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NOTATIONS

0, = n -V : The derivative according to the normal.

0f) : The boundary of €.

Q) : The closure of Q.

) : The interior of €.

C§° = D : The test functions space.

I : Inverse problem.

V : The gradient operator.

C' : General constant.

div(u) : The divergence of w.

B(zg,r) :=={z € R™; |z — zo| < r}.

dist(x, Q) : The distance between = and €.

(.,.) : The scalar product.

1710 = Jo |2 P

llullo.o = ||ul|?(2) =: the norm of L?

L>(Q) : The space of essentially bounded functions on .

L?(Q):The vector space of functions whose square is integrable (in the sense of

Lebesgue) on

» L*(0,T;B) =: {u(t) € B for a.e. t € (0,T) and |Ju|r2(0.1,5) < o0}
1

T 2
>l = (Jy u®)de)
» H'(0,T;B)={ue L*(0,T;B) : u'(t) € L*(0, T; B)}

>l oy = (O + 100 e
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INTRODUCTION

The inverse problem arises in various scientific fields such as astronomy, economet-
rics, financial mathematics, medical imaging, and quantum physics. For more details, see
[2, 3, 6, 10, 15, 17, 18, 27|. Inverse problems are well-studied for their applications to a
wide variety of fields. In the past few decades, the development of powerful computers
enabled engineers, mathematicians, and scientists to solve inverse problems computation-
ally, leading to significant results in computer vision, medical imaging, physics and many
other fields. The scope of applications for the inverse problem has expanded to cover two
main problems. These include determining past states or parameters of a physical system,
and predicting the outcome of future states or parameters.

Looking into past states and parameters is important in medical imaging. Solving the first
type of problem enables us to locate the source of tumors because tumors are generally
denser, and therefore resist pulling and pushing more than normal tissue. Studying the
second problem is important in computer vision and other physical settings where we are
estimating where objects are going to be at a specific time or when we want to steer the
environment towards a specific outcome.

It is well known that many astrophysical bodies have intrinsic magnetic fields. But only
in the last few decades people begin to understand more about the origin of this field. So
far a widely accepted theory is the so-called meanfield dynamo theory . For the numerical
simulations and mathematical theory analysis of the direct dynamo problem, one may
refer to |2, 3, 7, 10, 11, 12] and the references therein. And for the numerical analysis of
some stochastic interface problems, we can refer to 1, 8] and the references therein. While
in many applications, the inverse dynamo problems may be more interesting and practi-
cally important, where the magnetic property of the physical medium is unknown. But
knowing them is indispensable to some research investigations or to a good understanding
of the physical medium and how the magnetic field behaves in the physical medium. For
example, in [5], the authors make use of the asymmetric time dependence and various
statistical properties of polarity reversals of the earth’s magnetic field to recover some of
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parameters of the geodynamo. The objective of this work is studying some of parameter
identification problems in a three dimensional spherical dynamo equation. Our work will
be divided into three chapters, as outlined below:

In Chapter one, we begin with some background and literature review.

In Chapter two, we focus on recovering the magnetic diffusivity in a three-dimensional
(3D) spherical dynamo equation. We will transform The ill-posed problem into a nonlinear
minimization problem by using the Tikhonov regularization method. Then we develop a
fully discrete scheme based on the finite element method.

In Chapter three, we present a new problem, a two-parameter identification problem.
This problem involves recovering the magnetic diffusivity and source strength in a three-
dimensional (3D) spherical dynamo equation. Following the same approach as in the
second chapter, we study this problem to see what will be different.




CHAPTER 1

(ENERALITIES

1.1 BACKGROUND AND MOTIVATION

1.1.1 Inverse problems

Generally, causes and effects are examined in a specific order. The term "inverse prob-
lem" derives from physics, when our objective is to recover information by observing the
effects and then try to figure out what caused them.

Let X and Y be normed spaces, K : X — Y a (linear or nonlinear) mapping. Then,

given the mathematical model
K(z) =y,

where x is a vector of unknowns and y is a vector of measurements, the direct problem is
to find y given x, while the inverse problem is to find x given y. In practice, the unknown
could be parameters in our mathematical model or the source term or boundaries or a
combination of these.
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Direct Problem

Parameters Mathematical
or |
source — Madal \ —
- K(x)

Inverse Problem

Figure 1.1 — Inverse problem via direct problem

Due to its indirect nature, solving the inverse problem is usually very difficult. In
fact, solving such an inverse problem by standard methods numerically is difficult and
often yields unstable results, even when the data are exact Therefore, to obtain a stable
approximation of the solution, we have to use special techniques. Due to their special
properties, most inverse problems are ill-posed.

1.1.2 What is an ill-posed problem?

The French mathematician Jacques Hadamard introduced the concept of a wellposed
problem in his paper of 1902 on boundary-value problems for partial differential equations
and their physical interpretation [16].

Definition 1.1.1 Based on Hadamard’s definition, a mathematical problem is well-posed
if it satisfies the following properties:

1. Existence: For all (suitable) data, there ezists a solution of the problem (in an appro-
priate sense).

2. Uniqueness: For all (suitable) data, the solution is unique.

3. Stability: The solution depends continuously on the data.

A problem is ill-posed if one of these three conditions is violated.

Remark 1.1.2 The main concern when studying the inverse problem is the violation of
the third condition, that is, the solution does not depend continuously on the data.

In general to solve an ill-posed problems there are two techniques as in the following
schema
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Hight order

infinite dimension

Discretization Regularization
FEM (Tikhonov)
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Wl prwed]
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Figure 1.2 — Techniques for solving ill posed problems

1.2 SOME IMPORTANT TOOLS

In this section, we will present some important theorems and lemmas for later use.
1.2.1 Tikhonov Regularization

The idea of regularization method is to transform an ill-posed problem into a well-

posed one, which can be done by introducing a regularized operator which considers
available prior information about the exact solution.
Tikhonov regularization method [1], which is named after the Russian mathematician
Andrey Tikhonov and was introduced in the early 20th century, is a commonly employed
technique for addressing ill-posed inverse problems. This method entails incorporating a
regularization term into the initial problem to ensure the stability of the solution and
avoid overfitting.

Theorem 1.2.1 (Lebesgue’s dominated convergence theorem)[5]
Let (fn) be a sequence of functions in L' that satisfy

(a) fo(x) — f(x) a.e on Q,

(b) there is a function g € L' such that for all n,|f,(z)] < g(z) a.e on Q.
Then f € L' and ||f, — f|l1 — 0.

