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Notations and Conventions

Notations

• aα(x) = {a1(x), a2(x)}

• H1
γ0
(ω) = {µ ∈ H1(ω) |µ = 0 on γ0} .

• X(ω) = H1
γ0
(ω)3 ×H1

γ0
(ω)3,

• V (ω) =
{
(v, s) ∈ H1

γ0
(ω)3 ×H1

γ0
(ω)3

∣∣ s · a3 = 0 in ω
}
.

• NΦ(ω) = {V ∈ X(ω) : (v − e
2
s) · e3 ≥ Φ a.e. in ω},

• H1
γ0+

(ω) = {σ ∈ H1(γ0(ω)) ; σ ≥ 0 a.e. in ω} .

• Λ =
{
µ ∈ H1

γ 0(ω)) ; ∀σ ∈ H1
γ0+

(ω), ⟨σ, µ⟩ ≥ 0
}
.

• K(ω) = {V ∈ V (ω) : v − e(·)
2s

· e3 = 0 a.e. in ω}.

• Nh,Φ =
{
Vh = (vh, sh) ∈ Xh | Ih

(
(vh − e

2
sh) · e3

)
≥ Φh a.e. in ω

}

iv



Abstracl

In this work, we focus on studying an obstacle problem of Naghdi shell, where we

establish the existence and uniqueness of the solution, as well as the continuous finite

element approximation , and we also pay attention to estimating the error analysis a

priori .

Keywords: obstacle problem of Naghdi shell, the error analysis a priori, finite elements

approximation.
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Résumé

Dans ce travail, nous nous concentrons sur l’étude d’un probléme d’obstacle de la coque

de Naghdi, oú nous établissons l’existence et l’unicité de la solution, ainsi que

l’approximation continue par éléments finis, et nous prêtons également attention á

l’estimation de l’analyse d’erreur a priori.

Mots-clés : probléme d’obstacle du shell Naghdi, l’analyse d’erreur a priori, approxima-

tion par éléments finis.

vi



1



Chapter 1

Introduction

The Naghdi sell model is a two-dimensional shell model. It belongs to the Reissner shell

family, which relies on the theory of Cosserat surfaces.The derivation of the model sup-

poses that the distance between a point and the midsurface remains constant throughout

the deformation of the shell. Under some mechanical assumptions, this model takes into

account membrane deformation and bending of the midsurface. Transverse shear defor-

mations are also taken into account. The unknowns of the problem are the displacement

of the points of the shell midsurface and the rotation field of the normal to the midsurface

The formulation of Naghdi’s model used here was introduced by Blouza [1] and Blouza

and Le Dret [2]. It relies on the idea of using a local basis-free formulation in which the

unknowns are described in Cartesian coordinates instead of covariant or contravariant

components, as is usually done in shell theory (see, for example, [2]). Such a formulation

is capable of handling shells with a W 2,∞-midsurface. In particular, midsurface curvature

discontinuities are allowed. Furthermore, in view of the discretization and as first proposed

in [6], a Lagrange multiplier can be introduced to handle the tangency requirement on

the rotation. This leads to a well-posed mixed variational problem.
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The literature on finite element approximation of two-dimensional shell models is

extensive. Let us mention a few approaches. Concerning conforming methods, the Ganev

and Argyris triangles provide interpolation by polynomials of degree 4 and 5, with high-

order convergence in ch4 when the solution is smooth enough. These elements are used,

for example, to study the linear Koiter model for C3-shells in the classical covariant

formulation . Such methods are also applied to approximate geometrically exact shell

models in [7].

We are interested in two other finite element discretizations relying on the mixed

formulation and already studied in [6]. In the second one, a penalty term is added to

the mixed formulation as standard for saddle-point problems, which leads to an efficient

algorithm for solving the resulting linear system. The convergence of both discretizations

is proved in [6], where a complete a priori analysis is performed .

An outline of the paper is as follows.

• In chapter 2, we recall the geometry of the midsurface and Naghdi’s equations.

Next, we write the mixed formulation and recall its well-posedness.

• in chapter 3 , we intrested by the contact model form and write the mixed formu-

lation and recall its well-posedness .

• in chapter 4, we have the discrete problem and its well-posedness . Next , we recall

a priori of the error , with the a posteriori analysis .
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Chapter 2

A Naghdi shell Model

2.1 Formulation of the Problem

2.1.1 Geometry of the Midsurface and Notation

Let ω be a bounded connected domain in R2 with a Lipschitz-continuous boundary ∂ω.

We consider a shell whose midsurface is given by M = ϕ(ω) where ϕ is a one-to-one

mapping in W 2,∞(ω)3 such that the two vectors

aα(x) = (∂αϕ)(x)

are linearly independent at each point x of ω. Thus,

a3(x) =
a1(x) ∧ a2(x)
|a1(x) ∧ a2(x)|

.

is the unit normal vector on the midsurface at point ϕ(x). The vectors ai(x) define

the local covariant basis at point ϕ(x). The contravariant basis ai(x) is defined by the

relations ai · aj = δji where δji is the Kronecker symbol. In particular, a3(x) coincides

with a3(x). Note that all these vectors belong to W 1,∞(ω)3.
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As standard, Greek indices and exponents take their values in the set {1, 2} and

Latin indices and exponents take their values in the set {1, 2, 3}. The first and second

fundamental forms of the surface are given in covariant components by

aαβ = aα · aβ and bαβ = a3 · ∂βaα.

We set a(x) = |a1(x)∧a2(x)|2 so that pa(x) is the area element of the midsurface in the

chart ϕ. Similarly, the length element on the boundary ∂ω is given by paαβτατβ, with the

standard summation convention for repeated indices and exponents, where aαβ = aα · aβ
being the contravariant components of the first fundamental form and (τ1, τ2) being the

covariant coordinates of a unit vector tangent to ∂ω. The thickness of the shell, denoted

by e, is a positive continuous function.

The first and second fundamental forms of the surface are given in covariant compo-

nents by:

aαβ = aα · aβ,

and

bαβ = a3 · ∂βaα = −aα · ∂βa3 (since aα · a3 = 0).

Since W 1,∞ is a Banach algebra, it follows that aαβ ∈ W 1,∞(ω) and bαβ ∈ L∞(ω).

We further introduce the contravariant components of the first fundamental form:

aαβ = aα · aβ,

and the mixed (where bαβ is symmetric) components of the second fundamental form:

bαβ = aβρb
α
ρ .

Again, aβρ ∈ W 1,∞(ω) and bαβ ∈ L∞(ω).

Finally, the Christoffel symbols of the midsurface are given by:

Γραβ = Γρβα = aρ · ∂βaα,

and we have Γραβ ∈ L∞(ω).
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In the case of a homogeneous, isotropic material with Young modulus E > 0 and

Poisson ratio ν, 0 ≤ ν < 1
2
, the contravariant components of the elasticity tensor aαβρσ

are given by

aαβρσ =
E

2(1 + ν)

(
aαρaβσ + aασaβρ

)
+

Eν

1− ν

(
1

2
aαβaρσ

)
(2.1)

We note that each component of the elasticity tensor belongs to L∞(ω). Moreover,

this tensor satisfies the usual symmetry properties and is uniformly strictly positive.

In this context, the covariant components of the change of metric tensor are given by:

γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα) (2.2)

And the covariant components of the change of transverse shear tensor are given by:

δα3(u, r) =
1

2
(∂αu · a3 + r · aα) (2.3)

And the covariant components of the change of curvature tensor are given by:

χαβ(u, r) =
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα) (2.4)

Note that all these quantities make sense for shells with little regularity, and are easily

expressed with the Cartesian coordinates of the unknowns and geometrical data.

The objective of the lemma presented below is to provide simplified and intrinsic

expressions for the strain tensors, which are more straightforward than those in equa-

tions (2,5)-(2,7). Utilizing these expressions facilitates the establishment of existence and

uniqueness results for general shells, even with potentially discontinuous curvatures. In

this context, rather than representing the displacement and rota

2.1.2 Existence and Uniqueness for the Nagdhi shell Problem

In this section, we delve into the details of the existence and uniqueness theorem, for the

linear Nagdhi shell model. We focus specifically on cases where part of the shell’s bound-

ary is clamped, accommodating curvature discontinuities along the midsurface. This

6



result represents a significant advancement and simplification compared to prior findings

presented . Notably, our analysis extends to scenarios involving C1-shells, encompassing

combinations of planar and cylindrical segments, a departure from the conventional as-

sumption of C3 continuity in ω-space. Our methodology parallels that of previous works,

which tackled similar challenges in the Koiter model.

In the context of elasticity, let aαβρσ ∈ L∞(ω) denote the elasticity tensor, satisfying

the standard symmetries and being uniformly strictly positive. This implies that for any

symmetric tensor ταβ and almost every x ∈ ω, the inequality

aαβρσ(x)ταβτρσ ≥ c
∑
αβ

|ταβ|2 (2.5)

holds, where c represents a positive constant.

