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NOTATIONS AND CONVENTIONS

The symbols:

• ε : a small parameter representing the size of the period

• ω ⊂ ⊂ Ω :ω strongly included in Ω, that’s to say ,ω̄ is compact and ω̄ ⊂ Ω .

The operators:

• 〈.〉:moyenne operator : 〈f〉 = 1
|y|
∫

Y fdy.

• |Y| : The measurement of Y.

• ∇ : denotes the full gradient operator.

• ∇x : denotes the gradient in the slow variable.

• ∇y : denotes the gradient in the fast variable.

• div: denotes the full divergence operator.

v



NOTATIONS AND CONVENTIONS vi

• divx : denotes the divergence in the slow variable.

• divy : denotes the divergence in the fast variable.

• curl x : denotes the rotation vector in the slow variable in two dimensions, such that:

curlx =
(

− ∂
∂x2
∂

∂x1

)

• curl y : denotes the rotation vector in the fast variable in two dimensions, such that:

curly =
(

− ∂
∂y2
∂

∂y1

)

• ∂i = ∂
∂xi

: Partial differentiation with respect to xi.

• ∂ε
i = ∂

∂xε
i
: Partial differentiation with respect to xε

i .

• ∂ν = να∂α: The directional derivative along the outer normal ν = (να).

The spaces:

• L2
♯ (Y ) : denotes the subspace of functions in L2

loc (Rn), which are Y-periodic.

• H1
♯ (Y ) : denotes the subspace of functions in H1

loc (Rn , which are Y-periodic.

• L2(Ω) : The space of square integrable functions for the Lebesgue dx measure.

• Mn×n
s : denotes the set of n× n symmetric matrices.

Ms(α, β,Ω) =
{
A ∈ L∞

(
Ω;Mn×n

s

)
;α|ξ|2 ≤ A(x)ξ.ξ ≤ β|ξ|2 for any ξ ∈ Rn

}

• D(Ω) :The class C∞ function space , with compact support in Ω.



NOTATIONS AND CONVENTIONS vii

• Hm(Ω) := {v ∈ L2(Ω), Dαv ∈ L2(Ω), ∀|α| ≤ m}

• Wm,∞(Ω) := {f ∈ L∞(Ω) : Dαf ∈ L∞(Ω),∀|α| ≤ m}

• L∞(Ω): Space of bounded functions on Ω.

• Cm(Ω): Space of m−times continuously differentiable functions on Ω, for m ∈ N0.



INTRODUCTION

Periodic homogenization is a mathematical technique used to analyze composite materials with
periodic micro structures. These materials can be thought of as having a repeating pattern of inclu-
sions or holes on a microscopic scale. While the material properties may vary significantly at this
small scale, homogenization aims to find effective, constant material properties that can be used to
model the overall behavior of the composite on a larger scale.

However, there’s a gap between the exact solution for a heterogeneous material and the solu-
tion obtained using the homogenized model. Here’s where error estimates come in,They quantify
the difference between the solutions obtained using the homogenized model and the solutions of the
original problem with the composite material.

Homogenization theory for second-order elliptic equations in divergence form with rapidly oscillating
periodic coefficients is well-developed. Among several basic techniques in homogenization theory we
are concerned in this thesis with the two-scale asymptotic expansions method.

The introduction of error estimates in periodic homogenization involves quantifying the dis-
crepancy between the solutions obtained from the homogenized model and those from the original
heterogeneous system.

The error estimate in periodic homogenization problems was presented for the first time in
Bensoussan,Lions and Papanicolaou [3], Oleinik, Shamaev, and Yosifian [8], and Cioranescu and
Donato [11, 16, 23] These results typically assumed a certain level of regularity for the material
properties within the micro-structure.Piezothermoelasticity has gained a lot of attention over the
past decades thanks to its importance in the industrial section. Our purpose in this thesis to present
the error estimates of the-order with or without boundary layer terms in the periodic homogenization
of elliptic equations in divergence form with Dirichlet boundary conditions comes as a mathematical-
oriented study to build a better understanding of the theoretical justification of this phenomenon.
The thesis is divided into three chapters, each has a main focus and purpose [26].

Let us shortly describe the contents of this dissertation. After this introduction, in chapter one,
we give the general setting of the problem. In chapter tow we present an overview of some results
obtained in the first and the second order corrections with and without boundary layer terms beside
to establishing the second order error estimates. Finally in chapter three, we present all the results
obtained in the third order corrections with and without boundary layer terms beside to establishing
establish the third order error estimates.

Rabab Belkacem
rababbelkacem6@gmail.com
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CHAPTER 1

INTRODUCTION TO HOMOGENIZATION AND

CORRECTORS
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1.1. PERIODIC HOMOGENIZATION 3

Many problems encountered in different scientific fields depend on parameters having great
spatial variability. Solving this type of problem on the scale of variation of these parameters can be
very difficult due to the size of the meshes used. The aim of homogenization is to reformulate these
problems in the form of a so-called homogenized problem by introducing defined effective parameters
on a coarser spatial scale. The resolution of this second problem on this scale is then less expensive.
In this chapter,we consider a classic boundary problem in homogenization, posed on a periodic
structure of period ε, which presents the small parameter scale of the problem.

1.1 Periodic Homogenization
This section aims to examine classical homogenization results for periodic media, with a focus

on the role of boundary layers.

1.1.1 Setting of the problem
Let Ω be a bounded open subset of Rn with Lipschitz continuous boundary. Let A(y) be a

square symmetric matrix with entries aij(y) which are Y-periodic functions belonging to L∞(Y ). We
assume that there exist two constants 0 < λ < Λ < +∞ such that, for a.e. y ∈ Y ,

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2, ∀ξ ∈ Rn.

Let Aε (x) = A(x
ε

) be a periodically oscillating matrix of coefficients. For a given function f ∈
L2(Ω),We consider the following well posed problem:

(Pε)


−divAε∇uε = f in Ω,

uε = 0 on ∂Ω.
(1.1)

1.1.2 Existence and uniqueness
The desired goal out of this subsection is to prove existence and uniqueness of weak solutionuε

of the preblem (pε),the proof will be done in several steps.

Step 1:

Variational problem:

To determine an appropriate weak formulation to our problem, we find firstly a variational
formulation of the problem .

Let us introduce the Hilbert space V such that:

V = H1
0 (Ω) :=

{
v ∈ H1(Ω), v|∂Ω = 0.

}
By multiplying the first equation(1.1) by v belonging to the space V, we obtain the following vari-
ational formulation after using Green’s formula.


Find uε ∈ H1

0 (Ω) such as ,

a (uε, v) = L(v),∀v ∈ H1
0 (Ω)
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With:
a (uε, v) =

∫
Ω
Aε∇u∇vdx =

3∑
i,j=1

∫
Ω
aij · (x) ∂u

ε∂v

∂xj∂xi

dx.

and,

L(v) =
∫

Ω
fvdx.

Step 2:

continuty of a(.,.) :

• It is clear that a(.,.) is a symmetric and bilinear form on H1
0(Ω)× H1

0(Ω).
• we show that a(.,.) is continuous .

|a(u, v))| ⩽
∫

Ω
|Aε(x)∇uε∇v| dx

⩽ ∥Aε(x)∥L∞

∫
|∇uε∇v | dx

⩽ c ∥∇uε∥L2 ∥∇v∥L2

⩽ c ∥uε∥H1
0

∥v∥H1
0
.

So a(.,.) is continuous.

Step 3:

coercivity of a(.,.) :

a(v, v) =
∫

Ω
Aε(x)(∇v)2dx ⩾ α

∫
Ω

|(∇v)|2dx = α||∇v||2L2 = ||v||2H1
0 (Ω).

From this we conclude that a(.,.) coercive.

Step 4:

continuity of L(.,.) :

Now we prove that L(.,.) is a continuous bilinear form:

|L(v)| ⩽
∫

Ω
|fv|dx ⩽ ∥f∥ ∥L2∥ v∥L2

⩽ cp∥f∥L2∥∇v∥L2 (Poincare inequality)

= cp∥f∥L2∥v∥H1
0 (Ω).

Where Cp stands for the Poincare constant.

-So according to the Theorem of Lax Milligram, the problem(1.1) admits a unique solution uε

in H1
0 (Ω).



1.2. SETTING OF THE PROBLEM: 5

1.2 Setting of the problem:
To find the homogenized problem we use an asymptotic expansion method, the principle of this

method is to write the solution of (1.1) in the form of the following ansatz:

uε(x) = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ ε3u3

(
x,
x

ε

)
+ . . . . (1.2)

Where each function ui(x, y) is Y-periodic with respect to the fast variable y.

Suppose that a function ϕε(x) = ϕ(x, y) , with y = x
ε
, so we obtain the following relations :

∂ϕε(x, y)
∂x

= ∂ϕ(x, y)
∂x

+ 1
ε

∂ϕ(x, y)
dy

; y = x

ε

divϕε(x) = divxϕ(x, y) + 1
ε

divyϕ(x, y),

∇ϕε = ∇xϕ(x, y) + 1
ε

∇yϕ(x, y).

(1.3)

By substituting the asymptotic expansion (1.2) into (1.3), while considering (1.3) and
discerning the various powers of ε, we get a cascade of equations .We Defining an operator Lε by:

Lεϕ = −divAε∇.

we may write :
Lε = ε−2L0 + ε−1L1 + L2.

where;

L0 = − ∂

∂yi

(
aij(y) ∂

∂yj

)

L1 = − ∂

∂yi

(
aij(y) ∂

∂xj

)
− ∂

∂xi

(
aij(y) ∂

∂yj

)

L2 = − ∂

∂xi

(
aij(y) ∂

∂xj

)
.

The two space variables x and y are taken as independent, and at the end of the computation y is
replaced by x

ε
. Equation (1.1) is therefore equivalent to the following system.

L0u0 = 0

L0u1 + L1u0 = 0

L0u2 + L1u1 + L2u0 = f

L0u3 + L1u2 + L2u1 = 0

L0u4 + L1u3 + L2u2 = 0.

(1.4)

. . . . . .
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we obtain at successive powers of ε, the following equations:

Ordre ε−2


L0u0 = 0 on Y ,

u0 is Y − periodic.
(P1)

Ordre ε−1


L0u1 = −L1u0 on Y

u1 is Y − periodic.
(P2)

Ordre ε0 :


L0u2 = f − L1u1 − L2u0 on Y ,

u2 is Y-periodic .
(P3)

To solve the preceding system of equations,we need to recall the Fredholm Alternative lemma.

Fredholm Alternative lemma
Lemma 1.2.1

[6]
Let f ∈ L2(Ω) y-periodic function we consider the following problem:

L0ϕ = f(y) on Y

ϕ is Y-periodic.

So, there is a solution ϕ if and only if: < f >= 1
|y|
∫

y f(y)dy = 0.

- If there is a solution, then it is unique to an additive constant.

1.2.1 The cell and the homogenized problems
In using the Freedholm alternative lemma for periodic elliptic problem on (1.4), we are able to

establish that every equation within (1.4) has a unique solution ui(x, y) (up to a constant ũi that
depends on x only).

✓For the initial problem (P1) :


−divA(y)(∇yu0(x, y)) = 0

u0 is Y-periodic in Y.

Indicates that u0(x, y) ≡ u0(x), does not depend on the y variable.