Lemma 1.2.2 (Aubin-Lions Lemma, [30], p.189) Let Xo, X be two Banach spaces and
X; be a Hilbert space with Xo C X C X, the injections being continuous and the in-
jection of Xy into X being compact. Then the injection of Y(0,T; g, an; Xo, X1) into

5
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L*(0,T; X) is compact for any finite number oy > 1, where Y(0,T; ag, ay; Xo, X1) =

d
{v € L*(0,T;Xy); v = d_?t} € LY (0,T; Xl)} )

1.2.2 Properties

Let introduce two important operators for later use. The first one is the so-called
modified Scott-Zhang interpolation operator Sy, : (see |7] or [29]), which preserves the
boundary condition in Hy: for any B € Hy, we have S, B € Hy, and it has the following
properties:

Lemma 1.2.3 Let u € HY(Q), then there exists a constant C, independent of h, such
that
[Shullie < Cllullie,  [lu— Swulloe < Chllull1q,

and

;lli_rf(l) llu — Spull1 o = 0.
Moreover, if u € H*(Q), we have

lu = Shullro < Chllull2.0-

The second operator is the L? quasi-projection operator I, : L*(Q2) — Qp,, which has
the following properties (see [31]):

Lemma 1.2.4 For w € L*(Q), we have

ITwloa < Cllwloqs lim ||w — Hpw||oq — 0.
h—0

Moreover, if w € H (), we have

I wl o < Cllwla, lim ||lw — Hpw|1,0 — 0.
h—0

Lemma 1.2.5 (classical approximation result (/32] [33] ) )
Let X be a Banach space. For a given function f € C([0,T]; X), we define a step function
approzimation of f:

SAf(mﬂt) = ZXn(t)f(wvtn)a

where x,,(t) is the characteristic function on the interval (t,_1,t,). Then we have

T
lim [ [|Saf(,t) = f(,t)|[5dt = 0. (1.1)

7—0 0




1.2. SOME IMPORTANT TOOLS CHAPTER 1.

1.2.3 Notations

We end this chapter with some useful notations. For m € R, H™(Q2) is the usual
Sobolev space, and we denote H™(Q)* and L™(Q)3 by H™(Q) and L™(Q) respectively.
We shall use (-,-) and || - |lmqo to denote the scalar product in L*(Q) or L?(2) and the
norm of H™(Q2) or H™(Q)) respectively.

Moreover, we introduce some useful Sobolev spaces for the subsequent analysis:

H(curl, div;Q) = {C € L*(Q);curlC € L*(Q),divC € L*(Q)},
Hy(curl, div; Q) {C € H(curl,div;2);C -n =0 on 00},
V= {C € Hy(curl,div;Q);div C = 0},

[2Q) = {ve LQ(Q);/de:c o).

As the spaces H(curl, div; Q) and Hy(curl,div; Q) will be frequently used, we shall write
H = H(curl,div; Q) and Hy = Hy(curl,div; ),

which are both equipped with the norm

ICIz = (ICll5o+1IV x Clga + IV Cllia):-

It has been shown that || - |z is equivalent || - ||; o (see, e.g., [14]).




CHAPTER 2

PARAMETER IDENTIFICATION PROBLEM

This chapter focuses on recovering the magnetic diffusivity in a three-dimensional
(3D) spherical dynamo equation. The ill-posed problem will be restructured into a nonlin-
ear minimization using the Tikhonov regularization method. The nonlinear optimization
problem will be approximated using a fully discretized finite element technique, with its
convergence rigorously verified.

2.1 SETTING OF THE PROBLEM

Let consider the following nonlinear spherical dynamo equation (see [7]):

0B+ V x (B(x)V x B)
= R,V x (L&Y B)+ R,V x (ux B) in Qx(0,7),

1+0|B|?
V-B=0 in Qx(0,7), (2.1)
B-n=0, VxBxn=0 on 00 x (0,7),
B(z,0) = By(x) in Q,

where Q = B, (0)\B,,(0) C R* 0 < r; < r, < oo is the physical domain of interest.
Here B,, and B,, denote two circles with center at 0 and radius r, and r; respectively.
0N = I'y U T’y denotes the boundary of 2, which consists of the inner boundary I'; and
outer boundary I'y, and n denotes the unit outer normal vector to the boundary of 2. The
functions B = B(x,t) and u = u(x,t) represent magnetic field and the fluid velocity
field respectively, f(x,t) is a model-oriented function, R, is a dynamo parameter, R,, is

8
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the magnetic Reynolds number, o is a constant and the parameter 3(x) is the magnetic
diffusivity.

When u, f, o, f and By are given, one can solve the system (2.1) to find the behavior
of magnetic field B in 2. This is usually called a direct dynamo problem. In this problem
we shall consider the case when u, f, 0 and B, are known, but the magnetic diffusivity
f(x) is unavailable in €. In order to recover the magnetic diffusivity S(x), we need to
have some extra measurement data from the magnetic field B. We shall assume the
measurement data B is available in some small subregion inside {2 over the time interval
(0,T), which occurs the following inverse problem.

Inverse Problem I. Let w be a subregion in (). Given the noisy measurement data

B(z,t) ~ 2°(z,1), (x,t) €wx (0,7), (2.2)

we will reconstruct the magnetic diffusivity S(«) in the entire domain 2. Here § is the
noise level.

2.2 TIKHONOV REGULARIZATION METHOD

In this section, we will transform the ill-posed Inverse Problem I presented in Section
1 into a stabilized minimization system. Additionally, we will establish the existence of
the solutions and stability with respect to the change in the error of the observation data.
Before considering Inverse Problem I, we refer to 7] and recall the equivalent variational
problem of system 2.1 and its well-posedness.

Lemma 2.2.1 The equivalent variational problem of system 2.1: For a.e. t € (0,T), find
B(-,t) € Hy, p(-,t) € L2(Q) such that B(-,0) = By(-) and

(0:B,A)+ (BV x B,V x A)+~(V-B,V-A)+ (p,V-A)
f(@,t)
= ————B A B A A€ H 2.
Ra(1+a|B\2 ,V X + Rn(ux B,V xA) VAc€ H,, (2.3)
(V-B,q)=0 VgqeLj),

where p(x,t) is a Lagrange multiplier and v is a constant. Moreover, we have the following
stability estimate for the solution (B,p) to system (2.3):

HBHLW(O,T;V) + HB||H1(O,T;L2(Q)) + HPHL?(O,T;L(%(Q))
< C(IV x Boll5.0 + | Boll3 ) Og%(llf(w,ﬂllimm) + (@, )17 o))

T
exp(C / {17 @, 8) 3@ + 11/, ) ey + et Dl e
e (@, D11 g},

provided that By € V, f € HY(0,T;L>*()) and uw € H*(0,T; L>(Q)).

9
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For convenience, we often write the solutions of the system (2.3) as (B(/3), p(5)) to em-
phasize their dependence on . In general, Inverse Problem I is mathematically ill-posed,
we formulate it into a mathematically stabilized minimization system with Tikhonov reg-
ularization:

T
A
min J(ﬁ):%/0/|B(B)—z5|2dwdt+§/Q|V6|2daz, (2.4)

BeK

where the constraint set

K ={B(x)e H'(Q):0 < <f(x) < fa},

[, Pa are two positive constants and A > 0 is the regularization parameter.

We are now ready to justify the regularizing effects of the nonlinear optimization
system (2.4) that it always has solutions and its solutions are stable with respect to
the noise error in the observation data z°. The first theorem establishes the existence of
solutions.

Theorem 2.2.2 There exists at least a minimizer to the optimization problem (2.4).

Proof. See [25| m

The following theorem shows that the minimization system (2.2) is indeed a stabi-
lization of the ill-posed Inverse Problem I with respect to the changes of the observation
erTors.

