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Abbreviations and Notations

The di¤erent abbreviations and notation used throughout this dissertation are explained

below :

(
;F ;P) Probability space

SDE Stochastic di¤erential equation.

BSDE Backward stochastic di¤erential equation.

BM Brownian motion.

FBM Fractional Brownian motion.

P� a:s Almost certainly for the probability measure P.

Bt Brownian motion.

BHt Fractional Brownian motion.

Ft The �ltration generated.

FW
t The �ltration generated by the Brownian motion.

FW
t _N The sup between �ltration generated by the Brownian motion and negligable set.

Rn Enclidean real space of n-dimensional.

Rn�d Set of real matrice n� d:

L1 Space of integrable processes.

N� The set of natural numbers that do not contain zero.

L2 (
;FT ;P) Set of random variables, FT -measurable and square integrable.

C2 (Rn;R) Set of twice di¤erentiable function.
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C2
�
Rd
�

Set of twice di¤erentiable functiont the real space of d-dimensional

Rd Enclidean real space of d-dimensional

L2 (
;F ;P;H) Set of random variables, a the completion of the measurable functions.

L2 (
;F ;P) Set of random variables, F-measurable and square integrable.

L2 (
;F ;H) Set of random variables, a the completion of the measurable functions.

R Real numbers set.

R+ The set of positive real numbers.

R� The set of negative real numbers.

R�+ The set of positive real numbers that do not include zero.

Z Integer numbers set.

N Natural numbers set.

EFt The conditional expectation with respect to Ft:

DHs The Malliavin derivative operator.

N Set of negligible N:

:= Equal by de�nition.

h�; �i Scalar product.
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General introduction

The processes have exhibited self-similarity across various �elds such as physics, com-

munications networks, and �nance. Fractional Brownian Motion (FBM in short),

characterized by the Hurst parameter H 2 (0; 1), is a self-similar process. Speci�cally, BH�t
shares the same distribution as �HBHt for any � > 0. When H = 1=2 , it corresponds to

the standard Wiener process. For H > 1=2, FBM exhibits long-term dependence, which is

advantageous in emerging models. However, classical stochastic calculus theorems cannot

straightforwardly determine fractional integrals when BH : Consequently, two distinct types

of integrals have been de�ned for FBM.

The �rst type is the Riemann�Stieltjes path integral, which is applicable when paths are

continuous (Young, 1936) [13]. This integral behaves akin to Stratonovich integration but

presents challenges in practical applications.

The second type, introduced by Decreusefond and Üstünel (1998) [2], is the Skorokhod inte-

gral, also known as the adjoint derivative integral within the framework of stochastic calculus.

It possesses the zero-mean property and can be expressed as a limit of Riemann sums de-

�ned using Wick products. Its development was in�uenced by advancements in backward

stochastic di¤erential equations (BSDEs) during the 1990s.

BSDEs were initially explored by Pardoux and Peng (1990) [10], who provided a probabilistic

interpretation of certain partial di¤erential equations (PDEs). Pardoux and Zhang (1998) [11]

extended BSDEs, and Hu (2005) [4] and Hu and Peng (2009) [5] �rst investigated BSDEs in

relation to FBM, establishing existence and uniqueness under speci�c assumptions.

Maticiuc and Nie (2012) [8] improved upon these results by removing some of these restrictive

assumptions. They also introduced a theory of backward stochastic variational inequalities,
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General introduction

further proving existence and uniqueness of solutions for re�ected BSDEs driven by FBM.

Our work aims to delve into fractional generalized backward stochastic di¤erential equations

driven by FBM, structured into three chapters :

The �rst chapter introduces concepts and fundamental properties of fractional Brownian

motion.

The second chapter establishes the existence and uniqueness of solutions for generalized

backward stochastic di¤erential equations driven by standard Brownian motion.

The third chapter focuses on studying generalized BSDEs with respect to FBM, culmina-

ting in proofs of existence and uniqueness for solutions of generalized backward stochastic

di¤erential equations with FBM.
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Chapitre 1

Fractional Brownian motion and their

properties

1.1 Fractional Brownian motion

Dé�nition 1.1 A fractional Brownian motion with parameter H 2 (0; 1) is real centered

gaussian process noted
�
BHt : t 2 R

	
de�ned on a probabilite space (
;F;P) and verifying :

i) BH0 = 0; P� a:s:

ii) E
h�
BHt
�2i

= jtj2H ; 8t 2 R:

iii) BH has stationary increases.

Remark 1.1 The parameter H is called the hurst parameter.

Dé�nition 1.2 Proposition 1.1 The fractional Brownian motion admits the function RH

of R2 in R de�ned by

RH (t; s) =
1

2

�
jsj2H + jtj2H � jt� sj2H

�
;

as a covariance function.
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Chaptre 1. Fractional Brownian motion and their properties

Proof. We have

E
h�
BHt �BHs

�2i
= E

h�
BHt
�2i

+ E
h�
BHs
�2i� 2E �BHt BHs � ;

and like

BHt �BHs
L
= BHt�s;

�nally, we have

E
h�
BHt �BHs

�2i
=
1

2

�
jsj2H + jtj2H � jt� sj2H

�
:

1.2 Existence of fractional Brownian motion

Dé�nition 1.3 A function c : R2 �! R is semi-de�nite and positive if for all (s1; :::; sm) 2

Rm and all (u1; :::; um) 2 Rm we have :

mX
i=1

mX
j=1

c (si; sj)uiuj � 0: (1.1)

Theorem 1.1 Let m : R �! R and c : R2 �! R symmetric and positive semi-de�nite then

there exists a unique real gaussian process up to an equivalence of mean m and covariance

function c.

� Two real gaussian processes with the same mean and the same covariance function are

equivalent.

� Two real gaussian processes with the same mean and the same covariance function with

P� a:s trajectories. continuesto the right are indistinguishable.

Proposition 1.2 The function RH is symmetric positive semi-de�nite and continuous.

Proof. Continuity and symmetry are immediate to demonstrate.

Let (s1; :::; sm) 2 Rm and (u1; :::; um) 2 Rm it is a eqution of showing 1.1for this we will

use the fact that the function s �! � (s) = exp
�
�c jsj2H

�
is the characteristic function of
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Chaptre 1. Fractional Brownian motion and their properties

a sub-gaussian S�S random variable.therefore it is positive semi-de�nite function in s and

therefore :

8 (ui; uj; si; sj) 2 R4;
mX
i=0

mX
j=0

� (si � sj)uiuj � 0; (1.2)

for this, consider a mass at the origin (s0) equal to u0 = �
mX
i=1

ui;we then have :

mX
i=0

mX
j=0

� (si � sj)uiuj = �
mX
i=0

mX
j=0

jsi � sjj2H uiuj; (1.3)

in fact, we have

mX
i=1

mX
j=1

jsij2H uiuj =
mX
i=1

jsij2H ui
mX
j=1

uj

= �
mX
i=1

jsij2H uiu0

= �
mX
i=0

jsi � s0j2H uiu0;

likewise we have :
mX
i=1

mX
j=1

jsjj2H uiuj = �
mX
j=0

jsi � s0j2H uiu0;

which show 1.3.consider c > 0 su¢ ciently, small, like
Pm

i=0

Pm
j=0 uiuj = 0,we have :

mX
i=0

mX
j=0

exp
�
�c jsi � sjj2H

�
uiuj =

mX
i=0

mX
j=0

�
exp

�
�c jsi � sjj2H

�
� 1
�
uiuj

= �c
mX
i=0

mX
j=0

jsi � sjj2H uiuj + � (c) ;

the resulta is demonstrated using 1.2.
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Chaptre 1. Fractional Brownian motion and their properties

1.3 Main properties for the trajectories of FBM

1.3.1 Self-similarity of fractional Brownian motion

Dé�nition 1.4 A process fXt : t 2 Rg is said to be self-similarity of order � > 0 if exists

� > 0 such that, for all � > 0, process :

fX�t; t 2 Rg and
�
��Xt; t 2 R

	
;

have the same law.

Theorem 1.2 The fractional Brownian motion
�
BHt : t 2 R

	
with self-similarity H is pa-

rameter of order H.

Proof. Let us set � > 0:it is obvious that
�
BH�t : t 2 R

	
and

�
�HBHt : t 2 R

	
are two centered

gaussian processes. it is therefore su¢ cient to show that they have the same covariance

function

E
�
BH�tB

H
�s

�
=
1

2

�
j�sj2H + j�tj2H � j�t� �sj2H

�
=
1

2
�2H

�
jsj2H + jtj2H � jt� sj2H

�
:

E
�
�HBHt �

HBHs
�
=
1

2
�2HE

�
BHt B

H
s

�
=
1

2
�2H

�
jsj2H + jtj2H � jt� sj2H

�
:

The following property shows that among gaussian processes characters increase stationary

ments and self-similarity are characteristic of fractional Brownian motion it also provides the

description of the H = 0 and H = 1:

Proposition 1.3 Let fXt : t 2 Rg be a self-similar non-degenerate process of order H with

stationary increases and �nite variance then :

�X0 = 0; P� a:s::

� 0 < H � 1:
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Chaptre 1. Fractional Brownian motion and their properties

� For every thing t 2 R and s 2 R;

Cov (Xt; Xs) =
V ar (X1)

2

n
jtj2H + jsj2H � jt� sj2H

o
:

� For every thing t 2 R;for every thing 0 < H < 1;

E [Xt] = 0:

� For every thing t 2 R; for H = 1; Xt = tX1 P� a:s:

� If moreover X is gaussian then it is indistinguishable from a fractional Brownian motion.

