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Abstract

The study’s goal is to improve comprehension of viscoelastic wave equations by
investigating the rate at which solutions decay in weighted spaces. We will achieve
this by incorporating density and memory terms to address the absence of Poincare’s
inequality. Ultimately, the memory will make a valuable contribution to the ex-
isting literature on wave equations and their decay properties.

Keywords : Lyapunov function, Relaxation function, Density, Decay rate,
Weighted spaces, Viscoelastic, Kirchhoff type.

Résumé

L’objectif de l’étude est d’améliorer la compréhension des équations d’ondes vis-
coélastiques en étudiant la vitesse à laquelle les solutions se désintégrent dans les
espaces pondérés. Nous y parviendrons en incorporant des termes de densité et
de mémoire pour remédier à l’absence d’inégalité de poincaré. En fin de compte,
ce mémoire apportera une contribution précieuse à la littérature existante sur les
équations des ondes et leurs propriétés de désintégration.

Mots-clés: Fonction Lyapunov, Détente, Densité, Taux de décomposition,
Espaces pondérés, Viscoélastique, type Kirchhoff.
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 ملخص:
 

يهدف البحث إلى تحديد خصائص معدل الانحلال ودراسة اضمحلال حلول معادلات 

الموجات اللزجة المرنة, و تقديم مساحات موزونة للحلول باستخدام الكثافة. في 

الفصل الأول, نقدم بعض التعريفات الأساسية و المبرهنات و النظريات التي 

لث, ننشأ تكافئ وظيفي بين لابونوف سنحتاجها في العمل. أما في الفصل الثاني و الثا

 و الطاقة و  ذالك لتحليل سلوك الانحلال.       

 

             

الكلمات المفتاحية: دالة لابونوف، دالة الاسترخاء، الكثافة، معدل الاضمحلال، 
.                                  ونة، اللزوجة المرنة، نوع كيرشوفالمساحات الموز  



Intoduction

Partial differential equations with time t as one of the independent variables are
examples of nonlinear evolution equations. These equations are not only found in
a wide variety of mathematical subjects but also in other scientific fields such as
physics, mechanics, and material science. Among the notable examples of non-
linear evolution equations are the Navier-Stokes and Euler equations in fluid me-
chanics, the nonlinear reaction-diffusion equations in heat transfers and biologi-
cal sciences, the nonlinear Klein-Gorden equations and the nonlinear Schrodinger
equations in quantum mechanics, and the Cahn-Hilliard equations in material sci-
ence. These are just a few examples. Many mathematicians and scientists working
in the nonlinear sciences have shown a great deal of interest in the nonlinear evolu-
tion equations due to their complexity and the difficulties that arise when studying
them theoretically.

When seen from a physical vantage point, problems of this kind often manifest
themselves in viscoelasticity characteristics. Dafermos [15], who did so in 1970,
was the first individual to investigate difficulties of this kind. Dafermos addressed
the overall deterioration in his work. Since then, researchers have focused heavily
on this topic, publishing numerous discoveries about the existence of solutions and
their long-term behavior. This information may be obtained from the following
sources: eight, six, twelve, eleven, and twenty-two. Due to the fact that these
materials have a wide variety of applications in the natural sciences, the dynam-
ics of these materials are not only intriguing but also of high importance. As a
consequence of this, issues concerning the operations of the solutions for the par-
tial differential equations (PDE) system have attracted a considerable amount of
attention throughout the course of the two most recent years. I would like to use
this opportunity to bring to your attention some previous discoveries about the
viscoelastic wave equation. An example of this would be the investigation that
Cavalcanti et al. [[12], [13]] conducted into the problem of the form in order to lay
the groundwork for our present research.

The primary of the asymptotic behavior of the solutions as time progresses is
the primary objective that we have planned. In fact, we show that, depending
on the parameters in the systems and the starting data size, we may either prove
the solutions to be global in time or explode in limited time (that is, some norms
of the solution will become unbounded). This is something that we demonstrate.
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The issue that naturally arises in the event that the solutions are global in time
is about the pace at which they converge to the steady state and the conver-
gence of the solutions. Examining how solutions to nonlinear evolution equations
change over time is a big part of the research that looks at how partial differen-
tial equations and physics interact with each other. Included in this category are
theories that explain the dynamics of gases, quantum theory, and thermoelasticity.

The main aim of this research is to study some hyperbolic systems with the
presence of different mechanisms of damping and under assumptions on initial
data and boundary conditions. Our major objective is to study the asymptotic
behavior of solutions when the time evolves. In fact, we prove that under some
assumptions on the parameters in the systems and on the size of the initial data,
the solutions can be proved to be either global in time or may blow up in finite
time (i.e some norms of the solution will be unbounded in finite time). If the
solutions are global in time, then the natural question is about their convergence
to the steady state and the rate of convergence. The study of the asymptotic
behavior of solutions of nonlinear evolution equations, particularly those governing
gas dynamics, quantum theory and thermoelasticity, has been an important area
for the interaction between the partial differential equations and physics.
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CONTENTS

Notations

• Ω : bounded domain in Rn.

• Γ : topological bouundary of Ω.

• x = (x1, x2) : generic point of Rn.

• dx = dx1dx2 : Lebesgue measuring on Ω.

• ∇u : gradient of u.

• ∆u : Laplacien of u.

• D(Ω) : space of differntiable functions with compact support in Ω.

• D′(Ω) : distribution space.

• Ck(Ω) : space of functions k-times continuously differentiable in Ω.

• Lp(Ω) : space of functions p-th power integrated on with measure of dx.

• W 1,p(Ω) = {u ∈ Lp(Ω),∇u ∈ Lp(Ω)}.

• H: Hilbert space.

• H1
0 (Ω) = W 1,2

0 .
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CONTENTS

• If X is a Banach space:

Lp(0, T ;X) = {f : (0, T ) −→ Xis measurable;
∫ t

0
‖f(t)‖pXdt <∞}.

L∞(0, T ;X) = {f : (0, T ) −→ Xis measurable; ess− supt∈[0,T ] ‖f(t)‖pX <∞.

Ck([0, T ];X):Space of functions k − times continuously differentiable from
[0;T ] −→ X.

D([0, T ];X): space of functions continuously differentiable with compact
support in[0;T ].

10



Chapter 1

Preliminaries

In this chapter, present the elemantary symbols, definitions and provide many
tools on the basic concepts of inequalities and spaces, we will use later.

1.1 Functional spaces

1.1.1 Lebesgue spaces

Definition 1.1

[4] Let Ω be a domain in Rn(n ∈ N), for 1 6 p <∞, the Lebesgue space Lp(Ω)
is defined by :

Lp(Ω) = {u : Ω −→ R, u is measurable and
∫

Ω
|u(x)|pdx <∞},

with the norm

‖u‖p = (

∫
Ω

|u(x)|pdx)

1

p

In addition, we define L∞(Ω) by:

L∞(Ω) = {u : Ω −→ R, u is measurable and ∃c > 0 such that |u(x)| 6 c a.e
on Ω},

equipped with the norm
‖u‖∞ = ess sup

x∈Ω
|u(x)| = inf{c : |u(x)| 6 c a.e on Ω}

11



CHAPTER 1. PRELIMINARIES

1.1.2 Hilbert spaces

Definition 1.2

An inner product on a complex linear space X is a map

(., .) : X ×X −→ C.

such that, for all x, y, z ∈ X and λ, µ ∈ C : (x, λy+µz) = λ(x, y) +µ(x, z) (linear
in the second argument ):

1.(y, x) = (x, y) ( symmetrical );

2.(x, x) > 0 (Positive );

3.(x, x) = 0 if and only if x = 0 (positive definite ).

We call a linear space with an inner product a pre-Hilbert space.

If X is a linear space with an inner product (.,.), then we can define an norm
in X by :

‖x‖ =
√

(x, x). (1.1)

Definition 1.3

A Hilbert space is a complete inner product space.

Example 1.1

The stander inner product on Cn is given by

(x, y) =
n∑
j=1

xj ȳj. (1.2)

where x = (x1, ...., xn) and y = (y1, ..., yn), with xj, yj ∈ C.

Example 1.2

Let C([a, b]) denote the space of all complex-valued continuous functions de-
fined on the interval [a, b]. We define an inner product on C([a, b]) by

12
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(f, g) =

∫ b

a

f(x)g(x)dx, (1.3)

Where f, g : [a, b] −→ C are continuous functions.

