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Notations

∥.∥ its norm.
dist the distance associated with this norm.
Ω the closure of Ω and ∂Ω its boundary.
B (x0, r) the open ball with center x0 and radius r:
u′ (t) the ordinary derivative with respect to t

⊕ direct sum.
⟨, ⟩ inner product. R the set of real numbers.
(M.d) metric space.
d (., .): distance function.
c ([a.b]) : the space of continuous functions.
Ω : a bounded open set.
U : a bounded open set.
U : the closure of U
C

k
(., .) : the space of functions with values in R, k times differentiable in Ω

deg : topological degree.
max : maximum.
B : the closed unit ball.
dim : dimension.
K : a cone.
(E, ∥∥) a Banach space.
A : operator.
T : operator.
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Introduction

The study of the existence of solutions of multipoint boundary value problems for linear
second-order ordinary differential equations was initiated by Il’in and Moiseev [14]. Then
Gupta [15] studied three-point boundary value problems for nonlinear second-order ordi-
nary differential equations. Since then, nonlinear second-order three-point boundary value
problems have also been studied by several authors. For more details see [16, 17] and the
references therein. However, all these papers are concerned with problems with three-point
boundary condition restrictions on the slope of the solutions and the solutions themselves,
for example,

u(0) = 0, αu(η) = u(1)

u(0) = βu(η), αu(η) = u(1)

u′(0) = 0, αu(η) = u(1)

and so forth.
In our work, we consider the existence of positive solutions to the equation

u′′ + a(t)f(u) = 0, t ∈ (0, 1) (1)

With the following three-point integral boundary condition,

u(0) = 0, α

∫ η

0

u(s)ds = u(1) (2)

where 0 < η < 1. Our aim is to give some results for existence of positive solutions
to the system of (1)-(2), in the case when 0 < α < 2/η2 and f is either superlinear or
sublinear.
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The organization of this dissertation is as follows: In Chapter 1, we provide a comprehen-
sive overview of fixed-point theorems and their fundamental concepts, including Banach’s
fixed-point theorem and principles of continuation. We also discuss topological degree the-
ory, covering Brouwer’s topological degree and the Leray-Schauder degree. Chapter 2 is
dedicated to Guo-Krasnosel’skii’s theorem, where we explore its theoretical underpinnings
and implications. In Chapter 3, we apply Guo-Krasnosel’skii’s theorem to specific prob-
lems, illustrating the practical utility of the theoretical results obtained. [2], Graef et Yang
[6] [7].
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Chapter 1

Reminders and fundamental concepts

This chapter’s goal is to study a few fixed-point theories. We will start with the
most basic and well-known of them all, the Banach point fixation theory for contracting
applications and the fixed-point theorem of Brouwer.

1.1 Fixed-point theorem

The fixed-point theorem is a fundamental principle in mathematics, which states that
a continuous function over a given domain may have a point that remains unchanged when
the function is repeatedly applied to itself. In other words, there exists an x in the domain
such that f(x) = x, where f is the function. This point is called the fixed point of the
function. [9]

1.1.1 Banach fixed point theorem

Banach’s fixed point theorem (also known as the contracting map theorem) is a simple
theorem to prove, which guarantees the existence of a unique fixed point for any contracting
application, it applies to complete spaces and it has many applications. These applications
include the existence theorems of solution for differential equations or integral equations
and the study of convergence of some numerical methods.

Definition 1 (fixed point)

Let F : X → X be a mapping. Any point x ∈ X such that F (x) = x is called a fixed
point.

4



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

Theorem 2 (Banach contraction principle) [3]
Let (M,d) be a complete metric space and F : M → M be a contraction mapping, meaning
that there exists 0 < k < 1 such that d(F (x), F (y)) ≤ kd(x, y) for all x, y ∈ M . Then F

has a fixed point u ∈ M , plus for all x in M we have :limn−→∞ F n(x) = u and:

d(F n, u) ≤ kn

1−K
d(x, F (x))

Proof. First, we prove the unicity .
Assuming the existence of x, y ∈ M with x = F (x); y = F (y)and d(x, y) = d(F (x), F (y)) ≤
kd(x, y). Since 0 < k < 1 hence, the last inequality implies that d(x, y) = 0 =⇒ x = y, so
∃!x ∈ M such that F (x) = x.
Now, for the existence. Let x ∈ M .
We’ll prove F n(x) is a Cauchy sequence where n ∈ {0, 1, ...}

d(F n(x), F n+1(x)) ≤ kd(F n−1(x), F n(x)) ≤ ....... ≤ knd(x, F (x))

if m > n ∈ {0, 1, ...}

d(F n(x), Fm(x)) ≤ d(F n(x), F n+1(x)) + d(F n+1(x), F n+2(x)) + ......+ (Fm−1(x), Fm(x))

≤ knd(x, Fx) + kn+1d(x, Fx) + ......+ km−1d(x, F (x))

≤ knd(x, F (x))
[
1 + k + k2 + .......

]
≤ kn

1− k
d(x, F (x))

for m > n ∈ {0, 1, ...} we have

d(F n(x), Fm(x)) ≤ kn

1− k
d(x, F (x)) (1.1)

So F n(x) is a Cauchy sequence in the complete space X, then there exists u ∈ X with

lim
n−→+∞

F n(x) = u

moreover by the continuity of F

u = lim
n−→∞

F n+1(x) = lim
n−→∞

F (F n) = F (u)

5



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

Thus, u is a fixed point of F .
ultimately, m −→ ∞ in 1.1, we obtain

d(F n(x), u) ≤ kn

1− k
d(x, F (x))

Example 1 Consider the application T : R → R defined by T (x) = x
2
+ 1

2
; then T is a

contraction 0 < k = 1
2
< 1; and admits as a fixed point x = 1 moreover lim{T n(x)}∞n=1 = 1

Remark : To convince oneself of the necessity of the phenomenon, consider the following
examples .

Example 2 T : [0, 1] → R , T (x) = x
2
+1 ,is contracting but it does not have a fixed point.

The issue is that T ([0, 1]) ⊊ [0, 1] and we cannot iterate : x0 = 0, x1 = 1 , x2 = 1.5, but x3

is not defined !

