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Résumé

Dans ce travail, nous avons étudié l’existence et l’unicité de la solution
fort pour les équations différentielles fractionnaires, avec des conditions aux
limites intégrales et classiques, nous utilisons la méthode d’estimation a priori
dans la partie théorique pour l’étude de la solvabilité du problème, puis nous
avons utilisé l’analyse d’homotopie. méthode en partie pratique, pour retrouver
nos résultats numériques. Nous avons joint quelques exemples qui confirment
l’efficacité des méthodes utilisées avec les équations différentielles d’ordre frac-
tionnaire.
Mots clés : Équations différentielles d’ordre fractionnaire ; Solution générali-
sée ; Méthode d’estimation a priori ; Méthode d’analyse d’homotopie ; Dérivé
fractionnaire de Caputo.

Abstract

In this work, we studied the existence and uniqueness of the strong solu-
tion for fractional differential equations, with integral and classical boundary
conditions, we use the a priori estimation method in theory part for study of
the solvability of the problem, then we used the Homotopy analysis method
in practice part, to find our numerical results. We have attached some exam-
ples that confirm the effectiveness of the methods used with fractional order
differential equations.
Keywords: Fractional-order differential equations; Generalized solution; Pri-
ori estimation method; Homotopy analysis method; Caputo frational deriva-
tive.
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Notation

c
0∂

α
t The fractional Caputo derivative.

D−α
t The Riemann-Liouvielle integral.

L, l Linear operators.

D(k) Domain of definition of the operator K .

L2
p(Q) Space of square integrable function u with weights function p, defined on Q .

Im(k) Image of the operatorK .

HAM Homotopy analysis method.
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Introduction

In this thesis, we employ a theoretical method to prove that the non-local initial-
boundary value problem for a singular fractional order parabolic equation is well-posed.
Additionally, we use the homotopy analysis method, a numerical approach, to investigate
approximate solutions for the given problem. For theoretical purposes, we apply the
energy inequality method, which relies primarily on a priori estimates and the density of
the range of the operator generated by the problem. This method is a vital component of
linear and nonlinear functional analysis theory and is crucial for establishing the existence
and uniqueness of solutions for a wide variety of local and non-local initial-boundary value
problems in partial differential equations.

The model we study is a one-dimensional fractional order diffusion heat equation,
which is associated with both classical and non-local integral conditions (see [17, 18]).
Over the past few decades, many researchers have studied the existence and uniqueness
of fractional order initial-boundary value problems. These problems arise in numerous
scientific and engineering fields, including control theory, blood flow, aerodynamics, biol-
ogy, stochastic transport, viscoelasticity, quantum mechanics, nuclear physics, and many
other physical and biological processes (see[5, 13]).

To prove the existence and uniqueness of the solution to the posed problem, we again
use the energy inequality method, relying mainly on a priori estimates and the density of
the range of the operator generated by the problem. In the literature, there are only a few
articles that use the method of energy inequalities to prove the existence and uniqueness
of fractional initial-boundary value problems in the fractional case.

For numerical purposes, we employ the homotopy analysis method (HAM), first intro-
duced by Liao [11] to efficiently tackle nonlinear problems. This method provides solutions
in the form of a rapidly convergent series, which, in most cases, yields highly accurate
results after only a few iterations. Many authors have widely used HAM to successfully
solve a broad range of mathematical problems across different disciplines. Recently, it
has been utilized to generate reliable approximate solutions for fractional partial differ-
ential equations. For instance, HAM has been applied to study approximate solutions of
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linear and nonlinear fractional diffusion wave equations, systems of nonlinear fractional
partial differential equations, time fractional wave-like equations, and nonlinear problems.
Numerous authors have analytically and numerically investigated various models of time-
fractional differential equations, focusing particularly on the existence and uniqueness of
solutions; see, for example, [6, 14].
The homotopy analysis method (HAM)[10, 8], and [12] is a general analytic approach
to get series solution of various types of non-linear encoding algebraic equations, ordi-
nary differential equations, partial differential equations, differential-integral equations,
and coupled equations of them. Unlike perturbation methods, the HAM is valid even
for strongly nonlinear problems. Besides, different from all perturbation and previous
non-perturbation methods, the HAM provides us with great freedom to choose proper
base functions to approximate a nonlinear problem[9, 7]. More and more researchers have
been successfully applying this method to various nonlinear problems in science and en-
gineering,
The HAM is based on homotopy, a fundamental concept in topology and differential
geometry[16], Briefly speaking, by means of the HAM, one constructs a continuous map-
ping of an initial guess approximation to the exact solution of considered equations. An
auxiliary linear operator is chosen to construct such kind of continuous mapping, and
an auxiliary parameter is used to ensure the convergence of solution series The method
enjoys great freedom in choosing initial approximations and auxiliary linear operators, by
means of this kind of freedom, a complicated nonlinear problem can be transferred into
an infinite number of sampler, linear sub-problem, as shown by Liao and tan[7].
This thesis is divided into three chapters:
Chapter1: in this chapter we present some basic tools(the Gamma function, Mittage-
Leffter function,Young enequality with ε... ), and some interesting properties.
Chapter2: in this chapter we obtain results on the existence and uniqueness of a gen-
eralized solution for a parabolic fractional problem in the sense of Caputo with integral
conditions.
Chapter3: the main objective of this chapter is to obtain numerical results via the
homotopy analysis method.
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Chapter 1

Preliminaries

In this section we recall some function spaces and some basic tools.
The Gumma function:

Definition 1. The Gumma function, also known as the Eulerian integral of the second
kind, is denoted by Γ, and defined by:

Γ(z) =

∫ +∞

0

e−ttz−1dt, (1.1)

where z is any complex number such that Re(z) > 0 with Γ(z) is monoton and strictly
decreasing function for 0 < z ≤ 1 and is continuous on ]0,+∞[.
∀z ∈ R∗

+ we have

Γ(z + 1) = zΓ(z),

∀n ∈ N∗ we have:

Γ(n) = (n− 1)! .

Mittag-Leffler function:

Definition 2. The Mittag-Leffler is defined by:

Eα(x) =
∞∑
n=0

xn

Γ(αn+ 1)
and Eα,µ(x) =

∞∑
n=0

xn

Γ(αn+ µ)
, (1.2)

The fractional Caputo derivative:

Definition 3. We define the fractional Caputo derivative of order 0 < α < 1 for a
differential function by:

c
0∂

α
t U(x, t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α ∂

∂τ
U(x, τ)dτ, t > 0, (1.3)
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for more details about the Caputo fracional derivative, we refer the reader to the refer-
ence [5].