Theorem 2.2.3 Let {z,} be a sequence such that z,, — z° in L*(0,T; L*(w)) as n — oo
and {B,} be the minimizers of problem (2.4) with 2° replaced by z,. Then there exists
a subsequence of {B,} that converges in H'(SY), and the limit of every such convergent
subsequence is a minimizer of (2.4).

2.3 FINITE ELEMENT APPROXIMATION

In this section, we shall propose a fully discretized finite element approximation for
solving the continuous minimization problem (2.4).
For the space discretization, we consider a shape regular triangulation 7, of €2 with a
mesh size h, consisting of tetrahedral elements. Then we introduce some finite element
spaces, which were proposed in [7]:
H, = {we0(Q)?®: wlse P(A)? VAcT,},
Hy, = {WEHh; w-np =0, \V/FG.FhﬂaQ},

Qn = {wel): wlae P(A), YV AecT},
Qon = {w e Qnp; /wdw:O},
Q
Vi, = {’LUGHl(Q): w‘AGP;l(A), VAG'EL},

10
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where Fj, is the set of all faces of elements in 7}, and ny is the unit normal vector of a face
F € Fy, Pi(A) and Py(A) are the spaces of piecewise linear and quadratic polynomials
on A respectively. We will approximate the magnetic field B and Lagrange multiplier
p by Hy, and Qg respectively. Moreover, the constrained subset K is approximated by
K,=KnV,.

To fully discretize system (2.3)-(2.4), we also need the time discretization. To do so,
we divide the time interval [0, 7] into M equally spaced subintervals using nodal points

O=to<ti < --- <ty =T (25)

with ¢, = n7, 7 = L. For a continuous mapping u : [0, T] — L*(Q), we define u" = u(-, ¢,)
for 0 < n < M. For a given sequence {u"} , C L?*(Q), we define its first-order backward
finite differences and average values as follows:

n _ ,n—1
ot = L =12, M,
T
1 [t
" = —/ u(-,t)dt,n=1,2,..., M, and a° = u(-,0).
T tn—1

Now we are ready to formulate the finite element approximation of the continuous
minimization (2.4) as follows:

min Jy, - (8y) = Zan/ (B} — 2°")dx + = /\Vﬁh| dz, (2.6)

BrEK

where (B}, p}) = (B}y(8r), pi(6r)) € Hon % Qop satisfies B[})L = SpBy(x) and

/ 87’Bn Ahdm + / Bh(v X BZ) . (V X Ah)daz
Q

_ Q

_ f" n (2.7)
+Rm/(u X BZ) (V x Ap)dz,
Q
\ fQ(v : BZ)th"B = 07

for all (A, qn) € Hop X Qop, n=1,2,--- M. Here u" € L™(Q) and f* € L>=(Q), and
{a,} are the coefficients of the composite trapezoidal rule, i.e., ag = ap = % and o, = 1
for n # 0, M.

Before analyzing the convergence, we refer to 7] and present the well-posedness and
stability estimates for the solutions to the discrete system (2.7).

Lemma 2.3.1 There exists a unique solution (B}, p}) to the discrete system (2.7) for
each fited n(1 < n < M) and the sequence {(B},p)}M., has the following stability
estimates:

11
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M
max [ Billoe +TZl(HV x Bilso+ V- Bilia) < CIBjG 0

max [V x Bjllgq + max [|V-Bj HosﬁTZH@B 6.0

+TZ I3 115.6 +TZ 10, BRI7 H'(Q)y = ClIBy 1% o

Theorem 2.3.2 [26] There exists at least a minimizer to the discrete minimization prob-
lem (2.6).

Proof. See [25| m

Now we will consider the convergence of the minimizer of the discrete system (2.6) to
the minimizer of the continuous problem (2.4). We first define some interpolations based
on {B}} and {p}} as follows: for any (x,t) € Q x (t,-1,1,), let

t—tpy ty—t
By (x,t) = — LB}(x) + (z), (2.8)
M M
B(x,1) =) xa(t)Bji(x) and pr(z.t) =) xa(t)ph(z).
n=1 n=1
Lemma 2.3.3 [26] The following results hold:
“BhTHp 0,T:H (Q) — TZ | B} ||1 Qs
n=1
0 2
HatBhTHLQ 0,7;(H (2 TZH@B ||
M
Hﬁh,‘r”%%[},T;[ﬂ(Q)) =T Z HPZH(Z),Qa
n=1
HBhT”L2 0T H () S TZ | B HlQ
n=0

12
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Lemma 2.3.4 [26] Direct computations give us the following equalities:

T a M
/ / EBh,T(w,t)qsm(m?t)dmdt:TZ / 0, Bl Spo(x,t,)dx
//W (B).)(V - ¢h7dmdt_72/ (V- BY)(V - Spé(x, t,))dx
//&LV X BhT(a: t) -V X opr(x,t)dedt

= TZ/ BaV x By -V % Spb(®, t,)dw
n=1 Q
T M
//ﬁh;(v - Qpr)dxdt = TZ / PV - Spé(zx, t,))dz
0JQ —) Q
T f A
——————B},; -V X ¢p - (x,t)dxdl
/o/g 1+ o|B, 2 " G C
M I

T M
// u X By, -V X ¢y dedt = TZ/ u" x By -V x Spo(x,t,)dx
0Ja — Ja

Lemma 2.3.5 For any B, € Ky, 8 € K, U,., U € L*(0,T; H'(Q)) and V,,,V €
L2(0,T; L*(2)), if B, — B in L2(Q) ash — 0, Up, — Uin L*(0,T; H'(Q)) and V},, — V
in L2(0,T; L*(Q)) as h,T — 0, we have the following convergence results:

T T
lim // ﬂhV X Uhﬂ— . Vh’Tda:dt = / / BV x U - Vd:cdt, (29)
h,T—>O 0 Q 0 Q
g / r /
li ———U, - Vi dxdt = ————U - Vdadt, 2.10
h,ygo/o/Q 1+ o|Up-|? hor * Vs &8 /O/Q 1+ o|U|? * (2.10)
T T
lim //u X Upyr - Vi rdaedt = / / u x U - Vdaxdt. (2.11)
h,7—0 0Jo 0Ja

Lemma 2.3.6 For the sequence {Bn}ns0 C Ky , if {Bn}n>0 converges to some € K in
L2(Y) strongly, suppose z° € C(0,T; L*(w)), then there exists a subsequence, also denoted
by {Bntn>o, such that

13
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Finally, we are ready to establish the main convergence theorem.

Theorem 2.3.7 [25] Let {5} }rn=0 be a sequence of minimizers to the discrete minimiza-
tion problem (2.6) and suppose z° € C(0,T; L*(w)), then as h and T tend to 0, each

sequence of {8 }n=0 has a subsequence converging in L*(Q2) to a minimizer of the contin-
uous optimization problem (3.2).

14



CHAPTER 3

TwWO PARAMETERS IDENTIFICATION
PROBLEM

In this chapter, we shall consider the case when the function f is assumed to take the
form

f(z,t) = g(@)h(z,1).

We are interested in the recovering of the magnetic diffusivity # and g belonging to the
space L%(€)) in a three dimensional (3D) spherical dynamo equation (2.1).

