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Abbreviations and Notations

The different abbreviations and notation used throughout this dissertation are explained

below :
(Q, F,P)

SDE
BSDFE
BM
FBM
P—a.s
By

B

ft

Fv
FV VN
R™
R7xd
L

N*

L?(Q, Fr,P)

C? (R",R)

Probability space

Stochastic differential equation.

Backward stochastic differential equation.

Brownian motion.

Fractional Brownian motion.

Almost certainly for the probability measure P.

Brownian motion.

Fractional Brownian motion.

The filtration generated.

The filtration generated by the Brownian motion.

The sup between filtration generated by the Brownian motion and negligable set.
Enclidean real space of n-dimensional.

Set of real matrice n x d.

Space of integrable processes.

The set of natural numbers that do not contain zero.

Set of random variables, Fr-measurable and square integrable.

Set of twice differentiable function.

iii



c* (RY)

Rd

L2 (Q, F,P, H)
L2 (Q, F,P)

L2 (Q, F, H)

Set of twice differentiable functiont the real space of d-dimensional
Enclidean real space of d-dimensional

Set of random variables, a the completion of the measurable functions.
Set of random variables, F-measurable and square integrable.

Set of random variables, a the completion of the measurable functions.
Real numbers set.

The set of positive real numbers.

The set of negative real numbers.

The set of positive real numbers that do not include zero.

Integer numbers set.

Natural numbers set.

The conditional expectation with respect to F;.

The Malliavin derivative operator.

Set of negligible N.

Equal by definition.

Scalar product.
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General introduction

he processes have exhibited self-similarity across various fields such as physics, com-

Tmunications networks, and finance. Fractional Brownian Motion (FBM in short),
characterized by the Hurst parameter H € (0, 1), is a self-similar process. Specifically, B
shares the same distribution as o’ Bf for any o > 0. When H = 1/2 , it corresponds to
the standard Wiener process. For H > 1/2, FBM exhibits long-term dependence, which is
advantageous in emerging models. However, classical stochastic calculus theorems cannot
straightforwardly determine fractional integrals when B¥. Consequently, two distinct types
of integrals have been defined for FBM.
The first type is the Riemann—Stieltjes path integral, which is applicable when paths are
continuous (Young, 1936) [I3]. This integral behaves akin to Stratonovich integration but
presents challenges in practical applications.
The second type, introduced by Decreusefond and Ustiinel (1998) [2], is the Skorokhod inte-
gral, also known as the adjoint derivative integral within the framework of stochastic calculus.
It possesses the zero-mean property and can be expressed as a limit of Riemann sums de-
fined using Wick products. Its development was influenced by advancements in backward
stochastic differential equations (BSDEs) during the 1990s.
BSDEs were initially explored by Pardoux and Peng (1990) [10], who provided a probabilistic
interpretation of certain partial differential equations (PDEs). Pardoux and Zhang (1998) [11]
extended BSDEs, and Hu (2005) [4] and Hu and Peng (2009) [5] first investigated BSDEs in
relation to FBM, establishing existence and uniqueness under specific assumptions.
Maticiuc and Nie (2012) [§] improved upon these results by removing some of these restrictive

assumptions. They also introduced a theory of backward stochastic variational inequalities,



General introduction

further proving existence and uniqueness of solutions for reflected BSDEs driven by FBM.
Our work aims to delve into fractional generalized backward stochastic differential equations
driven by FBM, structured into three chapters :

The first chapter introduces concepts and fundamental properties of fractional Brownian
motion.

The second chapter establishes the existence and uniqueness of solutions for generalized
backward stochastic differential equations driven by standard Brownian motion.

The third chapter focuses on studying generalized BSDEs with respect to FBM, culmina-
ting in proofs of existence and uniqueness for solutions of generalized backward stochastic

differential equations with FBM.



Chapitre 1

Fractional Brownian motion and their

properties

1.1 Fractional Brownian motion

Définition 1.1 A fractional Brownian motion with parameter H € (0,1) is real centered

gaussian process noted {Bﬁ 't e R}deﬁned on a probabilite space (2, F,P) and verifying :

i) Bl =0;P—a.s.
i) B [[Bﬁﬂ =t vt e R,

iii) B has stationary increases.
Remark 1.1 The parameter H is called the hurst parameter.

Définition 1.2 Proposition 1.1 The fractional Brownian motion admits the function Ry

of R? in R defined by

(1P + 1 = 1t = sP").

N | =

RH (t, S) =

as a covariance function.
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Proof. We have

s

B|[Bf - BIT’| =B |[BI]’] + B |[BI]"] - 2B [B{ B,

and like

finally, we have

1.2 Existence of fractional Brownian motion

Définition 1.3 A function ¢ : R? — R is semi-definite and positive if for all (s, ..., sm) €

R™ and all (uy, ..., un) € R™ we have :

m m

ZZc(si,sj) wiu; > 0. (1.1)

i=1 j=1

Theorem 1.1 Let m : R — R and ¢ : R?> — R symmetric and positive semi-definite then

there exists a unique real gaussian process up to an equivalence of mean m and covariance

function c.

— Two real gaussian processes with the same mean and the same covariance function are
equivalent.

— Two real gaussian processes with the same mean and the same covariance function with

P — a.s trajectories. continuesto the right are indistinguishable.
Proposition 1.2 The function Ry is symmetric positive semi-definite and continuous.

Proof. Continuity and symmetry are immediate to demonstrate.
Let (s1,...,8,,) € R™ and (ug,...,u,) € R™ it is a eqution of showing [L.Ifor this we will

use the fact that the function s — ¢ (s) = exp (—c |3|2H) is the characteristic function of

4



Chaptre 1. Fractional Brownian motion and their properties

a sub-gaussian Sa.S random variable.therefore it is positive semi-definite function in s and

therefore :
V (ug, uj, 8i,85) € RY, ZZQS ;) wiu; >0, (1.2)
=0 j=0
for this, consider a mass at the origin (sg) equal to uy = —Zui,we then have :
i=1
DD dlsi—spuwuy == > |si — s wy, (1.3)
i=0 j=0 i=0 j=0

in fact, we have

m m m m
DD sl iy =3 il i Y uy
i i=1 j=1
m
- _Z‘Si‘zHUiUO
i=1
m
= - Z |5i - So|2H U;Uo,
i=0

likewise we have :

m m m
DD lsi sy = =Y Isi = so ™ wiug,
i1 =0

=1 j=1

which show Consider ¢ > 0 sufficiently, small, like} 7" ) > ™" uju; = 0,we have :

2H
<exp (—c |si — s ) - 1) (o

m
> lsi = s wiug + 0 (0),

Jj=0

[M:
1M
D
Z
—
L3
£D
|
k}CID
T
=
£
Q@
|
1Mz
.

Il
o

[

the resulta is demonstrated using [[.2] m
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1.3 Main properties for the trajectories of FBM

1.3.1 Self-similarity of fractional Brownian motion

Définition 1.4 A process {X; : t € R} is said to be self-similarity of order B > 0 if exists

B > 0 such that, for all o > 0, process :
{Xot,t € R} and {aX;,t € R},

have the same law.

Theorem 1.2 The fractional Brownian motion {BtH 1t e ]R} with self-similarity H is pa-

rameter of order H.

