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Abstract: 

The electrical submersible pump (ESP) is considered one of the most important and rapidly growing 

types of artificial-lift pumping technologies. Utilized in 15–20 percent of oil wells globally, ESPs offer 

an effective solution at high production volumes and great depths. The performance of ESPs often 

gradually declines and can eventually lead to service interruptions due to factors such as high gas 

volumes, elevated temperatures, and corrosion. The failure of an ESP results in a significant financial 

impact due to lost production and the costs of replacement.  

Electrical Submersible Pump (ESP) failures are unexpected. To avoid excessive downtime, early 

failures identification is essential. This study suggests an innovative strategy that use a comprehensive 

dataset and various machine learning algorithms to achieve this goal. 

The Machine Learning models are based on the data collected from surface and downhole ESP 

monitoring equipment from four (04) wells, Several ML models are tested and evaluated using the K-

Nearest Neighbour (KNN), Random Forest (RF), Decision Tree (DT), etc. 

This approach is essential for helping operators to move from reactive to proactive and predictive 

maintenance. 

Keyword: ESP, ML, KNN, RF, DT. 

 

 :لملخصا
 

في  20إلى  15. تمثل من الرفع الصناعي وأسرعها نموًابضخ النفط واحدة من أهم تقنيات  (ESP) تعتبر المضخة الغاطسة الكهربائية

حلاً فعالاً عند أحجام الإنتاج العالية والأعماق  (ESP) تقدم المضخات الغاطسة الكهربائية .المئة من آبار النفط في جميع أنحاء العالم

مثل كميات الغاز  مختلفة إلى حد التوقف بسبب عواملتدريجياً  (ESP) غالباً ما يتدهور أداء المضخات الغاطسة الكهربائية. كبيرةال

الإنتاج  لتوقفإلى أثر مالي كبير نتيجة  (ESP) الكهربائيةالمضخة الغاطسة يؤدي فشل حيث . العالية، وارتفاع درجات الحرارة، والتآكل

 .هاالوتكاليف استبد

أمرًا ضرورياً لتجنب فترات التوقف  مبكرا اكتشاف هذه الأعطال تبريعُ ولذلك،يعد فشل المضخة الكهربائية الغاطسة حدثا غير متوقع. 
 .الطويلة. تقترح هذه الدراسة استراتيجية مبتكرة تستخدم مجموعة بيانات شاملة ومختلف خوارزميات التعلم الآلي لتحقيق هذا الهدف

أربعة  وداخلمعدات مراقبة المضخات الكهربائية الغاطسة من سطح  جمعها منالبيانات الميدانية التي تم اذج التعلم الآلي على تعتمد نم
 ، والغابة العشوائية )KNN(مثل الجار الأقرب مؤشرات أداء( آبار. تم اختبار وتقييم العديد من نماذج التعلم الآلي باستخدام 04)
)RF(وشجرة القرار ،)DT( وغيرها ،. 

 وهو أمر بالغ الأهمية في مساعدة المشغلين على الانتقال من الصيانة التفاعلية إلى الصيانة الاستباقية والتنبؤية.

،  )RF(، الغابة العشوائية )KNN(، الجار الأقرب )ML(الآلي التعلم )ESP (مضخات الغاطسة الكهربائية :الكلمات المفتاحية
 .(DT) شجرة القرار

Résumé : 
 

La pompe submersible électrique (ESP) est l'une des technologies de pompage à élévation artificiel les 

plus importantes et les plus croissantes. Utilisés dans 15 à 20 % des champs pétroliers à travers le monde, 
Les ESP offrent une solution efficace pour les volumes de production élevés et à de grandes profondeurs. 
Les performances des ESP diminuent souvent progressivement et peuvent finalement entraîner des 

interruptions de service en raison de facteurs tels que des gros volumes de gaz, des températures élevées 

et la corrosion. La défaillance d'un ESP entraîne un impact financier significatif en raison de la perte de 

production et des coûts de son remplacement.  
Les pannes de l’ESP se produisent dans les puits d’une manière imprévue. L'identification de ces pannes 

est essentielle pour éviter les temps d'arrêt excessifs. Cette étude propose une stratégie innovante qui 

utilise un ensemble de données et différents algorithmes d'apprentissage automatique pour atteindre cet 

objectif. 

Les modèles d’apprentissage automatique (Machine Learning) sont basés sur des données collectées à 

partir des équipements de surveillance ESP en surface et en fond de quatre (04) puits. Plusieurs modèles 

de Machine Learning sont testés et évalués en utilisant des outils tels que L'algorithme K plus proches 

voisins (KNN), Forêt Aléatoire (RF), l’Arbre de Décision (DT), etc. 

Cette approche est essentielle pour aider les opérateurs à passer d'une maintenance réactive à une 

maintenance proactive et prédictive. 
 

Mots-clés : Pompes électriques submersibles (ESP), Machine Learning (ML), K plus proches voisins 

(KNN), Forêt Aléatoire (RF), l’Arbre de Décision (DT) 
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General Introduction: 

Recently, the trends of automation, Artificial Intelligence (A.I.), and Machine Learning have 

gained momentum. Additionally, oil field is considered as new opportunity for increased 

production optimization [1]. The important question that needs to be answered is how to apply 

these technologies in a way that will control all known risks, and have a noticeable influence 

on the operation's profitability. They must also need to be applicable to planned and specified 

production optimization goals [2]. This research, in general, focuses on using of machine 

learning in order to comprehend equipment state in order to enable predictive maintenance and 

prevent downtime. 