Example 1.3

let u, v ∈ L2(Ω) the inner product is defined by

(u, v) =

∫
Ω

uvdΩ, (1.4)

with respect to the associated norm,

‖u‖2 =

(∫
Ω

|u(x)|dΩ

)1

2
. (1.5)

Remark 1.1

The spaces Lp([a, b]) are Banach spaces but they are not Hilbert spaces when
p 6= 2.

Theorem 1.1 (Lax-Milgram)

[4] Assume that a(u, v) is a continuous coercive bilinear form on H. Then, given
an yφ ∈ H ′ there exists a unique element u ∈ H such that

a(u, v) =< φ, v >,∀v ∈ H.

Moreover, if a symmetric, then u is characterized by the property

1

2
a(u, v)− < φ,U >= min

v∈H
{1

2
a(u, v)− < φ,U >}.

1.1.3 Sobolev spaces

Difinition 1.4

[5]For k ∈ N and 1 6 p 6∞. We define the Sobolev space
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W p,k(Ω) = {u ∈ Lp(Ω), Dαu ∈ Lp(Ω)∀α ∈ Nnwith|α| 6 k, }
equipped with the norm

‖u‖k,p =

(∑
|α|6k

‖Dαu‖pp
)1

p
, 1 6 p <∞

‖u‖k,∞ = max
|α|6k
‖Dαu‖∞,

where Dαu is the α-th weak derivative of u which is defined as

∫
Ω

u(x)Dαϕ(x) = −1|α|
∫

Ω

v(x)ϕ(x),∀ϕ ∈ C∞c (Ω),

|α| = α1 + ....+ αn,

and

v = Dαu =
∂|α|u

∂xα11
.....∂xαnn

.

The space W k,2(Ω) is denoted by Hk(Ω), which is a Hilbert space with respect
to the inner product

(u, v)Hk =

∫
Ω

∑
α6k

Dαu(x)Dαv(x)dx,∀u, v ∈ Hk(Ω).

Definition 1.5
[5] We denote by W k,p

0 (Ω) the closure of C∝c (Ω) in W k,p(Ω).

1.2 Some inequalities

Theorem 1.2(Cauchy-Schwarz inequality )

Let u, v ∈ L2(Ω) and v ∈ L2(Ω), then uv ∈ L1(Ω) and

‖uv‖1 6 ‖u‖2‖v‖2

14
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Theorem 1.3(Hölder’s inequality)

Let 1 6 p 6∞ , if u ∈ Lp(Ω) and v ∈ Lp′(Ω) , then uv ∈ L1(Ω) and

‖uv‖1 6 ‖u‖p‖v‖p′ ,

where
1

p
+

1

p′
= 1

Theorem 1.4(Young’s inequality)

Let 1 ≤ p ≤ ∞. Then a, b > 0, Then for any ε > 0, we have

ab ≤ εap + Cεb
p′ ,

where Cε =
1

p′(εp)
p′
p

. For p = p′ = 2, we have ab 6 εa2 +
b2

4ε
.

1.2.1 Some results about Soboleve spaces

In this Section, we list a few pertinent qualities that Sobolev space-related func-
tions benefit from without providing any supporting evidence.

Theorem 1.5 (Trace theorem [20])

Let Ω be a bounded open set of find with Lipschtiz continuous boundary and
let s > 1/2.

1. There exists a unique linear continuous map γ0 : Hs(Ω) −→ Hs−1(∂Ω) such
that γ0v = v|∂Ω for each v ∈ Hs(Ω)

⋂
C0(Ω̄).

2.There exists a linear continuous map R0 : Hs−1(∂Ω) −→ Hs(Ω) such that
γ0r0φ = φ for each φ ∈ Hs−1(∂Ω). Analogous results also hold true if we consider
the trace γΣ over a Lipshitz continuous subset Σ of the boundary ∂Ω.

The so-called Poincare inequality is a crucial finding that will be widely applied
in the sequel.

15
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Therorem 1.6 (Poincaré inequality [1] )

Assume that Ω is a bounded connected open set of Rd and that Σ is a (non-
empty) Lipschitz continuous subset of the boundary ∂Ω.Then there exists a con-
stant CΩ > 0 such that

∫
Ω

v2(X)dX 6 CΩ

∫
Ω

|∇v(X)|2dX, (1.6)

for each v ∈ H1
Σ(Ω)

Lemma 1.1(Sobolev-Poincare inequality)

Let q be a number with

2 6 q <∞, (n = 1, 2), 2 6 q 6
2n

n− 2
(n > 3),

then there exists a constant Cs = Cs(Ω, q) such that

‖u‖q 6 c‖∇u‖2foru ∈ H1
0 (Ω). (1.7)

Theorem 1.7(Sobolev embedding theorem [1])

Assume that Ω is a (bounded or unbounded ) open set of Rd with a Lipschitz
continuous boundary, and that. Then the following continuous embeddings hold :

1. If 1 6 p < d, then W s,p(Ω) ⊂ Lp∗(Ω) for p∗ = dp/(d− sp).

2. If sp = d, then W s,p(Ω) ⊂ Lq(Ω) for ay q such that p 6 q <∞.

3. If sp > d, then W s,p(Ω) ⊂ C0Ω̄.

Lemma 1.2(Korn’s inequality)

Let Ω be an open, connected domain in n-dimensional Euclidean space Rn

,n > 2. Let H1(Ω) be the Sobolev spaces of all vector filed v = (v1, ....., vn) on Ω
that, along with their (first) weak derivatives, lie in the Lebesgue spaces L1(Ω).

16
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Denoting the partial derivative with respect to the ith component by ∂i, the norm
in H1(Ω) is given by

‖v‖H1(Ω) = (

∫
Ω

n∑
i=1

|vi(x)|2dx+

∫
Ω

n∑
i=1

|∂ivi(x)|2dx)1/2

Then there is a constant C > 0 ,Known as the Korn constant of Ω, such that, for
all v ∈ H1(Ω).

‖v‖2
H1 6 C

∫
Ω

n∑
i,j=1

(|vi(x)|2 + |(eijv)(x)|2)dx

where e denotes the symmetrized gradient given by

eijv =
1

2
(∂iv

j + ∂jv
i)

1.2.2 Green’s formula

Proposition 1.1

[6] Let Ω be an open subset of Rd, with a Lipschitz boundary.Then for all
u, v ∈ H1(Ω), we have

∫
Ω

(
∂u

∂xi
v +

∂v

∂xi
u)dx =

∫
∂Ω

γ0(u)γ0(v)ηids, i = 1, ....., d.

Where ηi the i-th component of the outward normal vector η.

1.3 Logarithmic Hölder Conttinuty

In this section we introduce the most important condition on the exponent in the
study of variable exponent spaces, the log-Hölder continuity condition.

Definition 1.6([8],page 100)

We say that function α : Ω −→ R is locally log-Hölder continuous on Ω if there
exists c1 > 0 such that

17
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|α(x)− α(y)| ≤ c1

log(e+ 1/|x+ y|)
(1.8)

for all x, y ∈ Ω we say that α satisfies the log-Hölder decay condition if there
exist α∞ ∈ R and constant c2 > 0 such that

|α(x)− α∞| ≤
c2

log(e/|x|)

for all x ∈ Ω we say that α is globally log-Hölder continuous in Ω if it is locally
log-Hölder continuous and satisfies the log-Hölderdecay condition.

The constant c1 and c2 are called the local log-Hölder constant and the log-
Hölder decay constant, respectively. The maximum max c1, c2 is just called the
log-Hölder constant of α.

1.3.1 Lp(.),W 1,p(.) spaces

We define the spaces

C+(Ω̄) = { continuous function p(.) : Ω̄ −→ R+ such that 2 < p− < p+ <∞}

where,
p− = min

x∈Ω̄
p(x) and p+ = max

x∈Ω̄
p(x)

We define the Lebesgue space with variable exponent

Lp(.) = {u : Ω −→ R measurable :

∫
Ω

|u(x)p(x)dx}

endowed with Luxembourg norm :

‖u‖p(.) = ‖u‖Lp(.) = inf{ε > 0,

∫
Ω

|u(x)

ε
|p(x)dx ≤ 1}

. The space (Lp(.), ‖.‖p(.)) is a reflexive Banach space, uniformly convex and its
dual space is isomorphic to (Lp(.)(Ω), ‖.|q(x)) where

1

p(x)
+

1

q(x)
= 1,

18
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and
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)}

With the norm
‖u‖ = ‖u‖p(x) + ‖∇u‖p(x), u ∈ W 1,p(x)(Ω)

. Remark 1.2 We denote by W 1,p(x)
0 (Ω) the closure of C∝0 in W 1,p(x)(Ω).