The Riemann-Liouvielle integral:

Definition 4. We define the Riemann-Liouvielle integral of order 0 ≤ α ≤ 1 by

D−α
t U(t) =

1

Γ(α)

∫ t

0

U(τ)

(t− τ)1−α
dτ. (1.4)

We denote by L2
p(0, 1) the Hilbert space of weighted square integrable function with

inner product (U, V )p =

∫ 1

0

xUV dx, and byH1
p (0, 1) the wheighted sobolev space with the

norme ∥u∥2H1
p(0,1)

= ∥u∥L2
p(0,1)

+∥ux∥2L2
p(0,1)

. we also introduce the Hilbert space L2(0, T ;Hα,t
p (0, 1))

consisting of all abstract strongly measurable function u on [0,T] intoHα,t
p (0, 1) such that

∥u∥2L2(0,T ;Hα,t
p (0,1))

=

∫ T

0

∥u(., t)∥2
Hα,t

p (0,1)
dt =

∫ T

0

(
∥u∥2L2

p(0,1)
+∥c0∂αt u∥2L2

P (0,1)

)
dt <∞ (1.5)

Hα,t
p (0, 1) denotes the weighted sobolev space whose norme is defined by

∥u∥2
Hα,t

p (0,1)
= ∥u∥2L2

p(0,1)
+∥c0∂αt u∥2L2

p(0,1)
. (1.6)

Lemma 1. ([1]).for any absoltely continous function Z(t) on the interval [0,T],the fol-
lowing inequality holds:

Z(t)c0∂
α
t Z(t) ≥

1

2
c
0∂

α
t Z

2(t), 0 < α < 1. (1.7)

Lemma 2. ([1]).let a nonnegative absolutely continuous function J (s)satisfy the inequality

c
0∂

α
t J (t) ≤ r1J (t) + r2(t), 0 < α < 1, (1.8)

for almost all t ∈ [0, T ], where r1 is a positive constant and r2(t) is an integrable non
negative function on [0, T ], then

J (t) ≤ J (0)Eα(r1t
α) + Γ(α)Eα(r1t

α)D−α
t r2(t), (1.9)

The Cauchy inequality with ε:[3]

aW ≤ ε

2
a2 +

1

2ε
W 2, ε > 0. (1.10)

Young’s inequality with ε:[3]

for any ε > 0, we have the inequlity

aW ≤ 1

p
|εa|p+p− 1

p

∣∣∣∣Wε
∣∣∣∣ p
p−1

, a,W ∈ R, p > 1, (1.11)

which is the generalization of the Cauchy inequality with ε
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A Poincaré type inequality:[15]

∥px(ζU)∥2L2
p(0,1)

≤ l3

2
∥U∥2L2

p(0,l)
, (1.12)

where

px(V ) =

∫ x

0

V (ζ, t)dζ. (1.13)

Energy inequality method:

or what we call "a priori estimates".this method based on the ideas of I.G Pétrovski[4]
who used it in the solution of the Cauchy problem for hyperbolic equations.
First, we write the problem posed in the following operatorielle form:

Ku = F ,∀u ∈ D(K ), (1.14)

where the operator K is considered from Banach space B in a well-chosen Hilbert space
F .
Then, studied the uniqueness of a solution of the previous problem. more precisely, we
prove the following energy inequality;

∥u∥B≤ c∥Ku∥F , (1.15)

we obtain this type of a priori estimates by multiplying the equation considered by an
integrodifferential operatorMu (container the function u, and its derivatives with a certain
weight function) defined on Ωτ = (0, 1)× (0, τ).
the choice of the Mu operator is very important, it is diracted by the equation and the
boundary conditions
Next,we show that the operator K from B into F admits a closure K , so u is the strong
solution of the operatoriel equation

Ku = F , u ∈ D(K), (1.16)

by going beyond the limit, the estimate(1.14) will be extended to K i.e:

∥u∥B≤ c∥Ku∥F , (1.17)

from wich we deduce the uniqueness of the solution of equation(1.15).
since the image of the operator K is closed in F and Im(K ) = Im(K ) and the density of
Im(k) in F , we guarantee the existence of the solution strength of the problem(15)
for the study of the nonlinear problem, we apply an iterative process based on the results
obtained from the linear problem.
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Chapter 2

Existence and Uniqueness of solution

2.1 problem setting

We consider a fractional order parabolic equation with a Caputo derivative associated
with Dirichlet and non-local conditions of integral type:

Lu = g(x, t), (x, t) ∈ Q = Ω× [0, T ],

l1u = u(x, 0) = w(x), x ∈ Ω = (0, 1),∫ 1

0

xu(x, t)dx = 0, u(1, t) = 0, t ∈ (0, T ),

(2.1)

where L =c
0 ∂

α
t − 1

x
∂
∂x

− ∂2

∂x2 + C and the function g ∈ L2
p(Q) and C ≥ 0.

The solution this problem is equivalent to solution the operator equation ku = (Lu, l1u) =
F , where k is an unbounded opertor wich acts from S to H, with the domain of defi-
nition being the set of function u ∈ L2

p(Q), ux, uxx, ∂
α
t u ∈ L2

p(Q) satisfing the boundary
condition, where S is a Banach space of function u assoiated with finite norm:

∥u∥2S= ∥u∥L2(0;T,Hα,t
p (0,1))=

∫ T

0

(
∥u∥2L2

p(0,1)
+∥c0∂αt u∥2L2

p(0,1)

)
dt, (2.2)

such thatH is the weighted Hilbert space L2
p(Q)×H1

p (0, 1) constiting of vector valued function
F = (g, w) for wich the norm

∥F∥2H= ∥w∥2H1
p(0,1)

+∥g∥2L2
p(Q)= ∥u(x, 0)∥L2

p(0,1)
+∥ux(x, 0)∥2L2

p(0,1)
, (2.3)

is finite
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2.2 Uniqueness of solution

In this section, on the basis of an a priori estimate, we establish a uniqueness result
for the solution of the given problem and its dependence on the given data of the posed
problem.

Theorem 1. we have the a priori estimate

∥u∥2S= ∥u∥2L2(0,T ;Hα,t
p (0,1))

≤ C∗∗
(
∥w∥2H1

p(0,1)
+∥g∥2L2

p(Q)

)
= C∗∗∥F∥2H , (2.4)

for all u ∈ D(K ), where C∗ and C∗∗ > 0

C∗∗ = max

{
C∗,

T 1−α

(1− α)Γ(1− α)

}
, C∗ =

1
2C

+ 2

min
(
1
2
; C
2
+ 1

2
; 1
4
+ 3

4
C
) (2.5)

Proof. We consider the inner product in L2(0, 1) of the integro-differential operator Mu =

xu− xpx(ζu) + xc0∂
α
t u and Lu

(Lu,Mu)L2(0,1) =

(
∂αt u−

1

x

∂

∂x

(
x
∂u

∂x

)
+ Cu, xu− xpx(ζu) + xc0∂

α
t u

)
L2(0,1)

,

= (g, xu− xpx(ζu) + xc0∂
α
t u)L2(0,1), (2.6)

where px(ζu) =

∫ x

0

ζu(ζ, t)dζ,

using the initial condition we find

−(c0∂
α
t u, xpx(ζu))L2(0,1) = −

∫ 1

0

xc0∂
α
t upx(ζu)dx. (2.7)