The electrical submersible pump (ESP) is one of the most widely used in artificial lift 

technologies. Timely interventions are necessary to ensure constant fluid supply when potential 

difficulties occur [3]. 

ESP failures are frequent in the oil industry, and maintaining an ESP is a very costly problem 

for the oil operating company. A failure happens when key parameters start deviating from safe 

operating thresholds and an ESP stop working forever [3]. 

Ammeter charts are the most popular ESP diagnostic tool in recent years [4]. This 

monitoring method measures the motor current and records it as a function of time on a circular 

chart. Since the change in power consumption is primarily related to voltage changes, fluid 

density, and flow rate, ammeter charts are limited in their ability to identify ESP problems. 

Nodal analysis has been used recently to simulate ESP systems and identify common ESP 

failures like broken shafts, blockages at pump intakes, and so on [5]. The oil and gas industry 

has been employing statistical modelling and machine learning techniques to detect patterns 

that allow for production optimization, failure prevention, and real-time event detection. 

To have a better knowledge of ESP behaviour, many improvements has been made on ESP 

sensors, supervisory control, and data acquisition systems and surface remote terminal units 

over the past few decades. With the fast development of the digital oil field, more and more 

machine learning and data-driven models are applied to perform fault detection and predict 

impending failure for specific ESP operation systems [6]. The full implementation of a data-

driven model is dependent on the availability of regular data collection. As a result, it is possible 

to characterize the challenge of performing failure identification on the ESP to develop a highly 

accurate data-driven model that captures the dynamics of the ESP system [7]. 
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This study focuses on applying machine learning to improve the performance of Electrical 

Submersible Pumps (ESPs). Using an extensive dataset from several years of production of 

multiple wells to train a comprehensive set of machine learning algorithms and predict ESP 

failures before they happen. The results of the proposed data-driven models are crucial in aiding 

the operators toward transitioning from reactive event-based maintenance to proactive and 

predictive maintenance of artificial lift operations. This approach increases the life and 

efficiency of the ESP by boosting the uptime, lowering the intervention costs, and optimizing 

the production. 

The present work is consisted of three (03) chapters:  

The first chapter provides a comprehensive background on ESP systems, detailing their 

challenges and outlining the study's objectives and scope of work. It covers the advantages and 

limitations of ESPs, common failure modes, and the necessity of predictive maintenance. 

Additionally, the chapter introduces the role of machine learning in enhancing ESP 

performance, discussing various types of machine learning and their significance in this 

context. 

Chapter II presents the process of the suggested methodology and experimental implementation 

tools which covers data preparation, unsupervised learning, data balancing and supervised 

learning with Random Forest.  

The last Chapter outlines the customized workflow base on the data collected from four (04) 

wells in Hassi Messaoud region. It includes results and discussion, presenting the outcomes of 

the model, summarizes key findings, and concludes the study.  

 

 



Chapter I                                                             Background & Challenges of ESP Systems 

                                                                                   

1 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. CHAPTER Ⅰ: BACKGROUND & CHALLENGES OF ESP 

SYSTEMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I                                                             Background & Challenges of ESP Systems 

                                                                                   

2 | P a g e  
 

I.1. Introduction: 

Nearly half of all oil wells worldwide use Artificial Lift (AL) technologies, which are crucial 

to the oil and gas industry's ability to control bottom hole pressure and increase production rates 

in hydrocarbon wells [8]. Based on market research, AL systems are expected to increase 

steadily between 2022 and 2027, with a compound annual growth rate (CAGR) of 4.5%. AL 

systems are required in mature fields, which account for a large amount of the world's oil and 

gas production, in order to increase recovery rates. 

Asia-Pacific is among the fastest-growing AL markets, while North America led the global AL 

systems market in 2021 [8]. 

As shown in Figure Ⅰ-1, North America is likely to dominate the market due to its many mature 

oil and gas reserves and expanding energy demand. 

 

 

 

Figure I-1: Artificial Lift System Predicted Growth Across the World 
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I.2. Types of Artificial Lift:   

There are several types of artificial lift systems commonly used [9]: 

Ⅰ.2.1. Sucker Rod Pump: 

Referred to as beam pumping, this method provides mechanical energy efficiently, simply, and 

is easy to operate. 

Ⅰ.2.2. Electric Submersible Pump (ESP): 

A submerged multistage centrifugal pump powered by a downhole electric motor. The electric 

motor connects directly to the centrifugal pump module in an ESP. This means that the electric 

motor shaft connects directly to the pump shaft. Thus, the pump rotates at the same speed as 

the electric motor. 

Ⅰ.2.3. Gas Lift: 

Injects natural gas (typically natural gas or compressed air) into the wellbore to reduce the 

density of the fluid column. This process can be continuous or intermittent, with various 

configurations based on well conditions and production requirements. 

Ⅰ.2.4. Progressing Cavity Pump (PCP): 

It is a positive displacement pump. It uses an eccentrically rotating single helical rotor, turning 

inside a stator. It can be used for lifting heavy oils at a variable flow rate. 

Ⅰ.2.5. Hydraulic Jet Pump: 

Hydraulic pumping systems transmit power downhole by means of pressurized power fluid that 

flows in wellbore tubulars. 

Jet Pump converts the pressurized power fluid to a high-velocity jet that mixes directly with the 

well fluids. 

I.3. ESP Systems and Challenges: 

Artificial lift techniques are used when reservoirs energy is insufficient to naturally produce 

oil or gas to the surface. More than 90% of operational oil wells depend on an artificial lift 

system [10]. ESPs are frequently considered as being extremely reliable and efficient for 

pumping high volumes from deeper depths among all oil field lift systems. They are adaptive 

to highly deviated wells and deployed in varied operating environments all over the world [11]. 

