/Q(dlvaaVyu3)¢da:—l—/Q(dlvaavyuzJ,) qﬁdm—/{)([]guz)gbdm
1
<1 _ . . _
< g/Q(Lou;:,) odx /Q(dlngAavyu;;) (;de’—i—’/ﬂ(dlvaEVyu;],)qbdx /Q(LQUQ)gzﬁdx
= | [ (ivAV us) o +’ [ (v, A (Vs + V)
_ /Q AV jusVdz| + ‘— /Q A (V$u2+Vyu3)V¢dx’

<9 ‘ /Q AV jusV dda

+ ‘ /Q AV sV

Using the L boundedness of A., and that [|[Vyus|| 12 q) < Cus [[uoll s (o) and [[Vaus[ 2y < C'lluoll 73 q)-

we get:

‘ / AVr.Védz
Q

< Cluoll s 101l 10, Vo € Hy ()

By taking ¢ = r. and using the ellipticity of A., we obtain:
2
Mirellfgey < |, AV Vrde < € lluoll sy I

which implies that:
I7ell g3 () < C lluoll g3 gy

Consider a second-order corrector, assuming f € C®(Q),u; = 4y = 0 and x7,x¥ in Wh(Y),
Cioranescu and Donato[11] obtained the estimate:

From the proof of the theorem (2.2) that proved by Shari Moskow and Michael Vogelius[9],they
obteined this estimate under an assumptions conditions :

<Cye (2.26)

2
Us — Uy — EUT — &€ UQ‘

H(Q)

bi bl
Ue — Uy — Uy + Uy’ — 2ug + e2uy©

< O |ug|| g3 () (2.27)

H(9)
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2.3 Interior Error Estimates

2.3.1 First order estimate without boundary layer

Theorem 2.8

Let u. and wuy be the unique solutions of (1.1) and (1.13) respectively. Let u; be defined by
(1.5). Assume that either hypothesis (H1) or (H2) holds true. Assume also that u € W3>(Q).
Then, for any open set w CC €2 compactly embedded in €, there exists a constant C, depending

on w but not on ¢, such that:

< Ce. (2.28)

ue () — up() — eug (x, x)

3

H (w)

Where C depends on w

The proof of the theorem is based on this Lemma :

Lemma 2.3.1

For a sequence ¢. in H'(Q) we define the sequence of solutions z. € H'(Q) of

—divA.Vz. =0 in
Ze = Oe on 0f)

Assume that there exists a constant C such that, either (H1) holds and [|¢: || w50 < C' or (H2)
holds and ||¢el| 290y < C. Then, for any open set w CC (2, there exists a positive constant C
such that

||Z€||H1(w) <C

proof of lemma 2.3.1:(See[10])

Proof: [10]
For w CC 2, we observe that:

bl,e

bl,e
Ue — U — EUL — EUq

@ +e Hul

e = 1 = 2| r ) < | .

0 Hl(w)'

Since u;(z,z/¢) is a bounded sequence in either L>°(9Q) or L?(9Q), application of Lemma (2.3)
yields the desired result. [
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In this chapter, we proceed our study of the error estimates in the periodic homogenization
of elliptic equations by present the error estimates of the third-order with and without boundary layers
terms, So in the first we deals to the third error estimate without the boundary layers correctors ,
Then we prove two theories related to the interior error estimate for periodic homogenization with
the third error estimate with the boundary layers correctors
Lastly we compare the previous results with the results obtained.

3.1 Third Order Error Estimates

3.1.1 Without the Boundary-Layers

The results obtained in this section are taken from|[2]. In this section we need more regularity
for ug the solution of (Py) which requires more regularity on the data, and we suppose that the
functions u; = (uw;) = 0,1 = 1,2,3,4. Since we will not try to compute the minimal regularity
required for 2 and f, we simply assume in the sequel that 2 is a bounded domain with 92 € C*°

and f € C*°(Q) which implies, according to the regularity theory (see Evans [49]), that uy € C™(Q).

Using the density of C*°(Q) in W™?(Q) for all m € N* and 1 < p < oo, we have ug € W™?(Q).
The first result concerns the second-order error estimate with boundary layers correctors. In
this case, we need the regularity H3(€2) for w.