Example 3 T : R→ R ; T (x) = x + 1
1+ex

check |T (x)− T (y)| < |x− y| for all x ̸= y,but
does not have a fixed location. The issue is that T is not a contracting map, and for all
x0 ∈ R we obtain xn −→ +∞

1.1.2 Fixed point theorems for undefined contractions over the
whole metric space

Assuming (M,d) to be a complete metric space, it is evident that a function defined just
on a subset of M will not inevitably result in a fixed point. There has to be additional
requirements in order to guarantee this.

Theorem 3 Let K ⊂ M be a closed set and T : K −→ M A k-contraction. Assuming the
existence of x0 ∈ K and r > 0 such that

B(x0, r) ⊂ K et d(x0, T (x0)) < (1− k)r

then F has a unique fixed point x∗ ∈ B(x0, r).

6



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

In certain applications, there are cases where T is Lipschitzian without being a contraction,
while a certain power of T is a contraction see[1]. In this case we have the following theorem

Theorem 4 let (M,d) be a complete metric space T : M −→ M an application such that
d(Tm(x), Tm(y) ≤ kd(x, y),∀x, y ∈ M , for a certain m ≥ 1 and 0 ≤ k < 1. then T admits
a unique fixed point x∗ ∈ M

Proof. as Tm is a contraction, it follows from the theorem 3 that Tm has a fixed unique
point, thus x∗ = Tmx∗. so Tm(T (x∗)) = T (Tm(x∗)) = T (x∗), i.e. T (x∗) is a fixed point of
Tm . But Tm has a unique fixed point T (x∗) = x∗, so T has a unique fixed point (x∗), and
it is unique because every fixed point of T is also fixed point Tm

Example 4 Consider the metric space M given by :M = C[a; b] ;The space of functions
continues with real values defined on the interval [a; b]. M is a Banach space with the norm
∥u∥ = maxt∈[a,b] |u(t)|, u ∈ M . We define T : M → M by :

Tu(t) =

∫ t

a

u(s)ds

so,

∥T (u)− T (v)∥ ≤ (b− a)∥u− v∥,

so (b− a) is the Lipchitz constant for T . Additionally, we have :

T 2(u)(t) =

∫ t

a

(∫ s

a

u(τ)dτ

)
ds =

∫ t

a

(t− s)u(s)ds

and by induction

Tmu(t) =
1

(m− 1)!

∫ t

a

(t− s)m−1u(s)ds,

from that we get

∥Tm(u)− Tm(v)∥ ≤ (b− a)m

m!
∥u− v∥,

and so Tm would be a contraction if (b−a)m

m!
< 1

7



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

1.1.3 Principles of continuation

Another method of obtaining a fixed point’s existence for an infinite dimensional space is
obtained through a continuation procedure. This one consists of transforming our applica-
tion into a simpler one for which we are aware that a fixed point exists. It goes without
saying that this must meet certain requirements. [1].

Definition 5 Let X and Y be two topological spaces. Two continuous applications f, g :

X −→ Y are called homotopes when there exists a continuous application

H : X × [0, 1] −→ Y

such that H(x, 0) = f(x) and H(x, 1) = g(x). In other words, there exists a family of
applications of X in Y, namely x −→ H(x, t) for 0 ≤ t ≤ 1, which varies continuously
starting from f and arriving to g. We denote f ≃ g.

Example 5 Let X = Y = Rn, we consider c : Rn → Rn constant application c(x) = 0,
and i : Rn → Rn application i(x) = x. show that c et i are homotopic. just take :

H : Rn × [0, 1] → Rn

H(x, t) = tx.

so H(x; 0) = 0 = c(x) and H(x, 1) = x:

Example 6 Let X = Y = Rn − {0} ; we consider this time p(x) = x/∥x∥ ; and i(x) = x

again, we see that p and i are homotopice by taking

H : (Rn − {0})× [0, 1] → Rn − {0}

H(x, t) = (1− t)x+ t
x

∥x∥

Definition 6 Let f : X −→ Y be a continuous application. We say that f is a homotopy
equivalence when there exists g : Y −→ X such that g ◦ f ≃ idX and f ◦ g ≃ idy. We then
say that X and Y have the same type of homotopy, or sometimes that they are homotopy
equivalent, and we note X ≃ Y

8



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

Example 7 Let X = Rn − {0} and Y = Sn−1, we then take f : X → Y defined by
f(x) = x/∥x∥ ; et g : Y → X the inclusion. Then f ◦ g = idy , and the example 6 to show
that g ◦ f ≃ idx. so Rn − {0} has the same type of homotopy as the sphere Sn−1.

Let (X,d) be a complete space, and U is an open subset of X.

Definition 7 Let F : U −→ X and G : U −→ two contractions, we say that F and G are
homotopic if there exists H : U × [0, 1] −→ X satisfying the following properties:

(a) H(., 0) = G and H(., 1) = F .

(b) H(x, t) ̸= x for all x ∈ ∂U and t ∈ [0, 1]

(c) There exists α ∈ [0, 1) such that d(H(x, t);H(y, t) ≤ αd(x, y) for all x, y ∈ U , and
t ∈ [0, 1].

(d) There exists M ≥ 0 such that d(H(x, t), H(x, s) ≤ M |t − s| for all x ∈ U ,and t, s ∈
[0, 1].

Theorem 8 Let F : U −→ X and G : U −→ X be two homotopically contractive applica-
tions, and G has a fixed point in U. Then, F has a fixed point in U.