These pumps boast a wide application range, enabling the extraction of hydrocarbon fluids from 

greater depths while handling a range of viscosities and gas-liquid ratios. 

ESP failures are common and unexpected, imposing major financial pressures on operators 

and several challenges for ESP systems [12]. These include downhole environments that are 
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harsh and can cause premature wear, gas interference that can disrupt pump operation, fluid 

properties that vary and can affect performance, damage caused by sand and solids, electrical 

failures, reduced efficiency due to scaling and deposition, complex operations, high initial and 

ongoing costs [13]. Proactive maintenance, effective monitoring, efficient sand control, and 

continuous technical advancements are needed to meet these problems. 

I.4. Objectives of Study: 

This study has the following main objectives:  

 Conduct a comprehensive literature review to determine the development of ESP failure 

prediction through time and the systems necessary to assist in the process of predicting 

failures at early stages. 

 Conduct a statistical analysis on the field data gathered from the surface and downhole ESP 

monitoring equipment to classify and characterize the mechanisms of ESP failure. 

 Construct a machine learning models to handle the high frequency of ESP data and predict 

various ESP failure modes at different prediction periods. Utilize performance metrics to 

validate the models. 

 Explore and compare different techniques for calculating feature importance, considering 

the model used and the nature of the data. 

 Assess the effectiveness of Random Forest, a powerful method for predicting imbalanced 

classification and determining feature importance and extract decision rules by replacing 

the model with a decision tree, contributing to a deeper understanding of the classification 

process. 
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I.5. Scope of Work: 

This study uses the field data acquired from Four (04) operational wells of Hassi Messaoud, 

the recorded data involves different field conditions, including dynamic, static, and historical 

data. The data were collected from wells with high ESP failure rates to investigate the general 

ESP failures and their specific failure modes. Additionally, historical operational data are 

included in the study. 

The first step in constructing a Machine Learning model is data preparation to clean, 

organize, and categorize the data to be used by the model. Then comes the other steps, which 

involves detecting anomalies, Data labelling, Data balancing and optimizing hyper parameters. 

These steps account for 80% of the overall time. 

In addition, generating multiple features for the Machine Learning model is essential. This 

study evaluates the ESP’s performance using collected field data. 

I.6. Overview of predictive maintenance: 

Predictive maintenance is a proactive approach to anticipating and averting equipment 

breakdowns before they happen. Predictive maintenance analyses production data, including 

the huge amount of real-time sensor data obtained from equipment, to identify patterns and 

potential issues [14]. 

For ESPs, surface and downhole gauges continuously measure a range of parameters in real-

time. As a result, there is a large amount of raw sensor data that needs to be processed in order 

to get useful information. A proactive approach can replace a reactive one by using data-driven 

approaches to identify and potentially diagnose ESP issues before they arise [14]. 



Chapter I                                                             Background & Challenges of ESP Systems 

                                                                                   

6 | P a g e  
 

 
 

Figure I-2: Parameters measured by downhole and surface gauges 

Proactive maintenance employs intelligence analysis to detect potential issues and anticipate 

ESP behaviour in advance [15]. By employing proactive maintenance strategies, the 

management of ESP shutdowns and other potentially dangerous situations can be significantly 

improved. Predictive maintenance ultimately helps managers in the production of oil and gas 

by maximizing maintenance schedules, minimizing downtime, and enhancing operational 

effectiveness and cost-effectiveness [16]. 
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I.7. Electrical Submersible Pump: 

Electrical Submersible Pumps (ESPs) are one of the most often used artificial lift techniques 

in the petroleum industry, especially for highly productive oil wells [17]. They can result in 

considerable increase in well’s production if correctly maintained and kept with their ideal 

operating limitations [18].  

In ESP system, there are downhole and surface components [19]. The main downhole part 

consists of an electrical motor, seal section, a multistage centrifugal pump, power cable, and 

downhole sensors. The main surface components are: Switchboard of the variable speed drive 

(VSD), transformers, surface electric cable, junction box, and wellhead.  

Figure I-3 illustrates the standard setup of an ESP system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-3: A Representative ESP System Schematic 
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The Electrical Submersible Pump system consists of a series stack of many stages of 

centrifugal pumps coupled to a submersible electric motor. Variable speed drives (VSDs) alter 

the pump's working frequency and, as a result, its speed, improving the ESP's performance. 

The junction box connects the downhole electrical cable to the VSD cable and permits the 

wellbore gas to be evacuated. The motor receives electrical power from the surface controls 

through the electrical wire, transforms it into mechanical energy, and then transmits that energy 

via a coupled shaft to the pump impellers. The motor cools as the produced fluid flows past the 

motor housing. The shaft provides the mechanical energy for the pump stages [19]. 

The number of pump stages required in a well to get the desired flow rate will depend on its 

completion design and operational requirements. Each step has an impeller that rotates and 

stationary diffusers. Figure I-4 illustrates a multistage ESP system with a rotating impeller and 

a stationary diffuser at each stage. Figure I-5 depicts a single-stage ESP pump with an impeller 

and a diffuser. By spinning the blades, the impeller promotes fluid flow and delivers kinetic 

energy to the fluids [20]. The fluid's kinetic energy is transformed to pressure potential at the 

diffuser. This process is carried out at each stage of the pump, as illustrated in Figure I-6. 

