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INTRODUCTION

The COVID-19 pandemic has posed unprecedented challenges to global public health, necessitating rigor-
ous epidemiological analysis and innovative mathematical modeling approaches. Coronaviruses, a family
of RNA viruses, include SARS-CoV-2, the causative agent of COVID-19, which has spread globally since
its emergence in late 2019. Understanding and predicting the dynamics of such infectious diseases are
crucial for informing effective public health interventions.

In mathematical epidemiology, various models have been employed to simulate the transmission dy-
namics of infectious diseases. Recently, fractional calculus has emerged as a valuable tool for refining these
models, offering advantages in capturing complex dynamics that traditional integer-order derivatives may
overlook. Fractional calculus allows for the incorporation of memory effects and non-local dependencies
into epidemiological models, enhancing their accuracy in reflecting real-world scenarios.

This study aims to explore the dynamics of the COVID-19 pandemic in Algeria using a compartmental
model divided into categories, employing Caputo fractional order derivatives. A mathematical model will
be presented that divides the infected population into reported and unreported categories, with the analysis
and estimation of parameters using real data from Algeria.

The aim of this research is to analyze, study and explain the larticle [1]
This study is structured into three chapters:
Notion about epidemiology systems: This chapter provides an overview of epidemiology, focusing

on the transmission dynamics and key parameters involved in modeling infectious diseases like COVID-
19. It discusses classical compartmental models such as SIR (Susceptible-Infectious-Recovered) and SEIR
(Susceptible-Exposed-Infectious-Recovered),

Notion about fractional operators : Here, fundamental concepts of fractional calculus are introduced,
emphasizing definitions and properties of fractional derivatives. The chapter explores how fractional deriva-
tives extend traditional differential equations to better capture long-term memory effects observed in epi-
demiological data. Specific attention is given to the Caputo fractional derivative, which is utilized in the
subsequent modeling approach.

Application (the use of Caputou derivative to study the transmission) of Coronavirus : The final chapter
details the application of Caputo fractional derivatives in modeling the dynamics of COVID-19 specifically
in Algeria. The research presents a compartmental model that categorizes the infected population into
reported and unreported cases, utilizing real data to estimate model parameters. The findings underscore
the practical relevance of fractional calculus in epidemiological forecasting and policymaking
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NOTATIONS

➤ N(t) the total Population.

➤ R Set of real numbers.

➤ C Set of Complex numbers.

➤ N the set of natural integers.

➤ C([0,T],R) set of continuous functions defined on [0, T ] into R.

➤ Ω Omega set.

➤ R0 the basic reproduction number.

➤ V −1 the invertible matrix of V.

➤ JF Jacobian matrix of F.

➤ FV −1 the next generation matrix.

➤ρ(FV −1) the matrix spectral radius K

➤ DFE Disease-Free equilibrium point.

➤ EE point of endemic equilibrium .
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CHAPTER 1

NOTION ABOUT EPIDEMIOLOGY SYSTEMS

1.1 INTRODUCTION:

compartmental models like the SIR [25] model serve as foundational frameworks for understanding the
dynamics of infectious diseases within populations. By breaking down the population into different com-
partments based on their epidemiological status (such as susceptible, infected, or recovered), these models
allow researchers to simulate the spread of diseases over time. The addition of more compartments, such
as those for exposed individuals, those in quarantine, or those who have been vaccinated, enhances the
model’s ability to capture real-world scenarios and interventions. These models are crucial for informing
public health strategies and understanding how different factors influence the transmission and control of
infectious diseases.

1.2 DEFINITIONS RELATED TO VARIOUS TERMS USED IN EPIDEMIOLOGY AND
COMPARTMENTAL MODELS:

1.2.1 Susceptible individual

These are people who are vulnerable to contracting a particular infectious disease because they lack im-
munity against it. In other words, they have not been previously exposed to the pathogen or have not been
vaccinated against it. Susceptible individuals are at risk of becoming infected if they come into contact with
the infectious agent..

1.2.2 Exposed individual

These are individuals who have come into contact with an infectious agent (such as a virus or bacterium)
but have not yet developed symptoms of the disease. During this period, the pathogen may be incubating
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1.2. DEFINITIONS RELATED TO VARIOUS TERMS USED IN EPIDEMIOLOGY AND
COMPARTMENTAL MODELS: 9

within the body, and the individual may or may not go on to develop the illness. Exposed individuals may
eventually progress to becoming infected and symptomatic, or they may clear the infection without ever
developing symptoms.

1.2.3 Infected individual

Individuals who have been infected and can transmit the disease are referred to as infectious.

1.2.4 Transmission coefficient

A central factor in mathematical models of infectious disease is the product of the rate of contact with
infected individuals and the probability that this contact leads to transmission to others.

1.2.5 Force of infection

The rate at which susceptible individuals contract the infection per capita.

1.2.6 Incubation period

It refers to the time period between a person’s exposure to the disease-causing agent and the first symptoms.
This time is important because during this time a person can be infected but not yet show symptoms of the
disease. The length of the incubation period varies depending on the disease, and may range from hours to
weeks or even months.

1.2.7 Equilibrium points

In the realm of epidemiology, equilibrium points in a differential system typically represent stable states
where the spread of a disease remains constant over time. There are two main types of equilibrium points
that epidemiologists focus on:

1.2.8 Disease-Free Equilibrium (DFE)

In this state, there are no infected individuals in the population. Mathematically, this equilibrium is reached
when all equations representing the transmission and removal of the disease are equal to zero. In epidemi-
ological models, this often corresponds to a situation where the disease has been eradicated or has not yet
spread through the population.

1.2.9 Endemic Equilibrium (EE):

This equilibrium represents a stable state where the disease persists within the population at a constant
level. In this state, the number of new infections is balanced by the number of recoveries or deaths. Mathe-
matically, this equilibrium is reached when the equations representing the transmission and removal of the

2024/2023 KASDI MERBAH UNIVERSITY OUARGLA



1.3. THEORIES IN MATHEMATICAL EPIDEMIOLOGY: 10

disease reach a steady state, with the number of new infections equaling the number of individuals recover-
ing or dying from the disease.

*** To find these equilibrium points, one typically sets the right-hand side equations of the differential
system equal to zero and solves for the values of the variables that satisfy these conditions. These equilib-
rium points are crucial for understanding the long-term behavior of infectious diseases and for designing
effective control strategies.

1.2.10 The basic reproduction number R0:

is a fundamental epidemiological measure that indicates the average number of secondary infections pro-
duced by a typical infectious individual in a completely susceptible population. It’s a crucial parameter in
understanding the transmission dynamics of infectious diseases.

One common method to calculate R0 [24, page 91] is through the Next-Generation Matrix approach.
This method involves constructing a matrix that captures the transitions from one infection state to another,
and R0 is then determined as the largest positive eigenvalue of this matrix.

Understanding the implications of R0 is essential in epidemiology:

→ IfR0 is less than 1 (R0 < 1), it indicates that, on average, each infected individual infects fewer than
one other individual. In this scenario, the disease will die out over time, with the disease-free equilibrium
(DFE) being locally asymptotically stable .

→ IfR0 is greater than 1 (R0 > 1), it suggests that each infected individual, on average, infects more
than one other individual. In such cases, the disease will persist within the population, and an endemic
equilibrium point (EE) exists and is stable.

→ IfR0 = 1, the stability of the disease-free equilibrium (DFE) and the endemic equilibrium point (EE)
interchange, resulting in a forward bifurcation phenomenon

1.3 THEORIES IN MATHEMATICAL EPIDEMIOLOGY:

Let us consider a mathematical model of an epidemic defined by the following system of Fractional Ordi-
nary Differential Equations (FODEs) in normal form:

{
DγX(t) = f(t,X(t))

X(0) = X0,
(1.1)

Where X(t) : [0,∞) → Rn denotes the state variables vector, and X0 denotes the corresponding initial
condition. Moreover, f : Rn → Rn defines a continuous vector, and Dγ represents a fractional derivative
with fractional order γ.