Theorem 3.1

Let u. and ug be the unique solutions of (P.) and (Pg) respectively, with 2 C R is a bounded
domain with 9Q € C*®. Assume that f € C*°(Q) and x/, x¥ and x¥* € W'(Y). Then

< Cye (3.1)

Us — Uy — EUT — €2U2 — €BU3‘

HY(Q)

To proof this theorem ,we need to use the following tools:
Proposition 3.1.1
Let F be in H*(Q2). Then, there exist n + 1 functions fy, f1, ..., fn in L*(2) such that

of;
&xi

F= fo—l—z

in the sense of distributions. Moreover
= 2
2 .
1E 71y = nf D | fill 20
i=0

where the infimum is taken over all the vectors (fo, fi,...fa) € [LA(Q)]""". Conversely, if
(for f1s- -, fn) is a vector in [L2(Q)]""", then F € HY(Q) and it satisfies

— 2
11 0) < D2 Iillzem)
=0

Lemma 3.1.1

Let 2 be a bounded domain with a smooth boundary and

Bs ={z € Q, p(x,00) <} withd >0

Then there exists g > 0 such that for every § € (0,dy) and every v € H'(Q) we have



3.1. THIRD ORDER ERROR ESTIMATES 27

1
[vllz2(m5) < CO2 vl

where p(x,0S)) denotes the distance of x € ) from the set 0S), and C1g is a constant independent
of 0 and v

Proof (See [Chapter 1, Lemma 1.5, [85]][2]).

Theorem 3.2

Let A (f) be an uniformly elliptic bounded matrix and 0f2 be Lipschitz continuous. Suppose
that

fe H(Q) and g € Hz(99) then, there exists a unique u. € H'(€) solution to

_div <A (i) vug) — finQ

u. = g on 0f)

and

el 1.0y < Cllf -1 @) + Cllgl

H3 (09)

Proof. (See [Theorem 23.4,Lectures on linear partial differential equations book ])[25]
We give the proof of Theorem 3.1

Proof: We set:

Lo = U — (uo + euy + 2y + €3u3)

ug = up(x)
__ j0u
up = —X 67%
_ i Pug
2= X O0z;0x;
e OPug
=X ]k(?xi@xj(%ck

then,
L.Z.,=L.u.— L, (uo + cuq + €%uy + €3u3)
= L.u. — (5_2L0 +e 'L, + Lg) (uo + euy + €%us + 53u3>
= Lou. — e 2Loug — e (Louy + Liug) — (Loug + Lyuy + Loug)
— & (Lous + Louy + Lyuy) — % (Lyus + Loug) — €3 (Lous)

We using the equations of (1.4), we get;
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LEZ€ = —82 (L1U3 + L2u2> — 83 (LQUg)
Since

8_16’ anda— 0
ayi_axi

A simple computation shows that:

= () B (o () 2)
s = —m A o OYp, 0x;02,;0;0x) ox; m\ ¢ X e/ 0x,0;0x;0x)

— 8L2U3

. o4
Louy = —ay, <:13> X" (:C) o0

€ B 02,0x,,02,0x;

then:

o @ aXijk 84u0 I i <$) ik (g;) 84u0
L.Z, = —¢ <a1m<€> O 02,07:02;01), < oz, Him € X e/ 0x,01;0x;0x)
2 (D) v (%) Oto
m\ & X e/ 02,02,,0x;0x;

Taking into account that u. and ug vanish on the boundary 052, then it follows easily that Z. satisfies

L.7. = 2F° inQ

Z.=¢eG*  on 0f)

where g
e <x) X"k g <x) i <£L‘) Dug
= —Q — —Q J— —
m\ ¢ OYp, 0x;02;0;0x) m \ ¢ X e/ 0x,02,0x;,0x;
(2 (£) (4) O'ug
ox; € e/ 0%y, 0x;0x;07)
G = —uy — cuy — £2uy
We put
. o ijk 34 : 84
FO o _alm (%) (;;Jm 89018352;;]8% - alm <§) XU (%) 8:Elal‘m%()$ia$]‘7
_ ijk ot
By = =y (£) X9* (2) ot

Under the assumptions on agm,, ug, ¥ and x“* we get

1Foll 2y < C (32)