To be more specific, we will concentrate on the case of a homogeneous, isotropic

material with Lamu moduli µ > 0 and λ ̸= 0, in which case

aαβρσ = 2µ (aαβaρσ + aασaβρ) +
4λµ

λ+ 2µ
aαβaρσ (2.6)

Let e ∈ L∞(ω) be the thickness of the shell, which we assume to be such that e(x) ≥

c > 0 almost everywhere in ω.

Let ∂ω be the boundary of the chart domain, divided into two parts: γ0, where the

shell is clamped, and its complement γ1 = ∂ω \ γ0, where the shell is subjected to applied

tractions and moments. We assume that γ0 consists of a finite number of connected

components and has a strictly positive one-dimensional measure. To incorporate the

boundary conditions, we define the function space

H1
γ0
(ω) =

{
µ ∈ H1(ω) |µ = 0 on γ0

}
. (2.7)

Consider the function space for shells:

V (ω) =
{
(v, s) ∈ H1

γ0
(ω)3 ×H1

γ0
(ω)3

∣∣ s · a3 = 0 in ω
}
. (2.8)

This space is endowed with the natural Hilbert norm:

∥V ∥V (ω) =
(
∥v∥2H1(ω)3 + ∥s∥2H1(ω)3

) 1
2 (2.9)

Lemma 2.1. The space V is a Hilbert space.

Proof. Clear.
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Existence and Uniqueness Theorem

In this subsection, we leverage the function space defined in Lemma 2.1 to establish the

existence and uniqueness of solutions for the linear Nagdhi model, even in cases where

shells exhibit limited regularity.

Theorem 2.2. Assume that ϕ ∈ W 2,∞(ω;R3). Let f ∈ L2(ω;R3) be a given force

resultant density, and let g ∈ L2(γ1;R3) and m ∈ L2(γ1;R3), with m · a3 = 0, be given

traction and moment resultant densities, respectively. Then there exists a unique solution

to the variational problem:{
Find(u, r) ∈ V such that
A(u, r); (v, s) = l(v, s), for all (v, s) ∈ V,

(2.10)

where

A(u, r); (v, s) =

∫
ω

{
e aαβρσ

[
γαβ(u)γρσ(v) +

e2

12
χαβ(u, r)χρσ(v, s)

]
+ 4µe aαβδα3(u, r)δβ3(v, s)

}√
adx

(2.11)

l(v, s) =

∫
ω

(f · v)
√
a dx+

∫
γ1

(g · v +m · s)
√
aτατβ dγ. (2.12)

We will prove below that the bilinear form of (2,10) is continuous and V -elliptic by

using a contradiction argument, together with Rellich’s theorem and the two-dimensional

Korn inequality. Then existence and uniqueness follow from the Lax-Milgram lemma

applied to problem (2,10).

Lemma 2.3: Let u ∈ H1(ω;R3) and r ∈ H1(ω;R3) such that r · a3 = 0, where ω

represents the domain. Additionally, let ϕ ∈ W 2,∞(ω;R3).

i If u satisfies γ(u) = 0, then there exists a unique ψ ∈ L2(ω;R3) such that

∂αu = ψ ∧ aα, α = 1, 2. (2.13)

ii Furthermore, if u and r satisfy δα3(u, r) = 0, then ∂αu ·a3 = −r ·aα belong to H1(ω).

Moreover, r · aα = −εαβaβ · ψ.

8



iii In addition, under the condition χ(u, r) = 0, ψ can be identified with a constant

vector in R3, and for all x ∈ ω, we have:

u(x) = c+ ψ ∧ ϕ(x),

where c is a constant in R3, and

r(x) = −εαβ(x)aβ(x) · ψ aα(x).

Proof.

(i) for a proof of the existence and uniqueness of the infinitesimal rotation vector ψ

such that (2,13) holds true.

(ii) Suppose now that δα3(u, r) = 0, then

∂αu · a3 = −r · aα ∈ H1(ω), (2.14)

since r ∈ H1(ω;R3) and aα ∈ W 1,∞(ω;R3). Therefore, we have r ·aα = (aα∧a3)·ψ =

−εαβaβ · ψ.

(iii) Let us first note that under the previous hypotheses, we have.

∂αβu · a3 = ∂β(∂αu · a3)− ∂αu · ∂βa3 = −∂β(r · aα)− ∂αu · ∂βa3 ∈ L2(ω), (2.15)

because ∂βa3 ∈ L∞(ω;R3). It follows, by (2.15), that

χαβ(u, r) =
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα)

=
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂α(r · aβ) + ∂β(r · aα)− 2r · ∂αaβ)

=
1

2
(−2∂αβu · a3 − 2r · ∂αaβ)

= −(∂αβu · a3 + εαβρrρ · aρ),

since ∂αaβ = εραβaρ. Then, using (2.4), we see that

χαβ(u, r) = −(∂αβu− εαβρ∂ρu) · a3. (2.16)
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At this juncture, we recognize that (∂αβu − εαβρ∂ρu) · a3 = Γαβ(u) represents the

covariant components of the linearized change of curvature tensor in Koiter’s model,

as discussed . These components belong to the space L2(ω) by virtue of (2.16).

Assuming now that χ(u, r) = 0, we simply need to leverage the infinitesimal rigid

displacement lemma applicable to W 2,∞-Koiter shells, as presented , to conclude

the proof.

Lemma 2.4. There exists a constant C > 0 such that

A(v, s); (v, s) ≥ C

(∑
α,β

∥γ(v)α,β∥2L2(ω) +
∑
α,β

∥χ(v, s)α,β∥2L2(ω) +
∑
α

∥δα,3(v, s)∥2L2(ω)

)1/2

for all (v, s) ∈ H1(ω;R3).

Proof. This is clear in view of inequality (2.5) and the fact that aαβ(x)ηαηβ ≥

C ′∑
α(ηα)

2 for all x ∈ ω.

Lemma 2.5. The bilinear form of problem (2.11) is V -elliptic.

Proof. Because of Lemma 2.3 and the hypotheses made on the chart ϕ, the elasticity

tensor, and the thickness of the shell, it is enough to prove that

∥|(v, s)|∥ =

(∑
α,β

(
∥γ(v)α,β∥2L2(ω) + ∥χ(v, s)α,β∥2L2(ω)

)
+
∑
α

∥δα,3(v, s)∥2L2(ω)

)1/2

(2.17)

The norm |∥ · ∥| on V is bounded from below by a multiple of the natural norm (2.9)

of V .

Let’s begin by proving that |∥ · ∥| is indeed a norm. Suppose (v, s) ∈ V such that

|∥(v, s)∥| = 0. According to Lemma 2.3 of infinitesimal rigid displacement, we have

v(x) = c + ψ ∧ ϕ(x). By assumption, the displacement v vanishes on γ0. If ϕ(γ0) is not

contained in a straight line, it implies v = 0 in ω, meaning ψ = c = 0. Consequently,

s = 0 in ω as well. Now, let’s assume that ϕ(γ0) is contained in a straight line l and ψ ̸= 0.

In this scenario, ψ is parallel to l and thus lies within the planes spanned by aβ(x) for all

x ∈ γ0. Let’s select such an x. Since s = 0 on γ0, it follows that 0 = s ·aρ = −ερβaβ ·ψ on

γ0. Consequently, aβ · ψ = 0 on γ0, and ψ is orthogonal to the plane spanned by aβ(x).

Therefore, ψ = 0, and as before, v = s = 0 in ω.
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For the second part of the proof, we argue by contradiction. Let us assume that there

exists a sequence (vn, sn) ∈ V such that

∥(vn, sn)∥ ∈ V = 1 but ∥(vn, sn)∥∥ → 0 when n→ +∞. (2.18)

By extracting a subsequence, still denoted (vn, sn), we may assume that there exists

(v, s) ∈ V such that

(vn, sn)⇀ (v, s) weakly in H1(ω;R3)×H1(ω;R3)

and

γαβ(vn)⇀ γαβ(v),

χαβ(vn, sn)⇀ χαβ(v, s), and δα3(vn, sn)⇀ δα3(v, s),

weakly in L2(ω). By hypothesis (2.18), the three tensors tend strongly to zero in

L2(ω), and using Lemma 2.3 and the discussion above, we infer that v = s = 0. Then,

Rellich’s lemma implies that vn and sn both tend to zero strongly in L2(ω;R3).

Let us introduce the two-dimensional vector wn = (wn)α = vn · aα. We have, wn → 0

in L2(ω;R2) strongly. Let us define 2eαβ(w) = ∂αw
′
β + ∂βwα. It is easy to see that

eαβ(wn) = γαβ(vn) +
1

2
vn · (∂βaα + ∂αaβ) → 0 strongly in L2(ω). (2.19)

Indeed, ∂βaα ∈ L∞(ω). Then, by the two-dimensional Korn inequality, we deduce that

wn → 0 strongly in H1(ω;R2). (2.20)

Next we note that

∂ρvn · aα = ∂ρ(wn)α − vn · ∂ρaα → 0 strongly in L2(ω). (2.21)

Moreover, as sn → 0 strongly in L2(ω;R3), and ∂ρvn ·a3 = 2δρ3(vn, sn)−sn ·aα, we already

know that
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∂ρvn · a3 → 0 strongly in L2(ω). (2.22)

We deduce that

∂ρvn = (∂ρvn · ai)ai → 0 strongly in L2(ω;R3), (2.23)

by (2.22) and (2.23) and because ai ∈ L∞(ω;R3) and ai ∈ L∞(ω;R3). It follows that

vn → 0 strongly in H1(ω;R3).