Proof. Let us set a > 0.it is obvious that { B, : ¢ € R} and {a” B/ : t € R} are two centered
gaussian processes. it is therefore sufficient to show that they have the same covariance

function

E [BIBI] = <|a5|2H + |at] — |at — a5|2H>
e (N e e §
o*'E BB

ot (]s|2H + ]t|2H — |t = s|2H) )

N RN RN = DN -

The following property shows that among gaussian processes characters increase stationary
ments and self-similarity are characteristic of fractional Brownian motion it also provides the

description of the H =0and H=1. m

Proposition 1.3 Let {X; : t € R} be a self-similar non-degenerate process of order H with

stationary increases and finite variance then :

- Xo=0,P—a.s..
- 0< H<1.



Chaptre 1. Fractional Brownian motion and their properties

— For every thing t € R and s € R,
Cov (X, X,) = VC””T(X” LI 41— fe = s
— For every thing t € R for every thing 0 < H < 1,
E[X;] = 0.

— For every thing t € R, for H =1, X; =tX; P—a.s.
— If moreover X is gaussian then it is indistinguishable from a fractional Brownian motion.

Proof. For every thing a > 0 we have :

£

X (a.0) £ a" X (0), (™ — 1) X (0) £ 0.

-~ SoX(0)=0P—a.s.

— By stationarity we have for all s > 0 and every thing ¢ > s :

B[X,. X, = = [B[X?] +E [X2] - B [(X, - X.)"]],

[B[X7] + B [X] -B[XL]].

N — N =

— By self-similarity we then have :

E[X;.X,] = % [tZHE [(X7] + "B [X]] - (t— )" E [Xfﬂ )

_ %RH (t,5)E[X?].
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— Let s > 0,%; > 0 and ¢ > 0.by minkowski we have :

E [[Xs+t1+t2 — Xs+t1]2:| 2 +E [[Xs+t]_ - Xs]2:| ? -
1 1 1
B[x2,,]} <B[x2])} +Bx2])}.
B [X7]
2

[t5 + 1] .

— Consequently we have H < 1. moreover, the finite variance implies H > 0.

— Let 0 < H < 1, we have :
EXi|=E[X,—Xi]= (2" —1)E[X}].

Consequently, we have E[X;] = 0 by self-similarity it is the same for all ¢ > 0 and as
E[X_i] =E[X1o] = E[Xi] — E[X3] = 0 the result is true, by self-similarity, for all ¢t € R.
— Let £t >0and s >0 be H=1, we have :

E[X.X,] = E [X7] .t.s.
E[X; — tXi] =E [X7] - 2B [ X, X4] + °E [X7] .

= (-2 +t*) E[X7] = 0.

- So X; = tX; P — a.s.for all £ by continuity of trajectories we conclude that for all ¢,
X;=tX; P—a.s.

— We apply theorem these are teo centered gaussian processes having the same covariance
function they are therefore indistinguishable.

1.3.2 Holder continuity and the modification of FBM

Theorem 1.3 Any fractional Brownian motion admits a modification whose trajectories
have a Hélder continuity of order v > H on any interval [0, p| with p > 0.

Proof. It suffices to show that, for all o > 0 there exists a constant C, such that , for all
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(s,t) € [0,p]":
E[|B — BY|"] < Colt —s*". (1.4)

Indeed, condition ensurse, by kolmogorov’s reqularlty theorem that{ Bt eo, p]} admits
a modification whose trajectories are Holder continuous of order v € [0, %] forall a >0
which shows the result condition follows from the stationarity of increments and self-

similarity :

BB - BI"] =B[[BL[],

= [t = s[""B[|B]],

hence the result with Co, = E [|Bff|*] < +o0. =

Theorem 1.4 The trajectories of fractional Brownian motion have P — a.s no Hélder conti-

nuity of order higher than H on any bounded interval.

1.3.3 Non-differentiability for the trajectories of FBM

Theorem 1.5 Let ty € R. The trajectories of fractional Brownian motion are P — a.s.not

differentiable in t.

t
t—to

BH—Bg

Proof. We want to show that Vi, € R, P [lim sup

t—to

= —|—oo} = 1. We return to the

casetg = 0 thanks to stationarity. We will therefore study the behavior of % when ¢ tends
towards ty.
In fact we will demonstrate non-differentiability on the right : We set : A (t) = [supogsgt ? > M ]
with M > 0

BH

PlA®t)] >P { Tt le :
th o
>P - }Bl ‘ > M|, by self-similarity

>P[|B| = Mt — P[|B{'| >0].

t—0
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Thus we have VM, P[A(t)] — 1

lim [—| =+00 P—a.s
t—0+

B H

lim|—| =400 P—a.s
t—0

Hence the theorem. m

1.3.4 The variation of orders p of fractional Brownian motion

Theorem 1.6 Consider the variation of order p of the fractional Brownian motion defined

by :
Vp=P— limV,,,
with
on
Vap=>_|B"(j2) = B" ((j—-1).27)|".
j=1
So we have :

0 if pH > 1,
Vp=4q +o0 if pH < 1,
E[|Bf|"] ifpH =1.

Proof. Let p € R™, consider the following sequences of random variables :

{Yn,p = 2P Z BT (j2) = BT (j-1) 27| :ne N*} .

And .
{ffn,p = 2*”2 (BT (j) =B (j—1))|":ne N*} :

Self-similarity ensures that B (j.2~") £ 2= BH (j) therefore , it is clear that for all n € N*,

Y, = EN/n,p.it is now sufficient to notice that the squence { B (j) — B (j — 1) : j € Z}is

10
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stationary and ergodic (like any sequence resulting from a gaussian process with continuous

spectral measurement) has
E |:§}n,pi| =FE HBﬂp] = CpH for all n € N*. (1.5)

The ergodic theorem tells us that we have :

i Lt i a.s L
Yop—cm and Y,,Scng SO ,p— Cpu. (1.6)

To demonstrate [1.5] it is enough to evoke stationarity :
~ 2”
B |V, =27 Y B[|(B () - B (- 1)[].
j=1

= T”ZE [|1B7 (1)]"],

=2"2"E [|B" (1)|"],

. L L . c ..
we have and like Y,, , =Y, ,we therfore have Y,, , = ¢, g as con is a deterministic constant,

pH—-1

this implies that Y, , 5 ¢p.n therefore the [27"] Vap 5 ¢p,y which demonstrates result.

Corollary 1.1 The fractional brownian motion is P — a.s.with unbounded variations on any
compact of R.

Proof. By self-similarity and by stationarity of the increments, it suffices to consider the
compact [0, 1] .considering the particular subdivision of [0,1] : {0,27", ..., j.27" ..., 1}, to have
the property of bounded variation (by b) it is necessary that V,, 7_)1) P — a.s.with b < co.but
this is mot possible because theorem provides us.with subsequence which almost surely

towards infinity (p=1, H<1). m

11
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1.4 Main properties of fractional Brownian motion

1.4.1 The increments of fractional Brownian motion

Définition 1.5 Given a stationary stochastic process {X; : t € R}, the sequence
{r(n) =E[X,1sXs] :n € N},

does not depend on s we then say that X .is long-term dependent if

neN*

Proposition 1.4 The increases of B are long-term dependent if and only if H > %

Proof. For all n € N* we have :

r(n) =E[B{ (B, - B})],
_ % (n-+ 1) — 202 (n — 1)1 (1.7)
=2H (2H — 1)n*"72 + o (n*77%), (1.8)

by We see that 7 (n) is the general term of a divergent series if and only if 2H — 2 > —1

negatively correlated if H > % [ |

Proposition 1.5 The increments of fractional Brownian motion are positively correlated if
% < H < 1, negatively correlated if 0 < H < % (we speak of anti-persistence) and independent

ifH =1

Proof. From we see that , if H = %, r(n) =0 for all n € N* and therefore the increases
are independent.on the other hand, by [1.8 we also see, at least for large n that r (n) < 0 as

soon as 2H (2H — 1) < 0 that is to say H < 5. m

12
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1.4.2 Non-markovian of fractional Brownian motion

Définition 1.6 Let {X; : t € R} be a gaussian process center.if X is a markov process , then

Vs <t <u with I (t,t) > 0,
P (s5,0)T (t,) = T (5,8) T (t,) (19)

where T is the covariance function of X , futhermore.if T (t,t) = 0 then {X,:s <t}and

{Xs: s>t} are independent.