1Fil 2 < € (3.3)

we Using the Proposition 3.1.1 then from (3.2) and (3.3) we obtain F*° € H'(Q).
Let’s look at the function G.. We prove the following estimate:
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-1
HGeHH%(aQ) < Ce=

At this point, we need to introduce the function m. € D(2) defined as follows

me = 1if p(z,00) < ¢
m. = 0 if p(x,00) > 2¢
||vm6||L°°(Q) < %

For the existence of such kind of functions see [22] and the references therein.
Set

Vo = m.G..
Ve = {x, p(z,00) < 2¢}.

which will be denoted by U.
Using theH' —norm wehaveHV HH1 0.y = WVell 2y FIIVVEll p2rr, -Clearly, fromthede finitiono fm.

and the regularity properties of ug, x’, x{ij, x*/¥,one has that
Vel ooy < €

On the other hand, we have

ove 1 0x* 0 0? oM 0?
(1) =m (o) [TOX° (7) Qtolt) (0 F0l@) O (2 i)
ox; g 0y, oxy, e/ 0x;0xy Qy; 011,01

M (> Puo(x) _ganlm <$> Pug(x) _ g2y him (55) D*ug(z)
e/ 0x;0x,0x; y; 0,010, g/ 0x;0x,0x,0x,,

om. | (T 8“0( ) kl( )82“0< ) 2 kim (55) Pug(x)
* 0x; [X (€> oxy, X 0xL0x; TEX e/ 02,0102,

Again, on the account of the above definition of m. and the regularity properties of ug, x*, x* and

Y¥m it is easy to check that

1
HVVEHB(UE) < EO ||u0||H1(U5) +C
and owing to Lemma 3.1.1, we derive that
1
[uoll v,y < Ce2 luoll 2y
Then we conclude that:
IVEllz2 0y < €+ Cog luoll g o
< C+e7C (Cet fluoll o)
< Cee

On 00, V. = GG, this gives that
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;1

||G€H aQ) 3 Cl)

Using the regularity results of Theorem 4.3, we deduce that:

D=

12l < <2 1F iy + € 165y < C

which proves the theorem.

The third result is about the third-order error estimate without the third boundary-layer cor-
rector.

3.1.2 With the Boudary-Layers

In this case, we need ug to be in W4>°(Q). Using the Sobolev embedding result (see Adams [1]):
Let [ € N,m € N*and 1 < p < oo. If either (m —I)p > n or m — [ =n and p = 1, then W™?(Q) —

Wha(Q), for p < q < co. Therefore, we have WT1(Q) < W%°(Q) and like vy € C°(Q) C W™P(Q)
for all m € N* and 1 < p < oo, and then, uy € W4>(Q).

Theorem 3.3

Let u. and uy be the unique solutions of (P.) and (Py), respectively, with 2 C R" is a strictly
convex bounded domain with 9Q € C*®°. Assume that f € C®(Q) and x7*, x9k € Wheo(Y).
Then:

— eult — Puy — b — E?’us‘ W@ < Ces (3.4)
To proof this theorem, we need the following Lemma :
Lemma 3.1.2
Let ¢. be a sequence of functions in W*°(Q), such that:
C

||¢sHLoo(Q) <C and Hv¢s||Loo(Q) S
Let 2. € H'(Q) be the solution of:
—divA,Vz. =0 in )
Ze = e on Of).
Then, it satisfies:

1zell o) =

Sl

For the proof, we refer the reader to (Lemma 2.6, [10])

Proof: Defining:
bl bl
re(z) = % (uE — U — €Uy — €U — 2ug— *ugt — 53u3)
it satisfies:
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—divA.Vr, = E% (f +divA.Vug) + E%diVAEVul + édiVAEVUQ + divA.Vuz in €,

(3.5)
r. = —Us (x, g) on 0f).
We decompose
Te = 7’; + 7"?
where r! satisfies:
—divA.Vr! = 8% (f +divA.Vug) + E%diVA€Vu1 + %diVAEVUQ + divA.Vus in €, (36)
3.6
rt =0 on OS).
and r? satisfies:
—divA.Vr? =0 in Q,
, L . (3.7)
re = —us (l’, f) = _XZJ (%) 8xi8:c1;%xk on 0f)

Using the fact that ug (x, g) satisfies:

C
[usl[ ooy < Css and  [[Vug| gy < %

0
solution of the problem (4.5). Using the results obtained in the proof of Theorem 4.1 and the fact
that:

then Lemma 3.2 gives that ||r?|| i) < C—\“[ On the other hand, we will now estimate r! the

. 1 1

leAEVU3 = —L2U3 - 7L1u3 - 7L0U3
€ €
we get
. 1 1 1
—leAEVTS = —L2U3 — g (L1U3 + LQUQ) = —L2U3 + gLou4

The variational formulation of (3.6)is:

Find r! € H}(Q) such that
Jo AV dz = L [y (Loua) ¢z — fo (Lous) e, Vo € H(S)

We have for all ¢ € H}(Q) the estimate:

‘/ A VriVedax
Q
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_ ’i/SZ(LOU4)¢dx—/Q(divaEVyu3)¢dm+/Q(diva5Vyu3)¢dw—/Q(nga) pdx
< i/gz@om) odz — /Q (dive A-Vuq) gdz| + ‘/Q (dive AV yus) o — /Q (Laus) pd

_|- /Q (divAEVyu4)¢dx’ + ’ /Q (divy A (Vauz + Vyus)) ¢do

- /Q AN jusVodz

+ ‘— /Q A (Vaus + Vyug) Voda

<9 ‘ /Q AV usVdz

+ ‘ /Q AV, usVdz

Using the L* boundedness of A., V,uy and V,us, we get:

/ A VriVedr
Q

< C41H¢”H01(Q)>v¢ € Hy()

By taking ¢ = r! and using the ellipticity of A., we obtain:

12 / 1,1 1
A2 HAE) < QAEVTEVTE dz < Cy ||r; HE)
which implies that:
1
"ell ) < Oy
Finally, we get & [|7c[| ;1) < Cyze2 which establishes the desired estimate. |

The fourth result concerns the third-order error estimate with boundary layers correctors.
In this case, we need uqy to be in W4(Q).

Theorem 3.4

Let u. and uy be the unique solutions of (P:) and (Py), respectively, with 2 C R™ is a strictly

convex bounded domain with 9Q € C*. Assume that f € C°°(Q) and " € W1°°(Y). Then:

2 ble 3 ble

b,
Ue — Uy — EUp — UL T — E2Uy — E%Uy ° — 2Ug — 2y < COpye’ (3.8)

Hg(Q)
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bl bl ble\ - .
We Define: r.(z) = E%, (u8 — Uy — Uy — Uy — 2ug — e2uy© — duz— duy ’5), it satisfies:

—divA.Vr, = E%, (f +divA.Vug) + E%divAEVul + %diVAEVUQ +divA.Vuz in Q,

Te = 0 on 0.

This problem is the same as problem in theorem (3.3), so the solution r. has the same estimate

of r! the solution of (4.5), that is:

1
€

< Cgs.

el =

HTaHHg(Q) -

. thus :

which completes the proof.

b, b, bl,
Ue — Uy — U — EUT° — 2ug — e2uy© — 3ug — 3ug©

i@ = ¢ Irellmyo) < Cie’

Remark: I
n accordance with the results obtained in Theorems (2.8), (3.1), (3.3), (3.4)and the estimates

(2.3)and (2.21), we infer that the correctors have no influence on the improvement of the order of
the error in the estimates. However, the introduction of boundary layers terms improves these,
estimates

The conditions posed on the homogenized solution ug,and on the solutions of the cell-problems
X andx¥™ in Theorems (3.3 and 3.4 in the above section, bring us to the following question : if
we assume minimal regularity assumptions, can one prove differently and obtain the third-order

error estimates as stated in theorems (3.3) and (3.4)?
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3.2 Third-Order Corrections In Periodic Homogenization Using Mixed

Method

o All the results presented in this section are taken from [25]

« in this section we answer the questions we asked previously, our study will be in dimension two.