Mathematical Calculation of R0

[27, 26] There are various methods for calculating the basic reproduction number R0, depending on the
particular context and assumptions of the infectious disease model being employed. One efficient method

2024/2023 KASDI MERBAH UNIVERSITY OUARGLA



1.3. THEORIES IN MATHEMATICAL EPIDEMIOLOGY: 11

for determining R0 in a deterministic, finite-dimensional case is the Next-Generation Approach.

1.3.1 Next-Generation Approach

In the FODEs epidemic system (1.1), consider that the state variables vector consists of

X = (x1, ..., xr, xr+1, ..., xinfected)
T (1.2)

. Next, we separate the state variables and the entering fluxes related to the infectious process from the
others, thus we get the following partition of f:

f(X) = F(X)− V(X),

in chich V(X)=(V+
i − V−

i )(X)
and,
Fi : nonnegative function, denoting the flux of newly infected people in compartment i,
V+

i : nonnegative function, represent other entering fluxes associated with compartment i,
V−
i : nonnegative function, represent other leaving fluxes associated with compartment i.

Taking in mind the definition of the disease-free equilibrium point and (1.2) , the Jacobian matrices of
F and V at the DFE (Xf ) are as follows:

F = JXf
F =

(
0 0
0 M

)
, V = JXf

V =

(
0 N
k1 k2

)
, (1.3)

In which all the off-diagonal components of the matrix N are nonnegative (i.e., N is a Metzler matrix)
and M is a positive matrix.

Definition 1.3.1 Given the condition where the stability modulus of N is strictly negative (ρ(N) < 0), the
basic reproduction number linked to the DFE of system (1.1) is defined as the dominant eigenvalue of the
next generation matrix.

Stability of Solutions

Let R0 = ρ(FV −1). Let X̄ be an equilibrium point of system (1.1). Then, we define the stability, asymp-
totic stability, and the unstability of the equilibrium point as follows:

Definition 1.3.2 (Stability) We state that the equilibrium X̄(t) is stable if, for every ϵ > 0, there exists a
δ = δ(ϵ) > 0 such that, for any solution Y (t) of (1.1), satisfying:

|X̄(0)− Y (0)| < δ, |X̄(t)− Y (t)| < ϵ, for t > 0.

Definition 1.3.3 (Asymptotic Stability) We state that the equilibrium X̄(t) is asymptotically stable if:

1. X̄(t) is stable.

2024/2023 KASDI MERBAH UNIVERSITY OUARGLA



1.3. THEORIES IN MATHEMATICAL EPIDEMIOLOGY: 12

2. There exists a strictly positive constant s such that, for any solution Y (t) of (1.16) that satisfies
|X̄(0)− Y (0)| < s, then

lim
t→∞

|X̄(t)− Y (t)| = 0.

Definition 1.3.4 (Unstability) An unstable solution is one that is not stable.

Theorem 1.3.1 The equilibrium solution X = X̄ of the system (1.1) is locally asymptotically stable if all
the eigenvalues of the Jacobian matrix of f at X̄ have negative real parts, and in the case where at least one
of the eigenvalues has a positive real part, then it is considered unstable.

2024/2023 KASDI MERBAH UNIVERSITY OUARGLA



CHAPTER 2

NOTION ABOUT FRACTIONAL OPERATORS

2.1 SPECIAL FUNCTIONS :

The following subsection will outline the definitions and properties of some special functions commonly
utilized in fractional order calculus.For further detailed information, references [32],[33],[35],and [36] can
be consulted.

2.1.1 Gamma function :

The Gamma function Γ(z) ,also know assecond order Euler 1 integral ,is defined by the integral

Γ(z) =

∫ ∞

0

e−ttz−1dt, (z ∈ C, Re(z) > 0) (2.1)

with Γ(1) = 1,Γ(0+) = +∞,Γ(z) is a strictly decreasing function for 0 < z ≤ 1 . An important property
of the Gamma function is the following recurrence relation:

Γ(z + 1) = zΓ(z) (2.2)

.Which is can be demonstrated using integration by parts. For a detailed proof and additional properties of
the Gamma function, refer to [32].

2.1.2 Beta Function :

The Beta function, alternatively know as Euler’s first kind integral, is defined as

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx, (p, q ∈ C, Re(q) > 0, Re(z) > 0) (2.3)

13



2.2. FRACTIONAL OPERATORS : 14

Some important properties of the Beta function are given below:
- the Gamma function is ensured in the following

B(p, q) =
Γ(q)Γ(p)

Γ(q + p)
. (2.4)

Proof. see [32]

2.1.3 Mittag-Leffler function :

1. The one-parameter Mittag-Leffler function:It is a generalization of the exponential function (ez) and
is defined as

Ea(z) =
∞∑
k=0

zk

Γ(αk + 1)
, Re(α) > 0. (2.5)

2. The two-parameter Mittag-Leffer function: is needed in fractional calculus, particularly in the reso-
lution of fractions. order differential equation. We can define it as

Eα,β(z) =
∞∑
k=1

zk

Γ(αk + β)
·Re(α) > 0, Be(β) > 0 β, α ∈ C (2.6)

In the above definition of the two-parameter Mittag-Leffler function for specific values of α and β, we ob-
tain [32]

E0,1(z) =
∑∞

k=0 z
k , E1,0(z) = zez,

E1,1 = ez , E1,2 = ez−1
z

,

2.2 FRACTIONAL OPERATORS :

2.2.1 Integration and Derivation in Riemann-Liouville sense :

Definition 2.2.1 .[32] Riemann-Liouville fractional integration of order α of the function F : R+ → R is
defined as:

Iαt0,tF(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1 F(s)ds, α > 0, (2.7)

where Γ(α) =
∫∞
0

e−ttα−1dt, is the Gamma function.

.

Definition 2.2.2 [32] Riemann-Liouville derivative of order α of the function F, can be defined as:

RDα
t0,t

F(x) =
1

Γ(n− α)

(
d

dx

)n ∫ t

t0

(t− s)n−α−1F (s)ds, α > 0, (2.8)

Where: α ∈ [n− 1, n [, n ∈ N∗

.

2024/2023 KASDI MERBAH UNIVERSITY OUARGLA



2.3. FIXED POINT THEOREMS 15

2.2.2 Derivation in Caputo sense :

Definition 2.2.3 [32] The Caputo fractional derivative of order α of a function F : R+ → Ris given by.

CDα
t0,t

F(t) =
1

Γ(n− α)

∫ t

t0

(t− s)n−α−1F (n)(s)ds, α > 0. (2.9)

where : n= [α]+1 ,n∈ N with [α] is the integer part of α .

* Caputo derivative and the Riemann Liouville integral satisfy the following properties

1. CDα
0,t(I

α
0,tf(t)) = f(t)

2. CDα
0,t(C) = 0, where C ∈ R

3. Iα0,t(
CDα

0,tf(t)) = f(t)−
∑n−1

k=0
C(k)

k!
tk

4. If α is such that 0 < α < 1, then Iα0,t(
CDα

0,tf(t)) = f(t)− f(0)

.

2.3 FIXED POINT THEOREMS

2.3.1 Banach Contraction Principle

[38]
Let (E, d) be a complete metric space and T : X → X be a contraction mapping with Lipschitz constant

σ ∈ (0, 1). Then

1. T has a unique fixed point u in X .

2. For an arbitrary point x0 in X , the sequence {xn} generated by the Picard iteration process as defined
by xn+1 = Txn, n ∈ N ∪ {0}, converges to u.