3.1 TIKHONOV REGULARIZATION METHOD

Lemma 3.1.1 The equivalent variational problem of system 2.1 before the change: For
a.e. t € (0,T), find B(-,t) € Hy, p(-,t) € LLQ) such that B(-,0) = By(-) and

(8:B,A)+ (BV x B,V x A)+~(V-B,V-A)+ (p,V - A)
B g(x).h(x,t)

_Ra( 1—|—O’|B‘2 B’VXA +Rm(u><B>VXA) VAGH(]y (31)
(V-B,q) =0 VqeL}Q),

15



3.1. TIKHONOV REGULARIZATION METHOD CHAPTER 3.

where p(x,t) is a Lagrange multiplier and v is a constant. Moreover, we have the following
stability estimate for the solution (B,p) to system (3.1):

||B||L°°(0,T;V) + ||B||H1(0,T;L2(Q)) + ||p||L2(o,T;Lg(Q))
2
< C(IV x Boll5.0 + |1 Boll3 ) max ([|g(2)[[7 QA )7 @) + (@, )| 7))

T
.eXP(C/O g(@)IIZe -1, )| ooy + 19/ @)1z R, O ) + (@) 72 Iz, D)7 )
e, ) gy + 12 (@, Dl ey Yt )
provided that By € V, g € L*(Q),h € H'(0,T; L>(Q)) and w € H*(0,T; L=()).

For convenience, we often write the solutions of the system (3.1) as (B(5,9),p(5,9))
to emphasize their dependence on (f,g). In general, Inverse Problem I is mathemati-
cally ill-posed, we formulate it into a mathematically stabilized minimization system with
Tikhonov regularization:

I A A
min J(B,g9) == B(8,g)—2° 2d:cdt+—1/ \Y% 2dm+—2/ 2dx, (3.2
omin 9G.0)= 5 [ 1B -2 Piede Y [ (93P [ loPie. 32

where the constraint set

K={B(x) e HY(Q):0 < B < B(x) < B},

B1,B2 are two positive constants and Aj, Ay > 0 are the regularization parameters.

We are now ready to justify the regularizing effects of the nonlinear optimization
system (3.2) that it always has solutions and its solutions are stable with respect to
the noise error in the observation data z°. The first theorem establishes the existence of
solutions.

Theorem 3.1.2 There exists at least a minimizer to the optimization problem (3.2).

Proof. Since J(3,g9) > 0 for any (3,9) € K x L*(Q2), there exists a minimizing
sequence {f,, g,} C K x L*(2) such that

lim J(Ba,g0) = inf J(B,gt).
N T gn) = J0E gy T (B0 9%)

Then [J(Bn,gn)] < C, which implies that ||V3,| 2 < C and ||gn| 2@ < C. By
the definition of K, {8,(x),g.(x)} is bounded in L>*(Q) x L?(Q), then in L*(2). So
{Bn(x), g,(x)} is bounded in H'(2)x L*() and there exists a subsequence of {3, (x), g,(x)}
denoted still by {3, (x), g.(z)} and some (5%, g*) € H'(Q) x L*(Q) such that

Bo — B* in HY(Q), and B, — f* in L*(Q). (3.3)

gn — g* in L*(Q), (3.4)

16



3.1. TIKHONOV REGULARIZATION METHOD CHAPTER 3.

As K is a closed convex subset of H'(£2), hence K is weakly-closed and we have 5* € K.

For convenience, let (B",p") = (B(Bn,9n),P(Bn,gn)). Due to Lemma 3.1.1, there
exists a subsequence, still denoted by {B,,, p,} and some (B*, p*) such that

B, —~ B* in L¥(0,T; H'(Q)), B, — B* in H'(0,T;L*Q)), (35
po =" in L*(0,T; Lg(9)).

Next we shall show that B* = B(f*,¢*) and p* = p(5*,¢*). To do so, we multiply
both sides of (3.1) (B is replaced by B", § is replaced by 8", g is replaced by ¢") by a
function 7(t) € C*[0,T] and get

(O:B™, An(t) + (B"V x B",V x A)n(t) + (V- B",V - A)n(t) + (p", V - A)n(t)

_ Ra(g(x).h(:c,tg
1+ 0|B"|

(V-B" q)n(t) =0 Vg € Lj(Q)

B",V x An(t) + R(u x B",V x A)n(t) VA € Hy

then
/T/(atBn - An(t) + 8"V x B - (V x A)n(t) +~y(V - B™) - (V- A)n(t) + p"(V - A)n(t))dzdt
/ e !B k BT (VX A)fe) + ol X BY) - (V At dac

/O /QatBn'An(t)dde/OT/Q(ﬂ"V x B") - (V x A)y(t)dadt

= ' L9597 Apode+ [ ' | (v Apnteydaat

/.A1+awn (VxAmwmm+Rm/é/mxBﬂwvaM@mm
/ /@B - An(t dxdt+/ /5”V><B") (V x A)n(t)dzdt

+’y// B") - (V- Ay dq:dt+// (V - A)y(t)dzdt

+ / / (B — B)(V x B") - (V x A)y(t)dwdt

/ /Q 1 +o |B" (Vo An(t)dedt + B, /OT/Q(U X B") - (V x A)y(t)dadt
(3.7)

17



3.1. TIKHONOV REGULARIZATION METHOD CHAPTER 3.

/(/&WAM(mw+/ﬁ/6VxBW(VxA)UMﬁ

+7/ /V B")-(V-A)n dxdt+/ / (V- A)n(t)dxdt

/(A1+gwn H(VXAM@MW+RmAlé@xBﬂ%vamwmm

/ / )V x B") - (V x A)n(t)dzdt ¥V € Hy (3.8)
/ /(V - B", q)n(t)dzdt =0 VYq € L(Q). (3.9)

We first claim that the last term in the right hand side of (3.8) tends to 0 as n — oc.
Indeed, by Cauchy Schwarz inequality and the fact that || B"|| o 1.1 () < C, we have

)V x B")-(V x A)n(t)dmdt‘

fg(//ﬂvXB%mm@ (//| vXAMmmMQé
< (//r V><A><>Pdwdt) |

which converges to zero as n — oo by (3.3) and the Lebesgue’s dominated convergence
theorem.
Then we shall show that

nh_g)loR // o J|B”|2 " (V x A)n(t)dzdt

//1+MBP B* - (V x A)n(t)dzdt. (3.10)

18



3.1. TIKHONOV REGULARIZATION METHOD CHAPTER 3.

By direct computation, we get

g(x).h(z,1)

//‘1+ﬂmP WXAM@‘T:HE?B“WXAmmwm4

g.-hB"(1 + o|B*|?) — g.hB*(1 + o|B"|?)
. An| dxdt
1+ 0B P)(L+ 0B (Vi AJn) dz
< //uw B[ |g.h] - IV x A| - [n|dadt
o(B" — B")|B'’ + oB*(|B** — |B"])

IN

IA

//MMIVXMII

//\B” B*| - |g.h(V x A)n|dzdt

+/0/Q|g.h(v x A)n| -

T
2// IB" — B*| - |g.h(V x A)y|dadt
0JQ

dxdt

( +o|B"?)(1 + 0| B"?)

o|B*|(|1B| + |B"))(|1B"| — [B"])
(1+0|B"[?)(1 +0|B[?)

dxdt

T B*2+£ B*2+ Bn2
+//Q|g.h(V><A)77|~|B*—B”|~U| CESUBT B
0

IN

IN

<

(14 ¢|B"?)(1+ o|B*|?)