Proof. Let’s consider Q = {λ ∈ [0, 1] : x = H(x, λ) , for certain x ∈ U}, and H a homo-
topy between F and G as described in the definition (5). Note that Q is not empty because
G has a fixed point and that 0 ∈ Q. We’ll prove that Q is both open and closed in [0,1],
and as a result we get that Q = [0, 1], so F has a fixed point. First, let’s prove that Q is a
closed in [0,1]. In fact, Let {λn}n∈N be a sequence in Q such that limn−→∞ λn = λ, so, we
must show that λ ∈ Q. as λn ∈ Q for n = 1, 2...., there exists xn ∈ U o xn = H(xn, λn).
also for n,m ∈ {1, 2, ....} we have

d(xn, xm) = d(H(xn, λn)H(xm, λm)

≤ d(H(xn, λn)H(xm, λm)) + d(H(xn, λm), H(xm, λm)

≤ M |λn − λm|+αd(xn, xm)

9



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

thus, we have
d(xn, xm) ≤

M

1− α
|λn − λm|

which shows that {xn} is a cauchy sequence in X (because {λn} is too) and since it is
complete, there exists x ∈ U such that limx−→∞ xn = x. by the continuity of H,

x = lim
n−→∞

xn = limn−→∞H(xn, λn) = H(x, λ)

thus, λ ∈ Q and Q is closed in [0, 1].

let us show that Q is an open set of [0, 1]. Let λ0 ∈ Q, so, there exists x0 ∈ U with
x0 = H(x0, λ0). Since, by hypothesis, x0 ∈ U , we can find r > 0 such that the open
ball B(x0, r) = {x ∈ X : (x, x0) < r} ⊆ U . let’s choose ϵ > 0 such that ϵ ≤ (1−α)r

M
where

r ≤ dist(x0, ∂U), and dist((x0, ∂U)) = inf{(x0, x) : x ∈ ∂U}. Let’s fix λ ∈ (λ0 − ϵ, λ0 + ϵ).
So , for x0 ∈ B(x0, r)

d(x0, H(x, λ)) ≤ d(H(x0, λ0)H(x, λ0)) + d(H(x, λ0), H(x, λ)

≤ αd(x0, x) +M |λ, λ0|

≤ αr + (1− α)r = r

then for all λ ∈ (λ0 − ϵ, λ0 + ϵ) fix

H(., λ) : B(x0, r) −→ B(x0, r)

by the theorem (2), (3), we deduce that H(., λ) has a fixed point in U. Then, λ ∈ Q for all
λ ∈ (λ0 − ϵ, λ0 + ϵ).and therefore Q is open in [0, 1] .

From the previous term, we deduce the following result.

Theorem 9 (Nonlinear Leray-Schauder alternative)[1]. Let U ⊂ E an open set of a Ba-
nach space E such that 0 ∈ U , and let F : U −→ E a contraction such that F (U) is bounded.
Then one of the following two statements is satisfied:

(1) F has a fixed point in (U).

(2) there exists λ ∈ (0, 1) and x ∈ ∂U such that x = λF (x).

10



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

Proof. Suppose that (2) is not verified and that F has no fixed point on ∂U that is to say
x ̸= λF (x) for all x ∈ ∂U and λ ∈ [0, 1].

Let H : U × [0, 1] −→ E given by H(x, λ) = λF (x), and let G be the null application.
Note that G has a fixed point in U (such that (0 = G(0)) and that F and G are two
homotopically contractive applications. by the theorem (8) F also has a fixed point.

1.2 Topological degree

In this section, we provide a brief overview of the notion of topological degree, whether
in finite or infinite dimensions. The degree, deg(f,Ω, y) of f in Ω with respect to y gives
information about the number of solutions of the equation f(x) = y in an open set Ω ⊂ Rn

is continuous, y /∈ f(∂Ω), and X is a topological space, mostly metric. For more detailed
information, see [4], [5], [10], [11].

1.2.1 Brouwer’s topological degree

Consider a bounded open set Ω in Rn with boundary ∂Ω and closure Ω. Ck
(Ω,Rn) denotes

the space of k-times differentiable functions in Ω that are continuous on Ω. This space is
equipped with its usual topology.

Let x0 ∈ Ω, if f is differentiable at x0, we denote by Jf (x0) = det f ′(x0) the Jacobian
of f at x0.

Definition 10 Let f be a C1 function on Ω. Let Jf (x0) be the Jacobian of f at a point x0

in Ω. The point x0 is called a critical point if Jf (x0) = 0. Otherwise, x0 is called a regular
point.

We denote by Sf (Ω) the set of critical points, i.e.,

Sf (Ω) = {x ∈ Ω, Jf (x) = 0}

Definition 11 An element y ∈ Rn is called a regular value of f if f−1(y) ∩ Sf (Ω) = ∅.
Otherwise, y is called a singular value.

11
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Definition 12 Let f ∈ C
1\f(∂Ω) be a regular value of f . The topological degree of f in Ω

with respect to y is the integer

deg(f,Ω, y) =
∑

x∈f−1(y)

SgnJf (x)

where SgnJf (x) denotes the sign of Jf (x), defined by sgn(t) = 1 if t > 0 and sgn(t) = −1

if t < 0

Remark 13 1) By convention, if f−1(y) = ∅, then deg(f,Ω, y) = 0.

2) f−1(y) contains a finite number of elements.

Example 8 Let f : R→ R, x → x2 then deg(f, ]0, 2[, 1) = 1.

Example 9 Let 0 < ϵ < 1 and consider the function f(x, y) = (x2 − y2 − ϵ, 2xy), and
f−1(0, 0) = {(x, y) ∈ R2; f(x, y) = (0, 0)} then, we have

x2 − y2 − ϵ = 0 (1.2)

and
2xy = 0 (1.3)

According to (1.3), we find x = 0 or y = 0.
If x = 0 then: −y2 − ϵ = 0 =⇒ y2 = −ϵ, which is a contradiction.
If y = 0 then: x2 − ϵ = 0 ⇐⇒ x =

√
ϵ or x = −

√
ϵ, thus

f−1(0, 0) = {(−
√
ϵ, 0); (

√
ϵ, 0)}

If Ω = {(x, y) ∈ R2 : x2 + y2 < 1} then f−1(0) ∩ ∂Ω = ∅. Moreover, as

Jf (x, y) =

(
2x −2y
2y 2x

)
and det(Jf ((x, y))) = 4(x2 + y2) and since deg(f,Ω, y) =

∑
x∈f−1(y) SgnJf (x) then

SgndetJf (
√
ϵ, 0) = Sgn4ϵ = 1

SgndetJf (−
√
ϵ, 0) = Sgn4ϵ = 1

=⇒ deg(f,Ω, 0) = 1 + 1 = 2

12



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

Remark 14 In the case where f−1(y) ∩ Sf (Ω) ̸= 0, we have the following lemma.

Lemme 1 (Sard′s Lemma) Let f ∈ C1(Ω,Rn). Then the set f(Sf ) of critical values of
f has measure zero.