The second equation in (1.4) gives u1:

u1(x, y) = −χj(y)∂u0

∂xj

(x) + ũ1(x). (1.5)

Where χj(y) are the unique solutions in H1
♯ (Y ) of the first cell problem:
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
L0χ

j(y) = −∂aij

∂yi

(y) in Y∫
Y
χj(y)dy = 0

(1.6)

The third equation in (1.4) gives u2:

u2

(
x,
x

ε

)
= χij

(
x

ε

)
∂2u

∂xi∂xj

(x) − χj
(
x

ε

)
∂ũ1

∂xj

(x) + ũ2(x). (1.7)

where ũ2(x) is an additive constant and χj(y), j = 1, . . . , n, are the unique solutions in H1
♯ (Y ) with

zero average of the cell equation:


L0χ

j = bij −
∫

Y bij(y)dy in Y ;
∫

Y χ
j(y)dy = 0 y → χj(y)Y -periodic.

(1.8)

With:
bij(y) = aij(y) − aik(y)∂χ

j

∂yk

− ∂

∂yk

(aki(y)χj).

The fourth equation in (1.4) gives u3:

u3(x, y) = χijk(y) ∂3u0

∂xi∂xj∂xk

+ χij(y)∂
2ũ1(x)
∂xi∂xj

− χj(y)∂ũ2

∂xj

(x) + ũ3(x). (1.9)

Where χijk(y) are the unique solutions in H1
♯ (Y ) of the first cell problem:


L0χ

ijk(y) = cijk −
∫

Y
cijk(y)dy inY∫

Y
χijk(y)dy = 0.

(1.10)

With :
cijk = −aijχ

k + ∂

∂ym

(aimχ
jk) + aim

∂χjk

∂ym

.

The fifth equation in (1.4) gives u4:

u4(x, y) = χijmp(y) ∂4u0

∂xi∂xj∂xm∂xp

+ χijk(y) ∂3ũ1(x)
∂xi∂xj∂xk

+ χij(y)∂
2ũ2(x)
∂xi∂xj

− χj(y)∂ũ3

∂xj

(x)

+ ũ4(x).
(1.11)

where : χijmp ∈ H1
♯ (Y ) are the unique solutions of the fourth cell problem:

L0χ
ijmp = dijmp −

∫
Y
dijmp(y)dy in Y∫

Y
χijmp(y)dy = 0.

(1.12)
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With:

dijmp = aijχ
mp + ∂

∂yk

(
aikχ

jmp
)

+ aik
∂χjmp

∂yk

.

The homogenized problem of (P ε) is obtained by averaging the third equation in (1.4). It is given by:

(PH)


−divA∗∇u0 = f in Ω,

u0 = 0 on ∂Ω.
(1.13)

where the coefficients of the homogenized matrix A∗ are given by:

a∗
ij =

∫
Y

[
aij(y) − aik

∂χj

∂yk

(y)
]
dy. (1.14)

such that
(
a∗

ij

)
is bounded, symmetric and uniformly elliptic. The problem (PH) is well-posed

in H1
0 (Ω).
The functions ũ1, ũ2, ũ3 and ũ4 are non-oscillating functions which represent the average of

u1, u2, u3 and u4 respectively and are solutions in Ω of the equations:

−div [A∗∇ũ1(x)] =< cijk >
∂3u0

∂xi∂xj∂xk

. (1.15)

−div [A∗∇ũ2(x)] =< dijkl >
∂4u0

∂xi∂xj∂xk∂xl

+ < cijk >
∂3ũ1

∂xi∂xj∂xk

. (1.16)

−div [A∗∇ũ3(x)] =< eijklm >
∂5u0

∂xi∂xj∂xk∂xl∂xm

+ < dijkl >
∂4ũ1

∂xi∂xj∂xk∂xl

+ < cijk >
∂3ũ2

∂xi∂xj∂xk

.

(1.17)

where

eijklm = aijχ
klm + ∂

∂yr

(
airχ

jklm
)

+ air
∂

∂yr

(
χjklm

)
.

and

−div [A∗∇ũ4(x)] =< hijklmn >
∂6u0

∂xi∂xj∂xk∂xl∂xm∂xn

+ < eijklm >
∂5ũ1

∂xi∂xj∂xk∂xl∂xm

+ < dijkl >
∂4ũ2

∂xi∂xj∂xk∂xl

+ < cijk >
∂3ũ3

∂xi∂xj∂xk

.

(1.18)

where

hijklmn = aijχ
klmn + ∂

∂yr

(
airχ

jklmn
)

+ air
∂

∂y

(χjklmn).

such that χjklmn ∈ H1
♯ (Y ) are the unique solutions of the fifth cell problem:
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
L0χ

jklmn(y) = eijklm− < eijklm >∫
Y
χjklmn(y)dy = 0

(1.19)

Remark 1.2.1
[24]

i) The functions ũ1,ũ2,ũ3 and ũ4 are not uniquely defined since the equations (1.15), (1.16),(1.17),
and (1.18) haven’t any boundary conditions, and it is very difficult to determine them. However,
there is a special geometric case allows us to find out the boundary conditions for only ũ1.

ii) It is technically complicated to keep track of boundary conditions when seeking u in the
form(1.2), especially near the boundary, so we expect uε to behave like:

uε(x) = u0(x) + ε
[
u1(x, y) + ubl,ε

1 (x)
]

+ ε2
[
u2(x, y) + ubl,ε

2 (x)
]

+ . . . . . . . (1.20)

Where each boundary layer term ubl,ε
i satisfies

−divAε∇ubl,ε
i = 0 in Ω,

ubl,ε
i = −ui

(
x,
x

ε

)
on ∂Ω.

(1.21)

Remark 1.2.2
[24]

1. Each term
(
ui + ubl,ε

i

)
in the new ansatz (1.20) satisfies a homogeneous Dirichlet boundary

condition, which is the advantage of this approach.

2. The coefficients and Dirichlet boundary data in equation (1.21) exhibit periodic and fast
oscillations.

3. As ∂Ω is Lipschitz continuous , and ubl,ε
i belongs to H1

0(Ω) , the equation (1.21) is guaranteed
to have a unique solution.

4. Both the coefficients and the Dirichlet boundary data in (1.21) are periodic and rapidly os-
cillating.

5. The case where the boundary data in (1.21) is not oscillating and belongs to Lp(∂Ω),
1 < p < ∞, was studied by Avellaneda and Lin [5].

6. The asymptotic analysis of (1.21) turns out to be more difficult than that of (Pε) since ubl,ε
i

is not uniformly bounded in the usual energy space H1(Ω).

The problem of analyzing the asymptotic behavior of equation (1.21) is known to be highly chal-
lenging and has only been studied extensively for a specific type of domain. This particular type
of domain is characterized by having hyperplanes as boundaries, as mentioned in reference [12] and
the sources cited therein. A significant breakthrough in this field was achieved through the ground-
breaking work of Gérard-Varet and Masmoudi [19]. They focused on solutions to elliptic systems
of divergence type, assuming that the domain Ω is smooth, bounded, and uniformly convex in Rn

(where n is greater than or equal to 2). Their research demonstrated that as ε approaches zero, the
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unique solution ubl,∗
i of equation (1.21) converges strongly in the L2(Ω) space to a function denoted

as ubl,∗
i , which itself satisfies a certain equation:


−divA∗

ε∇u
bl,∗
i (x) = 0, in Ω

ubl,∗
i = −ūi(x) on ∂Ω,

(1.22)

-where A∗=aij defined in (1.14),and ūi is the homogenized Dirichlet boundary data that depends
non trivially on ui.



CHAPTER 2

FIRST AND SECOND ORDER ERROR ESTIMATES

2.1 An overview of error estimates
Within this section,we present some known results on the error estimates in periodic homogen-

ization ,of the first and second order with and without boundary layer terms , such as interested by
the elliptic equation in divergence form with Dirichlet boundary conditions.

Firstly we start with the error estimate between uε and u0 the unique solutions of (Pε) and
(PH) respectively, to do this, one common approach is to use the two scale convergence technique or
homogenization convergence framework. This framework allows us to establish convergence results
between uε and u0, As ε tends to zero [See chapter one]. Secondly we study the error estimate
between uε and u1 and u2 with and without boundary layers [24] .

||uε − u0||L∞(Ω) ≤ Cε. (2.1)

And for χj ∈ L∞(y),we obtain :

||uε − u0||L2(Ω) ≤ Cε. (2.2)

2.2 First order error estimate :

2.2.1 First order error estimate without boundary layer:
The error approximation using a first order corrector in the periodic homogenization of

problem (Pε) was provided with further regularity conditions on u0 or the cell functions χj. Assuming
that χj belongs to W 1,∞(Y), Bensoussan et aL. [2] derived the estimation:

11
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Theorem 2.1 [2]

Let uε be the solution of the problem (Pε),And Let u0 be the solution of the problem (PH).

Then uε converge weakly to u0 in H0
1(Ω).If furthermore u0 ∈ W2,∞(Ω),then:

||uε − u0 − εu1||H1(Ω) ≤ C
√
ε. (2.3)

Where u1 given by (1.5).

This estimate is obtained by Jikov and AL [8],Under the asymptions that u0 ∈ C2(Ω̄), and
∇yχ

j ∈ L∞(Y), and by Allair And Amar [10] Under the asymption that u0 ∈ W 2,∞(Ω)

The estimate of this theorem has a general character since it holds for a wide range of boundary
value problems , and not only for the Dirichlet problem.

•The proof of this theorem is completely standard (see e.g. [24]).

Remark: [24]
Without any regularity assumptions on χj, and under the hypothesis that u0 ∈ H2(Ω) where Ω is

bounded domain in Rn with C1,1 regularity Griso [14] using the periodic unfolding method introduced

in [13] and further developed in [16], proved this estimates :

||uε − u0 − εu1||H1(Ω) ≤ C
√
ε||u0||H2(Ω). (2.4)

2.2.2 First order estimate with boundary layer
In this part, we will look for minimal hypotheses on u0 necessary to prove classical error estim-

ates.
Our interest lies in the first boundary layer ubl,ε

1 , which is equivalently defined by:


−divAε∇ubl,ε

1 = 0 in Ω,

ubl,ε
1 (x) = χj

(
x
ε

)
∂u
∂xj

(x) − ũ1(x) on ∂Ω.
. (2.5)

Theorem 2.2

Let uε and u0 be the unique solutions of (1.1) and (1.13) respectively [See Chapter 1]. Assume

that u ∈ W 2,∞(Ω). Let u1, u
bl,ε
1 be defined by (1.5) and (1.21). Then:

∥∥∥∥uε(x) − u0(x) − εu1

(
x,
x

ε

)
− εubl,ε

1 (x)
∥∥∥∥

H1
0 (Ω)

≤ Cε (2.6)

Allair And Amar proved this theorem in [10].
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Proof [10]

As in [9], defining :rε(x) = ε−1
(
uε(x) − u(x) − εu1(x, x/ε) − εubl,ε

1 (x)
)
, it satisfies


−divAε∇rε = ε−1 (f + divAε∇u) + divAε∇u1 in Ω

rε = 0 on ∂Ω.

