ELECTRIC MICROFIELD DISTRIBUTION IN NEUTRAL-ION PLASMAS

Thouria CHOHRA and Mohammed Tayeb MEFTAH
Laboratoire de Développement des Energies Nouvelles et Renouvelables dans les Zones Arides et Sahariennes (LENREZA), Faculté des Sciences et Technologies et des Sciences de la Matière, Université Kasdi Merbah - Ouargla, 30000 Ouargla, Algeria
E-mail: t_chohra@hotmail.com

Abstract

The knowledge of the electric microfield distribution in multicomponent plasmas is a necessary condition to the solution of several problems. In particular, the calculation of the spectral line shapes for an ion, taken as radiator in a plasma consisting of neutrals and ions is one of these problems requiring such a distribution. In this work, we are interested in the electric microfield distribution in a two-component plasma. To reach this goal, we used a useful method based on"cluster expansion", widely known in statistical mechanics. Here we only use the first term of the Baranger- Mozer formalism (the independent particle approximation). The system we deal with consists of ions and neutrals immersed in a uniform neutralizing background. The total system is assumed to be in thermal equilibrium and neutral at all points. The main interactions used are ion-ion and ion-neutral interactions.

KEYWORDS: electric microfield distribution, multicomponent plasma, cluster expansion

1. Introduction

The knowledge of the probability distribution function for electric field in a multicomponent ionized plasmas is a prerequisite to the solution of a number of problems, in particular that of the calculation of the broadening of spectral lines in plasmas [1, 6]. In relation to this problem, various theories of the electric microfield distributions have been formulated. The primary aim of these efforts has been to include ion-ion correlations with various orders and thus to improve the original work done by Holtsmark [5].

2. Formalism

We consider the electric microfield distribution $W(\vec{E})$ [1], defined as the probability density of finding a field \vec{E} equal to $\vec{\varepsilon}$ at the charge $Z_{1} e$, located at \vec{r}_{1}, in two-component ionic cold plasmas (TCICP) where ions of species $\sigma=a, b$ carry a charge $Z_{\sigma} e$ and neutrals of species $\sigma=c, d$. Here, e is the magnitude of the elementary charge and all the Z_{σ} 's are positive. As usual, we assume that the electron screening is described by Debye-Hückel's formula. This can be justified only for plasma in which the electron-electron and electron-ion couplings are both weak and the plasma may be described by classical mechanics. The system, which also includes a uniform neutralizing background, is assumed to be described by classical equilibrium statistical mechanics with temperature T and number densities n_{σ},

$$
\begin{array}{ll}
n_{\sigma}=N_{\sigma} / \Omega & \text { and } \quad N=\sum_{\sigma} N_{\sigma}=N_{a}+N_{b}+N_{c}+N_{d} \\
n_{e}=Z_{a} n_{a}+Z_{b} n_{b}
\end{array}
$$

We introduce the composition parameter,

$$
p=\frac{N_{b}}{N_{a}+N_{b}}, \quad p^{\prime}=\frac{N_{b}}{N}
$$

where N_{σ} is the number of particles of species $\sigma=a, b, c, d$ and Ω is the total.
The quantity λ_{B} is the electron Debye screening length [2]

$$
\lambda_{D}^{2}=\frac{K_{B} T}{4 \pi n_{e} e^{2}}
$$

The dimensionless classical plasma parameter thus reads

$$
\begin{aligned}
& \Lambda=\left(1+\sum_{\sigma=a ; b} \frac{n_{\sigma}}{n_{e}} Z_{\sigma}^{2}\right)^{1 / 2} \frac{e^{2}}{K_{B} T \lambda_{D}}=0.33 v^{3} \\
& \nu=\frac{r_{0}}{\lambda_{D}}=0.0898 \frac{n_{e}^{1 / 6}\left(\mathrm{~cm}^{-3}\right)}{T^{1 / 2}(K)}
\end{aligned}
$$