We will now see that we can extend the notion of degree to the case where the function f

is continuous

Definition 15 Let Ω ⊂ Rn be a bounded open set, f ∈ C(Ω,Rn), and y ∈ Rn such that
y /∈ f(∂Ω). We define the topological degree of f in Ω with respect to y as

deg(f,Ω, y) = lim
n→∞

deg(fn,Ω, y)

where {fn}n∈N∗ is a sequence of functions C1(Ω,Rn) that converges uniformly to f in Ω.

1.2.2 Topological degree of Leray-Schauder

In the previous section, we saw that in finite dimensions, C(Ω̄, X) is a suitable class of
functions for which there exists a unique degree function, the Brouwer degree, satisfying
properties 1, 2, and 3 of the theorem. Unfortunately, in infinite dimensions, C(Ω̄, X) doesn’t
have it. Indeed, an example by Leray shows that we need to restrict the class of functions
for which there is existence and uniqueness of a Leray-Schauder degree function, to a set
strictly contained in C(Ω̄, X).

Definition 16 [10] Let X be a Banach space and Ω a closed subset of X. If T : Ω → X is
a continuous operator, we say that T is compact if for every bounded subset B of Ω, T (B)

is relatively compact in X.

Definition 17 Let X be a Banach space and Ω a subset of X. We say that the mapping
T : Ω → X has finite rank if dim(Im(T )) < ∞, in other words, if Im(T ) is a finite-
dimensional subspace of X.

Lemme 2 Let X be a Banach space, Ω ⊂ X an open bounded set, and T : Ω̄ → X a
compact mapping. Then, for any ϵ > 0, there exists a finite-dimensional space denoted F

and a continuous mapping Tϵ : Ω̄ → F such that

∥Tϵx− Tx∥ < ϵ for all x ∈ Ω̄.

13



CHAPTER 1. REMINDERS AND FUNDAMENTAL CONCEPTS

Definition 18 Let X be a Banach space, Ω ⊂ X an open bounded set, and T : Ω̄ → X

a compact mapping. Suppose now that 0 /∈ (I − T )(∂Ω). There exists ϵ0 > 0 such that
for ϵ ∈ (0, ϵ0), the Brouwer degree deg(I − Tϵ,Ω ∩ Fϵ, 0) is well-defined as in Lemma 2.
Therefore, we define the Leray-Schauder degree by

deg(I − T,Ω, 0) = deg(I − Tϵ,Ω ∩ Fϵ, 0).

Remark 19 This definition depends only on T and Ω. If y ∈ X such that y /∈ (I−T )(∂Ω),
then the degree of I − T in Ω with respect to y is defined as

deg(I − T,Ω, y) = deg(I − T − y,Ω, 0).

Theorem 20 [4] Let X be a Banach space and
A =

{
(I − T,Ω, 0) ,Ω a bounded open subset of X,T : Ω → X compact, 0 /∈ (I − T ) (∂Ω)

}
then, there exists a unique application deg(f,Ω, y) : A → Z called the Leray-Schauder

topological degree such that :

1. (Normality) If 0 ∈ Ω then deg(I,Ω, 0) = 1;

2. (Solvability) If deg(I − T,Ω, 0) ̸= 0, then there exists x ∈ Ω such that (I − T )x = 0;

3. (Invariance by homotopy) Let H : [0, 1] × Ω be a compact homotopy, such that 0 /∈
(I −H(t, .))(∂Ω). Then deg(I −H(t, .),Ω, 0) does not depend on t ∈ [0, 1];

4. (Additivity) Let Ω1 and Ω2 be two disjoint open subsets of Ω and

0 /∈ (I − T )(Ω̄ \ (Ω1 ∪ Ω2)).

Then,
deg(I − T,Ω, 0) = deg(I − T,Ω1, 0) + deg(I − T,Ω2, 0).

The Leray-Schauder degree preserves all basic properties of the Brouwer degree. As
a consequence of this notion of degree, we will prove some topological fixed point
theorems, in particular the Leray-Schauder nonlinear alternative.

Theorem 21 (Brouwer) Let B̄ be the closed unit ball of Rn and f : B̄ → B̄ continuous.
Then f has a fixed point: there exists x ∈ B̄ such that f(x) = x.

14
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Proof. If there exists x ∈ ∂B, then there is nothing to prove. Otherwise, consider the
function h(t, x) = x − tf(x). We have that h is continuous, h(0, x) = x, and h(1, x) =

x − f(x). Moreover, if we assume that h(t, x0) = 0 for some x0 ∈ ∂B, then we obtain
x0 = tf(x0), which implies, since 0 ⩽ t ⩽ 1, that f(x0) ∈ ∂B, contradiction. Since h is a
suitable homotopy between I − f and I, then

deg(I − f,Ω, 0) = deg(I,Ω, 0) = 1.

In conclusion, there exists an x ∈ B, such that x− tf(x) = 0, i.e., f(x) = x.

Theorem 22 (Schauder) Let B be the closed unit ball of a Banach space E and f : B → B

compact. Then f has a fixed point: there exists x ∈ B such that f(x) = x.

Proof. Let h(t, x) = tf(x) be a compact function on [0, 1]× B. If, for some t ∈ [0, 1] and
x ∈ ∂B, we have x− h(t, x) = 0, then tf(x) = x; since |x| = 1 and |f(x)| ≤ 1, this implies
t = 1 and x = f(x), thus a fixed point on ∂B, a situation that we have excluded. Therefore,
we can apply the properties of normality and invariance by homotopy of the degree, which
gives

1 = deg(I, B, 0) = deg(I − f,B, 0)

since h(0, .) = 0 and h(1, 0) = f , hence the existence of a fixed point.

Theorem 23 [4] (Leray-Schauder Nonlinear Alternative). Let Ω ⊂ X be a non-empty
bounded open subset of a Banach space X such that 0 ∈ Ω, and let T : Ω → X be a compact
operator. Then one of the following statements holds:

(1) T has a fixed point in Ω;

(2) there exist λ > 1 and x ∈ ∂Ω such that Tx = λx.

Proof. If (2) is true, then there is nothing to prove. Otherwise, we define the homotopy

H(t, x) = tTx for t ∈ [0, 1].

