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Notations and conventions

I B◦ : The adjointe group of a brace B.

I B+ : The additive group (B,+).

I RBra : The category of right braces.

I LBra : The category of left brace.

I Soc(B) :The socle of a brace B.

I ⊗ : Tensor product .

I QY BE : The quantum Yang-Baxter equation.

I Tn(V ) : The tensor product of n folds of a vector space V .

I End(Tn(V )) : The set of the endomorphisms of Tn(V ).

I ∆ : Difference function.

I G∆ : The adjoint group of a bi-group (G,∆).

iii



Contents

Dedication i

Acknowledgement ii

Notations and Conventions iii

Introduction iv

Introduction v

1 Braces 1

1.1 Braces, homomorphisms and ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modules over a braces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Braces and the quantum Yang-Baxter equation 8

2.1 The quantum Yang-Baxter equation (QYBE) . . . . . . . . . . . . . . . . . . . . . 8

2.2 Higher forms of QYBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Set theoretic solutions of the QYBE . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Cycle sets and solutions of the QYBE . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Difference functions and Bi-groups 18

3.1 Definitions and basic facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Composition of difference function . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 The bi-subgroup generated by a subset . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



Introduction

Roughly speaking, a brace is a half-ring, or better a half radical ring. Recall that a ring

R is said to be radical if its underlying set is a group under the circle opertion x ◦ y = x+ y+ xy.

For a brace, we require the axioms of radical rings except the associativity and the distributivity;

this last one is just supposed to be one-sided (right or left following our brace).

Since the introduction of the Jacobson radical by N. Jacobson, a considerable amount of work

was devoted to radical rings. One central question in this area is to characterize the groups that

can occur as adjoint groups of radical rings. Note that, more recently, this question became central

in the realm of braces; that is what are the groups that can occur as adjoint groups of braces?

Only very recently, one knows that not every finite p-group is the adjoint group of some brace.

On the one hand, braces are interesting for studying the quantum Yang-Baxter equation; and

actually, this equation is behind the discovery of braces by W. Rump in 2007. On the other hand,

as braces generalize radical rings, many problems and applications of radical rings extend naturally

to braces. Note here that radical rings arise in studying factorized groups (the relevance was first

noticed by Y. Sysak), automorphisms of groups (H. Laue), more specifically, automorphisms of

finite p-groups, and regular abelian subgroups of affine groups (Caranti et Al), etc.

The abstract notion of brace is treated in the first chapter. The second chapter is devoted to

studying the relation between braces and the quantum Yang-Baxter equation. In this chapter we

introduce a sort of general Yang-Baxter equations, however no attempt is made to solve them.

This family of YB-like equations may shed new lights on the ordinary QYBE, and we think that

they underlie some intriguing algebraic structures.

In the last chapter, we introduce the notion of Bi-groups. These may be considered as a far

reaching generalization of braces. One curious thing is that braces, radical rings, and general

v



groups represent very particular instances of Bi-groups. Our treatment of these notions is still far

from being mature, and the reader will find no deep applications of theme.
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Chapter 1

Braces

Braces received wide interest in the last years. They were introduced by Rump in [8] in order to

studying set-theoretic solutions of the Yang-Baxter equation.

1.1 Braces, homomorphisms and ideals

Definition 1.1.1 Let (B,+) be an abelian group together with a right distributive multiplication;
that is

(x+ y).z = x.z + y.z for all x, y, z ∈ B. (1.1)

We say that (B,+, .) is a rigth brace if the circle operation

x ◦ y := x+ y + x.y (1.2)

defines a group structure on the set B.

If B is a right brace, the group defined by the circle operation will be denoted by B◦, and

called the adjoint group of B.

The notion of left brace can be defined similarly; just we require that the multiplication on B

is left distributive instead of being right distributive.

There is a canonical way to pass from right braces to left braces and vice versa. If B is a right

brace then the opposite brace Bop is a left brace, where Bop has the same additive group as B and

the product a.b in Bop is equal to ba in B. It follows similarly that the opposite brace of a left

1



CHAPTER 1. BRACES

brace is a right brace.

Recall that an associative ring R is said to be radical if the operation x ◦ y = x + y + xy,

defines a group structure on the set R. Plainly, R can be seen as a right and a left Brace. Hence,

braces can be viewed as generalization of radical rings.

We say that a right brace is trivial if a.b = a+ b for every elements a and b of that brace. If B

is both a left and a right brace (under the same multiplication), then we say that B is a left-right

brace.

We call a brace B abelian if its adjoint group B◦ is abelian.

Proposition 1.1.2 Let B be an abelian group. Then B is a left-right brace for a given multipli-
cation if, and only if, B is a radical ring with respect to this multiplication.

Proof. As we noticed above, every radical ring is a left-right brace. Conversely, assume that

B is a left-right brace, then

(i) a(b+ c) = ab+ ac,

(ii) (a+ b)c = ac+ bc,

(iii) (B, ◦) group.

Thus it remains only to prove the associativity of the multiplication. Let a, b, c ∈ B. We have on

the one hand,

(a ◦ b) ◦ c = (a+ b+ ab) ◦ c

= a+ b+ ab+ c+ (a+ b+ ab)c

= a+ b+ ab+ c+ ac+ bc+ (ab)c.

On the other hand, from (iii) we have

(a ◦ b) ◦ c = a ◦ (b ◦ c)

= a+ b+ c+ bc+ a(b+ c+ bc)

= a+ b+ c+ bc+ ab+ ac+ a(bc).

U.K.M.O 2



CHAPTER 1. BRACES

It follows that

a(bc) = (ab)c.