Taking into account system (1.4), for any ϕ ∈ H1
0 (Ω), we have:

∣∣∣∣∫
Ω

[1
ε

(f + divAε∇u) + divAε∇u1

]
ϕdx

∣∣∣∣
=
∣∣∣∣∫

Ω

[
−1
ε

divyAε∇yu2

(
x,
x

ε

)
+ divxAε∇xu1

(
x,
x

ε

)]
ϕdx

∣∣∣∣
≤
∣∣∣∣∫

Ω
−
[
divxAε∇yu2

(
x,
x

ε

)
+ 1
ε

divyAε∇yu2

(
x,
x

ε

)]
ϕdx

∣∣∣∣
+
∣∣∣∣∫

Ω

[
divxAε∇yu2

(
x,
x

ε

)
+ divxAε∇xu1

(
x,
x

ε

)]
ϕdx

∣∣∣∣
≤
∣∣∣∣∫

Ω
Aε∇yu2

(
x,
x

ε

)
∇ϕdx

∣∣∣∣+ C∥ϕ∥H1
0 (Ω) ≤ C∥ϕ∥H1

0 (Ω).

Passing to the supremum when ∥ϕ∥H1
0 (Ω) = 1, we obtain that:

∥rε∥H1
0 (Ω) ≤ 1

λ

∥∥∥∥1
ε

(f + divAε∇u) + divAε∇u1

∥∥∥∥
H−1(Ω)

≤ C.

which implies the desired result.

Remark: [25]
• Holds for any choice of :ũ1, since the H1(Ω)-norm of εũ1(x) is precisely of order ε. In truth,

Theorem 2.3 is not satisfactory since the boundary layer ubl,ε
1 is not explicit with respect to ε.

To find the asymptotic behavior of ubl,ε
1 , i.e. to homogenize (1.12), is a very difficult problem

that has been addressed only for very special domains Ω .

• To improve Theorem 2.3 by removing the boundary layer term at the price of getting merely

interior estimates. Indeed if ubl,ε
1 is really oscillating only near the boundary, one can expect

that it does not play any role for interior estimates.

• Unfortunately, it is impossible to achieve the problem without further assumptions. Indeed,

obtained optimal interior estimates mainly in two different cases: first, for a general domain Ω

with either the maximum principle or smooth coefficients, and second, for general L∞-coefficients
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with a rectangular domain Ω.We now treat the former case.

• Namely we assume one of the following assumptions:

✓(H1) Equation (1.2) is a scalar equation, i.e. it’s solution uε is a real-valued function, and

therefore the maximum principle applies.

✓(H2) The boundary of Ω is smooth, say C2, and the coefficients aij(y) in equation (1.2) are

Hölder continuous, i.e. there exists γ ∈ (0, 1] such that:

sup
x,y∈Rn

|aij(x) − aij(y)|
|x− y|γ

= ∥aij∥Cγ(Rn) < +∞ ∀i, j = 1, . . . , n.

Therefore the results of Avellaneda-Lin apply (weaker assumptions on the boundary of Ω are possible).

The error estimates in the H1 norm:

For the study carried out in this part we need the following results.
Lemma 2.2.1

A function v ∈ L2
♯ (Y )2,(v ∈ L2

♯ (Y )3) , satisfies:

divv = 0, and
∫

Y
v = 0.

iff there exists a function ϕ ∈ H1
♯ (Y )2 , (H1

♯ (Y )3),such that,

v = curlϕ.

In the sequel of this section, we assume that f ∈ H2(Ω), which implies, according to the
regularity theory that u0 ∈ H4(Ω). It is straightforward to verify that (Pε) can be written as:

Aε∇uε − vε = 0

−divvε = f

We expected that vε behaves like:

vε = v0

(
x,
x

ε

)
+ εv1

(
x,
x

ε

)
+ ..+ εjvj

(
x,
x

ε

)
+ . . . .

where each vj is Y-periodic in the fast variable " y = x
ε

".
Remark: [25]
The benefit of finding an equivalent problem to (Pε) is to compute vj which are very important in

the proof of our first main result.

By taking into account that ∇ = ∇x + 1
ε
∇y and div = divx + 1

ε
divy together with identifying the
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different powers of ε we get:

(
ε−1

)
a(y)∇yu0 = 0

−divyv0 = 0,

(
ε0
)

a(y)∇xu0 + a(y)∇yu1 − v0 = 0

−divxv0 − divyv1 = f,

(
ε1
)

a(y)∇xu1 + a(y)∇yu2 − v1 = 0

−divxv1 − divyv2 = 0,

(
ε2
)

a(y)∇xu2 + a(y)∇yu3 − v2 = 0

−divxv2 − divyv3 = 0.

v0 = a(y)∇xu0 + a(y)∇yu1

By formally identifying powers of ε,we obtain:

a(y)∇u0 = 0,

−∇yv0 = 0, (2.7)

a(y)∇yu1 + a(y)∇xu0 − v0 = 0, (2.8)

−∇yv1 − ∇xv0 = f, (2.9)
Under the assymption that Ω is bounded domain in Rn, u0 ∈ H2(Ω) ,Shari Moskow and

Michael Vogelius[9] proved the following proposition:
Proposition 2.2.1

Let uε and u0 be the unique solution of (1.1) and (1.13)respectively ,set u1(x, y) = −χj(y)∂u0
∂xj

(x),and
let ubl,ε

1 (x) ∈ H1(Ω),There exists a constant C, independent of u0 and ε such that:

∥∥∥∥uε(x) − u0(x) − εu1

(
x,
x

ε

)
+ εubl,ε

1

(
x,
x

ε

)∥∥∥∥
H1

0 (Ω)
≤ Cε||u0||H2(Ω) (2.10)

Proof: [9]
Define v0 by:

v0(x, y) = a(y)∇xu0(x) + a(y)∇yu1(x, y), (2.11)
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i.e.
(v0(x, y))i = aij(y)∂u0

∂xj

(x) − aik(y)∂χ
j

∂yk

(y)∂u0

∂xj

(x) =
(
aij(y) − aik(y)∂χ

j

∂yk

)
∂u0

∂xj

.

Note that this definition ensures that (2.11) and (2.8) are satisfied,It is easy to see that:

−divy (v0)i = −divy

{
aij − aik

∂χj

∂yk

}
∂u0

∂xj

= −divy {aij}
∂u0

∂xj

+ divy

{
aik

∂χj

∂yk

}
∂u0

∂xj

= {−divyaij + divyaij}
∂u0

∂xj

= 0

since e we are in two dimensions, it follows immediately that there exists q(x, y) so that:

(∇yq)⊥ = v0 − A∇u0,

where ⊥ indicates rotation by angle π
2 counterclockwise. Owing to the fact that each entry of

v0 −A∇u0,has Y-integral zero ( (due to the definition of A) simple manipulations immediately give
that q(x, y) is periodic in y. Since the operations to construct q are operations in the y-variable
entirely, it is clear that we may select q such that:

sup
y∈Y

|∇xq(x, y)| ≤ C
∑
ij

∣∣∣∣∣ ∂2u0

∂xi∂xj

(x)
∣∣∣∣∣ a.e.x ∈ Ω.

If we take v1(x, y) = (∇xq(x, y))⊥, then

∇yv1 = ∇y(∇xq)⊥

= −∇x(∇yq)⊥

= −∇xv0 − f,

(2.12)

in other words, the pair v0, v1 solves (2.9). Due to our previous estimate of ∇xq, it follows that

sup
y∈Y

|v1(x, y)| ≤ C
∑
ij

∣∣∣∣∣ ∂2u0

∂xi∂xj

(x)
∣∣∣∣∣ a.e.x ∈ Ω.

From the definition of v1, we also immediately get that;

∇xv1(x, y) = 0inΩ.

Now define;
Zε(x) = uε(x) − u0(x) − εu1(x,

x

ε
), and

µε(x) = a(x
ε

)∇uε(x) − v0(x,
x

ε
) − εv1(x,

x

ε
).
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A simple calculation then gives:

a(x
ε

)∇Zε(x) − µε(x)

= a(x
ε

)∇uε(x) − a(x
ε

)∇xu0(x) − εa(x
ε

)∇xu1(x,
x

ε
) − a(x

ε
)∇yu1(x,

x

ε
)

− a(x
ε

)∇uε(x) + v0(x,
x

ε
) + εv1(x,

x

ε
)

= −a(x
ε

)∇xu0(x) − εa(x
ε

)∇xu1(x,
x

ε
) − a(x

ε
)∇yu1(x,

x

ε
) + v0(x,

x

ε
) + εv1(x,

x

ε
)

= ε
(
v1(x,

x

ε
) − a(x

ε
)∇xu1(x,

x

ε
).

Here we have again used the notation ∇ for the full gradient and ∇x and ∇y for derivatives in the
first and second variables, respectively. In the last identity we used (2.11). From the above identities
and our estimate of supy∈Y

∣∣∣v1(x, x
ε
)
∣∣∣,it follows that:

||a(x
ε

)∇Zε − µε||L2 ≤ Cε||u0||H2(Ω). (2.13)

We may also calculate:

∇µε(x) = ∇a(x
ε

)∇uε(x) − ∇xv0(x,
x

ε
) − 1

ε
∇yv0(

x

ε
)

− ε∇xv1(
x

ε
) − ∇yv1(

x

ε
)

= −f(x) − ∇xv0(x,
x

ε
) − ∇yv1(x,

x

ε
) − ε∇xv1(x,

x

ε
)

= ε∇xv1(x,
x

ε
)

= 0.

(2.14)

In the second identity, we used the equation for ue and the fact that ∇yv0 = 0; in the last two
identities we used the relation (2.12) and the fact that ∇xv1 = 0,
given g ∈ L2(Ω), let wε ∈ H1

0 (Ω) denote the solution to:

−∇a(x
ε

)∇wε = g in Ω

wε = 0 in ∂Ω.
(2.15)

Using the facts that Zε + εubl,ε
1 ∈ H0

1 (Ω),and that the matrix a is symmetric, we now obtain:

∫
Ω
(Zε + εubl,ε

1 )gdx =
∫

Ω
a(x
ε

)(∇Zε + ε∇ubl,ε
1 )∇wεdx

=
∫

Ω
a(x
ε

)∇wεdx+ ε
∫

Ω
a(x
ε

)∇ubl,ε
1 ∇wεdx

=
∫

Ω
(a(x

ε
)∇Zε − µ))∇wεdx.

(2.16)
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A combination of (2.13) and(2.15),(2.16) now yields:
∣∣∣∣∫

Ω
(Zε + εubl,ε

1 )gdx
∣∣∣∣ ≤ C||a(x

ε
)(∇Zε − µε)||L2(Ω)||wε||H1(Ω) ≤ Cε||u0||H2 ||g||H−1 .

By dividing by ||g||H−1 and taking the supremum over all g ̸= 0,we immediately conclude that:

||Zε + εubl,ε
1 ||H1(Ω) ≤ Cε||u0||H2(Ω),

which is exactly the estimate claimed in the statement of this proposition. ■

the error estimate in the L2 norm:

Using the first-order boundary layer corrector ubl,ε
1 ,under the assumptions that u0 ∈ H3(Ω)

,Shari Moskow and Michael Vogelius[9] obtained this estimate:

Theorem 2.3 [9]

Let uε and u0 be the unique solutions of (1.1) and (1.13) respectively,let u1(x, y) =

−χj(y)∂u0
∂xj

(x),and let ubl,ε
1 (x) ∈ H1(Ω),There exists a constant C, independent of u0 and ε

such that:

∥∥∥∥uε(x) − u(x) − εu1

(
x,
x

ε

)
+ εubl,ε

1

(
x,
x

ε

)∥∥∥∥
L2(Ω)

≤ Cε||u0||H3(Ω) (2.17)

Proof: [9]
Define:

Ψε(x) = uε(x) − u0(x) − εu1(
x

ε
) + εubl,ε

1 (x
ε

) − ε2u2(
x

ε
) ≤ Cε2||u0||H3(Ω).

and,
ξε(x) = a(x

ε
)∇uε(x) − vε(

x

ε
) − εv1(

x

ε
) − ε2v2(

x

ε
).