Proof. For every thing a > 0 we have :

X (a:0)
L
= aHX (0) ;

�
aH � 1

�
X (0)

L
= 0:

� So X (0) = 0 P� a:s:

� By stationarity we have for all s > 0 and every thing t > s :

E [Xt:Xs] =
1

2

�
E
�
X2
t

�
+ E

�
X2
s

�
� E

�
(Xt �Xs)

2�� ;
=
1

2

�
E
�
X2
t

�
+ E

�
X2
s

�
� E

�
X2
t�s
��
:

� By self-similarity we then have :

E [Xt:Xs] =
1

2

h
t2HE

�
X2
1

�
+ s2HE

�
X2
1

�
� (t� s)2H E

�
X2
1

�i
;

=
1

2
RH (t; s)E

�
X2
1

�
:
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Chaptre 1. Fractional Brownian motion and their properties

� Let s > 0; t1 > 0 and t2 > 0.by minkowski we have :

E
�
[Xs+t1+t2 �Xs]

2� 12 � E �[Xs+t1+t2 �Xs+t1 ]
2� 12 + E �[Xs+t1 �Xs]

2� 12 :
E
�
X2
t1+t2

� 1
2 � E

�
X2
t2

� 1
2 + E

�
X2
t1

� 1
2 :

E [X2
1 ]

2
[t1 + t2]

H � E [X2
1 ]

2

�
tH2 + t

H
1

�
:

� Consequently we have H � 1: moreover, the �nite variance implies H > 0.

� Let 0 < H < 1, we have :

E [X1] = E [X2 �X1] =
�
2H � 1

�
E [X1] :

Consequently, we have E [X1] = 0 by self-similarity it is the same for all t > 0 and as

E [X�1] = E [X1�2] = E [X1]�E [X2] = 0 the result is true, by self-similarity, for all t 2 R:

� Let t > 0 and s > 0 be H = 1, we have :

E [XtXs] = E
�
X2
1

�
:t:s:

E [Xt � tX1] = E
�
X2
t

�
� 2:t:E [XtX1] + t

2E
�
X2
1

�
:

=
�
t2 � 2t2 + t2

�
E
�
X2
1

�
= 0:

� So Xt = tX1 P � a:s:for all t by continuity of trajectories we conclude that for all t;

Xt = tX1 P� a:s:

�We apply theorem these are teo centered gaussian processes having the same covariance

function they are therefore indistinguishable.

1.3.2 Hölder continuity and the modi�cation of FBM

Theorem 1.3 Any fractional Brownian motion admits a modi�cation whose trajectories

have a Hölder continuity of order  > H on any interval [0; p] with p > 0:

Proof. It su¢ ces to show that, for all � > 0 there exists a constant C� such that , for all

8



Chaptre 1. Fractional Brownian motion and their properties

(s; t) 2 [0; p]2 :

E
���BHt �BHs ���� � C� jt� sj�H : (1.4)

Indeed, condition 1.4 ensurse, by kolmogorov�s regularlty theorem that
�
BHt : t 2 [0; p]

	
admits

a modi�cation whose trajectories are Hölder continuous of order  2
�
0; �H�1

�

�
for all � > 0

which shows the result condition 1.4 follows from the stationarity of increments and self-

similarity :

E
���BHt �BHs ���� = E ���BHt�s���� ;

= jt� sj�H E
���BH1 ���� ;

hence the result with C� = E
���BH1 ���� < +1:

Theorem 1.4 The trajectories of fractional Brownian motion have P� a:s no Hölder conti-

nuity of order higher than H on any bounded interval.

1.3.3 Non-di¤erentiability for the trajectories of FBM

Theorem 1.5 Let t0 2 R. The trajectories of fractional Brownian motion are P � a:s.not

di¤erentiable in t0:

Proof. We want to show that 8t0 2 R; P
�
lim sup

t�!t0

���BHt �BHt0t�t0

��� = +1� = 1: We return to the
caset0 = 0 thanks to stationarity. We will therefore study the behavior of

���BHtt ��� when t tends
towards t0:

In fact we will demonstrate non-di¤erentiability on the right : We set :A (t) =
h
sup0�s�t

���BHtt ��� �Mi
with M > 0

P [A (t)] � P
�����BHtt

���� �M� ;
� P

�
tH

t

��BH1 �� �M� ; by self-similarity

� P
���BH1 �� �M:t1�H� !

t!0
P
���BH1 �� � 0� :

9



Chaptre 1. Fractional Brownian motion and their properties

Thus we have 8M; P [A (t)] !
t!0+

1

�
lim
t!0+

����BHtt
���� = +1 P� a:s:

_

lim
t!0

����BHtt
���� = +1 P� a:s::

Hence the theorem.

1.3.4 The variation of orders p of fractional Brownian motion

Theorem 1.6 Consider the variation of order p of the fractional Brownian motion de�ned

by :

Vp = P� lim
n!1

Vn;p;

with

Vn;p =
2nX
j=1

��BH �j:2�n��BH �(j � 1) :2�n���p :
So we have :

V p =

8>>>><>>>>:
0 if pH > 1,

+1 if pH < 1,

E
���BH1 ��p� if pH = 1.

Proof. Let p 2 R+�; consider the following sequences of random variables :

(
Yn;p =

�
2�n
�pH�1 2nX

j=1

��BH �j:2�n��BH �(j � 1) :2�n���p : n 2 N�) :
And (

s
Y n;p = 2

�n
2nX
j=1

���BH (j)�BH (j � 1)���p : n 2 N�) :
Self-similarity ensures thatBH (j:2�n) L= 2�nH :BH (j).therefore , it is clear that for all n 2 N�,

Yn;p
L
= :

s
Y n;p:it is now su¢ cient to notice that the squence

�
BH (j)�BH (j � 1) : j 2 Z

	
is

10



Chaptre 1. Fractional Brownian motion and their properties

stationary and ergodic (like any sequence resulting from a gaussian process with continuous

spectral measurement) has

E
hs
Y n;p

i
= E

���BH1 ��p� := cp;H for all n 2 N�: (1.5)

The ergodic theorem tells us that we have :

s
Y n;p

L1! cp;H and
s
Y n;p

a:s! cp;H so n;p
L! cp;H . (1.6)

To demonstrate 1.5, it is enough to evoke stationarity :

E
hs
Y n;p

i
= 2�n

2nX
j=1

E
����BH (j)�BH (j � 1)���p� ;

= 2�n
2nX
j=1

E
���BH (1)��p� ;

= 2�n2nE
���BH (1)��p� ;

we have 1.6 and like Yn;p
L
=

s
Y n;pwe therfore have Yn;p

L! cp;H as con is a deterministic constant,

this implies that Yn;p
P! cp;H therefore the [2�n]

pH�1
:Vn;p

P! cp;H which demonstrates result.

Corollary 1.1 The fractional brownian motion is P� a:s.with unbounded variations on any

compact of R:

Proof. By self-similarity and by stationarity of the increments, it su¢ ces to consider the

compact [0; 1] :considering the particular subdivision of [0; 1] : f0; 2�n; :::; j:2�n; :::; 1g, to have

the property of bounded variation (by b) it is necessary that Vn;1 ! b
n!

P� a:s:with b <1:but

this is not possible because theorem 1.6 provides us.with subsequence which almost surely

towards in�nity (p = 1; H < 1) :

11



Chaptre 1. Fractional Brownian motion and their properties

1.4 Main properties of fractional Brownian motion

1.4.1 The increments of fractional Brownian motion

Dé�nition 1.5 Given a stationary stochastic process fXt : t 2 Rg ; the sequence

fr (n) = E [Xn+sXs] : n 2 N�g ;

does not depend on s we then say that X .is long-term dependent if

X
n2N�

r (n) = +1:

Proposition 1.4 The increases of BH are long-term dependent if and only if H > 1
2
:

Proof. For all n 2 N� we have :

r (n) = E
�
BH1

�
BHn+1 �BHn

��
;

=
1

2

h
(n+ 1)2H � 2n2H (n� 1)2H

i
; (1.7)

= 2H (2H � 1)n2H�2 + O
n!1

�
n2H�2

�
; (1.8)

by 1.8,we see that r (n) is the general term of a divergent series if and only if 2H � 2 > �1

negatively correlated if H > 1
2
.

Proposition 1.5 The increments of fractional Brownian motion are positively correlated if

1
2
< H < 1; negatively correlated if 0 < H < 1

2
(we speak of anti-persistence) and independent

if H = 1
2
:

Proof. From 1.7 we see that , if H = 1
2
; r (n) = 0 for all n 2 N� and therefore the increases

are independent.on the other hand, by 1.8 we also see, at least for large n that r (n) < 0 as

soon as 2H (2H � 1) < 0 that is to say H < 1
2
:

12



Chaptre 1. Fractional Brownian motion and their properties

1.4.2 Non-markovian of fractional Brownian motion

Dé�nition 1.6 Let fXt : t 2 Rg be a gaussian process center.if X is a markov process , then

8s < t < u with � (t; t) > 0;

� (s; u) � (t; t) = � (s; t) � (t; u) ; (1.9)

where � is the covariance function of X , futhermore.if � (t; t) = 0 then fXs : s � tgand

fXs : s � tg are independent.