Corollary 1.2 Let 0 < H <1 and H # 3.

1. The fractional brownian motion {Bf[ ‘te R} s not markovian.

2. The fractional brownian motion {B{J te R*} s not markovian.

Proof. If it were markovian , as we have Ry (0,0) = 0,the processes {Bﬁ ‘te R*} and
{BtH 't e R‘} would be independent , which is absurd.
If it were markovian , its covariance function would satisfy[I.9)and in particular , like 1 < 2 < 3

, we would have :

T (1432 —22H) 220 — 2 (14220 — 1) 1 (22H + 327 — 1),

24320 — 3.22H =,

after studying the function H +— 3 = 3%/ — 3.2 we see that this function only vanishes for
het H = %and for H = 1(case excluded by definition ).the only possible Case(H = %)Corresponds

to that of ordinary brownian motion which is markovian. =

1.4.3 Quadratic and semi-martingale variation of FBM

Définition 1.7 A process X it is wxith finite quadratic variation if there exists a process

denoted < X > such that , for all t for a series of subdivision A,, of [0,t] such that the step

13
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|A,| — 0 we have :

P—lim Y (X - X,) =< X >

n—oo
(tistiv1)€EAR

Theorem 1.7 Let {Bf[ ‘te R} be a with parameter H we have :

1
(BHy, =0,¥tc R  for H > 3

(B3), = t,Vt € R,

1
(B"), = 400,Vt € R*  for H < 3

Proof. Lett € R be assumed to be strictly positive fo fize the ideas.

Let{A,: 0=ty <t1 < ..<t,=t, ne N*} be a sequence of subdivisions of [0,t] whose step
2

|An| antends towards 0. Consider TA™ = (Blfzle — Btl;f) :

First case: H > % We will therefore show the convergence in L' of TtA" towards 0.

By stationarity of the inctements, we have :
n—1 9
An] H H

B [Tt } - ZE |:(Btk+1 - Btk> :|
k=0
n—1

= Z [trr —

k=0

n—1
<t — bl [t — e
k=0
n—1
<A [t — tl
k=0
S |An|2H71 t,
2H—1

as 2H — 1 > 0, we therefore have lim |A,,| t =0 and the resulta follows.
2nd case :H < % Let us shoz the divergence of T~ towards infinity. Let us call A the set of

subdivisions of [0,t] whose step tends towards 0 and consider :
n—1

I 2
( tht1 Btk)

k=0

= supE

14
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it

Therefore reduced by the subdivision T; = 5 we therefore have :

E>E

n—1 9
(ot s

> (2"+1) (%)M

1 1
2H
> (t ) ) (2n(2H1) + 2(2nH)) )

as we have 2H — 1 < 0 and 2H > 0 , we therefore :

A ey = 00 end - o =0,

which leads to the expected result. As a corollary we have the following result. m

Theorem 1.8 The fractional Brownian motion is not a semi-martingale relative to its na-
tural filtration.

Proof. Let’s assume it’s a semi-martingale. It is therefore continuous and zero at 0.B™ is
therefore written uniquely in the form BY = M +V where M is a continuous local martingale
zero at 0 and V a continuous process with finite variation zero in 0.

1st case :H > % We have < M >= < Bl >=0 Vt € R. So by virtue of the Doob-Meyer
decomposition M?— < M > is a continuous local martingale zero at 0 that is to say there

exists an increasing sequence {1, : n € N} of stopping times such that
limT, =400 P—a.s..

And

Vn, Vt, B [Mjr ] =E[Mj,.] =0.

Vn, Vt, MEATR =0, P—a.s..

15
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As T, tend to increase towards +o0o P — a.s., we have :

Vt, M} =0, P —a.s.

Therefore M? is indistingulshable from the null process.

Finally, Vt Bl =V, P — a.s.and therefore B is P — a.s.with finite quadratic variation,
absurd.

2nd case :H < % The quadratic variation of M would only be defined at 0, which contradicts
the hypothesis of continuity, absurd. The direct consequence of this theorem is the impossibility

of directly defining an Ité type integral for the fractional Brownian motion. ®

Définition 1.8 We call a Dirichlet process X a process which is decomposed as follows :

X =M+ A,

with M an integrable square martingale and A a process with zero quadratic variation.

Proposition 1.6 The fractional Brownian motion with parameter H is a Dirichlet process.

16



Chapitre 2

Generalized backward stochastic

differential equations

2.1 Notation and assumptions

Let T be a fixed final time Throughout this paper {W;,0 < ¢ < T'} will denote d-dimensional
Brownian motions (d > 1),defined on the complete probability spaces (€2, F,P). In addition,

we put

F2FV VN,

where N is the collection of P-null sets.In other words, the o-fields 7 = {F}, oy, are

P-complete.

Let {k;,0 <t < T} be a continuous, increasing and F;-adapted real-valued process such that

ko = 0. For any n > 1, we consider the following spaces of processes :

— The Banach space M?(F, [0, T]; R") of all equivalence classes (with respect to the measure
dP x dt) where each equivalence class contains an d-dimensional jointly measurable random

process {¢y, t € [0,T]} which satisfies:
1. (i) EfOT loi]2dt < o0;

(i) ¢ is Fi-measurable, for almost all ¢ € [0,7] Usually an equivalence class will

17



Chaptre 2. Generalized backward stochastic differential equations

beidentified with (one of) its members.

— The Banach space K*(F,[0,T]; R") of all (equivalence classes of) n-dimensional jointly
measurable random processes {¢;, € [0,7]} which satisfy :
1. () E [ |d?dk; < oo
(ii) ¢ is Fi-measurable, for almost all ¢ € [0, 7.

Here equivalence is taken with respect to the measure dIP x dk;.

— The set S*(F, [0, T]; R") of continuous d-dimensional random processes which satisfy :

1. (i) E ( sup ]@\2) < 00;
0<t<T
(i) ¢, is Fi-measurable, for almost all ¢ € [0, T.

We consider coefficients f and h with the following properties :

f:Qx[0,T] x R* x R — R",

h:Qx[0,T] x R" — R",

such that there exist F;-adapted processes {fi,h; : 0 < t < T} with values in [1, 4+00)
and with the property that for any (¢,v,z) € [0,7] x R® x R™4 and p > 0, the following

hypotheses are satisfied for some strictly positive finite constant C' :

(
f(t,y,z) and h(t,y) are F; — measurable processes,

[f(ty, 2)| < fe+ C(lyl + 1I21]),
h(t,y)] < he + Clyl,
| B (Jy e st + [ e ndiy < o0)

(Hy)

Moreover, we assume that there exist constants C' > 0, #; > 0 such that for any (y,21),

(yg, 22) e R™ x RnXd

(Z) |f<t,y1721) - f(t7y27 Z2>|2 < C(’yl - y2|2 + ||Zl - ZQHQ)?
(@) |h(t,y1) — h(t, y2)| < Bilyr — yal.

Throughout this work, (-, -) will denote the scalar product on R”, i.e.(x,y) := > " z;y;, for

(Hz)

all (z,y) € R" x R", Sometimes, we will also use the notation x*y to designate (x,y)
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Chaptre 2. Generalized backward stochastic differential equations

Remark 2.1 C' will always denote a finite constant whose value may change from one line

to the next, and which usually is (strictly) positive.