 

Figure I-4: ESP Pump Cutaway 
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Figure I-5:  ESP Pump Stage-Impeller and Diffuser 

 

 

 

Figure I-6: ESP Pump Stage-Impeller and Diffuser 
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The ESP seal section, which is situated between the pump intake and the downhole electric 

motor, provides significant benefits to the system. The axial thrust generated by the pump is 

supported by its thrust bearings [21]. In addition to isolating and protecting the motor from well 

fluids, the seal also balances the pressure inside the motor and in the wellbore. 

Free gas may be present in fluids produced from wells with low bottom-hole pressures and 

high gas-oil ratios (GOR). Due to operational difficulties, such as cavitation or gas locking for 

gassy wells, ESPs may have a shorter run-life [22]. Therefore, a gas separator is installed at the 

pump's intake in these wells to separate the free gas from the produced fluid. 

Installing an ESP monitoring system also has several advantages since it continuously 

records pump performance and gathers crucial downhole data. These datasets offer a variety of 

field conditions, including as static, dynamic, and historical data, and they are essential sources 

of information for predictive models that try to anticipate ESP problems before they happen 

[23]. 

 

I.8. ESP Advantages and Limitations: 

Using ESP systems provides several operational advantages over conventional artificial lift 

approaches, including a smaller surface footprint and lower noise levels. These systems can be 

used with horizontal or curved wells with doglegs up to 10°/100 feet; the pump must be installed 

in the straight section. ESPs excel at producing high liquid volumes (200-100,000 BPD) from 

moderate depths with a range of 1,000’-15,000’ TVD, Additionally, ESPs are adaptable in 

casings > 4-1/2” and are suitable for well testing [24].  

There are several challenges with ESP operations. High sand and solids conditions can 

significantly affect the run life of ESP systems, even though they can be built with certain 

abrasion-resistant materials [25]. High viscosity fluid production (> 1,000 cp) and significant 

free gas content (> 5%) in the pump both have a negative impact on performance [19]. 

Furthermore, precise well inflow data must be used in the design process, and the unit's capacity 

must match the well's deliverability. If not, expensive workover activities will be necessary to 

operate the pump [26]. 
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I.9. ESP Common Failure Modes: 

ESP system monitoring has evolved over the years and ammeter charts came to be offered 

as the earliest and simplest diagnostic solution to minimize downtimes for many decades. They 

measure and record the electric current drawn by the ESP motor. The current is recorded 

continuously in the function of time on a continuous chart with the proper scale. Figure I-7 is a 

typical example of Ammeter chart in the scenario of gas locking. Such behaviour is observed 

when the capacity of the ESP unit is greater than the inflow to the well and the well produces 

substantial free gas volumes. 

 

 

 

Figure I-7: Ammeter Chart Example: Pump off with Gas Interference 

 

The proper interpretation of ammeter charts can provide useful information to detect and 

correct minor operational issues [19]. It provides a very one-sided picture of ESP unit’s 



Chapter I                                                             Background & Challenges of ESP Systems 

                                                                                   

12 | P a g e  
 

operations since it relies on only electrical measurements. Electrical failures are often caused 

by mechanical or other problems which, over time, develop into a failure of an electrical nature. 

The detection of the initial failure, therefore, is not an easy task and requires additional 

information [27]. 

The ESP installation works as a system consisting of mechanical, hydraulic and electrical 

components and, in order to diagnose and prevent failure, a dynamic system which can capture 

multiple parameters affecting an ESP operation in real-time and provide an end-to-end solution 

is necessary.  

Microprocessors are being used by several ESP controllers to give much better control and 

protection of the electric components of the ESP system. They also employ a number of other 

electrical variables that can be stored for analysis at a later time [19].  

I.10. The Need of Machine Learning: 

I.10.1. Definition: 

Machine learning is a subfield of artificial intelligence (AI) that studies how to create models 

and algorithms that enable computers to learn from historical data and make decisions or 

predictions without the need for explicit programming. The basic goal of machine learning is 

to make computers learn automatically and improve over time [28]. 

An important application of machine learning is in predictive maintenance (PdM), which is 

implemented to effectively manage maintenance plans of the assets by predicting their failures 

with data driven techniques. In these scenarios, data is collected over a certain period of time 

to monitor the state of equipment. The objective is to find some correlations and patterns that 

can help predict and ultimately prevent failures [29]. 

I.10.2. Types of Machine Learning:  

There are two basic approaches: supervised learning and unsupervised learning. The main 

difference is one uses labelled data to help predict outcomes, while the other does not: 

 Supervised Learning: 

Supervised learning is a machine learning approach that’s defined by its use of labelled datasets. 

These datasets are designed to train or supervise algorithms into classifying data or predicting 

outcomes accurately. Using labelled inputs and outputs, the model can measure its accuracy 

and learn over time [30]. 
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Supervised learning can be separated into two types of problems when data mining: 

classification and regression, Example: Decision Tree (DT), Support Vector Regression (SVR). 

 Unsupervised Learning: 

Unsupervised learning uses machine learning algorithms to analyse and cluster unlabelled data 

sets. These algorithms discover hidden patterns in data without the need for human intervention. 

Unsupervised learning tasks include clustering and dimensionality reduction, Example: K-

Means, Gaussian Mixture Models (GMM) and Principal Component Analysis (PCA) 

The main distinction between the two approaches is the use of labelled datasets. To put it 

simply, supervised learning uses labelled input and output data, while an unsupervised learning 

algorithm does not [30]. 