Definition 1.1.3 A sub-brace of a brace B is an additive subgroup H which is closed under mul-
tiplication; i.e., ab ∈ H, whenever a, b ∈ H.

Given a radical ring A, the right (as well the left) sub-braces of A are exactly the subrings of

A. If B is a trivial brace, the sub-braces of B are the additive subgroups of B.

Definition 1.1.4 A homomorphism between two right (left) braces A and B is a map f : A −→ B
which satisfies f(a+ b) = f(a) + f(b) and f(a.b) = f(a).f(b) for all a, b ∈ A.

Note that every homomophism of right (left) braces induces a group homomorphism between

the corresponding adjoint groups.

The kernel of a brace homomorphism f : A −→ B is defined as usual by

ker f = {a ∈ A | f(a) = 0}.

It follows that ker(f) is a sub-brace (actually an ideal) of A. Also, ker f is a normal subgroup of

the adjont group A◦.

The image of the morphism f is a sub-brace of B.

It is straightforward to see that the right (left) Braces form a category RBra (LBra, respec-

tively) and the passage from a brace to its adjoint group is a functor from RBra (or LBra) into

the category of groups.

Definition 1.1.5 Let B a right brace and let I be a subgroup of B+.

1. We say that I is a right ideal of B, if xb ∈ I for all b ∈ B and x ∈ I.

2. We say that I is a left ideal of B, if bx ∈ I for all b ∈ B and x ∈ I.

3. I is said to be an ideal, if I is a right and a left ideal of B.

Proposition 1.1.6 Every ideal of a brace B is a normal subgroup of the adjoint group B◦.

Proof. Let I be an ideal of B, a ∈ I and b ∈ B. Denote by b′ the inverse of b in B◦. We claim

that b′ ◦ a ◦ b ∈ I. Indeed,

U.K.M.O 3



CHAPTER 1. BRACES

1. If B is a right brace, then

b′ ◦ a ◦ b = (b′a+ b′ + a) ◦ b

= (b′a+ b′ + a)b+ b′a+ b′ + a+ b

= b′ + a+ b′a+ b+ b′b+ ab+ (b′a)b

= a+ b′a+ ab+ (b′a)b ∈ I.

2. If B is a left brace, then

b′ ◦ a ◦ b = b′ ◦ (a+ b+ ab)

= b′ + a+ b+ ab+ b′(a+ b+ ab)

= b′ + a+ b+ ab+ b′a+ b′b+ b′(ab)

= a+ ab+ b′a+ b′(ab) ∈ I.

Let I be an ideal of the right (left) brace B. Then B/I has a natural structure of a right (left)

brace; the addition is defined as usual, and for the multiplication we set

(a+ I)(b+ I) = ab+ I,

this multiplication is well defined (see Proposition 3.1.10). Now we can coinsider the adjoint group

(B/I)◦, and on the other hand I◦ is a normal subgroup of B◦, so we can consider the quotient

B◦/I◦. These groups are actually isomorphic.

Proposition 1.1.7 Under the above notation, we have

(B/I)◦ ' B◦/I◦.

Proof. The canonical map

B −→ B/I

b 7−→ b+ I

U.K.M.O 4



CHAPTER 1. BRACES

is a brace epimorphism; so it induces a group epimorphism

B◦ −→ (B/I)◦.

The kernel of this map is exactly I = I◦, the result follows.

1.2 Modules over a braces

Let B be a right brace. A module over B is an abelian group M together with a right operation

M ×B −→M , which satisfies the following conditions, for all x, y ∈M , and all a, b ∈ B.

1. (x+ y)a = xa+ ya,

2. x(a ◦ b) = (xa)b+ xa+ xb,

3. x0 = 0.

Note that every right brace B is a module over itself by taking the multiplication in B as

operation.

Let R be an associative ring, B be a right brace, and M be a left R-module. Assume also that

M is a module over B. We say that M is an (R,B)-bimodule if, for all x ∈M, r ∈ R, and a ∈ B,

we have

(rx)a = r(xa).

Proposition 1.2.1 Let B be a right brace, and

B0 := {x ∈ B |x(a+ b) = xa+ xb for all a, b ∈ B}.
Then B0 is a radical ring.

Proof. Let x, y ∈ B0 and a, b ∈ B. As the multiplication in B is right distributive, we have

(x+ y)(a+ b) = x(a+ b) + y(a+ b)

= xa+ xb+ ya+ yb

= xa+ ya+ xb+ yb

= (x+ y)a+ (x+ y)b,

U.K.M.O 5



CHAPTER 1. BRACES

and obviously 0 ∈ B0. Hence, B0 is an additive subgroup of B. We claim now that B0 is

closed under multiplication. Once this is proved, the first claim in the proposition follows. The

associativity of B◦ shows that

(xy)(a+ b) = x(y ◦ (a+ b))− xy − x(a+ b)

= x(y + (a+ b) + ya+ yb)− xy − x(a+ b)

= xy + x(a+ b) + x(ya) + x(yb)− xy − x(a+ b)

= x(ya) + x(yb).

Now, the expansion of x ◦ (y ◦ a) = (x ◦ y) ◦ a yields x(ya) = (xy)a; but since b can be replaced by

a, we obtain (xy)(a+ b) = (xy)a+ (xy)b, as desired.

The above proposition implies that every right brace B can be viewed as a (B0, B)-bimodule.

For a right brace B, the socle is defined as

Soc(B) := {a ∈ B | ba = 0 for all b ∈ B}.

Proposition 1.2.2 The socle of a right brace B is an ideal of B.