(
∂

∂x

(
x
∂u

∂x

)
, px(ζu)

)
L2(0,1)

=

∫ 1

0

∂

∂x

(
x
∂u

∂x

)
px(ζu)dx =

[
x
∂u

∂x
px(ζu)

]1
0

−
∫ 1

0

x
∂u

∂x
xudx

= −
∫ 1

0

x2u
∂u

∂x
dx = −1

2

∫ 1

0

x2
∂u2

∂x
dx

= −1

2
[u2x2]10 +

1

2

∫ 1

0

2xu2dx =

∫ 1

0

xu2dx = ∥u∥2L2
p(0,1)

. (2.8)

−(Cu, xpx(ζu))L2(0,1) = −C
∫ 1

0

xupx(ζu)dx = −C
∫ 1

0

∂

∂x
(px(ζu))px(ζu)

=
−C
2

∫ 1

0

∂

∂x2
(px(ζu))

2
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=
−C
2

[(px(ζu))
2]10 =

−c
2

[(∫ x

0

ζudζ

)2
]1

0

= 0. (2.9)

(c0∂
α
t u, xu)L2(0,1) =

∫ 1

0

c
0∂

α
t uxudx =

∫ 1

0

xuc0∂
α
t udx = (c0∂

α
t u, u)L2

p(0,1)
. (2.10)

−
(
∂

∂x

(
x
∂u

∂x

)
, u

)
L2(0,1)

= −
∫ 1

0

∂

∂x

(
x
∂u

∂x
u

)
dx = −

[
x
∂u

∂x
u

]1
0

+

∫ 1

0

x
∂u

∂x

∂u

∂x
dx

=

∫ 1

0

x

(
∂u

∂x

)2

dx = ∥ux∥2L2
p(0,1)

. (2.11)

(Cu, xu)L2(0,1) = C

∫ 1

0

uxudx = C

∫ 1

0

xu2dx = C∥u∥2L2
p(0,1)

. (2.12)

(c0∂
α
t u, x

c
0∂

α
t u)L2(0,1) =

∫ 1

0

x(c0∂
α
t u)

2dx = ∥c0∂αt u∥2L2
p(0,1)

. (2.13)

−
(
∂

∂x

(
x
∂u

∂x

)
,c0 ∂

α
t u

)
L2(0,1)

= −
∫ 1

0

∂

∂x

(
x
∂u

∂x

)
c
0∂

α
t udx = −

[
x
∂u

∂x
c
0∂

α
t u

]1
0

+

∫ 1

0

x
∂u

∂x

∂

∂x
(c0∂

α
t u)dx

=

∫ 1

0

x
∂u

∂x
c
0∂

α
t uxdx = (c0∂

α
t ux, ux)L2

p(0,1)
. (2.14)

(Cxc0∂
α
t u, u)L2(0,1) = C

∫ 1

0

xc0∂
α
t uudx = (Cc

0∂
α
t u, u)L2

p(0,1)
. (2.15)

Substituation of equalities (2.7)-(2.15) into (2.6), gives

∥ux∥2L2
p(0,1)

+C∥u∥2L2
p(0,1)

+(c0∂
α
t u, u)L2

p(0,1)
+(c0∂

α
t ux, ux)L2

p(0,1)
+∥c0∂αt u∥2L2

p(0,1)
+C(c0∂

α
t u, u)L2

p(0,1)
+∥u∥2L2

p(0,1)

= −(px(ζu), xg)L2(0,1) + (xu, g)L2(0,1) + (xc0∂
α
t u, g)L2(0,1) + (c0∂

α
t u, xpx(ζu))L2(0,1)

∥ux∥2L2
p(0,1)

+C∥u∥2L2
p(0,1)

+

∫ 1

0

xuc0∂
α
t udx+

∫ 1

0

xux
c
0∂

α
t uxdx+∥c0∂αt u∥2L2

p(0,1)
+C

∫ 1

0

uc0∂
α
t udx+∥u∥2L2

p(0,1)

= −
∫ 1

0

(
√
xg)(

√
xpx(ζu))dx+

∫ 1

0

(
√
xu)(

√
xg)dx+

∫ 1

0

(
√
xg)(

√
x
c
0∂

α
t u)dx

+

∫ 1

0

(
√
xpx(ζu))(

√
x
c
0∂

α
t u)dx. (2.16)
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By using Cauchy ε inequality for the right hand side of (2.16), and Lemma(1) for the
left hand side of Equation (2.16), we give:

∥ux∥2L2
p(0,1)

+C∥u∥2L2
p(0,1)

+
1

2

∫ 1

0

xc0∂
α
t u

2dx+
1

2

∫ 1

0

xc0∂
α
t u

2
xdx+∥c0∂αt u∥2L2

p(0,1)
+
C

2

∫ 1

0

xc0∂
α
t u

2dx+∥u∥2L2
p(0,1)

≤ ε1
2

∫ 1

0

x(px(ζu))
2dx+

1

2ε1

∫ 1

0

xg2dx+
ε2
2

∫ 1

0

x(c0∂
α
t u)

2dx+
1

2ε2

∫ 1

0

x(px(ζu))
2dx

+
ε3
2

∫ 1

0

xu2dx+
1

2ε3

∫ 1

0

(xg)2dx+
ε4
2

∫ 1

0

x(c0∂
α
t u)

2 +
1

2ε4

∫ 1

0

xg2dx

∥ux∥2L2
p(0,1)

+(1 + C)∥u∥2L2
p(0,1)

+

(
C

2
+

1

2

)
c
0∂

α
t ∥u∥2L2

p(0,1)
+
1

2
c
0∂

α
t ∥ux∥2L2

p(0,1)
+∥c0∂αt u∥2L2

p(0,1)

≤ ε1
2
∥px(ζu)∥2L2

p(0,1)
+

1

2ε1
∥g∥2L2

p(0,1)
+
ε2
2
∥c0∂αt u∥2L2

p(0,1)
+

1

2ε2
∥px(ζu)∥2L2

p(0,1)

+
ε3
2
∥u∥2L2

p(0,1)
+

1

2ε3
∥g∥2L2

p(0,1)
+
ε4
2
∥c0∂αt u∥2L2

p(0,1)
+

1

2ε4
∥g∥2L2

p(0,1)
. (2.17)

Taking ε1 = C, ε2 =
1
2
, ε3 =

1
2

and ε4 = 1
2
, we obtain

∥ux∥2L2
p(0,1)

+(1+C)∥u∥2L2
p(0,1)

+

(
C

2
+

1

2

)(
c
0∂

α
t ∥u∥2L2

p(0,1)

)
+
1

2
c
0∂

α
t ∥ux∥2L2

p(0,1)
+∥c0∂αt u∥2L2

p(0,1)