I.10.3. Importance of Machine Learning: 

Machine learning is a crucial tool in many different businesses because it can automate 

decision-making processes, make predictions, and extract insights from large and complex 

datasets. Several primary arguments support the importance of machine learning, including the 

following: 

 Predictive analytics: Machine learning algorithms integrate data from seismic, well log, 

core analysis, and past performance. It can analyse large datasets, including historical 

maintenance records, sensor data, and equipment performance metrics, to identify patterns 

and predict when equipment is likely to fail. This allows for proactive maintenance 

scheduling, reducing downtime and increasing overall efficiency [31]. 

 Real-time Monitoring: Machine learning can be integrated with real-time monitoring 

systems, enabling the detection of anomalies and potential issues before they become major 

problems [31].  

 Optimization of Maintenance Schedules: By analysing data on equipment performance 

and maintenance history, machine learning can help optimize maintenance schedules, 

ensuring that maintenance is performed at the most opportune times to minimize disruption 

and reduce costs [32]. 

 Improved Safety: Predictive maintenance enabled by machine learning can help identify 

potential safety risks before they materialize, allowing for proactive measures to be taken 

to prevent accidents and ensure a safer working environment [33]. 
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 Cost Savings: By reducing downtime and extending the lifespan of equipment, machine 

learning-driven predictive maintenance can lead to significant cost savings for oil and gas 

companies [33]. 

 Enhanced Decision-Making: Machine learning provides oil and gas companies with data-

driven insights, enabling more informed decision-making around maintenance strategies, 

resource allocation, and investment in new technologies [33]. 
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II.1. Introduction:  

This research intends to develop a model that can predict downhole electrical submersible 

pump problems, so that proper actions might be taken proactively to avoid the occurrence of 

such problems. The approach of the unsupervised learning is used to train the model. 

Unsupervised learning algorithms will be utilized to analyse the training data. These algorithms 

aim to uncover patterns or structures within the data without explicit guidance or labelled 

examples [30]. 

 

II.2. Proposed Methodology and Implementation:  

The study is executed using the Knowledge Discovery in Databases (KDD) process 

[34]. This process is used to show: Data preparation (Data collection & pre-processing), 

unsupervised learning with Isolation Forest, Data Labelling, Data balancing with SMOTE, 

Supervised learning with Random Forest and Feature Importance. 

 

 

 

 

 

 

Figure II-1: Knowledge Discovery in Database Workflow 

 

II.2.1. Data Preparation:  

Our data is collected from four (04) sensors on electrical submersible pumped wells located 

in the region of Hassi Messaoud. These data are structured in Excel files and include daily logs 

detailing the operation of the pumps, as well as the essential parameters monitored for each 

well. Then, we proceed to clean, organize, and categorize this data and making it suitable for 

Machine learning techniques.
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The ranges of physical real- time parameters of these wells are shown in Table II-1: 
 

PVT Data Unit 

Oil API Gravity API 

Oil Specific Gravity API 

Gas Specific Gravity API 

Water Salinity ppm 

Water Gravity API 

RS at Saturation Pressure Sm3/Sm3 

Fluid Model API 

Pressure Kg/cm2 (Gauge) 

Bo m3/Sm3 

Rs Sm3/Sm3 

Oil Viscosity cp 

Laboratory Data 

Saturation Pressure Kg/cm2_g 

Temperature C° 
 

Table II-1: The range of physical parameters 

The listed of the parameters studied: 

 

Parameter Description Unit 

RS Solution gas-oil ratio /RS Sm3/Sm3 

SP Saturation Pressure Kg/cm2 

Diamduse Duse Diameter mm 

Debithuile Oil Flow m3/h 

Débit gas Gas flow m3/h 

GOR Gas Oil Ratio Sm3/Sm3 

Presstete Wellhead Pressure Kg/cm2 

Presspipe Tubing pressure Kg/cm2 

presssepar Separator pressure Kg/cm2 

Densitehuile Oil density g/cm3 

Temphuile Oil Temperature C° 

KPsi Permeability Psi 
 

Table II-2: The Listed of the parameters studied 
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Based on the data collected from the four (04) wells, we have obtained the graphs related to 

the Gas-Oil Ratio (GOR) that illustrate the behaviour of the wells over time, as well as their 

head pressure graphs as shown in the Figure II-2 and Figure II-3: 

 

 

Figure II-2: History of GOR Measurement of 04 wells 

 

Analysing Gas-Oil Ratio (GOR) variations across wells offers valuable insights into 

reservoir behaviour and production dynamics. This assessment helps refine reservoir 

management strategies and enhances oil and gas recovery efforts [35].  
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Furthermore, considering the previous effects of gas on ESP pumps, such as gas locking, 

increased vibration, and reduced pump capacity, reinforces the importance of monitoring GOR 

variations [35]. 

 

Figure II-3:  History of WHD Pressure Measurement of 04 wells 

 

Out of the four wells, Well #1 has the highest pressure, which suggests that it has the highest 

production potential and the most impact on the reservoir's overall performance. Compared to 

the other wells, Well #2 exhibits the lowest pressures, which indicate a limited capacity for 

production. 

Due to the wide range of Data on the Well #1, we rely on its information in the following chart:
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Figure II-4: Well#1 real-time parameters 2008- 2023 



Chapter II                                                                                                                                    Experimental Analytics Workflow Methodology                                                                                   

21 | P a g e  
 

 

 

Figure II-5: Well#1 real-time parameters WH Pressure and Oil Flow 
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The head pressure and oil flow graph for Well #1 shows a possible problem in 2017 that 

might be a pump failure or malfunction. 