The electron component with 0 so that $(4 / 15)(2 \pi)^{3 / 2} n_{e} r_{0}^{3}=1$. The Holtsmark unit of field strength thus becomes

$$
E_{0}(K V / \mathrm{cm})=\frac{e}{r_{0}{ }^{2}}
$$

With the reduced unit $\beta=E / E_{0}$.
The microfield distribution will be discussed under the usual isotropic form $\left(u=k E_{0}\right)$

$$
\begin{equation*}
H(\beta)=\frac{2 \beta}{\pi} \int_{0}^{\infty} u F(u) \sin (\beta u) d u \tag{1}
\end{equation*}
$$

in terms of its Fourier transform $F(u)$.
The mathematical quantity of interest is obviously F (u). It is the Fourier transform of the probability $W(\vec{E})$ for finding an electric field,

$$
\begin{equation*}
\vec{E}=\vec{E}^{i}+\vec{E}^{n} \tag{2}
\end{equation*}
$$

The electric field at charged point (ions) \vec{E}^{i} and the electric field at neutraled point (neutral) \vec{E}^{n} are given by,

$$
\begin{align*}
& \vec{E}^{i}=-\sum_{\sigma=a, b} \sum_{i=1}^{N_{\sigma}} z_{\sigma} e f\left(\left|\vec{r}_{1}-\vec{r}_{i}\right| \left\lvert\, \frac{\vec{r}_{1}-\vec{r}_{i}}{\left|\vec{r}_{1}-\vec{r}_{i}\right|}\right.\right. \\
& \vec{E}^{i}=-\sum_{\sigma=c, d} \sum_{i=1}^{N_{\sigma}} \alpha_{\sigma} z_{1} e h\left(\left|\vec{r}_{1}-\vec{r}_{i}\right|\right) \frac{\vec{r}_{1}-\vec{r}_{i}}{\left|\vec{r}_{1}-\vec{r}_{i}\right|} \tag{3}
\end{align*}
$$

Where

$$
\begin{align*}
& f(r)=\frac{1}{r^{2}}\left[1+\frac{r}{\lambda_{D}}\right] \exp \left(-\frac{r}{\lambda_{D}}\right) \\
& h(r)=\frac{1}{r^{2}}\left[1+\frac{r}{\lambda_{D}}+\left(1+\frac{r}{\lambda_{D}}\right)^{2}\right] \exp \left(-2 \frac{r}{\lambda_{D}}\right) \tag{4}
\end{align*}
$$

and α_{σ} is polarizability coefficient of the neutral of species $\sigma\left(\alpha \approx R_{0}^{3}, R_{0}^{3}\right.$ is the rayon of the neutral). One then gets

$$
\begin{align*}
& F(\vec{k})=\int \exp (i \vec{k} \cdot \vec{E}) N(\vec{E}) d \vec{E} \\
& =\int \exp (i \vec{k} \cdot \vec{E}) P\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right) d \vec{r}_{1} d \vec{r}_{2} \ldots d \vec{r}_{N} \tag{5}
\end{align*}
$$

where $P\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)$ is the joint probability for finding N particles located at $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}$. Upon introducing the auxiliary quantities φ through

$$
\begin{align*}
& \exp \left(i \vec{k} \cdot \vec{E}_{i}^{a}\right)=1+\left[\exp \left(i \vec{k} \cdot \vec{E}_{i}^{a}\right)-1\right]=1+\varphi_{i}^{a} \\
& \exp \left(i \vec{k} \cdot \vec{E}_{j}^{b}\right)=1+\left[\exp \left(i \vec{k} \cdot \vec{E}_{j}^{b}\right)-1\right]=1+\varphi_{j}^{b} \tag{6}\\
& \exp \left(i \vec{k} \cdot \vec{E}_{k}^{c}\right)=1+\left[\exp \left(i \vec{k} \cdot \vec{E}_{k}^{c}\right)-1\right]=1+\varphi_{k}^{c} \\
& \exp \left(i \vec{k} \cdot \vec{E}_{l}^{d}\right)=1+\left[\exp \left(i \vec{k} \cdot \vec{E}_{l}^{d}\right)-1\right]=1+\varphi_{l}^{d}
\end{align*}
$$