≤
(
C

2
+ 1

)
∥px(ζu)∥2L2

p(0,1)
+

(
1

2C
+ 2

)
∥g∥2L2

p(0,1)
+
1

4
∥u∥2L2

p(0,1)
+
1

2
∥c0∂αt u∥2L2

p(0,1)
, (2.18)

We move the third and fourth terms from the right side to the left side of the inequality
(2.18)

∥ux∥2L2
p(0,1)

+(1+C)∥u∥2L2
p(0,1)

+

(
C

2
+

1

2

)(
c
0∂

α
t ∥u∥2L2

p(0,1)

)
+
1

2
c
0∂

α
t ∥ux∥2L2

p(0,1)
+∥c0∂αt u∥2L2

p(0,1)

−1

4
∥u∥2L2

p(0,1)
−1

2
∥c0∂αt u∥2L2

p(0,1)
≤

(
C

2
+ 1

)
∥px(ζu)∥2L2

p(0,1)
+

(
1

2C
+ 2

)
∥g∥2L2

p(0,1)
. (2.19)

Applying Poincaré’s theorem to the first term on the right-hand side of (2.19), leads to:

∥ux∥2L2
p(0,1)

+

(
3

4
+ C

)
∥u∥2L2

p(0,1)
+

(
C

2
+

1

2

)(
c
0∂

α
t ∥u∥2L2

p(0,1)

)
+

1

2
c
0∂

α
t ∥ux∥2L2

p(0,1)

+
1

2
∥c0∂αt u∥2L2

p(0,1)
≤

(
C

4
+

1

2

)
∥u∥2L2

p(0,1)
+

(
1

2C
+ 2

)
∥g∥2L2

p(0,1)
. (2.20)
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So

∥ux∥2L2
p(0,1)

+

(
1

4
+

3

4
C

)
∥u∥2L2

p(0,1)
+

(
C

2
+

1

2

)(
c
0∂

α
t ∥u∥2L2

p(0,1)

)
+

1

2
c
0∂

α
t ∥ux∥2L2

p(0,1)

+
1

2
∥c0∂αt u∥2L2

p(0,1)
≤

(
1

2C
+ 2

)
∥g∥2L2

p(0,1)
. (2.21)

We eliminate the first term on the left hand side of the inequality(2.21):

min

(
1

2
;
C

2
+

1

2
;
1

4
+

3

4
C

)
×

[
∥u∥2L2

p(0,1)
+∥∂αt u∥2L2

p(0,1)
+c

0∂
α
t

(
∥u∥2L2

p(0,1)
+∥ux∥2L2

p(0,1)

)]

≤
(

1

2C
+ 2

)
∥g∥2L2

p(0,1)
. (2.22)

There fore:

∥u∥2L2
p(0,1)

+∥c0∂αt u∥2L2
p(0,1)

+c
0∂

α
t

(
∥u∥2L2

p(0,1)
+∥ux∥2L2

p(0,1)

)
≤

1
2C

+ 2

min
(
1
2
; C
2
+ 1

2
; 1
4
+ 3

4
C
)∥g∥2L2

p(0,1)
.

(2.23)

So

∥u∥2
Hα,t

p (0,1)
+c

0∂
α
t ∥u∥2H1

p(0,1)
≤ C∗∥g∥2L2

p(0,1)
. (2.24)

Where

C∗ =
1
2C

+ 2

min
(
1
2
; C
2
+ 1

2
; 1
4
+ 3

4
C
) . (2.25)

Integration both sides of equation (2.24) over (0.t) gives∫ t

0

∥u(x, v)∥2
Hα,t

p (0,1)
dv+Dα−1∥u∥2H1

p(0,1)
− T 1−α

(1− α)Γ(1− α)
∥u(x, 0)∥2H1

p(0,1)
≤ C∗

∫ t

0

∥g(x, v)∥2L2
p(0,1)

dv,

∫ t

0

∥u(x, v)∥2
Hα,t

p (0,1)
dv+Dα−1∥u∥2H1

p(0,1)
≤ C∗

∫ t

0

∥g(x, v)∥2L2
p(0,1)

dv+
Γ1−α

(1− α)Γ(1− α)
∥w∥2H1

p(0,1)
,

≤ C∗∗
(∫ t

0

∥g(x, v)∥2L2
p(0,1)

dv + ∥w∥2H1
p(0,1)

)
, (2.26)

where

C∗∗ = max

{
C∗,

T 1−α

(1− α)Γ(1− α)

}
. (2.27)
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If we discard the second term on the left hand side of equation(2.26) and replace t by T ,
we obtain the desired inequality:

∥u∥2L2(0,T ;Hα,t
p (0,1))

≤ C∗∗
(
∥w∥2H1

p(0,1)
+∥g∥2L2

p(Q)

)
, (2.28)

∥u∥2S≤ C∗∗∥F∥2H . (2.29)

Corollary 1. the solution of problem(2.1) is unique

Proof. Let u1 and u2 be two solution of problem (2.1){
Ku1 = F

Ku2 = F
⇒ Ku1 −Ku2 = 0, (2.30)

and as K is linear we obtain K (u1 − u2) = 0,

according to (2.4)

∥u1 − u2∥2S≤ 0 ⇒ ∥u1 − u2∥2S= 0 ⇒ u1 − u2 = 0 ⇒ u1 = u2. (2.31)

Hence, we deduce the uniqueness of solution.
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2.3 Existence of solution

In this section, we prove a result concerning the existence of the solution of the given
problem it follows from Inequality (2.4) that the operator K admit an inverse K−1 :

Im(K ) → S since Im(K ) ⊂ H, we then can construct its clocure K such that Inequality
(2.4) holds for K and Im(K ) = H .

Proving the existence of the solution is based on the following three steps
1. The operator K : S → H is closed,
2. Ku = H and Im(K ) = H is a closed subset in H.
and Im(K ) = Im(K ) and K

−1
= K−1,

3. Im(K ) is dense in H.

Proposition 1. (spesial case of density) If for all u ∈ D0(k) such that l1u = 0 and for
some function ϕ ∈ L2(Q) we have:

∫ T

0

(Lu, ϕ)L2
p(0,1)

dt = 0, (2.32)

then ϕ is zero a.e in Q .

Proof. ∫ T

0

(Lu, ϕ)L2
p(0,1)

dt = 0,

are equivalent ∫ T

0

(
∂αt u−

1

x

∂

∂x

(
x
∂u

∂x

)
+ Cu, ϕ

)
L2
p(0,1)

dt = 0. (2.33)

Suppose that a function Γ(x, t) satisfies boundary and initial conditions of
equation (2.1) and such that Γ,Γx,

∂
∂x
(xIt(Γ(x, s)),

and ∂αt It(Γ(x, s)) ∈ L2(Qt) we then let:

u(x, t) = It(Γ(x, s)) =

∫ t

0

Γ(x, s)ds. (2.34)

Equation (2.33) takes the form∫ T

0

(
c
0∂

α
t It(Γ(x, s))−

1

x

∂

∂x

(
x
∂

∂x
(It(Γ(x, s)))

)
+ C(It(Γ(x, s))), ϕ

)
L2
p(0,1)

dt = 0.