Thus defined, H(t, x) is compact, H(0, x) = 0 and H(1, x) = Tx. Suppose that H(t, x0) =

x0 for some t ∈ [0, 1] and x0 ∈ ∂Ω. Then we have tTx0 = x0. If t = 0 or t = 1 we have (1);
Otherwise

Tx0 =
1

t
x0 for some t ∈ (0, 1),

15
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and then we have (2). Otherwise, we have deg(I − T,Ω, 0) = deg(I,Ω, 0) = 1 and then T

has a fixed point in Ω.

Theorem 24 (Brouwer) Let M be a convex, compact, non-empty subset of a finite-
dimensional normed space (X, ∥.∥) and let A : M → M be a continuous function, then
A has a fixed point.

Theorem 25 (Schauder) Let M be a bounded, closed, convex, non-empty subset of a
Banach space X and let A : M → M be a compact function, then A has a fixed point.

Theorem 26 (Schaeffer) Let X be a Banach space and let A : X → X be a compact
operator, then

i. Either the equation x = λAx has a solution for λ = 1,

ii. Or, the set ϵ = {x ∈ X, x = λAx, λ ∈ (0, 1)} is unbounded.

Theorem 27 (Krasnoselskii) Let M be a closed and non-empty convex subset of a Ba-
nach space (X, ∥.∥). Suppose that A and B are two mappings from M to X such that

i. Ax+By ∈ M,∀x, y ∈ M.

ii. A is continuous and AM is contained in a compact set.

iii. B is a contraction with constant α < 1.

Then, there exists x ∈ M, such that Ax+Bx = x.

Note that if A = 0, the theorem reduces to the Banach fixed-point theorem. If B = 0,

then the theorem is nothing but the Schauder fixed-point theorem.

Theorem 28 [8]Krasnoselskii’s Compression-Expansion Theorem for a Cone Let
Ω1 and Ω2 be two bounded open sets in a Banach space E such that 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and
K a cone of E. Let A : K ∩ (Ω̄2 \Ω1) → K be a completely continuous operator, such that
one of the following conditions is satisfied,

(i) ∥Au∥ ⩽ ∥u∥, u ∈ K ∩ ∂Ω1, and ∥Au∥ ⩾ ∥u∥, u ∈ K ∩ ∂Ω2.

16
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(ii) ∥Au∥ ⩾ ∥u∥, u ∈ K ∩ ∂Ω1, ∥Au∥ ⩽ ∥u∥, u ∈ K ∩ ∂Ω2.

Then the operator A has at least one fixed point in K ∩ (Ω̄2 \ Ω1).

. Now let’s recall the Ascoli-Arzela theorem and the dominated convergence theorem of
Lebesgue

Theorem 29 (Ascoli-Arzela) Consider X = C([a, b]) equipped with the norm ∥u∥ =

max
a⩽t⩽b

|u(t)|, where −∞ < a < b < +∞. If M is a subset of X such that

i. M is bounded, i.e., ∥u∥ ⩽ r, ∀u ∈ M and r > 0 is a fixed number,

ii. M is equicontinuous, i.e.,

∀ϵ > 0,∃δ > 0, such that |t1 − t2| < δ and ∀u ∈ M ⇒ |u(t1)− u(t2)| < ϵ.

Then, M is relatively compact.

Theorem 30 Let Ω be an open set in Rn and (fn)n∈N a sequence in Lp(Ω) such that

i. fn(x) → f(x) almost everywhere on Ω.

ii. |fn(x)| ⩽ g(x) almost everywhere on Ω, ∀n with g ∈ Lp(Ω). Then,

f ∈ Lp(Ω) and ∥fn − f∥Lp → 0.

17



Chapter 2

Guo-Krasnoselskii’s theorem

Definition 31 (a Cone)
Let E be a Banach space. A subset K ⊂ E is called a cone if the following conditions

are satisfied:

(i) K is convex: for all x, y ∈ K and for all 0 ≤ λ ≤ 1, we have λx+ (1− λ)y ∈ K.

(ii) K is closed: K contains all its limits of convergent sequences.

(iii) For all x ∈ K and for all α ≥ 0, we have αx ∈ K.

(iv) K ∩ (−K) = {0}: If x ∈ K and −x ∈ K, then x = 0.

In other words, a cone is a convex and closed subset of a Banach space that is stable under
multiplication by positive scalars and does not contain any nontrivial linear subspaces.

Definition 32 (Completely Continuous Operator)
Let E be a Banach space. An operator A : E → E is called completely continuous if the

following two conditions are satisfied:

(i) A is continuous, that is, for any sequence (xn) in E such that xn → x in E, we have
Axn → Ax.

(ii) A maps bounded sets in E to relatively compact sets, that is, for any bounded set
B ⊂ E, the image A(B) is relatively compact in E (i.e., the closure of A(B) is
compact).

18
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In other words, a completely continuous operator is a linear and continuous operator that
transforms bounded sets into sets whose closures are compact.

Theorem 33 Let Ω1 and Ω2 be two bounded open sets in a Banach space E such that
0 ∈ Ω1, Ω1 ⊂ Ω2, and let K be a cone in E. Let A : K ∩ (Ω2 \ Ω1) → K be a completely
continuous operator such that one of the following conditions is satisfied:

(i) ∥Au∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω1, and ∥Au∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω2,

(ii) ∥Au∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω1, and ∥Au∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω2.

Then the operator A has at least one fixed point in K ∩ (Ω2 \ Ω1).

Proof.

We will use the Krasnoselskii fixed point theorem.
Step 1: Construction of the Homotopy

Define a homotopy H : K ∩ (Ω2 \ Ω1)× [0, 1] → K by:

H(u, t) = (1− t)u+ tAu.

We will show that H(u, t) ̸= 0 for all u ∈ K ∩ (Ω2 \ Ω1) and for all t ∈ [0, 1].
Step 2: Boundary Properties

• If u ∈ K ∩ ∂Ω1, then by (i) ∥Au∥ ≤ ∥u∥ and thus:

∥H(u, t)∥ = ∥(1− t)u+ tAu∥ ≤ (1− t)∥u∥+ t∥Au∥ ≤ ∥u∥.