We use a similar argument to prove that sn → 0 strongly in H1(ω;R3). Let w′
n =

(wn)α = sn · aα. Then we deduce that wn → 0 strongly in L2(ω,R2). On the other hand,

we see that

2eαβ(w
′
n) → 0 strongly in L2(ω). (2.24)

Indeed,

2eαβ(w
′
n) = 2χαβ(vn, sn)− (∂αvn · ∂βa3 + ∂βvn · ∂αa3) + sn · (∂αaβ + ∂βaα).

Thus, again by the two-dimensional Korn inequality, we conclude that

w′
n → 0 strongly in H1(ω;R2) (2.25)

Consequently, since sn = (sn · aα)aα, it follows that sn → 0 strongly in H1(ω;R3).

Combining now the convergence of vn and sn, we see that ∥(vn, sn)∥V → 0, which

contradicts the hypothesis and proves the lemma.

Proof of Theorem 2.2. The bilinear and linear forms of problem (2.10) are clearly

continuous on the space V . We have just shown that the bilinear form is V -elliptic. We

use the Lax-Milgram theorem to conclude.

Remark 2.6. Upon considering the discretization process, we notice that the tan-

gency constraint s · a3 = 0 in the definition of V (ω) can be addressed by introducing a

Lagrange multiplier. We define the relaxed function space as

X(ω) = H1
γ0
(ω)3 ×H1

γ0
(ω)3,

12



equipped with the norm denoted by ∥ · ∥X(ω). Similarly, we set M(ω) = H1
γ0
(ω). The

forms a(·, ·) and L(·), defined as in (2.12) and (2.13) respectively, remain continuous on

X(ω)×X(ω) and X(ω).

We pose the variational problem:

Find (U, ψ) in X(ω)×M(ω) such that

∀V ∈ X(ω), a(U, V ) + b(V, ψ) = L(V ), (2.26)

∀χ ∈M(ω), b(U, χ) = 0,

where the bilinear form b(·, ·) is defined by

b(V, χ) =

∫
ω

∂α(s · a3)∂αχ dx. (2.27)

Since a3 belongs to W 1,∞(ω)3, the form b(·, ·) is continuous on X(ω)×M(ω). Moreover,

the characterization holds:

V (ω) = {V = (v, s) ∈ X(ω) : ∀χ ∈M(ω), b(V, χ) = 0}.

The inf-sup condition on the form b(·, ·), derived by considering V = (0, χa3), ensures

the existence of a positive constant c∗ such that

∀χ ∈M(ω), sup
V ∈X(ω)

b(V, χ)

∥V ∥X(ω)

≥ c∗∥χ∥H1(ω). (2.28)

Combining these conditions with the ellipticity property ∥U∥V (ω) ≤ c∥L∥ ensures the

well-posedness of problem (2.27). This formulation offers a straightforward approach to

handling the contact problem numerically.

Remark 2.7 Problem (2.11) can also be expressed as a system of partial differential

equations. Let us define the operator A from H1(ω)3 ×H1(ω)3 into H−1(ω)3 ×H−1(ω)3

by duality:

∀V ∈ H1
0 (ω)

3 ×H1
0 (ω)

3, ⟨AU, V ⟩ = a(U, V ),

and its associated Neumann operator N defined from the same space into the dual space

of H1/2
00 (γ1)

3 ×H
1/2
00 (γ1)

3 by:

∀V ∈ H1
γ0
(ω)3 ×H1

γ0
(ω)3, ⟨NU, V ⟩ = a(U, V )− ⟨AU, V ⟩

13



(this requires further regularity, which we assume here). Thus, it can be verified that

problem (2.2) translates to the following system, in the sense of distributions:

AU =

(
f
√
a

0

)
in ω,

r · a3 = 0 in ω,
u = r = 0 on γ0,

NU =

(
Nl

Ml

)
on γ1.

(2.29)

A similar formulation can also be derived for problem (2.27). An explicit form of the

operators A and N is provided .

proof : It can also be noted that the quantity a(U, V ) can be written in another form

. Indeed, we introduce the contravariant components of the following vectors:

- Stress resultant nρσ(u):

nρσ(u) = eaαβρσγαβ(u), (2.30)

- Stress couple mρσ(U):

mρσ(U) =
e3

12
aαβρσχαβ(U), (2.31)

- Transverse shear force tβ(U):

tβ(U) = e
E

1 + ν
aαβδα3(U). (2.32)

We also observe that:

χρσ(V ) = θρσ(v) + γρσ(s), with θρσ(v) =
1

2
(∂ρv · ∂σa3 + ∂σv · ∂ρa3). (2.33)

Thus, a(U, V ) is equal to:

a(U, V ) =

∫
ω

(
nρσ(u)γρσ(v) +mρσ(U)θρσ(v) + tβ(U)∂βv · a3

)√
a dx

+

∫
ω

(
mρσ(U)γρσ(s) + tβ(U)s · aβ

)√
a dx.

(2.34)

and ,l(v) is equal to:

l(v) =

∫
ω

f · v
√
a dx+

∫
ω

λe3 · (v −
e(x)

2
s)
√
a dx+

∫
γ1

(N · v +M · s)
√
adγ. (2.35)
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with the bilinear form b(·, ·)

b(V, ψ) = −a3∂ρ (∂σψ) · s

This form clearly shows how the components v and s of the test function are decoupled,

facilitating the implementation of the computations.

Using the "now" form and the symmetry properties nρσ(u) = nσρ(u) and mρσ(U) =

mσρ(U), we can demonstrate that problem (2.6) is equivalent to the following system of

partial differential equations.Here, v = (v1, v2) represents the unit outward normal vector

to w:

γρσ(v) =
1

2
(∂ρv · aσ + ∂σv · aρ) =

1

2
(−∂ρaσ − ∂σaρ) · v = −∂ρaσ · v

and

θρσ(v) =
1

2
(∂ρv · ∂σa3 + ∂σv · ∂ρa3) =

1

2
(−∂ρ∂σa3 − ∂σ∂ρa3) · v = −∂ρ(∂σa3) · v

and

∂ρv · a3 = −∂ρa3 · v

In the end we find this form:



− ∂ρ
(
(nρσ(u)aσ +mρσ(U)∂σa3 + tρ(U)a3)

√
a
)
= f

√
a in ω,

− ∂ρ
(
mρσ(U)aσ

√
a
)
+ tβ(U)aβ

√
a− ∂ρρψ a3 = 0 in ω,

r · a3 = 0 in ω,
u = r = 0 on γ0,
νρ (n

ρσ(u)aσ +mρσ(U)∂σa3 + tρ(U)a3)
√
a = Nℓ on γ1,

νρ
(
mρσ(U)aσ

√
a+ ∂ρψ a3

)
=Mℓ on γ1.

(2.36)

In conclusion, we observe that the shell is firmly affixed to the obstacle if and only if

the function Φ vanishes on γ0.
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Chapter 3

The contact model

3.1 contact problem

The Naghdi model represents a two-dimensional shell structure. In the preceding section,

focus was solely on the shell’s mid-surface, denoted as M . This model belongs to the

Reissner shell family, which is grounded in the theory of Cosserat surfaces. The contact

model’s derivation assumes that the distance between a point and the mid-surface remains

constant during shell deformation. Additionally, it’s presumed that points aligned along a

normal line to the mid-surface will stay aligned, though this line will no longer be normal

to the deformed mid-surface.

Consequently, the primary unknowns in this two-dimensional model are the displace-

ment (u) of points on the shell mid-surface and the linearized rotation field (r), which

describes the normal straight fiber rotations of the mid-surface. Mathematically, this

implies that the displacement of a point ϕ(x) + za3(x) is the vector u(x) + zr(x).

It’s noteworthy that the rotation field r should be tangential in a linearized theory.

This is because the rotation vector associated with the unit normal vector of the dis-
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placement field of the mid-surface is tangential to a first-order approximation. Thus,

the linearized rotation vector r has a zero component over the vector a3. For further

elaboration.

A shell S with midsurface M = ϕ(ω) and thickness e is given by:

S =

{
ϕ(x) + za3(x) , x ∈ ω,−e(x)

2
≤ z ≤ e(x)

2

}
(3.1)

In this context, z denotes the distance from a point on the shell to its mid-surface.