From the proof of proposition (2.2.1) and under the different powers of & we get ;

. . a ) a?u
v = a(y)Veur + a(y)Vyus, Le. (v1), = <_akiXJ + ap 8)36/1 ) 8%823"

82’&0

<(Ul)k> = <Cijk(y)> 8:162-893]-’

(divzv) =0
divyv; = —divyvg — f
And,
vy = a(y)Vaus + aly)Vyus, ie. (va), = (“m’“xij i 85'“) 31’22;%%
3
) 109) = () o
(divzvg) =0

divyvy = —divgvy

and,

vg = curl, K(z,y)

(v3) S divgvg = 0

divy vy = —divg vy

84U0
0x;0x;0x1,01;

sup vs] < €'Y
yey ik,

3.2.1 The boundary layers terms

Under the assumption that ug € H*(2), so the functions uy, us, us have a traces in H %(89), con-
sequently, and owing to theorem of trace we can extract the following estimates:

2] ) < Clluoll oy (3.10)

H3 (59

||U3||H%(BQ) <C ||u0||H4(Q)
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Therefore we can introduce the boundary layers functions u?l’a, ug’a and u‘gf the unique solutions

to (Puz{,s) , (Pugz,a) and (Pugz,a) respectively, where

(P.) div (a(2) Vul") =0 inQ -
bl,e .
. Wi =wu;  on 89
and
div(a (2)Vul<) =0 inQ
(Pugl,s) ( (331,5 :2 u)2 o (3.12)
and
(Py)] " (o8} vid =0 mo (3.13)
" uy =wuz  on 99
Remark 3.2.1

. . ble bl
The existence and uniqueness of u; ™, uy"° and u

(3.2).
From the L*-estimates proved in ([9]) and the formula for each u;(z,y), it follows that

f;f’s can be deduced immediately from Theorem

bl,e T
gy <€ (2] 1y < O M0l
bl,e z
Uy’ <C’u<:c,> < C'||u , 3.14
2 o (2] gy < € M0l (3.19)
bl,e Z

U’ <C|u (;1:, > <C||u

5 iy < s ()], < 0l

The first result concerns the third-order error estimate with the third-order boundary layer
corrector. For this case we need the regularity H*(Q) forug

Theorem 3.6

Let u. and wuy denote the unique solutions of (P.) and (Py) respectively, suppose that f €
H?(Q) then:

U — Uy — Uy — 2y — 2ug + cul® 4 2ub 4 Sul e < O J|uol| oy (3.15)

Hy(2) —

Proof: [25] The proof will be divided into three steps.

Step 1: The definitions of ¢, and &..Let;

Y. = U — Uy — EUp — E2Uy — U3

x
&=a () V. — vy — ey — €209 — 303
€



3.2. THIRD-ORDER CORRECTIONS IN PERIODIC HOMOGENIZATION USING MIXED METHOD 36

such that:

a <Z§) Vi. =a <z> Vu, —a (i) Vug — €a <§> Vu, —e%a <Z> Vuy — e3a ( ) Vus

divé. = div (a (i)) Vu5> — divgvg — idivyvo — edivyvy — divyvy — 2divgvy — edivyvy
— Sdivyus — 82divyv3
= —f(x) — divyvy — edivyvy + divgvy + fx) — e2divgvy — edivyvy — 3divgvs
— 52dz'vyv3
= —edivgv; — edivy vy
=0.

a (i) Vi. =& =a <3€:) Vu, —a (i) Vuy — ca <§> Vu, —c2a <':> Vuy — e3a (i) Vus

Xz
—a(s Vu +U0+€U1+€U2+€U3

= —a (x) Viug — €a (I) V. —a (x) Vyur — £2a (x) V,us — ca (x) Vg
€ € € €
—53G<§)VIU3—€2G(§>va3+G< )V u0+a< )V uﬁ—sa( )V m

+5a(§>vyu2~l—€2a< >V u3+5a< )V Uy + 303

=2 (w—a (L) Vaus).

(3.16)
Step 2: The estimation of Ha (f) V. — & L@’
Since x“* are in C=(Y') and ug € H*(2) we see that:
841,60
\Y <’ —_— 3.17
Sup| 'Uzg‘ z]zk:l 81:18%8:{:;48@ ( )
Therefore from (3.9) and (3.17) we conclude that
x x
(D) Vi) < s + 20 () Veus
c L2@) c L2(@) (3.18)

< C2* ol ey

bl,e bl,e bl,e
e + euy + e2us © + 3uy

Let g € L*(Q2) and w. € H} () the solution to:

Step 3: The estimation of ‘

Hj(Q)

—div(a(g)Vu}E) = gin Q

w = O0onof?