T
4// IB" — B*| - |g.h(V x A)|dadt
0JQ

(]

T 3 T 3
/ B — B*|2da:dt) (// g X h(V % A)n|2da;dt)
Q 0JQ

C||B" —

B* ||L2(O,T;L2(Q))a

which tends to 0 as n — oo if | B" — B*|| ;2o 7.12(2)) — 0 as n — oo. Now we will prove

B" — B* in L*(0,T; L*(Q)). (3.11)

As {B"} is bounded in L?(0,T; H'(2)), it suffices to show that {9,B"} is bounded in
L2(0,T; (H'(2))") by Lemma 1.2.2. For any A € Hy, we have from the variational form
(3.1) that for any t € (0,7

IN

IN

|(atBn7

A)[ < C([V x B[00l V x Alloo

IV - B[oallV - Allog + [[p"[locllV - Allog)

[

ﬂLQRmHUHLOo 1B [lo,0llV x Allog

CllAlio([B"l1e + [P l0.0) + Cllgll 2@l 12l 2 @) [V % Allog
+Cul[r @[ B" [0V x Allo,e

CllAlLe(IB" [[1.e + [P"[lo.0 + lgllz@ Al Lo @) + 1wllLe@) [ B" lo0)-

9(). }T;nlng"l I ) (/ %IV Al dm>2
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3.1. TIKHONOV REGULARIZATION METHOD CHAPTER 3.

Further, we have

T
/ (atBn, A)dt‘ S CHAHLQ(O,T;HI(Q))

0
(1B 20,7111 (02)) + HPnHm(o,T;Lg(Q)) + gl 2@ 1Pl 21 0,120 ()
T
n 1
+ [l 1B 100} < ClAlorm,
0

which implies that {0;B"} is bounded.
Our next goal is to show that for any A € Hy,

n—oo

T
lim R, / / u x B" - (V x A)n(t)dzdt
0Jo

R, /O/Q'u x B* - (V x A)n(t)dzdt. (3.12)

Indeed, by direct computation and (3.5), we have

T T
lim//uxB"-(VxA)'r;dwdt: lim//(VxA)nxu'B”dwdt

n—oo n—o0

//VxAnxu B*dzdt = //uxB* (V x A)ndzdt.

Finally, passaging to the limit on both sides of (3.8) and (3.9), and making use of (3.5)-
(3.6), (3.10) and (3.12), we obtain that

//atB* An(t )d:cdt+//ﬂv < B* - (V x A)(t)dadt

+7//VB (V- Ay da:dt+// (V - A)(t)dadt

// 1+ ayB |2 (VX A)n(t)dadt
0J9Q

T
//(V - B*)gn(t)dzdt =0, ¥V q € Li(Q), n € C'[0,T].
0Jo

Further, we shall prove B*(x,0) = Bjy(x), which together with the definition of
(B(8%),p(8")) implies that
(B, p") = (B(5),p(5")). (3.13)

Choosing n(t) € C*[0,T] with n(T) = 0, we have by integration by parts with respect to
t that

//ﬁtB" An(t)dedt = //B" An/(t)dxdt — /BO ,0)n(0)dz.
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Letting n — oo in the above equality and using (3.5), we have

/0 T/Q OB’ - An(t)dwdt — / / B* - Aif(t)dadt

/ Bo(z) - A(z, 0)n(0)dz. (3.14)

On the other hand, by integration by parts with respect to t, we also have

/OT/Q OB" - An(t)dzdt = — / T/Q B’ - Aif (t)dadt — / B*(,0) - A(z, 0)n(0)da,

which together with (3.14) implies B*(x,0) = By(x).
Therefore, from (3.3), (3.5), (3.13) and the semi-continuity of the norm, we derive

J(B*.g%) < liminf J(B,,g,) = inf  mi J(8,9),
(5% g7) < Nminf J(By, gn) = inf  min - J(5,9)

which implies that (8*, ¢*) is a minimizer to the optimization problem (3.2). m

The next theorem demonstrates that the minimization system (3.2) is indeed a stabi-
lization of the ill-posed Inverse Problem I with respect to the changes of the observation
erTors.

Theorem 3.1.3 Let {2, } be a sequence such that z,, — z° in L?(0,T; L*(w)) as n — oo
and {B, gn} be the minimizers of problem (3.2) with 2° replaced by z,. Then there exists
a subsequence of {3, gn} that converges in H'(2) x L*(Q), and the limit of every such
convergent subsequence is a minimizer of (3.2).

Proof. By the definition of {f,, g, }, we have

1 [T 1 1
5//|B(ﬂn,gn)—zn|2dmdt—{—§)\1/ |V@n|2da}—|—§)\2/ |gn|2dm
0 Jw Q Q
1 [T 1 1
5 | [1BG.9) ~ ziPdwit s 0 [ (VaPdz 3 [ loPde, v (5.9) € K x 22@)
0 Jw Q Q

which with (83, g,) € K x L*(2) implies that {3, g, } is bounded in H'(Q) x L?(2). Similar
to the proof of Theorem 3.1.2, there exists a subsequence, denoted still by {3, ¢,,}, and
some (8%, g*) € K x L*(Q) such that

Bo — B* in HY(Q), B, — B* in L*(Q), (3.15)
B(B,) — B(8*) in L*(0,T; L*(Q)).

Hence we have

T T
lim //|B(ﬁn,gn)—zn|2dacdt://|B(ﬁ*,g*)—z5|2dmdt. (3.16)
=0 Jo Jw 0 Jw
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Then, using the lower semi-continuity of a norm, we deduce that

1) = 5 [ [ 1B ) =2 Pdeit+ 5 [ (93P 2 [ o

17 A A
< liminf{—//|B(6n,gn)—zn|2da}dt+—1/ |V6n|2da:+—2/ | gu|?da}
n—oo
< limsup{ //|B Borgn) — 22 dmdt+—/|Vﬁn| da + 22 /|gn| dzt (3.17)

n—oo

= //|B z5|2dmdt+—1/ yv5\2dm+§/ | gPdz YV (8,9) € K x L*()
Q Q
- Y (5,9) € K x IX(9).
This yields that (8*, ¢*) is a minimizer to system (3.2).
Next we shall prove V3, — V* in L*(Q), and then 8, — £* in H'(2). and then

gn — g% in L*(Q) Since (3.17) holds for any (8, g) € K x L*(Q), we take (3,9) = (8%, g")
and obtain that

i 5 [ [ 1B 0~z [ 195, Pdm) 5 [ 1oz
1
-5/ / B(5.g") ~ 2Pdedi+ 3} [ [P+ 32 [ lgPde
2 0 Jw 2 Q 2 Q
Combining this with (3.16), we get
lim/\Vﬁana::/\Vﬁ*]de,

which with V3, = V3* in L?(Q) by (3.15), we have V3, — V3* in L*(Q). O

3.2 FINITE ELEMENT APPROXIMATION

In this section, we shall propose a fully discretized finite element approximation for
solving the continuous minimization problem (3.2). The constrained subset K is approx-
imated by K;, = K NV, and g is approximated by W}, = Q, N L?(Q). Using the same
finite element discretization and spaces as introduced in the second chapter. We are ready
to formulate the finite element approximation of the continuous minimization (3.2) as
follows:

min Ih+(Br, gn)