3. d(xn, u) ≤ σn

1−σ
d(x0, x1) for all n ∈ N ∪ {0}.

2.4 CAUCHY PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS

[] We will study the existence and uniqueness of the solution of a Cauchy problem for fractional differential
equations (using the Caputo derivative)[24], and we have the problem in the following form :{

CDαy(t) = f(t, y(t)), t ∈ [0, T ], 0 < α < 1

y(0) = y0, y0 ∈ R
(2.10)

where f : [0, T ]× R → R is a continuous function.

2024/2023 KASDI MERBAH UNIVERSITY OUARGLA



2.4. CAUCHY PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS 16

Lemma 2.4.1 Suppose 0 < α < 1 and let h : [0, T ] → R be a continuous function. A function y is a
solution of the Cauchy problem {

CDαy(t) = h(t), t ∈ [0, T ], 0 < α < 1

y(0) = y0, y0 ∈ R
(2.11)

if and only if it is the solution of the integral equation:

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds (2.12)

Proof. we apply the operator (2.11) we find

IαCDαy = Iαf(t) ⇒ y(t) + c0 = Iαh(t)

⇒ y(t) = Iαh(t)− c0

The initial condition gives
y(0) = (Iαh)(0)− c0 = −c0 ⇒ c0 = −y0

so

y(t) = Iαh(t)− (−y0)

=
1

Γ(α)

∫ t

0

(t− s)α−1h(t)dx+ y0

conversely we have

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(t)dx

we apply CDα to the integral equation (2.4.1)

CDαy(t) = CDα(Iαh)(t) + CDα(y0)

= h(t)

So it remain to verify that y(0) = y0

y(0) = Iαh(0) + y0 = 0 + y0

= y0

then there is a solution to the problem (2.11)

Theorem 2.4.1 Suppose 0 < α < 1 and f : [0, T ]× R → R satisfies the Lipschitz condition:

|f(t, y)− f(t, z)| ≤ k|y − z|, ∀t ∈ [0, T ], and y, z ∈ R (2.13)

If

kTα

Γ(α + 1)
< 1 (2.14)

, then there exists a unique solution to the Cauchy problem (2.10).
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2.4. CAUCHY PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS 17

Proof. . We use the Banach fixed-point theorem
We transform problem (2.10) into a fixed-point problem , considering the operator:

F : C([0, T ];R) → C([0, T ];R)

y 7→ F (y)(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds (2.15)

where C([0, T ];R) is the Banach space of continuous functions y defined on [0, T ] into R, equipped with
the norm

||y|| = sup
t∈[0,T ]

|y(t)| (2.16)

.
It is clear that the fixed points of the operator F are the solutions of problem (2.10). F is well-defined,

indeed: if y(t) ∈ C([0, T ];R), then Fy(t) ∈ C([0, T ];R).
To show that F admits a fixed point, it suffices to show that F is a contraction. Indeed, if y1, y2 ∈

C([0, T ];R), t ∈ [0, T ], using the Lipschitz condition we obtain:

|Fy1 − Fy2| =
∣∣∣∣ 1

Γ(α)

∫ t

0

(f (s, y1(s))− f (s, y2(s))) (t− s)α−1ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(
|f (s, y1(s))− f (s, y2(s))| (t− s)α−1ds

≤ k

Γ(α)

∫ t

0

|y1(s)− y2(s)| (t− s)α−1ds

≤ k

Γ(α)
∥y1 − y2∥

∫ t

0

(t− s)α−1ds

≤ kTα

Γ(α + 1)
∥y1 − y2∥

Thus, we can deduce that F is a contraction, and according to the Banach theorem, F admits a unique
fixed point which is a solution of problem (2.10).
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CHAPTER 3

APPLICATION (THE USE OF CAPUTOU
DERIVATIVE TO STUDY THE TRANSMISSION)

OF CORONAVIRUS

3.1 INTRODUCTION:

The COVID-19 pandemic is a result of the SARS-CoV-2 virus and first appeared in December 2019 in
Wuhan, China. The infection is usually transmitted through direct contact, floating, talking, and breath-
ing with an infected person. Common symptoms include fever, cough, and fatigue, and high-risk groups
and people with chronic diseases are considered most at risk. There is currently no effective treatment for
COVID-19, and prevention occurs through frequent testing, isolation, and precautionary measures. Mathe-
matical models play a vital role in understanding disease dynamics and suggesting control strategies, some
of these include fractal transition models that provide a different perspective for analysis.

3.2 MATHEMATICAL MODEL DESCRIPTION

the dynamics of this disease were analyzed with a study of the case of Algeria. This was done by dividing
the population into categories and considering these categories as variables in terms of time t
first ,we impose the total population shown by N(t) at time t is classified into variables where :

• S : it represent the number of people susceptible to infect ,

• A : represent asymptom people ,

• Iu, Ir, Ic : As the undetected ,the detected and critical infected people respectively

18
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• R : they are people who have recovered from the virus

• D : the number of dead people by the disease .

the total number of population shown by N(t) at time t given in the form :

N(t) = S(t) + A(t) + Iu(t) + Ir(t) + Ic(t) +R(t) +D(t) (3.1)

The well-know Caputo derivative whith order α ∈ ]0,1] is utilized to formulate the propped epidemic model
that give the dynamic of the virus in different compartments summarized by means of a diagram shown in
the (figure (3.1)).Thus we organize the transmission model using the following fractional system:



cDα
t S = ∆− (ν1Iu+ν2Ir+ν3Ic)

N
S − µS,

cDα
t A = (ν1Iu+ν2Ir+ν3Ic)

N
S − (σ + µ)A,

cDα
t Iu = σ(1− ρ)A− (µ+ γIu + d1)Iu,

cDα
t Ir = σρA− (δIr + γIr + µ+ d2)Ir,

cDα
t Ic = δIrIr − (γIc + µ+ d3)Ic,

cDα
t R = γIuIu + γIrIr + γIcIc − µR,

cDα
t D = d1Iu + d2Ir + d3Ic

(3.2)

in addition the following initial conditions are taken in consideration

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, Iu(0) = Iu0 ≥ 0, Ir(0) = Ir0 ≥ 0, Ic(0) = Ic0 ≥ 0,
R(0) = R0 ≥ 0, D(0) = D0 ≥ 0.
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ν1Iu + ν2Ir + ν3Ic

σ(1− ρ)
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δIr γIc
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Figure 3.1: scheme of different stages of transmission of a novel coronavirus in different compartments

3.3 INTERACTION BETWEEN COVID-19 COMPARTMENT INDIVIDUALS

1. Susceptible Population (S):

* The individuals susceptible to infection are affected by the recruitment rate ∆..
* The susceptible population decreases due to interaction with undetected infected, detected infected,
or critically infected individuals.
* Newly infected individuals from compartment (S) become asymptomatic, with transmission rates
relevant to undetected, detected, and critically infected people denoted by parameters ν1, ν2, and ν3
respectively.

2. .Asymptomatic Population (A):

* Infected individuals in this compartment progress to undetected infectious (Iu) and detected in-
fectious (Ir) compartments at an average rate of σ.

* A fraction of asymptomatic individuals move to (Iu) with a fraction (1− ρ) such that (0 ≤ ρ ≤ 1),
while the remainder move to Ir with a fraction ρ.

3. .Undetected Infectious Population (Iu):
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3.3. INTERACTION BETWEEN COVID-19 COMPARTMENT INDIVIDUALS 21

* Infected individuals who have not been detected through testing transition to this compartment.
* Some individuals recover at a rate of γIu , while others move to the dead virus compartment (D) at
a rate of d1.

