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Conclusion

Topological degree theory has been an important tool for the study of nonlinear functional
equations. The most important properties of this degree is, of course, the existent and
homotopy invariance properties, which forms the basis for the continuation method. In
this work we use the degree for Leary-Sauder operators and for operators of type (S+) to
study a general existence results for a nonlinearly elastic plates and apply this results for
the inequality variational of von Kármán type.
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Notations and conventions

I ∂αα =
∂2

∂x2α
: The second partial derivative

I ∆2 = ∆∆ = ∂αα∂ββ: The biharmonic operator.

I
∂u

∂n
= n · ∇u: The derivative according to the normal.

I [ψ, ξ] = ∂11ψ∂22ξ + ∂22ψ∂11ξ − 2∂12ψ∂12ξ : The Monge-Ampere form.

I ⇀ : Denote the weak convergence.

I (MON) : The class of monotone operators.

I (QM) : The class of quasi-monotone operators.

I (S+) : The class of operators of type S+.

I (PM) : The class of pseudo-monotone operators.

I (LS) : The class of Leary-Schauder operators.

I ω: Open bounded subset of R2.

I Hs(ω): The usual Sobolev space.

I D(ω) : The test functions space.

I Hs
0(ω) : The closure of D(ω) in Hs(ω).

I H−s(ω) : The dual space of Hs
0(ω).
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Introduction

The topological degree of mappings is one of the most effective tools for studying the

existence of solutions of nonlinear equations. As a measure of the number of solutions of

equation Fx = h for a fixed h, the degree has fundamental properties such as existence,

normalization, additively, and homotopy invariance.

The topological degree was first introduced by Brouwer [1] in 1912 for continuous func-

tions in Rn. Leary and Schauder [2] generalized in 1934 the degree theory for compact

perturbations of identity in infinite-dimensional Banach spaces. References to further ap-

plications of the Leray-Schauder continuation theorem to nonlinear elliptic boundary value

problems can be found in [3], [4], to nonlinear parabolic boundary value problems in [5]

and to ordinary differential equations in [6], [7]. The concept of topological degree has been

defined for more and more comprehensive classes of nonlinear single-valued or multi-valued

mappings arising in the operator equations. The original definitions of a degree for opera-

tors of type (S+) by Skrypnik [8] and Browder [9] were based on Galerkin approximations.

For some papers on degree theories and their applications to various problems in nonlin-

ear analysis, we cite Adhikari and Kartsatos [10], Kartsatos and Lin [11], Kartsatos and

Quarcoo [12].
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The history of the justification and generalization of the classical von Kármán’s theory of

plates has almost one century. The two-dimensional von Kármán equations for nonlinearly

elastic plates were originally proposed in [13] by the American engineer of Hungarian origin

Theodore von Kármán (1881-1963). The canonical von Kármán equations, fully justified

by Ciarlet [14].

In this memory our interest is how we can apply the topological degree methods to

study the existence for the variational inequality of von Kármán, which model unilateral

problems for nonlinearly elastic plates. This methods, studied by Goeleven, Nguyen and

Theta [15] and Gratie [16].

We shall start in chapter one by giving the definition of the classical topological degree in

section one, and the definitions and basic properties and important results of Brouwer degree

in section two, Leary and Schauder degree in section three, we first show how a compact map

can be approximated by maps with finite dimensional ranges and from here we define the

Leray Schauder degree for compact maps. In section four we survey the construction of the

degree for mappings of class (S+) and for quasimonotone and pseudo-monotone mappings,

that is based on the Leray-Schauder theory. In chapter tow we present the classical von

Kármán equations and the reduced von Kármán equations for a nonlinearly elastic plate in

section one. In section two we present a relation be twine variational inequality and fixed

point problem. In section three and four we use respectively Leary-Schauder degree and

the degree for mapping of (S+) type to study a general existence result of a variational

inequality for nonlinearly elastic plate. Finally in section five we use the results in section

three and four to study the existence for the variational inequality of von Kármán.
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Chapter 1

Topological Degree Theory

1.1 Classical topological degree

Definition 1.1 A homotopy between tow continuous functions f and g from a topological

space X to a space Y is defined to be a continuous function

H : X × [0, 1] −→ Y

from the product of the space X with the unit interval [0, 1] to Y such that, if x ∈ X then

H(x, 0) = f(x), H(x, 1) = g(x).

Definition 1.2 Let X and Y be topological spaces and let O be a class of open subsets G

of X. For each G ∈ O, we associate a class FG of maps from G into Y and a class HG

of maps [0, 1] × G into Y (admissible homotopies). For any f ∈ FG; G ∈ O, and for any
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1.2. BROUWER DEGREE THEORY CHAPTER 1.

y ∈ Y \ f(∂G) , we associate an integer d(f,G, y).

The integer valued function d is said to be a classical topological degree if the following

condition are satisfied:

1. (Existence of solution) If d(f,G, y) 6= 0, there exists an x ∈ G such that f(x) = y.

2. (Additivity) If D ⊂ G ∈ O and f ∈ FG, then the restriction f |G ∈ FD (the restricted

map is usually denoted by the same symbol ). Let G1 and G2 be a pair of disjoint

subsets of G belonging to O and suppose that y /∈ f(G\(G1 ∪G2)), then

d(f,G, y) = d(f,G1, y) + d(f,G2, y).

3. (Invariance under homotopy) If ft, 0 ≤ t ≤ 1, is a homotopy HG, then ft ∈ FG

for each fixed t ∈ [0, 1], and if {y(t) : t ∈ [0, 1]} is a continuous curve in Y with

y(t) /∈ ft(∂G) for any t ∈ [0, 1], then d(ft, G, y) is constant in t ∈ [0, 1].