Here the functions u2, v1, v2,are as defined just prior to the statement of this theorem. A simple
calculation gives:
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In the last identity, we used that :
a(y)∇yu1(x) + a(y)∇xu0 − v0 = 0, and a∇xu1 + a∇yu2 = v1, are satisfied. From the estimates.
we have on ∇xu2(x, y) and v2(x, y),it follows immediately that.

||a(x
ε

)∇Ψε − ξε||L2 ≤ Cεε||u0||H3 . (2.18)

We may also calculate:

∇· ξε(x) = ∇· a(x/ε)∇uε(x) − ∇x· v0(x/ε) − ε−1∇y· v0(x/ε)

− ε∇x· v1(x/ε) − ∇y· v1(x/ε)

− ε2∇x· v2(x/ε) − ε∇y· v2(x/ε)

= −ε2∇x· v2(x/ε)

= 0.

In the second identity, we used the equation for uε, plus the fact that (2.8), (2.9) and ∇xv1 −
∇yv2 = 0 are all satisfied.
In addition to ubl,ε

1 , we define φε ∈ H1(Ω) to be the solution to:

∇· a(x
ε

)∇φε = 0 in Ω,

φε = u2(
x

ε
) on ∂Ω

Here we use that u0 is in H3(Ω), so that has atrace inH 1
2 (∂Ω).From the the formula for u2 it follows

that:
||φε||L2 ≤ C||u2(

x

ε
)||L2(∂Ω ≤ C||u0||H3
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Given g in L2(Ω),let wε ∈ H1(Ω), denote the solution to

∇· a(x
ε

)∇wε = g in Ω,

wε = 0 on ∂Ω.

Since Ψε + εubl,ε
1 ε+ ε2φε ∈ H0

1 , and since a is symmetric, integration by parts yield:

∫
Ω
(Ψε + εubl,ε

1 ε+ ε2φε)gdx =
∫

Ω
a(x
ε

)(∇(Ψε + εubl,ε
1 ε))· ∇wεdx

=
∫

Ω
a(x
ε

)∇Ψε· ∇wεdx

+ a(x
ε

)(εubl,ε
1 ε+ ε2φε)· ∇wεdx

=
∫

Ω
a(x
ε

)∇Ψε· ∇wεdx.

(2.19)

Here we used the equations for ubl,ε
1 and φε , to arrive at the last identity. At the same time, due to

[2.19]. ∫
Ω
a(x
ε

)∇Ψε· ∇wεdx =
∫

Ω
(a(x

ε
)∇Ψε − ξε)· ∇wεdx+

∫
Ω
ξε· ∇wεdx

=
∫

Ω
(a(x

ε
)∇Ψε − ξε)· ∇wεdx−

∫
Ω

∇ξεwεdx

=
∫

Ω
(a(x

ε
)∇Ψε − ξε)· ∇wεdx.

(2.20)

Now yields:

∣∣∣∣∫
Ω
(Ψε + εubl,ε

1 ε+ ε2φε)gdx
∣∣∣∣ ≤ ||a(x

ε
)∇Ψε − ξε||L2(Ω||xε||H1 ≤ Cε2||u0||H3||g||H−1 .

After deviding by||g||H−1 and taking the supremum over g, we may rewrite this estimate as:

||uε(x) − u0 − εu1(
x

ε
+ εubl,ε

1 (x) − ε2u2(
x

ε
+ ε2φ(x)||H1 ≤ Cε2||u0||H3

Since u2andφ are bounded in L2(Ω) by||u0||H3 , independently of ε,it follows immediately that
∥∥∥∥uε(x) − u(x) − εu1

(
x,
x

ε

)
+ εubl,ε

1

(
x,
x

ε

)∥∥∥∥
L2(Ω)

≤ Cε||u0||H3(Ω)

■
Shari Moskow and Michael Vogelius[9], obtained also the same estimate but under another assump-
tions conditions :
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Theorem 2.4

Let Ω ⊂ R2, be a bounded, convex curvilinear polygon of class C∞ ,andlet u0 denote the

solution to the homogenized problem . Suppose that u0 ∈ H2+ω(Ω) for some 0 ≤ ω ≤ 1.

and let ubl,ε
1 (x) ∈ H1(Ω) defined in (1.21),such that:

∥∥∥∥uε(x) − u(x) − εu1

(
x,
x

ε

)
+ εubl,ε

1

(
x,
x

ε

)∥∥∥∥
L2(Ω)

≤ Cωε
1+ω||u0||2+ω

H (Ω). (2.21)

Where the constant Cω independen of u0 and ε.

2.2.3 Second order estimate without boundary layers
In this part we see an estimation that obtained by Doina Cioranescu and Patrizia Donato[11] .

Theorem 2.5

Let f ∈ H−1(Ω) and let uε the solution of (1.1),where u0 is solution of (1.13) ,u1 ∈ Wper(Y ) is

defined in (1.5), and u2 is defined in (1.7).

Moreover if f ∈ C∞(Ω̄) , ∂Ω is of class C∞ and , furthermore.

χj, χij ∈ W 1,∞(Ω) , then, there exists a constant C independent of ε such that :

∥∥∥uε − u0 + εu1 − ε2u2

∥∥∥
H1(Ω)

≤ Cε
1
2 . (2.22)

Proof: (See page 133 in [11]) ■

2.2.4 Second order estimate with boundary layers terms

Theorem 2.6

Let Ω is a cubic domain and u0 ∈ W 2,∞(Ω), where u1 is defined by (1.5) and ũ1 satisfies

(1.22),Such that: ∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2

∥∥∥
H1(Ω)

≤ Cε
3
2 . (2.23)

In the case of a smooth enough boundary for a convex bounded domain Ω, and assuming that:
u0 ∈ H3(Ω), ũ1 = ũ2 = 0 and χj, χij in W 1,p(Y ) for some p > n, Onofrei and Vernescu [20] proved
the estimate: ∥∥∥uε − u0 − εu1 − εubl,ε

1 − ε2u2

∥∥∥
H1(Ω)

≤ Cε
3
2 ∥u0∥H3(Ω)
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Theorem 2.7

Let uε and u0 be the unique solutions of (Pε) and (PH) respectively, with Ω ⊂ Rn is a strictly

convex bounded domain with ∂Ω ∈ C∞. Assume that f ∈ C∞(Ω̄) and χijk ∈ W 1,∞(Y ). Then:

∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2 − ε2ubl,ε

2

∥∥∥
H1

0 (Ω)
≤ Cε2 ∥u0∥H3(Ω) . (2.24)

Proof: The domain Ω is strictly convex if the open straight segment joining any two points of ∂Ω
lies entirely in Ω.
Let us define : rε(x) = 1

ε2

(
uε − u0 − εu1 − εubl,ε

1 − ε2u2 − ε2ubl,ε
2

)
, it satisfies:

−divAε∇rε = 1
ε2 (f + divAε∇u0) + 1

ε
divAε∇u1 + divAε∇u2 in Ω

rε = 0 on ∂Ω
(2.25)

Using the relations (1.4), (1.2) and the fact that u0 is independent of y, we get:

f + divAε∇u0 = f − L2u0 − 1
ε
L1u0 = L0u2 + L1u1 − 1

ε
L1u0

divAε∇u1 = −L2u1 − 1
ε
L1u1 − 1

ε2L0u1

divAε∇u2 = −L2u2 − 1
ε
L1u2 − 1

ε2L0u2

divAε∇u2 = −L2u2 − 1
ε
L1u2 − 1

ε2L0u2

So the equation(2.25)is reduced to:

−divAε∇rε = 1
ε2

(
L0u2 + L1u1 − 1

ε
L1u0

)
+ 1
ε

(
−L2u1 − 1

ε
L1u1 − 1

ε2L0u1

)
+
(

−L2u2 − 1
ε
L1u2 − 1

ε2L0u2

)
= − 1

ε3 (L1u0 + L0u1) + 1
ε2 (L0u2 + L1u1 − L1u1 − L0u2) − 1

ε
(L2u1 + L1u2) − L2u2

= 1
ε
L0u3 − L2u2

Then the variational formulation of(2.25)is:
Find rε ∈ H1

0 (Ω) such that∫
Ω Aε∇rε∇ϕdx = 1

ε

∫
Ω (L0u3)ϕdx−

∫
Ω (L2u2)ϕdx, ∀ϕ ∈ H1

0 (Ω)

We have for all ϕ ∈ H1
0 (Ω) the estimate:
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∣∣∣∣∫
Ω
Aε∇rε∇ϕdx

∣∣∣∣ =
∣∣∣∣1ε
∫

Ω
(L0u3)ϕdx−

∫
Ω

(divxAε∇yu3)ϕdx+
∫

Ω
(divxAε∇yu3)ϕdx−

∫
Ω

(L2u2)ϕdx
∣∣∣∣

≤
∣∣∣∣1ε
∫

Ω
(L0u3)ϕdx−

∫
Ω

(divxAε∇yu3)ϕdx
∣∣∣∣+ ∣∣∣∣∫

Ω
(divxAε∇yu3)ϕdx−

∫
Ω

(L2u2)ϕdx
∣∣∣∣

=
∣∣∣∣∫

Ω
(divAε∇yu3)ϕdx

∣∣∣∣+ ∣∣∣∣∫
Ω

(divxAε (∇xu2 + ∇yu3))ϕdx
∣∣∣∣

=
∣∣∣∣∫

Ω
Aε∇yu3∇ϕdx

∣∣∣∣+ ∣∣∣∣− ∫
Ω
Aε (∇xu2 + ∇yu3) ∇ϕdx

∣∣∣∣
≤ 2

∣∣∣∣∫
Ω
Aε∇yu3∇ϕdx

∣∣∣∣+ ∣∣∣∣∫
Ω
Aε∇xu2∇ϕdx

∣∣∣∣ .
Using the L∞ boundedness ofAε, and that ∥∇yu3∥L2(Ω) ≤ C13 ∥u0∥H3(Ω) and ∥∇xu2∥L2(Ω) ≤ C ∥u0∥H3(Ω).

we get: ∣∣∣∣∫
Ω
Aε∇rε∇ϕdx

∣∣∣∣ ≤ C ∥u0∥H3(Ω) ∥ϕ∥H1
0 (Ω),∀ϕ ∈ H1

0 (Ω)

By taking ϕ = rε and using the ellipticity of Aε, we obtain:

λ ∥rε∥2
H1

0 (Ω) ≤
∫

Ω
Aε∇rε∇rεdx ≤ C ∥u0∥H3(Ω) ∥rε∥H1

0 (Ω)

which implies that:
∥rε∥H1

0 (Ω) ≤ C ∥u0∥H3(Ω)

■
Consider a second-order corrector, assuming f ∈ C∞(Ω̄), ũ1 = ũ2 = 0 and χj, χij in W 1,∞(Y ),
Cioranescu and Donato[11] obtained the estimate:

∥∥∥uε − u0 − εu1 − ε2u2

∥∥∥
H1(Ω)

≤ C
√
ε (2.26)

From the proof of the theorem (2.2) that proved by Shari Moskow and Michael Vogelius[9],they
obteined this estimate under an assumptions conditions :∥∥∥uε − u0 − εu1 + εubl,ε

1 − ε2u2 + ε2ubl,ε
2

∥∥∥
H1(Ω)

≤ Cε2||u0||H3(Ω) (2.27)
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2.3 Interior Error Estimates

2.3.1 First order estimate without boundary layer

Theorem 2.8

Let uε and u0 be the unique solutions of (1.1) and (1.13) respectively. Let u1 be defined by

(1.5). Assume that either hypothesis (H1) or (H2) holds true. Assume also that u ∈ W 3,∞(Ω).