M
-
! D o [ (Bh =2 dm+—/V d:c+—/ dz,
(Bhogn) €K x Wi, an% /w |V 5l I3k
(3.18)
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where (B}, pt) = (B} (Bn, 91), 7 (Bhy gn)) € Hon X Qo satisfies B) = S, By(x) and
/ 8TB” Ahdaz + / 5h(v X BZ) . (V X Ah)daz
Q

1 [(V- BV Ade+ [ (V- Anda

< /& " (3.19)
= R, Y |2Bh (V x Ap)dx

+Rm/(u x B}) - (V x Ap)dz,
Q

for all (Ay, qn) € HonxQop,n = 1,2, , M, ™ € L*(Q) and h" € L®(Q) and g" € L(Q).
Here {«,} are the coefficients of the composite trapezoidal rule, i.e., ag = ap = % and
ap, =1 for n # 0, M.

Lemma 3.2.1 There exists a unique solution (B}, p}) to the discrete system (3.19) for
each fized n(1 < n < M) and the sequence {(Bj,p?)})M, has the following stability
estimates:

M
s 1B+ 73217 x Billia + 19 - Bilio) < CIBMIR

max [V x Bl + max [V Bj HOQMZHaB 30

+TZIIPhIIOQ+TZII3B Eeryy < ClIBRI o

Theorem 3.2.2 There exists at least a minimizer to the discrete minimization problem

(3.18).

Proof. Due to the stability estimates in Lemma 3.2.1, we could get the existence of
the minimizer to (3.18) by the similar technique in the proof of Theorem 3.1.2. m

Now we will consider the convergence of the minimizer of the discrete system (3.18) to
the minimizer of the continuous problem (3.2). For the purpose, we first give the following
classical approximation result (|32] [33] ).
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Lemma 3.2.3 The following results hold:

HBhT”L2 0,T;H Q) — TZ | B HlQa

n=1

0
HﬁtBhTHLZ 0,T;(H (O _TZHaB ||2

M
1n 1220 702000 = T Z 123115 0

n=1

M
“Bhﬂ'H%?(O,T;Hl(Q)) < TZ ||BZ||%Q

n=0

Proof. We first prove the first three equalities. By direct computation, it is easy to
see that

r 2
||BhT||L2(0TH1(Q))

_ :</ /|Z><n t)B (x 2dwdt+/ /\an t\VB(x Fm&)
—i(/ /\B” 2dwdt+/ /\VB” Pmdt)—rZHB I o

T
0

|| BhTH 1 / || B}”—H 1 dt

rorE @) — - gy (H ()

_n—l n tn_ —
- 15 (=B + 2y <w>) [

B —tpy to—t )

= Z/t y ( ——Bi(x) + — ("”)> e ot

- Z / 1B}~ By ) sy TZH@B [
tn 1

16 2207522 z / / |zxn oo () 2t
tn—1

M tn

S " [ e = - Il

n=1"7tn—10 n=1
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Then we show the last inequality:
1B llz2 0,281 )
M
" t—tyy ¢
- > [ { [ B+
n=1Ytn-1
/\ — Il (2) + (@) Pt
7 o 2 tn_ 2 1,2
N A AIC 7| )|B;:*|
n=17tn-1 Q T
t) n n—1
42 B! - B | dzdt

SYAUAL

49 (t — by 12(2&

TH(@)[Pde

(t—tn,— 1)(t

t, —1

) vBP+ () jvBy

—1
)vBy. VB~ | dadt
_ _Z/|B |2—|—|Bn 1|2+Bn Bnl

+\VB >+ |VB} '|*+ VB - VB} dx

< TZHBhHH)

m Next, for any ¢(x) € Hy and ¢(t) € C3°(0,T), let ¢(x,t) = ¢(x)¥(t) and ¢y (x,t) =

M
> xn(t)Sho(x, t,). We have by the triangle inequality, (1.1) and Lemma 1.2.3 that
n=1

T
/0 16+ 1) — nr (- 8|2 dt

T
< 2 [ 60.t) = Saoladt + 27 max [0 Ple() - SOl
0 ENIAS

— 0 as h,7—0.
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Lemma 3.2.4 Direct computations give us the following equalities:
T ) M
/0 /Q th,T(w,t)qﬁh,T(w,t)da:dt:7'; /Q 0. B1Spo(x, t,)da;
T . M
/ / YV - (B ) (V- G )dadt =7y / (V- BY)(V - Spo(x, t,))de;
0Ja /0
T . M
// BV X By (x,t) -V X ¢p (2, t)dxdt = TZ/ BV x By -V x Spo(x,t,)dzx;
0JQ n=1"%
T M
//ﬁh,T(v-gﬁh,T)da:dt:TZ/p;;(v-Shgb(x,tn))dm;
0Ja = Ja
T f .
———— By, -V X ¢p (@, t)dxdl
/o/g 1+ o|By. 2 " Phr (1)
M f.—n
= ___________l;n . ‘
T;/g ToBES V X Spod(x, t,)de:;

T M
//u X By, -V X ¢y dedt = TZ/ a" x B} -V x Spo(x, t,)dx.
0JQ e

Proof. By direct computation, we have the following equalities:

T T
/ 2Bhyf(:n,zf)qﬁhﬁ(a:,zf)davdt://é?TBZQShJ(:B,zf)dwalt
0 0Ja

o Ot
M

tn

M M
/ 0-By > xu(t)Sho (@, ty)dadt =7y / 9, B Spo(x, t,)da;
Q n=1 n=1 Q

tn—1

/OT/Q YV - (Bh,ﬂ')(v - Op.r)dacdt
= /t n /Q WV O xaOBR@))(V Y X (t)Shd(, £,))dazdt

M
n=1"tn-1
M

=7 [ (V- BV - Spol, t,))da;

ln

/Q (V- BY)(V - Spd(w, ) dadt

Q
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/T/ BV X By (2,1) - V X ¢p (2, t)dadt
0 QT Ny Ny
= //ﬁhv X an(t)B;;(az) VXY () Sh(a, t)dadt
n=1
— Z/ / BV x By (x) -V x Spo(x, t,)dzdt

- TZ/ B,V x BY -V x Spo(x, t,)de
n=1 Q

/T/ Dhr(V - Op 7 )dadt

- Z I ORECTIEILED SOV NI
Y / P@)(Y - Shola. ) d

h,T

- Z[ / B Sl

Tg".h" n
Z/ o a|B"|2Bh V X Spé(x, t,)dx
- TZ/ . UanPB; -V X Spo(ax, t,)dx
T A
// u X Bhﬂ— -V X gf)h;dazdt
M
_ Z/ /u X an OB(@) -V X Y xu(t)Sud(, t,)dadt
tn—1 n=1
= Z/ / " udt x B} -V x Spo(z, t,)dx
n=1"72tn1

M
= TZ/ u" X B} -V x Spo(x, t,)dx
n=1"%
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We then derive some important convergence results.

