
Mathematical Integer Programming for a One
Machine Scheduling Problem

Samia Ourari1,2 and Cyril Briand2, and Brahim Bouzouia1
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Abstract. This paper considers the problem of scheduling n jobs on a
single machine. A fixed processing time and an execution interval are
associated with each job. Preemption is not allowed. The objective is to
find a feasible job sequence that minimizes the number of tardy jobs. On
the basis of an original mathematical integer programming formulation,
this paper shows how both good-quality lower and upper bounds can
be computed. Numerical experiments on Baptiste et al.’s instances are
provided, which demonstrate the efficiency of the approach.

1 Introduction

A single machine scheduling problem (SMSP) consists of a set V of n jobs to
be sequenced on a single disjunctive resource. The interval [rj , dj ] defines the
execution window of each job j, where rj is the release date of j and dj , its
due-date. The processing time pj of j is known and preemption is not allowed.
A job sequence σ is said feasible if, for any job j ∈ V , sj ≥ rj and sj + pj ≤ dj ,
sj being the earliest starting time of Job j in σ.

In this paper, we take an interest in finding a job sequence that minimizes
the number of late jobs, problem referred to as 1|rj |

∑
Uj in the litterature,

where Uj is set to 1 if job j is late, i.e., Uj ← (sj + pj > dj). In the sequel,
we review some important papers that deal with this problem. Nevertheless,
the litterature is also rich of papers that consider other important variants by
considering various additional assumptions, such as: jobs are weighted (problem
1|rj |

∑
wjUj), setup times are considered, there exists several identical machines,

etc. For a more extended review, the reader is referred to [5].
Determining whether it exists a feasible sequence, i.e., all jobs meet their due

dates, is NP-complete [14]. The problem of minimizing the number of late jobs
is also NP-hard [10]. Efficient branch-and-bound procedures are reported in [2,
8, 5] that solve problem instances with up to 200 jobs.

When additional assumptions are made, 1|rj |
∑

Uj problems can become
solvable in polynomial time. For instance, when release dates are equal, 1||∑Uj

problems can be solved in O(n log(n)) using Moore’s well known algorithm [15].
Considering the case where release and due dates of jobs are similarly ordered,
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i.e., ri < rj ⇒ di ≤ dj), Kise, Ibaraki and Mine proposed a dynamic pro-
gramming algorithm that runs in O(n2) [11]. Under this same assumption, an
O(n log(n)) algorithm was later proposed by Lawler in 1982 [12]. Lawler [13]
also described an O(n log(n)) algorithm that works on preemptive nested prob-
lems 1|rj , nested, pmtn|∑Uj , i.e., job preemption is allowed and job execution
windows are nested: ri < rj ⇒ di ≥ dj or di > dj ⇒ ri ≤ rj . More recently,
considering the general preemptive problem 1|rj , pmtn|∑Uj , Baptiste designed
an algorithm that runs in O(n4) [1]. When processing times are equal, Carlier [6]
proposed in the early eighties a O(n3 log(n)) procedure. Nevertheless, this pro-
cedure has recently been proved non-optimal by Chrobak et al. [7] who exhibit
a new optimal O(n5) algorithm.

This paper presents how, using an original Mathematical Integer Program-
ming (MIP) formulation, both good-quality lower and upper bounds can be
computed for the 1|rj |

∑
Uj problem. The proposed approach mainly differs

from the branch-and-bound approaches described in [2], [8] and [5] in the fact
that, since MIP is used, it is more generic: new constraints can easily be added
to the model. Moreover, from the best of our knowledge, there does not exist
other MIP approach for the 1|rj |

∑
Uj problem that can be compared in terms

of efficiency with the already existing branch-and-bound methods.
The paper is structured as follows. First, a dominance theorem is recalled that

stands for the problem of finding a feasible sequence to the SMSP. In Section 3,
a MIP formulation for searching a feasible job sequence is described. The fourth
section discusses the validity of the dominance theorem of Section 2 when the∑

Uj criterion is considered. Section 5 and 6 show how the MIP of Section 3
can easily be adapted for computing an upper bound and a lower bound to the
1|rj |

∑
Uj problem. The last section is devoted to the synthesis of the numerical

experiments and discusses the efficiency of our MIP approach.

2 A general dominance theorem for the SMSP

In this section, some analytical dominance conditions are recalled for the SMSP.
They have been originally proposed in the early eighties by Erschler et al. [9]
within a theorem that is stated in the sequel. This theorem uses the notions of
a top and a pyramid that are defined below. It defines a set Sdom of dominant
job sequences, with respect to the feasibility problem, for the SMSP. Let us
recall that a job sequence σ1 dominates another job sequence σ2 if σ2 feasible⇒
σ1 feasible. By extension, a set of job sequences Sdom is said dominant if, for any
job sequence σ2 /∈ Sdom, it exists σ1 ∈ Sdom such that σ2 feasible⇒ σ1 feasible.