Let {e1, e2, e3} represent the Cartesian basis in R3. Our focus lies in investigating the

contact between the shell and a rigid obstacle situated in the half-space z · e3 < 0, where

the boundary of the obstacle extends across the plane z · e3 = 0. Henceforth, we assume,

without loss of generality, that the function ϕ satisfies ϕ(x) · e3 > 0 for all x in ω. This

criterion ensures that contact occurs predominantly on the lower surface of the shell,

specifically on the surface given by {ϕ(x)− e(x)
2
a3 |x ∈ ω}.

However, from a numerical point of view, we immediately encounter a problem since

the constraint r · a3 = 0 clearly cannot be implemented in a conforming way for a general

shell. We thus introduce the convex set in which the unknowns are the displacement u

and r, elements of the space X(ω) without any constraint:

NΦ(ω) = {V ∈ X(ω) : (v − e

2
s) · e3 ≥ Φ a.e. in ω},

together with the space M(ω) = H1
γ0
(ω), and consider the problem:

Find (U, ψ) in NΦ(ω)×M(ω) such that

a(U, V − U) + b(V − U, ψ) ≥ L(V − U), ∀V ∈ NΦ(ω), (3.2)

b(U, χ) = 0, ∀χ ∈M(ω), (3.3)

where the form b(·, ·) is now defined by

b(V, χ) =

∫
ω

∂α(s · a3)∂αχdω. (3.4)

It is readily checked that, for any solution (U, ψ) of problem (3.4), its part U is a

solution of problem (3.16). Let us check now the well-posedness of this problem. We need

17



a preliminary lemma for that. Let N ](ω) be the following subspace

N#(ω) = {V ∈ X(ω) : (v − e

2
s) · e3 = 0 a.e. in ω} (3.5)

Lemma 3.1: There exists a constant β > 0 such that the following inf-sup condition

holds:

∀χ ∈M(ω), sup
V ∈N ](ω)

b(V, χ)

∥V ∥X(ω)

≥ β∥χ∥M(ω). (3.6)

Theorem 3.2: Assume that the function Φ satisfies

Φ(x) ≤ 0 for a.e. x in ω and Φ(x) = 0 for a.e. x on γ0. (3.7)

Then, for any data (f,N,M) ∈ L2(ω;R3) × L2(γ1;R3) × L2(γ1;R3), problem (2.16) has

a unique solution (U, ψ) ∈ X(ω)×M(ω).

As is standard for contact models, the contact condition involves three equations or

inequalities:

1. The relative positions of the shell and the obstacle,

2. The reaction of the obstacle on the shell, and

3. The location of this reaction.

We will now describe each of these components in detail.

3.1.1 Positions of the Shell and the Obstacle

In accordance with the shell model, the deformed shell S∗ has its mid-surface M∗ defined

as ϕ∗(ω), where ϕ∗ equals ϕ+ u. Consequently, we set a∗
3 = a3 + r.

Since the shell is assumed to exhibit neither pinching nor dilation, the domain S∗ is

expressed as:

S∗ = {ϕ∗(x) + za∗
3(x) , x ∈ ω,−e(x)

2
≤ z ≤ e(x)

2
} (3.8)

Here, z still represents the distance from a point of the shell to the mid-surface M∗. Thus,

verifying that the shell lies above the obstacle entails:

18



∀x ∈ ω,∀z ∈
[
−e(x)

2
,
e(x)

2

]
, (ϕ∗(x) + za∗

3(x)) · e3 ≥ 0,

or equivalently:

∀x ∈ ω,

(
ϕ(x) + u(x)− e(x)

2
(a3(x) + r(x))

)
· e3 ≥ 0.

Introducing:

Φ(x) =

(
e(x)

2
a3(x)− ϕ(x)

)
· e3, (3.9)

the first contact inequality can be expressed as:(
u− e(·)

2
r

)
· e3 ≥ Φ in ω. (3.10)

Let ωc denote the contact zone, i.e., the set of points x in ω such that:(
u(x)− e(x)

2
r(x)

)
· e3 = Φ(x). (3.11)

3.1.2 Obstacle’s Reaction

In our considered scenario, the obstacle’s response to the presence of the shell is charac-

terized by the scalar function λ, resulting in a reaction of the form λe3. Consequently, in

the equation’s right-hand side, the term
∫
ω
f · v

√
a dx must be adjusted to:∫

ω

f · v
√
a dx+

∫
ω

λe3 · (v −
e(x)

2
s)
√
a dx

This modification accounts for the obstacle’s resistance against the lower section of the

shell, represented by
(
v − e(·)

2
s
)
.

Furthermore, given the shell’s positioning above the obstacle, it follows that

λ ≥ 0. (3.12)
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3.1.3 Location of the Reaction

Naturally, the obstacle’s reaction is confined to the contact zone ωc as defined by equation

(3.15). This condition gives rise to the complementarity equation:

λ

(
u− e(·)

2
r · e3 − Φ

)
= 0 in ω. (3.13)

By incorporating these considerations into problem (2.34), we derive the model for

the shell’s contact. In this model, the unknowns consist of the shell’s deformation u, its

rotation r, and the reaction coefficient.



AU −

(
λe3

√
a

−λe3 e(·)2
√
a

)
=

(
f
√
a

0

)
in ω,

r · a3 = 0 in ω,

u− e(·)
2
r · e3 ≥ Φ, λ ≥ 0, λ

(
u− e(·)

2
r · e3 − Φ

)
= 0 in ω,

u = r = 0 on γ0,

NU =

(
Nl

Ml

)
(3.14)

It is noteworthy that the inequalities associated with the contact solely pertain to

the third components of the unknowns. Hence, it is crucial to operate within Cartesian

coordinates in this context

proof : It can also be noted that the quantity a(U, V ) can be written in another form

which seems more appropriate for implementation, as it decouples the two components v

and s of the test function V . Indeed, we introduce the contravariant components of the

following vectors:

- Stress resultant nρσ(u):

nρσ(u) = eaαβρσγαβ(u), (3.15)

- Stress couple mρσ(U):

mρσ(U) =
e3

12
aαβρσχαβ(U), (3.16)
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- Transverse shear force tβ(U):

tβ(U) = e
E

1 + ν
aαβδα3(U). (3.17)

We also observe that:

χρσ(V ) = θρσ(v) + γρσ(s), with θρσ(v) =
1

2
(∂ρv · ∂σa3 + ∂σv · ∂ρa3). (3.18)

Thus, a(U, V ) is equal to:

a(U, V ) =

∫
ω

(
nρσ(u)γρσ(v) +mρσ(U)θρσ(v) + tβ(U)∂βv · a3

)√
a dx

+

∫
ω

(
mρσ(U)γρσ(s) + tβ(U)s · aβ

)√
a dx.

(3.19)

and ,l(v) is equal to:

l(v) =

∫
ω

f · v
√
a dx+

∫
ω

λe3 · (v −
e(x)

2
s)
√
a dx+

∫
γ1

(N · v +M · s)
√
adγ. (3.20)

with the bilinear form b(·, ·)

b(V, ψ) = −a3∂ρ (∂σψ) · s

This form clearly shows how the components v and s of the test function are decoupled,

facilitating the implementation of the computations.

Using the "now" form and the symmetry properties nρσ(u) = nσρ(u) and mρσ(U) =

mσρ(U), we can demonstrate that problem (2.6) is equivalent to the following system of

partial differential equations.Here, v = (v1, v2) represents the unit outward normal vector

to w:

γρσ(v) =
1

2
(∂ρv · aσ + ∂σv · aρ) =

1

2
(−∂ρaσ − ∂σaρ) · v = −∂ρaσ · v

and

θρσ(v) =
1

2
(∂ρv · ∂σa3 + ∂σv · ∂ρa3) =

1

2
(−∂ρ∂σa3 − ∂σ∂ρa3) · v = −∂ρ(∂σa3) · v

and

∂ρv · a3 = −∂ρa3 · v
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The problem suggests that the integrals can be expressed separately in terms of v and

s, and by utilizing the given symmetry properties, it’s evident that the problem can be

represented as a system of partial differential equations.



− ∂ρ
(
(nρσ(u)aσ +mρσ(U)∂σa3 + tρ(U)a3)

√
a
)
− λ e3

√
a = f

√
a in ω,

− ∂ρ
(
mρσ(U)aσ

√
a
)
+ tβ(U)aβ

√
a− ∂ρρψ a3 + λ e3

e(.)

2

√
a = 0 in ω,

r · a3 = 0 in ω,

u− e(·)
2
r · e3 ≥ Φ, λ ≥ 0, λ

(
u− e(·)

2
r · e3 − Φ

)
= 0 in ω,

u = r = 0 on γ0,
νρ (n

ρσ(u)aσ +mρσ(U)∂σa3 + tρ(U)a3)
√
a = Nℓ on γ1,

νρ
(
mρσ(U)aσ

√
a+ ∂ρψ a3

)
=Mℓ on γ1.

(3.21)

In conclusion, we observe that the shell is firmly affixed to the obstacle if and only if

the function Φ vanishes on γ0. This assumption aligns with a realistic physical scenario,

and its mathematical significance will become apparent in the subsequent section.