Lemma 3.2.5 For any (By, gn) € KnxL*(Q), (8,9) € KxL*(Q), Uy, Ue L*(0,T; H*(Q2))
and Vi, V€ L*(0,T; L*(Q)), if B — B in L*(Q) ash — 0, Uy, — Uin L*(0,T; Hl( )
and Vi, — Vin L*(0,T; L*(Q)) as h,7 — 0, we have the following convergence results:

T T
lim //Bth UhJ-Vthacdt://BV><U-Vd:1:dt, (3.20)
h,7—0 0Ja 0Jo
U - Vi dedt = ———U - Vdxdt, 3.21
hHo//Ha\UhTP hor * VhrOF // o—\UP v (3:21)
T T
lim //ux Uh,T-Vtha:dt://ux U - Vdxdt. (3.22)
h,T—>0 0 Q 0 Q

Proof. We first prove (3.20). By the triangle inequality, we have

T
|//(ﬂhVXUh,T' Ve — BV x U - V) dadt]|
0Ja

IN

T
- \Y UT' VT_ daxd
|/O/Q(ﬁh BV x Up 7+ (Vy, V) dadt|
T
‘H//Q(ﬁh—ﬁ)v X Up,r - V dzxdt|
0

T
‘H//ﬁ(VXUh,T‘Vh,T—VXU~V)dwdtl
0Jo
= I +I11+11I

To estimate I, it is readily to see that

T
I = |//(ﬁh — BV X Upr - (Vi — V) dadt|
0JQ
S QBQHV X UhyTHLQ(O,T;LQ(Q))H Vh,T - I/‘HL2(O,T;L2(Q))—>07

as h,7 — 0 due to the fact that V},, — Vin L2(0,T; L*(2)).
Then we start to analyze I1:

|/(6h — B)V X Upr - V deedt|
Q

< / 1By — BIIV x Un, [Pdadt)( / 1B, — BIIV Pdadt)?

IA

0(/Q B — BI[VI2dadt)s — 0
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as h, ™ — 0 by Lebesgue dominated convergence theorem.
For I11, we have

T
11 =] [ [ 59 x Ve (Vir = 1)+ 8Y % (Ui = 0 V vt
0JQ

< 52HV X Uh,THLQ(O,T;LQ(Q))H Vh,f - VHL?(O,T;L?(Q))

T
+|//V><(U;M— U)- BV dzdt|
0JOQ

— 0 as h,m— 0.

Next, we shall show (3.21).

Uhr - Vi dxedt — ———U - Vdaxdt
|//1+0]Uh7\2 " i &8 // 0|U‘2 =

< Vi —V)dxdt
U (U, —U U2 — U, |PU
+|// (L+ o) WUnr = V) 4 U ~ 0PV
(L4 o|Un[*)(L 4+ a|U[?)
< C(||9||L2 Q)HhHHl (0,T;L (82 ))HUh,THL2(0,T;L2(Q))||Vh,T - V||L2(0,T;L2(Q))
+Cgll 21l 21 0,752 () |Unir — Ul 20 7200 IV | 2200 722 (02))
o(|U] + |Un)(UU| = |Un-)U
+ : - Vdaxdt
o S R o Ve
< CVhr = Vllzorez@) + 1Unr = Ull2o,m020))
olU* + U * + §|U P
+ AU — Uy 2 T2 |V | dad
[ [ o s a0 s o V1
< C(HVh,T - VHL?(O,T;Lz(Q)) + HUh,T - UHL2(0,T;L2(Q)))

+O||9||L2(Q)-||h||H1(0,T;L°°(Q))||U - Uh,THL?(o,T;L?(Q))||V||L2(0,T;L2(Q))
— 0 ash,m7—0.

Finally, we shall prove the last equation (3.22).

T T
|//u><UhJ-Vh,Tdacdt—//uxU-Vdacdt|
|//u><UhT VhT—Vd:cdt|+|//u>< (Up-r—U) - Vdadt|

C(|Vhr — V||L2(0TL2 Q))"‘HUhT Ull 2 (0,T;L2(Q2 ))—>0 as h,7 — 0.

IN

IN

]
In the following, we prove a crucial lemma for our purpose
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Lemma 3.2.6 For the sequence {Bn, gn}ns0 C Kp X L*(W) , if {Bn, gn}tn>o converges to
some (B3, 9) € K x L*(w) in L*(Q) strongly, suppose z° € C(0,T; L*(w)), then there exists
a subsequence, also denoted by {fn, gn}n>0, such that

M T
. n _ 0m)\2 — 02
hgrEOTnE_O Ozn/w(Bh(ﬁh) 2% dx /0 /UJ]B(ﬂ) Z2°|*dxdt.

Proof. For 1 <n < M, we denote by B} = B} (5, g1), B" = B(8,9)(-,t,). Making
use of (1.1), we find that

11&1)7’20%/ gy da:—// dwdt

So it suffices to show that

M
lim 7Y o, / (B} — B")*dz = 0. (3.23)
=0 w

h,7—0

From Lemma 3.2.3 and Lemma 3.2.1, we conclude that {B), ,} and {B}, .} are bounded
in L2(0,T; H'(2)), {£ By} is bounded in L*(0,T; (H'(2))’) and {ps} is bounded in
L*(0,T; L*(Q)). Hence there exists a subsequence of {By,,} such that

B, — B* in L*(0,T; H'(Q)), (3.24)
B,. — B* in L*(0,T; L*()), (3.25)
%Bm — C* in L*(0,T; (H*(Q))) (3.26)

and a subsequence of {B),;} and a subsequence of {p;, ,} such that

B, — B in L*(0,T; H'(Q)), (3.

3.27)
prr —p" in L*(0,T; L*(2)), (3.

2
28)
for some B*, B** € L*(0,T; H'(2)), C* € L*(0,T; (H'(Q))") and p* € L*(0,T; L*(2)).

Next, we show B* = B** and C*(x,t) = 2 B*(x,t). Firstly, by (3.26) we have for
any o(x) € H'(Q) and ¥ (t) € C°(0,T) that

&530// atB;” : t)dxdt = // C*(z,t) - p(x)(t)dadt. (3.29)
On the other hand, by integration by parts with respect to ¢ and using (3.24), we get
hlirgo// (%B;” ()Y (t)dedt = hlggo_ / / By, - "(t)daxdt

// B*. t)dxdt,
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which together with (3.29) gives

C*(z,t) = %B*(w, ). (3.30)

Then taking any ¢(x) € H'(Q) and ¥(t) € C'[0,T] with ¢(T) = 0, integrating by
parts with respect to t to both sides of (3.29) and using (3.30) and (3.24), we have

hliTrBO{—/Sth(m) o(x) dm—//BhT- )dwdt}
/B z,0) da:—//B (@, 1) - () (t)dadt.

By (3.24) and Lemma 1.2.3 we derive that
B*(x,0) = By(x).

