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1. Introduction 
This method is introduced in the context of dynamical system for solving the coupled Complex 

Modified KdV. This equation describes the interaction of two orthogonally polarized transverse 
waves [8, 9]. It has been proposed as a model for the nonlinear evolution of plasma waves and 
incorporates the propagation of transverse waves in a molecular chain model . 
   In the following, a description of the perturbation method, then the representation of non linear 
terms will be presented in detail. To illustrate the effectiveness of this approach, we examine a 
numerical example and comparing the results with that of the collocation method [10] and exact 
solutions are also presented. 
 
2. Description of the method 
 
We consider a given PDE in two independent variables given by 
 
                                                 ( ) 0,....,,, =xxtx UUUUF                                                 (1) 

This approach consists of introducing an auxiliary parameter ε  (0≤ε ≤1) and replacing the 

nonlinear term by Nu = F (u) and replacing the partial differential equation by the following 

analogous equation 

                                              ( ),....,,, xxtx vvvvF                                                                (2) 
with the solution U(x, t) being of the form 
 
                                                  ( ) ( ),,,lim,

1
ε

ε
txvtxU

→
=                                                      (3) 

Assuming the existence of the solutions of the differential equations at all values of ε defined above, 

we may see that U will be modified and depend now onε . The solutions v in Eq.(2) may be made 
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soluble by expansion of the solution as a Taylor series in the parameter ε. In the practical 

calculations we keep only the M-terms first in the series to describe the solution v, noted MV  as 

                                               ( ) ( ),,,
0

i
M

i

i
M vtxv ∑

=

= εε                                                            (4) 

Where 
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Where  
0=∂

∂

εε n
M

nv  represents the nth derivative of MV  evaluated at 0. 

When we input the form of the solution Eq. (4) into the differential Eq.(2) and subsequently by 

equating like powers of ε , a system of linear differential equations is obtained which may be 

recursively solved. (After all calculations we set ε =1). 

  Where, ( )
( )

β

α
α

β ∂
∂= vv  

The solution v (0) may be obtained from the linearized equation which may be resolved by using the 

variational iteraction method [11]. 

By introducing v(0) in the system of equations obtained we obtain the solution v(1) which will be 

incorporated in the system to get the solution v(2) and so on. It may be noted however that the 

separation of the nonlinear term from the initial equation enables us then to obtain a system of 

equations which is soluble and that the reconstruction of the final solution is then possible. 

 

3. Application 
we use the perturbation method to solve the complex modified Korteweg–de Vries CMKdV 
equation: 
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,0
².
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∂
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∂
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xxt
ψψ
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Where, Ψ is a complex valued function of the spatial coordinate x and the time t, α is a real 
parameter. This equation has been proposed as a model for the nonlinear evolution of plasma 
waves. 
The CMKdV equation, equation (5) has a solitary wave solution of the form 

                                ( ) ( )[ ] ( ),exp.sec..2, 0 θ
α

ψ itcxxchctx −−=                                            (6) 

which represents a solitary wave positioned at x0 and moving to the right with velocity c and 

satisfying the boundary conditions u → 0 as x → ±∞. The CMKdV equation has the conserved 

quantities 
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The CMKdV equation (5) has been solved analytically by sine-cosine and tanh method by Wazwaz 

[8] and he showed that this equation admits sech shaped soliton solutions whose amplitudes and 

velocities are free parameters, and tanh solution (kink type). To avoid complex computation, we 

transform the CMKdV equation into a nonlinear coupled system by decomposing Ψ(x, t) into its 

real and imaginary parts, by assuming 

                                           ( ) ( ) ( ) 1²,,.,, −=+= itxvitxutxψ                                                  (8) 
Where, U(x, t) and V(x, t) are real functions, to obtain the coupled pair of the modified KdV 

equations 
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These two-coupled nonlinear equations describe the interaction of two orthogonally polarized 

transverse waves [8, 9], where U and V represent y-polarized and z-polarized transverse waves 

respectively, propagating in the x-direction in an xyz coordinate system. 