2.2 Existence and uniqueness theorem

Suppose that we are given a terminal condition ¢ € L?(Q, Fr, P) such that, for all 4 > 0,

E(et*r|£]?) < oo.

Définition 2.1 By definition, a solution to a generalized BSDE (&, f,h, k) is a pair (Y, Z)

€ S%(F, [0, T|;R™) x M2(F,[0,T]; R"™%) such that,for any 0 <t <T

T T T
Y;_§+/ f(s,SQ,ZS)ds+/ h(s,Ys)dks—/ Z.dW.. (2.1)
t t t

Remark 2.2 [f h satisfies(Hy)(ii) then, by changing the solutions and the coefficients f and

h, we may and do suppose that h satisfies a stronger condition of the form
(iv) (y1 —y2, h(t,y1) — h(t,y2)) < Balyr — 3/2’2, where By < 0.

Indeed, (Y}, Z;) solves the generalized BSDE in if and only if for every (some) n > 0 the
pair (}_/t, Z) = (™Y}, et Z,) solves an analogous generalized BSDE, with f and h

replaced respectively by :

fltiy,2) = @ f (teT My e ),

h(t,y) =e™h(t,e™y) —ny.

Then we can always choose 1 such that the function h satisfies (1v) with a strictly negative

[2.0ur main goal in this section is to prove the following theorem

Theorem 2.1 Under the above hypotheses (Hy) and (Hs) there exists a unique solution for
the generalized BSDE in

We will follow the same line of arguments as Pardoux and Peng [I0] did. So let us first

establish the result in for BSDEs where the coefficients f and h do not depend on (y, 2)
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Chaptre 2. Generalized backward stochastic differential equations

More precisely, let f, h:Q x [0,T] — R" satisfy (H;), and let £ and k be as before.Consider

the equation :

Y, =6+ /t " fe)ds + /t " (), — /t " g, (2.2)

Then we have the following result.

Theorem 2.2 Under hypothesis (Hy), there exists a unique solution to equation .

Proof. To show the existence, we consider the martingale

M, =E {5 T /0 (s + /0 ) h(s)dks/ft} , (2.3)

which is clearly a square integrable martingale by (Hy).As in Pardoux and Peng [10], an
extension of Ito’s martingale representation theorem yields the existence of a F,—progressively

measurable process (Z;) with values in R™*? such that

T T
E (/ ||Zt\|2dt> <oo and  Mgp=M, +/ Z,dW.. (2.4)
0 t

We subtract the quantity fOT f(s)ds+ fOT h(s)dks from both sides of the martingale m and

employ the martingale representation in[2.4] to obtain

Yt=§+/tTf(8)d8+/tTh(8)dks—/tTstW,

where

Y, =E {g + /OT F(s)ds + /OT h(s)dks/}j} .

It remains to prove the uniqueness and to show that Y; and Z; are Fi-measurable, the proof

is analogous to that of Pardouz and Peng [10] , and is therefore omitted. m

We will also need the following generalized It6 formula. In the proof we use arguments which

are similar to those used by Pardoux and Peng in [10].
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Chaptre 2. Generalized backward stochastic differential equations

Lemma 2.1 Let a € S*(F,[0,T|;R"), 3 € M*(F,[0,T|;R"), v € M?(F,[0,T];R™9),
0 € K*(F,[0,T];R™) and 6 € M*(F,[0,T]; R™?) be such that

T T T
o] = Qp ~|—/ B.ds —I—/ 0,dk, — / 0sdW.
0 0 t

Then, for any function ¢ € C*(R™,R)

t

6 (01) = b (a0) + / (76 (0) . Bo)ds + / (V6 (as) . 0.)dk,

t 1 t ) .
+ /O (Vo (as), 0,dWs) + 5 / Tr [ 6 (o) 3,0%] ds

0

In particular
t t t t
|0z|f = |ap|* + 2/ (o, Bs)ds + 2/ (avg, O5)dks + 2/ (avg, 05dWs) +/ 16,7 ds.
0 0 0 0
Next, we establish an a priori estimate for the solution of the BSDE in [2.1
Proposition 2.1 Let the conditions (Hy) and (Hs) be satisfied. If {(Y;, Z;);0 <t < T} is a

solution of BSDE then there exists a finite constant C, which depends on K, T and [,

such that for all p € R and A > 0 the following inequality holds

T T
E ( sup e#t+)\kt |}/1;/|2 +/ eut+)\kt ‘}/;5‘2 dkt +/ e#t+)\kt ||ZtH2dt>
0 0

0<t<T

T T
S CE (epT+)\kT |£‘2 +/ eut—i—)\kt |ft’2 dt _|_/ e,ut—&-)\kt |ht|2 dkt> '
0 0

Proof. Classical arguments, such as Doob’s inequality, justify the fact that

the processe fot etsTARs (Y, Z.dW,)) is uniformly integrable martingale, By m, we then have :

T T
E [e’““’“ v, * + / e | Z, )1 ds + A / e Yﬁdks}
t t
T
<E (eﬂT“’fT €] + 2/ et (Y f (s, Y, Zs))ds) (2.5)
t

T T
+E<2 / TN YL, h(s, VL)) dks + o / Calt |Y5|2d8)
t t
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Chaptre 2. Generalized backward stochastic differential equations

But from (H;), (H2) and the fact that

l—«
2ab < 2
w= 2c a+1—oz

it follows that there exists a constant ¢(«) such that

2(y. f (5,9, 2)) < el fl” +e(a) [yl (2.6)
2(y, b (s,9)) < 2Balyl* + ly| x |h|* < (262 + |5a]) [y[* + Whi (2.7)
Then, from Gronwall’s lemma, we obtain
T T

sup E (eﬂt“kt Yi)? + / et Y12 dley, + / st 7,17 ds) (2.8)

0<t<T 0

T T
< CE (eﬂT“’“T £” + / ets s | £ 1% ds + / et | |2 dks) . (2.9)

0 0

Finally, 2.1] follows from the Burkhslder-Davis—Gundy inequality and 2.8 =
Next, let (¢, f, h, k) and be two sets of data, each satisfying conditions (H;) and (Hs).Then

we have the following result :

Proposition 2.2 Let (Y, Z) (or (Y', Z"))denote a solution of the BSDE(E, f, h, k) (or BSDE(E', f', b/, k)

With the notation

(Yngth) (Y_Ylaz_Z,>£_§I7f_flah_h/7k_kl)7
it follows that for every u > 0, there exists a constant C' > 0 such that

— T —
E ( sup e“At|Yt|2+/ e“AtHZtHth)
0<t<T 0

- T
< CB(e™r|ef + / O\ f (LY Z2) — 1 (1Y, Z0)[2dt + /
0

0

T

" | (1, Y:) 2 d ‘é

t

T
" / e'“At ‘h (t> Y;f) — I (ta }/t)‘2 dk;%
0
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Chaptre 2. Generalized backward stochastic differential equations

here A, 2 \k|, + ki and |k|,is the total variation of the process k

Proof. The proof follows the same ideas and arguments as in Pardoux and Zhang [11], [2.1]

so we just repeat the main steps. From [2.1] we obtain

Y [?dA,

- T
etAt \Yt\Q + / ehAs
t

- T
Z,||?ds + u/ s
t

_ T _ T
2 [ (Yo Z) £ YL Z)dS) 12 [ e (Vi (s, Vo)
: t

(2.10)