Now we will show that B*(x,t) = B**(x,t). By direct computation and using Lemma
1.2.3, we have

T
/ |Bhr(-,t) = B (-, 1) gdt = Z 10, B}l < CT* =0 as h,7 — 0,
0

which, together with (3.25) implies
B, — B* in L*(0,T; L*()).

Then from (3.27) and the uniqueness of the limits, we get B* = B™.
It is time to show that B* = B(f), p* = p(f). Using Lemma 3.2.4 and system (2.7),
we get

r T
//%Bh’T(m’t)¢th<m>t)dwdt+//5hVXBh,T-Vx%,Tda:dt

+7// (B )(V - ¢h7dwdt+//pmv b )it

gxh .
VX op (2, t)dxdt 3.31
//91+a|B,”|2 " P (@) (3:31)

+R,, / / u X By, -V X ¢ dadt.
0JQ

Letting h, 7 — 0 in the above equation and making use of (3.24)-(3.28) and (3.20)-(3.22),
we have
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/T 03* o(x)p(t dmdt+//ﬁ V x B*) - (V x @)ih(t)dzdt

Jw// (V-B*)(V-p) dmdt+// (V- p)(t)dedt

// 1+ a|B*|2 T (V x )y (t)dedt
+R,, / / u X B* - (V x @)(t)dxdt. (3:32)

Further, we shall prove

T
| [ Bye@uinic=0. ¥y e @@), vecror. (33
0Jo
which together with (3.32) and the definitions of B(3,¢) and p(/3,¢) in (3.1) yields that
=B(f8,9) and  p"=p(f,9). (3.34)

1
Indeed, for any ¢ € L3(Q)? and v € C°(0,T), let g, = Mo — @/ T, odx. Then
0
Gn € Qon and we get by (2.7) and the divergence theorem that

1
/ (V- B))ypda — / (V- B)iuda + — / Mypda / V. Bldz = 0.

We can also derive

// (V - By )t (t)dadt = Z/t ) </ )thoda:) Y(t)dt = 0.

Hence (3.33) immediately holds by taking h, 7 — 0 in the above equation and making use
of Lemma 1.2.4 and (3.27).
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Now we will prove (3.18). Indeed, noting that B, ,(-,t,) = B}, by the definition of
By, in (2.8), we have

M T
e [(Br- B [ 1Bunt - Bl
n=1

- Z/t n /Q{(Bh,r(',tn) — B”)2 — (B (- t) — B(',t))g}da:dt

M t 1/2
- C{Z | NBrtet) = Bustot) + <B—B">|rdt}
n=1"Ytn-1
M b 1/2
— C{Z/ ||B—B"+(tn—t)8TBZ||?2dt}
n=1Ytn-1
M tn 1/2 M tn 1/2
< C {Z B — B”I\%dt} +C {Z/ (tn —t)aTBZIIédt}
n=1"tn-1 n=1"tn-1
T 1/2 M oy, 1/2
< C{/ HB—B”H%dt} +C{Z/ (tn—t)QH&BZH?zdt}
0 n=1"tn-1
T 1/2 M 1/2
< O{/ ||B—B"||?zdt} +Cr3? <Z||8TBZH?2) :
0 n=1

This together with Lemma 3.2.1, Lemma 1.2.5 and (3.25) implies that

M T
P [(Br -5 < [ 1Buo) - Beol
n=1

T 1/2 M 1/2
+ C {/ |B — B”||?2dt} +CT (TZ ||GTBZ||?)>
0 n=1

— 0 as h,7—0,

which completes the proof. m
Finally, we are ready to establish the main convergence theorem.

Theorem 3.2.7 Let {5}, g }n=0 be a sequence of minimizers to the discrete minimization
problem (2.6) and suppose 2° € C(0,T; L*(w)), then as h and T tend to 0, each sequence
of {85, 95 }h>0 has a subsequence converging in L*(Q) to a minimizer of the continuous
optimization problem (3.2).

Proof. The uniform boundedness of the sequence {f;, g; tr=o in K x L*(€2) implies
that there exists a subsequence, still denoted by {f;;, g5 }r>0, and some element (8*, g*) €
K x L*(Q) such that

g —g°" inL*Q) pr—p" inHY(Q) and B;— B in L*Q) as h, 7 =0,
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Next we will show (%, g*) is a minimizer of the continuous optimization problem (3.2).
To do so, for any (8, 9) € K x L*(Q), we define (84, gn) = (11,8, I1,9), then we know (cf.
[31]) that (B4, gr) € K x L*(Q) and

By — B in HY Q) as h, 7—0,9,—g in L*(Q) as h, 7—0.
Therefore we can deduce by Lemma 3.2.6 and the lower semi-continuity of a norm that
x % 1 4 * % 612 )\1 %12 )\2 %2
J(B9) = 5 |B(8",¢") — 2°['dedt + — | |VB*"['dx+ = [ |g"|"dz
2 Jo Ju 2 Jo 2 Jo
h,r—0 2

M
. T n/ox % o,n |2 : : /\1 * (2
< lim — E_Oozn/w\Bh(ﬁh,gh)—z | dw+11%551f7/S)|V6h| dx

R )\2 * |2
+11£Ln_>151f?/ﬂ|gh\ dx

lim inf Jh,T(/B;kL? g;;)
h,7—0

IN

IN

lim inf Jy, - (B, gn)
h,7—0

M
. T n n A A
lzfgi%f{gnz:%an/dlBh(ﬁh,gh)—zé’ |2dw+?1/Q|Vﬂh|2dm++?2/ﬂ|gh’2dw}

I 512 A1 2 A2 5

= = |B(5,9) — 2°|*dedt + — | |VB|°dxe+—= [ |g|*dx
2 0 Jw 2 Q 2 Q
J(B,9)

This yields that (8*, g*) is a minimizer of the continuous problem (3.2). n

34



CONCLUSION

In this work, we have discussed some parameter identification problems in a three-
dimensional (3D) spherical dynamo equation. We have considered the inverse problem
of recovering the magnetic diffusivity for a 3D spherical dynamo equation. The highly
ill-posed inverse problem has been transformed into a stable minimization problem by
using Tikhonov regularization and the existence and stability of the minimizers to the
minimization problem has also been verified. Then the finite element approximation and
its convergence have investigated. Then by using the same way, we have introduced and
studied the case when we have two parameters unknown.
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Résumé
Dans ce travail, nous présentons un probleme d'identification a deux parametres,
impliquant la récupération de la diffusivité magnétique et de la force de la source dans
une équation de dynamo sphérique tridimensionnelle (3D). Nous transformons le
probléme mal posé en un probléme de minimisation stable en utilisant la régularisation de
Tikhonov, puis établissons la bien-poséité. Nous développons un schéma entiérement
discret basé sur la méthode des éléments finis.

Mots clés : probleme d'identification a parametres, probléme mal posé, régularisation de
Tikhonov, méthode des éléments finis

Abstract

In this work, we present a two-parameter identification problem. Which involves recovering the
magnetic diffusivity and source strength in a three-dimensional (3D) spherical dynamo
equation. We transform the ill posed problem into a stable minimization problem by using
Tikhonov regularization, We then establish the well-posedness. We develop a fully discrete
scheme based on the finite element method.

. Key words: parameter identification problem ,ill-posed problem , Tikhonov regularization,
finite element method.