4. .Detected Infectious Population (Ir):

* Infected individuals detected through testing transition to this compartment. Some individuals
progress to the infected critical compartment (Ic) at a rate of δIr , recover at a rate of γIr , or move to
the dead virus compartment (D) at a rate of d2.

5. Infected Critical Population (Ic):

* Individuals with critical illness transition to this compartment.
* Some individuals recover at a rate of γIc , while others move to the dead virus compartment (D) at a
rate of d3.

.Recovered Population (R) and Dead Virus Population (D):

* Individuals who have recovered from the virus (R) recover at rates γIu , γIr , and γIc for unde-
tected infectious, detected infectious, and critical infectious individuals respectively.
* Death rates are represented by d1, d2, and d3 respectively.

Parameter symbols Biological meaning Value Reference
∆ Recruitment rate 1534 Estimated [40]
µ Natural mortality rate 1/(77.5× 365) [40]
ν1 Transmission rate of undetected people 0.5022 Fitted
ν2 Transmission rate of detected people 0.4666 Fitted
ν3 Transmission rate of critical people 0.4080 Fitted
d1 Death rate in Iu class due to infection 0.0575 Fitted
d2 Death rate in Ir class due to infection 0.0271 Fitted
d3 Death rate in Ic class due to infection 0.0141 Fitted
σ Incubation rate 0.6151 Fitted
γIu Recovery rate of undetected infectious people 0.3333 Fitted
γIr Recovery rate of detected infectious people 0.6026 Fitted
γIc Recovery rate of critical infectious people 0.3103 Fitted
δIr Critical rate of detected infectious people 0.4972 Fitted

Table 3.1: Model parameters with biological meaning and respective fitted values
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3.4 MATHEMATICAL ANALYSIS OF THE MODEL

adding up the equations given in (3.2) we have as N = S + A + Iu + Ir + Ic + R

cDα
t N = ∆− µN − d1Iu − d2Ir − d3Ic ≤ ∆− µN (3.3)

The above inequality leads to
N → ∆

µ
as t → ∞

we note that D does not appear in the first six equations .Since the population is closed ,we can restrict the
system (3.2) as follows :



cDα
t S = ∆− (ν1Iu+ν2Ir+ν3Ic)

N
S − µS,

cDα
t A = (ν1Iu+ν2Ir+ν3Ic)

N
S − (σ + µ)A,

cDα
t Iu = σ(1− ρ)A− (µ+ γIu + d1)Iu,

cDα
t Ir = σρA− (δIr + γIr + µ+ d2)Ir,

cDα
t Ic = δIrIr − (γIc + µ+ d3)Ic,

cDα
t R = γIuIu + γIrIr + γIcIc − µR,

(3.4)

consideration

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, Iu(0) = Iu0 ≥ 0, Ir(0) = Ir0 ≥ 0, Ic(0) = Ic0 ≥ 0, R(0) = R0 ≥ 0.
(3.5)

Then we reformulate the model (3.4) in the following form:
Let R6

+ = {X ∈ R6 : X ≥ 0}{
CDα

t X(t) = f(t,X(t)), t ∈ [0, T ], 0 < α ≤ 1
X(0) = X0,

(3.6)

where the vector X ∈ R6
+

X(t) = (S(t), A(t), Iu(t), Ir(t), Ic(t), R(t)) . (3.7)

denotes the state variables,
and

X(0) = (S(0), A(0), Iu(0), Ir(0), Ic(0), R(0)) . (3.8)

denotes the corresponding initial condition.Moreover f ∈ R6
+ defines a continuous vector as follows:
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f(t,X(t)) =



f1(t, S(t)) =
cDα

t S = ∆− (ν1Iu+ν2Ir+ν3Ic)
N

S − µS,

f2(t, A(t)) =
cDα

t A = (ν1Iu+ν2Ir+ν3Ic)
N

S − (σ + µ)A,

f3(t, Iu(t)) =
cDα

t Iu = σ(1− ρ)A− (µ+ γIu + d1)Iu,

f4(t, Ir(t)) =
cDα

t Ir = σρA− (δIr + γIr + µ+ d2)Ir,

f5(t, Ic(t)) =
cDα

t Ic = δIrIr − (γIc + µ+ d3)Ic,

f6(t, R(t)) = cDα
t R = γIuIu + γIrIr + γIcIc − µR,

(3.9)

Lemma 3.4.1 : let 0 < α < 1 ,A function X is a solution to a Cauchy problem (3.6) If and only if it is the
solution to the integral equation :

X(t) = X(0) +
1

Γ(α)

∫ t

0

(t− s)α−1f (s,X(s)) ds. (3.10)

Proof. (3.6) ⇒ (3.10)
Using initial conditions (3.8) and fractional integral operator (2.7), we have

Iα0,t(
cDα

t S) = S(t)− S(0) = Iα0,t

(
∆− (ν1Iu+ν2Ir+ν1Ie)

N
S − µS

)
,

Iα0,t(
cDα

t A) = A(t)− A(0) = Iα0,t

(
(ν1Iµ+ν2Ir+ν1Ic)

N
S − (σ + µ)A

)
.

Iα0,t(
cDα

t Iu) = Iu(t)− Iu(0) = Iα0,t (σ(1− ρ)A− (µ+ γIu + d1) Iu) ,

Iα0,t(
cDα

t Ir) = Ir(t)− Ir(0) = Iα0,t (σρA− (δIr + γIr + µ+ d2) Ir) ,

Iα0,t(
cDα

t Ic) = Ic(t)− Ic(0) = Iα0,t (δIrIr − (γIr + µ+ d3) Ic) ,

Iα0,t(
cDα

t R) = R(t)−R(0) = Iα0,t (γIuIu + γIrIr + γIcIc − µR) .

(3.11)
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thus , 

S(t) = S(0) + 1
Γ(α)

∫ t

0
(t− s)α−1f1(s, S(s))ds,

A(t) = A(0) + 1
Γ(α)

∫ t

0
(t− s)α−1f2(s, A(s))ds,

Iu(t) = Iu(0) +
1

Γ(α)

∫ t

0
(t− s)α−1f3 (s, Iu(s)) ds,

Ir(t) = Ir(0) +
1

Γ(α)

∫ t

0
(t− s)α−1f4 (s, Ir(s)) ds,

Ic(t) = Ic(0) +
1

Γ(α)

∫ t

0
(t− s)α−1f5 (s, Ic(s)) ds,

R(t) = R(0) + 1
Γ(α)

∫ t

0
(t− s)α−1f6(s, R(s))ds,

(3.12)

This means that

X(t) = X(0) +
1

Γ(α)

∫ t

0

(t− s)α−1f (s,X(s)) ds. (3.13)

(3.10) ⇒ (3.6)
Using fractional Derivative operator (2.9) (the caputo fractional derivative ) , we have

cDα
t S(t) =

cDα
t (S(0) +

1
Γ(α)

∫ t

0
(t− s)α−1f1(s, S(s))ds),

cDα
t A(t) =

cDα
t (A(0) +

1
Γ(α)

∫ t

0
(t− s)α−1f2(s, A(s))ds),

cDα
t Iu(t) =

cDα
t (Iu(0) +

1
Γ(α)

∫ t

0
(t− s)α−1f3 (s, Iu(s)) ds),

cDα
t Ir(t) =

cDα
t (Ir(0) +

1
Γ(α)

∫ t

0
(t− s)α−1f4 (s, Ir(s)) ds),

cDα
t Ic(t) =

cDα
t (Ic(0) +

1
Γ(α)

∫ t

0
(t− s)α−1f5 (s, Ic(s)) ds),

cDα
t R(t) = cDα

t (R(0) + 1
Γ(α)

∫ t

0
(t− s)α−1f6(s, R(s))ds),

(3.14)

We know that the Caputo derivative is a linear operator and By applying the mentioned properties in Defi-
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nition (2.2.3), we find that 

cDα
t S(t) = f1(s, S(s)),

cDα
t A(t) = f2(s, A(s)),

cDα
t Iu(t) = f3 (s, Iu(s)) ,

cDα
t Ir(t) = f4 (s, Ir(s)) ,

cDα
t Ic(t) = f5 (s, Ic(s)) ,

cDα
t R(t) = f6(s, R(s)),

(3.15)

and we have :
X(0) = X(0) +

1

Γ(α)
0 = X(0)

Thus ,function X is a solution to a Cauchy problem (3.6)
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3.4.1 Existence and Uniqueness :

Naturally, befor analyzing any biological model we ask whether such dynamical problem really exist or
not. To answer this question We try to demonstrate the existence and uniqueness of the system (3.4) we use
fixed point theory .