T _ T _ _
+2/ e“ASQ/S,h(s,YS)—h’(s,ifs’))dk;—Q/ A Y,, Z,dW)
t t

Using conditions (H;), (Hs), and the algebraic inequality 2ab < a?/e + ¢b?, then from m

we obtain

_ T — T -
B (e + [ otz ds 4 [ e“ASYthAs)
t t

f(s,Ys, Zy)

2

ds

- T - T
SE(“AT|£|2+C/ e Yt\?ds+/ e
t t

1 T _ 2 1 T _
+—/ et 1h (s,Ys) dkz;+—/ et b (s5,Y,) " d | ks (2.11)

€ Ji M Jt

T - - T -
+u/ et |Y,)d |k +(252+€)/ e A5 Y, PdkL).
¢ " t
By choosing € = p + 2|f5|,and using Gronwall’s lemma, from we infer that
_ T —
E e“At|Yt|2+/ et || Z,||Pdt
0
— T _ 2
gCE(e"AT|£]2+/ e\ f (s,Y,, Zs)| ds (2.12)
0

2

dk.)

h(s,Y) > d |k, h(s,Y)

T T
+ / elLAs 4 / e,uAs
0 0

The proposition follows from [2.12] and the Burkholder-Davis—-Gundy inequality. =

Remark 2.3 If we denote by Bt the conditional expectation with respect to F;, then we can
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Chaptre 2. Generalized backward stochastic differential equations

show that for every p, A > 0, there exists a constant C' > 0 such that ¥t € [0, T

e#At+>\t|Y_t|2 — Eft (eﬂAt+)\t|Y_t|2>

2

- T —
< CE(e AT (g + / et f (5,Y,, Z)| ds

0
T
+ / e,LLAS +As
0

Theorem 2.3 The uniqueness is a consequence of[2.2. We now turn to the existence. In the

_ 2 T _
h(s,Ys)| dk. +/ e A |\ (5, Y|P d |ks|), P — almos tsurely.
0

space S*(F, [0, T]; R")x M?(F, [0, T]; R™) we define by recursion thesequence {(Y}', Z}) }izo1.2...-
as follows.Put Y, = 0,7 = 0.Gwen the pair, (Y}, Z}) we define f(s) = f(s,Y!, Z!) and

y g

hitY(s) = h(s,Y[). Now, applying (H,), we obtain
(B (s)] < he+ KV S R
and by using [2.1, we obtain

T ) 9 T T
E / et (hgt) " dky < CE ( / et hidk, + / et
0 0 0

By the same arguments one can show that f'™! also satisfy (Hy). Usmg we consider the

Y;’|2dk;s> < 0.

process { (YT, ZIt1)} as being the unique solution to the equation

T T T
Vit =¢+ / f(s, Y ZDds + / h(s, Y5 )dk, — / ZHdw, (2.13)
t t

t

We will show that the sequence {(Y;', Zi)} converges in the space S*(F, [0, T]; R™)x M?(F, [0, T]; R"™)

to a pair of processes (Y, Zy) which will be our solution. Indeed, let

i+l
A it i Si+1 A i+l i
Y, =Y Y, Zy =2y — 2y
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Chaptre 2. Generalized backward stochastic differential equations

Let pp > 0, A > 0 using Ito’s formula, we obtain

_i+1)2 T _it1)|2
eutJr/\kt Yt _'_/ e,uer)\ks ZS ds
t
T _itl o ' ' T _i+1)?
=2 / e Y (s, Y 2 — f(s. YN ZEY))ds — / erst ey | ds
t t
T i+l ' ' T _it12
2 [ e s, ) — bl YD) — g [ e | a,
t t
T il
-2 / ety o ZE N AW
t
Taking the expectation, we get
_i+1)2 T _it+12
BettAe Yy, | + B / erstARs 7 | ds
t
2B [ Y, (Y2 - f(s Y 2 s
t
T i+l A A T _it+12
w28 [ Y (s, V) — R YD), — [ eV,
t t
T _it+1)2
—uE/ ety ) ds.
t

With the same arguments as in the[2.9 of one can show that there exist constant C' > 0

such that
_i+1)2 T _i+1)2
E [ erttke Y, —i—E/ ehstAs Z, ds
t

T _i1)2 412
+E/ et L — OV Y, | ds+(A=0C)|Y, | dk,

t

1+ a T _i)2 T 2 T _i2
<——|CB / et Y 1 ds + CR / et Y L dkg + B / erstAkRs |\ 7 1 ds |
t t t
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Chaptre 2. Generalized backward stochastic differential equations

Next, we choose i and X\ in such a way that p — C = C and A\ — C' = C| to obtain

2

_it+1)2 T il
E | ey, +E / etk Z 0| ds
t

T _i+1)2 B T _i+12
+ CE / et Y | dkg 4 cB / et Y | ds

t t

1+a i T 12 T 12 T _12
g( 5 ) CE / et Y | ds + CR / et Y | dk, + B / erstARs |\ 7 1l ds|
t t t

Since (1+ «)/2 < 1, then {(Y}, Z})}iz1.. is a Cauchy sequence in the space
L2<f7 [O; T]; R”) X MQ(.F, [07 T]; RnXd)_

From the Burkhélder—Davis—Gundy inequality it follows that the sequence (Y}') is also a Cau-
chy sequence in the space S*(F,[0,T];R™) By completeness its limit (Y3, Z;) = lim (Y}, Z})
exists in the space S*(F,[0,T];R™) x M?*(F, [0, T]; R™*?). Passing to the limit in equation

[2.15, we obtain the result in[2.2.
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Chapitre 3

Generalized BSDEs with respect to

fractional Brownian motion

3.1 Assumptions and definition

Assume that

H;) 1) is a given constant

H,) b, 0 : [0,7] — R are continuous deterministic functions, o is differentiable and such

that o (t) # 0,t € [0, 7] .Note that, since
t t
ol =t 2H =1 [ [ =" 0 o (o) duds
0o Jo

we have
where

Let D be an open connected sub set of R? such that for some [ € C* (R?) .D = {z : [ (z) > 0}

and 0D = {z :l(z) =0} and |VI(z)| =1 for x € OD.
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

Let o € D and let (1, A;) be solution of the following reflected SDE with respect to fractional

brownian motion

nt:no+/0tb(s)ds+/Ota(s)dBf+/Otvl(ns)dAs. (3.1)

By a solution of we mean a pair of processes such that n € D | A is a nondecreasing
process, Ay = 0 and fot (ny —a)dA; <0 for any a € D.

The existence of such a problem was shown in lions and sznitman (1984) [7] for a standard
Brownian motion and in ferrante and rovira (2011) [3] for FBM and a set D = (0, 00)

From Pardoux and Zhang (1998) [11] we know that for H = 1/2 and for each v,¢ > 0 there
exists C (v, t)such that Fe’d < C (v,t).

We consider the following generalized BSDE with respect to FBM :

T T T
Yt=f+/ f(s,ns,Ys,Zs)dH/ g(s,ns,Ys)dAs—/ ZdBY 1€ 0.T),  (3.2)
t t

t

where A is an increasing process, Ay = 0,we suppose that for some v > 0

H;) ¢ = h(ny) for some function h with bounded derivative, Ee"T |¢]* < oo.