Corollary 1.2 Let 0 < H < 1 and H 6= 1
2
:

1. The fractional brownian motion
�
BHt : t 2 R

	
is not markovian.

2. The fractional brownian motion
�
BHt : t 2 R+

	
is not markovian.

Proof. If it were markovian , as we have RH (0; 0) = 0;the processes
�
BHt : t 2 R+

	
and�

BHt : t 2 R�
	
would be independent , which is absurd.

If it were markovian , its covariance function would satisfy 1.9 and in particular , like 1 < 2 < 3

, we would have :

8>>>><>>>>:
RH (1; 3)RH (2; 2) = RH (1; 2)RH (2; 3) ;

1
2

�
1 + 32H � 22H

�
:22H = 1

2

�
1 + 22H � 1

�
:1
2

�
22H + 32H � 1

�
;

2 + 32H � 3:22H = 0;

after studying the function H 7! 3 = 32H � 3:22H , we see that this function only vanishes for

hetH = 1
2
and forH = 1(case excluded by de�nition ).the only possible case

�
H = 1

2

�
corresponds

to that of ordinary brownian motion which is markovian.

1.4.3 Quadratic and semi-martingale variation of FBM

Dé�nition 1.7 A process X it is xith �nite quadratic variation if there exists a process

denoted < X > such that , for all t for a series of subdivision �n of [0; t] such that the step

13



Chaptre 1. Fractional Brownian motion and their properties

j�nj ! 0 we have :

P� lim
n!1

X
(ti;ti+1)2�n

(Xti+1 �Xti)
2 =< X >t :

Theorem 1.7 Let
�
BHt : t 2 R

	
be a with parameter H we have :

hBHit = 0;8t 2 R for H >
1

2
;

hB 1
2 it = t;8t 2 R;

hBHit = +1;8t 2 R� for H <
1

2
:

Proof. Let t 2 R be assumed to be strictly positive fo �xe the ideas.

Let f�n : 0 = t0 < t1 < ::: < tn = t; n 2 N�g be a sequence of subdivisions of [0; t] whose step

j�nj antends towards 0. Consider T�nt =
Pn�1

k=0

�
BHtk+1 �B

H
tk

�2
:

First case: H > 1
2
: We will therefore show the convergence in L1of T�nt towards 0.

By stationarity of the inctements, we have :

E
�
T�nt

�
=

n�1X
k=0

E
��
BHtk+1 �B

H
tk

�2�

=
n�1X
k=0

jtk+1 � tkj2H

�
n�1X
k=0

jtk+1 � tkj jtk+1 � tkj2H�1

� j�nj2H�1
n�1X
k=0

jtk+1 � tkj

� j�nj2H�1 t;

as 2H � 1 > 0, we therefore have lim
n!1

j�nj2H�1 t = 0 and the resulta follows.

2nd case :H < 1
2
: Let us shoz the divergence of T�nt towards in�nity. Let us call A the set of

subdivisions of [0; t] whose step tends towards 0 and consider :

E = sup
A
E

"
n�1X
k=0

�
BHtk+1 �B

H
tk

�2#
:

14



Chaptre 1. Fractional Brownian motion and their properties

Therefore reduced by the subdivision �i = it
2n
we therefore have :

E � E
"
n�1X
i=0

�
BH�i �B

H
�i�1

�2#

� (2n + 1)
�
t

2n

�2H
�
�
t2H
�
�
�

1

2n(2H�1)
+

1

2(2nH)

�
;

as we have 2H � 1 < 0 and 2H > 0 , we therefore :

lim
n!1

1

2n(2H�1)
=1 and lim

n!1

1

2(2nH)
= 0;

which leads to the expected result. As a corollary we have the following result.

Theorem 1.8 The fractional Brownian motion is not a semi-martingale relative to its na-

tural �ltration.

Proof. Let�s assume it�s a semi-martingale. It is therefore continuous and zero at 0:BH is

therefore written uniquely in the form BH =M+V whereM is a continuous local martingale

zero at 0 and V a continuous process with �nite variation zero in 0.

1st case :H > 1
2
: We have < M >t= < B

H
t >= 0 8t 2 R: So by virtue of the Doob-Meyer

decomposition M2� < M > is a continuous local martingale zero at 0 that is to say there

exists an increasing sequence fTn : n 2 Ng of stopping times such that

limTn = +1
n!1

P� a:s::

And

8n; 8t; E
�
M2
t^Tn

�
= E

�
M2
0^Tn

�
= 0:

8n; 8t; M2
t^Tn = 0, P�a:s::

15



Chaptre 1. Fractional Brownian motion and their properties

As Tn tend to increase towards +1 P� a:s., we have :

8t; M2
t = 0, P� a:s:

Therefore M2 is indistingulshable from the null process.

Finally, 8t BHt = Vt P � a:s.and therefore BH is P � a:s.with �nite quadratic variation,

absurd.

2nd case :H < 1
2
: The quadratic variation of M would only be de�ned at 0, which contradicts

the hypothesis of continuity, absurd. The direct consequence of this theorem is the impossibility

of directly de�ning an Itô type integral for the fractional Brownian motion.

Dé�nition 1.8 We call a Dirichlet process X a process which is decomposed as follows :

X =M + A;

with M an integrable square martingale and A a process with zero quadratic variation.

Proposition 1.6 The fractional Brownian motion with parameter H is a Dirichlet process.

16



Chapitre 2

Generalized backward stochastic

di¤erential equations

2.1 Notation and assumptions

Let T be a �xed �nal time Throughout this paper fWt; 0 � t � Tg will denote d-dimensional

Brownian motions (d � 1);de�ned on the complete probability spaces (
;F ;P). In addition,

we put

Ft
4
= FW

t _N ;

where N is the collection of P-null sets.In other words, the �-�elds F = fFtg0�t�T , are

P-complete.

Let fkt; 0 � t � Tg be a continuous, increasing and Ft-adapted real-valued process such that

k0 = 0. For any n � 1, we consider the following spaces of processes :

� The Banach spaceM2(F ; [0; T ];Rn) of all equivalence classes (with respect to the measure

dP� dt) where each equivalence class contains an d-dimensional jointly measurable random

process f't; t 2 [0; T ]g which satis�es:

1. (i) E
R T
0
j'tj2dt <1;

(ii) 't is Ft-measurable, for almost all t 2 [0; T ] Usually an equivalence class will

17



Chaptre 2. Generalized backward stochastic di¤erential equations

beidenti�ed with (one of) its members.

� The Banach space K2(F ; [0; T ];Rn) of all (equivalence classes of) n-dimensional jointly

measurable random processes f't;2 [0; T ]g which satisfy :

1. (i) E
R T
0
j'tj2dkt <1;

(ii) 't is Ft-measurable, for almost all t 2 [0; T ].

Here equivalence is taken with respect to the measure dP� dkt:

� The set S2(F ; [0; T ];Rn) of continuous d-dimensional random processes which satisfy :

1. (i) E
�
sup
0�t�T

j�tj2
�
<1;

(ii) �t is Ft-measurable, for almost all t 2 [0; T ]:

We consider coe¢ cients f and h with the following properties :

f : 
� [0; T ]� Rn � Rn�d ! Rn;

h : 
� [0; T ]� Rn ! Rn;

such that there exist Ft-adapted processes fft; ht : 0 � t � Tg with values in [1;+1)

and with the property that for any (t; y; z) 2 [0; T ] � Rn � Rn�d, and � > 0, the following

hypotheses are satis�ed for some strictly positive �nite constant C :

(H1)

8>>>>>>><>>>>>>>:

f(t; y; z) and h(t; y) are Ft �measurable processes;

jf(t; y; z)j � ft + C(jyj+ kzk);

jh(t; y)j � ht + Cjyj;

E
�R T

0
e�ktf 2t dt+

R T
0
e�kth2tdkt <1

�
:

Moreover, we assume that there exist constants C > 0; �1 > 0 such that for any (y1; z1),

(y2; z2) 2 Rn � Rn�d

(H2)

8><>: (i) jf(t; y1; z1)� f(t; y2; z2)j2 � c(jy1 � y2j2 + kz1 � z2k2);

(ii) jh(t; y1)� h(t; y2)j � �1jy1 � y2j:

Throughout this work, h�; �i will denote the scalar product on Rn, i.e.hx; yi :=
Pn

i=1 xiyi, for

all (x; y) 2 Rn � Rn; Sometimes, we will also use the notation x�y to designate hx; yi

18



Chaptre 2. Generalized backward stochastic di¤erential equations

Remark 2.1 C will always denote a �nite constant whose value may change from one line

to the next, and which usually is (strictly) positive.

2.2 Existence and uniqueness theorem

Suppose that we are given a terminal condition � 2 L2(
;FT ;P) such that, for all � > 0,

E(e�kT j�j2) <1:

Dé�nition 2.1 By de�nition, a solution to a generalized BSDE (�; f; h; k) is a pair (Y; Z)

2 S2(F; [0; T ];Rn)�M2(F; [0; T ];Rn�d),such that,for any 0 � t � T

Yt = � +

Z T

t

f(s; Ys; Zs)ds+

Z T

t

h(s; Ys)dks �
Z T

t

ZsdWs: (2.1)

Remark 2.2 If h satis�es(H2)(ii) then, by changing the solutions and the coe¢ cients f and

h, we may and do suppose that h satis�es a stronger condition of the form

(iv) (y1 � y2; h(t; y1)� h(t; y2)) � �2jy1 � y2j2; where �2 < 0.