Then, for any open set ω ⊂⊂ Ω compactly embedded in Ω, there exists a constant C, depending

on ω but not on ε, such that:

∥∥∥∥uε(x) − u0(x) − εu1

(
x,
x

ε

)∥∥∥∥
H1(ω)

≤ Cε. (2.28)

Where C depends on ω

The proof of the theorem is based on this Lemma :

Lemma 2.3.1
For a sequence ϕε in H1(Ω) we define the sequence of solutions zε ∈ H1(Ω) of

−divAε∇zε = 0 in Ω

zε = ϕε on ∂Ω

Assume that there exists a constant C such that, either (H1) holds and ∥ϕε∥L∞(∂Ω) ≤ C, or (H2)
holds and ∥ϕε∥L2(∂Ω) ≤ C. Then, for any open set ω ⊂⊂ Ω, there exists a positive constant C
such that

∥zε∥H1(ω) ≤ C

proof of lemma 2.3.1:(See[10])

Proof: [10]
For ω ⊂⊂ Ω, we observe that:

∥uε − u− εu1∥H1(ω) ≤
∥∥∥uε − u− εu1 − εubl,ε

1

∥∥∥
H1

0 (Ω)
+ ε

∥∥∥ubl,ε
1

∥∥∥
H1(ω)

.

Since u1(x, x/ε) is a bounded sequence in either L∞(∂Ω) or L2(∂Ω), application of Lemma (2.3)
yields the desired result. ■
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In this chapter, we proceed our study of the error estimates in the periodic homogenization
of elliptic equations by present the error estimates of the third-order with and without boundary layers
terms, So in the first we deals to the third error estimate without the boundary layers correctors ,
Then we prove two theories related to the interior error estimate for periodic homogenization with
the third error estimate with the boundary layers correctors
Lastly we compare the previous results with the results obtained.

3.1 Third Order Error Estimates

3.1.1 Without the Boundary-Layers
The results obtained in this section are taken from[2]. In this section we need more regularity

for u0 the solution of (PH) which requires more regularity on the data, and we suppose that the
functions ũi = ⟨ui⟩ ≡ 0, i = 1, 2, 3, 4. Since we will not try to compute the minimal regularity
required for Ω and f , we simply assume in the sequel that Ω is a bounded domain with ∂Ω ∈ C∞

and f ∈ C∞(Ω̄) which implies, according to the regularity theory (see Evans [49]), that u0 ∈ C∞(Ω̄).
Using the density of C∞(Ω̄) in Wm,p(Ω) for all m ∈ N∗ and 1 ≤ p < ∞, we have u0 ∈ Wm,p(Ω).

The first result concerns the second-order error estimate with boundary layers correctors. In
this case, we need the regularity H3(Ω) for u0.

Theorem 3.1

Let uε and u0 be the unique solutions of (Pε) and (PH) respectively, with Ω ⊂ Rn is a bounded

domain with ∂Ω ∈ C∞. Assume that f ∈ C∞(Ω̄) and χj, χij and χijk ∈ W 1,∞(Y ). Then

∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3

∥∥∥
H1(Ω)

≤ C
√
ε (3.1)

To proof this theorem ,we need to use the following tools:
Proposition 3.1.1

Let F be in H−1(Ω). Then, there exist n+ 1 functions f0, f1, . . . , fn in L2(Ω) such that

F = f0 +
n∑

i=1

∂fi

∂xi

in the sense of distributions. Moreover

∥F∥2
H−1(Ω) = inf

n∑
i=0

∥fi∥2
L2(Ω)

where the infimum is taken over all the vectors (f0, f1, . . . fn) ∈ [L2(Ω)]n+1. Conversely, if
(f0, f1, . . . , fn) is a vector in [L2(Ω)]n+1, then F ∈ H−1(Ω) and it satisfies

∥F∥2
H−1(Ω) ≤

n∑
i=0

∥fi∥2
L2(Ω)

Lemma 3.1.1
Let Ω be a bounded domain with a smooth boundary and

Bδ = {x ∈ Ω, ρ(x, ∂Ω) < δ} with δ > 0

Then there exists δ0 > 0 such that for every δ ∈ (0, δ0) and every v ∈ H1(Ω) we have
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∥v∥L2(Bδ) ≤ Cδ
1
2 ∥v∥H1(Ω)

where ρ(x, ∂Ω) denotes the distance of x ∈ Ω from the set ∂Ω, and C18 is a constant independent
of δ and v

Proof (See [Chapter 1, Lemma 1.5, [85]][2]).

Theorem 3.2

Let A
(

x
ε

)
be an uniformly elliptic bounded matrix and ∂Ω be Lipschitz continuous. Suppose

that

f ∈ H−1(Ω) and g ∈ H
1
2 (∂Ω) then, there exists a unique uε ∈ H1(Ω) solution to


−div

(
A
(
x

ε

)
∇uε

)
= f in Ω

uε = g on ∂Ω

and

∥uε∥H1(Ω) ≤ C∥f∥H−1(Ω) + C∥g∥
H

1
2 (∂Ω)

Proof. (See [Theorem 23.4,Lectures on linear partial differential equations book ])[25]
We give the proof of Theorem 3.1

Proof: We set:

Zε = uε −
(
u0 + εu1 + ε2u2 + ε3u3

)
u0 = u0(x)

u1 = −χj ∂u0

∂xj

u2 = χij ∂2u0

∂xi∂xj

u3 = χijk ∂3u0

∂xi∂xj∂xk

then,

LεZε = Lεuε − Lε

(
u0 + εu1 + ε2u2 + ε3u3

)
= Lεuε −

(
ε−2L0 + ε−1L1 + L2

) (
u0 + εu1 + ε2u2 + ε3u3

)
= Lεuε − ε−2L0u0 − ε−1 (L0u1 + L1u0) − (L0u2 + L1u1 + L2u0)

− ε (L0u3 + L2u1 + L1u2) − ε2 (L1u3 + L2u2) − ε3 (L2u3)

We using the equations of (1.4), we get;
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LεZε = −ε2 (L1u3 + L2u2) − ε3 (L2u3)

Since

∂

∂xi

= 1
ε

∂

∂yi

, and ∂

∂yi

= ε
∂

∂xi

A simple computation shows that:

L1u3 = −alm

(
x

ε

)
∂χijk

∂ym

∂4u0

∂xl∂xi∂xj∂xk

− ε
∂

∂xl

(
alm

(
x

ε

)
χijk

(
x

ε

)
∂4u0

∂xm∂xi∂xj∂xk

)

− εL2u3

L2u2 = −alm

(
x

ε

)
χij

(
x

ε

)
∂4u0

∂xl∂xm∂xi∂xj

then:

LεZε = −ε2
(
alm

(
x

ε

)
∂χijk

∂ym

∂4u0

∂xl∂xi∂xj∂xk

)
− ε3

(
∂

∂xl

(
alm

(
x

ε

)
χijk

(
x

ε

)
∂4u0

∂xm∂xi∂xj∂xk

))

− ε2alm

(
x

ε

)
χij

(
x

ε

)
∂4u0

∂xl∂xm∂xi∂xj

Taking into account that uε and u0 vanish on the boundary ∂Ω, then it follows easily that Zε satisfies
LεZε = ε2F ε in Ω

Zε = εGε on ∂Ω

where 

F ε = −alm

(
x

ε

)
∂χijk

∂ym

∂4u0

∂xl∂xi∂xj∂xk

− alm

(
x

ε

)
χij

(
x

ε

)
∂4u0

∂xl∂xm∂xi∂xj

− ε

(
∂

∂xl

(
alm

(
x

ε

)
χijk

(
x

ε

)
∂4u0

∂xm∂xi∂xj∂xk

))

Gε = −u1 − εu2 − ε2u3

We put
F0 = −alm

(
x
ε

)
∂χijk

∂ym

∂4u0
∂xl∂xi∂xj∂xk

− alm

(
x
ε

)
χij

(
x
ε

)
∂4u0

∂xl∂xm∂xi∂xj
,

Fl = −alm

(
x
ε

)
χijk

(
x
ε

)
∂4u0

∂xm∂xi∂xj∂xk
.

Under the assumptions on alm, u0, χ
ij and χijk we get

∥F0∥L2(Ω) ≤ C (3.2)

∥Fl∥L2(Ω) ≤ C (3.3)

we Using the Proposition 3.1.1 then from (3.2) and (3.3) we obtain F ε ∈ H−1(Ω).
Let’s look at the function Gε. We prove the following estimate:
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∥Gε∥
H

1
2 (∂Ω) ≤ Cε

−1
2

At this point, we need to introduce the function mε ∈ D(Ω) defined as follows
mε = 1 if ρ(x, ∂Ω) ≤ ε

mε = 0 if ρ(x, ∂Ω) ≥ 2ε

∥∇mε∥L∞(Ω) ≤ C
ε

For the existence of such kind of functions see [22] and the references therein.
Set

Vε = mεGε.

Vε = {x, ρ(x, ∂Ω) < 2ε}.

which will be denoted by Uε

Using theH1−norm,wehave∥Vε∥H1(Uε) = ∥Vε∥L2(Uε)+∥∇Vε∥L2(Uε) .Clearly, fromthedefinitionofmε

and the regularity properties of u0, χ
j, χ{ij, χijk,one has that

∥Vε∥L2(Uε) ≤ C.

On the other hand, we have

∂V ε

∂xi

(x) =mε(x)
[

1
ε

∂χk

∂yi

(
x

ε

)
∂u0(x)
∂xk

+ χk
(
x

ε

)
∂2u0(x)
∂xi∂xk

− ∂χkl

∂yi

(
x

ε

)
∂2u0(x)
∂xk∂xl

−

εχkl
(
x

ε

)
∂3u0(x)
∂xi∂xk∂xl

− ε
∂χklm

∂yi

(
x

ε

)
∂3u0(x)

∂xk∂xl∂xm

− ε2χklm
(
x

ε

)
∂4u0(x)

∂xi∂xk∂xl∂xm

]

+ ∂mε

∂xi

[
χk
(
x

ε

)
∂u0(x)
∂xk

− εχkl
(
x

ε

)
∂2u0(x)
∂xk∂xl

− ε2χklm
(
x

ε

)
∂3u0(x)

∂xk∂xl∂xm

]

Again, on the account of the above definition of mε and the regularity properties of u0, χ
k, χkl and

χklm, it is easy to check that

∥∇V ε∥L2(Uε) ≤ 1
ε
C ∥u0∥H1(Uε) + C

and owing to Lemma 3.1.1, we derive that

∥u0∥H1(Uε) ≤ Cε
1
2 ∥u0∥H2(Ω)

Then we conclude that:

∥Vε∥H1(Uε) ≤ C + ε−1C26 ∥u0∥H1(Uε)

≤ C + ε−1C
(
Cε

1
2 ∥u0∥H2(Ω)

)
≤ Cε

−1
2

On ∂Ω, Vε = Gε, this gives that
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∥Gε∥
H

1
2 (∂Ω)

= ∥Vε∥
H

1
2 (∂Ω)

≤ C ∥Vε∥H1(Ω) = C ∥Vε∥H1(Uε) ≤ Cε
−1
2

Using the regularity results of Theorem 4.3, we deduce that:

∥Zε∥H1(Ω) ≤ ε2 ∥F ε∥H−1(Ω) + ε ∥Gε∥
H

1
2 (∂Ω)

≤ Cε
1
2

which proves the theorem.