Theorem 3.4.1 . There is a unique solution for the initial value problem given by (3.4)-(3.5), and the
solution hold for all t > 0 in

Ω =

{
(S,A, Iu, Ir, Ic, R) ∈ R6

+ : 0 ≤ S + A+ Iu + Ir + Ic +R ≤ ∆

µ

}
.

to prove this theorem we need Lemma (3.4.2) and Lemma (3.4.3)

Lemma 3.4.2 . The function f(t,X(t)) defined in (3.9) satisfies the Lipschitz condition given by

∥f (t,X1(t))− f (t,X2(t)∥ ≤ Θ∥X1 −X2∥, (3.16)

where
Θ = max

(
(ν1 + ν2 + ν3) + µ;σ + µ;µ+ γIµ + d1; δIr + γIr + µ+ d2; γIc + µ+ d3;µ

)
and the norm ||.||

corresponds to the space C([0, T ],R6)

.

Proof. .We proof lemma only for f1(t, S(t)); the other can be obtained in the same manner.
we have

f1(t, S(t)) = ∆− (ν1Iu + ν2Ir + ν3Ic)

N
S − µS

∀S1, S2 ∈ R,
,

f1(t, S1(t))− f1(t, S2(t)) = (
ν1Iuu+ ν2Ir + ν3Ic

N
− µ)(S2 − S1).

Then,

||f1(t, S1(t))− f1(t, S2(t))|| = ||(ν1Iuu+ ν2Ir + ν3Ic
N

− µ)(S2 − S1)||

≤ |(ν1 + ν2 + ν3)− µ|||S2 − S1|| ≤ ((ν1 + ν2 + ν3) + µ)||S2 − S1||
also we have ;

||f2(t, A1(t))− f2(t, A2(t)))|| = ||(σ + µ)(A2 − A1)|| ≤ (σ + µ)||A2 − A1||
||f3(t, Iu1(t))− f3(t, Iu2(t))|| = ||(µ+ γIu + d1)(Iu2 − Iu1)|| ≤ (µ+ γIu + d1)||Iu2 − Iu1||,
|f4(t, Ir1(t))− f4(t, Ir2(t))| = ||(δIr + γIr + µ+ d2)(Ir2 − Ir1)||
≤ (δIr + γIr + µ+ d2)||Ir2 − Ir1||,
||f5(t, Ic1(t))− f5(t, Ic2(t))|| = ||(γIc + µ+ d3)(Ic2 − Ic1)|| ≤ (γIc + µ+ d3)||Ic2 − Ic1||
||f6(t, R1(t)− f6(t, R2(t)|| = ||µ(R2 −R1)|| ≤ µ||R2 −R1||.
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Lemma 3.4.3 . Assuming we have (3.16), then there exist a unique solution to the system (3.4)-(3.5) if

Θ

Γ(α + 1)
Tα < 1 (3.17)

Proof. .The solution to the system (3.4)− (3.5) is given by:

X(t) = F (X(t)),

where F is the integral equation defined by F : C([0, T ],R) → C([0, T ],R).

F (X(t)) = X(0) +
1

Γ(α)

∫ t

0

(t− s)α−1f (s,X(s)) ds. (3.18)

Further, we have:

||F (X1(t))− F (X2(t))|| = || 1

Γ(α)

∫ t

0

(t− s)α−1(f(s,X1(s))− f(s,X2(s)))ds||

≤ 1

Γ(α)
||(f(s,X1(s))− f(s,X2(s))||

∫ t

0

(t− s)α−1ds

≤ θ

Γ(α)
||X1(s)−X2(s)||

∫ t

0

(t− s)α−1ds

≤ θ

αΓ(α)
Tα||X1(s)−X2(s)||.

If θ
Γ(α+1)

Tα < 1, then the operator F is a contraction, hence the system (3.4)−(3.5) has a unique solution.

3.4.2 Positivity :

An important relevant characteristic of an epidemiological model is the positivity of solution .Therfore ,it is
important to prove that all solution are non-negative for all time .to show that the model is mathematically
and epidemiologically well-prepared

Lemma 3.4.4 .( Generalized mean value theorem ) Let f ∈ C([0, t]), CDa
t f ∈ C([0, T ]) for 0 < α ≤ 1, then

we have

f(t) = f(0) +
1

Γ(α)
cDα

t f(ξ)t
α (3.19)

with 0 ≤ ξ ≤ t, for all t ∈]0, T ].

Remark 3.4.1 . From lemma (3.4.4) we have:

1. If cDα
0,tf(t) ≥ 0 then the function f is non decreasing for all x ∈] 0, T [.

2. If CDa
0,tf(t) ≤ 0 then the function f is non increasing for all x ∈] 0, T [.

Proof. see [? ] .
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3.4.3 Stability analysis of equilibrium points:

We have analyzed the stability of all equilibria for this model, which consist of two equilibrium states:
1.The disease-free equilibrium point (DFE).
2.The endemic equilibrium point (EE).

The disease-free equilibrium point (DFE).

1. Calculate DEF.

To obtain the disease-free equilibrium (DEF), let
cDα

t S = cDα
t A = cDα

t Iu = cDα
t Ir =

cDα
t Ic =

cDα
t R = 0. Thus, we have:



∆− (ν1Iu+ν2Ir+ν3Ic)
N

S − µS = 0

(ν1Iu+ν2Ir+ν3Ic)
N

S − (σ + µ)A = 0

σ(1− ρ)A− (µ+ γIu + d1) Iu = 0

σρA− (δIr + γIr + µ+ d2) Ir = 0

δIrIr − (γIc + µ+ ds) Ic = 0

γIu + γIrIr + γIrIc − µR = 0

(3.20)

At the disease-free equilibrium, all infected compartments (Iu, Ir, Ic) and the recovered compartment
(R) are zero. Thus, Iu = Ir = Ic = R = 0.

From the first equation, we get:

∆− µS = 0 ⇒ S =
∆

µ

From the second equation, we have:

(ν1Iu + ν2Ir + ν3Ic)

N
S − (σ + µ)A = 0

Substituting Iu = Ir = Ic = 0:
−(σ + µ)A = 0 ⇒ A = 0

Since Iu = Ir = Ic = R = 0, the remaining equations are already satisfied.