4. (Normalisation) There exists a map j : X −→ Y called “normalizing map”such

that j|G ∈ FG for each G ∈ O, and if y ∈ j(G), then

d(j, G, y) = 1.

1.2 Brouwer degree theory

Let Ω ⊂ Rn, and let f : Ω −→ Rn be a continuous function. A basic mathematical problem

is: Does f(x) = 0 have a solution in Ω ? In this section, we will present a number, the

topological degree of f with respect to Ω and 0, which is very useful in answering these

question.
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1.2. BROUWER DEGREE THEORY CHAPTER 1.

Definition 1.3 Let Ω ⊂ Rn be open and bounded and f ∈ C1(Ω). If p /∈ f(∂Ω) and

Jf (p) 6= 0, then we define the Brouwer degree as follow

degB(f,Ω, p) =
∑

x∈f−1(p)

sgnJf (x),

where Jf (x) = det(f ′(x)) is the Jacobian of f at a point x ∈ Ω, and degB(f,Ω, p) = 0 if

f−1(p) = ∅.

Definition 1.4 Let Ω ⊂ Rn be open and bounded and f ∈ C2(Ω). If p /∈ f(∂Ω), then we

define

degB(f,Ω, p) = degB(f,Ω, p′),

where p′ is any regular value of f that | p′ − p |< d(p, f(∂Ω)).

Definition 1.5 Let Ω ⊂ Rn be open and bounded and f ∈ C(Ω). If p /∈ f(∂Ω). Then we

define

degB(f,Ω, p) = degB(g,Ω, p)

where g ∈ C2(Ω) and | g − f |< d(p, f(∂Ω)).

Theorem 1.6 Let Ω ⊂ Rn be open bounded subset, 1 ≤ m < n, let f : Ω −→ Rm be a

continuous function and let g = I − f . If y /∈ (I − f)(∂Ω), then

degB(g,Ω, y) = degB(gm, Ω ∩ Rm, y)

where gm is the restriction of g on Ω ∩ Rm.

For the proof see [17].
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1.2. BROUWER DEGREE THEORY CHAPTER 1.

Theorem 1.7 The Brouwer degree has the following properties

1. (Normality) degB(I,Ω, p) = 1 if and only if p ∈ Ω, where I denotes the identity

mapping.

2. (Solvability) If degB(f,Ω, p) 6= 0, then f(x) = p has a solution in Ω.

3. (Homotopy) If ft(x) : [ 0, 1] × Ω −→ Rn is a continuous and p /∈ ∪t∈[0,1]ft(∂Ω)

then d(ft, Ω, p) does not depend on t ∈ [0, 1].

4. (Additivity) Suppose that Ω1, Ω2 are two disjoint open subsets of Ω and p /∈ f(Ω −

Ω1 ∪Ω2). Then

degB(f,Ω, p) = degB(f,Ω1, p) + degB(f,Ω2, p).

For the proof see [18].

As consequences of Theorem 1.7, we have the following results :

Theorem 1.8 Let f : B(0, R) ⊂ Rn −→ B(0, R) be a continuous mapping. If | f(x) |6 R

for all x ∈ ∂B(0, R), then f has a fixed point in B(0, R).

Proof. We may assume that x 6= f(x) for all x /∈ ∂B(0, R). Put H(t, x) = x − tf(x) for

all (t, x) ∈ [0, 1]×B(0, R). Then 0 6= H(t, x) for all [0, 1]× ∂B(0, R). Therefore, we have

dB(I − f,B(0, R), 0) = degB(I, B(0, R), 0) = 1

Hence f has a fixed point in B(0, R). This completes the proof.

Theorem 1.9 Let f : Rn −→ Rn be a continuous mapping and 0 ∈ Ω ⊂ RN with Ω an

open bounded subset. If (f(x), x) > 0 for all x ∈ ∂Ω, then

degB(f,Ω, 0) = 1.

Proof. Put H(t, x) = x− tf(x) for all (t, x) ∈ [0, 1]×Ω. Then 0 /∈ H([0, 1]× ∂Ω), and so

we have

degB(f,Ω, p) = degB(I,Ω, p) = 1.
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1.3. LEARY-SCHAUDER DEGREE THEORY CHAPTER 1.

1.3 Leary-Schauder degree theory

Many problems in science lead to the equation Tx = y in infinite dimensional spaces . Hence

we again are interested in the questions raised at the beginning of section two. Therefore

we construct the Leary Schauder degree such that it is defined for mappings of the form

I − C, where C is a compact mapping from the closure of an open bounded subset of a

Banach space X into X.

Definition 1.10 Let X be a topological space. A subset M ⊂ X is called compact if every

open covering of M has an finite covering, i.e., if M ⊂ ∪i∈IVi, where Vi is an open subset

of X for all i ∈ I, then there exist ij ∈ I, j = 1, 2, ..., k. such that M ⊂ ∪kj=1Vij .

M is called relatively compact if M is compact.

Definition 1.11 Let X be a Banach space. A mapping T : D(T ) ⊂ X −→ X is called

compact if T maps every bounded subset of D(T) to a relatively compact subset in X.

To construct the Leary-Schauder Degree, we need the following result on the approxi-

mation of a compact mapping by finite dimensional mappings.

Lemma 1.12 Let E be a real Banach space, Ω ⊂ E be an open bounded subset and T :

Ω −→ E be a continuous compact mapping. Then, for any ε > 0, there exist a finite

dimensional space F and a continuous mapping Tε : Ω −→ F such that

‖Tεx− Tx‖ < ε for all x ∈ Ω.