Hy) f:0,7T]xRxRxR—-Randg:[0,7] xRxR — R are continuous functions and

there exists a constant L > 0 such that for all t € [0,T], x,%,y,9, 2, % € R,
|ty 2) = f(E,4,9, )] < Lle— 2|+ |y — gl + |z = £]),

g (t.2,y) =gt &,9)| < Ly =4,
T T
E (/ e | (¢,0,0,0)|* dt +/ e g (t,,m, 0)| dAt> < 00.
¢ 0

Now we introduce the following space

Vior) = {Y =¢(,n);0¢ C;j ([0,T] x R), g—f is bounded, t € [O,T]} ,

28



Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

~ H
and by V', yydenote the completion of Vi rjunder the following norm

T 1/2 T 1/2
||Y||U=(/ t”—lEevAtwdt) :(/ tQH‘lEe”Atlcb(t,m)lzdt) .
0 0

Définition 3.1 A solution of a generalized BSDE with respect to FBM associated with date

& f,9,M\) is a pair (Y, Z) = (Y3, Zt)te[o,T] of processes satisfymg and such that

~1/2 ~H

3.2 Existence and uniqueness result

Theorem 3.1 Assume (Hy) and (Hs). The exists a unique solution of [3.4 moreover, for all

tel0,77,

T T
E (e”At Y|? + / M H1 1 7 17 ds +/ e Y, |2 dAs> <CoO(tT),
t t

where

T T
o(t.1) =B (e g+ [ et wldss [ on
t t

T
£(5,0,0,0) ds +/ oo g(s,,ns,0)|2d/\s> .
t

Proof. First we will show the second part of above theorem.Assume that (Y, Z) is a solution
of B.2by C we will denote a constant which may vary from line,

From the Ito formula

T T
M |Y)? = v |g)? — / 2¢"MY, dY, — / vetls
t

t

T T
= VM |g]? — 2/ MY, dY, — v/ e
t t

T T
= "M e” + 2 / Y f (5,15, Yer Z5) + 2 / et Yg (5,15, Ys) dA
t t

2 N N T
t

v, [ et (17)2as)
¢ ds s

Y, dA,.

T T T
- 2/ e”ASYSZSdBf - 2/ e ]D)fYSZSds - v/ eV
t t t
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

It is known thaf DY, = (6 (s) /o (s)) Z,{3.1]moreover by [3.1] there exists M > 0 such that
for all t € [0,T),t* 771 /M <6 (t) /o (t) < Mt2H-L,

By lipschitz continuity of f and g we have

2uf (t,m,y,2) <2yl |f (tn,y,2) — f(£,0,0,0) + f(t,0,0,0)]

2uf (t,n,y,2) <42yl L(n|+ |yl +|2]) + 2|yl |f (£,0,0,0)]

we hava 2ab < a® + b? so:
2L1y| |n| < L2 |yl* + [nl” and 2L |y| y| < 2L |y|* and 2L |y| |2| = 2L¥> 2] ML |y| <
MI2|yP? | s2H-1

i + = |2[* and 21y| | f (¢,0,0,0)| < |y* + |f (£,0,0,0)[
We find

2uf (t,m,y,2) < L |y|> + |n]*> + 2L |y’

M2 |y|2 g2H-1 ) ) )
+ g2H—1 + M 2"+ |y|” + | f (£,0,0,0)]
ML? 1 o
= (L2 +2L+ g2H-1 + 1) ’y|2 + ’0‘2 + M‘92H ' |Z’2 + |f (t,0,0,0)F

and

2yg (t,n,y) < 2yl g (t,n,y) —g(t,n,0)|+ 2|y |g(t,n,0)]
<2L|y[> +y|>+ g (t,n,0))

2yg (t,n,y) < 2L+ 1) [y|* + |g (t.n,0)|?

Therefore,we can write

T T
2
E (e”At |Y,5|2 + v/ Vs |YS|2dAS + M/ eVhs g2H -1 |ZS|2 ds>
t t
2

Y,|? ds

r ML ;
g@(t,T)JrE/t (L2+2L+W+1)6AS

Yi|? dA,.

1 T T
+—E/ e”A832H1|ZS|2ds+(2L+1)E/ Vs
M t t
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

Choosing v — (2L — 1) > 1 = v > (2L + 2) we get

T
(s [
t

T ML2
g@(t,T)JrE/ (L2+2L+—+1) evhs
t

g2H-1

1 T
Yi[?dA, + M/ et g |Zs]2ds>
t

Y, | ds. (3.3)

By gronwall’s inequality,

2

A 2 4 ML A 2
evt|Y;| S@(t,T}—‘r/ (L2+2L+m+1)evs|n| ds
t S

T2-2H _ 42-2H
2 —-2H } ’

Ee"™ |Y;|* < © (t,T) exp {(L2 +2L+1) (T —t)+ ML?

and by [3.3] also

T T
E (/ M g?H=1 7% ds +/ evhs
t t

Now we will prove the existence and uniqueness of the solution of [3.2]the method used here
~1/2 ~H

is similar to that in the we will show that the the mapping I' : Vg X Vigp —

~1/2 ~ H

Vier X Vipmgiven by (U, V) — T'(U,V) = (Y, Z) is a contraction where(Y, Z)is a solution

YslgdAs) <CO(tT).

of the following generalized BSDE :

T T T
Yt:§+/ f(s,nS,Us,VS)ds—i—/ g(s,nS,Us)dAs—/ stBf.
t t t

Let £ € N and ¢; = %T,i = 1,....k + 1.first we will show that I' is a contraction on
~1/2 ~ H ,

~1/2 , ~H .
Vi X Vi take U0 € By pand V,V € by gy let T (U, V) = (Y, Z) and T (U, V) —
(Y,Z’)andlet AY =Y -V, AZ =72, AU=U—U and AU =V — V.
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

From the Ito formula, for ¢ € [ty, T ],

T
Y = Y = et g 2 / MY, - Y] dY,
t

T A 2 g A d 2
_ vAs dA, — | e d
of e Pan = [ et (1R as)
T T T d
/ SAAY. AV, / e | AYL P dA, / o L (1 £1 ds)
t t t d
oz

e Ig]* 2

[

"M |AY;? =
T T
UM |]? — 2/ e"MAY, dY, — v/ e
t t
T T
— "M |¢)° + 2/ "M AY, f (5,15, Us, Vi) + 2/ "M AY,q (s,ns, Uy) dA,
t t
SN g o (s) 2 g 2
—2/ e’ SYSZSdBSH—Q/ vhs |AZ,| ds—v/ e |AY|? dA,.
t t o (s) t
similarly as before

Q

T T
E ( YA AY | + v/ M |AY,|? dA, + 2/ e’
t t (s)

_ QE/tTe”ASAYS (f (5,15, Us, Va) — f <$ ns,US,V>> ds

T
+2E/ e AY, (9 (s,ms,Us) — g (8,ms,Us)) dAs
t
Note that 24y (/ (t,1,u,0) — f (t,17,,)) < 2L|Ay| (|Au] + |Av]) and 28y (g (1,7, 4) — g (1,7, 0)) <

2L |Ay||Aul < L2/B|Ayl" + B |Aul
choose v — [?/B3 > 1= v = L?/f + 1.Then, and by the schwarz inequality we obtain

9 (T
+ M/ eVl g2H -1 |AZS|2d5)
t
(3.4)

T
E(e”At |AYt\2+/ eV
t
T
<2L/ Bev |Ay;|(|AUS|+|AV;|>ds+5E/ oA AT dA
t t

g vA 2\1/2 g vA
< 2L (Ee s 5|) ) ds + fE el
t t

(EevAt |AY;’2)1

(3.5)

; 2)1/2 (Eev/\s (

/% and a (t) = BE ftT eVl

Denote z (t) =
N2 P ds+alt) te [t T,

22 (1) < 2L /t 2 (s) (Be™ (
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Applying [3.2] to the above inequality we get