Thus, the disease-free equilibrium (DEF) is given by:

Ef =

(
∆

µ
, 0, 0, 0, 0, 0

)
(3.21)
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Basis reproduction number and interpretation

One approach used to evaluate R0 is the next generation matrix
Let X =(A(t), Iu(t), Ir(t), Ic(t), R(t), S(t))t , the system (3.4) can be written a

cDα
0,t(X(t)) = G(X(t))−H(X(t)) (3.22)

where ,

G(X) =



ν1Iu+ν2Ir+ν3Ic
N

0
0
0
0
0

H(X) =


(σ + µ)A
µ+ γIu + d1)Iu − σ(1− ρ)A
(δIr + γIr + µ+ d2)Ir − σρA
γIc + µ+ d3)Ic − δIr
µR− γIuIu − γIrIr − γIcIc
ν1Iu+ν2Ir+ν3Ic

N
S − µS −∆


The respective Jacobian of above matrices at the DFE Ef are evaluated as follows:

G = JEf
G =


0 ν1 ν2 ν3 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

H = JEf
H =


σ + µ 0 0 0 0 0

−σ(1− ρ) µ+ γIu + d1 0 0 0 0
−σρ 0 δIr + γIr + µ+ d2 0 0 0
0 0 −δIr γIc + µ+ d3 0 0
0 −γIu −γIr −γIc µ 0
0 ν1 ν2 ν3 0 µ

 ,

Hence, the basic reproduction number R0 after some calculations is obtain as:

R0 =
ν1σ(1− ρ)

(µ+ γIu + d1)(σ + µ)
+

ν2σρ

(δIr + γIr + µ+ d2)(σ + µ)
+

ν3δIrσρ

(γIc + d3 + µ)(δIr + γIr + d2 + µ)(σ + µ)
(3.23)

we put :



RIu
0 = ν1σ(1−ρ)

(µ+γIu+d1)(σ+µ)

RIr
0 = ν2σρ

(δIr+γIr+µ+d2)(σ+µ)
,

RIc
0 =

ν3δIrσρ

(γIc+d3+µ)(δIr+γIr+d2+µ)(σ+µ)
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Interpretation of R0

The basic reproductive number R0 is indeed often expressed as the sum of three terms, Each of
these terms represents the contribution of different pathways by which the infection spreads within a
population. Let’s break down each of the terms:

(a) RIu
0 : This term represents the contribution of new infection cases moving from the asymp-

tomatic compartment A to the undetected Iu compartment. .

(b) RIr
0 : This term represents the contribution of new infection cases moved from asymptotic com-

partment A to the Ir detected compartement .

(c) RIc
0 : This term represents the contribution of new infection cases moved from asymptotic com-

partment A to the Ic critical compartment.

2. Stability analysis of the DEF

The following results provide the local and global stability results of the system (3.4) around the DFE Ef .

Theorem 3.4.2 The DFE Ef of the system (3.4) is locally asymptotically stable when R0 < 1.

. Proof. .The associated Jacobian Matrix JEf
of (3.4) evaluated at Ef is given by:

JEF
=


−µ 0 −ν1 −ν2 −ν3 0
0 −(σ + µ) ν1 ν2 ν3 0
0 σ(1− ρ) − (µ+ γIu + d1) 0 0 0
0 σρ 0 − (δIr + γIr + µ+ d2) 0 0
0 0 0 δlr − (γIc + µ+ d3) 0
0 0 γIu γIr γIc −µ

 ,

=


−µ 0 −ν1 −ν2 −ν3 0
0 −h1 ν1 ν2 ν3 0
0 σ(1− p) −h2 0 0 0
0 σρ 0 −h3 0 0
0 0 0 δIr −h4 0
0 0 γIu γIr γIc −µ

 .

where

h1 = σ + µ, h2 = µ+ γIu + d1, h3 = δIr + γIr + µ+ d2, h4 = γlc + µ+ d3. (3.24)

Computations give the following characteristic polynomial

P (λ) = det
(
λI − JEf

)
= (λ+ µ) (λ+ h1)

(
λ+ h2

(
1−RIu

0

))(
λ+

h3(1−RIu
0 −RIr

0 )
1−RIu

0

)(
λ+ h4(1−R0)

(1−RIu
0 −RIr

0 )

)
(λ+ µ).
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In the characteristic polynomial of JEf
we have the eigenvalues

λ1 = −µ,

λ2 = −h1,

λ3 = −h2

(
1−RIu

0

)
,

λ4 = −h3(1−RIu
0 −RIr

0 )
1−RIu

0

,

λ5 = − h4(1−R0)

(1−RIu
0 −RIr

0 )
,

λ6 = −µ.

Which show negative real parts if R0 = RIu
0 +RIr

0 +RIc
0 < 1.

Remark 3.4.2 . With the notation in (3.24) system (3.4) becomes

cDα
t S = ∆− (ν1Iu+ν2Ir+ν3Ic)

N
S − µS,

cDα
t A = (ν1Iu+ν2Ir+ν3Ic)

N
S − h1A,

cDα
t Iu = σ(1− ρ)A− h2Iu,

cDα
t Ir = σρA− h3Ir,

cDα
t Ic = δIrIr − h4Ic,

cDα
t R = γIuIu + γIrIr + γIcIc − µR,

(3.25)

and the number R0 become

R0 =
ν1σ(1− ρ)

h2h1

+
ν2σρ

h3h1

+
ν3δIrσρ

h4h3h1

. (3.26)

We establish result of global stability for fractional differential system (3.4). For the proof of the theorem
(3.4.3) we need this lemma:

Lemma 3.4.5 . [lemma 2.4 [41]] Let x(t) ∈ R denotes a continuous and derivable function then, for any
time instant t ≥ t0.

1

2
CC

f0
Da

t x
2(t) ≤ x(t)Ct0D

a
t x(t), ∀α ∈ (0, 1). (3.27)

Theorem 3.4.3 . The DFE Ef for the system (3.4) is globally asymptotically stable, if R0 ≤ 1

Proof. :see [1]
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Endemic equilibrium point (EE)

1. Calculat EE

to calculate the endemic equilibrium point (EE) E∗ of the system (3.4) .first since R(t) does not
appear in the sirst five equation of the system (3.4) then we consider X(t)=(S(t),A(t),Iu(t), Ir(t), Ic(t)
) and the folowing system 

CDa
t S = ∆− (ν1Iu+ν2Ir+ν3Ic)

N
S − µS,

cDa
tA = (ν1Iu+ν2Ir+ν3Ic)

N
S − h1A,

CDa
t Iu = σ(1− ρ)A− h2Iu.

CDa
t Ir = σρA− h5Ir,

cDa
t Ic = δIrIr − h4Ic.

(3.28)

For E∗ we have cDα
t (E

∗) = 0, so we have

∆− (ν1I
∗
u + ν2I

∗
r + ν3I

∗
c )

N∗ S∗ − µS∗ = 0, (3.29)

(ν1I
∗
u + ν2I

∗
r + ν3I

∗
c )

N∗ S∗ − h1A
∗ = 0, (3.30)

σ(1− ρ)A∗ − h2I
∗
u = 0, (3.31)

σρA∗ − h3I
∗
r = 0, (3.32)

δIrI
∗
r − h4I

∗
c = 0. (3.33)

1.Calculate S* :
we have :(ν1I∗u + ν2I

∗
r + ν3I

∗
c ) = h1R0A

∗

from (3.30) we get .
h1R0

N∗ A∗S∗ − h1A
∗ = 0

S∗ =
N∗

R0

(3.34)

2.Calculate A∗ :
From (3.29) we get .

∆− h1R0

N∗ A∗S∗ − µS∗ = 0 (3.35)

substituting (3.34) in (3.35) we get

A∗ =
1

h1

(
∆− µ

N∗

R0

)
. (3.36)
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3.Calculate I∗u :
From (3.31) we get.