Indeed,(Yt; Zt) solves the generalized BSDE in 2.1 if and only if for every (some) � > 0 the

pair (
�
Yt;

�
Zt) = (e

�ktYt; e
�ktZt) solves an analogous generalized BSDE, with f and h

replaced respectively by :

�
f (t; y; z) = e�ktf

�
t; e��kty; e��ktz

�
;

�
h (t; y) = e�kth

�
t; e��kty

�
� �y:

Then we can always choose � such that the function
�
h satis�es (iv) with a strictly negative

�2.Our main goal in this section is to prove the following theorem

Theorem 2.1 Under the above hypotheses (H1) and (H2) there exists a unique solution for

the generalized BSDE in 2.1

We will follow the same line of arguments as Pardoux and Peng [10] did. So let us �rst

establish the result in 2.1 for BSDEs where the coe¢ cients f and h do not depend on (y; z)
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More precisely, let f; h : 
� [0; T ] ! Rn satisfy (H1), and let � and k be as before.Consider

the equation :

Yt = � +

Z T

t

f(s)ds+

Z T

t

h(s)dks �
Z T

t

ZsdWs: (2.2)

Then we have the following result.

Theorem 2.2 Under hypothesis (H1), there exists a unique solution to equation 2.2.

Proof. To show the existence, we consider the martingale

Mt = E
�
� +

Z T

0

f(s)ds+

Z T

0

h(s)dks=Ft

�
; (2.3)

which is clearly a square integrable martingale by (H1):As in Pardoux and Peng [10], an

extension of Itô�s martingale representation theorem yields the existence of a Ft�progressively

measurable process (Zt) with values in Rn�d such that

E
�Z T

0

kZtk2 dt
�
<1 and MT =Mt +

Z T

t

ZsdWs: (2.4)

We subtract the quantity
R T
0
f(s)ds+

R T
0
h(s)dks from both sides of the martingale in 2.3 and

employ the martingale representation in 2.4 to obtain

Yt = � +

Z T

t

f(s)ds+

Z T

t

h(s)dks �
Z T

t

ZsdW;

where

Yt = E
�
� +

Z T

0

f(s)ds+

Z T

0

h(s)dks=Ft

�
:

It remains to prove the uniqueness and to show that Yt and Zt are Ft-measurable, the proof

is analogous to that of Pardoux and Peng [10] , and is therefore omitted.

We will also need the following generalized Itô formula. In the proof we use arguments which

are similar to those used by Pardoux and Peng in [10].
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Lemma 2.1 Let � 2 S2(F ; [0; T ];Rn); � 2 M2(F ; [0; T ];Rn);  2 M2(F ; [0; T ];Rn�d),

� 2 K2(F ; [0; T ];Rn) and � 2M2(F ; [0; T ];Rn�d) be such that

�1 = �0 +

Z T

0

�sds+

Z T

0

�sdks �
Z T

t

�sdWs:

Then, for any function � 2 C2(Rn;R)

� (�1) = � (�0) +

Z t

0

h5� (�s) ; �sids+
Z t

0

h5� (�s) ; �sidks

+

Z t

0

h5� (�s) ; �sdWsi+
1

2

Z t

0

Tr [���(�s) �s�
�
s ] ds

In particular

j�j2t = j�0j
2 + 2

Z t

0

h�s; �sids+ 2
Z t

0

h�s; �sidks + 2
Z t

0

h�s; �sdWsi+
Z t

0

k�sk2 ds:

Next, we establish an a priori estimate for the solution of the BSDE in 2.1

Proposition 2.1 Let the conditions (H1) and (H2) be satis�ed. If f(Yt; Zt); 0 � t � Tg is a

solution of BSDE 2.1, then there exists a �nite constant C, which depends on K; T and �2,

such that for all � 2 R and � > 0 the following inequality holds

E
�
sup
0�t�T

e�t+�kt jYtj2 +
Z T

0

e�t+�kt jYtj2 dkt +
Z T

0

e�t+�kt kZtk2 dt
�

� CE
�
e�T+�kT j�j2 +

Z T

0

e�t+�kt jftj2 dt+
Z T

0

e�t+�kt jhtj2 dkt
�
:

Proof. Classical arguments, such as Doob�s inequality, justify the fact that

the processe
R t
0
e�s+�kshYs; ZsdWs)i is uniformly integrable martingale, By 2.1, we then have :

E
�
e�t+�kt jYtj2 +

Z T

t

e�s+�ks kZsk2 ds+ �
Z T

t

e�s+�ks jYsj2 dks
�

� E
�
e�T+�kT j�j2 + 2

Z T

t

e�s+�kshYs; f (s; Ys; Zs)ids
�

(2.5)

+ E
�
2

Z T

t

e�s+�kshYs; h(s; Ys)idks + �
Z T

t

e�s+�ks jYsj2 ds
�
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But from (H1); (H2) and the fact that

2ab � 1� �
2c

a2 +
2c

1� �b
2; c > 0;

it follows that there exists a constant c(�) such that

2hy; f (s; y; z)i � c jfsj2 + c (�) jyj2 +
1� �
2

kzk2 ; (2.6)

2hy; h (s; y)i � 2�2 jyj2 + jyj � jhsj2 � (2�2 + j�2j) jyj2 +
1

j�2j
h2s; (2.7)

Then, from Gronwall�s lemma, we obtain

sup
0�t�T

E
�
e�t+�kt jYtj2 +

Z T

0

e�s+�ks jYtj2 dkt +
Z T

0

e�s+�ks kZtk2 ds
�

(2.8)

� CE
�
e�T+�kT j�j2 +

Z T

0

e�s+�ks jfsj2 ds+
Z T

0

e�s+�ks jhsj2 dks
�
: (2.9)

Finally, 2.1 follows from the Burkhölder�Davis�Gundy inequality and 2.8.

Next, let (�; f; h; k) and be two sets of data, each satisfying conditions (H1) and (H2).Then

we have the following result :

Proposition 2.2 Let (Y; Z) (or (Y 0; Z 0))denote a solution of the BSDE(�; f; h; k) (or BSDE(�0; f 0; h0; k0)))

With the notation

(
�
Y;

�
Z;

�
�;f; ;

�
h;
�
k) = (Y � Y 0; Z � Z 0; � � �0; f � f 0; h� h0; k � k0) ;

it follows that for every � > 0, there exists a constant C > 0 such that

E

 
sup
0�t�T

e�At
�
jYtj2 +

Z T

0

e�At
�

kZtk2dt
!

� CE(e�AT
�
j�j2 +

Z T

0

e�At jf (t; Yt; Zt)� f 0 (t; Yt; Zt)j2 dt+
Z T

0

e�At jh (t; Yt)j2 d
�����k����

t

+

Z T

0

e�At jh (t; Yt)� h0 (t; Yt)j2 dk0t);

22



Chaptre 2. Generalized backward stochastic di¤erential equations

here At
�
=

�
jkjt + k0t and

�
jkjtis the total variation of the process

�
k

Proof. The proof follows the same ideas and arguments as in Pardoux and Zhang [11], 2.1,

so we just repeat the main steps. From 2.1 we obtain

e�At
�
jYtj2 +

Z T

t

e�As
�

kZsk2ds+ �
Z T

t

e�As
�
jYtj2dAs

= e�AT
�
j�j2 + 2

Z T

t

e�Ash
�
Ys � f (s; Ys; Zs)� f 0 (s; Y 0s ; Z

0
s) dsi+ 2

Z T

t

e�Ash
�
Ys; h (s; Ys)idks

(2.10)

+ 2

Z T

t

e�Ash
�
Ys; h (s; Ys)� h0 (s; Y 0s )idk0s � 2

Z T

t

e�Ash
�
Ys;

�
ZsdWsi

Using conditions (H1); (H2), and the algebraic inequality 2ab � a2=" + "b2, then from 2.10

we obtain

E

 
e�At

�
jYtj2 +

Z T

t

e�As
�

kZsk2ds+ �
Z T

t

e�As
�
jYtj2dAs

!

� E(�AT
�
j�j2 + C

Z T

t

e�As
�
jYtj2ds+

Z T

t

e�As
�����f (s; Ys; Zs)����2 ds

+
1

"

Z T

t

e�As
�����h (s; Ys)����2 dk0s + 1

�

Z T

t

e�As jh (s; Ys)j2 d
�����ks���� (2.11)

+ �

Z T

t

e�As
�
jYsj2d

�����k����
s

+ (2�2 + ")

Z T

t

e�As
�
jYsj2dk0s):

By choosing " = �+ 2j�2j,and using Gronwall�s lemma, from 2.11 we infer that

E

 
e�At

�
jYtj2 +

Z T

0

e�As
�

kZsk2dt
!

� CE(e�AT
�
j�j2 +

Z T

0

e�At
�����f (s; Ys; Zs)����2 ds (2.12)

+

Z T

0

e�As jh (s; Ys)j2 d
�����ks����+ Z T

0

e�As
�����h (s; Ys)����2 dk0s)

The proposition follows from 2.12 and the Burkhölder�Davis�Gundy inequality.

Remark 2.3 If we denote by EFt the conditional expectation with respect to Ft, then we can
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show that for every �; � > 0, there exists a constant C > 0 such that 8t 2 [0; T ]

e�At+�t
�
jYtj2 = EFt

 
e�At+�t

�
jYtj2

!