Proof. Clearly, 0 ∈ Soc(B). If a1, a2 ∈ Soc(B), then

b(a1 + a2) = ba1 + ba2 = 0,

for all b ∈ B. Hence Soc(B) is an additive subgroup of B. Let a ∈ Soc(B) and b1,∈ B, we claim

that ab1, b1a ∈ Soc(B). We have b1a = 0, so b1a ∈ Soc(B). If b2 ∈ B. We have

b2(a ◦ b1) = (b2a)b1 + b2a+ b2b1,

the left side of the equation gives

b2(a ◦ b1) = b2(a+ b1 + ab1)

= b2a+ b2b1 + b2(ab1)

= b2b1 + b2(ab1),

U.K.M.O 6



CHAPTER 1. BRACES

and the right one gives

b2b1 + b2(ab1) = b2b1.

Thus, ab1 ∈ Soc(B).

Similarly, we define the socle of a left brace A as :

Soc(A) = {a ∈ A | ab = 0 for all b ∈ A}.

Taking in account that the opposite of a left brace is a right brace, one deduces that Soc(A) is

an ideal.

Conjecture. The socle of a finite brace is always non-trivial.

This conjecture is related to the behavior of some solutions of the QYBE.

U.K.M.O 7



Chapter 2

Braces and the quantum Yang-Baxter
equation

Here we investigate the connection between braces and the set-theoretic solutions of the Yang?Baxter

equation.

2.1 The quantum Yang-Baxter equation (QYBE)

The Yang?Baxter equation first appeared in theoretical physics and statistical mechanics in the

works of Yang [13] and Baxter [2, 3]. It has applications in many areas of physics, computer

sciences and mathematics.

Fix a commutative unital ring K, and let V be a free K-module. We denote by T k(V ) the

tensor product of k folds of V . Every linear map

R : V ⊗ V −→ V ⊗ V,

defines a multilinear map

V × V × V −→ V ⊗ V ⊗ V

(x, y, z) 7−→ R(x⊗ y)⊗ z

which induces a linear map R ⊗ 1 : T 3(V ) → T 3(V ). We denote this map by R12. Similarly, we

8



CHAPTER 2. BRACES AND THE QUANTUM YANG-BAXTER EQUATION

define

R23 = 1⊗R : V ⊗ V ⊗ V −→ V ⊗ V ⊗ V

x⊗ y ⊗ z 7−→ x⊗R(y ⊗ z);

and

R13 = (1⊗ τ)(R⊗ 1)(1⊗ τ),

where τ is the twist map τ(x ⊗ y) = y ⊗ x. Thus, we have three elements R12, R13, R23 in the

K-algebra End(T 3(V )).

Definition 2.1.1 We say that R ∈ End(T 2(V )) is a solution of the quantum Yang-Baxter equation
if

R12R13R23 = R23R13R12 (2.1)

holds in End(T 3(V )).

The equation (2.1) is called the quantum Yang-Baxter equation (QYBE, for short).

Example 2.1.2 The twist map τ : x⊗y 7→ y⊗x is a solution of QYBE. Indeed, for all x⊗y⊗z ∈
T 3(V ), one has

τ12τ13τ23(x⊗ y ⊗ z) = τ12τ13(x⊗ z ⊗ y)

= τ12(y ⊗ z ⊗ x)

= z ⊗ y ⊗ x.

On the other hand,

τ23τ13τ12(x⊗ y ⊗ z) = τ23τ13(y ⊗ x⊗ z)
= τ23(z ⊗ x⊗ y)

= z ⊗ y ⊗ x.

Note that if R is a solution of the QYBE is olso λR is a solution where λ ∈ K. If R is invertible,

then R−1 is a solution of the QYBE whenever R is.

While the QYBE equation is still far from being solved completely, we shall see how to construct

many other examples by means of brace, cycle sets, etc.

U.K.M.O 9



CHAPTER 2. BRACES AND THE QUANTUM YANG-BAXTER EQUATION

2.2 Higher forms of QYBE

The QYBE seems to belong to a larger family of equations, that can be called YB-like equations.

Our aim here is to define this family.

First, consider two positive integers n and k such that k < n, and define Ekn to be the set

of all strictly increasing words of length k in {1, 2, ..., n}. Hence an element α ∈ Ekn is a finite

sequence α = α1α2...αk, where αi ∈ {1, 2, ..., n} and αi < αj whenever i < j. It follows that Ekn

contains exactly
(
n
k

)
elements.

The set Ekn can be ordered lexicographically, that is if α, β ∈ Ekn, then α ≤ β if and only if

α = β or for the smallest index i such that αiβi, we have αi ≤ βi. Note that the elements of Ekn

can be viewed as natural numbers, and for two elements α, β ∈ Ekn, we have α ≤ β if α ≤ β in N.

Let R ∈ End(T kV ) and let α = α1α2...αk ∈ Ekn. Define Rα ∈ End(TnV ), by

Rα(x1 ⊗ x2...⊗ xn) = σ̃−1(R⊗ 1)σ̃,

where σ̃ acts on Tn(V ) as

σ̃(x1 ⊗ x2...⊗ xn) = xσ(1) ⊗ xσ(2) ...⊗ xσ(n)

and σ is the permution on {1, 2, . . . , n} defined by

σ =

(
1 2 3 .. k k + 1 .. n
α1 α2 α3 .. αk βk+1 .. βn

)
where βk+1 < · · · < βn are the elements of {1, 2, . . . , n} − {α1, ..., . . . , αk}, listed in an increasing

order.