¢_+¢_/ PN ds,

and therefore for ¢ € [t, T

)

T
Ee'™ |AY;|* < 2a (t) 4+ 4L> (/ (e (
t

Now we can compute

T T 2
[ e eds <@ -n) <2a s ([ (e a0, as) )
tr t
T 1 , 1/2 2
+ 8L2 (T — tk) (/t ($2H1 . EGUASSQH—I |A‘/;| ) dS)

2a (ty) + 8L% (T — t;) B [ e |AU,
S (T - tk:) 8L2(T2*2H—ti_2H) T le\ H 1 ) =C (T — tk;) © (tky T) .
s Eftk e?hs s |AV]

And similarly

| C
/ —32H*1x2 (s)ds < Y (T2_2H — tz_QH) O (4, T),
tg

Where

T T
O (t, T) =E (/ Vs o7 (ds + dA,) +/ eVt LAY )P ds) :
tE ty
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

Using above inequalities, from [2.4] we deduce

T
E (/ evAs evASSQHfl |AZS‘2 dS)
tE tg

T T
As As
<E ( / e’ / e’ S)
tx tg

T 1 1
T CE/ 6”ASB AY;|” (1 + m) + B (JAU)? + s*771 AV,)?) ds
t

T
2(ds+dAs)+/

<C(T —t)0 (ty, T) + CBO (t, T ﬁ/ ( 2;_1)ds
C <6 + <1 + %) (T —t,) + % (77" — ti—QH)) O (t,T).

Choosing /3 such that C5 < 1/4 and taking k large enough that C' (8 + 1) (T —t) /5 < 1/4
and C (7?72 — 772"} /B3 < 1/4 we obtain

T
E(/ eVl (|AY;|2(ds+dAs)+32H‘1|AZS|2ds)> O (t,T).

173

HkIOJ

~ 1/2 ~ H
Since I' is a contraction, (Y™, Z") is a cauchy sequence in Vi, 7 x V7, 7 where (Y°, Z°%) €
~ 1/2 ~ H
V[tk,T} X V[tk7T]7and forn >0

T T T
1@"“:5+/ f(Sms,}Q”,Z?)der/ g (5,70, Y") dA, —/ ZrdpH,
t t t

~1/2 ~ H
Then there exists (Y, Z) € Vy, 71 X V|, nybeing a limit of (Y, Z"), i.e

n—oo

T
lim B (evAt Y —Vi* + / e (V! = Y|P+ 82170 20 — 7)) ds) =0.
173

e Y — Y, > dA, = 0.therefore for any t € [ty, T

) T
Moreover lim E ft
n—oo k

T T
lim (—Y”+1+§+/ f(s,ns,ié”,Z?)dSvL/ g(s,ms,Y, )d/\)
t t

n—oo

T T
=—Y+5+/ f(S,m,Ys,Zs)der/ g (s,75, Y2) dA, in L2 (£, F, P),
t t
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

and Z"1y ) — Z 1y in L2 (Q, F, H) .we show that (Y, Z) satisﬁe on [ty, T'].the next step
is to solve the equation on [t;_1, ;] .with the same arguments, repeating the above technique
we obtain a uniqueness of the solution of generalized BSDE with respect to FBM on the

whole interval [0,7]. =
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Conclusion

n this work we study the generalized backward stochastic differential equation driven
Iby fractional Brownian motion. First of all we defined fractional Brownian motion
and studied its properties in all its details and quotes from the existence and uniqueness
of solutions of fractional generalized backward stochastic differential equation. The idea of
proving using the fixed point theorem thus showing that there exists a unique solution in the
same space. We note that pretty much of the technical difficulties coming from the fractional
brownien motion, since B¥ with H > % is not a semimartingale, we cannot use the classical

theory of stochastic calculus.
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Annex : Some mathematical tools

Theorem 3.2 (Fired point) Let (E,d) be a complete metric space and ¢ : E — E a
contractiog map, i.e lipschitzian with ratio k < 1.then, ¢ admit a unique point fixred a € E

such that :p (a) = a.

Définition 3.2 Young inequality : We say that two numbers p,q > 0, are conjugated in

the sense of Young, if :

Young inequality says that if p and ¢ are conjugate and if a,a,b > 0,So

ab b
ab < — + —.
p q

with equality if and only if a a? = b7.
For example ,if p = ¢ = 2 we find the inequality

2ab < a® + b.

Holder inequality. Holder inequality says that if p,q > 0 ,are conjugate in the sense of

Young, then

Theorem 3.3 (Gronwall’s inequality) Let I denote an interval of the real line of the

form [a,00) or [a,b] or a,b) with a < b. Let a, f and u be real-valued functions defined on
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Annex : Some mathematical tools

1. Assume that 5 and u are continuous and that thenegative part of o is integrable on every
closed and bounded subinterval of I.

If B is non-negative and if u satisfies the integral inequality

u(t)goe(t)+/tﬂ(s)u(s)ds Vtel,

then

u(t)§a(t)+/ta(s)6(s)exp(/:B(r)dr)ds tel.

a

Proof. Define

v(s):exp(—/atﬁ(r)dr)/asﬁ(r)u(r)dr, sel.

Using the product rule, the chain rule,the derivative of the exponential function and the

fundamental theorem of calculus, we obtain for the derivative

V (s) = (u(s)—/asﬁ(r)u(r)dr>5(s)exp (—/:B(r)dr), sel,

where we used the assumed integral inequality for the upper estimate.Since S and the expo-
nential are non-negative, this gives an upper estimate for the derivative of v(s) Since v(a) = 0,

integration of this inequality from a to ¢ gives

w0 < [[a@ e (- [s0ar) i

Using the definition of v(¢) from the firs step,and then this inequality and the functional

equation of the exponential function,we obtain

/atﬁ(s)u(s)ds:exp (/atﬁ(r)dr)v(t)
S/atoz(s)ﬁ(s)exp (/atﬁ(r)dr—/:ﬁ(r)dr) ds.

Substituting this result into the assumed integral inequality gives Gronwall’s inequality. =
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Annex : Some mathematical tools

Theorem 3.4 (Burkhdélder-Davis-Gundy inequality "B-D-G inequality” ) For all

p > 0, there exist positive constants to c, and C,, such that, for any continuous local martin-

gale X = (X}),5¢, zero at 0
cp=E [<X7X>§o] < [sup |Xt|p:| < GplE [<X7X>§O] :
>0

Proposition 3.1 Let (Y, Z) € Vi x Vg be the solution of BSDE

—dY () = f(t, (), Y (1), Z(t))dt — Z(H)SBY (t),t € [0, T],

constructed in the assumptions (Hy) — (Hy) be satisfied Then the BSDE.

Y (t) :§+/t f(s,n(s),Y(s),Z(s))ds/t Z(s)dB"(s), t € [0,T].

1 ~H
011 X Vior- Then for almost t € (0,7

has a solution (Y, Z) € v

]D)fY(t):%

Proof. From
Yk-i-l(t) = g +/t f(S, 77(‘9)7 Yk(s)’ Zk(s))ds - /t Zk-i-l(s)dBH(S)? te [O,T],

1 ~H
0,71 X Vo) satisties

we know that (Y, Zy) € v

Yeor () :g+/t f(s,n(s),Yk(s),Zk(s))ds—/t Ziaa(s)5BH(s), t € 0,T],k > 1.