(2.35)
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We now consider the function

ϕ(x, t) = It(Γ(x, s)) + px(ζIt(Γ(x, s))) +
c
0 ∂

α
t It(Γ(x, s)), (2.36)

we replace ϕ with its value∫ T

0

(c0∂
α
t It(Γ(x, s)), xIt(Γ(x, s)) + xpx(ζIt(Γ(x, s))) + xc0∂

α
t It(Γ(x, s)))L2(0,1)dt

−
∫ T

0

(
∂

∂x

(
x
∂

∂x
(It(Γ(x, s)))

)
, It(Γ(x, s)) + px(ζIt(Γ(x, s))) +

c
0 ∂

α
t It(Γ(x, s))

)
L2(0,1)

)dt

+

∫ T

0

(CIt(Γ(x, s)), xIt(Γ(x, s)) + xpx(ζIt(Γ(x, s))) + xc0∂
α
t It(Γ(x, s)))L2(0,1))dt = 0.

(2.37)

Since Γ satisfies boundary codition in equation (2.1), and Lemma 1, then we have

(c0∂
α
t It(Γ(x, s)), xIt(Γ(x, s)))L2(0,1) =

∫ 1

0

xc0∂
α
t It(Γ(x, s))It(Γ(x, s))dx

≥ 1

2

∫ 1

0

xc0∂
α
t (It(Γ(x, s)))

2

=
1

2
c
0∂

α
t ∥It(Γ(x, s))∥2L2

p(0,1)
, (2.38)

by using the Cauchy inequality with ε we find

−( c
0∂

α
t It(Γ(x, s)), xpx(ζIt(Γ(x, s))))L2(0,1) =

∫ 1

0

√
x(−c

0∂
α
t It(Γ(x, s)))

√
xpx(ζIt(Γ(x, s)))dx

≤ ε1
2

∫ 1

0

x( c
0∂

α
t It(Γ(x, s)))

2dx

+
1

2ε1

∫ 1

0

x(px(ζIt(Γ(x, s))))
2dx,

=
ε1
2
∥c0∂αt It(Γ(x, s))∥2L2

p(0,1)

+
1

2ε1
∥px(ζIt(Γ(x, s)))∥2L2

p(0,1)
. (2.39)

(c0∂
α
t It(Γ(x, s)), x

c
0∂

α
t It(Γ(x, s)))L2(0,1) =

∫ 1

0

xc0∂
α
t It(Γ(x, s))

c
0∂

α
t It(Γ(x, s))dx

= ∥c0∂αt It(Γ(x, s))∥2L2
p(0,1)

. (2.40)
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−
(
∂

∂x

(
x
∂

∂x
(It(Γ(x, s)))

)
, It(Γ(x, s))

)
L2(0,1)

= −
∫ 1

0

∂

∂x

(
x
∂

∂x
(It(Γ(x, s)))

)
It(Γ(x, s))dx,

= −
[
x
∂

∂x
(It(Γ(x, s)))It(Γ(x, s)))It(Γ(x, s))

]1
0

+

∫ 1

0

x
∂

∂x
(It(Γ(x, s)))

∂

∂x
(It(Γ(x, s)))dx

=

∥∥∥∥ ∂

∂x
(It(Γ(x, s)))

∥∥∥∥2

L2
p(0,1)

= ∥It(Γx(x, s))∥2L2
p(0,1)

. (2.41)

−
(
∂

∂x

(
x
∂

∂x
(It(Γ(x, s))

)
, px(ζIt(Γ(x, s)))

)
L2(0,1)

= −
∫ 1

0

∂

∂x

(
x
∂

∂x
(It(Γ(x, s))

)
px(ζIt(Γ(x, s)))dx

= −
[
x
∂

∂x
(It(Γ(x, s))px(ζIt(Γ(x, s)))

]1
0

+

∫ 1

0

x
∂

∂x
(It(Γ(x, s))

∂

∂x
(px(ζIt(Γ(x, s))))dx

=

∫ 1

0

x
∂

∂x
(It(Γ(x, s))xIt(Γ(x, s))dx =

∫ 1

0

x2
∂

∂x
(It(Γ(x, s))It(Γ(x, s))dx

=

∫ 1

0

x2

2

∂

∂x
(It(Γ(x, s))

2dx =
1

2
[x2(It(Γ(x, s)))

2]10 −
∫ 1

0

x(It(Γ(x, s)))
2dx

=
1

2
(It(Γ(1, s)))

2 − ∥It(Γ(x, s))∥2L2
p(0,1)

. (2.42)

−
(
∂

∂x

(
x
∂

∂x
(It(Γ(x, s))

)
,c0 ∂

α
t It(Γ(x, s))

)
L2(0,1)

= −
∫ 1

0

∂

∂x

(
x
∂

∂x
(It(Γ(x, s))

)
c
0∂

α
t It(Γ(x, s))dx,

= −
[
x
∂

∂x
(It(Γ(x, s))

∂
t αIt(Γ(x, s))

]1
0

+

∫ 1

0

x
∂

∂x
(It(Γ(x, s))

∂

∂x
( c

0∂
α
t It(Γ(x, s)))dx,

=

∫ 1

0

x
∂

∂x
(It(Γ(x, s)))

∂

∂x
( c

0∂
α
t It(Γ(x, s)))dx =

∫ 1

0

xIt(Γx(x, s))
c
0∂

α
t It(Γx(x, s))dx.
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By using Lemma 1 we find

−
(
∂

∂x

(
x
∂

∂x
(It(Γ(x, s))

)
,c0 ∂

α
t It(Γ(x, s))

)
L2(0,1)

≥ 1

2

∫ 1

0

xc0∂
α
t (It(Γx(x, s)))

2dx

=
1

2
c
0∂

α
t ∥It(Γx(x, s))∥2L2

p(0,1)
. (2.43)

(CIt(Γ(x, s)), xIt(Γ(x, s)))L2(0,1) = C

∫ 1

0

xIt(Γ(x, s))It(Γ(x, s))dx

= C∥It(Γ(x, s))∥2L2
P (0,1). (2.44)

By using the cauchy inequality with ε we find

−(CIt(Γ(x, s)), xpx(ζIt(Γ(x, s))))L2(0,1) = C

∫ 1

0

√
x(−It(Γ(x, s)))

√
xpx(ζIt(Γ(x, s)))dx,

≤ Cε2
2

∫ 1

0

x(It(Γ(x, s)))
2dx

+
C

2ε2

∫ 1

0

x(px(ζIt(Γ(x, s)))
2dx,

=
Cε2
2

∥It(Γ(x, s))∥2L2
p(0,1)

+
C

2ε2
∥px(ζIt(Γ(x, s)))∥2L2

p(0,1)
. (2.45)