Definition 2.2.1 Let τ ∈ SEkn
. We say that R ∈ End(T kV ) is a τ -solution of the YB-like

equation if
ΠαR

α = ΠαR
τ(α), (2.2)

where α runs over Ekn in an increasing order.

We say that R is an ordinary solution of YB-like equation if

ΠαR
α = (ΠRα)op. (2.3)

U.K.M.O 10



CHAPTER 2. BRACES AND THE QUANTUM YANG-BAXTER EQUATION

Example 2.2.2 For E12 = {1, 2}, one has two linear transformations R1, R2 : V ⊗V −→ V ⊗V ,
given by R1(x⊗ y) = R(x)⊗ y and R2(x⊗ y) = x⊗R(y). Hence, our equation is

R1R2 = R2R1. (2.4)

As R1R2(x⊗ y) = R(x)⊗R(y), every element of End(V ) is a solution of (2.4).
More generally, for E1n, every element R ∈ End(V ) is τ -solution of the YB-like equation:

Πi=n
i=1R

i(x1 ⊗ ...⊗ xn) = R(x1)⊗ ...⊗R(xn)

= Πi=n
i=1R

τ(i)(x1 ⊗ ...⊗ xn).

When n = 3 and k = 2, we cover the ordinary QYBE. Indeed, we have E23 = {12, 13, 23}, and

ΠαR
α = R12R13R23,

and

(ΠαR
α)op = R23R13R12.

So our equation has the form :

R12R13R23 = R23R13R12.

Of course we have to show that our Rij ’s coincide with the old ones.

For R12, on has

σ =

(
1 2 3
1 2 3

)
= 1

so, σ̃−1(R⊗ 1)σ̃ = R⊗ 1, which coincides with the ordinary R12.

For R23, one has

σ =

(
1 2 3
2 3 1

)
, so σ−1 =

(
1 2 3
3 1 2

)
.

If x1, x2, x3 ∈ V , then

σ̃(x1 ⊗ x2 ⊗ x3) = xσ(1) ⊗ xσ(2) ⊗ xσ(3)

= x2 ⊗ x3 ⊗ x1.

Set

R(x1 ⊗ x2) =
∑
i

ri(x1, x2)⊗ si(x1, x2),

U.K.M.O 11



CHAPTER 2. BRACES AND THE QUANTUM YANG-BAXTER EQUATION

with ri(x1, x2), si(x1, x2) ∈ V , and i runs over a finite set. It follows that

(R⊗ 1)σ̃((x1 ⊗ x2 ⊗ x3) = R(x2 ⊗ x3)⊗ x1

= (
∑
i

ri(x2, x3)⊗ si(x2, x3))⊗ x1

=
∑
i

ri(x2, x3)⊗ si(x2, x3)⊗ x1.

Therefore,

σ̃−1(R⊗ 1)σ̃(x1 ⊗ x2 ⊗ x3) = σ̃−1(
∑
i

(ri(x2, x3)⊗ si(x2, x3)⊗ x1)

=
∑
i

(σ̃−1(ri(x2, x3)⊗ si(x2, x3)⊗ x1))

=
∑
i

(x1 ⊗ ri(x2, x3)⊗ si(x2, x3))

= x1 ⊗
∑
i

((ri(x2, x3)⊗ si(x2, x3))

= x1 ⊗R(x2 ⊗ x3).

Thus R23 = 1⊗R, as desired.

It remains to show that our R13 coincides with the old one. We have R13 = σ̃−1(R ⊗ 1)σ̃,

where

σ =

(
1 2 3
1 3 2

)
,

on the one hand,

R13(x1 ⊗ x2 ⊗ x3) = σ̃−1(R⊗ 1)σ̃(x1 ⊗ x2 ⊗ x3)

= σ̃−1(R⊗ 1)(x1 ⊗ x3 ⊗ x2)

= σ̃−1(R(x1 ⊗ x3)⊗ x2)

= σ̃−1(
∑
i

(ri(x1, x3)⊗ si(x1, x3))⊗ x2)

= σ̃−1(
∑
i

ri(x1, x3)⊗ si(x1, x3)⊗ x2)

=
∑
i

ri(x1, x3)⊗ x2 ⊗ si(x1, x3).

U.K.M.O 12



CHAPTER 2. BRACES AND THE QUANTUM YANG-BAXTER EQUATION

On the other hand,

(1⊗ τ)(R⊗ 1)(1⊗ τ)(x1 ⊗ x2 ⊗ x3) = (1⊗ τ)(R⊗ 1)(x1 ⊗ x3 ⊗ x2)

= (1⊗ τ)(
∑
i

ri(x1, x3)⊗ si(x1, x3))⊗ x2

= (1⊗ τ)(
∑
i

ri(x1, x3)⊗ si(x1, x3)⊗ x2))

=
∑
i

ri(x1, x3)⊗ x2 ⊗ si(x1, x3).

2.3 Set theoretic solutions of the QYBE

For any non-empty set X, we can consider V the free K-module on X, and it follows that the

elements x⊗ y, with x, y ∈ X, form a basis for T 2V .

Consider a map

r : X ×X −→ X ×X,

and denote its components by r1 and r2; so r(x, y) = (r1(x, y), r2(x, y)), for all x, y ∈ X. Hence,

we can define the map

x⊗ y 7−→ r1(x, y)⊗ r2(x, y),

on the basis elements of V ⊗ V ; and this map extends to a linear map in End(T 2V ), which we

denote by the same symbol r.

Definition 2.3.1 Let r : X2 −→ X2 be a mapping, and V be the free K-module on X. We say
that r is a set theoretic solution of the QYBE if the linear map induced by r in End(T 2V ) is a
solution of that equation. We say that r is :

1. left non-degenerate if the map x 7−→ r1(x, y) is bijictive, for all y ∈ X.