� CE(e�AT+�T
�
j�j2 +

Z T

0

e�As+�s
�����f (s; Ys; Zs)����2 ds

+

Z T

0

e�As+�s
�����h (s; Ys)����2 dk0s + Z T

0

e�As+�s jh (s; Ys)j2 d
�����ks����); P� almos tsurely.

Theorem 2.3 The uniqueness is a consequence of 2.2. We now turn to the existence. In the

space S2(F ; [0; T ];Rn)�M2(F ; [0; T ];Rn) we de�ne by recursion thesequence f(Y it ; Zit)gi=0;1;2;::.

as follows.Put Y 0t = 0; Z
0
t = 0.Given the pair, (Y

i
t ; Z

i
t) we de�ne f

i+1(s) = f(s; Y is ; Z
i
s) and

hi+1(s) = h(s; Y is ). Now, applying (H1), we obtain

jhi+1(s)j � hs +KjY is j
�
= hi+1s ;

and by using 2.1, we obtain

E
Z T

0

e�ks
�
hi+1s

�2
dks � CE

�Z T

0

e�ksh2sdks +

Z T

0

e�ks
��Y is ��2 dks� <1:

By the same arguments one can show that f i+1 also satisfy (H1). Using 2.2, we consider the

process f(Y i+1t ; Zi+1t )g as being the unique solution to the equation

Y i+1t = � +

Z T

t

f(s; Y is ; Z
i
s)ds+

Z T

t

h(s; Y is )dks �
Z T

t

Zi+1s dWs (2.13)

We will show that the sequence f(Y it ; Zit)g converges in the space S2(F ; [0; T ];Rn)�M2(F ; [0; T ];Rn)

to a pair of processes (Yt; Zt) which will be our solution. Indeed, let

�
Y
i+1

t
�
= Y i+1t � Y it ; �Zi+1t

�
= Zi+1t � Zit :
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Let � > 0; � > 0 using Itô�s formula, we obtain

e�t+�kt
�����Y i+1t

����2 + Z T

t

e�s+�ks
�Zi+1s

2 ds
= 2

Z T

t

e�s+�ksh
�
Y
i+1

s ; f(s; Y is ; Z
i
s)� f(s; Y i�1s ; Zi�1s )ids� �

Z T

t

e�s+�ks
�����Y i+1s

����2 ds
+ 2

Z T

t

e�s+�ksh
�
Y
i+1

s ; h(s; Y is )� h(s; Y i�1s )idks � �
Z T

t

e�s+�ks
�����Y i+1s

����2 dks
� 2

Z T

t

e�s+�ksh
�
Y
i+1

s ; Zi+1s idWs:

Taking the expectation, we get

Ee�t+�kt
�����Y i+1t

����2 + EZ T

t

e�s+�ks
�Zi+1s

2 ds
= 2E

Z T

t

e�s+�ksh
�
Y
i+1

s ; f(s; Y is ; Z
i
s)� f(s; Y i�1s ; Zi�1s )ids

+ 2E
Z T

t

e�s+�ksh
�
Y
i+1

s ; h(s; Y is )� h(s; Y i�1s )idks � �E
Z T

t

e�s+�ks
�����Y i+1s

����2 dks
� �E

Z T

t

e�s+�ks
�����Y i+1s

����2 ds:
With the same arguments as in the 2.2 of 2.2, one can show that there exist constant C > 0

such that

E

 
e�t+�kt

�����Y i+1t

����2
!
+ E

Z T

t

e�s+�ks
�Zi+1s

2 ds
+ E

Z T

t

e�s+�ks

 
(�� C)

�����Y i+1s

����2 ds+ (�� C) �����Y i+1s

����2 dks
!

� 1 + �

2

 
CE

Z T

t

e�s+�ks
�����Y is����2 ds+ CEZ T

t

e�s+�ks
�����Y is����2 dks + EZ T

t

e�s+�ks
�Zis2 ds

!
:
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Next, we choose � and � in such a way that �� C = C and �� C = C; to obtain

E

 
e�t+�kt

�����Y i+1t

����2
!
+ E

Z T

t

e�s+�ks
�Zi+1s

2 ds
+ CE

Z T

t

e�s+�ks
�����Y i+1s

����2 dks + �
cE
Z T

t

e�s+�ks
�����Y i+1s

����2 ds
�
�
1 + �

2

�i "
CE

Z T

t

e�s+�ks
�����Y 1s����2 ds+ CEZ T

t

e�s+�ks
�����Y 1s����2 dks + EZ T

t

e�s+�ks
�Z1s2 ds

#
:

Since (1 + �)=2 < 1, then f(Y it ; Zit)gi=1;:: is a Cauchy sequence in the space

L2(F ; [0; T ];Rn)�M2(F ; [0; T ];Rn�d):

From the Burkhölder�Davis�Gundy inequality it follows that the sequence (Y it ) is also a Cau-

chy sequence in the space S2(F ; [0; T ];Rn) By completeness its limit (Yt; Zt) = lim
i!1

(Y it ; Z
i
t)

exists in the space S2(F ; [0; T ];Rn) � M2(F ; [0; T ];Rn�d):Passing to the limit in equation

2.13, we obtain the result in 2.2.
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Chapitre 3

Generalized BSDEs with respect to

fractional Brownian motion

3.1 Assumptions and de�nition

Assume that

H1) �0 is a given constant

H2) b; � : [0; T ] ! R are continuous deterministic functions, � is di¤erentiable and such

that � (t) 6= 0; t 2 [0; T ] :Note that, since

k�k2t = H (2H � 1)
Z t

0

Z t

0

ju� vj2H�1 � (u)� (v) dudv;

we have
d

dt

�
k�k2t

�
= � (t) �̂ (t) > 0;

where

�̂ (t) =

Z t

0

� (t� v)� (v) dv:

Let D be an open connected sub set of Rd such that for some l 2 C2
�
Rd
�
:D = fx : l (x) > 0g

and @D = fx : l (x) = 0g and jOl (x)j = 1 for x 2 @D.
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

Let �0 2 D and let (�t; At) be solution of the following re�ected SDE with respect to fractional

brownian motion

�t = �0 +

Z t

0

b (s) ds+

Z t

0

� (s) dBHs +

Z t

0

Ol (�s) dAs: (3.1)

By a solution of 3.1 we mean a pair of processes such that � 2 D , A is a nondecreasing

process, A0 = 0 and
R t
0
(�t � a) dAt � 0 for any a 2 D:

The existence of such a problem was shown in lions and sznitman (1984) [7] for a standard

Brownian motion and in ferrante and rovira (2011) [3] for FBM and a set D = (0;1)

From Pardoux and Zhang (1998) [11] we know that for H = 1=2 and for each v; t > 0 there

exists C (v; t)such that EevAt � C (v; t) :

We consider the following generalized BSDE with respect to FBM :

Yt = � +

Z T

t

f (s; �s; Ys; Zs) ds+

Z T

t

g (s; �s; Ys) d�s �
Z T

t

ZsdB
H
s ; t 2 [0; T ] ; (3.2)

where � is an increasing process, �0 = 0;we suppose that for some v > 0

H3) � = h (�T ) for some function h with bounded derivative, Eev�T j�j2 <1:

H4) f : [0; T ] � R � R � R ! R and g : [0; T ] � R � R ! R are continuous functions and

there exists a constant L > 0 such that for all t 2 [0; T ] ; x; �x; y; �y; z; �z 2 R;

jf (t; x; y; z)� f (t; �x; �y; �z)j � L (jx� �xj+ jy � �yj+ jz � �zj) ;

jg (t; x; y)� g (t; �x; �y)j � L jy � �yj ;

E
�Z T

t

ev�t jf (t; 0; 0; 0)j2 dt+
Z T

0

ev�t jg (t; ; �t; 0)j2 d�t
�
<1:

Now we introduce the following space

V[0;T ] =

�
Y = � (:; �) ;� 2 C1:2pol ([0; T ]� R) ;

@�

@t
is bounded; t 2 [0; T ]

�
;
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

and by
�
V
H

[0;T ]denote the completion of V[0;T ]under the following norm

kY kv =
�Z T

0

t2H�1Eev�t jYtj2 dt
�1=2

=

�Z T

0

t2H�1Eev�t j� (t; �t)j2 dt
�1=2

:

Dé�nition 3.1 A solution of a generalized BSDE with respect to FBM associated with date

(�; f; g;�) is a pair (Y; Z) = (Yt; Zt)t2[0;T ] of processes satisfying 3.2 and such that

Y 2
�
V
1=2

[0;T ] and Z 2
�
V
H

[0;T ]:

3.2 Existence and uniqueness result

Theorem 3.1 Assume (H1) and (H2): The exists a unique solution of 3.2.moreover,for all

t 2 [0; T ] ;

E
�
ev�t jYtj2 +

Z T

t

ev�ss2H�1 jZsj2 ds+
Z T

t

ev�s jYsj2 d�s
�
� C�(t; T ) ;

where

�(t; T ) = E
�
ev�T j�j2 +

Z T

t

ev�s jf (s; 0; 0; 0)j2 ds+
Z T

t

ev�s j�sj2 ds+
Z T

t

ev�s jg (s; ; �s; 0)j2 d�s
�
:

Proof. First we will show the second part of above theorem.Assume that (Y; Z) is a solution

of 3.2.by C we will denote a constant which may vary from line,

From the Itô formula

ev�t jYtj2 = ev�T j�j2 �
Z T

t

2ev�sYs dYs �
Z T

t

vev�s jYsj2 d�s �
1

2

Z T

t

2ev�s
d

ds

�
kfk2s ds

�
= ev�T j�j2 � 2

Z T

t

ev�sYs dYs � v
Z T

t

ev�s jYsj2 d�s �
Z T

t

ev�s
d

ds

�
kfk2s ds

�
= ev�T j�j2 + 2

Z T

t

ev�sYsf (s; �s; Ys; Zs) + 2

Z T

t

ev�sYsg (s; �s; Ys) d�s

� 2
Z T

t

ev�sYsZsdB
H
s � 2

Z T

t

ev�sDHs YsZsds� v
Z T

t

ev�s jYsj2 d�s:
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

It is known thaf DHs Ys = (�̂ (s) =� (s))Zs; 3:1:moreover by 3.1, there exists M > 0 such that

for all t 2 [0; T ] ; t2H�1=M � �̂ (t) =� (t) �Mt2H�1:

By lipschitz continuity of f and g we have

2yf (t; �; y; z) � +2 jyj jf (t; �; y; z)� f (t; 0; 0; 0) + f (t; 0; 0; 0)j

2yf (t; �; y; z) � +2 jyj L (j�j+ jyj+ jzj) + 2 jyj jf (t; 0; 0; 0)j

we hava 2ab � a2 + b2 so:

2L jyj j�j � L2 jyj2 + j�j2 and 2L jyj jyj � 2L jyj2 and 2L jyj jzj = 2L
p
s2H�1p
M

jzj
p
Mp

s2H�1
jyj �

ML2jyj2
s2H�1 +

s2H�1

M
jzj2 and 2 jyj jf (t; 0; 0; 0)j � jyj2 + jf (t; 0; 0; 0)j2

We �nd

2yf (t; �; y; z) � L2 jyj2 + j�j2 + 2L jyj2

+
ML2 jyj2

s2H�1
+
s2H�1

M
jzj2 + jyj2 + jf (t; 0; 0; 0)j2

�
�
L2 + 2L+

ML2

s2H�1
+ 1

�
jyj2 + j�j2 + 1

M
s2H�1 jzj2 + jf (t; 0; 0; 0)j2

and

2yg (t; �; y) � +2 jyj jg (t; �; y)� g (t; �; 0)j+ 2 jyj jg (t; �; 0)j

� 2L jyj2 + jyj2 + jg (t; �; 0)j2

2yg (t; �; y) � (2L+ 1) jyj2 + jg (t; �; 0)j2

Therefore,we can write

E
�
ev�t jYtj2 + v

Z T

t

ev�s jYsj2 d�s +
2

M

Z T

t

ev�ss2H�1 jZsj2 ds
�

� �(t; T ) + E
Z T

t

�
L2 + 2L+

ML2

s2H�1
+ 1

�
ev�s jYsj2 ds

+
1

M
E
Z T

t

ev�ss2H�1 jZsj2 ds+ (2L+ 1)E
Z T

t

ev�s jYsj2 d�s:
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

Choosing v � (2L� 1) � 1) v � (2L+ 2) we get

E
�
ev�t jYtj2 +

Z T

t

ev�s jYsj2 d�s +
1

M

Z T

t

ev�ss2H�1 jZsj2 ds
�

� �(t; T ) + E
Z T

t

�
L2 + 2L+

ML2

s2H�1
+ 1

�
ev�s jYsj2 ds: (3.3)

By gronwall�s inequality,

ev�t jYtj2 � �(t; T ) +
Z T

t

�
L2 + 2L+

ML2

s2H�1
+ 1

�
ev�s jYsj2 ds

Eev�t jYtj2 � �(t; T ) exp
��
L2 + 2L+ 1

�
(T � t) +ML2T

2�2H � t2�2H
2� 2H

�
;

and by 3.3 also

E
�Z T

t

ev�ss2H�1 jZsj2 ds+
Z T

t

ev�s jYsj2 d�s
�
� C�(t; T ) :

Now we will prove the existence and uniqueness of the solution of 3:2:the method used here

is similar to that in the 3.1 we will show that the the mapping � :
�
V
1=2

[0;T ] �
�
V
H

[0;T ] !
�
V
1=2

[0;T ] �
�
V
H

[0;T ]given by (U; V )! � (U; V ) = (Y; Z) is a contraction where(Y; Z)is a solution

of the following generalized BSDE :

Yt = � +

Z T

t

f (s; �s; Us; Vs) ds+

Z T

t

g (s; �s; Us) d�s �
Z T

t

ZsdB
H
s :

Let k 2 N and ti = i�1
k
T; i = 1; :::; k + 1:�rst we will show that � is a contraction on

�
V
1=2

[tk;T ]
�

�
V
H

[tk;T ]:
take U; �U 2 �

v
1=2

[tk;T ]
and V; �V 2 �

v
H

[tk;T ];
let � (U; V ) = (Y; Z) and �

�
�U; �V

�
=�

�Y; �Z
�
and let �Y = Y � �Y; �Z = Z � �Z; �U = U � �U and �U = V � �V:
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Chaptre 3. Generalized BSDEs with respect to fractional brownian motion

From the Itô formula, for t 2 [tk; T ] ;

ev�t jYt � Y 0t j
2
= ev�T j�j2 � 2

Z T

t

ev�sYs � Y 0s dYs

� v
Z T

t

ev�s jYs � Y 0s j
2
d�s �

Z T

t

ev�s
d

ds

�
kfk2s ds

�
ev�t j�Ytj2 = ev�T j�j2 � 2

Z T

t

ev�s�Ys dYs � v
Z T

t

ev�s j�Ysj2 d�s �
Z T

t

ev�s
d

ds

�
kfk2s ds

�
ev�T j�j2 � 2

Z T

t

ev�s�Ys dYs � v
Z T

t

ev�s j�Ysj2 d�s �
Z T

t

ev�s
�̂ (s)

� (s)
j�Zsj2

= ev�T j�j2 + 2
Z T

t

ev�s�Ysf (s; �s; Us; Vs) + 2

Z T

t

ev�s�Ysg (s; �s; Us) d�s

� 2
Z T

t

ev�sYsZsdB
H
s � 2

Z T

t

ev�s
�̂ (s)

� (s)
j�Zsj2 ds� v

Z T

t

ev�s j�Ysj2 d�s:

similarly as before

E
�
ev�t j�Ytj2 + v

Z T

t

ev�s j�Ysj2 d�s + 2
Z T

t

ev�s
�̂ (s)

� (s)
j�Zsj2 ds

�
= 2E

Z T

t

ev�s�Ys

�
f (s; �s; Us; Vs)� f

�
s; �s; �Us; �Vs

��
ds

+ 2E

Z T

t

ev�s�Ys (g (s; �s; Us)� g (s; �s; Us)) d�s:

Note that 2�y (f (t; �; u; v)� f (t; �; �u; �v)) � 2L j�yj (j�uj+ j�vj) and 2�y (g (t; �; u)� g (t; �; �u)) �

2L j�yj j�uj � L2=� j�yj2 + � j�uj2 :

choose v � L2=� � 1) v = L2=� + 1:Then, and by the schwarz inequality we obtain

E
�
ev�t j�Ytj2 +

Z T

t

ev�s j�Ysj2 d�s +
2

M

Z T

t

ev�ss2H�1 j�Zsj2 ds
�

� 2L
Z T

t

Eev�s j�Ysj (j�Usj+ j�Vsj) ds+ �E
Z T

t

ev�s j�Usj2 d�s (3.4)

� 2L
Z T

t

�
Eev�s j�Ysj2

�1=2 �Eev�s (j�Usj+ j�Vsj)2�1=2 ds+ �EZ T

t

ev�s j�Usj2 d�s: (3.5)

Denote x (t) =
�
Eev�t j�Ysj2

�1=2
and a (t) = �E

R T
t
ev�s j�Usj2 d�s:then, by 3.5

x2 (t) � 2L
Z T

t

x (s)
�
Eev�s (j�Usj+ j�Vsj)2

�1=2
ds+ a (t) ; t 2 [tk; T ] :
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Applying 3.2 to the above inequality we get

x (t) �
p
a (t) +

p
2L

Z T

t

�
Eev�s

�
j�Usj2 + j�Vsj2

��1=2
ds;

and therefore for t 2 [tk; T ]

Eev�t j�Ytj2 � 2a (t) + 4L2
�Z T

t

�
Eev�s

�
j�Usj2 + j�Vsj2

��1=2
ds

�2
:

Now we can compute

Z T

tk

x2 (s) ds � (T � tk)
 
2a (tk) + 8L

2

�Z T

tk

�
Eev�s j�Usj2

�1=2
ds

�2!