By the definition of ∂Ω1, ∥u∥ is constant for u ∈ ∂Ω1. Thus, ∥H(u, t)∥ < ∥u∥ or
H(u, t) ̸= 0.

• If u ∈ K ∩ ∂Ω2, then by (i) ∥Au∥ ≥ ∥u∥ and thus:

∥H(u, t)∥ = ∥(1− t)u+ tAu∥ ≥ (1− t)∥u∥+ t∥Au∥ ≥ ∥u∥.

By the definition of ∂Ω2, ∥u∥ is constant for u ∈ ∂Ω2. Thus, ∥H(u, t)∥ > ∥u∥ or
H(u, t) ̸= 0.
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Step 3: Conclusion by Homotopy

Since H(u, t) ̸= 0 on the boundaries ∂Ω1 and ∂Ω2, we can apply the Krasnoselskii fixed
point theorem which guarantees that there exists a fixed point u ∈ K ∩ (Ω2 \Ω1) such that
Au = u.
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Chapter 3

Application to Guo-Krasnoselskii’s
theorem

In this chapter, we consider the existence of positive solutions to the equation [13]

u′′ + a(t)f(u) = 0, t ∈ (0, 1) (3.1)

with the three-point integral boundary condition

u(0) = 0, α

∫ η

0

u(s)ds = u(1) (3.2)

where 0 < η < 1. We note that the new three-point boundary conditions are related to
the area under the curve of solutions u(t) from t = 0 to t = η.

The aim of this chapter is to give some results for existence of positive solutions to 3.1,
3.2, assuming that 0 < α < 2/η2 and f is either superlinear or sublinear. Set

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u

Then f0 = 0 and f∞ = ∞ correspond to the superlinear case, and f0 = ∞ and f∞ = 0

correspond to the sublinear case. By the positive solution of 3.1-3.2 we mean that a function
u(t) is positive on 0 < t < 1 and satisfies the problem 3.1-3.2.

Throughout this chapter, we suppose the following conditions hold:

• (H1): f ∈ C([0,∞), [0,∞));

• (H2): a ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [η, 1] such that a(t0) > 0.
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The proof of the main theorem is based upon an application of Krasnoselskii’s fixed
point theorem in a cone which we proved in the previous chapter:

Theorem 34 Let E be a Banach space, and let K ⊂ E be a cone. Assume Ω1,Ω2 are open
subsets of E with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let ...

A : K ∩
(
Ω̄1\Ω2

)
−→ K (3.3)

be a completely continuous operator such that
(i) ∥Au∥ ⩽ ∥u∥, u ∈ K ∩ ∂Ω1, and ∥Au∥ ⩾ ∥u∥, u ∈ K ∩ ∂Ω2; or
(ii) ∥Au∥ ⩾ ∥u∥, u ∈ K ∩∂Ω1, and ∥Au∥ ⩾ ∥u∥, u ∈ K ∩∂Ω2. Then A has a fixed point

in K ∩
(
Ω̄2\Ω1

)
.

3.1 Preliminaries

In this section we state and prove a number of lemmas.

Lemme 3 Let αη2 ̸= 2. Then for y ∈ C[0, 1], the problem

u′′ + y(t) = 0, t ∈ (0, 1) (3.4)

u(0) = 0, α

∫ η

0

u(s)ds = u(1) (3.5)

has a unique solution

u(t) =
2t

2− αη2

∫ 1

0

(1− s)y(s)ds− αt

2− αη2

∫ η

0

(η − s)2y(s)ds−
∫ t

0

(t− s)y(s)ds

Proof.

From 3.4, we have
u′′(t) = −y(t)

For t ∈ [0, 1), integration from 0 to t, gives

u′(t) = u′(0)−
∫ t

0

y(s)ds (3.6)

For t ∈ [0, 1], integration from 0 to t yields that

u(t) = u′(0)t−
∫ t

0

(∫ x

0

y(s)ds

)
dx (3.7)
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that is,

u(t) = u′(0)t−
∫ t

0

(t− s)y(s)ds (3.8)

So,

u(1) = u′(0)−
∫ 1

0

(1− s)y(s)ds (3.9)

Integrating 3.8 from 0 to η, where η ∈ (0, 1), we have∫ η

0

u(s)ds = u′(0)
η2

2
−
∫ η

0

(∫ x

0

(x− s)y(s)ds

)
dx (3.10)

= u′(0)
η2

2
− 1

2

∫ η

0

(η − s)2y(s)ds

From 3.5, we obtain that

u′(0)−
∫ 1

0

(1− s)y(s)ds = u′(0)
αη2

2
− α

2

∫ η

0

(η − s)2y(s)ds (3.11)

Thus,

u′(0) =
2

2− αη2

∫ 1

0

(1− s)y(s)ds− α

2− αη2

∫ η

0

(η − s)2y(s)ds (3.12)

Therefore, 3.4, 3.5 has a unique solution

u(t) =
2t

2− αη2

∫ 1

0

(1− s)y(s)ds− αt

2− αη2

∫ η

0

(η − s)2y(s)ds−
∫ t

0

(t− s)y(s)ds (3.13)

Lemme 4 Let 0 < α < 2
η2

. If y ∈ C(0, 1) and y(t) ⩾ 0 on (0, 1), then the unique solution
u of 3.4, 3.5 satisfies u ⩾ 0 for t ∈ [0, 1].

Proof. If u(1) ⩾ 0, then, by the concavity of u and the fact that u(0) = 0, we have u(t) ⩾ 0

for t ∈ [0, 1].
Moreover, since the graph of u(t) is concave down on (0, 1), we have∫ η

0

u(s)ds ⩾
1

2
ηu(η) (3.14)

where 1
2
ηu(η) is the area of the triangle under the curve u(t) from t = 0 to t = η for

η ∈ (0, 1).
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Assume that u(1) < 0. From 3.5, we have∫ η

0

u(s)ds < 0 (3.15)

By concavity of u and
∫ η

0
u(s)ds < 0, it implies that u(η) < 0.

Hence,

u(1) = α

∫ η

0

u(s)ds ⩾
αη

2
u(η) >

u(η)

η
(3.16)

which contradicts the concavity of u.