1.3.2 Lp(0, T ;X) spaces

Let x be a banach space , denote by Lp(0, T ;X) the space of measurable functions

f :]0, T [−→ X

t −→ f(t),

such that ∫ T

0

(‖f(t)‖pX)

1

pdt = ‖f‖Lp(0,T,X) <∞.

If p =∞

‖f‖L∞(0,T,X) = sup
t∈]0,T [

ess‖f(t)‖X .

Theorem 1.8 The space Lp(0, T ;X) is a banach space.
Lemma 1.3
Let f ∈ Lp(0, T ;X) and

∂f

∂t
∈ Lp(0, T ;X), (1 6 p 6∞), then, the function f

is continuous from [0, T ] to X . i.e. f ∈ C1(0, T,X).

1.4 Results in spaces with exponents variables

Proposition 1.2 (see , [24],[25])

Let un, u ∈ Lp(x)(Ω) and p+ < +∞, then

1)‖u‖Lp(x)(Ω) < 1⇐⇒
∫

Ω
|u|p(x)dx < 1;

2)‖u‖Lp(x)(Ω) > 1 =⇒ ‖u‖p
−

Lp(x)(Ω)
6
∫

Ω
|u|p(x)dx 6 ‖u‖p

+

Lp(x)(Ω)
;

3)‖u‖Lp(x)(Ω) < 1 =⇒ ‖u‖p
+

Lp(x)(Ω)
6
∫

Ω
|u|p(x)dx 6 ‖u‖p

−

Lp(x)(Ω)
;

19
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4)‖u‖Lp(x)(Ω) −→ 0⇐⇒
∫

Ω
|u|p(x)dx −→ 0.

Lemma 1.4 (Poincare inequality [24],[25])

Let Ω be a bounded domain of Rn an suppose that p(.) satisfies (1.8). Then,

‖u‖p(.) 6 c(Ω)‖∇u‖p(.),∀u ∈ W 1,p(.)
0 (Ω), (1.9)

where c = c(p1, p2, |Ω|) > 0.

Next we have a Sobolev-Poincare inequality

Lemma 1.5 (Generalized Hölder inequality [24],[25])

For any function u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) , we have

|
∫

Ω

u(x)v(x)dx| 6 (
1

p−
+

1

q−
)‖u‖Lp(x)(Ω)‖v‖Lq(x)(Ω) 6 2‖u‖Lp(x)(Ω)‖v‖Lq(x)(Ω),

(1.10)
where

q(x) =
p(x)

p(x)− 1
.

Lemma 1.6

If p : Ω̄ −→ [1,∞) is continuous,

2 6 p1 6 p(x) 6 p2 6
2n

n− 2
, n > 3, (1.11)

satisfies, thenthe embedding H1
0 (Ω) ↪→ Lp(;)(Ω) is continuous.

Lemma 1.7(see [21])

If p2 <∞ and p : Ω̄ −→ [1,∞) is a measurable function, then C∞0 (Ω) is dense
in Lp(.)(Ω).

20



CHAPTER 1. PRELIMINARIES

Lemma 1.8([20] Hölder inequality)

Let p, q, s > 1 be measurable functions defined on Ω, and

1

s(y)
=

1

p(y)
+

1

q(y)
fora.ey ∈ Ω,

satisfies . If f ∈ LP (.)(Ω) and g ∈ Lq(.)(Ω) and

‖f.g‖s(.) ≤ ‖f‖p(.)‖g‖q(.).

Lemma 1.9(see [20])

If p > 1 is a measurable function on Ω, then

min{‖u‖p1p(.), ‖u‖
p2
p(.)} ≤ ρp(.)(u) ≤ max{‖u‖p1p(.), ‖u‖

p2
p(.)},

for any u ∈ Lp(.)(Ω) and for a.e. x ∈ Ω.

Lemma 1.10(see,[20]Gronwall inequality )

Let C > 0, u(t) and y(t) be continuous nonnegative function defind
for 0 ≤ t <∝ satisfying the inequality

u(t) ≤ C +

∫ t

0

u(s)y(s)ds, 0 ≤ t <∞.

show that

u(t) ≤ Cexp(

∫ t

0

y(s)ds), 0 ≤ t <∞.
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Lemma 1.11 (Modified Gronwall inequality )

Let u and h be continuous nonnegative function defind for 0 ≤ t <
∞ satisfying the inequality

0 ≤ u(t) ≤ C +

∫ t

0

u(s)h(s)ds, 0 ≤ t ≤<∞
.

with C > 0

u(t) ≤ (C−r − r
∫ t

0

h(s)ds)−1/r, 0 ≤ t <∞
.

as long as the right-hand side exists .
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Chapter 2

Decay of a solution of the wave
equation with density and memory
term in Rn

2.1 Preliminaries and position of the problem

Let us consider the following problem


ρ(x)(|u′|q−2u

′
)
′ −∆xu+

∫ t

0

g(t− s)∆xu(s, x)ds = 0, x ∈ Rn, t > 0

u(0, x) = u0(x) ∈ H(Rn),

u
′
(0, x) = u1(x) ∈ Lqρ(Rn),

(p)

In this paper we are going to consider the solutions in spaces weighted
by the density ρ in order to compensate for the lack of Poincare’s in-
equality.
In this framework, (see [10](Theorem 2.4),[11] (Proposition 2.1)), it
is well known that, for any initial data u0 ∈ H(Rn), u1 ∈ Lqρ(Rn),

then problem (P) has a unique solution u ∈ C([0, T ),H(Rn)), u
′ ∈

C([0, T ), Lqρ(Rn)) for T small enough, under hypothesis (A1)-(A4).

The energy of u at time t is defined by
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2E(t) =
2(q − 1)

q
‖u′‖q

Lqρ(Rn)
+ (1−

∫ t

0

g(s)ds)‖∇xu‖2
2 + (g ◦ ∇xu).

(2.1)
and the following energy functional law holds, which means that,

our energy is uniformly bounded and decreasing along the trajectories.

2E
′
(t) = (g

′ ◦ ∇xu)(t)− g(t)‖∇xu(t)‖2
2 < 0, ∀t > 0. (2.2)

The following notation will be used throughout this paper

(Φs ◦Ψ)(t) =

∫ t

0

Φs(t− τ)‖Ψ(t)−Ψ(τ)‖2
2dτ. (2.3)

The problem (P) for the case q = 2, ρ(x) = 1, in a bounded domain
Ω ⊂ Rn, (n ≥ 1) with a smooth boundary ∂Ω and g is a positive non-
increasing function was considered in [11], where they established an
explicit and general decay rate result for relaxation function satisfying :

g′(t) ≤ −H(g(t)), t ≥ 0, H(0) = 0, (2.4)

for a positive function H ∈ C1(R+) and H is linear or strictly in-
creasing and strictly convex C2 function on (0, r], 1 > r,to improve
conditions considered recently by Alabau-Boussouira and Cannarsa [3]
on the relaxation function

g′(t) ≤ −X (g(t)),X (0) = X ′(0) = 0, (2.5)
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where X is a non-negative function, strictly increasing and strictly
convex on (0, k0], k0 > 0. They required that

∫ k0

0

dx

X (x)
= +∞,

∫ k0

0

xdx

X (x)
< 1, lim

s−→0+
inf
X (s)/s

X ′(s)
>

1

2
(2.6)

and proved a decay result for the energy of (P) with q = 2, ρ(x) = 1
in a bounded domain. In addition to these assumptions, if

lim
s−→0+

sup
X (s)/s

X ′(s)
< 1, (2.7)

then an explicit rate of decay was given.
We omit the space variable x of u(x, t), u′(x, t) and for simplicity rea-
son denote u(x, t) = u and u′(x, t) = u′ when no confusion arises. We
denote by

|∇xu|2 =
∑n

i=1(
∂u

∂xi
)2,∆xu =

∑n
i=1

∂2u

∂x2
i

. The constants c used through-

out this paper are positive generic constants which may be different in
various occurrences, also the functions considered are all real valued,
here u′ = du(t)/dt and u” = d2u(t)/dt2.

Our goal : The main purpose of this work is to allow a wider class
of relaxation functions and improve earlier results in the literature.
The basic mechanism behind the decay rates is the relation between
the damping and the energy .
First we recall and make use the following assumption on the functions
ρ and g as :

A1: To guarantee the hyperbolicity of the system, we assume that
the function g : R+ −→ R+ is of class C1 satisfying :

1− ḡ = l > 0; g(0) = g0 > 0, (2.8)
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where ḡ =
∫∞

0 g(t)dt.