For the proof see [17].

Lemma 1.13 Let E be a real Banach space, B ⊂ E be a closed bounded subset and T :

B −→ E be a continuous compact mapping. Suppose Tx 6= x for all x ∈ B. Then there
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1.3. LEARY-SCHAUDER DEGREE THEORY CHAPTER 1.

exists ε0 > 0 such that x 6= tTε1x+ (1− t)Tε2 for all t ∈ [0, 1] and x ∈ B, where εi ∈ (0, ε0)

and Tεi : B −→ Fεi for i = 1, 2 as in Lemma 1.12.

For the proof see [17].

Definition 1.14 Let E be a real Banach space, Ω ⊂ E be an open bounded set and T :

Ω −→ E be a continuous compact mapping. Now, suppose that 0 /∈ (I − T )(∂Ω). Then, by

Lemma 1.13, there exist ε0 > 0 such that

x 6= tTε1x+ (1− t)Tε2 for all t ∈ [0, 1] and x ∈ ∂Ω,

where εi ∈ (0, ε0) and Tεi : Ω −→ Fεi for i = 1, 2 as in Lemma 1.12. Hence Brouwer’s

degree degB(I − Tε, Ω ∩ Fε, 0) is well defined, and so we define

degLS(I − T,Ω, 0) = degB(I − Tε, Ω ∩ Fε, 0),

where ε ∈ (0, ε0)

By the homotopy property of Brouwer degree, we have

degB(I − Tε1 , Ω ∩ span{Fε1 ∪ Fε2}, 0) = degB(I − Tε2 , Ω ∩ span{Fε1 ∪ Fε2}, 0).

But

Tεi : Ω ∩ span{Fε1 ∪ Fε2} :−→ Fεi for i = 1, 2,

so by Theorem 1.6 we have

degB(I − Tε1 , Ω ∩ span{Fε1 ∪ Fε2}, 0) = degB(I − Tε1 , Ω ∩ Fε1 , 0),

and

degB(I − Tε2 , Ω ∩ span{Fε1 ∪ Fε2}, 0) = degB(I − Tε2 , Ω ∩ Fε2 , 0).

Thus we have

degB(I − Tε1 , Ω ∩ Fε1 , 0) = degB(I − Tε2 , Ω ∩ Fε2 , 0),

9



1.4. MAPPINGS OF MONOTONE TYPE CHAPTER 1.

and the degree defined in Definition 1.14 is well defined. For the general case, if p /∈

(I − T )(∂Ω), we define

degLS(I − T,Ω, p) = degLS(I − T − p,Ω, 0).

Theorem 1.15 The Leary Schauder degree has te following properties

1. (Normality) degLS(I,Ω, 0) = 1 if and only if 0 ∈ Ω.

2. (Solvability) If degLS(I − T,Ω, 0) 6= 0, then Tx = x has a solution in Ω.

3. (Homotopy) Let Tt : [0, 1] × Ω −→ E be continuous compact and Ttx 6= x for all

(x, t) ∈ [0, 1]× ∂Ω. Then degLS(I − Tt, Ω, 0) doesn’t depend on t ∈ [0, 1].

4. (Additivity) Let Ω1, Ω2 be two disjoint open subsets of Ω and 0 /∈ (I −T )(Ω−Ω1 ∪

Ω2), then

degLS(I − T,Ω, 0) = degLS(I − T,Ω1, 0) + degLS(I − T,Ω2, 0).

For the proof see [18].

1.4 Mappings of monotone type

Throughout this section, X is a real reflexive Banach space with norm ‖ . ‖ and X∗ denote

its dual space. We let 〈., .〉 denote the pairing between X∗ and X, in the sense that

〈f, u〉 = f(u), for all f ∈ X∗ and u ∈ X.

We consider here the following classes of mappings of generalized monotone type:

Definition 1.16 The operator A : X −→ X∗

10



1.4. MAPPINGS OF MONOTONE TYPE CHAPTER 1.

(a) is monotone if

〈Au− Av, u− v〉 > 0 for all u, v ∈ X,

(b) is strictly monotone if

〈Au− Av, u− v〉 > 0 for all u, v ∈ X,

(c) is of type (S+) if any sequence {un} ∈ X that weakly converges to u in X and satisfies

lim sup
n−→∞

〈Aun, un − u〉 ≤ 0 (1.1)

is in fact strongly convergent in X,

(d) is pseudo-monotone if any sequence {un} weakly converges to u in X and satisfies

(1.1) is such that

〈Aun, un − u〉 −→ 0 as n −→∞

and Aun weakly converges to Au,

(e) is quasi-monotone if any sequence {un} that weakly converge to u satisfies

lim sup
n−→∞

〈Aun − Au, un − u〉 ≥ 0.

Remark 1.17 Following [19], we recall the inclusions

(LS) ⊂ (S+) ⊂ (PM) ⊂ (QM).

A basic relation between quasi-monotone operators and mappings of type (S+), due to

Calvert and Webb [20], is given below.

Theorem 1.18

(a) If A ∈ (S+) and B ∈ (QM), then (A+B) ∈ (S+).

(b) If (A+B) ∈ (S+) for all A ∈ (S+), then B ∈ (QM).

11



1.4. THE DEGREE FOR MAPPINGS OF MONOTONE TYPE CHAPTER 1.

1.5 The degree for mappings of class (S+), (QM) and (PM)

In this section our task is to introduce approximative procedures which extend the LS-

degree to further classes of mappings of monotone type.