By applying the machine learning model to the analysis of parameter variations across 

different wells, we are able to gain a deeper understanding of the fluid composition, reservoir 

behaviour, and production efficiency. This allows us to progress hydrocarbon recovery 

operations and optimize reservoir management strategies. This comprehensive study raises 

operational effectiveness and lowers downtime risks. In oil and gas exploration and production 

activities, this encourages sustainable production methods and optimizes the use of resources. 

II.2.2. Unsupervised Learning with ISOLATION FOREST: 

During the first step of preparing the data, it become clear that the data provided to us is 

unlabelled. This means that for the machine learning process, we need to use an unsupervised 

category. 

Isolation Forest is a type of an unsupervised machine learning algorithm designed to identify 

outliers in datasets. This powerful anomaly detection technology is especially useful for 

handling unlabelled data, where anomalies are not explicitly marked [36]. 
 

How Isolation Forest Works:  

Isolation Forest works on the principle that anomalies are few and different, making them 

easier to isolate. The algorithm works as follows: 
 

 Training Stage: A training dataset is used to build Isolation Trees (iTrees). For each iTree, 

a random feature is selected and a random split value between the min and max values of 

that feature is chosen to partition the data. This process is repeated recursively until all data 

points are isolated. 

 Evaluating Stage: For each instance in the test set, the path length from the root node to 

the terminating node is calculated for each iTree. The average path length across all iTrees 

is then determined for each instance. The anomaly score is inversely proportional to the 

average path length, with anomalies typically having shorter path lengths due to their 

distinct nature, which allows them to be isolated more quickly. 
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Figure II-6: Isolating Anomalies with Isolation Forest 

 

Key properties of Isolation Forest: 

 Linear time complexity and low memory requirement, making it suitable for large 

datasets. 

 No density estimation is performed, unlike other anomaly detection algorithms. 

 Anomaly score is calculated based only on the path length, without using leaf node 

statistics. 

 Randomly selects features and split points, making it fast and applicable to high-

dimensional data. 

II.2.3. Data Balancing with SMOTE: 

After applying Isolation Forest for labelling, our dataset reveals a significant imbalance 

between classes, which could impact the performance of machine learning models. This 

imbalance indicates that the minority class, representing cases of anomalies, is 

underrepresented compared to the majority class. To fix this problem we used the approach 

SMOTE (Synthetic Minority Over-Sampling Technique). 

Concretely, SMOTE works by synthesizing new examples for the minority class by 

interpolating the features of neighbouring points from that class; This boosts the minority 

class’s sample number and restores the dataset balance. As a result, the machine learning model 

is exposed to a wider range of balanced examples, which enhances its capacity for correct 

generalization [37]. 
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By using SMOTE, we may increase the representation of minority cases in our data without 

unnecessarily biasing it. 

 

 

Figure II-7: Data Repartition before & after SMOTE 

 

II.2.4. Supervised Learning with Random Forest: 

The data is first divided into two subsets, one for learning (66%), and the other for train and 

testing; Using the AUTO ML tool, we will select the algorithm that produces the best results 

with our dataset. This tool automates the creation and optimization of machine learning models, 

making the process more accessible and efficient for users without extensive technical 

expertise. 

The Random Forest algorithm was selected due to its superior performance in terms of 

measures like classification accuracy, F1 Score, area under the ROC curve (AUC). 

 Random Forest is a powerful machine learning algorithm for both regression and 

classification applications. It involves building a collection of decision trees that 

cooperate to produce a single output, enhancing prediction accuracy by leveraging the 

diversity and collective wisdom of the trees. Due to its reputation and ability to handle 

complex data, minimize overfitting, and produce accurate forecasts in a variety of 

settings, Random Forest has emerged as a key component of machine learning [38]. 
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 A Decision Tree (DT) is an adaptable supervised learning method that may be applied 

to both regression and classification tasks. It creates a tree-like structure where each 

internal node represents a feature, each branch represents a decision rule, and each leaf 

node represents the outcome. Decision trees are frequently utilized because to its high 

degree of accuracy, interpretability, and ability to handle both numerical and categorical 

data [39]. For predictive modelling and decision-making, they are extensively utilized 

in a variety of industries. 

 

 A ROC curve is a graph showing the performance of a classification model at all 

classification thresholds [40]. This curve plots two parameters: 

 True Positive Rate 

 False Positive Rate 

 

Figure II-8: The ROC space for a "better" and "worse" 

 

After validating our model, we determined the most important parameters that have a major 

impact the prediction of failures and gave an explanation using a global surrogate model. 
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 A global surrogate model is an interpretable model trained to approximate the 

predictions of a black-box model, allowing us to conclude the latter by interpreting the 

surrogate. These interpretable models mimic the behaviour of the original model by 

overfitting its predictions. The intuition is that if the surrogate model makes the same 

predictions as the original model, it can help us understand how the input features relate 

to those predictions. The quality of surrogate models is assessed using a user-defined 

performance metric [41]. 

 

II.2.5. Feature Importance: 

It is crucial to calculate the overall importance of features for our classification model, as it 

allows us to understand which features have the most influence on the model's predictions. 

This understanding is necessary to evaluate the validity of the model and determine which 

features are most important to the classification task. 

We may calculate feature importance using a variety of methods. Depending on the data type 

and model being used. The most common approach for predicting imbalanced classifications 

and feature importance is Random Forest, which is extremely successful. 

Our model was replaced with a decision tree in order to extract decision rules. 