The third result is about the third-order error estimate without the third boundary-layer cor-
rector.

3.1.2 With the Boudary-Layers
In this case, we need u0 to be in W 4,∞(Ω). Using the Sobolev embedding result (see Adams [1]):

Let l ∈ N,m ∈ N∗ and 1 ≤ p < ∞. If either (m− l)p > n or m− l = n and p = 1, then Wm,p(Ω) ↪→
W l,q(Ω), for p ≤ q ≤ ∞. Therefore, we have W n+4,1(Ω) ↪→ W 4,∞(Ω) and like u0 ∈ C∞(Ω̄) ⊂ Wm,p(Ω)
for all m ∈ N∗ and 1 ≤ p < ∞, and then, u0 ∈ W 4,∞(Ω).

Theorem 3.3

Let uε and u0 be the unique solutions of (Pε) and (PH), respectively, with Ω ⊂ Rn is a strictly

convex bounded domain with ∂Ω ∈ C∞. Assume that f ∈ C∞(Ω̄) and χijk, χijkl ∈ W 1,∞(Y ).

Then:

∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2 − ε2ubl,ε

2 − ε3u3

∥∥∥
H1(Ω)

≤ Cε
5
2 (3.4)

To proof this theorem, we need the following Lemma :
Lemma 3.1.2

Let ϕε be a sequence of functions in W 1,∞(Ω), such that:

∥ϕε∥L∞(Ω) ≤ C and ∥∇ϕε∥L∞(Ω) ≤ C

ε

Let zε ∈ H1(Ω) be the solution of:
−divAε∇zε = 0 in Ω

zε = ϕε on ∂Ω.

Then, it satisfies:

∥zε∥H1(Ω) ≤ C√
ε
.

For the proof, we refer the reader to (Lemma 2.6, [10])

Proof: Defining:
rε(x) = 1

ε3

(
uε − u0 − εu1 − εubl,ε

1 − ε2u2− ε2ubl,ε
2 − ε3u3

)
it satisfies:
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
−divAε∇rε = 1

ε3 (f + divAε∇u0) + 1
ε2 divAε∇u1 + 1

ε
divAε∇u2 + divAε∇u3 in Ω,

rε = −u3
(
x, x

ε

)
on ∂Ω.

(3.5)

We decompose
rε = r1

ε + r2
ε

,
where r1

ε satisfies:
−divAε∇r1

ε = 1
ε3 (f + divAε∇u0) + 1

ε2 divAε∇u1 + 1
ε
divAε∇u2 + divAε∇u3 in Ω,

r1
ε = 0 on ∂Ω.

(3.6)

and r2
ε satisfies: 

−divAε∇r2
ε = 0 in Ω,

r2
ε = −u3

(
x, x

ε

)
= −χijk

(
x
ε

)
∂3u0

∂xi∂xj∂xk
on ∂Ω

(3.7)

Using the fact that u3
(
x, x

ε

)
satisfies:

∥u3∥L∞(Ω) ≤ C38 and ∥∇u3∥L∞(Ω) ≤ C39

ε

then Lemma 3.2 gives that ∥r2
ε∥H1(Ω) ≤ C40√

ε
. On the other hand, we will now estimate r1

ε the
solution of the problem (4.5). Using the results obtained in the proof of Theorem 4.1 and the fact
that:

divAε∇u3 = −L2u3 − 1
ε
L1u3 − 1

ε2L0u3

we get

−divAε∇r1
ε = −L2u3 − 1

ε
(L1u3 + L2u2) = −L2u3 + 1

ε
L0u4

The variational formulation of (3.6)is:
Find r1

ε ∈ H1
0 (Ω) such that∫

Ω Aε∇r1
ε∇ϕdx = 1

ε

∫
Ω (L0u4)ϕdx−

∫
Ω (L2u3)ϕdx, ∀ϕ ∈ H1

0 (Ω)

We have for all ϕ ∈ H1
0 (Ω) the estimate:∣∣∣∣∫

Ω
Aε∇r1

ε∇ϕdx
∣∣∣∣
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=
∣∣∣∣1ε
∫

Ω
(L0u4)ϕdx−

∫
Ω

(divxAε∇yu3)ϕdx+
∫

Ω
(divxAε∇yu3)ϕdx−

∫
Ω

(L2u3)ϕdx
∣∣∣∣

≤
∣∣∣∣1ε
∫

Ω
(L0u4)ϕdx−

∫
Ω

(divxAε∇yu4)ϕdx
∣∣∣∣+ ∣∣∣∣∫

Ω
(divxAε∇yu4)ϕdx−

∫
Ω

(L2u3)ϕdx
∣∣∣∣

=
∣∣∣∣− ∫

Ω
(divAε∇yu4)ϕdx

∣∣∣∣+ ∣∣∣∣∫
Ω

(divxAε (∇xu3 + ∇yu4))ϕdx
∣∣∣∣

=
∣∣∣∣∫

Ω
Aε∇yu4∇ϕdx

∣∣∣∣+ ∣∣∣∣− ∫
Ω
Aε (∇xu3 + ∇yu4) ∇ϕdx

∣∣∣∣
≤2

∣∣∣∣∫
Ω
Aε∇yu4∇ϕdx

∣∣∣∣+ ∣∣∣∣∫
Ω
Aε∇xu3∇ϕdx

∣∣∣∣
Using the L∞ boundedness of Aε,∇yu4 and ∇xu3, we get:∣∣∣∣∫

Ω
Aε∇r1

ε∇ϕdx
∣∣∣∣ ≤ C41∥ϕ∥H1

0 (Ω),∀ϕ ∈ H1
0 (Ω)

By taking ϕ = r1
ε and using the ellipticity of Aε, we obtain:

λ
∥∥∥r1

ε

∥∥∥2

H1
0 (Ω)

≤
∫

Ω
Aε∇r1

ε∇r1
ε dx ≤ C41

∥∥∥r1
ε

∥∥∥
H1

0 (Ω)

which implies that: ∥∥∥r1
ε

∥∥∥
H1

0 (Ω)
≤ C42

Finally, we get ε3 ∥rε∥H1(Ω) ≤ C43ε
5
2 which establishes the desired estimate. ■

The fourth result concerns the third-order error estimate with boundary layers correctors.
In this case, we need u0 to be in W 4,∞(Ω).

Theorem 3.4

Let uε and u0 be the unique solutions of (Pε) and (PH), respectively, with Ω ⊂ Rn is a strictly

convex bounded domain with ∂Ω ∈ C∞. Assume that f ∈ C∞(Ω̄) and χijkl ∈ W 1,∞(Y ). Then:

∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2 − ε2ubl,ε

2 − ε3u3 − ε3ubl,ε
3

∥∥∥
H1

0 (Ω)
≤ C44ε

3 (3.8)
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Proof

We Define: rε(x) = 1
ε3

(
uε − u0 − εu1 − εubl,ε

1 − ε2u2 − ε2ubl,ε
2 − ε3u3− ε3ubl,ε

3

)
, it satisfies:


−divAε∇rε = 1

ε3 (f + divAε∇u0) + 1
ε2 divAε∇u1 + 1

ε
divAε∇u2 + divAε∇u3 in Ω,

rε = 0 on ∂Ω.

This problem is the same as problem in theorem (3.3), so the solution rε has the same estimate

of r1
ε the solution of (4.5), that is:

∥rε∥H1
0 (Ω) =

∥∥∥r1
ε

∥∥∥
H1

0 (Ω)
≤ C45.

. thus :

∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2 − ε2ubl,ε

2 − ε3u3 − ε3ubl,ε
3

∥∥∥
H1

0 (Ω)
= ε3 ∥rε∥H1

0 (Ω) ≤ C45ε
3

which completes the proof.

Remark: I
n accordance with the results obtained in Theorems (2.8), (3.1), (3.3), (3.4)and the estimates

(2.3)and (2.21), we infer that the correctors have no influence on the improvement of the order of

the error in the estimates. However, the introduction of boundary layers terms improves these,

estimates

The conditions posed on the homogenized solution u0,and on the solutions of the cell-problems

χijkandχijmp in Theorems (3.3 and 3.4 in the above section, bring us to the following question : if

we assume minimal regularity assumptions, can one prove differently and obtain the third-order

error estimates as stated in theorems (3.3) and (3.4)?
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3.2 Third-Order Corrections In Periodic Homogenization Using Mixed

Method
• All the results presented in this section are taken from [25]
• in this section we answer the questions we asked previously, our study will be in dimension two.

From the proof of proposition (2.2.1) and under the different powers of ε we get ;

(v1)



v1 = a(y)∇xu1 + a(y)∇yu2, i.e. (v1)k =
(

−akiχ
j + akl

∂χij

∂yl

)
∂2u0

∂xi∂xj

,

⟨(v1)k⟩ = ⟨cijk(y)⟩ ∂2u0

∂xi∂xj

,

⟨divxv1⟩ = 0

divyv1 = −divxv0 − f

And,

(v2)



v2 = a(y)∇xu2 + a(y)∇yu3, i.e. (v2)m =
(
amkχ

ij + aml
∂χijk

∂yl

)
∂3u0

∂xi∂xj∂xk

⟨(v2)m⟩ = ⟨dmijk⟩ ∂3u0

∂xi∂xj∂xk

⟨divxv2⟩ = 0

divyv2 = −divxv1

and,

(v3)



v3 = curlx K(x, y)

divxv3 = 0

divyv3 = −divxv2

sup
y∈Y

|v3| ≤ C
∑

i,j,k,l

∣∣∣∣∣ ∂4u0

∂xi∂xj∂xk∂xl

∣∣∣∣∣ (3.9)

3.2.1 The boundary layers terms

Under the assumption that u0 ∈ H4(Ω), so the functions u1, u2, u3 have a traces in H
1
2 (∂Ω), con-

sequently, and owing to theorem of trace we can extract the following estimates:

∥u1∥
H

1
2 (∂Ω)

≤ C ∥u0∥H4(Ω)

∥u2∥
H

1
2 (∂Ω)

≤ C ∥u0∥H4(Ω)

∥u3∥
H

1
2 (∂Ω)

≤ C ∥u0∥H4(Ω)

(3.10)
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Therefore we can introduce the boundary layers functions ubl,ε
1 , ub,ε

2 and ub,ε
3 the unique solutions

to
(
Pub,ε

1

)
,
(
Publ,ε

2

)
and

(
Publ,ε

3

)
respectively, where

(
Publ,ε

1

)
div

(
a
(

x
ε

)
∇ubl,ε

1

)
= 0 in Ω

ubl,ε
1 = u1 on ∂Ω

(3.11)

and

(
Publ,ε

2

)
div

(
a
(

x
ε

)
∇ubl,ε

2

)
= 0 in Ω

ubl,ε
2 = u2 on ∂Ω

(3.12)

and

(
Pub,ε

3

)
div

(
a
(

x
ε

)
∇ubl,ε

3

)
= 0 in Ω

ubl,ε
3 = u3 on ∂Ω

(3.13)

Remark 3.2.1
The existence and uniqueness of ubl,ε

1 , ubl,ε
2 and ubl,ε

3 can be deduced immediately from Theorem
(3.2).