Definition 1.19 Let X be a real Banach space a map T : D(T ) ⊂ X −→ X∗ is called

demicontinuous if un −→ u then Tun ⇀ Tu.

Definition 1.20 Let X a real Banach space, the duality mapping J : X −→ X∗ is defined

as

Jx = {x∗ ∈ X : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}. (1.2)

Definition 1.21 A Banach space X is said to be locally uniformly convex if for every ε > 0

and x ∈ X with ‖x‖ = 1 there exists δ > 0 such that ‖x− y‖ > ε implies

‖x− y
2
‖ 6 1− δ for all y ∈ X and ‖y‖ = 1.

Lemma 1.22 Let X be a real reflexive Banach space such that X and X∗ are locally uni-

formly convex. Then the duality map J defined by (1.2) is strictly monotone and of class

(S+).

For more details see [21].

Definition 1.23 (Homotopy of type (S+)) Let X be a real reflexive Banach space and

G ⊂ X be an open and bounded set and H : [0, 1] × G −→ X∗ . Then H(t, x) is said

to be a homotopy of type (S+) if the following condition holds: For every {xn} ⊂ G and

{tn} ⊂ [0, 1] with xn ⇀ x0 in X and tn ⇀ t0 in [0, 1] such that

lim sup
n−→∞

〈H(tn, xn), xn − x0〉 ≤ 0,

12
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we have xn −→ x0 and H(tn, xn) ⇀ H(t0, x0).

Let X is a real reflexive separable Banach space and that X and X∗ are locally uni-

formly convex. In virtue of the embedding theorem by Browder and Ton [22] there exists

a separable Hilbert space H and a linear compact injection : Ψ : H −→ X such that Ψ(H)

is dense in X. We define a further map Ψ̂ : X∗ −→ H by

(Ψ̂(w), v) = (w,Ψ(v)), v ∈ H, w ∈ X∗

where (., .) stands for the inner product in H. It is obvious that Ψ̂ is also linear compact

injection. Let G be an open bounded subset in X. We denote

FG(S+) = {F : G −→ X∗|F ∈ (S+), bounded and demicontinuous}

and

HG(S+) = {Ft : G −→ X∗, 0 6 t 6 1|Ft bounded homotopy of class (S+)}

With each F ∈ FG(S+)) we can now associate a family of mappings {Fε|ε > 0} defined by

Fε(u) = u+
1

ε
Ψ̂ΨF (u), u ∈ G.

For any fixed ε > 0, Fε maps G into X and has the form I + Cε where

Cε =
1

ε
Ψ̂ΨF

is compact. Hence the LS-degree is defined for the triplets (Fε, G, y) whenever y /∈ Fε(∂G).

We have the following basic

Lemma 1.24 Let F ∈ FG(S+)), A ⊂ G a closed subset and 0 /∈ F (A). Then there exists

ε̂ > 0 such that 0 /∈ Fε(A) for all 0 < ε < ε̂. Moreover, if o /∈ F (∂G), there exists ε0 > 0

such that dLS(Fε, G, 0) is constant for all 0 < ε < ε0.

For the proof see [23].

13



1.5. THE DEGREE FOR MAPPINGS OF MONOTONE TYPE CHAPTER 1.

Definition 1.25 In view of Lemma (1.24) it is relevant to define

dS+(F,G, 0) = dLS(Fε, G, 0) where 0 6 ε 6 ε0.

Moreover, for any y ∈ X∗ with y /∈ F (∂G) we can define

dS+(F,G, p) = dS+(F − p,G, 0).

To convince ourselves that we have obtained a classical topological degree function dS+ for

mappings in FG(S+)) the conditions (1) to (4) have to be verified. It is obviously sufficient

to deal with the case y = 0 or y(t) ≡ 0

(a) If 0 /∈ F (G) it follows from Lemma 1.24 that 0 /∈ Fε(G) for all 0 < ε < ε̂. Hence

dLS(Fε, G, 0) = 0 for all 0 < ε < ε̂ implying dS+(F,G, 0) = 0. Therefore dS+(F,G, 0) 6=
0 implies 0 ∈ F (G).

(b) If G1 and G2 are open disjoint subsets of G and 0 /∈ F (G\(G1 ∪ G2)), we can apply

again Lemma 1.24 with A = G\(G1 ∪G2) and use the property (4) for the LS-degree

to derive additivity for dS+ .

(c) If Ft ∈ HG(S+) we can extend Lemma 1.24 for homotopies in the obvious way. The

property (c) follows then from the corresponding property for LS-homotopies.

(d) To show that J plays the role of normalizing map we consider the affine LS-homotopy

(1− t)I + tJε. Since J (u) = 0 if and only if u = 0, and since

〈J (u), (1− t)u+ tJ (u)〉 = ‖u‖2 +
1

ε
‖Ψ̂J (u)‖2H > 0

for all u 6= 0 and 0 6 t 6 1, we obtain

dS+(J , G, 0) = lim
ε−→0+

dLS(Jε, G, 0) = dLS(I,G, 0) = 1

whenever 0 ∈ J (G).

14



1.5. THE DEGREE FOR MAPPINGS OF MONOTONE TYPE CHAPTER 1.

Theorem 1.26 For any mapping f of class (S+) that is one-to-one on the closure of an

open set G that contains 0 and 〈f(u), u〉 > 0 on the boundary of G, then

d(f,G, y0) =


+1 if y0 ∈ f(G)

0 if y0 /∈ f(G)

Theorem 1.27 If f0 and f1 are two maps of G into X∗ lying in the class (S+), then the

linear homotopy

ft = (I − t)f0 + tf1, t ∈ [0, 1],

is always a homotopy of class (S+).