2. right non-degenerate if the map y 7−→ r2(x, y) is bijictive, for all x ∈ X.

3. If r is left and right non-degenerate, we say that it is non-degenerate.

Proposition 2.3.2 Let r : X2 −→ X2, and r(x, y) = (r1(x, y), r2(x, y)). Then r is a set theoretic
solution of the QYBE if, and only if, the following equations hold

r1(r1(x, r2(y, z)), r1(y, z)) = r1(r1(x, y), z) (2.5)

r2(r1(x, r2(y, z)), r1(y, z)) = r1(r2(x, y), r2(r1(x, y), z)) (2.6)
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CHAPTER 2. BRACES AND THE QUANTUM YANG-BAXTER EQUATION

r2(x, r2(y, z)) = r2(r2(x, y), r2(r1(x, y), z)); (2.7)

for all x, y, z ∈ X.

Proof. The map r is a set theoretic solution of the QYBE, iff

r12r13r23 = r23r13r12.

We have

r23(x⊗ y ⊗ z) = (1⊗ r)(x⊗ y ⊗ z)

= x⊗ r(y ⊗ z)

= x⊗ r1(y, z)⊗ r2(y, z),

Hence,

r13(r23(x⊗ y ⊗ z)) = r13(x⊗ r1(y, z)⊗ r2(y, z))

= (1⊗ τ)(r ⊗ 1)(1⊗ τ)(x⊗ r1(y, z)⊗ r2(y, z))

= (1⊗ τ)(r ⊗ 1)(x⊗ r2(y, z)⊗ r1(y, z))

= (1⊗ τ)(r(x, r2(y, z))⊗ r1(y, z))

= (1⊗ τ)(r1(x, r2(y, z))⊗ r2(x, r2(y, z)⊗ r1(y, z)

= r1(x, r2(y, z))⊗ r1(y, z)⊗ r2(x, r2(y, z).

Therefore,

r12r13r23(x⊗ y ⊗ z) = r1(r1(x, r2(y, z)), r1(y, z))⊗ r2(r1(x, r2(y, z)), r1(y, z))⊗ r2(x, r2(y, z).

On the other hand,

r12(x⊗ y ⊗ z) = r(x⊗ y)⊗ z

= r1(x, y)⊗ r2(x, y)⊗ z
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and

r13r12(x⊗ y ⊗ z) = r13(r1(x, y)⊗ r2(x, y)⊗ z)

= (1⊗ τ)(r ⊗ 1)(1⊗ τ)(r1(x, y)⊗ r2(x, y)⊗ z)

= (1⊗ τ)(r ⊗ 1)(r1(x, y)⊗ z ⊗ r2(x, y))

= (1⊗ τ)(r1(r1(x, y), z)⊗ r2(r1(x, y), z)⊗ r2(x, y))

= r1(r1(x, y), z)⊗ r2(x, y)⊗ r2(r1(x, y), z).

So,

r23r13r12(x⊗ y ⊗ z) = r23(r1(r1(x, y), z)⊗ r2(x, y)⊗ r2(r1(x, y), z))

= (1⊗ r)(r1(r1(x, y), z)⊗ r2(x, y)⊗ r2(r1(x, y), z))

= r1(r1(x, y), z)⊗ r(r2(x, y), r2(r1(x, y), z))

= r1(r1(x, y), z)⊗ r1(r2(x, y), r2(r1(x, y), z))⊗ r2(r2(x, y), r2(r1(x, y), z))

We conclude that

r1(r1(x, r2(y, z)), r1(y, z)) = r1(r1(x, y), z),

r2(r1(x, r2(y, z)), r1(y, z)) = r1(r2(x, y), r2(r1(x, y), z)),

and

r2(x, r2(y, z)) = r2(r2(x, y), r2(r1(x, y), z)).

Perhaps, it is better to write the equations in Proposition (2.3.2), in a more dense form. This

can be done, for instance, by setting r1(x, y) = xy and r2(x, y) =x y; from which we obtain :

(xy)z = (x(yz))y
z
,

x(
yz)

(yz) = (xy)
(xy)z,

x(yz) =
xy (x

y
z).

U.K.M.O 15
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2.4 Cycle sets and solutions of the QYBE

We call a cycle set every set X together with an operation X2 −→ X2 such that

1. for all x ∈ X, the map

σ(x) : X −→ X

y 7−→ x.y

is bijictive.

2. (x.y).(x.z) = (y.x).(y.z).

For all x, y, z ∈ X.

Theoreme 2.4.1 There is one to one corespondante between the left non-degenerate unitary so-
lutions r : X2 −→ X2 of the QYBE, and a cycle sets.

For a proof see Ramp ([10]).

Definition 2.4.2 We call a cycle set X non-degenerate if the map

x 7−→ x.x,

is bijective for all x ∈ X.

Proposition 2.4.3 A cycle set is non-degenerate if the associated solution is non-degenerate.

Definition 2.4.4 Let A be an abelian group wich is also a cycle set. We say that A is a linear
cycle set if it satisfies the following equations :

a.(b+ c) = a.b+ a.c (2.8)

(a+ b).c = (a.b).(a.c) (2.9)

for all a, b, c ∈ A.

Proposition 2.4.5 Braces are nothing but linear cycle sets.

Proof. Write ba instead for b 99K ab. substitute ba by b in (2.9) yields.

(a+ ba).c = b.(a.c).
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c 7−→ (cb)a, yields.

(ba + a)(cb)a = c.

(cb)a = cb
a=a ⇔ Eq.(2.9).