3.2 Variational formulation and well-posedness

We introduce the following cones:

H1
γ0+

(ω) =
{
σ ∈ H1(γ0(ω)) ; σ ≥ 0 a.e. in ω

}
, (3.22)

and

Λ =
{
µ ∈ H1

γ 0(ω)) ; ∀σ ∈ H1
γ0+

(ω), ⟨σ, µ⟩ ≥ 0
}
. (3.23)

Where H1
γ0
(ω)′ stands for the dual space of H1

γ0
(ω) and ⟨·, ·⟩ is the duality pairing

between H1
γ0
(ω) and H1

γ0
(ω)′. Next, in view of Section 2, we consider the following varia-

tional problem:

Find (U, ψ, λ) ∈ X(ω)×M(ω)× Λ such that

∀V ∈ X(ω), a(U, V ) + b(V, ψ)− c(V, λ) = L(V ),

∀χ ∈M(ω), b(U, χ) = 0,

∀µ ∈ Λ, c(U, µ− λ) ≥ ⟨Φ
√
a, µ− λ⟩.

(3.24)
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where the forms a(., .), b(., .) and L( .) have been introduced in (2.18), (2.34), and

(2.19), respectively, while the form c(., .) is given by

c(V, µ) = ⟨(v − e(·)
2
s) · e3

√
a, µ⟩ (3.25)

In this formulation, the duality pairing can be substituted with an integral whenever µ

belongs to L2(Ω). However, for general functions µ in Λ, the expression on the right-hand

side of the third line is meaningful only if the function Φ lies in H1
γ0
(ω). Prior to assessing

the equivalence of this problem with system (3.8), it’s crucial to ensure this condition.

Proposition 3.3 If the partition of ∂ω into γ0 and γ1 is suitably smooth such that

D(ω∪γ1) is dense in H1
γ0
(ω), then any triple (U, ψ, λ) in X(ω)×M(ω)×Λ solves problem

(3.11) if and only if it satisfies system (3.8) in the distributional sense.

Proof: Given the preceding assumption, the first equation in (3.17) corresponds to

the first and fifth lines in (3.14) (also refer to (2.34) for the Lagrange multiplier ψ), while

the second equation in (3.17) aligns with the second line in (3.14). Furthermore, the

boundary conditions on u and r on γ0, as well as the non-negativity of λ, stem from the

definitions of the space H1
γ0
(ω) and the cone Λ. Thus, it remains to verify the equivalence

of the third line in (3.17) to the appropriate terms.

u− e(·)
2
r · e3 ≥ Φ and λ

(
u− e(·)

2
r · e3 − Φ

)
= 0 in ω (3.26)

1. If (U, λ) satisfies (3.19), we have for all µ in Λ

c(U, µ− λ) = c(U, µ)− ⟨Φ
√
a, λ⟩

whence, due to the nonnegativity of µ,

c(U, µ− λ) ≥ ⟨Φ
√
a, µ− λ⟩

which is the third line in (3.17).

2. Conversely, if (U, λ) satisfies the third line of (3.17), taking µ equal to λ+χO where

χO is the characteristic function of any measurable subset O of ω, we have∫
O

u− e(x)

2
r · e3

√
a dx ≥

∫
O

Φ
√
a dx
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which yields the first part of (3.19). On the other hand, taking successively µ equal

to 0 and to 2λ leads to

⟨(u− e(·)
2
r) · e3

√
a, λ⟩ = ⟨Φ

√
a, λ⟩

Since both quantities (u− e(·)
2
r ·e3−Φ) and λ are nonnegative, this gives the second

part of (3.19).

The assumption stated in Proposition 3.1 holds true for all geometries under consideration.

Now, we delve into the analysis of problem (3.11). While a similar, albeit simpler, system

has


Find(U, λ) inV (ω)× Λsuch that
∀V ∈ V (ω), a(U, V )− c(V, λ) = L(V ),

∀µ ∈ Λ, c(U, µ− λ) ≥ ⟨Φ
√
a, µ− λ⟩.

(3.27)

The next statement is a direct consequence of the inf-sup condition (2.35).

Proposition 3.4 establishes the equivalence between problems (3.17) and (3.19) in

the following manner:

i If (U, ψ, λ) is a solution to problem (3.17), then (U, λ) is a solution to problem (3.19).

ii Conversely, if (U, λ) solves problem (3.20), then , there exists a unique ψ in M(ω)

such that (U, ψ, λ) is a solution to problem (3.17).

However, this equivalence alone does not guarantee the existence of a solution for

problem (3.17). To address this, we introduce the convex set

KΦ(ω) = {V ∈ V (ω) : v − e(·)
2s

· e3 ≥ Φ almost everywhere in ω} (3.28)

From Propositions 3.1 and 3.2, we observe that the solution U of problem (3.19)

belongs to KΦ(ω). Consequently, we pose the problem:

Find U in KΦ(ω) such that

∀V ∈ KΦ(ω), a(U, V − U) ≥ L(V − U). (3.29)
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With this, we are now ready to present the following result.

Proposition 3.5. Assume that the function Φ satisfies

Φ(x) ≤ 0 for almost everyx inω. (3.30)

Then, for any data (f,N,M) in L2(ω)3 × L2(γ1)
3 × L2(γ1)

3, problem (3.22) has a unique

solution U in KΦ(ω).

proof:To establish the existence and uniqueness of a solution for problem (3.17), we ob-

serve that the set KΦ(ω) is closed, convex, and non-empty due to assumption (3.17). This

property, along with the ellipticity property a(V, V ) ≥ c∗∥V ∥2V (ω), allows us to directly

apply the Lions-Stampacchia theorem.

The condition (3.30) arises from the positivity constraint of φ · e3 when the thickness

e is moderate. This condition ensures the feasibility of the problem. To further confirm

the existence of a solution for problem (3.19), and consequently for problem (3.30), we

proceed to examine the properties of the form c(·, ·).

Lemma 3.6: The form c(·, ·) is continuous on X(ω)×H1
γ0
(ω)0 and satisfies the inf-sup

condition with a constant δ > 0, expressed as:

∀µ ∈ H1
γ0
(ω)0, sup

V ∈V (ω)

c(V, µ)

∥V ∥X(ω)

≥ δ∥µ∥H1
γ0

(ω)0 (3.31)

Proof: The continuity of c(·, ·) stems from its definition and the continuity of the

mapping V 7→ (v − e(·)
2s
) · e3

√
a from X(ω) to H1

γ0
(ω). Additionally, for any µ in H1

γ0
(ω)0,

the Lax-Milgram lemma combined with the Poincare-Friedrichs inequality ensures the

unique existence of σ ∈ H1
γ0
(Ω) satisfying:

∀ρ ∈ H1
γ0
(Ω),

∫
Ω

∇σ · ∇ρ dx = ⟨ρ, µ⟩ (3.32)

Moreover, the norm definition

∥µ∥H1
γ0

(ω)0 ≤ |σ|H1(ω) is satisfied.

Furthermore, by considering V = (v, 0) with v = (0, 0, σ/
√
a), it follows that

c(V, µ) = |σ|2H1(ω) and ∥V ∥X(ω) ≤ c∥σ∥H1(ω).
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Additionally, this V belongs to V (ω). Together with the Poincare-Friedrichs inequality,

this establishes the desired condition.

Proposition 3.7: Assume that the function Φ satisfies (3.23) and

Φ(x) = 0 for almost every x inγ0 (3.33)

Then, for any data (f,N,M) in L2(ω)3 × L2(γ1)
3 × L2(γ1)

3, problem (3.19) has at least

one solution (U, λ) in V (ω)× Λ.

Proof: Let U be the solution of problem (3.22) (see Proposition 3.2). Let K(ω)

denote the kernel of the form c(·, ·), namely the set

K(ω) = {V ∈ V (ω) : v − e(·)
2s

· e3 = 0 a.e. in ω}.

For any function W in K(ω), it is readily checked that the functions V = U ± W

belong to KΦ(ω), so that applying problem (3.22) to these V yields a(U,W ) = L(W ).

Thus, the form V 7→ a(U, V ) − L(V ) belongs to the polar set of K(ω). It then follows

from the inf-sup condition (3.24) that there exists a unique λ in H1
γ0
(ω)0 such that

∀V ∈ V (ω), c(V, λ) = a(U, V )− L(V ). (3.34)

We now wish to prove that (U, λ) is a solution of problem (3.19).

1) For all σ in H+
γ0
(ω), we take V = U +W , with W = (w, 0) and w = (0, 0,

√
σ/a). This

function belongs to KΦ(ω), and it follows from problem (3.22) that

c(W,λ) = a(U, V − U)− L(V − U) ≥ 0.

Since c(W,λ) coincides with ⟨σ, λ⟩, we thus derive from definition (3.16) that λ belongs

to Λ.