For more details of Theorem 1.26 and Theorem 1.27 see [24].

Remark 1.28 The (S+)-degree can be extended for quasimonotone mappings, i.e., to the

class FG(QM) by using the fact that F + εJ ∈ (S+), whenever F ∈ (QM) and ε > 0.

Definition 1.29 If y /∈ F (∂G), the QM-degree obtained through approximations

dQM(F,G, y) = lim
ε−→0+

dS+(F + εJ , G, y).

Remark 1.30 The QM-degree is not a classical degree in the sense of Definition 1.2. For

instance we have:

(á) If dQM(F,G, y) 6= 0 then y ∈ F (G).

For more details on weak degree theories we refer to [25].

Remark 1.31 Since (S+) ⊂ (PM) ⊂ (QM) the QM-degree is defined for all mappings

F ∈ FG(PM).
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Theorem 1.32 Let G be an open bounded subset in X, T ∈ FG(S+) a reference map and

F ∈ FG(S+). If for a given y ∈ X∗ there exists w ∈ T (G) such that

tF (u) + (1− t)T (u) 6= ty + (1− t)w for all u ∈ ∂G, 0 6 t 6 1, (1.3)

then dS+(F,G, y) 6= 0 and F (u) = y admits a solution u in G.

Theorem 1.33 Let G be an open bounded subset in X and F ∈ FG(S+). If there exists u

∈ G such that

〈F (u)− y, u− u〉 > ‖F (u)− y‖‖u− u‖ for all u ∈ ∂G,

then dS+(F,G, y) = 1 and F (u) = y admits a solution u in G.

For more details of Theorem 1.32 and Theorem 1.33 see [23].

16



Chapter 2

Unilateral problems for nonlinearly
elastic plates

2.1 von Kármán Equations

2.1.1 The classical von Kármán equation

The canonical von Kármán equations are given by
∆2ξ = [ψ, ξ] + f in ω,

∆2ψ = −[ξ, ξ] in ω,

ξ = ∂νξ = 0 on γ,

ψ = ψ0, ∂νψ = 0 on γ,

17



2.1. VON KÁRMÁN EQUATIONS CHAPTER 2.

where ω is a domain in R2 modelling the middle surface of the plate, and f, ψ0 are given

functions. The objective of this boundary-value problem is to find at least one solution

(ξ, ψ) ∈ H2
0 (ω) × H2(ω), under the assumptions that ω is simply connected and the data

have minimal regularities.

2.1.2 The reduced von Kármán equation for a nonlinearly elas-

tic plates

The canonical von Kármán equations can be transformed into the reduced von Kármán

equation, by means of the following result:

let the bilinear and symmetric operator

B : H2(ω)×H2(ω) −→ H2
0 (ω),

be defined as follows: given (ξ, ψ) ∈ H2(ω) × H2(ω), we let B(ξ, ψ) ∈ H2
0 (ω) denote the

unique solution of the biharmonic equation

∆2B(ξ, ψ) = [ξ, η] in ω.

Then, defined the operator

C : H2
0 (ω) −→ H2

0 (ω),

by letting

C(ξ) := B(B(ξ, ξ), ξ),

which is ”cubic”, in that

C(αξ) = α3C(ξ) for all α ∈ R.

Assuming that ψ0 ∈ H3/2
0 (γ) and ψ1 ∈ H1/2

0 (ω), we let θ0 in H2(ω) be the unique solution

of the boundary value problem: ∆2θ0 = 0 in ω, θ0 = ψ0 and ∂νθ0 = ψ1 ∈ γ, and we define

the linear operator

Λ : H2
0 (ω) −→ H2

0 (ω),

18



2.2. VARIATIONAL INEQUALITY CHAPTER 2.

by letting

Λ(ξ) = B(θ0, ξ).

Finally, assume that f ∈ H−2(ω) and let F ∈ H2
0 (ω) be the unique solution of the bihar-

monic equation

∆2F = f in ω.

Theorem 2.1 The pair (ξ, ψ) ∈ H2
0 (ω)×H2(ω) satisfies the canonical von Kármán equa-

tions if and only if ξ ∈ H2
0 (ω) satisfies the reduced von Kármán equation

C(ξ) + (I − Λ)ξ − F = 0 or equivalent ξ − F = B(−B(ξ, ξ) + θ0, ξ),

where the Airy function is given by

ψ = θ0 −B(ξ, ξ).

For the proof see [26].

2.2 Variational inequality

In what follow, X will be a real Hilbert space, whose scalar product is denoted by 〈., .〉, K
a non-empty closed convex cone in X, A : X −→ X an operator denoted on X, and f ∈ X
a fixed element. The problem

V. I. (A; f,K) :

{
find u ∈ K such that

〈Au− f, v − u〉 > 0, for each v ∈ K,
(2.1)

is called the variational inequality associated with A, f and K.

If

K∗ = {y ∈ X : 〈y, x〉 > 0 for each x ∈ K}
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2.2. VARIATIONAL INEQUALITY CHAPTER 2.

denoted the dual cone of K, we may define the general complementary problem :

C. P. (A; f,K) :

{
find u ∈ K such that

Au− f ∈ K∗, and 〈Au− f, u〉 = 0.
(2.2)

The basic relation between problems V.I(A; f,K) and C.P (A; f,K) is the following:

Proposition 2.2 Let X be a Hilbert space, K a closed convex cone with vertex at the origin

in X, f ∈ X and A : K −→ X. Then u∗ is solution of V.I(A; f,K) if and only if u∗ is a

solution of C.P (A; f,K).