~H

We recall that Y (t) = ug(t,n(t)), Zi(t) = v(t, n(t)), t € [0,T] and Zy(t) = o (t) Luy(t,n(t)).
Since (Y, Z;) — (Y, Z) in XN/;,T] X Vo), there exists a subsequence, by convenience still
s

denoted by {(Yk, Zk) }ren, such that for arbitrary p > 0, we have that klim E|Yi(s) — Y (s)?
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(s)|” =0, for almost all s € [p, T].As a process with the parameter

=0 and klim E|Zk(s)

DYelt) = -ult.n(0)o(r) 1)
_o(r) 2([0.T)x9) (r)
= a(t)Z 1 ()10 (r r) " o) Z(t)Ljoq(r),

as k — oo, for almost all ¢ € [p, T

On the other hand, since L?([0,T]) C H, we conclude that the convergence also holds in
3 Z(8) 110, (r)

L2(Q, F,P;'H).Consequently, in L2(Q2, F,P; H) D, Y (t) = lim D,Y(t) = hm

gg;Z( )1j0.4(r),a.e.t € [p, T], and, thus,
H o(t)
DY (¢ qbt—rDY( )dr _t)Z<t>’ a.e.t € [p,T],
o
where G(t) is defined by
/gbt—r r)dr,t € [0,T].
Considering that p > 0 is arbitrary, we have
5(t)
oy (1) = 29 7 et T
t ( ) O'(t) ( )a a.¢e, € [Oa ]a

which completes the proof. m
N cat a martingale in ILP

,,,,,

Theorem 3.5 (Doob’s inequality) Vp > 1. if { Xy}, _
p

p

—1) B[ XxP].

B[ XyP] < BIX7] < (p P

with X* := max (| Xq], ..., | Xn]) -
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Remark 3.1 The function 6 defined by

t
5 (1) = / 6(t — r)o(r)dr, t € [0,T).
0
can be written in the following form :
1
5(t) = H(2H — 1)12H-1 / (1 — w2 20 (tu)du, t € [0,T].
0

Moreover, we observe that ||o||? is continuously differentiable with respect to t, and
2 .
(@) 3 (lol?) = 20(6)5(1) > 0,2 € (0.7],

(b) for a suitable constant M > 0, -t*#71 < 5(t)o(t) < Mt*H71 ¢ € [0,T).

Lemma 3.1 Let a,a, : [0,T] — R , be three nonnegative Borel functions such thata is

1
loc

decreasing and o, 8 € L ([0,00]). If x : [0,T] — R 4 is a continuous function such that

22(t) < alt) + 2/t a(s)x(s)ds + Z/t B(s)x?(s)ds, t €[0,7],

then

2(8) < /a(t) exp (/tTﬁ(s)ds) + /tTa@) exp (/tsﬁ(r)dr> ds,  tel0T].

Remark 3.2 Now from
22(t) < 2\/§/t (s) [B (L2U(s)]? + L2V ()] + | f(s,1(5),0,0)2)] 2 ds, ¢ [0, T]

and the above lemma, by setting
2 2 2 2 2\71/2
a(s) = V3 [B (L2|U(s)]* + L2V (s)]* + | f(s,n(5),0,0)]*)] " ds, s € [0,T],
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we have

1/2

<\/_/ LZ\U \2+L2|V(S)|2+]f(s,n(s),0,0)|2)} ds, tel0,T],

and, hence, for any g > 0,

B )] <V [ (L EUGP L 8V + (615 9),0.007] ) ds
1/2 e P 1/9
< VL / (eﬁs [PV ()P]" + g [ PRIV ()T ) ds
+ \/g/t e—ﬁs [GQBSE (|f(8,77(8),0,())|2)}1/2 ds

T 1/2 T 1/2
< V3L (/ eﬁsds) </ 6253E|U(5)|2d5)

t ¢

T e fs s g 2H—1 _28s 2 s
+ V3L </t st) </t s K|V (s)| ds)

T 1/2 T 1/2
+V3 </ 6_2’88d8> </ 62BSE|f(s,T](S),O,O)\2dS) : (3.6)
t t
Let us use the following notations :
T 1/2 T 1/2
A = </ €2BSE|U(8)|2d8) , By = </ SQH_1€2’BSE|V(S)|2d8) , and
t t
T 1/2
ci= ([ e Bireae.00ps) e
t

Since LT e 2P ds = % (6*2& — efzﬁT) we have for « > 0 with 0 < a« < 2—2H < 1 and

B >0,

T _—28s T @ T
28t e (28 (s —1)) 1 1
¢ /t Sl g/t a4 S g | s < oo

This allows to conclude from[3.4 that

9L2 9L [T (s—1t)"
25t 2 < 2 2 2
APRY (1) < 23 At+(2ﬁ)“/t o ds Bi +—5C (3.7)
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Consequently, there exists C(3) with 5lim C(B) =0, s.t.
V'Y (t)2dt < C(B) (47 + B} + C7),  t€[0,T]. (3.8)

Applying the Ité formula to |Y (t)|?, taking the expectation B|Y (t)|?and then deter mining
the function de d (eQﬁtE|Y(t)]2) and using DIY (t) = %Z(t}, the Lipschitz property of f
as well as we obtain (Recall for a suitable constant M > 0, ﬁtﬂ{*l < % < M2H-L

t € [0,T].for the definition of M)

T T
2
EPE|Y (1)) + 25/ P RIY (s)|2ds + M/ s*H=1e205) 7(s) | ds
t t

< 2/ PR (Y (s)] (LU ()] + LIV (s)] + | (s,n(s),0,0)])] ds

t

<9r /t B (%Y (s)P)] 72 [E (U (s)P)] 2 ds

va [ B (o)) P s @ ) as

1/2

Lol / B (25°1Y (5)P)] 72 [E (*°| £ (5, m(s), 0, 0) )] /2 ds

<or / [C(8) (42 + B2 + C2)] Y2 [B (54U (s)?)] V2 ds

T 1/2
+2L / {#0(6) (42 + B2 + 03)] [B (2055211 (s)[2)] V* ds
t

" 2/t (@) (24 B2+ )] [B (| (s.n(5).0.0) )]V ds

T2—2H _ t2—2H

<2L\/C(B) (A + B: + Cy) <\/T—tAt +\/ 5 9H B, + x/T—tCt> .

Thus, the above inequality and[3.§ allow to conclude inequality

T T
sup e E|Y (1)|? +/ P E|Y (s)|2ds +/ s* 1205 7(s) [ ds
0 0

t€[0,T]

T T T
< C(B) (/o P E|U(s) 2 —i—/o P12 |V (5)|2 +/0 e2ﬁs|f(s,77(5),0,0)|2d5) )
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Abstract

In this work, we studied the existence and unigueness of solutions of
the generalized backward stochastic differential equation with
fractional Brownian motion, using fixed-point theory. The pretty
much of the technical difficulties coming from the fractional brownien

- - - 1. - -
motion, since B¥with H > 5 Is not a semi martingale; we cannot use
the classical theory of stochastic calculus.

Keywords:

Backward stochastic differential equation, fractional Brownian
motion, generalized backward stochastic differential equation, fixed-
point theory.




I 4 I 4
Résume :
Dans ce travail, nous avons etudié I'existence et l'unicité des solutions
de I'équation différentielle stochastique rétrograde généralisée avec
mouvement Brownien fractionnaire, en utilisant la théorie du point
fixe. La majeure partie des difficultés techniques proviennent du
mouvement Brownien fractionnaire, puisque B¥avec H >

1 : . .
p n'est pas une semi — martingale, nous ne pouvons pas utiliser la
théorie classique du calcul stochastique.

Mots clés :

Equation différentielle stochastique rétrograde, mouvement Brownien
fractionnaire, équation différentielle stochastique rétrograde
généralisée, théorie du point fixe.
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