Theoreme 2.4.6 Every non-degenerate cycle set X induced a brace structure on Z(X) by extend-
ing "." to Z(X) !

For a proof see (Ramp.[8]).

A cycle set X is said to be square-free if x.x = x holds for all x ∈ X.

A sub-cycle-set X of a brace B which generates B as an abelian group will be called a cycle

base of B.

U.K.M.O 17



Chapter 3

Difference functions and Bi-groups

In this chapter we developpe the notion of difference function and bi-groups.

This can be viewed as a far reaching generalization the notion of braces, and we think this last

notion become more transparent in the ligth of the language of Bi-groups.

3.1 Definitions and basic facts

Definition 3.1.1 Let (G, .) be a group with identity element 1. We call a difference function on
G every mapping ∆ : G×G→ G such that

x ? y = x.y.∆(x, y)

defines a group structure on the set G, with identity element 1.

It is convenient to call a group endowed with a difference function a bi-group. If (G,∆) is a

bi-group, we call the group defined by the law x ? y = xy∆(x, y), the adjoint group of (G,∆), and

we denote it by G∆.

Example 3.1.2 For any group G, the commutator ∆(x, y) = [y, x] is a difference function on G.
The adjoint group in this case is the opposite group of G.

Example 3.1.3 Let R be a radical ring. The multiplication defines a difference function on R+.

Example 3.1.4 A left skew brace is just a bi-group (B,∆), where the base group B is abelian,
and ∆is left distributive, that is

∆(x, yz) = ∆(x, y)z∆(x, z)

for all x, y, z ∈ B. Similarly, the right brace are the bi-groups with abelian base group and right
distributive difference function.

18



CHAPTER 3. DIFFERENCE FUNCTIONS AND BI-GROUPS

Example 3.1.5 Having two group operations xy and x ? y on a set G, with the same identity
element, then we can define the function

∆(x, y) = x−1y−1(x ? y)

where x−1 is the inverse of x with respect to the first law. That is obviously a difference function
on the first group.

Example 3.1.6 A generalization of braces to the noncommutative setting was suggested recently
by L. Guarnieri and L. Vendramin (see [5]). In the light of bi-groups K, a skew brace is just a
bi-group with a difference function ∆ satisfying

∆(xy, z) = ∆(x, z)x−1∆(y, z)

for all x, y, z ∈ K.

Proposition 3.1.7 Let G be a group and ∆ a difference function on G. Then

1. ∆(x, y)z∆(xy∆(x, y), z) = ∆(y, z)∆(x, yz∆(y, z)), for all x, y, z ∈ G;

2. ∆(x, 1) = ∆(1, x) = 1, for all x ∈ G;

3. for all x ∈ G, there exists x′ ∈ G such that ∆(x, x′) = (xx′)−1.

Conversely, if a function ∆ : G×G→ G, satisfies the above conditions, then it defines a difference

function on G.

Proof.

1. As "?" assosiative, we have

∆(x, y)z∆(xy∆(x, y), z) = z−1∆(x, y)z∆(xy∆(x, y), z)

= z−1z∆(y, z)∆(x, yz∆(y, z))

= ∆(y, z)∆(x, yz∆(y, z)).

2.

x ? 1 = x1∆(x, 1)

= x

= 1x∆(1, x)

= 1 ? x.

Then

∆(x, 1) = ∆(1, x) = 1.
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3.

1 = x ? x̀

= xx̀∆(x, x̀).

Then

∆(x, x̀) = (xx̀)−1.

Conversely, if a function ∆ : G × G → G, satisfies the above conditions, then it defines a

difference function on G.

Definition 3.1.8 Let (G,∆) be a bi-group, and H a subgroup of G.

1. We say that H is a left ideal of G, if ∆(x, h) ∈ H, for all x ∈ G and h ∈ H. The notion of
right ideal can be defined similarly.

2. We say that H is an ideal of G, if it is a left and a right ideal.

3. If H is a normal subgroup and an ideal of G, we say that H is a normal ideal.

Lemma 3.1.9 If ∆ is the commutator function, then H is a left ideal if and only if H is normal
in G.

Proof. (⇒) :

H is a left ideal then ∆(x, h) ∈ H for all x ∈ G and h ∈ H, we can write ∆(x, h) = h̀ for some

h̀ ∈ G. Thus [h, x] = h̀ then h−1x−1hx = h̀ so x−1hx = hh̀. It follows that x−1hx ∈ H, this

implies that H is normal in G.

(⇐) :

H is normal subgroup in G then x−1hx = h̀ for all x ∈ G and h, h̀ ∈ H. Thus h−1 [h, x] = h̀ so

[h, x] = hh̀ = ∆(x, h) it follows that ∆(x, h) ∈ H. This implies that H is a left ideal of G.

Proposition 3.1.10 Let (G,∆) be a bi-group, and H be a normal ideal of G. Then the following
two conditions are equivalent

(1) ∆(xh1, yh2) = ∆(x, y) mod H, for all x, y ∈ G and h1, h2 ∈ H. (We mean by x = y
mod H, that xH = yH).

(2) x ? H = xH, for all x ∈ G.
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Proof.

Assume that (1) holds. Let x ∈ G, and x′ be the inverse of x in the group (G, ?). For any

h ∈ H, we have

x′ ? (xh) = x′xh∆(x′, xh) = x′x∆(x′, x) mod H.

Since x′x∆(x′, x) = 1, it follows that x′ ? (xh) = h1, for some h1 ∈ H. Therefore xh = x?h1. This

shows that xH ⊆ x ? H, and clearly x ? H ⊂ xH, so x ? H = xH.