A2: There exists a positive function H ∈ C1(R+) such that

g′(t) +H(g(t)) ≤ 0, t ≥ 0, H(0) = 0. (2.9)

A3: H is linear or strictly increasing and strictly convex C2 func-
tion on (0, r], 1 > r.

Remark 1.1[11]

A- We can deduce that there exists t1 > 0 large enough such that :

1)∀t ≥ t1: We have lim
s−→+∞

g(s) = 0, which implies that lim
s−→+∞

−g′(s)
cannot be a positive, so lim

s−→+∞
−g′(s) = 0. Then g(t1) > 0 and

max{g(s),−g′(s)} < min{r,H(r), H0(r)}. (2.10)

where H0(t) = H(D(t)) provided that D is a positive C1 function,
with D(0) = 0, for which H0 is strictly increasing and strictly convex
C2 function on (0, r] and

∫ +∞

0

g(s)H0(−g′(s))ds < +∞.

2)∀t ∈ [0, t1]:As g is nonincreasing, g(0) > 0 and g(t1) > 0 then
g(t) > 0 and

g(0) ≥ g(t) ≥ g(t1) > 0.
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Therefore, since H is a positive continuous function, then

a ≤ H(g(t)) ≤ b,

for some positive constants a and b. Consequently,

g′(t) ≤ −H(g(t)) ≤ −kg(t), k > 0,

then
g′(t) ≤ −kg(t), k > 0. (2.11)

B-Let H∗0be the convex conjugate of H0 in the sense of Young (see
[15], page 61-64 ), then

H∗0(s) = s(H
′

0)
−1(s)−H0[(H

′

0)
−1(s)], s ∈ (0, H

′

0(r)),

and satisfies the following Young’s inequality

AB ≤ H∗0(A) +H0(B), A ∈ (0, H
′

0(r)), B ∈ (0, r]. (2.12)

A4: The function ρ : Rn −→ Rn
+, ρ(x) ∈ C0,γ(Rn) with γ ∈ (0, 1)

and ρ ∈ Ls(Rn)
⋂
L∞(Rn), where s =

2n

2n− qn+ 2q
.

Definition 1.2 ([10],[18]). We definit the function spaces of our
problem and its norm as follows :

H(Rn) =
{
f ∈ L2n/(n−2)(Rn) : ∇xf ∈ (L2(Rn))n

}
. (2.13)

and the space L2
ρ(Rn) to be the closure of C∞0 (Rn) function with

respect to the inner product

(f, h)L2
ρ(Rn) =

∫
Rn
ρfhdx.

For 1 < p <∞, if f is a measurable function on Rn, we define
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‖f‖Lqp(Rn) =

(∫
Rn
ρ|f |qdx

)1/q

. (2.14)

The spaceLρ2(Rn) is a separable Hilbert space.
The following technical lemma will play an important role in the sequel.

Lemma 1.3 [14] (Lemma 1.1 ) For any two functions g, v ∈ C1(R)
and θ ∈ [0, 1] we have

v′(t)

∫ t

0

g(t− s)v(s)ds = −1

2

d

dt

∫ t

0

g(t− s)|v(t)− v(s)|2ds

+
1

2

d

dt

(∫ t

0

g(s)ds

)
|v(t)|2 +

1

2

∫ t

0

g′(t− s)|v(t)− v(s)|2ds

− 1

2
g(t)|v(t)|2.

(2.15)
and

|
∫ t

0

g(t−s)(v(t)−v(s))ds|2 ≤
(∫ t

0

|g(s)|2(1−θ)ds

)(∫ t

0

|g(t−s)|2θ|v(t)−v(s)|2ds
)
.

(2.16)
we are now ready to state and prove our main results

2.2 Decay rate results

Lemma2.1[17]
Let ρ satisfies (A4),then for any u ∈ H(Rn)

‖u‖Lqρ(Rn) ≤ ‖ρ‖Ls(Rn)‖∇xu‖L2(Rn) (2.17)
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with s =
2n

2n− qn+ 2q
, 2 ≤ q ≤ 2n

n− 2
.

For the purpose of constructing a Lyapunov function L equivalent
to E, we introduce the next functionals

ψ1(t) =

∫
Rn
ρ(x)u|u′|q−2u′dx. (2.18)

ψ2(t) = −
∫
Rn
ρ(x)u|u′|q−2u′

∫ t

0

g(t− s)(u(t)− u(s))dsdx. (2.19)

Lemma2.2 Under the assumption (A1)-(A4), the functional ψ1 sat-
isfies, along the solution of (p)

ψ′1(t) ≤ ‖u′‖
q
Lpρ(Rn)

+ (σ − l)‖∇xu‖2
2 +

(1− l)
4σ

(g ◦ ∇xu) (2.20)

proof.

From Eq. (2.18), integrate by parts over Rn, we have

ψ′1(t) =

∫
Rn
ρ(x)u′qdx+

∫
Rn
ρ(x)u(|u′|q−2u′)′dx

=

∫
Rn

(
ρ(x)u′q + u∆xu− u

∫ t

0

g(t− s)∆xu(s, x)ds

)
dx

≤ ‖u′‖q
Lpρ(Rn)

− l‖∇xu‖2
2 +

∫
Rn
∇xuint

t
0g(t− s)(∇xu(s)−∇xu(t))dsdx.

Usinge Young’s inequality and Lemma 1.3, we obtain
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ψ′1(t) ≤ ‖u′‖
q
Lpρ(Rn)

− l‖∇xu‖2
2

+ σ‖∇xu‖2
2 +

1

4σ

∫
Rn

(∫ t

0

g(t− s)|∇xu(s)−∇xu(t)|ds
)2

dx

≤ ‖u′‖q
Lqσ(Rn)

+ (σ − l)‖∇xu‖2
2 +

(1− l)
4σ

(g ◦ ∇xu).

(2.21)

Lemma 2.3Under the assumption (A1)-(A4), the functional ψ2

satisfies ,along the solution of (P), for any σ ∈ (0, 1)

ψ′2(t) ≤
(
σ −

∫ t

0

g(s)ds

)
‖u′‖q

Lqσ(Rn)

+ σ‖∇xu‖2
2 +

c

ρ
(g ◦ ∇xu)− cσ‖ρ‖qLs(Rn)(g

′ ◦ ∇xu)q/2
(2.22)

proof.
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Exploiting in (P), to get

ψ′2(t) = −
∫
Rn
ρ(x)(|u′|q−2u′′

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds‖u′‖q
Lqρ(Rn)

=

∫
Rn
∇xu

∫ t

0

g(t− s)(∇xu(t)−∇xu(s))dsdx

−
∫
Rn

(∫ t

0

g(t− s)∇xu(s, x)ds

)(∫ t

0

g(t− s)(∇xu(t)−∇xu(s))ds

)
dx

−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds‖u′‖q
Lqρ(Rn)

=

(
1−

∫ t

0

g(s)ds

)∫
Rn
∇xu

∫ t

0

g(t− s)(∇xu(t)−∇xu(s))dsdx

+

∫
Rn

(∫ t

0

g(t− s)(∇xu(t)−∇xu(s))ds

)2

dx

−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds‖u′‖q
Lqρ(Rn)

By Holder’s and Young’s inequalities and Lemma 2.1 we estimate
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−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

≤
(∫

Rn
ρ(x)|u′|qdx

)(q−1)/q

×(∫
Rn
ρ(x)|

∫ t

0

g′(t− s)(u(t)− u(s))ds|q
)1/q

≤ σ‖u′‖q
Lqρ(Rn)

+ cσ‖
∫ t

0

g′(t− s)(u(t)− u(s))ds‖q
Lqρ(Rn)

≤ σ‖u′‖q
Lqρ(Rn)

− cσ‖ρ‖qLs(Rn)(g
′ ◦ ∇xu)q/2(t).

Using Young’s and Poincare’s inequalities and lemma 1.3, we obtain

ψ′2(t) ≤ σ‖∇xu‖2
2(g ◦ ∇xu) +

c

σ
(g ◦ ∇xu)− cσ‖ρ‖qLs(Rn)(g

′ ◦ ∇xu)q/2

+ (σ −
∫ t

0

g(s)ds)‖u′‖q/2
Lqρ(Rn)

.

Our main result reads as follows.