Then $F(\vec{k})$ becomes

$$
\begin{aligned}
& F(\vec{k})=1+\sum_{1} \int P\left(\vec{r}_{i}\right) \varphi_{i}^{a} d \vec{r}_{i}+\sum_{1} \int P\left(\vec{r}_{j}\right) \varphi_{j}^{b} d \vec{r}_{j}+\sum_{1}{ }^{\prime \prime} \int P\left(\vec{r}_{k}\right) \varphi_{k}^{c} d \vec{r}_{k}+\sum_{1} " \int P P\left(\vec{r}_{l}\right) \varphi_{l}^{d} d \vec{r}_{l} \\
& +\sum_{2} \int P\left(\vec{r}_{i}, \vec{r}_{i^{\prime}}\right) \varphi_{i}^{a} \varphi_{i^{\prime}}^{a} d \vec{r}_{i} d \vec{r}_{i^{\prime}}+\sum_{2} \int P\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right) \varphi_{j}^{b} \varphi_{j^{b}}^{b} d \vec{r}_{j} d \vec{r}_{j^{\prime}}+\sum_{2}{ }^{"} \int P\left(\vec{r}_{k}, \vec{r}_{k^{\prime}}\right) \varphi_{k}^{c} \varphi_{k^{c}}^{c} d \vec{r}_{k} d \vec{r}_{k^{\prime}}+(8) \\
& \sum_{2}{ }^{\prime \prime} \int P\left(\vec{r}_{l}, \vec{r}_{l^{\prime}}\right) \varphi_{l}^{d} \varphi_{l^{\prime}}^{d} d \vec{r}_{i} d \vec{r}_{i^{\prime}}+\sum_{1} \sum_{1} \int P\left(\vec{r}_{i}, \vec{r}_{j}\right) \varphi_{i}^{a} \varphi_{j}^{b} d \vec{r}_{i} d \vec{r}_{j}+\ldots
\end{aligned}
$$

Where $\sum_{1}\left(\sum_{1}{ }^{\prime}\right)$ denotes a sum on ions $a(b)$, while $\sum_{1}\left(\sum_{1}{ }^{\prime}\right)$ is a sum on neutrals $c(d)$ and $\sum_{2}\left(\sum_{2}{ }^{\prime}\right)$ is the sum on aa (bb) pairs, and so on. A crucial step in this formalism is the introduction of the cluster expansions ($\sigma, \sigma^{\prime}=a, b, c, d$)

$$
\begin{aligned}
& \Omega^{M} P_{M}^{\sigma}\left(\vec{r}_{i}, \ldots, \vec{r}_{i}^{M}\right)=\prod_{i} g_{1}^{\sigma}\left(\vec{r}_{i}\right)+\sum_{2} g_{2}^{\sigma}\left(\vec{r}_{i}, \vec{r}_{i^{\prime}}\right) \prod_{i} g_{1}^{\sigma}\left(\vec{r}_{i^{\prime}}\right)+\ldots \\
& \Omega^{M} P_{M}^{\sigma \sigma^{\prime}}\left(\vec{r}_{i}, \ldots, \vec{r}_{i}^{M}, \vec{r}_{j}, \ldots, \vec{r}_{j}{ }^{M}\right)=\prod_{i} g_{1}^{\sigma}\left(\vec{r}_{i}\right) \prod_{j} g_{1}^{\sigma^{\prime}}\left(\vec{r}_{j}\right)+\sum_{2} g_{2}^{\sigma \sigma^{\prime}}\left(\vec{r}_{i}, \vec{r}_{j}\right) \prod_{i^{\prime}} g_{1}^{\sigma}\left(\vec{r}_{i^{\prime}}\right) \prod_{j^{\prime}} g_{1}^{\sigma^{\prime}}\left(\vec{r}_{j^{\prime}}\right)+\ldots
\end{aligned}
$$