Conversely, assume that (2) is true. First, we claim that H is a normal subgroup of G∆. Let

x ∈ G. We have H ? x ⊆ Hx = xH = x ?H. It follows that x′ ?H ? x ⊆ H. This prove the claim.

Now let x, y ∈ G and h1 ∈ H, by assumption there exists h ∈ H such that xh1 = x ? h. We have

x ? h ? y = xhy∆(x, h)y∆(x ? h, y) = xy∆(xh1, y) mod H.

As H is normal in (G, ?), we can write h ? y = y ? h2, for some h2 ∈ H. Thus

x ? h ? y = x ? y ? h2 = xy∆(x, y)h2∆(x ? y, h2) = xy∆(x, y) mod H.

It follows that ∆(xh1, y) = ∆(x, y) mod H.

Let h2 ∈ H. We can write yh2 = y ? h, for some h ∈ H. On the one hand, we have

x ? (y ? h) = xyh∆(y, h)∆(x, y ? h) = xy∆(x, yh2) mod H,

on the other hand,

(x ? y) ? h = xyh∆(x, y)h∆(x ? y, h) = xy∆(x, y) mod H.

This implies that

∆(x, yh2) = ∆(x, y) mod H.

Definition 3.1.11 Let (G,∆) be a bi-group. We call a bi-subgroup of G every normal ideal H of
G which satisfies one of the condition of Proposition 3.1.10.

Remark 3.1.12 Suppose that H is a bi-subgroup of (G,∆). Then H can be seen as a subgroup
of G∆, and we may denote it by H∆. As we seen in the previous proof, H∆ is a normal subgroup
of G∆; hence we can consider the quotient subgroup G∆/H∆. On the other hand, the relation
∆(xH, yH) = ∆(x, y)H, defines a difference function on G/H, and the adjoint group (G/H)∆

coincides with G∆/H∆.
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Definition 3.1.13 A map f : G → G′, between the two bi-groups (G,∆) and (G′,∆′) is a mor-
phism of bi-group if f is a group homomorphism from G to G′, that satisfies

f(∆(x, y)) = ∆′(f(x), f(y)),

for all x, y ∈ G. In this case, f determines a group homomorphism from G∆ to G′∆′. An obvious
example is the canonical map π : G −→ G/H, when H is a bi-subgroup of (G,∆).

The composition of two morphisms of bi-groups is again a morphism of bi-group.

Remark 3.1.14 In the category of bi-groups, a morphism is an isomorphism if and only if it is
bijective.

The kernel of a morphism f : (G,∆)→ (G′,∆′), is a bi-subgroup of (G,∆).

Proposition 3.1.15 Let f be a morphism of bi-group, between the two bi-groups (G,∆) and
(G′,∆′) ; if H ′ is a bi-subgroup of G′ then f−1(H ′) is a bi-subgroupe of G.

Proof. Let x ∈ G and h ∈ f−1(H ′).

We have

f(∆(x, h)) = ∆′(f(x), f(h)) ∈ H ′,

and

f(∆(h, x)) = ∆′(f(h), f(x)) ∈ H ′.

Therefore ∆(x, h) et ∆(h, x) ∈ f−1(H ′). On the other hand, we have

f(x−1hx) = f(x−1)f(h)f(x) ∈ H ′,

then x−1hx ∈ f−1(H ′). It follows that f−1(H ′) is a normal ideal of G.

We have,

x ? h = xh∆(x, h) ∈ xf−1(H ′).

f(xh) = f(x) ? h′ ∈ f(x) ? H ′, for some h′ ∈ H ′.

Let x be the inverse of x in the group (G; ?). we can rite

f(x)′ ? f(xh) ∈ H ′.

Thus

f(x′ ? xh) ∈ H ′,

then (x′ ? xh) ∈ f−1(H ′), this implies that x ? f−1(H ′) = xf−1(H ′).
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Definition 3.1.16 Let (G; ∆) be a bi-group

Z(G,∆) = {x ∈ G | ∆(x, y) = ∆(y, x) = 1,∀y ∈ G}.

Example 3.1.17 Let G = {0, 1, 2, 3} with the usual addition. We can say that G ' Z4, and define
the map µ : Z2 × Z2 −→ G such that

µ(0, 0)←→ 0
µ(1, 0)←→ 1
µ(0, 1)←→ 2
µ(1, 1)←→ 3.

So (G,+, .) depicted by Table :

. 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Then

∆ : G×G −→ G

(x, y) 7−→ (xy)−1(x ? y)

is a difference function on G, we have :

∆(0, 0) = ∆(0, 1) = ∆(0, 2) = ∆(0, 3) = ∆(1, 2) = ∆(2, 2) = ∆(2, 3) = 0,

∆(1, 1) = ∆(1, 3) = ∆(3, 3) = 2.

We conclude that Z(G,∆) = {0, 2} ; then

G/Z(G,∆) = {0̄, 1̄} ' Z2.

Can be define

∆̄ : G/Z(G,∆)×G/Z(G,∆) −→ G/Z(G,∆)

(x̄, ȳ) 7−→ ∆(x, y)

3.2 Composition of difference function

Let (G,∆1) and (G,∆2) be two bi-groups. We have ∆3 = ∆2 ◦∆1.

• x ? y = xy∆1(x, y).

• x ∗ y = x ? y ?∆2(x, y).
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Then

x ∗ y = (xy∆1(x, y)) ?∆2(x, y)

= xy∆1(x, y)∆2(x, y)∆2(xy∆1(x, y),∆2(x, y)).