Theorem 2.4 : Let (u0, u1) ∈ H(Rn)× Lqρ(Rn) and suppose that
(A1) − (A4) hold. Then there exist positive constants α0, α1, α2, α3

such that the energy of solution given by (P ) satisfies,

E(t) ≤ α3H
−1
1 (α1t+ α2),∀t ≥ 0,

where

H1(t) =

∫ 1

t

1

sH
′
0(α0s)

ds. (2.23)
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In order to prove this Theorem, let us define

L(t) = ξ1E(t) + ψ1(t) + ξ2ψ2(t), (2.24)

for ξ1, ξ2 > 1 we need the next lemma, which means that there is
equivalent between the Lyapunov and energy functions.

Lemma 2.5 . For ξ1, ξ2 > 1 we have

L(t) ∼ E(t). (2.25)

proof.
From Eq. (2.2), results of Lemma (2.2) and Lemma(2.3), we have

L′(t) = ξ1E
′(t) + ψ′1(t) + ξ2ψ

′
2(t)

≤ (
1

2
ξ1 − cσ‖ρ‖qLs(Rn)ξ2)(g

′ ◦ ∇xu)q/2 +M0(g ◦ ∇xu)

−M1‖u′‖qLqρ(Rn) −M2‖∇xu‖2
2,

where

M0 =

(
4ξ2c+ (1− l)

4σ

)
,

M1 =

(
ξ2

(∫ t1

0

g(s)ds− σ
)
− 1

)
,

M2 =

(
− ξ2σ +

1

2
ξ1g(t1) + (l − σ)

)
,

and t1 was introduced in Remark 1.1.
We choose σ so small that ξ1 > 2cσ‖ρ‖qLs(Rn)ξ2. Whence σ is fixed , we
can choose ξ1, ξ2 large enough so that M1,M2 > 0, which yields
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L′(t) ≤M0(g ◦ ∇xu)− cE(t),∀t ≥ t1. (2.26)

On the other hand, by Eq. (2.24)we have

|L(t)− ξ1E(t)| ≤ |ψ1(t)|+ ξ2|ψ2(t)|

≤
∫
Rn
|ρ(x)u|u′|q−2u′|dx

+

∫
Rn

∣∣∣∣ρ(x)|u′|q−2u′
∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣dx.
Thanks to Holder and Young’s inequalities with exponents

q

q − 1
, q,

since
2n

n+ 2
≥ q ≥ 2, we have by using Lemma 2.1

∫
Rn
|ρ(x)u|u′|q−2u′|dx ≤

(∫
Rn
ρ(x)|u|qdx

)
+

(∫
Rn
ρ(x)|u′|qdx

)(q−1)/q

≤ 1

q

(∫
Rn
ρ(x)|u|qdx

)
+
q − 1

q

(∫
Rn
ρ(x)|u′|qdx

)
≤ c‖u′‖q

Lqρ(Rn)
+ c‖ρ‖qLs(Rn)‖∇xu‖q2,

(2.27)
and
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∫
Rn

∣∣∣∣(ρ(x)

q − 1

q |u′|q−2u′
)(

ρ(x)

1

q
∫ t

0

g(t− s)(u(t)− u(s))ds

)∣∣∣∣dx
≤
(∫

Rn
ρ(x)|u′|qdx

)(q−1)/q

×(∫
Rn
ρ(x)|

∫ t

0

g(t− s)(u(t)− u(s))ds|q
)1/q

≤ q − 1

q
‖u′‖q

Lqρ(Rn)
+

1

q
‖
∫ t

0

g(t− s)(u(t)− u(s))ds‖q
Lqρ(Rn)

≤ q − 1

q
‖u′‖q

Lqρ(Rn)
+

1

q
‖ρ‖qLs(Rn)(g ◦ ∇xu)q/2(t)

Then, since q ≥ 2, we have

|L(t)− ξ1E(t)| ≤ c(E(t) + Eq/2(t))

≤ c(E(t) + E(t)E(q/2)−1(t))

≤ c(E(t) + E(t)E(q−2)−1(0))

≤ cE(t).

Therefore, we can choose ξ1 so that

L(t) ∼ E(t). (2.28)

proof.
(oftheorem 2.4)We set F (t) = L(t) + cE(t), which is equivalent to

E(t). By Eq.(2.2), and Remark 1.1, we have ∀t ≥ t1
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∫
Rn

∫ t1

0

g(t− s)|∇xu(t)−∇xu(s)|2dsdx ≤ −1

k

∫
Rn

∫ t1

0

g′(t− s)|∇xu(t)−∇xu(s)|2dsdx

≤ −cE ′(t),
(2.29)

then by Eq. (2.26), we get

F ′(t) = L′(t) + cE ′(t)

≤ −cE(t) + c

∫
Rn

∫ t

t1

g(t− s)|∇xu(t)−∇xu(s)|2dsdx,∀t ≥ t1.

(2.30)
At this point, We define

I(t) =

∫ t

t1

H0(−g′(s))(g ◦ ∇xu)(t)ds. (2.31)

Since
∫ +∞

0 H0(−g′(s))(g)ds < +∞, we have from Eq.(2.2)

I(t) =

∫ t

t1

H0(−g′(s))
∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

≤ 2

∫ t

t1

H0(−g′(s))g(s)

∫
Rn
|∇xu(t)|2 + |∇xu(t− s)|2dxds

≤ cE(0)

∫ t

t1

H0(−g′(s))g(s)

< 1.

And as in [11], there exist β such that

0 < β ≤ I(t) < 1,∀t ≥ t1 (2.32)
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Now, we define again a new functional λ(t) related with I(t) as

λ(t) = −
∫ t

t1

H0(−g′(s))g′(s)
∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

(2.33)
From,(A1)− (A3) and Remark 1.1, we get

H0(−g′(s))g(s) ≤ H0(H(g(s)))g(s) = D(g(s))g(s) ≤ κ0,

For some positive constant κ0. Then,∀t ≥ t1

λ(t) ≤ −κ0

∫ t

t1

g′(s)

∫
Rn
|∇xu(t)−∇xu(t− s)|2dxds

≤ −κ0

∫ t

t1

g′(s)

∫
Rn
|∇xu(t)|2 + |∇xu(t− s)|2dxds

≤ −cE(0)

∫ t

t1

g′(s)ds

≤ −cE(0)g(t1)

< min{r,H(r), H0(r)}.

(2.34)

Using the properties ofH0(strictly convex in (0, r], H0(0) = 0), then
for x ∈ (0, r], θ ∈ [0, 1]

H0(θx) ≤ θH0(x).

Using Remark 1.1, Eq.(232),Eq(2.34) and Jensen’s inequality leads
to
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λ(t) =
1

I(t)

∫
t1

tI(t)H0[H
−1
0 (−g′(s))]H0(−g′(s))g′(s)

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

≥ 1

I(t)

∫
t1

tH0[I(t)H−1
0 (−g′(s))]H0(−g′(s))g′(s)

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

≥ H0

(
1

I(t)

∫
t1

tI(t)H−1
0 (−g′(s))H0(−g′(s))g′(s)

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

)
≥ H0

(∫
t1

t

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

)
,

which implies

∫
t1

t

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds ≤ H−1

0 (λ(t)),

then

F ′(t) ≤ −cE(t) + cH−1
0 (λ(t)),∀t ≥ t1.

Now, we will folowing the steps in [11] and using the fact that
E ′ ≤ 0, 0 < H

′

0, 0 < H ′′0 on (0, r] to define the functional

F1(t) = H
′

0

(
α0
E(t)

E(0)

)
F (t) + cE(t), α0 < r, 0 < c,

where F1(t) ∼ E(t) and

F ′1(t) = α0
E ′(t)

E(0)
H ′′0

(
α0
E(t)

E(0)

)
F (t) +H ′0

(
α0
E(t)

E(0)

)
F ′(t) + cE ′(t)

≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cH ′0

(
α0
E(t)

E(0)

)
H−1

0 (λ(t)) + cE ′(t).
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Let H∗0 given in Remark 1.1 and using Young’s inequality (2.12)

with A = H ′0

(
α0
E(t)

E(0)

)
, B = H−1

0 (λ(t)), to get

F ′1(t) ≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cH ∗0

(
H ′0

(
α0
E(t)

E(0)

))
+ cλ(t) + cE ′(t)

≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cα0

E(t)

E(0)
H ′0

(
α0
E(t)

E(0)

)
− c′E ′(t) + cE ′(t).