From the L2-estimates proved in ([9]) and the formula for each ui(x, y), it follows that∥∥∥ubl,ε
1

∥∥∥
L2(Ω)

≤ C
∥∥∥∥u1

(
x,
x

ε

)∥∥∥∥
L2(∂Ω)

≤ C ∥u0∥H4(Ω) ,∥∥∥ubl,ε
2

∥∥∥
L2(Ω)

≤ C
∥∥∥∥u2

(
x,
x

ε

)∥∥∥∥
L2(∂Ω)

≤ C ∥u0∥H4(Ω) ,∥∥∥ubl,ε
3

∥∥∥
L2(Ω)

≤ C
∥∥∥∥u3

(
x,
x

ε

)∥∥∥∥
L2(∂Ω)

≤ C ∥u0∥H4(Ω)

(3.14)

The first result concerns the third-order error estimate with the third-order boundary layer
corrector. For this case we need the regularity H4(Ω)foru9

Theorem 3.6

Let uε and u0 denote the unique solutions of (Pε) and (PH) respectively, suppose that f ∈

H2(Ω) then:

∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3 + εubl,ε
1 + ε2ubl,ε

2 + ε3ubl,ε
3

∥∥∥
H1

0 (Ω)
≤ Cε3 ∥u0∥H4(Ω) (3.15)

Proof: [25] The proof will be divided into three steps.

Step 1: The definitions of ψε and ξε.Let;

ψε = uε − u0 − εu1 − ε2u2 − ε3u3

ξε = a
(
x

ε

)
∇uε − v0 − εv1 − ε2v2 − ε3v3
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such that:

a
(
x

ε

)
∇ψε = a

(
x

ε

)
∇uε − a

(
x

ε

)
∇u0 − εa

(
x

ε

)
∇u1 − ε2a

(
x

ε

)
∇u2 − ε3a

(
x

ε

)
∇u3

divξε = div
(
a
(
x

ε

))
∇uε

)
− divxv0 − 1

ε
divyv0 − εdivxv1 − divyv1 − ε2divxv2 − εdivyv2

− ε3divxv3 − ε2divyv3

= −f(x) − divxv0 − εdivxv1 + divxv0 + f(x) − ε2divxv2 − εdivyv2 − ε3divxv3

− ε2divyv3

= −εdivxv1 − εdivyv2

= 0.

a
(
x

ε

)
∇ψε − ξε = a

(
x

ε

)
∇uε − a

(
x

ε

)
∇u0 − εa

(
x

ε

)
∇u1 − ε2a

(
x

ε

)
∇u2 − ε3a

(
x

ε

)
∇u3

− a
(
x

ε

)
∇uε + v0 + εv1 + ε2v2 + ε3v3

= −a
(
x

ε

)
∇xu0 − εa

(
x

ε

)
∇xu1 − a

(
x

ε

)
∇yu1 − ε2a

(
x

ε

)
∇xu2 − εa

(
x

ε

)
∇yu2

− ε3a
(
x

ε

)
∇xu3 − ε2a

(
x

ε

)
∇yu3 + a

(
x

ε

)
∇xu0 + a

(
x

ε

)
∇yu1 + εa

(
x

ε

)
∇xu1

+ εa
(
x

ε

)
∇yu2 + ε2a

(
x

ε

)
∇yu3 + ε2a

(
x

ε

)
∇xu2 + ε3v3

= ε3
(
v3 − a

(
x

ε

)
∇xu3

)
.

(3.16)
Step 2: The estimation of

∥∥∥a (x
ε

)
∇ψε − ξε

∥∥∥
L2(Ω)

.
Since χijk are in C∞(Y ) and u0 ∈ H4(Ω) we see that:

sup
y∈Y

|∇xu3| ≤ C
∑

i,j,k,l

∣∣∣∣∣ ∂4u0

∂xi∂xj∂xk∂xl

∣∣∣∣∣ (3.17)

Therefore from (3.9) and (3.17) we conclude that∥∥∥∥a(xε
)

∇ψε − ξε

∥∥∥∥
L2(Ω)

≤ ε3 ∥v3∥L2(Ω) + ε3
∥∥∥∥a(xε

)
∇xu3

∥∥∥∥
L2(Ω)

≤ Cε3 ∥u0∥H4(Ω) .

(3.18)

Step 3: The estimation of
∥∥∥ψε + εubl,ε

1 + ε2ubl,ε
2 + ε3ubl,ε

3

∥∥∥
H1

0 (Ω)
.

Let g ∈ L2(Ω) and ωε ∈ H1
0 (Ω) the solution to:


−div(a(x

ε
)∇ωε) = gin Ω

ω = 0on∂Ω

Since ψε + εubl,ε
1 + ε2ubl,ε

2 + ε3ubl,ε
3 ∈ H1

0 (Ω), so by using the Green Formula the integration yields
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∫
Ω

(
ψε + εubl,ε

1 + ε2ubl,ε
2 + ε3ubl,ε

3

)
gdx =

∫
Ω

− div
(
a
(
x

ε

)
∇ωε

) (
ψε + εubl,ε

1 + ε2ubl,ε
2 + ε3ubl,ε

3

)
dx

=
∫

Ω
a
(
x

ε

) (
∇ψε + ε∇ubl,ε

1 + ε2∇ubl,ε
2 + ε3∇ubl,ε

3

)
· ∇ωεdx

=
∫

Ω
a
(
x

ε

)
∇ψε · ∇ωε

−
∫

Ω
div

(
a
(
x

ε

) (
ε∇ubl,ε

1 + ε2∇ubl,
2 + ε3∇ubl,ε

3

))
ωεdx

=
∫

Ω
a
(
x

ε

)
∇ψε · ∇ωεdx

(3.19)
Making use of (3.16) and taking advantage of the ellipticity of Aε, we get:

∫
Ω
a
(
x

ε

)
∇ψε · ∇ωεdx =

∫
Ω

(
a
(
x

ε

)
∇ψε − ξε

)
· ∇ωε +

∫
Ω
ξε · ∇ωεdx

=
∫

Ω

(
a
(
x

ε

)
∇ψε − ξε

)
· ∇ωε −

∫
Ω
divξεωεdx

=
∫

Ω

(
a
(
x

ε

)
∇ψε − ξε

)
· ∇ωεdx

≤
∥∥∥∥a(xε

)
∇ψε − ξε

∥∥∥∥
L2(Ω)

∥ωε∥H1
0 (Ω)

≤ C
∥∥∥∥a(xε

)
∇ψε − ξε

∥∥∥∥
L2(Ω)

∥g∥H−1(Ω).

(3.20)

Using the estimate obtained in (3.18), it follows that:∣∣∣∣∫
Ω

(
ψε + εubl,ε

1 + ε2ubl,ε
2 + ε3ubl,ε

3

)
gdx

∣∣∣∣ ≤ C
∥∥∥∥a(xε

)
∇ψε − ξε

∥∥∥∥
L2(Ω)

∥g∥H−1(Ω)

by dividing by ∥g∥H−1(Ω) and taking the supremum over all g ̸= 0, we immediately conclude
that

sup

∣∣∣∫Ω (ψε + εubl,ε
1 + ε2ubl,ε

2 + ε3ubl,ε
3

)
g
∣∣∣

∥g∥H−1(Ω)
≤ C

∥∥∥∥a(xε
)

∇ψε − ξε

∥∥∥∥
L2(Ω)

≤ Cε3 ∥u0∥H4(Ω)

Hence, it seems clear that
∥∥∥ψε + εubl,ε

1 + ε2ubl,ε
2 + ε3ubl,ε

3

∥∥∥
H1

0 (Ω)
≤ Cε3 ∥u0∥H4(Ω)

which establishes the formula. ■
The second result is about the third-order error estimate without the third-order boundary layer

corrector. Again, for this case we need the regularity H4(Ω) for u0.
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Theorem 3.7

Let uε and u0 denote the unique solutions of (Pε) and (PH) respectively, suppose that f ∈

H2(Ω), then

∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3 + εubl,ε
1 + ε2ubl,ε

2

∥∥∥
H1(Ω)

≤ Cε
5
2 ∥u0∥H4(Ω) (3.21)

Proof: Using the result obtained in Theorem (3.6), we have∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3 + εubl,ε
1 + ε2ubl,ε

2

∥∥∥
H1(Ω)

=
∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3 + εubl,ε

1 + ε2ubl,ε
2 + ε3ubl,ε

3 − ε3ubl,ε
3

∥∥∥
H1(Ω)

≤
∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3 + εubl,ε

1 + ε2ubl,ε
2 + ε3ubl,ε

3

∥∥∥
H1

0
+ ε3

∥∥∥ubl,ε
3

∥∥∥
H1(Ω)

≤ Cε3 ∥u0∥H4(Ω) + ε3
∥∥∥ubl,ε

3

∥∥∥
H1(Ω)

The task is now to estimate
∥∥∥ubl,ε

3

∥∥∥
H1(Ω)

. Since u3 has a trace in H
1
2 (∂Ω), consequently, owing

to Theorem (3.2) we can conclude that∥∥∥ubl,ε
3

∥∥∥
H1(Ω)

≤ C33 ∥u3∥
H

1
2 (∂Ω)

The proof is completed by showing that:

∥u3∥
H

1
2 (∂Ω)

≤ Cε
−1
2 (3.22)

For this purpose, we define the function κε(x) ∈ D(Ω), such that

κε = 1 if ρ(x, ∂Ω) ≤ ε

κε = 0 if ρ(x, ∂Ω) ≥ 2ε

∥∇κε∥L∞(Ω) ≤ C

ε

For the existence of such kind of functions see [32] and the references therein.
Let us put

Vε = κεu3

such that

suppVε = {x, ρ(x, ∂Ω) ≤ 2ε}

which will be denoted by Uε

At this stage, the only point remaining to get (3.22), is the estimation of ||Vε||H1(Ω).
Making use of H1-norm, we get:

||Vε||H1(Ω) = ||Vε||L2(Ω) + ||∇Vε||L2(Ω).

Clearly, from the definition of κε ,and the assumption that u0 ∈ H4(Ω) with taking advantage of
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aij, χ
ijk ∈ C∞(Y ),we obtain:

∥Vε∥2
L (Uε) =

∥∥∥∥∥κε(x)χijk(x
ε

) ∂3u0

∂xi∂xj∂xk

∥∥∥∥∥
L2(Uε)

≤
∥∥∥∥χijk(x

ε
)
∥∥∥∥

L∞(Y )

∥∥∥∥∥ ∂3u0

∂xi∂xj∂xk

∥∥∥∥∥
L2(Uε)

≤ C

∥∥∥∥∥ ∂3u0

∂xi∂xj∂xk

∥∥∥∥∥
L2(Uε)

≤ C||u0||H3(Uε).

(3.23)

Hence ,
∥Vε∥L2(Uε) ≤ C||u0||H3(Uε). (3.24)

Let us now estimate the gradient of Vε, first we have:

∂V ε

∂xl

(x) = κε(x)
{

1
ε

χijk

∂yl

(x
ε

) ∂3u0(x)
∂xi∂xj∂xl

+ χijk(x
ε

) ∂4u0(x)
∂xi∂xj∂xk∂xl

}
+∂κε(x)

∂xl

{
χijkx

ε

∂3u0

∂xi∂xj∂xk

}
.