+ 8L2 (T � tk)
 Z T

tk

�
1

s2H�1
� Eev�ss2H�1 j�Vsj2

�1=2
ds

!2

� (T � tk)

0B@ 2a (tk) + 8L
2 (T � tk)E

R T
tk
ev�s j�Usj2 ds

+
8L2(T 2�2H�t2�2Hk )

2�2H E
R T
tk
ev�ss2H�1 j�Vsj2

1CA = C (T � tk)� (tk; T ) :

And similarly

Z T

tk

1

s2H�1
x2 (s) ds � C

2� 2H �
�
T 2�2H � t2�2Hk

�
��(tk; T ) ;

Where

�(tk; T ) = E
�Z T

tk

ev�s j�Usj2 (ds+ d�s) +
Z T

tk

ev�ss2H�1 j�Vsj2 ds
�
:
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Using above inequalities, from 2.4 we deduce

E
�Z T

tk

ev�s j�Ysj2 (ds+ d�s) +
Z T

tk

ev�ss2H�1 j�Zsj2 ds
�

� E
�Z T

tk

ev�s j�Ysj2 ds+ C�E
Z T

tk

ev�s j�Usj2 d�s
�

+ CE
Z T

t

ev�s
1

�
j�Ysj2

�
1 +

1

s2H�1

�
+ �

�
j�Usj2 + s2H�1 j�Vsj2

�
ds

� C (T � tk) ~� (tk; T ) + C� ~� (tk; T ) +
C

�

Z T

tk

x2 (s)

�
1 +

1

s2H�1

�
ds

� C
�
� +

�
1 +

1

�

�
(T � tk) +

1

�

�
T 2�2H � t2�2Hk

��
~� (tk; T ) :

Choosing � such that C� � 1=4 and taking k large enough that C (� + 1) (T � tk) =� � 1=4

and C
�
T 2�2H � t2�2Hk

�
=� � 1=4 we obtain

E
�Z T

tk

ev�s
�
j�Ysj2 (ds+ d�s) + s2H�1 j�Zsj2 ds

��
� 3

4
~� (tk; T ) :

Since � is a contraction, (Y n; Zn) is a cauchy sequence in
�
V
1=2

[tk;T ]
�

�
V
H

[tk;T ];
where (Y 0; Z0) 2

�
V
1=2

[tk;T ]
�

�
V
H

[tk;T ];
and for n � 0

Y n+1t = � +

Z T

t

f (s; �s; Y
n
s ; Z

n
s ) ds+

Z T

t

g (s; �s; Y
n
s ) d�s �

Z T

t

Zn+1s dBHs :

Then there exists (Y; Z) 2
�
V
1=2

[tk;T ]
�

�
V
H

[tk;T ]
being a limit of (Y n; Zn), i.e.

lim
n!1

E
�
ev�t jY nt � Ytj

2 +

Z T

tk

ev�s
�
jY ns � Ysj

2 + s2H�1 jZns � Zsj
2� ds� = 0:

Moreover lim
n!1

E
R T
tk
ev�s jY ns � Ysj

2 d�s = 0:therefore for any t 2 [tk; T ]

lim
n!1

�
�Y n+1 + � +

Z T

t

f (s; �s; Y
n
s ; Z

n
s ) ds+

Z T

t

g (s; �s; Y
n
s ) d�s

�
= �Y + � +

Z T

t

f (s; �s; Ys; Zs) ds+

Z T

t

g (s; �s; Ys) d�s in L2 (
;F;P) ;
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and Zn1[t;T ] ! Z 1[t;T ] in L2 (
;F ;H) :we show that (Y; Z) satis�es3.2 on [tk; T ].the next step

is to solve the equation on [tk�1; tk] :with the same arguments, repeating the above technique

we obtain a uniqueness of the solution of generalized BSDE with respect to FBM on the

whole interval [0; T ] :
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Conclusion

In this work we study the generalized backward stochastic di¤erential equation drivenby fractional Brownian motion. First of all we de�ned fractional Brownian motion

and studied its properties in all its details and quotes from the existence and uniqueness

of solutions of fractional generalized backward stochastic di¤erential equation. The idea of

proving using the �xed point theorem thus showing that there exists a unique solution in the

same space. We note that pretty much of the technical di¢ culties coming from the fractional

brownien motion, since BH with H > 1
2
is not a semimartingale, we cannot use the classical

theory of stochastic calculus.
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Annex : Some mathematical tools

Theorem 3.2 (Fixed point) Let (E; d) be a complete metric space and ' : E ! E a

contractiog map, i.e lipschitzian with ratio k < 1.then, ' admit a unique point �xed a 2 E

such that :' (a) = a:

Dé�nition 3.2 Young inequality : We say that two numbers p; q > 0, are conjugated in

the sense of Young, if :
1

p
+
1

q
= 1:

Young inequality says that if p and q are conjugate and if a,a; b � 0,So

ab � ap

p
+
bq

q
:

with equality if and only if a ap = bq:

For example ,if p = q = 2 we �nd the inequality

2ab � a2 + b2:

Hölder inequality. Hölder inequality says that if p; q > 0 ,are conjugate in the sense of

Young, then

Z
D

(f(x)g(x))d�(x) �
�Z

D

jf(x)jpd�(x)
�1=p

:

�Z
D

jg(x)jpd�(x)
�1=p

Theorem 3.3 (Grönwall�s inequality) Let I denote an interval of the real line of the

form [a;1) or [a; b] or [a; b) with a < b. Let �; � and u be real-valued functions de�ned on

39



Annex : Some mathematical tools

I. Assume that � and u are continuous and that thenegative part of � is integrable on every

closed and bounded subinterval of I.

If � is non-negative and if u satis�es the integral inequality

u (t) � � (t) +
Z t

a

� (s)u (s) ds 8t 2 I;

then

u (t) � � (t) +
Z t

a

� (s) � (s) exp

�Z t

s

� (r) dr

�
ds t 2 I:

Proof. De�ne

v (s) = exp

�
�
Z t

a

� (r) dr

�Z s

a

� (r)u (r) dr; s 2 I:

Using the product rule, the chain rule,the derivative of the exponential function and the

fundamental theorem of calculus, we obtain for the derivative

v0 (s) =

�
u (s)�

Z s

a

� (r)u (r) dr

�
� (s) exp

�
�
Z s

a

� (r) dr

�
; s 2 I;

where we used the assumed integral inequality for the upper estimate.Since � and the expo-

nential are non-negative, this gives an upper estimate for the derivative of v(s) Since v(a) = 0,

integration of this inequality from a to t gives

v (t) �
Z t

a

� (s) � (s) exp

�
�
Z s

a

� (r) dr

�
ds:

Using the de�nition of v(t) from the �rs step,and then this inequality and the functional

equation of the exponential function,we obtain

Z t

a

� (s)u (s) ds = exp

�Z t

a

� (r) dr

�
v (t)

�
Z t

a

� (s) � (s) exp

�Z t

a

� (r) dr �
Z s

a

� (r) dr

�
ds:

Substituting this result into the assumed integral inequality gives Grönwall�s inequality.
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Theorem 3.4 (Burkhölder-Davis-Gundy inequality "B-D-G inequality" ) For all

p > 0; there exist positive constants to cp and Cp, such that, for any continuous local martin-

gale X = (Xt)t�0 ; zero at 0

cp = E
h
hX;Xi

p
21

i
�
�
sup jXtj

t�0

p

�
� CpE

h
hX;Xi

p
21

i
:

Proposition 3.1 Let (Y; Z) 2 VT � VT be the solution of BSDE8><>: �dY (t) = f(t; �(t); Y (t); Z(t))dt� Z(t)�BH(t); t 2 [0; T ];

Y (T ) = �;

constructed in the assumptions (H1)� (H4) be satis�ed Then the BSDE.

Y (t) = � +

Z T

t

f(s; �(s); Y (s); Z(s))ds

Z T

t

Z(s)dBH(s); t 2 [0; T ]:

has a solution (Y; Z) 2
�
V

1
2

[0;T ] �
�
V
H

[0;T ]:Then for almost t 2 (0; T ]

DHt Y (t) =
�̂(t)

�(t)
Z(t):

Proof. From

Yk+1(t) = � +

Z T

t

f(s; �(s); Yk(s); Zk(s))ds�
Z T

t

Zk+1(s)dB
H(s); t 2 [0; T ];

we know that (Yk; Zk) 2
�
V

1
2

[0;T ] �
�
V
H

[0;T ] satis�es

Yk+1(t) = � +

Z T

t

f(s; �(s); Yk(s); Zk(s))ds�
Z T

t

Zk+1(s)�B
H(s); t 2 [0; T ]; k � 1:

We recall that Yk(t) = uk(t; �(t)); Zk(t) = vk(t; �(t)); t 2 [0; T ] and Zk(t) = �(t) @@xuk(t; �(t)).

Since (Yk; Zk) ! (Y; Z) in
�
V

1
2

[0;T ] �
�
V
H

[0;T ], there exists a subsequence, by convenience still

denoted by f(Yk; Zk)gk2N, such that for arbitrary � > 0, we have that lim
k!1

E jYk(s)� Y (s)j2
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= 0 and lim
k!1

E jZk(s)� Z(s)j2 = 0 , for almost all s 2 [�; T ].As a process with the parameter

r,

DrYk(t) =
@

@x
u(t; �(t))�(r)1[0;t](r)

=
�(r)

�(t)
Zk(t)1[0;t](r)

L2([0;T ]�
)! �(r)

�(t)
Z(t)1[0;t](r);

as k !1; for almost all t 2 [�; T ]:

On the other hand, since L2([0; T ]) � H, we conclude that the convergence also holds in

L2(
;F ;P;H).Consequently, in L2(
;F ;P;H)DrY (t) = lim
k!1

DrYk(t) = lim
k!1

�(r)
�(t)
Zk(t)1[0;t](r) =

�(r)
�(t)
Z(t)1[0;t](r);a.e:t 2 [�; T ], and, thus,

DHt Y (t) =
Z T

0

�(t� r)DrY (t)dr =
�̂(t)

�(t)
Z(t); a.e:t 2 [�; T ];

where �̂(t) is de�ned by

�̂ (t) :=

Z t

0

�(t� r)�(r)dr; t 2 [0; T ]:

Considering that � > 0 is arbitrary, we have

DHt Y (t) =
�̂(t)

�(t)
Z(t); a.e,t 2 [0; T ];

which completes the proof.