In order to describe the perturbation Method, we cast the CMKdV equation (5) as 
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with the solutions U(x, t)  and V(x, t) being of the form 
 
                           ( ) ( )ε

ε
,,lim,

1
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→
=   and ( ) ( )ε

ε
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1
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→
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Input the form of equation (4) into equation (6) and subsequently by equating like powers of ε , a 
system of linear differential equations, in respect to W (x,t) and V (x, t)  is obtained 
 
                                                     ( ) ( ) ,000 =+ xxxt WW                                                           (12-a) 
                      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,0)....2.3( 1200000201 =++++ xxxxxt WZWZZWWW α                                (12-b) 
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                   (12-c) 

and  
                                                         ( ) ( ) ,000 =+ xxxt ZZ                                                       (13-a) 
                 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,0)....2.3( 1200000201 =++++ xxxxxt ZZZWZWWZ α                                      (13-b) 
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It is now obvious that, from Eq.(12-a) and Eq.(13-a) , the solutions V(0)  and W(0) may be obtained 
by using a single soliton test. The linearized Eq.(12-a) and Eq.(13-a) may be resolved by using the 
variational iteraction method. 
 
3.1.  Variational iteraction method (VIM) 
 
To clarify the basic ideas of  VIM, we consider the following differential equation: 
                                                  )(tgNuLu =+                                                                  (14)  
where L is a linear operator, N a nonlinear operator and g(t) an inhomogeneous term. 
According to VIM, we can write down a correction functional as follows: 

                               ( ) ( ) ( )( ) ,~)()(
0

1 ∫ −++=+

t

nnnn dguNLututu ξξξξλ                                        (15) 

 
where λ is a general Lagrangian multiplier, which can be identified optimally via the variational 
theory. The subscript n indicates the nth approximation [12]. 
 
The correction functionals are then in the form 

                              ( ) ( ) ( ) ( ) ( ) ( )( ) ,)()(
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000
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Where λ=-1, so those Eqs.(16 and 17) changes to 
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Using the iteractions  formula (18 and 19 ) and the initial conditions as W0
(0)  and Z0

(0), then by 

introducing W(0)  and Z(0)  in Eqs.(12-b and 13-b) we obtain the solutions W(1)  and Z(1)  which will 

be incorporated in Eqs.(12-c, 13-c) to get the solutions W(2)  and Z(2)  and so on.  

 

3.2.  Test for single soliton 
In this test we choose the initial function of the exact solution of the form: 

                                        ( ) ( )[ ] ( )θ
α

ψ ixxchcx expsec20, 0−=                                             (16) 

Where x0 = 20 and  α, c are constants. 
 
 We consider the following tests: 
1. We first consider a y polarized solitary wave solution with α = 2, θ =π/2, c = 1. 
2. In the second test, we consider a solitary wave solution with α = 1, θ = π/4, c = 1. 
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In Fig. 1 , we display the  exact solution at t = 0, 1, 2, ….20 and x=0,1, 2,…100 and in Fig.2, we 
display the wave solutions at t = 0, 1, 2, ….20 and x=0,1, 2,…100 
 
 

 
                              (a)                                                                (b) 

Figure 1: a) exact solitary wave solution with α = 2, θ = π/2, c = 1, b) exact solitary wave solution 
with α = 1, θ = π/4, c = 1,  at t = 0, 1, 2, ….20 and x=0,1, 2,…100 case M=4. 

            

 

(a)                                                                                             (b) 

Figure 2:a) a solitary wave solution with α = 2, θ = π/2, c = 1, b) a solitary wave solution with α = 1, θ = 
π/4, c = 1,  at t = 0, 1, 2, ….20 and x=0,1, 2,…100 case M=4. 

                 
4. Conclusion 

We have presented a Taylor series based perturbation method enabling getting the order-by-order 
correction terms of the original problem’s approximated solution. We may conclude that, within the 
number of terms used in the series Eq (4) (M=4), the solution suggested in this work can 
satisfactorily reproduce the original function. The maximum accuracy in the approximate solution 
at minimum computational cost can be obtained after a small number of terms.  
the system of linear differential equations resulting is determined using the variational iteration 
method, since this latter is a powerful method of finding approximate solutions, we find that this 
method can reproduce the functions in a  flexible manner 
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