I∗u =
σ(1− ρ)

h2

A∗ =
h1

ν1
RIu

0 A∗ (3.37)

4.Calculate I∗r :
from (3.32) we have

I∗r =
σρ

h3

A∗ =
h1

ν2
RIr

0 A
∗ (3.38)

5.Calculate I∗c :
Inserting (3.38) in (3.33) gives

I∗c =
δIrσρ

h4h3

A∗ =
h1

ν3
RIc

0 A
∗. (3.39)

- in the other hand we have

N∗ = S∗ + A∗ + I∗u + I∗r + I∗c. (3.40)

=
N∗

R0

+

(
1 +

h1

ν1
RIu

0 +
h1

ν2
RIr

0 +
h1

ν3
Rlc

0

)
A∗. (3.41)

Then (
1− 1

R0

)
N∗ =

(
1 +

h1

ν1
RIu

0 +
h1

ν2
Rlr

0 +
h1

ν3
RIc

0

)
A∗, (3.42)

and we get

N∗ =
R0

(
1 + h1

ν1
RIu

0 + h1

ν2
RIr

0 + h1

ν3
RIc

0

)
1−R0

A∗ (3.43)

Proposition 3.4.1 :Suppose R0 > 1, then the system (3.28) has a unique EE denoted by E∗ =
(S∗, A∗, I∗u, I

∗
r , I

∗
e ), with 

A∗ = ∆(R0−1)

h1(R0−1)+µ
(
1+

h1
ν1

RIu
0 +

h1
ν2

RIr
0 +

h1
ν3

RIc
0

)

S∗ =

(
1+

h1
ν1

RIu
0 +

h1
ν2

RIr
0 +

h1
ν3

RIc
0

)
R0−1

A∗

I∗u = h1

ν1
RIu

0 A∗

I∗r = h1

ν2
RIr

0 A
∗

I∗c = h1

ν3
RIr

0 A
∗

(3.44)
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2. Stability analysis of the EE:

The following results provide the local and global stability results of the system (3.4) around the EE E∗

Theorem 3.4.4 If R0 > 1, then the EE denoted by E∗ of the system (3.28) is locally symptomatically
stable when

h1µ

∆
A∗ >

1

R0

max (ν1, ν2, ν3)

.

Proof. .see [1] .

Lemma 3.4.6 (lemma 3.1 [41] ). Let x(t) ∈ R+ be a continuous and derivable function. Then for any time
instant t ≥ t0

C
t0
Dα

t

[
x(t)− x∗ − x∗ ln

(
x(t)

x∗

)]
≤

(
1− x∗

x(t)

)
C
t0
Dα

t x(t), x∗ ∈ R+, ∀α ∈ (0, 1). (3.45)

Theorem 3.4.5 . If R0 > 1, then the E E E∗ of the system (3.28) is globally symptomatically stable.

Proof. . First all considering the following simpler model obtained by normalizing N(t) in (3.28) to be 1

cDa
t S = ∆− (ν1Iu + ν2Ir + ν3Ic)S − µS,

CDα
t A = (ν1Iu + ν2Ir + νsIc)S − h1A,

CDa
t Iu = σ(1− ρ)A− h2Iu+

cDα
t Ir = σρA− h3Ir+

cDa
t Ic = δIτ Ir − h4Ic..

(3.46)

then the EE E∗ satisfy the following equations

∆− (ν1I
∗
u + ν2I

∗
r + ν3I

∗
c )S

∗ − µS∗ = 0, (3.47)
(ν1I

∗
u + ν2I

∗
r + ν3I

∗
c )S

∗ − h1A
∗ = 0, (3.48)

σ(1− ρ)A∗ − h2I
∗
u = 0, (3.49)

σρA∗ − h3I
∗
r = 0, (3.50)

δIrI
∗
r − h4I

∗
c = 0. (3.51)

Let X(t) = (S(t), A(t), Iu(t), Ir(t), Ic(t))
T ∈ R+, and the following Lyapunov function is define for the

required result

L(X(t)) =

(
S − S∗ − S∗ ln

S

S∗

)
+

(
A− A∗ − A∗ ln

A

A∗

)
+

ν1S
∗

h2

(
Iut − I∗u − I∗u ln

Iu
I∗u

)
+
ν2S

∗

h3

(
Ir − I∗r − I∗r ln

Ir
I∗r

)
+

ν3S
∗

h4

(
Ic − I∗c − I∗c ln

Ic
I∗c

)
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Using linearity propriety of Caputo derivatives and result in lemma 4.9, and from model (3.46) we have

CDα
t (L(X(t))) ≤

(
1− S∗

S

)
CDα

t S +

(
1− A∗

A

)
CDα

t A+

(
1− I∗u

Iu

)
CDα

t Iu +

(
1− I∗r

Ir

)
CDtIr

+

(
1− I∗c

Ic

)
CDα

t Ic

≤
(
1− S∗

S

)
(∆− (ν1Iu + ν2Ir + ν3Ic)S − µS) +

(
1− A∗

A

)
(ν1Iu + ν2Ir + ν3Ic)S − h1A

)
+
ν1S

∗

h2

(
1− I∗u

Iu

)
(σ(1− ρ)A− h2Iu) +

ν2S
∗

h3

(
1− I∗r

Ir

)
(σρA− h3Ir)

+
ν3S

∗

h4

(
1− I∗c

Ic

)
(δIrIr − h4Ic) .

Using direct calculation, and formulas eqs. (3.47) to (3.51), we obtain



(
1− S∗

S

)C
Dα

t S(t) =
(
1− S∗

S

)
(ν1I

∗
u + ν2I

∗
r + ν3I

∗
c )S

∗ + µS∗ − (ν1Iu + ν2Ir + ν3Ic)S − µS
)

= µS∗ (2− S∗

S
− S

S∗

)
+ (ν1I

∗
u + ν2I

∗
r + ν3I

∗
c )S

∗ − (ν3Iu + ν2Ir + ν3Ic)S

+(ν1Iu + ν2Ir + ν3Ic)S
∗ − (ν1I

∗
u + ν2I

∗
r + ν3I

∗
c )

S∗2

S
.

(3.52)



(
1− A∗

A

)c
Da

tA(t) =
(
1− A∗

A

)
((ν1Iu + ν2Ir + ν3Ic)S − h1A)

= (ν1Iu + ν2Ir + ν3Ic)S − (ν1Iu + ν2Ir + ν3Ic)S
A∗

A
− h1A+ h1A

∗

= (ν1In + ν2Ir + νβIc)S − (ν1Iu + ν2Ir + νβIc)S
A∗

A
− h1A+ (ν1I

∗
u + ν2I

∗
r + ν3I

∗
c )S

∗.

(3.53)



ν1S∗

h2

(
1− I∗u

Iu

)C

Da
t Iu(t) =

ν1S∗

h2

(
1− I∗u

Iu

)
(σ(1− ρ)A− h2Iu)

= ν1S∗

h2
σ(1− ρ)A− ν1S∗

h2
σ(1− ρ)A I∗u

Iu
− ν1IuS

∗ + ν1I
∗
uS

∗

= ν1I
∗
uS

∗ A
A∗ − ν1I

∗
uS

∗ A
A∗

I∗u
Iu

− ν1IuS
∗ + ν1I

∗
uS

∗.

(3.54)



ν2S∗

h3

(
1− I∗r

Ir

)C

Dn
t Ir(t) =

ν2S∗

h3

(
1− I∗r (σρA−h3Ir)

Ir

)
= ν2S∗

h3
σρA− ν2S∗

h3
σρA I∗r

Ir
− ν2IrS

∗ + ν2I
∗
rS

∗

= ν2I
∗
rS

∗ A
A∗ − ν2I

∗
rS

∗ A
A∗

I∗r
Ir

− ν2IrS
∗ + ν2I

∗
rS

∗.