(3.25)
Again, from the above definition of κε , and the assumption thatu0 ∈ H4(Ω) , with taking advantage
of: aij(y), χijk ∈ C∞(Y )one can have;

∥Vε∥L2(Uε) ≤ C

ε

∥∥∥∥∥ ∂3u0

∂xi∂xj∂xk

∥∥∥∥∥
L2(Uε)

+ C

∥∥∥∥∥ ∂4u0

∂xi∂xjk∂xl

∥∥∥∥∥
L2(Uε)

(3.26)

however,
∥Vε∥L2(Uε) ≤ Cε−1||u0||H3(Uε) + C||u0||H4(Uε). (3.27)

Furthermore, by applying Lemma we derive that:

||u0||H3(Uε) ≤ Cε
1
2 ||u0||H4(Uε). (3.28)

Combining (3.24) with (3.27) and making use of (3.28),we conclude that:

∥Vε∥H1(Uε) ≤ C||u0||H3(Uε) + Cε−1||u0||H3(Uε) + C||u0||H4(Uε)

≤ Cε
1
2 ||u0||H4(Ω) + Cε−1(Cε 1

2 ||u0||H4(Ω)+C||u0||H4(Ω)

≤ Cε
−1
2 ||u0||H4(Ω).

(3.29)

On ∂Ω, Vε = uε,so;

||uε||
H

1
2 (∂Ω)

= ||Vε||
H

1
2 (∂Ω)

≤ ∥Vε∥H1(Ω) = ∥Vε∥H1(Uε) ≤ Cε
−1
2 ||u0||H4(Ω). (3.30)

Using the regularity results of Theorem 3.2, we deduce that
∥∥∥ubl,ε

3

∥∥∥
H1(Ω)

≤ C||uε||
H

1
2 (∂Ω)

≤ ε
−1
2 ||u0||H4(Ω). (3.31)
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Substituting (3.31) in (3.21), we get:

∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3 + εubl,ε
1 + ε2ubl,ε

2

∥∥∥
H1(Ω)

≤ Cε3 ∥u0∥H4(Ω) + ε3
∥∥∥ubl,ε

3

∥∥∥
H1(Ω)

≤ Cε3 ∥u0∥H4(Ω) + Cε
5
2 ∥u0∥H4(Ω)

≤ Cε
5
2 ∥u0∥H4(Ω) ,

which is precisely the assertion of the theorem. ■

3.3 Interior Error Estimate
In this part we prove two theorems about second and third orders interior error estimates , to

prove this two theorems we use the method that Allar adopted in his article (See [10])

3.3.1 Second Order Error Estimate

Theorem 3.8

Let uε and u0 be the unique solutions of (Pε) and (PH) respectively,Assume that u0 ∈ W 4,∞(Ω)

, Let u1be defined by (1.5),and u2 satisfies equation (1.7) ,assume that either hypothesis H1

or H2 holds true , then for any open set ω ⊂⊂ Ω compactly embedded in Ω there exists a

constant C ,depending on ω but not ε,such that:

∥∥∥uε − u0 − εu1 − ε2u2

∥∥∥
H1(ω)

≤ Cε. (3.32)
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Proof

• The proof of this estimate (3.32), is based on Lemma 2.3 (See chapter 2).

For ω ⊂⊂ Ω, we observe that:

∥∥∥uε − u0 − εu1 − ε2u2

∥∥∥
H1(ω)

≤
∥∥∥uε − u0 − εu1 − εubl,ε

1 − ε2u2 − ε2ubl,ε
2

∥∥∥
H1

0 (Ω)

+ ε||ubl,ε
1 ||H1(ω) + ε2||ubl,ε

2 ||H1(ω).

from the proof of (2.24) we obtain:

∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2 − ε2ubl,ε

2

∥∥∥
H1

0 (Ω)
≤ Cε2 ∥u0∥H3(Ω)

From the L2 estimates proved in [5] , and the formula for each u1, it follows that:

∥∥∥ubl,ε
1

∥∥∥
L2(Ω)

≤ C
∥∥∥∥u1

(
x,
x

ε

)∥∥∥∥
L2(∂Ω)

≤ C ∥u0∥H4(Ω) ,∥∥∥ubl,ε
2

∥∥∥
L2(Ω)

≤ C
∥∥∥∥u2

(
x,
x

ε

)∥∥∥∥
L2(∂Ω)

≤ C ∥u0∥H4(Ω) ,∥∥∥ubl,ε
3

∥∥∥
L2(Ω)

≤ C
∥∥∥∥u3

(
x,
x

ε

)∥∥∥∥
L2(∂Ω)

≤ C ∥u0∥H4(Ω) .

(3.33)

Since u1(x, x/ε), u2(x, x/ε) are a bounded sequence in either L∞(∂Ω) or L2(∂Ω), So according

Lemma 2.3 , we conclude that :

||ubl,ε
1 ||H1(ω) and ||ubl,ε

2 ||H1(ω), are bounded by C.

So, ∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2

∥∥∥
H1(ω)

≤ Cε2 + εC + ε2C

≤ ε(εC1 + C)

≤ Cε.

Wich completes the proof.
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3.3.2 Third Order Error Estimate

Theorem 3.9

Let uε and u0 be the unique solutions of (Pε) and (PH) respectively. Assume that u0 ∈ W 4,∞(Ω)

, Let u1,u2,u3 be defined by (1.5),(1.7) and (1.9),assume that either hypothesis H1 or H2 holds

true , then for any open set ω ⊂⊂ Ω compactly embedded in Ω there exists a constant C

,depending on ω but not ε,such that:

∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3

∥∥∥
H1(ω)

≤ Cε (3.34)

Where the constant C depends only on ω which is any open set such that ω ⊂⊂ Ω

Proof

• The proof of this estimate (3.34), is based on Lemma 2.3 (See chapter 2).

For ω ⊂⊂ Ω, we observe that:

∥∥∥uε − u0 − εu1 − ε2u2 − ε3u3

∥∥∥
H1(ω)

≤
∥∥∥uε − u0 − εu1 − εubl,ε

1 − ε2u2 − ε2ubl,ε
2

∥∥∥
H1

0 (Ω)
− ε3u3

− ε3ubl,ε
3 + ε||ubl,ε

1 ||H1(ω)+ε2||ubl,ε
2 ||H1(ω)−||ubl,ε

3 ||H1(ω).

from the proof of theorem (3.4) we obtain:

∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2 − ε2ubl,ε

2 − ε3u3 − ε3ubl,ε
3

∥∥∥
H1

0 (Ω)
≤ Cε3ε

From (3.33) , Since u1(x, x/ε), u2(x, x/ε) and u3(x, x/ε) are a bounded sequence in either

L∞(∂Ω) or L2(∂Ω), So according Lemma 2.3 , we conclude that :

||ubl,ε
1 ||H1(ω) , ||ubl,ε

2 ||H1(ω) and ||ubl,ε
3 ||H1(ω), are bounded by C.

So, ∥∥∥uε − u0 − εu1 − εubl,ε
1 − ε2u2 − ε3u3

∥∥∥
H1(ω)

≤ Cε3 + εC + ε2C + ε3C

≤ ε(ε2C1 + εC + C)

≤ Cε.

Wich completes the proof.
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In this appendix, we will give some preliminaries needed to carry on our study.

In all the rest, Ω designates an open open from RN provided with the measurement of Lebesgue
Dx, and border ∂Ω sufficiently regular.

Theorem 1. (Poincaré’s Inequality)

Let Ω be a bounded domain in RN with Lipschitz boundary Γ. There exists a positive constant

CP such that, for all v ∈ H1
Γ̃ = {v ∈ H1(Ω), v = 0 on Γ̃ ⊂ Γ}

||v||L2(Ω) ≤ CP ||∇v||L2(Ω).

Poincaré’s inequality holds if Ω has finite measure or is bounded at least in one direction.

Theorem 2. (Trace Theorem)

Let Ω be a bounded open set in RN with Lipschitz boundary Γ. There exists a bounded linear

operator called trace operator and denoted T such that

T : H1(Ω) ∩ C0(Ω) → L2(Γ) ∩ C0(Γ)

v 7→ Tv = v|∂Ω

The continuity of T implies the existence of a positive constant Ct such that

||Tu||L2(Γ) ≤ Ct||v||H1(Ω),∀v ∈ H1(Ω).
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Theorem 3. (Green’s Integration by Parts Formula)

Let Ω be a bounded open domain in R3 with a sufficiently smooth boundary Γ and n is the

outward normal. Then for all u, v ∈ C1(Ω)

∫
Ω

∂iu(x)v(x)dx = −
∫
Ω

u(x)∂iv(x)dx+
∫
Γ

u(x)v(x)nidΓ.

Theorem 4. (Young’s Inequality)

Let a and b be two non-negative real numbers. If p, q ∈]1,+∞[ with 1
p

+ 1
q

= 1 then

ab ≤ ap

p
+ bq

q
.

Theorem 5. (Hölder’s Inequality)

Let Ω be a domain in RN and p, q ∈]1,+∞[ with 1
p

+ 1
q

= 1. If u ∈ Lp(Ω) and v ∈ Lq(Ω) then

uv ∈ L1(Ω) and:

||uv||L1(Ω) ≤ ||u||Lp(Ω)||v||Lq(Ω).



CONCLUSION

Through this work, we notice that the assumptions on u0, the cell solutions, the bound-
ary layer terms and the geometry of the domain play an important role in the improve-
ment of the error estimates, also we deduce that our proved interrior error estimates
following Allaire’s method do not improve the estimates order which leads us as a fu-
ture work to think about new formulas for the second and the third boundary layers
correctors which needs rigorous study.
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Abstruct 
This thesis  aims to study  the L², H^{1}_{0} and H1-norms error estimates of the first, second and 
third-order with or without boundary layer correctors, for  the periodic homogenization of elliptic 
equations in divergence form with Dirichlet boundary conditions. Our study comes for two reasons, 
the  first one is   to show how hypothesis imposed on the data can influence on the improvement of 
the estimates order .  The second reason is to show how we can  differently prove the same results 
using different mathematical thechnicals.  
 
Keywords : homogenization,  asymptotic analysis, error estimates, boundary layers. 
    
 

Résumé 
 

Cet mémoire vise à étudier les estimations d'erreurs des normes L², H^{1}_{0} et H1 du premier, 
deuxième et troisième ordre avec ou sans correcteurs de couche limite, pour l'homogénéisation 
périodique des équations elliptiques. 
Sous forme de divergence avec les conditions aux limites de Dirichlet. Notre étude vient pour deux 
raisons, la première est de montrer comment les hypothèses imposées sur les données peuvent 
influencer l'amélioration de l'ordre des estimations. La deuxième raison est de montrer comment 
nous pouvons prouver différemment les mêmes résultats en utilisant différents techniques 
mathématiques. 
 

Mots clés : homogénéisation, analyse asymptotique, estimations d'erreurs, couches limites. 
  

 الملخص
 

مع أو بدون مصححات الطبقة  و الثانیة و الثالثة  الأولىمن الرتبة  إلى دراسة تقدیرات الخطأ لمعاییر مدكرةتھدف ھذه ال
التجانس الدوري للمعادلات الإھلیلجیةالحدودیة، من أجل   

في شكل تباعد مع شروط حدود دیریشلیت. وتأتي دراستنا لسببین، الأول ھو إظھار كیف یمكن للافتراضات المفروضة 
ات. السبب الثاني ھو إظھار كیف یمكننا إثبات نفس النتائج بشكل مختلف على البیانات أن تؤثر على تحسین ترتیب التقدیر

 .باستخدام تقنیات ریاضیة مختلفة
  الكلمات المفتاحیة: التجانس، التحلیل التقاربي، تقدیرات الخطأ، الطبقات الحدودیة
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