Let the set-value mapping

PA : X −→ 2K ,

be defined by

PA(f) := {u ∈ K : u is solution of V. I. (A; f,K)}.

It has been shown by A. Szulkin in [27] that, if A : K −→ X has the following properties:

H1. A : K −→ X is continuous on finite dimensional subspaces (i.e. the restriction of A to

the intersection of k with any finite dimensional subspace of X is weakly continuous

),

H2. there exist α > 0, q > 1 such that

〈Au− Av, u− v〉 > α‖u− v‖q for each u, v ∈ K,

then PA is single-valued, bounded and continuous.

Let A,L, T : X −→ X be given, and let g be fixed in X. Let us now suppose that the

mapping A is the sum of two operators A1 and A2, with A1 satisfying szulkin’s assumptions

H1 and H2.

It is by now well known in [28] that the complementary problem admits an equivalent

fixed point formulation , more precisely, we have:
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2.2. VARIATIONAL INEQUALITY CHAPTER 2.

Proposition 2.3 Let U be an open bounded set in K, λ ∈ R and consider the following

problem:

V. I. (A,L, T, g, λ, U) :


find u ∈ U, λ ∈ R such that

〈Tu, v − u〉 > 〈λLu− Au+ g, v − u〉 for each v ∈ K.
(2.3)

If A1 satisfies assumptions H1 and H2, then u ∈ U is a solution of V. I. (A,L, T, g, λ, U)

if and only if u is a solution of the following fixed point problem:

F. P. (A,L, T, g, λ, U) :


find u ∈ U, λ ∈ R such that

u = PA1(−Tu+ λLu− A2u+ g).

(2.4)

Remark 2.4 If PA1(−Tu + λLu − A2u + g) is compact and if V. I. (A,L, T, g, λ, U) has

no solution on ∂U , then the topological degree of the mapping

Φ := I − PA1(−Tu+ λLu− A2u+ g),

with respect to U and 0 is well defined.

Let K be a closed, convex cone in the real Hilbert space X with inner product < ., . >

and norm ‖.‖ and let U be a bounded open subset of K.

Definition 2.5 The map F : X −→ X∗ is said to be strongly continuous if and only if

un ⇀ u as n −→∞

implies Fun −→ Fu as n −→∞

Proposition 2.6 Let A : X −→ Y be an operator where X and Y are real reflexive Banach

spaces then the following two assertions are valid:

(a) A is strongly continuous implies A is compact.
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2.2. TOPOLOGICAL DEGREE FOR L-SCHAUDER OPERATORS CHAPTER 2.

(b) A is linear and compact implies A is strongly continuous

In (b) we do not need that the Banach spaces are reflexive.

For the proof see [18].

2.3 Topological degree for Leary-Schauder operators

Consider the following nonlinear variational eigenvalue problem:

Fined (u, λ) ∈ U ×R+ such that < Au− λLu+Cu− f, v− u >> 0, for all v ∈ K, (2.5)

where f is given in X, λ is a positive parameter, and A, L, C are operators satisfying the

following assumptions:

1. A : X −→ X is such that A = A1 + A2, where

(a) A1 : X −→ X is bounded, linear and α-coercive,

(i.e.〈A1u, u〉 > α‖u‖2, for each u ∈ X);

(b) A2 : X −→ X is strongly continuous, positively homogeneous of order one

(i.e.A2(tu) = tA2u for each u ∈ X, t > 0).

2. L : K −→ X is strongly continuous and positively homogeneous of order one.

3. C : K −→ X is strongly continuous and positively homogeneous of order p > 1.

4. 〈Cu, u〉 > 0, for each u ∈ K\0.

Remark 2.7 It should be observed that Szulkin’s assumptions are fulfilled for A1 and there-

fore PA1 is a single-value, bounded and continuous.

Lemma 2.8 Assume that hypotheses (1) to (4) hold. Then there exists r0 > 0 depending

on λ ∈ R and g ∈ X such that, for each r > r0

dLS(u− PA1(−Cu+ λLu− A2u+ g), Kr, 0) = 1.
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Proof. The map

u −→ −Cu+ λLu− A2u+ g

is compact and since PA1 is continuous, the map

u −→ PA1(−Cu+ λLu− A2u+ g)

is compact.

Let U be a bounded open set in X such that 0 /∈ Φ(∂U) where Φ : U −→ X is given by

x −→ x− PA1(−Cx+ λLx− A2x+ g).

Since the topological degree of Φ with respect to U and 0 is clearly defined, we may define

the homotopy

Hλ(t, u) = PA1(−Cu+ t(λLu− A2u+ g)).

We claim that there exists r0 > 0 such that for each r > r0, (I − Hλ(t, u))(∂Kr) 6= 0 for

each t ∈ [0, 1]. Indeed, suppose on the contrary, we may find sequences {un;n ∈ N} and

{tn;n ∈ N} such that un ∈ k, tn ∈ [0, 1], lim
n−→∞

‖un‖ =∞ and

〈Cun + A1un, v − un〉 > tn〈λLu− A2un + g, v − un〉, for each v ∈ K. (2.6)

In particular , for v = 0 we obtain

〈Cun + A1un, un〉 6 tn〈λLu− A2un + g, un〉. (2.7)

We claim that there exists some τ > 0 such that

〈Cun, un〉 > τ‖un‖p+1, for all ∈ N.

Otherwise, on relabelling if necessary and setting vn := un/‖un‖ we would obtain

lim
n−→∞

〈Cvn, vn〉 = 0.