2) By taking V = (v, 0) and v = (0, 0,Φ), and noting that this V belongs to KΦ(ω), we

derive from (3.22) that

−c(U, λ) ≥ −⟨Φ
√
a, λ⟩. (3.35)
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On the other hand, it follows from the definition (3.21) of KΦ(ω), together with as-

sumption (3.26), that, for any µ in Λ,

c(U, µ) ≥ ⟨Φ
√
a, µ⟩.

By combining these two inequalities, we obtain

c(U, µ− λ) ≥ ⟨Φ
√
a, µ− λ⟩,

which is the second line of (3.19).

Thus, the pair (U, λ) belongs to V (ω)×Λ and satisfies the two lines of problem (3.19).

Remark 3.8: It’s conceivable that the variable λ in the solution exhibits a higher

degree of regularity than indicated in the preceding proposition. However, to establish

this additional regularity seem inapplicable in this context.

Proposition 3.9: Given that the function Φ satisfies conditions (3.23) and (3.26), for

any given data (f,N,M) in L2(ω)3×L2(γ1)
3×L2(γ1)

3, problem (3.19) admits at most one

solution (U, λ) in V (ω)×Λ. Furthermore, the component U of this solution also satisfies

problem (3.22).

Proof: We divide the proof into two steps, beginning with the second part of the

statement.

1. Let (U, λ) be any solution of problem (3.19). For any subset O of Ω, with χO

denoting the characteristic function of O, setting µ = λ+ χO in problem (3.19), we

obtain ∫
O

(
u− e(x)2r√

a
· e3 − Φ(x)

)
dx ≥ 0,

which implies that U belongs to KΦ(ω). Now, to prove that, for any V in KΦ(ω),

c(V − U, λ) is nonnegative, we first observe that inequality (3.26) still holds by

setting µ equal to zero in (3.19). Second, using the definition (3.20) of KΦ(ω) and

the fact that λ belongs to Λ, we obtain

c(V, λ) ≥ ⟨ Φ√
a
, λ⟩. (3.36)

Summing up these two inequalities yields the desired result.
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2. Let (U1, λ1) and (U2, λ2) be two solutions of problem (3.19). It follows from the

previous lines that U1 and U2 are solutions of problem (3.27). Thus, owing to

Proposition 3.3, they are equal. The functions λ1 and λ2 satisfy (3.27), and from

the inf-sup condition (3.24), they are equal. This yields the uniqueness of the

solution of problem (3.19).

By combining Propositions 3.2, 3.5, and 3.7, we derive the main result of this section.

Theorem 3.10: Assume that the function Φ satisfies (3.23) and (3.26). Then, for

any data (f,N,M) in L2(ω)3 × L2(γ1)
3 × L2(γ1)

3, problem (3.16) has a unique solution

(U, ψ, λ) in X(ω)×M(ω)× Λ.

In the subsequent discussion, our primary focus lies in the discretization of problem

(3.22). It’s noteworthy from Proposition 3.3 that the well-posedness of this problem only

necessitates assumption (3.23). However, if assumption (3.26) is not satisfied, there exists

no connection between this problem and the contact model.
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Chapter 4

Finite element approximation

4.1 The discrete problem

Without constraints, we now consider ω as a polygon. Let (Th)h represent a regular family

of triangulations of ω (using triangles), such that for each h:

• ω encompasses all elements of Th.

• If not empty, the intersection of two distinct elements of Th comprises either a vertex

or an entire edge of both elements.

• The ratio of the diameter hK of any element K in Th to the diameter of its inscribed

circle is less than a constant σ, independent of h.

As usual, h denotes the maximum diameter hK , where K ∈ Th. We also assume,

without imposing restrictions, that both γ0 and γ1 consist of entire edges of elements of

Th.

Given our primary interest in shells with minimal regularity - where classical formula-

tions might not be suitable - pursuing higher-order elements to enhance convergence rates
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may not be fruitful. In the case of such shells, the underlying system of PDEs exhibits

nonsmooth coefficients. Consequently, it remains uncertain whether elliptic regularity can

be applied to achieve even H2-regularity, let alone Hk+1-regularity with k ≥ 1. However,

it’s worth noting that if the midsurface chart is smooth and we opt to use our formulation

for simplicity compared to classical approaches, then elliptic regularity will apply.

Therefore, let us introduce the basic approximation spaces:

Mh = {µh ∈ H1(ω) : ∀K ∈ Th, µh|K ∈ P1(K)} (4.1)

Xh
γ0

= {vh ∈ H1
γ0
(ω;R3) : ∀K ∈ Th, vh|K ∈ P1(K)} (4.2)

where P1(K) stands for the space of restrictions to K of affine functions on R2. The

spaces involved in the discrete problem are then:

Mh =Mh ∩H1
γ0
(ω), Xγ0

h = Xh
γ0
×Xh

γ0
. (4.3)

Let Ih denote the Lagrange interpolation operator with values in (Mh)
3. Since ϕ

belongs to W 2,∞(ω;R3), the function Φ is continuous on ω. Therefore, we define

Φh = IhΦ

. and introduce the discrete convex set:

Nh,Φ =
{
Vh = (vh, sh) ∈ Xh | Ih

(
(vh −

e

2
sh) · e3

)
≥ Φh a.e. in ω

}
(4.4)

This set’s construction is relatively straightforward, as its condition is equivalent to a

pointwise requirement: for all vertices a belonging to elements within Th,(
(vh(a)−

e

2
sh(a)) · e3

)
≥ Φh(a) (4.5)

The choice ofNh,Φ is, of course, pivotal for constructing our discrete problem. However,

given the potentially high variability of Φ, it appears impossible to select it as a subset

of NΦ.

Therefore, we are in a position to construct the discrete problem using the Galerkin

method applied to problem (2.27) with a slight modification. It reads:
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Find (Uh, ψh) in Nh,Φ ×Mh
γ0

such that

a(Uh, Vh − Uh) + bh(Vh − Uh, ψh) ≥ L(Vh − Uh), ∀Vh ∈ Nh,Φ, (4.6)

bh(Uh, χh) = 0, ∀χh ∈Mγ0
h , (4.7)

where the form bh(·, ·) is defined on sufficiently smooth functions V and χ by

bh(V, χ) =

∫
ω

∂αIh(s · a3)∂αχdx. (4.8)

remark.4.1 In implementing this problem, approximations of the scalar coefficients aαβ,

aαβρσ,
√
a, and ` in the space Mh are introduced alongside approximations of the vectors

ak and ∂αa3 in the space (Mh)
3. This results in a modified discrete problem where the

forms a(·, ·), b(·, ·), and L are replaced by ah(·, ·), bh(·, ·), and Lh respectively.

However, it has been verified for the a posteriori analysis that this modification only

introduces technical difficulties in the proofs, without any major changes in the final

estimates. Hence, we prefer to skip it in what follows.

Proving the well-posedness of problem (4.6) requires several steps. We first introduce

the kernel

Vh = {Vh ∈ Xh | ∀χh ∈Mγ0
h , bh(Vh, χh) = 0}. (4.9)

It is readily checked that, for any solution (Uh, ψh) of problem (4.5), its part Uh is a

solution of the problem: Find Uh in Nh,Φ ∩ Vh such that:

a(Uh, Vh − Uh) ≥ L(Vh − Uh), ∀Vh ∈ Nh,Φ ∩ Vh. (4.10)

The next lemma provides a characterization of Vh.

Lemma 4.2: The space Vh coincides with the set of functions Vh = (vh, sh) in Xh,

provided that:

Ih(sh · a3) = 0 in ω. (4.11)

Proof: By setting χh equal to Ih(sh · a3) in the definition of Vh, we find that the

gradient of Ih(sh · a3) is zero. Thus, the desired property follows from its vanishing on γ0.
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This lack of conformity in discretization complicates the proof of the well-posedness

of problem (4.10) slightly. We commence with a technical lemma, and from now on, we

assume that a3 belongs to W 2,∞(ω;R3).

Lemma 4.3: For any function sh in M3
h , the following estimate holds:

∥sh · a3 − Ih(sh · a3)∥H1(ω) ≤ ch∥sh∥H1(ω;R3). (4.12)

Proof: Employing the standard properties of the Lagrange interpolation operator with

values in Mh
γ0

, we derive for all K in Th that

∥sh · a3 − Ih(sh · a3)∥H1(K) ≤ ch|sh · a3|H2(K).

To evaluate |sh · a3|H2(K), note that since sh|K belongs to P1(K)3, each partial derivative

∂αβ(sh · a3) can be expressed as

∂αβ(sh · a3) = ∂αsh · ∂βa3 + ∂βsh · ∂αa3 + sh · ∂αβa3,

yielding the desired result.

Remark 4.4: Remark 4.2 highlights the possibility of employing a weaker assumption

for a3 by transitioning to the reference triangle K̂ and utilizing the embedding of H1(K̂)

into all Lp(K̂), where 1 ≤ p < +∞, to establish an analogous result to the estimate

(4.12). However, for the sake of simplicity, we opted not to pursue this modification.

Hence, we are in a position to deduce the following ellipticity property.