Choosing α0, c, c
′, such that ∀t ≥ t1

F ′1(t) ≤ −κ
E(t)

E(0)
H ′0

(
α0
E(t)

E(0)

)
= −κH2

(
E(t)

E(0)

)
,

where H2(t) = tH ′0(α0t). Using the strict convexity of H0 on (0, r],
to find that H ′2, H2 are strict positives on (0, 1],then

R(t) = τ
κ1F1(t)

E(0)
∼ E(t), τ ∈]0, 1[, (2.35)

and

R′(t) ≤ −τκ0H2(R(t)), κ0 ∈]0,+∞[,∀t ≥ t1.

Then, a simple integration and a suitable choice of τ yield,

R(t) ≤ H−1
1 (α1t+ α2), α1, α2 ∈]0,+∞[,∀t ≥ t1,

here H1(t) =
∫ 1

t H
−1
2 (s)ds.From Eq. (2.35), for a positive constante

α3, we have
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E(t) ≤ α3H
−1
1 (α1t+ α2), α1, α2 ∈]0,+∞[,∀t ≥ t1.

The fact that H1 is strictly decreasing function on (0, 1]and due to
properties of H2, we have

lim
t−→0

H1(t) = +∞,

then

E(t) ≤ α3H
−1
1 (α1t+ α2),∀t ≥ 0.

This completes the proof of Theorem2.4
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Chapter 3

General decay of solutions to a
Kirchhoff-type damped wave
equation with density in Rn

3.1 Introduction

In this chapter we consider the following equation

ρ(x)

(
|u′|q−2u′

)′
−M

(
‖∇xu‖2

2

)
∆xu+

∫ t

0

g(t−s)∆xu(s)ds = 0, x ∈ Rn, t > 0

(3.1)

where q, n ≥ 2 and M is a positive C1 function satisfying for
s ≥ 0,m0 > 0,m1 ≥ 0, γ ≥ 1,M(s) = m0 + m1s

γ and the scalar
function g(s) (so-called relaxation kernel) is assumed to satisfy (A1).

Equation (3.1) is a prototype for PDE of hyperbolic in Kirchhoff
type with memory when it is equipped by the following initial data.

u(0, x) = u0(x) ∈ H(Rn), u′(0, x) = u1(x) ∈ Lqρ(Rn), (3.2)
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where the weighted spaces H is given in Definition 2.2 and the den-
sity function satisfies

ρ : Rn −→ Rn
+, ρ(x) ∈ C0,γ̄(Rn) (3.3)

with γ̄ ∈ (0, 1) and ρ ∈ Ls(Rn)
⋂
L+∞(Rn), where s =

2n

2n− qn+ 2q
.

In this frame works ,(see [10].[9].[16]), it is well known that, for any
initial data u0 ∈ H(Rn), u1 ∈ Lqρ(Rn), the problem (3.1)-(3.2) has
a unique solution u ∈ C([0, T ),H(Rn), u′ ∈ C([0, T ), Lqρ(Rn)) for T
small enough, under hypothesis (A1)− (A2). The energy of u at time
t is defined by

E(t) =
(q − 1)

q
‖u′‖q

Lqρ(Rn)
+

1

2

(
m0 −

∫ t

0

g(s)ds

)
‖∇xu‖2

2 +
1

2
(g ◦ ∇xu)

+
m1

2(γ + 1)
‖∇xu‖2(γ+1)

2

(3.4)

and the following energy functional law holds :

E ′(t)
1

2
(g′ ◦ ∇xu)(t)− 1

2
g(t)‖∇xu‖2

2,∀t ≥ 0. (3.5)

which means that, our energy is uniformly bounded and decreasing
along the trajectories. The following notation will be used throughout
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this paper

(g ◦ ∇xu)(t) =

∫ t

0

g(t− τ)‖∇xu(t)−∇xu(τ)‖2
2dτ, (3.6)

for u(t) ∈ H(Rn), t ≥ 0.
This kind of systems appears in the models of nonlinear Kirchhoff-type.
It is a generalization of a model introduced by Kirchhoff [7] in the case
n = 1 this type of problem describes a smallamplitude vibration of an
elastic string. The original equation is :

ρhutt + τut =

(
p0 +

Eh

2L

∫ L

0

|ux(x, t)|2ds
)
uxx + f, (3.7)

where 0 ≤ x ≤ L and t > 0, u(x, t) is the lateral displacement at
the space coordinate x and the time t, ρ the mass density, h the croos-
section area,L the length, P0 the initial axial tension, τ the resistance
modulus, E the Young modulus and f the external force (for example
the action of gravity).

The motivation of our work is due to some results regarding vis-
coelastic wave equations of Kirchhoff type in a bounded domain. The
wave equation of the from

u′′−M(‖∇xu‖2
2)∆xu+

∫ t

0

g(t−s)∆xu(s)ds+h(u′) = f(u), x ∈ Ω, t > 0

(3.8)
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The problem (3.1),(3.2) for the case q = 2, ρ(x) = 1,M ≡ 1, in a
bounded domain Ω ⊂ Rn, (n ≥ 1) with a smooth boundary ∂Ω and g
is a positive nonincreasing function was considered in [16], where they
established an explicit and general decay rate for relaxation functions
satisfying :

g′(t) ≤ −H(g(t)), t ≥ 0, H(0) = 0 (3.9)

for a positive function H ∈ C1(R+) and H is linear or strictly
increasing and strictly convex C2 function on (0, r], 1 > r. This im-
proves the conditions considered recently by Alabau-Boussouira and
Cannarsa [3] on the relaxation functions

g′(t) ≤ −χ(g(t)), χ(0) = χ′(0) = 0 (3.10)

where χ is a non-negative function, strictly increasing and strictly
convex on (0, κ0], κ0 > 0.They required that

∫ κ0

0

dx

χ(x)
= +∞,

∫ κ0

0

xdx

χ(x)
< 1, lim

s−→0+
inf

χ(s)/s

χ′(s)
>

1

2
(3.11)

and proved a decay result for the energy of (P ) with q = 2, ρ(x) =
1,M ≡ 1 in a bounded domain.In addition to these assumptions, if

lim
s−→0+

sup
χ(s)/s

χ′(s)
< 1, (3.12)

then, in this case,an explicit rate of decay is given.
We omit the space variable x of u(x, t), u′(x, t) and for simplicity rea-
son denote u(x, t) = u and u′(x, t) = u′, when no confusion arises .We

denote by |∇xu|2 =
∑n

i=1

(
∂u

∂xi

)2

,∆xu =
∑n

i=1

∂2u

∂x2
i

. The constants c

used throughout this paper are positive generic constants which may
be different in various occurrences also the functions considered are all
real valued, here u′ = du(t)/dt and u′′ = d2u(t)/dt2.
The main purpose of this work is to allow a wider class of relaxation
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functions and obtain a very general decay results to improve earlier
results in the literature. The basic mechanism behind the decay rates
is the relation between the damping and the energy.

3.2 Statement and Preliminairies

First we recall and make use the following assumptions on the function
g as :

(A1)To guarantee the hyperbolicity of the system, we assume that
the function g :
R+ −→ R+ is of class C1 satisfying :

m0 − ḡ = l > 0, g(0) = g0 > 0 (3.13)

where ḡ =
∫∞

0 g(t)dt.
(A2) There exists a positive functions H ∈ C1(R+)such that

g′(t) +H(g(t)) ≤ 0, t ≥ 0, H(0) = 0 (3.14)

and H is linear or strictly increasing and strictly convex C2 function
on (0, r], 1 > r.

Remark 2.1 [16](A) We can deduce that there exists t1 > 0 large
enough such that :

(1)∀t ≥ t1 : We have lim
s−→+∞

g(s) = 0, which implies that lim
s−→+∞

−g′(s)
cannot be positive, so lim

s−→+∞
−g′(s) = 0. Then g(t1) > 0 and

max{g(s),−g′(s) < min{r,H(r), H0(r)}, (3.15)

where H0(t) = H(D(t)) provided that D is a positive C1 function,
with D(0) = 0, for which H0 is strictly increasing and strictly convex
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C2 function on (0, r] and

∫ +∞

0

g(s)H0(−g′(s))ds < +∞.

(2)∀t ∈ [0, t1] : As g is nonincreasing, g(0) > 0 and g(t1) > 0 then
g(t) > 0 and

g(0) ≥ g(t) ≥ g(t1) > 0.