Where M refers to particles located at $\vec{r}_{i}, \ldots, \vec{r}_{i}{ }^{M}$.
For most cases of practical interest [2] , we shall restrict ourselves to weakly couples systems ($\Lambda \leq 1$). Eq.(25) may then stop at the order Λ with

$$
\begin{equation*}
F(u) \approx \exp \left[n_{a} h_{1}^{a}(u)+n_{b} h_{1}^{b}(u)+n_{c} h_{1}^{c}(u)+n_{d} h_{1}^{d}(u)\right] \tag{9}
\end{equation*}
$$

And

$$
\begin{equation*}
h_{1}^{\sigma}(u)=\int g_{1}^{\sigma}\left(\vec{r}_{1}\right) \varphi_{1}^{\sigma} d \vec{r}_{1} \quad \sigma=a, b, c, d \tag{10}
\end{equation*}
$$

Where \vec{r}_{1} denotes location of particle $\sigma=a, b, c, d$ and $g_{1}^{a}, g_{1}^{b}, g_{1}^{c}$ and g_{1}^{d} are the pairs correlations functions. Making use of spherical harmonics expansion

$$
\begin{equation*}
\varphi_{i}^{\sigma}=\sum_{l} i^{l}[4 \pi(2 l+1)]^{1 / 2}\left[j_{l}\left(Z_{i}^{\sigma}\right)-\delta_{l 0}\right] Y_{10}\left(\theta_{i}, \omega_{i}\right) \quad \sigma=a, b, c, d \tag{11}
\end{equation*}
$$

Where $j_{l}(Z)$ is a spherical Bessel function, the h_{1} 's are expressed as $\left(Z_{i}^{\sigma}=k E_{i}^{\sigma}, X_{i}=r_{i} / \lambda_{D}\right)$

$$
\begin{align*}
& n_{\sigma} h_{1}^{\sigma}=-u^{3 / 2} \phi_{1}^{\sigma}(a) \\
& \phi_{1}^{\sigma}(a)=\frac{15}{2(2 \pi)^{1 / 2}} \frac{n_{\sigma}}{n_{e}} \frac{1}{a^{3}} \int_{0}^{\infty}\left[1-j_{0}\left(Z_{1}^{\sigma}\right)\right]_{1}^{\sigma}\left(X_{1}\right) X_{1}^{2} d X_{1} \tag{12}
\end{align*}
$$

Where the argument $a=u^{1 / 2} v$ is not to be confused with the upper index labeling the heavy ion component. The central quantity $\mathrm{F}(\mathrm{u})$ is then well approximated by

$$
\begin{equation*}
F(u) \approx \exp \left[-u^{3 / 2}\left(\phi_{1}^{a}(a)+\phi_{1}^{b}(a)+\phi_{1}^{c}(a)+\phi_{1}^{d}(a)\right)\right] \tag{13}
\end{equation*}
$$

It can be computed for any mixture though the ϕ 's and taking into account ions and neutrals screened by electrons with ($\sigma=a, b, c, d$)

$$
\begin{array}{ll}
Z_{1}^{\sigma}=\frac{Z_{\sigma}}{X_{1}^{2}}\left[1+X_{1}\right] \exp \left(-X_{1}\right) & \sigma=a, b \\
Z_{1}^{\sigma}=\frac{2 \bar{\alpha} Z_{1} a^{2} v^{3}}{X_{1}^{2}}\left[1+X_{1}+\left[1+X_{1}\right]^{2}\right] \exp \left(-2 X_{1}\right) & \sigma=c, d \tag{14}
\end{array}
$$

References

[1] B. Held and C. Deutsch, Phys. Rev. A 24, 540 (1981)
[2] B. Held, C. Deutsch, and M. M. Combert, Phys. Rev. A 29, 880 (1984)
[3] M. Baranger and B. Mozer, Phys .Rev. 115, 521(1959)
[4] M. Baranger and B. Mozer, Phys .Rev. 118, 626 (1960)
[5] J. Holtsmark, Ann. Physik 58, 577 (1919)
[6] C. F. Hooper, Phys. Rev. A 149, 77 (1966)