(CIt(Γ(x, s)), x
c
0∂

α
t It(Γ(x, s)))L2(0,1) = C

∫ 1

0

xIt(Γ(x, s))
c
0∂

α
t It(Γ(x, s))dx,

by using Lemma 1 we find

(CIt(Γ(x, s)), x
c
0∂

α
t It(Γ(x, s)))L2(0,1) ≥

C

2
c
0∂

α
t ∥It(Γ(x, s))∥2L2

p(0,1)
. (2.46)

A combination of equation (2.37)-(2.46) gives the inequality

(It(Γ(1, s)))
2 +c

0 ∂
α
t ∥It(Γx(x, s))∥2L2

p(0,1)
+2∥It(Γx(x, s))∥2L2

p(0,1)
+2∥c0∂αt It(Γ(x, s))∥2L2

p(0,1)

+(1 + C) c
0∂

α
t ∥It(Γ(x, s))∥2L2

p(0,1)
+2C∥It(Γ(x, s))∥2L2

P (0,1)

≤ 2∥It(Γ(x, s))∥2L2
p(0,1)

+ε1∥c0∂αt It(Γ(x, s))∥2L2
p(0,1)

+
1

ε1
∥px(ζIt(Γ(x, s)))∥2L2

p(0,1)

+Cε2∥It(Γ(x, s))∥2L2
p(0,1)

+
C

ε2
∥px(ζIt(Γ(x, s)))∥2L2

p(0,1)
.
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By applying the Poincaré inequality for the third and fifth term on the right-hand

(It(Γ(1, s)))
2 +c

0 ∂
α
t ∥It(Γx(x, s))∥2L2

p(0,1)
+2∥It(Γx(x, s))∥2L2

p(0,1)
+2∥c0∂αt It(Γ(x, s))∥2L2

p(0,1)

+(1 + C) c
0∂

α
t ∥It(Γ(x, s))∥2L2

p(0,1)
+2C∥It(Γ(x, s))∥2L2

P (0,1)

≤ 2∥It(Γ(x, s))∥2L2
p(0,1)

+ε1∥c0∂αt It(Γ(x, s))∥2L2
p(0,1)

+
1

2ε1
∥It(Γ(x, s))∥2L2

p(0,1)

+Cε2∥It(Γ(x, s))∥2L2
p(0,1)

+
C

2ε2
∥It(Γ(x, s))∥2L2

p(0,1)
. (2.47)

Put ε1 = 2 and ε2 = 2 and ingnore the first three terms on the left hand side of equation
(2.47) it follows that

c
0∂

α
t ∥It(Γ(x, s))∥2L2

p(0,1)
≤ C + 9

4 + 4C
∥It(Γ(x, s))∥2L2

P (0,1). (2.48)

Integration over (0,t) in equation (2.48) leads to

Dα−1∥It(Γ(x, s))∥2L2
p(0,1)

≤ C∗
∫ t

0

∥It(Γ(x, s))∥2L2
P (0,1)dτ, (2.49)

where
C∗ =

C + 9

4C + 4

. Applying Lemma 2 to equation (2.49), after putting:

J (t) =

∫ t

0

∥It(Γ(x, s))∥2L2
P (0,1)dτ,

J (0) = 0, r1 = C∗, r2 = 0.

and
c
0∂

α
t J (t) =c

0 ∂
α
t

(∫ t

0

∥It(Γ(x, s))∥2L2
P (0,1)dτ

)
= Dα−1

t ∥It(Γ(x, s))∥2L2
P (0,1),

then∫ t

0

∥It(Γ(x, s))∥2L2
P (0,1)dτ ≤ J (0)Eα(C

∗tα) + Γ(α)Eαα(C
∗tα)D−α

t (0) = 0. (2.50)

Realacing t by T , it follows then from Equation (2.50)that∫ T

0

∥It(Γ(x, s))∥2L2
P (0,1)dτ ≤ 0. (2.51)

Hence ϕ = 0 a.e in Q .
We now complete the proof,
we suppose that for (ψ, ξ1) ∈ Im(K )⊥ we have∫ T

0

(Lu, ψ)L2
p(0,1)

dt+ (l1, ξ1)H1
p(0,1)

= 0, (2.52)
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then we should show that ψ = 0, take u ∈ D(k) such that l1u = 0 in (1.53), then we have∫ T

0

(Lu, ψ)L2
p(0,1)

dt = 0,∀u ∈ D(K ), (2.53)

it follow from equation(2.32)and equation(2.53), that ψ = 0 a.e in Q . Hence equation
(2.52) takes the forms

(l1u, ξ1)H1
p(0,1)

= 0,∀u ∈ D(k). (2.54)

Since Im(l1) is dence in H1
p (0, 1) (because it is compact operator), we deduce from

equation (2.54) that ξ1 = 0.
From Proposition 1, we find Im(K0) = 0, ie; Im(K0) = H.

Now consider the general case. From the fact that Im(K ) is dense in H, we conclude
that we can prove that Im(K ) is dense in H by means of the continuation method along
the parameter (see [2]). This is what leads to Proposition 2.

Proposition 2. Im(K ) is dense in H, ie Im(K ) = H.

Theorem 2. Assume that conditions of Theorem (1) hold. Then for all F = (g, w) ∈ H,
there exists a unique strong solution u = K

−1
F = K−1F of problem (2.1).
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Chapter 3

The Homotopy analysis method

In this chapter we test the efficiency the homotopy analysis method for solving
the fractional nonlocal mixed problem with the bessel operator and we provide some ex-
amlpes then search for the numerical solutions by using this method.

3.1 Application of the method and numerical results

To test the efficiency of the HAM for solving the fractional non-local mixed problem with
the Bessel operator, we consider the equivalent initial-boundary value problem

c
0∂

α
t u− 1

x
∂u
∂x

− ∂2u
∂x2 + Cu(x, t) = g(x, t) 0 < x, α < 1, 0 < t < T,

u(x, 0) = w(x), x ∈ (0, 1),

ux(1, t) = 0, u(1, t) = d(t),

(3.1)

where g, w and d are some given functions and C ≥ 0.
We consider the initial approximation

u0(x, t) = u(x, 0),

and the linear operator with the non-integer order

L; [ϕ(x, t; q)] =c
0 ∂

α
t ϕ(x, t; q), 0 < α < 1,

such that L(k) = 0 where k represents an integral constant.
We consider the fractional partial differential operator

F [ϕ(x, t; q)] =c
0 ∂

α
t ϕ(x, t; q))−

1

x

∂ϕ

∂x
− ∂2ϕ

∂x2
+ Cϕ(x, t)− g(x, t),

hence the zeroth-order deformation equation is given by

(1− q)L[ϕ(x, t; q)− u0(x, t)] = qhF [ϕ(x, t; q)],
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then, at q = 0 and q = 1, we have