So,

∆3(x, y) = ∆1(x, y)∆2(x, y)∆2(xy∆1(x, y),∆2(x, y)),

is a difference function.

It is worth noting that we have an obvious category of bi-groups with their homomorphisms.

On another side, one can take a set G with a distinguished element 1, and consider the category

C defined by :

• The objects of C are the group operations on G having 1 as an identity element.

• If a and b are two objects of C, then there is only one morphism from a to b which is the

difference function between a and b.

Proposition 3.2.1 The category C defined above is a groupoid.

Our main purpose in our thesis is to investigate the properties of this groupoid. For instance,

knowing the order of G, what can one say about the number of objects of our groupoid.

3.3 The bi-subgroup generated by a subset

Let X be a subset of the bi-group G.

Lemma 3.3.1 The intersection of a familly of bi-subgroups is a bi-subgroup.

Proof. Let Hi be a familly of bi-subgroups of G, then Hi / G so
⋂
Hi is a normal subgroups

of G;

assume that x ∈ G,

h ∈ Hi ⇒ h ∈ Hi, ∀i⇒ ∆(x, h) ∈ Hi∀i
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∆(x, h) and ∆(h, x) lies in Hi for all i.

Thus H is a normal ideal of (G,∆).

Finally, let be h1, h2 ∈
⋂
Hi and x, y ∈ G

∆(xh1, yh2)∆(x, y)−1 ∈ Hi, ∀i.

Thus

∆(xh1, yh2)∆(x, y)−1 ∈
⋂
Hi .

Now we define the bi-subgroup generated by X to be the intersection of all bi-subgroup of

(G,∆) containing X, let us denoted by < X,∆ >.

We can see < X > and < X >∆........... subgroup of G.

Question : Consider X = {∆(x, y), x, y ∈ G}. Then we can define :

∆(G,G) the bi-subgroupe generated by ∆(x, y) for all x, y.

Note that in G/∆(G,G)

(G/∆(G,G))∆ = G/∆(G,G).

More generaly, given X,Y ⊆ G, define

∆(X,Y ) = the bi-subgroup generated by∆(x, y); (x, y) ∈ X × Y.

We define ∆1(G) = ∆(G,G) and by induction ∆n+1(G) = ∆(G,∆n(G)).

Remark 3.3.2
... ≤ ∆2(G) ≤ ∆1(G) ≤ G

we say that (G,∆) is right convidable if ∆n(G) = 1 for some n.
Idem ∆́1(G) = ∆(G,G), ´∆n+1(G) = ∆(∆́n(G), G); we say that (G,∆) is leftt convidable if
∆́n(G) = 1 for some n.

If (G,∆) is a bi-group then we can define the opposite difference function ∆́ : G × G −→ G by

xy = x ? y ?∆0(x, y).So we have the opposite bigroup (G,∆0).

Proposition 3.3.3 If (G,∆) is nilpotent, then (G,∆0) is nilpotent ?
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Conclusion

This is not really a conclusion; as we believe that our ideas can be developed in many directions,

and only the lack of time prevented us from including more. This work is still in progress, and we

wish to publish some significant results sooner.

26



Bibliography

[1] D. Bachiller, F. Cedo, E. Jespers, Solutions of the Yang-Baxter equation associated with a left

brace,(2015).

[2] R. J. Baxter.Partition function of the eight-vertex lattice model. Ann. Physics. 70:193-228,

1972.

[3] R. J. Baxter.Exactly solved models in statistical mechanics. Academic Press, Inc. [Harcourt

Brace Jovanovich, Publishers] London, 1989. Reprint of the 1982 original.

[4] F. Cedo, E. Jespers, J. Okninski, Braces and the Yang-Baxter equation,(2012).

[5] L. Guarnieri and L. Vendramin; Skew braces and The Yang-Baxter equation,

arXiv:1511.03171v3 [math.QA] 16 Mar 2016.

[6] L. Guarnieri, L. Vendramin Brace, Generalization and application to the Yang-Baxter equa-

tion, (2015).

[7] F. Nichita. Y ang?Baxter Equations, Computational Methods and Applications. 4, 423-435;

doi:10.3390/axioms4040423. 2015.

[8] W. Rump, Braces, radical rings, and the quantum Yang?Baxter equation, J. Algebra 307

(2007) 153?170.

[9] W. Rump. C lassification of cyclic braces.. J. Pure Appl. Algebra, 209(3):671?685, 2007.

[10] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum

Yang?Baxter equation, Adv.Math , 193 (2005) 40-55.

27



BIBLIOGRAPHY

[11] W. Rump, The brace of a classical groups, 34 (2014) no.1, 115-144.

[12] W. Rump.M odules over braces, Algebra Discrete Math.Issue 2, 2006, 127-137.

[13] C. N. Yang.Some exact results for the many-body problem in one dimension with repulsive

delta-function interaction. Phys. Rev. Lett. 19:1312-1315, 1967.

U.K.M.O 28



Abstract
In this note, we disscuss the notion of braces, their relevance to the quan-
tum Yang-Baxter equation, and some natural generalizations. This include
our introduction of high quantum Yang-Baxter equations, and the notion of
diffrence functions and bi-groups.
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Résumé
Dans ce travail, on traite la notion de Brace, ses relations avec l’équation
de Yang-Baxter équation, et des généralisations naturelles de cette notion.
Ceci comprend en particulier les équations de Yang-Baxter généralisées et la
notion de fonction de différence et b-groupe.

Mot clés: Brace, groupe adjoint, anneau radical, équation quantique
de Yang-Baxter, équation de Yang-Baxter généralisée, cycle, fonction de
différence et bi-groupe.
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