Since we may assume that vn ⇀ v0, v0 ∈ K, by strong continuity of C we would obtain

〈Cv0, v0〉 = 0, and therefore by assumption (4), v0 = 0.

Using (2.7) and assumption (2.1) and (4) we have

tnλ〈Lun, un〉 > 〈A1un, un〉+ tn〈A2un, un〉 − tn〈g, un〉,
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and therefore

tnλ〈Lvn, vn〉 > α + tn〈A2vn, vn〉 − tn〈g, un〉/‖un‖,

Hence by passing to a subsequence, if necessary (this is possible since tn ∈ [0, 1]), we may

assume that lim
n−→∞

tn = t∗ and we get

t∗λ〈Lv0, v0〉 > α + t∗〈A2v0, v0〉,

and α 6 0, contradiction.

By applying again (2.7), Assumption (1.2) and the previous claim we have

α‖un‖2 + τ‖un‖p+1 6 〈Cun + A1un, un〉

6 |λ|‖Lun‖‖un‖+ ‖A2un‖‖un‖+ ‖g‖‖un‖.

In particular, dividing the last inequality by ‖un‖p+1 we obtain:

α‖un‖1−p‖+ τ 6 |λ|‖Lun‖/‖un‖p + ‖A2un‖/‖un‖p + ‖g‖/‖un‖p.

SinceA2 and L are continuous positively homogeneous of order one, there exits ΓA2 ,ΓL >

0 such that

‖A2x‖ 6 ΓA2‖x‖, for each x ∈ K

and

‖Lx‖ 6 ΓL‖x‖, for each x ∈ K.

This yields

α‖un‖1−p + τ 6 |λ|ΓL‖un‖1−p + ΓA2‖un‖1−p + ‖g‖‖un‖−p,

and therefore by taking the limit as n tends to +∞ we obtain τ 6 0, a contradiction.

Using now property (3) of the Leary-Schauder degree

dLS(Φ, Kr, 0) = dLS(I −Hλ(1, .), Kr, 0)

= dLS(I −Hλ(0, .), Kr, 0)

= dLS(I − PA1(−Cu), Kr, 0).

We now define the homotopy

Gλ(t, u) := PA1(−tCu),
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we claim that for each r > 0,

I −Gλ(t, .)(∂Kr) 6= 0 for each t ∈ [0, 1].

Indeed, suppose, on the contrary, that there exist r > 0, t∗ ∈ [0, 1] and u∗ ∈ K with

‖u∗‖ = r such that

u∗ = PA1(−tCu∗),

or equivalently,

〈A1u
∗ + t∗Cu∗, v − u∗〉 > 0, for each v ∈ K.

For v = 0, we get

〈A1u
∗ + t∗Cu∗, u∗〉 6 0,

from which, by assumption (4) and properties of A1 we derive α‖u∗‖2 6. This yields u∗ = 0,

a contradiction. Thus

dLS(Φ, Kr, 0) = d(I − PA1(−Cu), Kr, 0)

= d(I −Gλ(1, .), Kr, 0)

= d(I −Gλ(0, .), Kr, 0)

= d(I − PA1(0), Kr, 0).

Since A1 is coercive, necessarily PA1(0) = 0, and therefore by virtue of property (1) of

the Leary-Schauder degree we obtain

dLS(Φ, Kr, 0) = 1,

and the desired result.

Theorem 2.9 Assume that hypotheses (1)-(4) hold. Let g ∈ X be fixed. If there exists

u0 ∈ K such that 〈g, u0〉 > 0, then for each λ ∈ R, there exists u(λ) ∈ K such that u(λ) 6= 0

and

〈Au(λ)− λLu(λ) + Cu(λ), v − u(λ)〉 > 〈g, v − u(λ)〉, for each v ∈ K.

Proof. The existence of u(λ), solution of V. I. (A,L,C, g, λ,K) follows from Lemma 2.8

and property (2) of the Leary-Schauder degree. For zero to be a solution, it is necessary

that 〈g, v〉 6 0, for each v ∈ K, and thus u(λ) 6= 0.
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2.4 Topological degree for (S+) operators

Consider the same nonlinear variational eigenvalue problem 2.5 such that A,L,C satisfying

the following assumptions:

1. A : X −→ X is linear, continuous, and α-coercive.

2. L : K −→ X is continuous and positively homogeneous of order one.

3. C : K −→ X is continuous and positively homogeneous of order three. and satisfies

< Cu, u >> 0 for all u ∈ K\{0}.

If f = 0, then (2.5) has the trivial solution u = 0, which corresponds to a state of plate

without buckling. When f 6= 0 and λ increases from zero onward, buckling occurs and we

are interested in the modelling of this phenomenon.

Let

Fλ = Au− λLu+ Cu− f,

where the sum (−λL+C) is quasi monotone operator. Since A is an operator of type (S+),

so is Fλ (Theorem 1.18).

Let

Kr = {x ∈ K; ‖x‖ < r},

then, the topological degree dS+(Fλ, Kr, 0) well defined.

Theorem 2.10 Under hypotheses (1), (2) and (3), there exists r0 = r0(λ, f) > 0 such

that, for each r > r0

dS+(Fλ, Kr, 0) = 1.

Proof. Let U be a bounded open set in X such that (2.5) has no solutions on ∂U . Since

the (S+)-degree of Fλ at 0 relative to U is well defined, we may consider the homotopy of

type (S+)

Hλ(t, u) = Au+ Cu− t(λLu+ f).
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We claim that there exists r0 > 0 such that the problem

Fined (u, λ) ∈ U × R+ such that < Hλ(t, u), v − u >> 0, for all v ∈ K,

has no solutions on ∂Kr for r > r0 and t ∈ [0, 1], where

Kr = {x ∈ K; ‖x‖ < r}.

