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ABSTRACT: The knowledge of the electric microfield distribution in multicomponent plasmas is a necessary 
condition to the solution of several problems. In particular, the calculation of the spectral line shapes for an ion, 
taken as radiator in a plasma consisting of neutrals and ions is one of these problems requiring such a 
distribution. In this work, we are interested in the electric microfield distribution in a two-component plasma. To 
reach this goal, we used a useful method based on”cluster expansion”, widely known in statistical mechanics. 
Here we only use the first term of the Baranger- Mozer formalism (the independent particle approximation). The 
system we deal with consists of ions and neutrals immersed in a uniform neutralizing background. The total 
system is assumed to be in thermal equilibrium and neutral at all points. The main interactions used are ion-ion 
and ion-neutral interactions. 
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1. Introduction 
The  knowledge of the probability distribution function for electric field in a 

multicomponent ionized plasmas is a prerequisite to the solution of a number of  problems, in 
particular that of the calculation of the broadening of spectral lines in plasmas [1, 6]. In 
relation to this problem, various theories of the electric microfield distributions have been 
formulated. The primary aim of these efforts has been to include ion-ion correlations with 
various orders and thus to improve the original work done by Holtsmark [5]. 

 
2. Formalism  

We consider the electric microfield distribution ( )EW  [1], defined as the probability 

density of finding a field E equal to ε at the charge eZ1 , located at 1r , in two-component 
ionic cold plasmas (TCICP) where ions of species ba,=σ carry a charge eZσ and neutrals of 
species dc,=σ . Here, e is the magnitude of the elementary charge and all the σZ ’s are 
positive. As usual, we assume that the electron screening is described by Debye-Hückel’s 
formula. This can be justified only for plasma in which the electron-electron and electron-ion 
couplings are both weak and the plasma may be described by classical mechanics. The 
system, which also includes a uniform neutralizing background, is assumed to be described by 
classical equilibrium statistical mechanics with temperature T and number densities σn , 
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We introduce the composition parameter, 

N
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where σN is the number of particles of species dcba ,,,=σ and Ω is the total. 
The quantity Dλ is the electron Debye screening length [2] 
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The dimensionless classical plasma parameter thus reads 
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The electron component with �0 so that ( )( ) 1215/4 3
0

2/3 =rneπ  . The Holtsmark unit of field 
strength thus becomes 

( ) 2
0

0 /
r
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With the reduced unit 0/ EE=β . 
The microfield distribution will be discussed under the usual isotropic form ( )0kEu =  

                                                      ( ) ( ) ( )duuuuFH ∫
∞

=
0

sin2 β
π
ββ                                              (1) 

in terms of its Fourier transform ( )uF . 
The mathematical quantity of interest is obviously F (u). It is the Fourier transform of the 
probability ( )EW  for finding an electric field, 
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The electric field at charged point (ions) 

i
E  and the electric field at neutraled point (neutral) 

n
E  are given by, 
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and σα  is polarizability coefficient of the neutral of species σ  ( 3
0R≈α , 3

0R  is the rayon of 
the neutral). One then gets 
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where ( )NrrrP ,...,, 21  is the joint probability for finding N  particles located at Nrrr ,...,, 21 . 
Upon introducing the auxiliary quantities ϕ  through 
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Then ( )kF  becomes 
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Where ( )∑ ∑1 1
' denotes a sum on ions a (b), while ( )∑ ∑1 1

'''  is a sum on neutrals c (d) and 

( )∑ ∑2 2
'  is the sum on aa (bb) pairs, and so on. A crucial step in this formalism is the 

introduction of the cluster expansions ( )dcba ,,,, ' =σσ  
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Where M refers to particles located at M
ii rr ,..., . 

For most cases of practical interest [2] , we shall restrict ourselves to weakly couples systems 
(Λ ≤ 1). Eq.(25) may then stop at the order Λ with 
                            ( ) ( ) ( ) ( ) ( )[ ]uhnuhnuhnuhnuF d
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And 
                            ( ) ( ) dcbardrguh ,,,11111 == ∫ σϕσσσ                                                 (10) 

Where 1r  denotes location of particle dcba ,,,=σ and ag1 , bg1 , cg1  and dg1 are the  pairs 
correlations functions. Making use of spherical harmonics expansion 
                        ( )[ ] ( )[ ] ( ) dcbaYZjli iillil
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Where  ( )Zjl  is a spherical Bessel function, the 1h ’s are expressed as 
( )Diiii rXkEZ λσσ /, ==  
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Where the argument vua 2/1= is not to be confused with the upper index labeling the heavy 
ion component. The central quantity F (u) is then well approximated by 
                         ( ) ( ) ( ) ( ) ( )( )[ ]aaaauuF dcba

1111
2/3exp φφφφ +++−≈                                           (13) 

It can be computed for any mixture though the φ ’s and taking into account ions and neutrals 
screened by electrons with ( dcba ,,,=σ ) 
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