Lemma 4.5: There exists a real number h0 > 0 and a constant α∗ > 0 such that, for

all h ≤ h0,

a(Vh, Vh)Ω ≥ α∗∥Vh∥2X(Ω), ∀Vh ∈ Vh. (4.13)

proof: For any Vh = (vh, sh) in Vh, the function Vh−W , where W = (0, (sh ·a3)a3), belongs

to V (Ω). Hence, applying the ellipticity property {a(V, V )Ω ≥ α∥V ∥2X} , we obtain:

a(Vh −W,Vh −W ) ≥ α∥Vh −W∥2X(Ω).

Denoting the norm of a(·, ·) on X(Ω) by c, we derive:

a(Vh, Vh) ≥ α∥Vh∥2X(Ω) − 2α∥Vh∥X(Ω)∥W∥X(Ω) − 2c∥Vh∥X(Ω)∥W∥X(Ω) − c∥W∥2X(Ω).
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Since Vh belongs to Vh, it follows from Lemma 4.1 that the quantity W equals:

(0, (sh · a3 − Ih(sh · a3))a3).

Therefore, the desired ellipticity property is a direct consequence of Lemma 4.2.

This property implies that, for h ≤ h0, problem (4.10) is well-posed. The arguments

for proving that problem (4.7) has a unique solution are exactly the same as in Section 2;

we only present a condensed version of the proofs where necessary. First, note that the

formula:

bh(V, χ) = b(V, χ)−
∫
Ω

∂α(s · a3 − Ih(s · a3))∂αχdx,

and Lemma 4.2 yield the continuity of bh(·, ·) on Xh × Mh; furthermore, its norm is

bounded independently of h. We also define the set:

Nh,# = {Vh ∈ Xh; Ih(vh −
e

2
sh) · e3 = 0 almost everywhere in ω}. (4.14)

Lemma 4.6: There exists a real number h∗ > 0 and a constant β∗ > 0 such that the

following inf-sup condition holds for all h ≤ h∗:

∀χh ∈Mh, sup
Vh∈Nh,#

bh(Vh, χh)

∥Vh∥X(ω)

≥ β∗∥χh∥M(ω). (4.15)

Proof: For any function χh in Mh, the pair Vh = (vh, sh) with sh = Ih(χha3) and

vh = e
2
sh belongs to Nh,#. We have:

bh(Vh, χh) ≥ ∥χh∥2M(ω) − ∥sh · a3 − Ih(sh · a3)∥H1(ω)∥χh∥M(ω)

−∥χha3 − Ih(χha3)∥H1(ω;R3)∥χh∥M(ω).

From Lemma 4.2 and its extension, this quantity is greater than c∥χh∥2M(ω) for suffi-

ciently small h. Lemma 4.2 also implies that:

∥Vh∥X(ω) ≤ c∥χh∥M(ω).

Thus, the inf-sup condition is satisfied as required.

Theorem 4.7 Let Φ be a function satisfying condition (3.29). Then, for any data

(f,N,M) in L2(ω)3 ×L2(γ1)
3 ×L2(γ1)

3, problem (4.6) admits a unique solution (Uh, ψh)

in the function spaces Xh ×Mh.
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Proof. The proof follows the same arguments as for Theorem 3.10, incorporating the

newly introduced ellipticity and inf-sup properties from Lemmas 4.3 and 4.4 .

4.1.1 Different way:

Let Th be a regular affine triangulation that covers the domain ω. Here, h is the mesh

size, or more precisely:

h = max
T∈Th

diam(T )

where diam(T ) is the diameter of the triangle T .

For a positive integer k, Pk(T ) stands for the set of functions on T which are the

restrictions to T of polynomials of degree less than or equal to k.

For T ∈ Th, bT denotes the bubble function defined by:

bT =
λ1λ2λ3
27

where λi, i = 1, 2, 3 are the barycentric coordinates of T . Note that bT ∈ H1
0 (T ) ∩ P3(T )

has a maximum value of one.

We further define:

B3(T ) = {v ∈ H1
0 (T ); v = bTw, w ∈ P0(T )}

Let us define the finite dimensional spaces:

Mh := {χh ∈ H1
γ0
(ω) | χh|T ∈ P1(T )⊕B3(T ), ∀T ∈ Th}

Qh := {µh ∈ L2(ω) | µh|T ∈ P0(T ), ∀T ∈ Th}

Xh := (Mh)
3 × (Mh)

3

Wh := {(vh, sh) ∈ Xh; (vh −
ϵ

2
sh) · e3 = 0}

Then, we introduce the discrete convex cone:

Nh := {(vh, sh) ∈ Xh; (vh −
e

2
sh) · e3 ≥ Φh}
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where Φh := IhΦ, with Ih being the standard Lagrange interpolant operator. Specifi-

cally, (IhΦ)T ∈ P1(T ) and (IhΦ)T (x) = Φ(x) for all vertices x of T .

Clearly, we have Xh ⊂ X, Mh ⊂M , and Wh ⊂ Nh, but Nh is not necessarily contained

in NΦ.

(P1)


Find (Uh, ψh) ∈ Nh ×Mh such that:
∀Vh ∈ Nh, aρ(Uh, Vh − Uh) + b(Vh − Uh, ψh) ≥ L(Vh − Uh),

∀χh ∈Mh, b(Uh, χh) = 0.

(4.16)

where for any real parameter ρ > 0, we set

aρ(U, V ) = a(Uh, Vh) + ρ

∫
ω

∂α(rh · a3)∂α(sh · a3) dx, ∀Uh = (uh, rh), Vh = (vh, sh) ∈ Xh.

(P2)

{
Find (Uh, ψh) ∈ Nh ×Mh such that:
Aρ((Uh, ψh); (Vh − Uh, χh)) ≥ L(Vh − Uh), ∀(Vh, χh) ∈ Nh ×Mh.

(4.17)

We define the bilinear form Aρ : K ×K → R through

Aρ((Wh, µh), (Vh, χh)) = aρ(Wh, Vh) + b(Vh, µh) + b(Wh, χh)

Lemma 4.8 asserts that for a sufficiently small mesh size h, there exists a positive

constant Cb such that the following inequality holds uniformly for all χh ∈ Mh and

Vh ∈ Wh:

inf
χh∈Mh

sup
Vh∈Wh

b(Vh, χh)

∥χh∥M∥Vh∥X
≥ Cb

Theorem 4.9. If the mesh size ` is sufficiently small, then (P1) admits a unique

solution

(P3)


find (Uh, ψh, λh) ∈ Xh ×Mh × Λh such that:
∀Vh ∈ Xh, a(Uh, Vh) + b(Vh, ψh)− c(Vh, λh) = ⟨φ, Vh⟩,
∀χh ∈Mh, b(Uh, χh) = 0,

∀µh ∈ Λh, c(Uh, µh − λh) ≥ ⟨θh, µh − λh⟩,

(4.18)

The h-dependent norm ∥χh∥2,h is defined as follows:
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∥χh∥22,h =
∑
T∈Th

h2T∥χh∥2T , ∀χh ∈ Qh.

Lemma 4.10 states that there exist two positive constants C1 and C2 (independent

of h) such that for all χh ∈ Qh:

sup
Vh∈Xh∩ker b

c(Vh, χh)

∥Vh∥Xh

≥ C1∥χh∥M ′ − C2∥χh∥2,h

Lemma 4.11 asserts the following inf-sup condition for the mesh-dependent norm

∥ · ∥h: there exists a positive constant C3 (independent of h) such that for all χh ∈ Qh:

sup
Vh∈Xh∩ker b

c(Vh, χh)

∥Vh∥X
≥ C3∥χh∥h

Lemma 4.12 states that there exists a positive constant C such that for all χh ∈ Qh:

sup
Vh∈X∩ker b

c(Vh, χh)

∥Vh∥X
≳ ∥χh∥M ′

Proposition 4.13. The full problem (P3) and the reduced problem (P1) are equiva-

lent, in the following sense: If (Uh, ψh, λh) is a solution of the full problem, then (Uh, ψh)

is a solution of the reduced problem. If (Uh, ψh) is a solution of the reduced problem, then

there exists λh ∈ Λh such that (Uh, ψh, λh) is a solution of the full problem.

4.2 A priori error analysis

Our problem is expressed as variational inequalities in H1. To demonstrate the conver-

gence of non-conforming finite element approximations, we adhere to the standard ap-

proach for variational inequalities in mixed problems. Consequently, we initially present

the subsequent version of Strang’s lemma, which isn’t entirely evident and entails the

complete problem (3.11).

Lemma 4.14 Suppose that the component λ of the solution to problem (3.27) belongs

to L2(ω). Then, the following inequality holds between the component U of the solution
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to this problem and the component Uh of the solution to problem (4.6):

∥U − Uh∥X(ω) ≤ c( inf
Vh∈Nh,Φ∩Vh

(∥U − Vh∥X(ω) + ∥U − Vh∥21
2
L2(ω;R3)

)

+ inf
χh∈Mh

∥ψ − χh∥M(ω) + ∥Φ− Φh∥ 1
2
L2(ω;R3))

(4.19)

where c is a constant dependent on ∥λ∥L2(ω).