(3.55)
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ν3S∗

h4

(
1− I∗c

Ie

)C

Da
t Ic(t) =

νsS∗

h4

(
1− I∗c

Ic

)
(δtrIr − h4Ic)

= ν3S∗

h4
δrrIr − ν3S∗

h4
δtrIr

I∗c
Ic
− ν3IcS

∗ + ν3I
∗
cS

∗

= ν3I
∗
cS

∗ Ir
I∗r

− ν3I
∗
cS

∗ Ir
I∗r

I∗c
Ie

− ν3IcS
∗ + ν3I

∗
cS

∗

(3.56)

Adding up equations eqs. (3.51) to (3.52) we get.

cDα
t (L(X(t)) ≤ µS∗(2− S∗

S
− S

S∗ ) + 3 (ν1I
∗
u + ν2I

∗
r + νsI

∗
c )S

∗ − (ν1I
∗
u + ν2I

∗
r + νsI

∗
c )

S∗2

S

− (ν1Iu + ν2Ir + ν3Ic)S
A∗

A
− νsI

∗
c

S∗

A∗ + ν3I
∗
cS

∗ Ir
I∗r

− ν1I
∗
uS

∗ A

A∗
I∗u
Iu

− ν2I
∗
rS

∗ A

A∗
I∗r
Ir

− νsI
∗
cS

∗ Ir
I∗r

I∗c
Ic

≤ µS∗(2 −S∗

S
− S

S∗

)
+ ν1I

∗
uS

∗
(
3− S∗

S
− AI∗u

A∗Iu
− SIuA

∗

S∗I∗uA

)
+ ν2I

∗
rS

∗
(
3− S∗

S
− AI∗r

A∗Ir
− SIrA

∗

S∗I∗rA

)
+ν3I

∗
cS

∗
(
3− S∗

S
− I∗r I

∗
c

I∗r Ic
− SIcA

∗

S∗I∗cA
− 1

A∗ +
Ir
I∗r

)
.

Finally by the arithmetic-geometric means inequality, it follows that(
2− S∗

S
− S

S∗

)
≤ 0(

3− S∗

S
− AI∗u

A∗Iu
− SIuA

∗

S∗I∗uA

)
≤ 0,(

3− S∗

S
− AI∗r

A∗Ir
− SIrA

∗

S∗I∗rA

)
≤ 0,

and if in addition (
3− S∗

S
− IrI

∗
c

I∗r Ic
− SIcA

∗

S∗I∗cA
− 1

A∗ +
Ir
I∗r

)
≤ 0,

then, we have cDα
1 (L(X(t))) ≤ 0.. In addition we have cDα

t (L (E∗) = 0 if and only if
(S(t), A(t), Iw(t), Ic(t), Ir(t), R(t)) = E∗, hence the maximum invariant set for{

(S(t), A(t), In(t), Ic(t), Ir(t), R(t)) ∈ R6, cD◦
tL (E∗) = 0

}
in the singleton set E∗ and according to the LASalle inviance principle the EE E∗ for the system (3.28) is
globally asymptotically stable ,whenever R0 > 1
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3.5 NUMERICAL SIMULATION OF THE MODEL :

The numerical simulation section of the paper focuses on analyzing the dynamics of a COVID-19 model
based on fractional calculus, particularly employing the Caputo sense. Here’s a breakdown of the key points
mentioned:

Model Solution Method: The COVID-19 model is solved using a fractional Adams-Molten type itera-
tive scheme.

Parameter Values: Parameters for the model are obtained from reported infected cases in Algeria and
are listed in Table (3.1).
In this simulation, our main purpose is to discuss:

1. Impact of Memory Index (α):
In Figure (3.2), we can observe the graphical representation of the impact of arbitrary fractional order
α, which represents the memory index. Here’s a breakdown of the findings:

(a) .Susceptible Population dynamics (Figure (3.2(a))) We observe that the density of individuals
in the susceptible subgroup decreases until it stabilizes at a specific value. The rate of decay is
faster for larger fractional order values compared to smaller ones.

(b) Asymptomatic population Dynamics (Figure (3.2(b)) In this class, we see that the number of
asymptomatic cases increases until reaching a certain peak, then decreases thereafter. For vary-
ing values of α, the dynamics show a slight deviation from approaching the peaks significantly,
and the category exhibits a slight decrease in the peaks of infected curves and continues for a
longer period for values lower than α.

(c) Infected populations Dynamics (Figures (3.2(c)) to (3.2(e))) Like the asymptomatic class,
the dynamics of the remaining infected groups (Iu,Ic,Ir) exhibit the same behavior, with a slight
decrease in the peaks of infected curves and a longer duration for values lower than α.

(d) Recovered Population Dynamics (Figure (3.2(f)) The dynamics of the recovered population
under different α values are analyzed. Initially, we observed no increase in the number of recov-
eries for some time, then it began to increase rapidly until stabilizing at certain values of α.We
notice that the growth rate is faster for larger values of α compared to smaller ones.
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Figure 3.2: Dynamics of S(t),A(t),Iu(t),Ir(t),Ic(t) individuals for various values of α
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2. Impact of Disease Transmission Rates (ν):

In Figures (3.3)–(3.5) , we examine the dynamic behavior of population groups infected with cumula-
tive infection (Iu+ Ir + Ic) for different values of disease transmission rates (ν1, ν2, ν3) corresponding to
population groups in compartments Iu, Ir, and Ic, respectively.

Figure (3.3) illustrates the effect of ν1 by gradually reducing it to its baseline value and observing its
impact on the total infected individuals (Iu + Ir + Ic). This analysis is performed across two values of
the memory index α. A significant decrease in the peaks of the infected curves is observed as the disease
transmission coefficient ν1 approaches its estimated value, as shown in Table (3.1). This effect becomes
more pronounced for smaller α values, as depicted in (3.4(b))–(3.4(a)).

Figure (3.4) we explore the impact of the disease transmission rate ν2 and the fractional order α on the
total infected individuals. Simulation processes involve varying ν2 at different rates relative to the baseline
across two α values such that α ∈ (0, 1]. Results indicate a noticeable flattening in the peaks of the infected
curves with decreasing ν2.

Figure (3.5) extends the analysis to study the effect of the transmission rate ν3 on the total number
of infected populations. Similar to previous analyses, simulation processes consider different rates for ν3
relative to its baseline, along with two α values. It is worth noting that a reasonable decrease in the number
of infected individuals was observed with the decrease in the parameter ν3.

The speed of growth and decay in the three curves is slower for α values of 0.8 (small values) compared
to their large values (α = 0.95).
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Figure 3.3: Inflence of ν1 Time (days) the cumulative infected individuals
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Figure 3.4: Inflence of ν2 Time (days) the cumulative infected individuals
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Figure 3.5: Influenc of ν3 Time (days) the cumulative infected individuals
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CONCLUSION

In this research we presented a new mathematical model for understanding the dynamics of COVID-19
transmission. Individuals infected are divided into two categories: detected and undetected, and the Caputo
derivative is used to explore the disease dynamics more effectively. The stability of disease-free and en-
demic states is studied, with some essential mathematical results of the fractional model being presented.
Additionally, some model parameters are estimated using data from reported cases in Algeria, while others
are inferred from the literature. The fractional model is numerically solved, and detailed simulation results
for various estimated parameters are provided, along with an analysis of the impact of the memory parame-
ter on disease dynamics. It is believed that this study will contribute to mitigating the COVID-19 pandemic,
and the current model can be expanded to include more sophisticated mathematical models

. The numerical results demonstrate the crucial role of the memory index α in shaping the dynamics
of COVID-19 spread. By altering the value of α, researchers can understand how memory affects virus
transmission and infection growth. This implies that studying and comprehending the role of memory in
infectious disease models can contribute to improving preventive and therapeutic measures to combat the
pandemic and mitigate its impact on society.
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