Theorem 3.5 (Doob�s inequality) 8p > 1: if fXNgn=1;:::;N cat a martingale in Lp

E [jXN jp] � E [X�p] �
�

p

p� 1

�p
E [jXN jp] ;

with X� := max (jX1j ; :::; jXN j) :
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Remark 3.1 The function �̂ de�ned by

�̂ (t) :=

Z t

0

�(t� r)�(r)dr; t 2 [0; T ]:

can be written in the following form :

�̂(t) = H(2H � 1)t2H�1
Z 1

0

(1� u)2H�2�(tu)du; t 2 [0; T ]:

Moreover, we observe that k�k2t is continuously di¤erentiable with respect to t, and

(a) d
dt

�
k�k2t

�
= 2�(t)�̂(t) > 0; t 2 (0; T ];

(b) for a suitable constant M > 0; 1
M
t2H�1 � �̂(t)�(t) �Mt2H�1; t 2 [0; T ]:

Lemma 3.1 Let a; �; � : [0; T ] ! R + be three nonnegative Borel functions such thata is

decreasing and �; � 2 L1loc([0;1]). If x : [0; T ]! R + is a continuous function such that

x2(t) � a(t) + 2
Z T

t

�(s)x(s)ds+ 2

Z T

t

�(s)x2(s)ds; t 2 [0; T ];

then

x(t) �
p
a(t) exp

�Z T

t

�(s)ds

�
+

Z T

t

�(s) exp

�Z s

t

�(r)dr

�
ds; t 2 [0; T ]:

Remark 3.2 Now from

x2(t) � 2
p
3

Z T

t

x(s)
�
E
�
L2jU(s)j2 + L2jV (s)j2 + jf(s; �(s); 0; 0)j2

��1=2
ds; t 2 [0; T ]

and the above lemma, by setting

a(t) = 0; �(s) = 0;

�(s) =
p
3
�
E
�
L2jU(s)j2 + L2jV (s)j2 + jf(s; �(s); 0; 0)j2

��1=2
ds; s 2 [0; T ];
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we have

x(t) �
p
3

Z T

t

�
E
�
L2jU(s)j2 + L2jV (s)j2 + jf(s; �(s); 0; 0)j2

��1=2
ds; t 2 [0; T ];

and, hence, for any � > 0,

�
EjY (t)j2

�1=2 � p3Z T

t

�
L
�
EjU(s)j2

�1=2
+ L

�
EjV (s)j2

�1=2
+
�
Ejf(s; �(s); 0; 0)j2

�1=2�
ds

�
p
3L

Z T

t

�
e��s

�
e2�sEjU(s)j2

�1=2
+

e��s

sH�1=2
�
s2H�1e2�sEjV (s)j2

�1=2�
ds

+
p
3

Z T

t

e��s
�
e2�sE

�
jf(s; �(s); 0; 0)j2

��1=2
ds

�
p
3L

�Z T

t

e��sds

�1=2�Z T

t

e2�sEjU(s)j2ds
�1=2

+
p
3L

�Z T

t

e��s

s2H�1
ds

�1=2�Z T

t

s2H�1e2�sEjV (s)j2ds
�1=2

+
p
3

�Z T

t

e�2�sds

�1=2�Z T

t

e2�sEjf(s; �(s); 0; 0)j2ds
�1=2

: (3.6)

Let us use the following notations :

At :=

�Z T

t

e2�sEjU(s)j2ds
�1=2

, Bt :=
�Z T

t

s2H�1e2�sEjV (s)j2ds
�1=2

; and

Ct =

�Z T

t

e2�sEjf(s; �(s); 0; 0)j2ds
�1=2

, t 2 [0; T ]:

Since
R T
t
e�2�sds = 1

2�

�
e�2�t � e�2�T

�
we have for � > 0 with 0 < � < 2 � 2H < 1 and

� > 0;

e2�t
Z T

t

e�2�s

s2H�1
ds �

Z T

t

(2� (s� t))��

s2H�1
ds � 1

(2�)�

Z T

0

1

s�+2H�1
ds <1:

This allows to conclude from 3.6 that

e2�tEjY (t)j2 � 9L2

2�
A2t +

9L2

(2�)�

Z T

t

(s� t)��

s2H�1
ds B2t +

9

2�
C2t : (3.7)
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Consequently, there exists C(�) with lim
�!1

C(�) = 0, s.t.

e2�tEjY (t)j2dt � C(�)
�
A2t +B

2
t + C

2
t

�
; t 2 [0; T ]: (3.8)

Applying the Itô formula to jY (t)j2, taking the expectation EjY (t)j2and then deter mining

the function de d
�
e2�tEjY (t)j2

�
and using DHt Y (t) =

�̂(t)
�(t)
Z(t), the Lipschitz property of f

as well as 3.7 we obtain (Recall for a suitable constant M > 0; 1
M
t2H�1 � �̂(t)

�(t)
� Mt2H�1;

t 2 [0; T ].for the de�nition of M)

e2�tEjY (t)j2 + 2�
Z T

t

e2�sEjY (s)j2ds+ 2

M

Z T

t

s2H�1e2�sEjZ(s)j2ds

� 2
Z T

t

e2�sE [jY (s)j (LjU(s)j+ LjV (s)j+ jf(s; �(s); 0; 0)j)] ds

� 2L
Z T

t

�
E
�
e2�sjY (s)j2

��1=2 �E �e2�sjU(s)j2��1=2 ds
+ 2L

Z T

t

�
E
�
e2�s

s2H�1
jY (s)j2

��1=2 �
E
�
e2�ss2H�1jV (s)j2

��1=2
ds

+ 2L

Z T

t

�
E
�
e2�sjY (s)j2

��1=2 �E �e2�sjf(s; �(s); 0; 0)j2��1=2 ds
� 2L

Z T

t

�
C(�)

�
A2s +B

2
s + C

2
s

��1=2 �E �e2�sjU(s)j2��1=2 ds
+ 2L

Z T

t

�
1

s2H�1
C(�)

�
A2s +B

2
s + C

2
s

��1=2 �
E
�
e2�ss2H�1jV (s)j2

��1=2
ds

+ 2

Z T

t

h�
C(�)

�
A2s +B

2
s + C

2
s

��1=2i1=2 �E �e2�sjf(s; �(s); 0; 0)j2��1=2 ds
� 2L

p
C(�) (At +Bt + Ct)

 
p
T � tAt +

r
T 2�2H � t2�2H

2� 2H Bt +
p
T � tCt

!
:

Thus, the above inequality and 3.8 allow to conclude inequality

sup
t2[0;T ]

e2�tEjY (t)j2 +
Z T

0

e2�sEjY (s)j2ds+
Z T

0

s2H�1e2�sEjZ(s)j2ds

� C(�)
�Z T

0

e2�sEjU(s)j2 +
Z T

0

s2H�1e2�sEjV (s)j2 +
Z T

0

e2�sjf(s; �(s); 0; 0)j2ds
�
:
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 ملخص

العشوائية  التفاضلية المعادلة حلول وتفرد وجود بدراسة قمنا العمل هذا في

 ،الصامدةنقطة ال نظرية براونية كسرية باستخدامالحركة الالموجهة ب المعممة التراجعية

   في حالة 𝑩𝑯 معظم الصعوبات التقنية القادمة من الحركة البراونية الكسرية، نظرًا لأن

𝑯 >
𝟏

𝟐
لا يمكننا استخدام النظرية الكلاسيكية لحساب ولهذا  مارتينجال، ليست شبه

 .التفاضل والتكامل العشوائي

 الكلمات المفتاحية:

 التفاضلية معادلة لكسرية،الحركة البراونية ا معادلة التفاضلية العشوائية التراجعية،

نظرية النقطة الصامدة. المعممة، التراجعية العشوائية  

Abstract 

In this work, we studied the existence and uniqueness of solutions of 

the generalized backward stochastic differential equation with 

fractional Brownian motion, using fixed-point theory. The pretty 

much of the technical difficulties coming from the fractional brownien 

motion, since 𝐵𝐻with 𝐻 >
1

2
 is not a semi martingale; we cannot use 

the classical theory of stochastic calculus. 

 

Keywords: 

Backward stochastic differential equation, fractional Brownian 

motion, generalized backward stochastic differential equation, fixed-

point theory. 

 

 

 

 

 



Résumé : 
Dans ce travail, nous avons étudié l'existence et l'unicité des solutions 

de l'équation différentielle stochastique rétrograde généralisée avec 

mouvement Brownien fractionnaire, en utilisant la théorie du point 

fixe. La majeure partie des difficultés techniques proviennent du 

mouvement Brownien fractionnaire, puisque 𝐵𝐻avec H >
1

2
 n′est pas une semi − martingale, nous ne pouvons pas utiliser la 

théorie classique du calcul stochastique. 

 

Mots clés : 

Équation différentielle stochastique rétrograde, mouvement Brownien 

fractionnaire, équation différentielle stochastique rétrograde 

généralisée, théorie du point fixe. 
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