Since 1. + 8u?l e €2ugl o+ €3ul§l “ € H}(Q), so by using the Green Formula the integration yields
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/ (1/)6 + eult® 4+ 2ube + 53ugl © gdx = / —div <a (i) Vwa> (@Da + eul™® 4 2 4 Bul 6) dx
—/ ( ) we + eVl + 2vule +53Vubl€> - Vw.dx

- [o(

_/ d1v< () EVul{l’a + 2Vl +53Vubla>> w.dx

— [ a ( )wa V. dz

Making use of (3.16) and taking advantage of the ellipticity of A., we get:

La(%)ve.- ngdx—/( (5) Ve - &) Vet [ & Vo

( ( >Wf ff) V. = | divgw.ds
( ( >W€ §5>'W€d9€ (3.20)
<[« 3)

V% -
LQ(Q)

aQ)V%—&L”U

Using the estimate obtained in (3.18), it follows that:

(©)oel,,

by dividing by ||g|/s#-1(@) and taking the supremum over all g # 0, we immediately conclude

that
a(2)ve. - &

(3.19)

||WsHH3(Q)

Hg“H*l(Q)-

’/Q (% + 5ul{l €4 £2ugl €4 53u?f 5) gdm’ <

)||9HH—1 o

’fg (@Dg + eubl® 4 e2ybhe 4 e3ylh ) g‘

sup
||9HH—1(Q) L2(Q)
< O JJuo|l 1oy
Hence, it seems clear that
’ e +eup® + e2uy © + Puyc HQ) < Ce’ HUOHH4(Q)
0
which establishes the formula. [ |

The second result is about the third-order error estimate without the third-order boundary layer
corrector. Again, for this case we need the regularity H*(Q) for uy.
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Theorem 3.7

Let u. and wuy denote the unique solutions of (P.) and (Py) respectively, suppose that f €
H?(), then

bl bl
Ue — Uy — EU — E2Uy — E5ug + euy ® + e2uy®

< Ce? gl (e (3.21)

HY(Q)

Proof: Using the result obtained in Theorem (3.6), we have

[

bl,e 2 bla

—5u1—5 Uy — € u3—|—5u + c“u

HY(Q)

b, b, bl bl
— %ug — %uz + euy © + %uy © + Puyt — luy”

H(Q)
b, b, bl bl
— cuy — 2uy — dug + euy " + ety © 4 3yt +53 H < .
3 bl,e
< C&* flunll ey + ° 157 1
bl,e

The task is now to estimate Hu Ly Since uz has a trace in H %(GQ), consequently, owing

to Theorem (3.2) we can conclude that

bl
‘Uz ° oy = Csllusllyg o)
The proof is completed by showing that:
;1
usll 3 gy < €€ (3.22)

For this purpose, we define the function s.(z) € D(f2), such that
ke = 1if p(z,00) < e

ke = 0 if p(z,00) > 2¢

Q

IVk iy < =

For the existence of such kind of functions see [32] and the references therein.
Let us put

Ve = Keus
such that
supp V. = {z, p(x,002) < 2¢}

which will be denoted by U,
At this stage, the only point remaining to get (3.22), is the estimation of ||V|| 1 (£2).
Making use of H'-norm, we get:

[Vl () = [|Vell22(82) + [[V Vel L2 ().

Clearly, from the definition of k. ,and the assumption that uy € H*(Q2) with taking advantage of
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aij, X% € C*(Y'),we obtain:

f) Pug

g 6@8%8%
831,&0

O0x;0x ;0

||V6||i (Ue) = “6(17)Xijk(

L2(Ue)
T

XM (=)

<|
9

Lee(Y)
83U0

8@6%6@,

L2(U.) (3.23)
|

L*(Ue)

< COlluol|m3 )

Hence ,
||VEHL2(U€) < Clluol| w3 (3.24)

Let us now estimate the gradient of V., first we have:

ove (2) = k. (z 1x7* x DPug(x) ik §> O*ug(z) +8/~@8(x) Xijkz Puyg '
oz e Oy e 0x;0x,;0x; €’ 0x;0z,;0x,0x; ox; e Ox;0z,;0xk

(3.25)
Again, from the above definition of k. , and the assumption thatuy € H*(Q) , with taking advantage
of: a;;(y), x* € C*(Y)one can have;