ϕ(x, t; 0) = u0(x, t) = u(x, 0), and ϕ(x, t; 1) = u(x, t),

respectively.
On the other hand, the mth-order deformation equation is given by

L[um(x, t)− χmum−1(x, t)] = hRm(u⃗m−1), (3.2)

where

Rm(u⃗m−1) =
c
0∂

α
t um−1 −

1

x

∂um−1

∂x
− ∂2um−1

∂x2
+ Cum−1 − (1− χm)g(x, t), (3.3)

and

χm =

{
0, m ≤ 1,

1, m > 1.
(3.4)

For m ≥ 1, the solution of the mth-order deformation equation (3.2) can be obtained
recessively through the iterative scheme:

um(x, t) = χmum−1(x, t) + hL−1[Rm(u⃗m−1(x, t))], (3.5)

or

um(x, t) = χmum−1(x, t) + h∂−α
t [Rm(u⃗m−1(x, t))]. (3.6)

Now, we apply the HAM to the following test examples, to illustrat the efficiency of this
method in solving fractional partial differntial equations in the from of equation (3.2)
Example 1. Consider the fractional homogeous initial/boundary value problem

c
0∂

α
t u− 1

x
∂u
∂x

− ∂2u
∂x2 + Cu = cos(t) + 1

2x
, 0 < t < T, 0 < α < 1,

u(x, 0) = 1
2
ln(x)− 1

2
x+ ∂−α

t (1), x ∈ (0, 1),

u(1, t) = −1
2
+ ∂−α

t (cos(t)), ux(1, t) = 0, ∀t ∈ (0, T ).

(3.7)

Taking C = 0, g(x, t) = cos(t) + 1
2x
, d(t) = u(1, t) = −1

2
+ ∂−α

t (cos(t)) and
u0(x, t) = u(x, 0) = 1

2
ln(x)− 1

2
x+ ∂−α

t (1) then:
put m = 1 in eq(3.6), we get

u1(x, t) = χ1u0(x, t) + h∂−α
t [R1(u⃗0(x, t))],

= h∂−α
t

[
c
0∂

α
t u0 −

1

x

∂u0
∂x

− ∂2u0
∂x2

− cos(t)− 1

2x

]
,

= h∂−α
t (−cos(t) + 1), (3.8)
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then, put m = 2 in eq(2.6), we get

u2(x, t) = χ2u1(x, t) + h∂−α
t [R2(u⃗1(x, t))],

= u1(x, t) + h∂−α
t

[
c
0∂

α
t u1 −

1

x

∂u1
∂x

− ∂2u1
∂x2

]
,

= h∂−α
t (−cos(t) + 1)+

h∂−α
t

[
c
0∂

α
t (h∂

−α
t (−cos(t) + 1))− 1

x

∂

∂x
(h∂−α

t (−cos(t) + 1))− ∂2

∂x2
(h∂−α

t (−cos(t) + 1))

]
,

= h∂−α
t (−cos(t) + 1) + h∂−α

t [∂αt (h∂
−α
t (−cos(t) + 1))],

= h∂−α
t (−cos(t) + 1) + h2∂−α

t (−cos(t+ 1)),

= h(1 + h)∂−α
t (−cos(t) + 1) (3.9)

take m = 3, then
u3(x, t) = χ3u2(x, t) + h∂−α

t [R3(u⃗2(x, t))],

= u2(x, t) + h∂−α
t

[
c
0∂

α
t u2 −

1

x

∂u2
∂x

− ∂2u2
∂x2

]
= h(1 + h)∂−α

t (−cos(t) + 1) + h2(1 + h)∂−α
t ( c

0∂
α
t (∂

−α
t (−cos(t) + 1)))

= h(1 + h)∂−α
t (−cos(t) + 1) + h2(1 + h)∂−α

t (−cos(t) + 1)

= h(1 + h)2∂−α
t (−cos(t) + 1). (3.10)

u4(x, t) = χ4u3(x, t) + h∂−α
t [R4(u⃗3(x, t))]

= u3(x, t) + h∂−α
t

[
c
0∂

α
t u3 −

1

x

∂u3
∂x

− ∂2u3
∂x2

]
= h(1 + h)2∂−α

t (−cos(t) + 1) + h2(1 + h)2∂−α
t (−cos(t) + 1),

= h(1 + h)3∂−α
t (−cos(t) + 1). (3.11)

and so on, Thus, the series solution is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

=
1

2
ln(x)− 1

2
x+ ∂−α

t (1)+

h∂−α
t (−cos(t) + 1) + h(1 + h)∂−α

t (−cos(t) + 1) + h(1 + h)2∂−α
t (−cos(t) + 1) + ...,

=
1

2
ln(x)− 1

2
x+ ∂−α

t (1) + h∂−α
t (−cos(t) + 1)(1 + (1 + h) + (1 + h)2 + ...),
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=
1

2
ln(x)− 1

2
x+ ∂−α

t (1) + h∂−α
t (−cos(t) + 1)

∞∑
j=0

(1 + h)j,

=
1

2
x ln(x)− 1

2
x+ ∂−α

t (1) + h∂−α
t (−cos(t) + 1)

(
1− (1 + h)j+1

−h

)
. (3.12)

If the auxilary parametre h is selected so that |1 + h|< 1, then the last power series
converges and gives

u(x, t) =
1

2
ln(x)− 1

2
x+ ∂−α

t (1)− ∂−α
t (−cos(t) + 1),

=
1

2
ln(x)− 1

2
x+ ∂−α

t (cos(t)). (3.13)

Which is the exact solution for 0 < α < 1,
for α = 1 setting u0(x, t) = 1

2
ln(x)− 1

2
x+ ∂−1

t (1) = 1
2
ln(x)− 1

2
x+ t,

u1(x, t) = h∂−1
t (−cos(t) + 1) = h(∂−1

t (−cos(t)) + ∂−1
t (1)),

= h

(
−1

Γ(1)

∫ t

0

cos(τ)dτ + t

)
= h(−sin(t) + t). (3.14)

then:

u2(x, t) = h(1 + h)(−sin(t) + t). (3.15)

u3(x, t) = h(1 + h)2(−sin(t) + t). (3.16)

u4(x, t) = h(1 + h)3(−sin(t) + t). (3.17)

Hence the series solution becomes
u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

=
1

2
ln(x)− 1

2
x+ t+ h(−sin(t) + t) + h(1 + h)(−sin(t) + t) + h(1 + h)2(−sin(t) + t) + ...,

=
1

2
ln(x)− 1

2
x+ t+ h(−sin(t) + t)(1 + (1 + h) + (1 + h)2 + ...),

=
1

2
ln(x)− 1

2
x+ t+ h(−sin(t) + t)

∞∑
j=0

(1 + h)j,

=
1

2
ln(x)− 1

2
x+ sin(t), (3.18)
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provided that |1 + h|< 1.

Example 2. Consider the fractional homogeous initial/boundary value problem
c
0∂

α
t u− 1

x
∂u
∂x

− ∂2u
∂x2 + Cu = et + 1

x
, 0 < t < T, 0 < α < 1,

u(x, 0) = −x+ ln(x) + ∂−α
t (1), x ∈ (0, 1),

u(1, t) = −1 + ∂−α
t (et), ux(1, t) = 0, ∀t ∈ (0, T ).