Lemme 5 Let αη2 > 2. If y ∈ C(0, 1) and y(t) ⩾ 0 for t ∈ (0, 1), then 3.4, 3.5 has no
positive solution.

Proof. Assume 3.4, 3.5 has a positive solution u.
If u(1) > 0, then

∫ η

0
u(s)ds > 0, it implies that u(η) > 0 and

u(1)

1
= α

∫ η

0

u(s)ds ⩾
αη

2
u(η) =

αη2

2

u(η)

η
>

u(η)

η
(3.17)

which contradicts the concavity of u.
If u(1) = 0, then

∫ η

0
u(s)ds = 0, this means u(t) ≡ 0 for all t ∈ [0, η]. If there exists

τ ∈ (η, 1) such that u(τ) > 0, then u(0) = u(η) < u(τ), which contradicts the concavity of
u. Therefore, no positive solutions exist.

In the rest of the chapter, we assume that 0 < αη2 < 2. Moreover, we will work in the
Banach space C[0, 1], and only the sup norm is used.

Lemme 6 Let 0 < α < 2
η2

. If y ∈ C[0, 1] and y ⩾ 0, then the unique solution u of the
problem 3.4, 3.5 satisfies

inf
t∈[η,1]

u(t) ⩾ r∥u∥ (3.18)

where
r := min

{
η,

αη2

2
,
αη(1− η)

2− αη2

}
(3.19)

Proof. Set u(τ) = ∥u∥. We divide the proof into three cases.
Case 1. If η ⩽ τ ⩽ 1 and inft∈[η,1] u(t) = u(η), then the concavity of u implies that

u(η)

η
⩾

u(τ)

τ
⩾ u(τ) (3.20)
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Thus,
inf

t∈[η,1]
u(t) ⩾ η∥u∥ (3.21)

Case 2. If η ⩽ τ ⩽ 1 and inft∈[η,1] u(t) = u(1), then 3.5, 3.14, and the concavity of u
imply

u(1) = α

∫ η

0

u(s)ds ⩾
αη2

2

(
u(η)

η

)
⩾

αη2

2

u(τ)

τ
⩾

αη2

2
u(τ) (3.22)

Therefore,

inf
t∈[η,1]

u(t) ⩾
αη2

2
∥u∥ (3.23)

Case 3. If τ ⩽ η < 1, then inft∈[η,1] u(t) = u(1). Using the concavity of u and 3.5, 3.14,
we have

u(σ) ⩽ u(1) +
u(1)− u(η)

1− η
(0− 1)

⩽ u(1)

(
1− 1− 2/αη

1− η

)
(3.24)

= u(1)
2− αη2

αη(1− η)

This implies that

inf
t∈[η,1]

u(t) ⩾
αη(1− η)

2− αη2
∥u∥ (3.25)

This completes the proof.

3.2 Main Results

Now we are in the position to establish the main result.

Theorem 35 Assume (H1) and (H2) hold. Then the problem 3.1- 3.2 has at least one
positive solution in the case

(i) f0 = 0 and f∞ = ∞ (superlinear), or

(ii) f0 = ∞ and f∞ = 0 (sublinear).
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Proof. It is known that 0 < α < 2
η2

. From 3, u is a solution to the boundary value problem
3.1- 3.2 if and only if u is a fixed point of operator A, where A is defined by

Au(t) =
2t

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds

− αt

2− αη2

∫ η

0

(η − s)2a(s)f(u(s)) ds

−
∫ t

0

(t− s)a(s)f(u(s)) ds.

(3.26)

Denote that
K =

{
u | u ∈ C[0, 1], u ⩾ 0, inf

η⩽t⩽1
u(t) ⩾ γ∥u∥

}
(3.27)

where γ is defined in 3.19.
It is obvious that K is a cone in C[0, 1]. Moreover, by 4 and 6, AK ⊂ K. It is also easy

to check that A : K → K is completely continuous.
Superlinear Case (f0 = 0 and f∞ = ∞).
Since f0 = 0, we may choose H1 > 0 so that f(u) ⩽ ϵu, for 0 < u ⩽ H1, where ϵ > 0

satisfies
2ϵ

2− αη2

∫ 1

0

(1− s)a(s) ds ⩽ 1 (3.28)

Thus, if we let
Ω1 = {u ∈ C[0, 1] | ∥u∥ < H1} (3.29)

then, for u ∈ K ∩ ∂Ω1, we get

Au(t) ⩽
2t

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds

⩽
2tϵ

2− αη2

∫ 1

0

(1− s)a(s)u(s) ds

⩽
2ϵ

2− αη2

∫ 1

0

(1− s)a(s) ds∥u∥

⩽ ∥u∥

(3.30)

Thus ∥Au∥ ⩽ ∥u∥ for u ∈ K ∩ ∂Ω1.
Further, since f∞ = ∞, there exists Ĥ2 > 0 such that f(u) ⩾ ρu, for u ⩾ Ĥ2, where

ρ > 0 is chosen so that
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ργ
2η

2− αη2

∫ 1

η

(1− s)a(s) ds ⩾ 1

Let H2 = max
{
2H1, Ĥ2/γ

}
and Ω2 = {u ∈ C[0, 1] | ∥u∥ < H2}. Then u ∈ K ∩ ∂Ω2

implies that

inf
η⩽t⩽1

u(t) ⩾ γ∥u∥ = γH2 ⩾ Ĥ2

and so

Au(η) =
2η

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds− αη

2− αη2

∫ η

0

(η − s)2a(s)f(u(s)) ds

−
∫ η

0

(η − s)a(s)f(u(s)) ds

=
2η

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds− αη

2− αη2

∫ η

0

(
η2 − 2ηs+ s2

)
a(s)f(u(s)) ds

− 1

2− αη2

∫ η

0

(
2− αη2

)
(η − s)a(s)f(u(s)) ds

=
2η

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds+
αη2

2− αη2

∫ η

0

sa(s)f(u(s)) ds

− αη

2− αη2

∫ η

0

s2a(s)f(u(s)) ds− 2η

2− αη2

∫ η

0

a(s)f(u(s)) ds (3.8)

+
2

2− αη2

∫ η

0

sa(s)f(u(s)) ds

=
2η

2− αη2

∫ 1

η

(1− s)a(s)f(u(s)) ds+
2(1− η)

2− αη2

∫ η

0

sa(s)f(u(s)) ds

+
αη

2− αη2

∫ η

0

s(η − s)a(s)f(u(s)) ds

⩾
2η

2− αη2

∫ 1

η

(1− s)a(s)f(u(s)) ds

⩾
2ηρ

2− αη2

∫ 1

η

(1− s)a(s)u(s) ds

⩾
2ηργ

2− αη2

∫ 1

η

(1− s)a(s) ds∥u∥

⩾∥u∥
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Hence, ∥Au∥ ⩾ ∥u∥, u ∈ K ∩ ∂Ω2. By the first part of 33, A has a fixed point in
K ∩

(
Ω̄2\Ω1

)
such that H1 ⩽ ∥u∥ ⩽ H2.