C 83U0 ‘ 84’&0
V. < — g7 +C\|\57—F%—5 3.26
|| €||L2(Us) 5 8@8%8% L2(U.) 8@8:@@9@ L2(U0.) ( )
however,
IVall 2y < Ce™Hluollman + Clluol|maqn)- (3.27)
Furthermore, by applying Lemma we derive that:
1
ol 3w,y < Ce2[uolmaw.)- (3.28)
Combining (3.24) with (3.27) and making use of (3.28),we conclude that:
IVll 10y < Clluoll sy + Ce™Hluollmsw. + Clluol s
1 _ 1
S Cez ||u0| |H4(Q) + Ce 1(062 ||u0||H4(Q)+C||u0HH4(Q) (329)
;1
S Ce= HUOHH‘l(Q)-
On 09, V. = u,,s0;
—1
el oy = 1Vl oy < IVelliay = Vel < C< Nl (3.30)
Using the regularity results of Theorem 3.2, we deduce that
bl =1
(s iy < Olltel 4 e < €7 lluollrsca): (3.31)
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Substituting (3.31) in (3.21), we get:

bl,e 2 ble

bl
Us — Uy — EUT — E2Uy — 5ug + cuy © + e2ug <

< C |fuo| sy + & |3

H(Q) H(Q)
5
< O [luol| gagy + Ce? [[uoll gy

5
< Ce> HUOHH4(Q) )

which is precisely the assertion of the theorem. [ |

3.3 Interior Error Estimate

In this part we prove two theorems about second and third orders interior error estimates , to
prove this two theorems we use the method that Allar adopted in his article (See [10])

3.3.1 Second Order Error Estimate

Theorem 3.8

Let u. and ug be the unique solutions of (P.) and (Pg) respectively, Assume that uy € W4 ()
, Let uibe defined by (1.5),and us satisfies equation (1.7) ,assume that either hypothesis H1
or H2 holds true , then for any open set w CC €2 compactly embedded in {2 there exists a

constant C ,depending on w but not ¢,such that:

U — Uy — EUL — gQUQHHl(w) < Ce. (3.32)
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« The proof of this estimate (3.32), is based on Lemma 2.3 (See chapter 2).

For w CC 2, we observe that:

bl, bl,
Ue — Uy — Uy — €Uy " — 2uy — e2uy®

Us — Uy — EUT — 521112‘

<|
i) = H3(©)

+elJut || i) + €21 1u5 | ).

from the proof of (2.24) we obtain:

From the L? estimates proved in [5] , and the formula for each w;, it follows that:

b, b,
Us — Uy — Uy — €Uy — 32Uy — e%un©

2

bl,e T
’ < x <
“ L*(Q) — €l < ’ €> L2(09) C el @

bl,e T
U2 | L2 < Clug (x, E) 209 <C ||u0||H4(Q)7 (3.33)

ble T
ug £2(Q) < C|us (x, 5) 260 <C ||U0||H4(Q)~

Since uy (z, 2/€), us(z, z/€) are a bounded sequence in either L>(9Q) or L?(91), So according
Lemma 2.3 | we conclude that :
65| i1 () and |[us"®]] g1 (), are bounded by C.

So,
|

Ue — U — EUy — UL — 521@‘ ) < Ce? 4+ eC +%C
<e(eCr + O)
< (Ce.

Wich completes the proof.
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3.3.2 Third Order Error Estimate

Theorem 3.9

Let u. and ug be the unique solutions of (P.) and (Py) respectively. Assume that ug € W4(2)
, Let uy,ug,u3 be defined by (1.5),(1.7) and (1.9),assume that either hypothesis H1 or H2 holds
true , then for any open set w CC {2 compactly embedded in €2 there exists a constant C

,depending on w but not e,such that:

Where the constant C depends only on w which is any open set such that w CC 2

« The proof of this estimate (3.34), is based on Lemma 2.3 (See chapter 2).