Indeed, suppose the contrary. Then, we can find sequences {un} and {tn} such that

‖un‖ −→ ∞ and

〈Aun + Cun, v − un〉 6 tn〈λLun + f, v − un〉 ∀v ∈ k.

Taking v = 0, we obtain

〈Aun + Cun, un〉 6 tn〈λLun + f, un〉. (2.8)

We prove that there exists ε > 0 such that

〈Cun, un〉 > ε‖un‖4 for all n ∈ N.

Otherwise, setting vn = un
‖un‖ , we would obtain 〈Cvn, vn〉 −→ 0 as n −→ ∞. Since we may

assume that vn −→ v0 ∈ K, we have 〈Cv0, v0〉 = 0 by the strong continuity of C, and

therefore v0 = 0 by virtue of (3).

Using (2.8), (1) and (3), we get

λtn〈Lun, un〉 > α‖un‖2 − tn〈f, un〉.

We may assume that tn −→ t0 ∈ [0, 1]. Dividing by λ‖un‖2 and letting n −→∞ we obtain

t0〈Lv0, v0〉 >
α

λ
> 0,

which is a contradiction for λ small enough, because 〈Lv0, v0〉) is a constant. Using again

(2.8), hypotheses (1), (2), (3) and the previous estimate, we get

ε‖un‖4 + α‖un‖2 6 〈Cun + Aun, un〉

6 |λ|‖Lun‖‖un‖ − ‖f‖‖un‖,
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and dividing by ‖un‖4, we infer that

ε+ ‖un‖−2(α− λ‖L‖)− ‖f‖‖un‖−4 6 0.

Taking the limit as n −→ ∞, we obtain ε 6 0, which is a contradiction. Using now the

homotopy invariance property of the (S+)-degree, we get

dS+(Fλ, Kr, 0) = dS+(Hλ(1, .), Kr, 0)

= dS+(Hλ(0, .), Kr, 0)

= dS+(A+ C,Kr0).

Define another homotopy

G(t, u) = Au+ tCu.

We claim that, for each r > 0, the problem

Find u ∈ U such that 〈G(t, u), v − u〉 > 0 for all v ∈ K,

has no solution on ∂Kr for t ∈ [0, 1] Indeed, suppose the contrary. Then there exist

r > 0, s ∈ [0, 1] and y ∈ K with ‖y‖ = r such that

〈Ay + sCy, v − y〉 > 0 forall v ∈ K.

For v = 0, we get

〈Ay + sCy, y〉 6 0,

and by hypotheses (1) and (3), it follows that α‖y‖2 6 0. This yields y = 0, a contradiction.

Therefore

dS+(Fλ, Kr, 0) = dS+(A+ C,Kr, 0)

= dS+(Gλ(1, .), Kr, 0)

= dS+(Gλ(0, .), Kr, 0)

= dS+(A,Kr0).

Since A is coercive, Au = 0 has a solution and thus

dS+(A,Kr0) = 1.

Hence the proof is complete.

We are now in a position to prove a general existence result for nontrivial solutions.
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Theorem 2.11 Assume that assumptions (1),(2), and (3) hold and let f ∈ X be fixed. If

there exists u0 ∈ K such that < f, u0 >> 0, then for each λ ∈ R+, there exists a nontrivial

solution u(λ) ∈ K of the problem (2.5)

Proof. The existence of a solution for (2.5) follows from Theorem 2.10 and from the

existence property of the S+-degree. For zero to be a solution, it is necessary that 〈f, v〉 6
0 for all v ∈ K, and thus u(λ) 6= 0.

2.5 Application to variational inequalities of von Kármán type

Let there be given a thin plate, identified with the closure of a bounded, open subset ω of

R2, with a boundary ∂ω of class C1. Assume that the plate is clamped on a part Γ0 of

its boundary ∂ω and simply supported on the remaining part of the boundary. Define the

space

X := {u ∈ H2(ω) : u = 0 on Γ,
∂u

∂n
= 0 a.e. on Γ0},

and let the set K of admissible displacements be the closed convex cone of X defined by

K := {u ∈ X : u > 0 a.e. on Γ0}.

The equilibrium of a non linearly elastic plate subjected to unilateral conditions is governed

by the following variational inequalities:

Fined u ∈ K and λ ∈ R such that < u− λLu+Cu− f, v − u >> 0, for all v ∈ K, (2.9)

where L is a linear operator describing the lateral loading in the the plane of the plate, C

is a “cubic ”nonlinear operator generalizing that introduced in the Von Karman nonlinear

theory of plates (see[26]), f is the density of the vertical force, λ is a parameter measuring

the magnitude of the lateral loading, and u is the unknown transverse displacement.

Remark 2.12 For a nonlinearly elastic plate with unilateral conditions, subjected to a body

force of density f, the equilibrium of the plate is governed by a variational inequality of type
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(2.5), and if there exists u0 ∈ K such that 〈f, u0〉 > 0, then we may apply Theorem 2.9 and

Theorem 2.11 to get the existence of an equilibrium for any λ ∈ R+.

Remark 2.13 Applying Theorem (2.9) with A1 = I and A2 = 0, we obtain the existence

of solutions for (2.9).

Remark 2.14 Applying Theorem 2.11 with A = I, we obtain the existence of solutions for

(2.9).
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