Sublinear Case (f0 = ∞ and f∞ = 0).
Since f0 = ∞, choose H3 > 0 such that f(u) ⩾ Mu for 0 < u ⩽ H3, where M > 0

satisfies

2ηγM

2− αη2

∫ 1

η

(1− s)a(s) ds ⩾ 1

Let

Ω3 = {u ∈ C[0, 1] | ∥u∥ < H3}

then for u ∈ K ∩ ∂Ω3, we get

Au(η) =
2η

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds− αη

2− αη2

∫ η

0

(η − s)2a(s)f(u(s)) ds

−
∫ η

0

(η − s)a(s)f(u(s)) ds

⩾
2η

2− αη2

∫ 1

η

(1− s)a(s)f(u(s)) ds (3.11)

⩾
2ηγM

2− αη2

∫ 1

η

(1− s)a(s) ds∥u∥

⩾∥u∥

Thus, ∥Au∥ ⩾ ∥u∥, u ∈ K ∩ ∂Ω3. Now, since f∞ = 0, there exists Ĥ4 > 0 so that
f(u) ⩽ λu for u ⩾ Ĥ4, where λ > 0 satisfies

2λ

2− αη2

∫ 1

0

(1− s)a(s) ds ⩽ 1

Choose H4 = max
{
2H3, Ĥ4/γ

}
. Let

Ω4 = {u ∈ C[0, 1] | ∥u∥ < H4}

then u ∈ K ∩ ∂Ω4 implies that

28



CHAPTER 3. APPLICATION TO GUO-KRASNOSELSKII’S THEOREM

inf
η⩽t⩽1

u(t) ⩾ γ∥u∥ = γH4 ⩾ Ĥ4

Therefore,

Au(t) =
2t

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds− αt

2− αη2

∫ η

0

(η − s)2a(s)f(u(s)) ds

−
∫ t

0

(t− s)a(s)f(u(s)) ds

⩽
2t

2− αη2

∫ 1

0

(1− s)a(s)f(u(s)) ds (3.15)

⩽
2λ∥u∥
2− αη2

∫ 1

0

(1− s)a(s) ds

⩽∥u∥

Thus ∥Au∥ ⩽ ∥u∥, u ∈ K ∩∂Ω4. By the second part of Theorem 33, A has a fixed point
u in K ∩

(
Ω̄4\Ω3

)
, such that H3 ⩽ ∥u∥ ⩽ H4. This completes the sublinear part of the

theorem . Therefore, the problem 3.13.2 has at least one positive solution.
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Conclusion

The fixed-point principle has many applications. It is particularly involved in solving several
nonlinear differential equations, especially in the study of existence and uniqueness.

In this dissertation, we address different applications of this principle as well as some
of its extensions and generalizations that are involved in solving non-local boundary value
problems.

We demonstrate the existence of solutions using Banach’s contraction principle and
the nonlinear Leray-Schauder alternative. We study the positivity of the solution via the
Guo-Krasnosel’skii fixed-point theorem on a cone.
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Abstract 

We investigate the existence of positive solutions for a three-point integral boundary 

value problem of the form 𝑢′′ + 𝑎(𝑡)𝑓(𝑢) = 0 with 𝑡 ∈ [0,1] , 𝑢(0) = 0 and 

𝛼 ∫ 𝑢(𝑠)𝑑𝑠
𝜂

0
= 𝑢(1), where 0 <  𝜂 <  1 and 0 < 𝛼 <

2

𝜂2
. By applying the fixed-

point theorem in cones, we demonstrate that there exists at least one positive solution 

when 𝑓 is either superlinear or sublinear. 

Keywords: positive solution, superlinear, sublinear, fixed-point theorem, cones. 

 

Résumé 

Nous étudions l'existence de solutions positives pour le problème aux limites intégral 

à trois points de la forme 𝑢′′ + 𝑎(𝑡)𝑓(𝑢) = 0 avec 𝑡 ∈ [0,1] , 𝑢(0) = 0 et 

𝛼 ∫ 𝑢(𝑠)𝑑𝑠
𝜂

0
= 𝑢(1), où 0 <  𝜂 <  1 and 0 < 𝛼 <

2

𝜂2
. En appliquant le théorème du 

point fixe dans les cônes, nous montrons qu'il existe au moins une solution positive 

lorsque 𝑓 est soit superlinéaire, soit sous-linéaire. 

Mots-clés: solution positive, superlinéaire, sous-linéaire, théorème du point fixe, 

Cones 

 

 ملخص 

′′𝑢 ط من الشكلثية النقلاالتكاملية ث ديةحة القيمال ةسأللم الإيجابيةندرس وجود الحلول  + 𝑎(𝑡)𝑓(𝑢) = 0 

𝑡     حيث  ∈ [0,1]    ،𝑢(0) = 𝛼و    0 ∫ 𝑢(𝑠)𝑑𝑠
𝜂

0
= 𝑢(1)    0أين <  𝜂 < 0و    1  < 𝛼 <

2

𝜂2
من .  

 فوق  إما  f  تكون  عندما  قلل نثبت وجود حل إيجابي واحد على ا  ل تطبيق نظرية النقطة الثابتة في المخاريطلاخ

 .خطية تحت   أو خطية

 : حل إيجابي، فوق خطي، تحت خطي، نظرية النقطة الثابتة، مخاريط.الكلمات المفتاحية
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