(3.19)

Taking C = 0, g(x, t) = et + 1
x
, d(t) = u(1, t) = −1 + ∂−α

t (et) and
u0(x, t) = u(x, 0) = −x+ ln(x) + ∂−α

t (1)

then: put m = 1 in (eq)(2.3),we get

u1(x, t) = χ1u0(x, t) + h∂−α
t [R1(u⃗0(x, t))],

= h∂−α
t

[
c
0∂

α
t u0 −

1

x

∂u0
∂x

− ∂2u0
∂x2

− et − 1

x

]
,

= h∂−α
t (1− et), (3.20)

then:
u2(x, t) = χ2u1(x, t) + h∂−α

t [R2(u⃗1(x, t))],

= u1(x, t) + h∂−α
t

[
c
0∂

α
t u1 −

1

x

∂u1
∂x

− ∂2u1
∂x2

]
,

= h∂−α
t (1− et) + h∂−α

t

[
c
0∂

α
t (h∂

−α
t (1− et))− 1

x

c

0

∂

∂x
(h∂−α

t (1− et))− ∂2

∂x2
(h∂−α

t (1− et))

]
,

= h∂−α
t (1− et) + h∂−α

t h(1− et),

= ∂−α
t (1− et) + h2∂−α

t (1− et)

= h(1 + h)∂−α
t (1− et), (3.21)

take m = 3, then
u3 = χ3u2(x, t) + h∂−α

t [R3(u⃗2(x, t))],

= u2(x, t) + h∂−α
t

[
c
0∂

α
t u2 −

1

x

∂u2
∂x

− ∂2u2
∂x2

]
,

= h(1 + h)∂−α
t (1− et) + h∂−α

t [c0∂
α
t (h(1 + h)∂−α

t (1− et))],

= h(1 + h)∂−α
t (1− et) + h2(1 + h)∂−α

t (1− et),

= h(1 + h)2∂−α
t (1− et), (3.22)
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u4(x, t) = χ4u3(x, t) + h∂−α
t [R4(u⃗3(x, t))],

= u3(x, t) + h∂−α
t

[
c
0∂

α
t u3 −

1

x

∂u3
∂x

− ∂2u3
∂x2

]
,

= h(1 + h)2∂−α
t (1− et) + h2(1 + h)2∂−α

t ( c
0∂

α
t (∂

−α
t (1− et))),

= h(1 + h)2∂−α
t (1− et) + h2(1 + h)2∂−α

t (1− et),

= h(1 + h)2(1 + h)∂−α
t (1− et),

= h(1 + h)3∂−α
t (1− et), (3.23)

u5(x, t) = χ5u4(x, t) + h∂−α
t [R5(u⃗4(x, t))],

= u4(x, t) + h∂−α
t

[
c
0∂

α
t u4 −

1

x

∂u4
∂x

− ∂2u4
∂x2

]
,

= h(1 + h)3∂−α
t (1− et) + h2(1 + h)3∂−α

t (1− et),

= h(1 + h)4∂−α
t (1− et), (3.24)

and so on. Thus, the series solution is:
u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

= −x+ ln(x) + ∂−α
t (1) + h∂−α

t (1− et) + h(1 + h)∂−α
t (1− et) + h(1 + h)2∂−α

t (1− et) + ...,

= −x+ ln(x) + ∂−α
t (1) + h∂−α

t (1− et)(1 + (1 + h) + (1 + h)2 + ...),

= −x+ ln(x) + ∂−α
t (1) + h∂−α

t (1− et)
+∞∑
j=0

(1 + h)j,

= −x+ ln(x) + ∂−α
t (1) + h∂−α

t (1− et)

(
1− (1 + h)j+1

−h

)
. (3.25)

If the auxilary parametre h is selected so that |1 + h|< 1, then the last power series
converges, and gives

u(x, t) = −x+ ln(x) + ∂−α
t (1)− ∂−α

t (1− et),

= −x+ ln(x) + ∂−α
t (1)− ∂−α

t (1) + ∂−α
t (et) = −x+ ln(x) + ∂−α

t (et). (3.26)

wich is the exact solution for 0 < α < 1.
for α = 1 setting u0(x, t) = −x+ln(x)+∂−1

t (1) = −x+ln(x)+ 1
Γ(1)

∫ t

0

1dτ = −x+ln(x)+t.
then:

u1(x, t) = h∂−1
t (1− et) = h(∂−1

t (1)− ∂−1
t (et)),
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= h

(
t− 1

Γ(1)

∫ t

0

eτdτ

)
= h(t− et + 1). (3.27)

u2(x, t) = h(1 + h)∂−1
t (1− et) = h(1 + h)(t− et + 1).

u3(x, t) = h(1 + h)2(t− et + 1). (3.28)

u4(x, t) = h(1 + h)3(t− et + 1). (3.29)

Hence the series solution becomes
u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

= −x+ ln(x) + t+ h(t− et + 1) + h(1 + h)(t− et + 1) + h(1 + h)2(t+ et − 1) + ...,

= −x+ ln(x) + t+ h(t− et + 1)(1 + (1 + h) + (1 + h)2 + (1 + h)2) + ...,

= −x+ ln(x) + t+ h(t− et + 1)
∞∑
j=0

(1 + h)j,

= −x+ ln(x) + et − 1. (3.30)
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The tables

m x u(m) uexact |u(m) − uexact|

2 0.5 0.244991 0.230497 0.014494

4 0.23412 0.003623

6 0.231402 0.000905

Table 3.1: Estimating error of problem (3.7) in cases: m = 2,m = 4,m = 6, α = 0.2 and
t = 0.3.

m x u(m) uexact |u(m) − uexact|

2 0.2 -1.344 -1.32732 0.01668

4 -1.331 0.00368

6 -1.327 0.00032

Table 3.2: Estimating error of problem (3.19) in cases: m = 2,m = 4,m = 6, α = 0.4
and t = 0.1.

from the result recorded in table 1 and table 2, through the Wolfram Mathematica
program, using the homotopy analysis method, we note that whenever the larger the
m the smaller the error (the approximate solution is close to the exact solution), wich
proves to us the effectiveness of the method.
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Conclusion

In this work we are interested in the numerical resolution for diffusion equations of
fractional orders, via the homotopy analysis method, with integral type boundary condi-
tions. The numerical study was carried out, this was done with a test the efficiency to the
Homotopy analysis method for solving the fractional non-local mixed problem with the
Bessel operator, then we apply it to some test examples, to demonstrate the effectiveness
of this method in solving fractional partial differential equations, following the study on
the existene and uniqeness of the generalized solution, which was based on the method of
a priori estimation.
We plan to continue to employ the methods reviewed in this thesis for a different field of
equations in the future, and we also hope to develop additional computational techniques
with higher accuracy for solving differential equations with fractional derivatives than
those presented in this study.
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