II.3. Implementation Tools: 

In our experimental study, we carefully selected implementation tools to guide the process, 

evaluate critical components of project execution, and ensure the successful achievement of our 

research objectives: 

 KNIME: (Konstanz Information Miner), or KNIME, is an open-source platform for data 

integration, analytics, and reporting. Users can incorporate tasks like data pre-treatment, 

analysis, visualization, and model building into their visual designs of data workflows. 

KNIME is a comprehensive suite of tools and algorithms that serves both non-technical 

users and data scientists, facilitating efficient data-driven decision-making in a variety of 

sectors and domains [42]. 

 H2O: is an open-source machine learning platform designed for big data analytics. It 

provides a distributed environment where advanced analytics tasks like predictive 

modelling and machine learning can be carried out. Building and deploying machine 
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learning models on huge data sets is a common use case for H2O, which has a wide choice 

of efficient algorithms and easy interface with popular programming languages [43]. 

 Auto ML: Automated machine learning, known as AutoML, is the process of automating 

the end-to-end process of building machine learning models. This includes tasks such as 

data pre-processing, feature engineering, model selection, and hyperparameter tuning. 

AutoML compares and chooses which algorithm best fits our data, making it easier for non-

experts to create machine learning models by offering a simple user-friendly interface for 

experimenter training and model deployment [44].  
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III.1. Introduction:   

This section presents the results and analysis of our predictive maintenance model for 

Electrical Submersible Pumps (ESPs). It covers the workflow design using the KNIME 

platform, the application of machine learning techniques for anomaly detection, and the 

evaluation of the model's performance. The discussion highlights each step involved, from data 

pre-processing to model training and prediction, demonstrating the effectiveness of our 

approach in identifying potential ESP failures. 

 

III.2. Workflow: 

 

The workflow diagram created using the KNIME platform. The diagram shows a network 

of connections between different nodes. Each node represents a step in the process of building 

and using a machine learning model: 

 

 

 

Excel Reader:  This node loads and reads data organized in Excel files and 

converts it into a KNIME table. 

 

 

H2O Local Context: This node allows the creation of in a locally running H2O 

instance. For example, data tables can be converted to H2O frames and models 

created using H2O can be applied. 

 
 

 

Table to H2O: This node converts data from a KNIME table format into a 

format compatible with H2O. 

 

 

H2O Isolation Forest Learner: This node learns an Isolation Forest model 

using H2O. The model is learned in an unsupervised manner and can be used 

to detect anomalies or outliers via the H2O Isolation Forest Predictor node. 

 

 

H2O Isolation Forest Predictor: This node applies an Isolation Forest model 

to an input dataset in to predict anomalies or outliers. 
 

 

 

 

H2O to Table: This Node converts an H2O Frame to a KNIME table. 

 

 

 

Histogram: This node produces a Histogram visualization of the input Data, 

that displays the distribution of the data and determination of boundaries. 
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Rule Engine: This node labels our data based on length parameters. For our 

study, we found the following rules: if the length is greater than 5.7, the label 

is "No"; if the length is less than or equal to 5.7, the label is "Yes". 

 

Column Filter: This node allows columns to be filtered based on specific 

criteria. 

 

SMOTE:  This node oversamples the input data to enrich the training data to 

get good classification performance. 

 

Partitioning: The input table is split into two partitions: train and test data; 

our data based on the training dataset = 66%, and the rest considered as Unseen 

data 

 

 

AutoML: This Component automatically trains supervised machine learning 

models. It can automate the whole ML cycle by performing some data 

preparation, parameter optimization with cross-validation, scoring, evaluation 

and selection. Random Forest was developed with the best configuration 
 

 

 

Global Feature Importance: This component offers an optional interactive 

view to explore the results and to determine the importance of each feature in 

the dataset using a surrogate model. 
 

 

Table III-1: KNIME Nodes Listing 

 

The data moves from top to bottom through the KNIME pipeline. Every step involves some 

sort of transformation or analysis of the data. The final goal of the workflow is most likely to 

train a machine learning model, such as the random forest model, and then apply it to fresh data 

to generate predictions. 
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Figure III-1: KNIME Workflow
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III.3. Model Results: 

We apply the Isolation Forest model to an input dataset in order to predict anomalies or 

outliers using the H2O Isolation Forest Learner. We want H2O to build 100 trees with a 

maximum depth of 8. The prediction part which contains normalized anomaly score; the higher 

score is the more likely it is an anomaly. For the mean length part, the shorter one is the more 

likely an anomaly. Below is a sample of these predictions: 

 

Prediction Mean length 

0,264840183 6,42 

0,863013699 5,11 

0,347031963 6,24 

0,319634703 6,3 

0,730593607 5,4 

0,105022831 6,77 

0,141552511 6,69 

0,141552511 6,69 

0,296803653 6,35 

0,0456621 6,9 

0,132420091 6,71 

0,077625571 6,83 

0,077625571 6,83 

0,187214612 6,59 

0,168949772 6,63 

0,118721461 6,74 

0,273972603 6,4 

0,136986301 6,7 

0,136986301 6,7 
 

Table III-2: The Mean length listing 
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The outliers were identified using an organizational chart: 

 
 

Figure III-2: Dataset Histogram 

 

The histogram of the mean length shows that normal operating values have a mean length 

greater than 5.7. 

 
 

Figure III-3: Rule Engine Configuration 
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The KNIME Rule Engine used to smoothly isolate these observations by labelling them 

according to the previously defined separation condition. Any parameter value with a mean 

length less than 5.7 will be considered as an anomaly. The presence of a failure is labelled as 

"Yes"; and "No" for normal operation. The result is shown in Table III-3:  

 

Label Failure Quantity 

No 168 

Yes 4 

 

Table III-3: Number of failures 

 

 
 

Figure III-4: Anomalies Frequency 

The graph highlights the imbalance in the dataset, reflecting the low frequency of failures. 