There fore, since H is a positive continuous function, then

a ≤ H(g(t)) ≤ b

for some positive constants a and b. Consequently,

g′(t) ≤ −H(g(t)) ≤ −kg(t), k > 0

which gives

g′(t) ≤ −kg(t), k > 0 (3.16)

(B) Let H∗0 be the convex conjugate of H0 in the sense of Young
(see [23], pages 61-64). Then

H∗0(s) = s(H
′

0)
−1(s)−H0[(H

′

0)
−1(s)], s ∈ (0, H

′

0(r))

and satisfies the following Young’s inequality

AB ≤ H∗0(A) +H0(B), A ∈ (0, H
′

0(r)), B ∈ (0, r]. (3.17)

Definition 2.2 [10],[19] We define the function spaces of our prob-
lem and its norm as follows :

H(Rn) = {f ∈ L2n/(n−2)(Rn) : ∇xf ∈ (L2(Rn))} (3.18)
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and the space L2
ρ(Rn) to be the closure of C∞0 (Rn) functions with

respect to the inner product

(f, h)L2
ρ(Rn) =

∫
Rn
ρfhdx.

For 1 < q <∞, if f is a measurable function on Rn, we define

‖f‖Lqρ(Rn) =

(∫
Rn
ρ|f |qdx

)1/q

. (3.19)

The space L2
ρ(Rn) is a separable Hilbert space.

The following technical lemma will play an important role in the sequel.
Lemma 2.3: [14],Lemma 1.1]For any two functions g, v ∈ C1(R)

and θ ∈ [0, 1] we have

v′(t)

∫ t

0

g(t− s)v(s)ds = −1

2

d

dt

∫ t

0

g(t− s)|v(t)− v(s)|2ds

+
1

2

d

dt

(∫ t

0

g(s)ds

)
|v(t)|2

+
1

2

∫ t

0

g′(t− s)|v(t)− v(s)|2ds− 1

2
g(t)|v(t)|2.

(3.20)
and

|
∫ t

0

g(t− s)(v(t)− v(s))ds|2

≤
(
|g(s)|2(1−θ)ds

)(∫ t

0

|g(t− s)|2θ|v(t)− v(s)|2ds
)

(3.21)
We are now ready to state and prove our main results.

3.3 Main result

The next Lemma can be rasily shown (see [17],Lemma2.1]).
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Lemma3.1: Let ρ satisfies (3.3),then for any u ∈ H(Rn)

‖u‖Lqρ(Rn) ≤ ‖ρ‖Ls(Rn)‖∇xu‖L2(Rn) (3.22)

with s =
2n

2n− qn+ 2q
, 2 ≤ q ≤ 2n

n− 2
.

For the purpose of constrcting a Lyapunov functional L equivalent
to E, we introduce the next functionals

ψ1(t) =

∫
Rn
ρ(x)u|u′|q−2u′dx, (3.23)

ψ2(t) = −
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g(t− s)(u(t)− u(s))dsdx. (3.24)

Lemma3.2: Under the assumptions (A1) and (A2), the functional
ψ1 satisfies, along the solution of (3.1),(3.2)

ψ′1(t) ≤ ‖u′‖
q
Lqρ(Rn)

+c1m1‖∇xu‖2(γ+1)
2 +(σ−l)‖∇xu‖2

2+
(1− l)

4σ
(g◦∇xu).

(3.25)
proof.
From (3.23), integrate over Rn , we have

ψ′1(t) =

∫
Rn
ρ(x)|u′|qdx+

∫
Rn
ρ(x)u

(
|u′|q−2u′

)′
dx

=

∫
Rn

(
ρ(x)|u′|q +M(‖∇xu‖2

2)u∆xu− u
∫ t

0

g(t− s)∆xu(s, x)ds
)
dx

≤ ‖u′‖q
Lqρ(Rn)

+m1‖∇xu‖2(γ+1)
2 − l‖∇xu‖2

2

+

∫
Rn
∇xu

∫ t

0

g(t− s)(∇xu(s)−∇xu(t))dsdx.

(3.26)
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Using Young’s inequality and Lemma 2.3 for θ = 1/2, we obtain

ψ′1(t) ≤ ‖u′‖
q
Lqρ(Rn)

+m1‖∇xu‖2(γ+1)
2 − l‖∇xu‖2

2

+ σ‖∇xu‖2
2 +

1

4σ

∫
Rn

(∫ t

0

g(t− s)|∇xu(s)−∇xu(t)|ds
)2

dx

≤ ‖u′‖q
Lqρ(Rn)

+m1‖∇xu‖2(γ+1)
2 + (σ − l)‖∇xu‖2

2 +
(1− l)

4σ
(g ◦ ∇xu).

(3.27)

Lemma3.3: Under the assumptions (A1) and (A2), the functional
ψ2 satisfies, along the solution of (3.1) (3.2), for any σ ∈ (0,m0)

ψ′2(t) ≤
(
σ −

∫ t

0

g(s)ds

)
‖u′‖q

Lqρ(Rn)
+m1‖∇xu‖2(γ+1)

2

+ σ‖∇xu‖2
2 +

c

σ
(g ◦ ∇xu)− cσ‖ρ‖qLs(Rn)(g

′ ◦ ∇xu)q/2
(3.28)

proof. Exploiting Eqs. (3.1),(3.25) to get

ψ′2(t) = −
∫
Rn
ρ(x)

(
|u′|q−2u′

)′ ∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds‖u′‖q
Lqρ(Rn)
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=

∫
Rn
M(‖∇u‖2

2)∇xu

∫ t

0

g(t− s)(∇xu(t)−∇xu(s))dsdx

−
∫
Rn

(∫ t

0

g(t− s)∇xu(s, x)ds

)(∫ t

0

g(t− s)(∇xu(t)−∇xu(s))dsdx

)
dx

−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds‖u′‖q
Lqρ(Rn)

=
(
m0 −

∫ t

0

g(s)ds
) ∫

Rn
∇xu

∫ t

0

g(t− s)(∇xu(t)−∇xu(s))dsdx

+

∫
Rn

( ∫ t

0

g(t− s)(∇xu(t)−∇xu(s))ds
)2
dx+ c1m1‖∇xu‖2(γ+1)

2

−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds‖u′‖q
Lqρ(Rn)

+ c(g ◦ ∇xu)(t).

By Holder’s and Young’s inequalities and Lemma 3.1, we estimate

−
∫
Rn
ρ(x)|u′|q−2u′

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

− ≤
( ∫

Rn
ρ(x)|u′|qdx

)(q−1)/q

×
( ∫

Rn
ρ(x)|

∫ t

0

g′(t− s)(u(t)− u(s))ds|q
)1/q

≤ σ‖u′‖q
Lqρ(Rn)

+ cσ‖ρ‖qLs(Rn)(g
′ ◦ ∇xu)q/2(t).
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Using Young’s and Poincare’s inequalities and Lemma 2.3 for θ =
1/2,we obtain

ψ′2(t) ≤ σ‖∇xu‖2
2 +

c

σ
(g ◦ ∇xu)− cσ‖ρ‖qLs(Rn)(g

′ ◦ ∇xu)q/2

+

(
σ −

∫ t

0

g(s)ds

)
‖u′‖q

Lqρ(Rn)
+m1‖∇xu‖2(γ+1)

2

Our main result reads as follows,

Theorem 3.4: Let (u0, u1) ∈ H(Rn) × Lqρ(Rn) and suppose that
(A1)-(A2) hold .
Then there exist positive constants α0, α1, α2, α3 such that the energy
of solution given by (3.1),(3.2) satisfies .

E(t) ≤ α3H
−1
1 (α1t+ α2),∀t ≥ 0,

where

H1(t) =

∫ 1

t

1

sH ′0(α0s)
ds (3.29)

In order to prove this theorem, let us define

L(t) = ξ1E(t) + ψ1(t) + ξ2ψ2(t) (3.30)

For ξ1, ξ2 > 1. We need the next lemma, which means that there
is equivalent between the Lyapunov and energy functions, that is for
ξ1, ξ2 > 1, we have

β1L(t) ≤ E(t) ≤ β2L(t) (3.31)

holds for two positive constants β1 and β2.
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Lemma 3.5: For ξ1, ξ2 > 1, we have

L(t) ∼ E(t) (3.32)

proof. By (3.30) we have

|L(t)− ξ1E(t)| ≤ |ψ1(t)|+ ξ2|ψ2(t)|

≤
∫
Rn
|ρ(x)u|u′|q−2u′|dx

+ ξ2

∫
Rn
|ρ(x)|u′|q−2u′

∫ t

0

g(t− s)(u(t)− u(s))ds|dx.