Proof. Let Uh be an approximation of U in Nh,Φ∩Vh. We start by considering problem

(4.10), which yields:

a(Uh − Vh, Uh − Vh) ≤ L(Uh − Vh)− a(Vh, Uh − Vh).

Applying problem (3.11) gives:

a(Uh − Vh, Uh − Vh) ≤ a(U − Vh, Uh − Vh) + b(Uh − Vh, ψ)− c(Uh − Vh, λ). (4.20)

Now, evaluating b(Uh −Vh, ψ) and c(Uh −Vh, λ) poses a challenge. By Lemma 4.3, we

find:

b(Uh − Vh, ψ) = b(Uh − Vh, ψ − χh), (4.21)

where χh represents any function in Mh.

Considering the non-negativity of λ, we deduce:

−c(Uh, λ) ≤ −hΦh

√
a, λ.

Furthermore, applying problem (3.11) with µ = 0, we get:

−c(Uh − Vh, λ) ≤ −c(U − Vh, λ) + h(Φ− Φh)
√
a, λ. (4.22)

Combining the ellipticity property of the form a(·, ·) (Lemma 4.3) with the continuity

of the involved forms, considering λ ∈ L2(ω), yields:

α∗∥Uh − Vh∥2X(ω) ≤ c
(
∥U − Vh∥X(ω) + ∥ψ − χh∥M(ω)∥Uh − Vh∥X(ω)

+∥U − Vh∥2L2(ω;R3) + ∥Φ− Φh∥L2(ω;R3)

)
.

The desired estimate then follows from a triangle inequality.

To proceed, we must now devise approximations Vh of U and χh of ψ that fulfill the

established criteria. Given the continuity of ψ, we select χh to be the interpolation Ihψ.
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Estimating the term |ψ − χh|M(ω) is straightforward. However, for the approximation of

U , we require a lemma.

lemma4.15 For any function U belonging to KΦ(ω) ∩Hs+1(ω;R3), where 0 < s ≤ 1,

there exists a function Vh in Nh,Φ ∩ Vh such that:

∥U − Vh∥X(ω) ≤ chs∥U∥Hs+1(ω;R3), (4.23)

∥U − Vh∥L2(ω) ≤ chs+1∥U∥Hs+1(ω;R3). (4.24)

proof: The function Vh = IhU meets the required approximation criteria. Additionally,

as per the definition of Nh,Φ (see (4.5)), it falls within this set. Furthermore, since r · a3

vanishes universally, when Vh = (vh, sh) is set, it’s observed that sh · a3 nullifies at all

vertices of elements in Th. Consequently, Ih(sh · a3) equals zero. Given that this operator

solely appears in the definition (4.8) of the form bh(·, ·), it implies that Vh also lies within

Vh. These considerations substantiate the desired estimates.

Theorem 4.16 Assume that the solution (U, ψ, λ) of problem (3.27) belongs to

H2(ω;R3)×H2(ω)× L2(ω) and that the vector a3 belongs to W 2,p(ω;R3), p > 2. Then,

the following a priori error estimate holds between the solution (U, ψ) of problem (3.24)

and the solution (Uh, ψh) of problem (4.6):

∥U − Uh∥X(ω) + ∥ψ − ψh∥M(ω) ≤ ch, (4.25)

for a constant c depending on Φ and (U, ψ, λ).

Proof. The estimate for ∥U −Uh∥X(ω) follows directly from Lemmas 4.5 and 4.6, since

Φh is taken as IhΦ. To evaluate ∥ψ−ψh∥M(ω), we use the inf-sup condition (4.15), which

implies that for any χh ∈Mh,

∥ψh − χh∥M(ω) ≤ β−1 sup
Wh∈Nh,#

bh(Wh, ψh − χh)

∥Wh∥X(ω)

.

Using problem (4.5) with Vh = Uh ±Wh results in

bh(Wh, ψh − χh) = L(Wh)− a(Uh,Wh)− bh(Wh, χh).

From problem (3.10), we get

bh(Wh, ψh − χh) = a(U − Uh,Wh) + b(Wh, ψ)− bh(Wh, χh)− c(Wh, λ),
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and the definition (4.14) of Nh,# ensures that the last term is zero. Therefore, using the

notation Wh = (wh, th), we obtain

∥ψh − χh∥M(ω) ≤ c

(
∥U − Uh∥X(ω) + ∥ψ − χh∥M(ω) + sup

th∈M3
h

∥th · a3 − Ih(th · a3)∥M(ω)

∥th∥H1(ω;R3)

)
.

Choosing χh = Ihψ, and observing that for each K in Th,

∥th · a3 − Ih(th · a3)∥H1(K) ≤ ch|th · a3|H2(K),

we conclude, using the regularity of a3, that the desired estimate holds.

4.2.1 Different way:

We recall that it consists in finding (U, ψ, λ) ∈ X ×M × Λ such that

(P4)


∀V ∈ X, α(U, V ) + β(V, ψ)− γ(V, λ) = ϕ(V ),

∀χ ∈M, β(U, χ) = 0,

∀µ ∈ Λ, γ(U, µ− λ) ≥ ⟨Ψ, µ− λ⟩.
(4.26)

In this section we derive a priori error analysis for the discrete approximation (P3)

consists in finding (Uh, ψh, λh) ∈ Xh ×Mh × Λh such that

(P5)


∀Vh ∈ Xh, a(Uh, Vh) + b(Vh, ψh)− c(Vh, λh) = ⟨φ, Vh⟩,
∀χh ∈Mh, b(Uh, χh) = 0,

∀µh ∈ Λh, c(Uh, µh − λh) ≥ ⟨θh, µh − λh⟩,
(4.27)

we con written the problem (P5) in a compact way as follows :{
Find(Uh, ψh, λh) ∈ Xh ×Mh × Λh such that:
B(Uh, ψh, λh;Vh, χh, µh − λh) ≥ Lh(Vh, µh − λh), ∀(Vh, χh, µh) ∈ Xh ×Mh × Λh,

(4.28)

where

B(Uh, ψh, λh;Vh, χh, µh) := α(Uh, Vh) + β(Vh, ψh) + β(Uh, χh)− γ(Vh, λh) + γ(Uh, µh),

Lh(Vh, χh, µh) := ϕ(Vh) + ⟨Ψh, µh⟩.
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Lemma 4.17. There exists a constant β > 0 such that:

inf
(χh,µh)∈Mh×Qh

sup
Zh=(zh,th)∈Xh

,
γ(zh, µh)− β(zh, χh)

∥(χh, µh)∥Mh×M ′∥zh∥X
≥ β. (4.29)

Lemma 4.18. For any (Wh, χh, µh) ∈ Xh ×Mh ×Qh there exists Yh ∈ Xh such that:

B(Wh, χh, µh;Yh,−χh, µh) ≳ (∥Wh∥X + ∥χh∥M + ∥µh∥M ′)2, (4.30)

∥Yh∥X + ∥χh∥M + ∥µh∥M ′ ≲ ∥Wh∥X + ∥χh∥M + ∥µh∥M ′ . (4.31)

Theorem 4.19. Let (U, ψ, λ) and (Uh, ψh, λh) be the solution of Problem (P4) and

Problem (P3) respectively. Then

∥U − Uh∥X + ∥ψ − ψh∥M + ∥λ− λh∥M ′ ≲ inf
Vh∈Nh

∥U − Vh∥X + inf
χh∈Mh

∥ψ − χh∥M

+ inf
µh∈Λh

(
∥µh − λ∥M ′ +

√
γ(U, µh − λ)− ⟨Ψ, µh − λ⟩

)
+ ∥Ψ−Ψh∥M .

Corollary 4.20. Assume that the solution (U, ψ, λ) of Problem (P4) belongs to (H2(Ω,R3))2×

H2(Ω) × L2(Ω) and the function Ψ belongs to H2(Ω) ∩ H1
γ0
(Ω). Let (Uh, ψh, λh) be the

solution of Problem (P3). Then

∥U − Uh∥X + ∥ψ − ψh∥M + ∥λ− λh∥M ′ ≲
√
h [∥U∥2Ω + ∥ψ∥2Ω + ∥Ψ∥2Ω + ∥λ∥Ω].

Remark 4.21: "Proof of theories and problem transformation can be understood by

referring to the literature ( see [5] )."

40



Conclusion and Perspective

In short, this memorandum discussed the main points that were formed around our topic,

through previous studies and current research. Where we reached the existence and

uniqueness of the solution to the Naghdi shell model using the Lax-Miligram theorem .as

we touched on the contact problem and its well-posedness , then the discrete problem in

tow ways in addition to a priori error analysis .

Due to time constraints , we could not study The a posteriori error analysis and the

test numerical , We promise to study it in other projects.

In the end, we hope that this memorandum has provided a comprehensive and useful

analysis on the topic, and that it has a positive impact on understanding the problem

and proposing appropriate solutions.
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