In order to solve this issue, we use the SMOTE approach to oversample the minority class 

“Yes” of our dataset using the KNN technique with five neighbours. 

 

98%

2%

Failures Frequency

No Yes
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 The new dataset after balancing with SMOTE:  

 

Label Failure Quantity 

No 168 

Yes 168 

 

Table III-4: Number of Failures after balancing 

 

The AutoML automatically trains various supervised machine learning models. It automates 

the whole machine learning cycle by performing some data preparation, parameter optimization 

with cross validation, scoring, evaluation and selection. Each model has a number of parameters 

to be tuned using a cross validation and evaluation metric. The prediction of all models is 

scored, and the best configuration of Random Forest algorithm was selected and exported with 

a classification accuracy of 100%: (Accuracy)=100%, AUC =1. 

 

Figure III-5: ROC Curve Results 
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This indicates a high degree of predictive accuracy for failures as well as a high degree of 

selective ability for false positives and false negatives. 

We proceed to calculate the overall feature importance for the classification models. It is 

possible to use a surrogate model to explain models such as Generalized Linear Model (GLM), 

Logistic Regression, Decision Trees (DT), or Random Forests (RF). 

Feature importance is calculated by counting how many times it has been selected for a split 

and at which rank (level) among all available features (candidates) in the random forest trees. 

A higher value indicates higher feature importance. 

 

 

 

Figure III-6: Global Feature Importance 
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This comprehensive study provides valuable insights into the relative importance of several 

criteria in failure predicting, enabling operators to enhance system reliability and optimize 

maintenance schedules.  

A Global Surrogate Decision Tree model was trained successfully with AUC equal 

to 0.974 to the original model predicted class of interest "prediction: Yes". 

 

 

Figure III-7: Decision Tree 
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The objective is to demonstrate how to make decisions or simulate our model using a 

transparent decision tree, which exposes decision boundaries in a clear and understandable way, 

thus avoiding the opaque nature of a black box. 

Based on the input features the model's behaviour is as follows: 

 The decision tree starts by splitting the data based on “DensiteHuile” (oil density) feature, 

with 64 anomalies classified as “yes”. 

 If the oil density is less than or equal to 0.32, the decision tree may reach a leaf node with 

35 out of 35 classified as "no," indicating there are no anomalies. 

 If the oil density is greater than 0.32, then the decision tree branches to another node that 

evaluates a different factor, which is: “PressPipe” (pressure in the pipe). This signifies that 

the model's decision-making process adapts based on varying conditions encountered 

during analysis and can assess additional parameters relevant to reservoir behaviour and 

production performance. 

 When the pressure in the pipe is less than or equal to 0.17, this condition shows 40 out of 

41 anomalies classified as "yes," requiring further verification. It may indicate Pump’s 

failures, insufficient flow or the need for additional pressure stimulation techniques.  

 If the pressure in the pipe is greater than 0.17, then the decision tree branches to another 

value of pressure which is 0.41. 

As a result, our decision tree model successfully evaluates the interaction between features 

while predicting the results of well production. 
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  Conclusion: 

This study aims to develop a comprehensive machine learning (ML) technique to handle the 

high frequency of ESP operating data. The model converts the data into useful information to 

predict various ESP failure modes. The analytical framework of real-time data collected by 

Supervisory Control and Data Acquisition (SCADA) systems makes it possible to go from 

reactive to proactive ESP monitoring, which may identify any well’s problems before they 

develop.  

This approach offers chances to enhance pump uptime, prolong ESP life, and boost oilfield 

economics. The results demonstrated valuable outcomes on the application of data analytics in 

ESP operations. Some of the key outputs for this study are:  

 A literature review on the development of ESP failure prediction through time showed the  

need to use data analytics and accurately predict failures before their occurrences.  

 We develop a machine learning model to predict failures for an unlabelled dataset utilizing 

unsupervised techniques. 

 Isolation Forest is a highly effective method for detecting anomalies or outliers within 

datasets. 

 Labelling unbalanced data using the SMOTE algorithm with oversampling of the minority 

class option. 

 Automating supervised learning models by AutoML and identifying the best configuration 

model of the Random Forest algorithm. 

 Evaluation of the model using ROC curve, with offers of 100% of classification accuracy 

(AUC). 

 Developing a surrogate model using decision tree to explain decision rules and feature 

importance.  

 We use KNIME codeless platform and H2O, best of breed machine learning, known for its 

powerful ML algorithms, superior quality and performance. 

It is essential to underline that this study is customized to the specific characteristics of the 

collected data and variety of results can be obtained by using different models with different 

datasets to create opportunities to increase pump uptime, extend the life expectancy of ESPs 

and improve oilfield economics. 
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Recommendation: 

 This study might be extended to examine more types of ESP failures by adding more 

data from wells in different fields to identify other patterns to various failures categories 

or unusual behaviour, which can indicate the time before failure (TBF) per days, such 

as motors vibration, corrosion or electrical problems.  

 The study can be extended to include other artificial lift techniques, such as sucker rod 

and progressive cavity pumps, to recognize their failure types and how to anticipate 

them. 

 This study may be improved by creating a model that provides actionable insights for 

each failure it identifies. This would allow the system to not only detect problems, but 

also give a preventative measure for the petroleum engineer. 
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