<Ce (3.34)

— Uy — 52U2 — €3U3‘

H ()

For w CC 2, we observe that:

2 3 bl,e 2 ble 3
—Eu—eu’ < llu, —ug — euy — eur”® — 2uy — 2u —e’u
‘ 2 3 Hi(w € 0 1 1 2 2 H(@) 3
3 blE
—Eu +5HU1 ||H1(W)+52||ugl5|\H1 ()18 1 (-

from the proof of theorem (3.4) we obtain:

ble bl, bl,
—eu® — %uy — e®uy® — Pug — e3uy’ < Ce’e

Hy ()

From (3.33) , Since ui(x,z/¢),us(x,z/e) and us(z,x/e) are a bounded sequence in either

L>(092) or L*(09), So according Lemma 2.3 , we conclude that :

|| bl,e
Uy

So,

bl,e bl,e

1wy > 1w || m1w) and [Juz || g (o), are bounded by C.

bl
Ue — Uy — Uy — €UT° — 2uy — 3ug < C34+eC+e*C+&3C

H(w)

e(e*Cy +eC + C)
< Ce.

Wich completes the proof.




APPENDIX I

In this appendix, we will give some preliminaries needed to carry on our study.

In all the rest, Q) designates an open open from RY provided with the measurement of Lebesgue
D,, and border 0f2 sufficiently regular.

Theorem 1. (Poincaré’s Inequality)
Let Q be a bounded domain in RY with LIPSCHITZ boundary I'. There exists a positive constant

Cp such that, for allv € H. = {ve H'(Q), v=0 on I cr}
lvllz2@) < Cpl|Vlli2@).

POINCARE’s inequality holds if € has finite measure or is bounded at least in one direction.

Theorem 2. (Trace Theorem)
Let Q0 be a bounded open set in RN with LIPSCHITZ boundary I'. There exists a bounded linear

operator called trace operator and denoted T such that

T:H(Q)NC'(Q) — LX) Nnc(T)

v Tv =v|gn
The continuity of T implies the existence of a positive constant Cy such that

| Tull 220y < Cillv]|m1@), Yo € H'(Q).

43
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Theorem 3. (Green’s Integration by Parts Formula)
Let Q) be a bounded open domain in R® with a sufficiently smooth boundary I and n is the

outward normal. Then for all u,v € C'(Q)

/@u(m)v(m)dm = —/u(m)@iv(x)dx —I—/u(x)v(x)nidf‘.

Q

Theorem 4. (Young’s Inequality)

1 1
Let a and b be two non-negative real numbers. If p,q €]1, +o00| with — + — =1 then
p q

a? b
ab < — + —.
p q

Theorem 5. (Hélder’s Inequality)
1 1

Let Q be a domain in RN and p,q €]1,+oo| with =+ = = 1. Ifu € LP(Q) and v € LI(Q) then
p q

ww € LYQ) and:

Juvl| L1y < |lullzr@)lv]|ze)-




CONCLUSION

Through this work, we notice that the assumptions on ug, the cell solutions, the bound-
ary layer terms and the geometry of the domain play an important role in the improve-
ment of the error estimates, also we deduce that our proved interrior error estimates
following Allaire’s method do not improve the estimates order which leads us as a fu-
ture work to think about new formulas for the second and the third boundary layers
correctors which needs rigorous study.
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Abstruct

This thesis aims to study the L%, H*{1} {0} and H1-norms error estimates of the first, second and
third-order with or without boundary layer correctors, for the periodic homogenization of elliptic
equations in divergence form with Dirichlet boundary conditions. Our study comes for two reasons,
the first oneis to show how hypothesis imposed on the data can influence on the improvement of
the estimates order . The second reason is to show how we can differently prove the same results
using different mathematical thechnicals.

Keywords : homogenization, asymptotic analysis, error estimates, boundary layers.

Résumé

Cet mémoire vise a étudier les estimations d'erreurs des normes L2, H*{1} {0} et H1 du premier,
deuxieme et troisieme ordre avec ou sans correcteurs de couche limite, pour I'hnomogénéisation
périodique des équations elliptiques.

Sous forme de divergence avec les conditions aux limites de Dirichlet. Notre étude vient pour deux
raisons, la premiére est de montrer comment les hypothéses imposées sur les données peuvent
influencer I'amélioration de I'ordre des estimations. La deuxiéme raison est de montrer comment
nous pouvons prouver différemment les mémes résultats en utilisant différents techniques
mathématiques.

Mots clés : homogénéisation, analyse asymptotique, estimations d'erreurs, couches limites.
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