Thanks to Holder and Young’s inequalities with exponents
q

q − 1
, q,

since
2n

n+ 2
≥ q ≥ 2, we have by using Lemma3.1

∫
Rn
|ρ(x)u|u′|q−2u′|dx ≤

(∫
Rn
ρ(x)|u|qdx

)1/q(∫
Rn
ρ(x)|u|qdx

)(q−1)/q

≤ 1

q

(∫
Rn
ρ(x)|u|qdx

)
+
q − 1

q

(∫
Rn
ρ(x)|u′|qdx

)
≤ c‖u′‖q

Lqρ(Rn)
+ c‖ρ‖qLs(Rn)‖∇xu‖q2

(3.33)
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and∫
Rn
|
(
ρ(x)

q − 1

q |u′|q−2u′
)(

ρ(x)

1

q
∫ t

0

g(t− s)(u(t)− u(s))ds

)
|dx

≤
(∫

Rn
ρ(x)|u′|qdx

)(q−1)/q

×
(∫

Rn
ρ(x)|

∫ t

0

g(t− s)(u(t)− u(s))ds|qdx
)1/q

≤ q − 1

q
‖u′‖q

Lqρ(Rn)
+

1

q
‖
∫ t

0

g(t− s)(u(t)− u(s))ds‖q
Lqρ(Rn)

≤ q − 1

q
‖u′‖q

Lqρ(Rn)
+

1

q
‖ρ‖qLs(Rn)(g ◦ ∇xu)q/2(t).

Then, since q ≥ 2, we have

|L(t)− ξ1E(t)| ≤ c(E(t) + Eq/2(t))

≤ c(E(t) + E(t)E(q/2)−1(t))

≤ c(E(t) + E(t)E(q/2)−1(0))

≤ cE(t).

Therefore, we can choose ξ1 so that

L(t) ∼ E(t) (3.34)

proof. of theorem 3.4 from(3.5), results of Lemma 3.2 and Lemma
3.3, we have

L′(t) = ξ1E
′(t) + ψ′1(t) + ξ2ψ

′
2(t)

≤
(

1

2
ξ1 − cσ‖ρ‖qLs(Rn)ξ2

)
(g′ ◦ ∇xu)q/2 +M0(g ◦ ∇xu)

−M1‖u′‖qLqρ(Rn)
−M2‖∇xu‖2

2 + c1m1‖∇xu‖2(γ+1)
2
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where
M0 =

(
4ξ2c+ (1− l)

4σ

)
,

M1 =

(
ξ2

(∫ t1

0

g(s)ds− σ
)
− 1

)
,

M2 =

(
− ξ2σ +

1

2
ξ1g(t1) + (l − σ)

)
,

(3.35)

and t1 was introduced in Remark2.1.
We choose σ so small that ξ1 > 2cσ‖ρ‖qLs(Rn)ξ2 .Whence σ is fixed, we
can choose ξ1, ξ2 large enough so that M1,M2 > 0, which yields

L′(t) ≤M0(g ◦ ∇xu) + c1m1‖∇xu‖2(γ+1)
2 − cE(t),∀t > t1. (3.36)

Now we set F (t) = L(t) + cE(t), which is equivalent to E(t). Then
by (3.36), we get for some c > 2c1(γ + 1)

F ′(t) = L′(t) + cE ′(t)

≤ −cE(t) + c

∫
Rn

∫ t

t1

g(t− s)|∇xu(t)−∇xu(s)|2dsdx, ∀t ≥ t1.

(3.37)
By (3.5) and Remark 2.1, we have for all t ≥ t1

∫
Rn

∫ t

0

g(t− s)|∇xu(t)−∇xu(s)|2dsdx

≤ −1

k

∫
Rn

∫ t

0

g(t− s)|∇xu(t)−∇xu(s)|2dsdx

≤ −cE ′(t).
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At this point, we define

I(t) =

∫ t

t1

H0(−g′(s))(g ◦ ∇xu)(t)ds. (3.38)

Since
∫ +∞

0 H0(−g′(s))g(s)ds < +∞, from (3.5) we have

I(t) =

∫ t

t1

H0(−g′(s))
∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

≤ 2

∫ t

t1

H0(−g′(s))g(s)

∫
Rn
|∇xu(t)|2 + |∇xu(t− s)|2dxds

≤ cE(0)

∫ t

t1

H0(−g′(s))g(s)ds < 1.

(3.39)

Now , we define again a new functional λ(t) related with I(t) as

λ(t) = −
∫ t

t1

H0(−g′(s))g′(s)
∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds.

(3.40)
From (A1) - (A2) and Remark2.1 we get

H0(−g′(s))g(s) ≤ H0(H(g(s)))g(s) = D(g(s))g(s) ≤ κ0.

for some positive constant κ0. Then, for all t ≥ t1
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λ(t) ≤ −κ0

∫ t

t1

g′(s)

∫
Rn
|∇xu(t)−∇xu(t− s)|2dxds

≤ −κ0

∫ t

t1

g′(s)

∫
Rn
|∇xu(t)|2 + |∇xu(t− s)|2dxds

≤ −cE(0)

∫ t

t1

g′(s)ds

≤ cE(0)g(t1)

< min{r,H(r), H0(r)}.

(3.41)

Using the properties of H0 ( strictly convex in (0, r], H0(0) = 0),
then for x ∈ (0, r], θ ∈ [0, 1]

H0(θx) ≤ θH0(x).

Using Remark 2.1, (3.39),(3.41) and jensen’s inequality leads to

λ(t) =
1

I(t)

∫ t

t1

I(t)H0[H
−1
0 (−g′(s))]H0(−g′(s))g′(s)

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

≥ 1

I(t)

∫ t

t1

H0[I(t)H−1
0 (−g′(s))]H0(−g′(s))g′(s)intRng(s)|∇xu(t)−∇xu(t− s)|2dxds

≥ H0

(
1

I(t)

∫ t

t1

I(t)H−1
0 (−g′(s))H0(−g′(s))g′(s)

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

)
≥ H0

(∫ t

t1

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds

)
which implies∫ t

t1

∫
Rn
g(s)|∇xu(t)−∇xu(t− s)|2dxds ≤ H−1

0 (λ(t)).

Then

F ′(t) ≤ −cE(t) + cH−1
0 (λ(t))∀t ≥ t1.
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Now, we will following the steps in [16] and using the fact that
E ′ ≤ 0, 0 < H ′0, 0 < H ′′0 on (0, r] to define the functional

F1(t) = H ′0

(
α0
E(t)

E(0)

)
F (t) + cE(t), α0 < r, 0 < c,

where F1(t) ∼ E(t) and

F ′1(t) = α0
E ′(t)

E(0)
H ′′0

(
α0
E(t)

E(0)

)
F (t) +H ′0

(
α0
E(t)

E(0)

)
F ′(t) + cE ′(t)

≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cH ′0

(
α0
E(t)

E(0)

)
H−1

0 (λ(t)) + cE ′(t).

Let H∗0 given in Remark 2.1 and using Young’s inequality (3.17)

with A = H ′0

(
α0
E(t)

E(0)

)
, B = H−1

0 (λ(t)), to get

F ′1(t) ≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cH ∗0

(
H ′0

(
α0
E(t)

E(0)

))
c(λ(t)) + cE ′(t)

≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cα0

E(t)

E(0)
H ′0

(
α0
E(t)

E(0)

)
− c′E ′(t) + cE ′(t).

Choosing α0, c, c
′, such that for all t ≥ t1 we have

F ′1(t) ≤ −κ
E(t)

E(0)
H ′0

(
α0
E(t)

E(0)

)
= −κH2

(
E(t)

E(0)

)
,
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where H2(t) = tH ′0(α0t). Using the strict convexity of H0 on (0, r],
to find that H ′2, H2 are strict positives on (0; 1], then

R(t) = τ
κ1F1(t)

E(0)
∼ E(t), τ ∈ (0, 1) (3.42)

and
R′(t) ≤ −τκ0H2(R(t)), κ0 ∈ (0,+∞), t ≥ t1.

Then, a simple integration and a suitable choice of τ yield,

R(t) ≤ H−1
1 (α1t+ α2), α1, α2 ∈ (0,+∞), t ≥ t1.

here H1(t) =
∫ 1

t H
−1
2 (s)ds Form(3.42), for a positive constant α3,

we have

E(t) ≤ α3H
−1
1 (α1t+ α2)α1, α2 ∈ (0,+∞), t ≥ t1.

The fact that H1 is strictly decreasing function on (0, 1] and due to
properties of H2. we have

lim
t−→0

H1(t) = +∞,

Then

E(t) ≤ α3H
−1
1 (α1t+ α2),∀t ≥ 0.

This completes the proof of Theorem 3.4.
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