Characterizing a set of dominant job sequences is of interest since, when
searching for a feasible job sequence, only the set of dominant sequences need
to be explored. Indeed, when there does not exist any feasible sequence in the
dominant set, it can be asserted that the original problem does not admit any
feasible solution. This allows a significant reduction of the search space.
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Definition 1 A job t ∈ V is a top if there does not exist any other job j ∈ V
such that rj > rt ∧ dj < dt (i.e., the execution window of a top does not strictly
include any other execution window).

The tops are indexed in ascending order with respect to their release dates or,
in case of tie, in ascending order with respect to their due dates. When both their
release dates and due dates are equal, they can be indexed in an arbitrary order.
Thus, if ta and ta are two tops then a < b if and only if (rta

≤ rtb
)∧ (dta

≤ dtb
).

Let m refers to as the total number of tops.

Definition 2 Given a top tk, a pyramid Pk related to tk is the set of jobs j ∈ V
such that rj < rtk

∧ dj > dtk
(i.e., the set of jobs so that their execution window

strictly includes the execution window of the top).

Considering the previous definition, we stress that a non-top job can belong
to several pyramids. Let u(j) (v(j) resp.) refers to as the index of the first
pyramid (the last pyramid resp.) to which Job j can be assigned.

The following theorem can now be stated. The reader is referred to [9] for its
proof.

Theorem 1 The set Sdom of job sequences in the form:

α1 ≺ t1 ≺ β1 ≺ · · · ≺ αk ≺ tk ≺ βk ≺ · · · ≺ αm ≺ tm ≺ βm

where:

- tk is the top of Pyramid Pk, ∀k = 1 . . . m ;
- αk and βk are two job subsequences located at the left and the right of Top tk

respectively, such that jobs belonging to subsequence αk are sequenced with
respect to the increasing order of their rj, and jobs belonging to βk, are
sequenced with respect to the increasing order of their dj ;

- any non-top j is located either in subsequence αk or βk, for a given k such
that u(j) ≤ k ≤ v(j).

is dominant for the problem of finding a feasible job sequence.

3 A MIP formulation for finding a feasible job sequence

In this section, the problem of searching a feasible job sequence is considered
and a MIP is described that has been originally introduced in [4]. It aims at
determining the most dominant job sequence among the set Sdom in the form
α1 ≺ t1 ≺ β1 ≺ · · · ≺ αm ≺ tm ≺ βm. It is formulated below.

In the MIP, the binary variable x+
ki (x−ki resp.) is set to 1 if the job i, assigned

to Pyramid Pk, is sequenced in αk (in βk resp.), provided that (see constraint
(3.7)):
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max z = mink=1,...,m(Dk −Rk − ptk
)

s.t.



Rk ≥ rtk
, ∀k ∈ [1 m] (3.1)

Rk ≥ ri +
∑
{j∈Pk|rj≥ri} pjx

+
kj , ∀k ∈ [1 m], ∀i ∈ Pk (3.2)

Rk ≥ Rk−1 +
∑
{j∈Pk−1} pjx

−
(k−1)j + ptk−1

+
∑
{j∈Pk} pjx

+
kj , ∀k ∈ [2 m] (3.3)

Dk ≤ dtk
, ∀k ∈ [1 m] (3.4)

Dk ≤ di − ∑
{j∈Pk|dj≤di} pjx

−
kj , ∀k ∈ [1 m], ∀i ∈ Pk (3.5)

Dk ≤ Dk+1 −
∑
{j∈Pk+1} pjx

+
(k+1)j − ptk+1

− ∑
{j∈Pk} pjx

−
kj , ∀k ∈ [1 (m− 1)] (3.6)∑v(i)

k=u(i)(x
−
ki + x+

ki) = 1 , ∀i ∈ Pk (3.7)

x−ki , x+
ki ∈ {0, 1} , ∀k ∈ [1 m], ∀i ∈ Pk

Dk , Rk ∈ Z , ∀k ∈ [1 m]

- u(i) ≤ k ≤ v(i);
- i cannot be sequenced both in αk and βk;
- i cannot be assigned to several pyramids.

The integer variable Rk corresponds to the earliest starting time of Job tk.
By definition:

Rk = max(rtk
, eftk−1 +

∑
{j∈αk}

pj , max
i∈αk

(ri + pi +
∑

{j∈αk|i≺j}
pj)) (3.8)

where eftk−1 is the earliest completion time of the job subsequence βk−1. As
the variable Rk−1 corresponds to the earliest starting time of Job tk−1, it comes
that eftk−1 = Rk−1 + ptk−1 +

∑
j∈βk−1

pj . Therefore, the constraints (3.1), (3.2)
and (3.3), according to Equation (3.8), allow to determine the value of Rk.

Symmetrically, the integer variable Dk corresponds to the latest finishing
time of Job tk. By definition:

Dk = min(dtk
, lstk+1 −

∑
{j∈βk}

pj , min
i∈βk

(di − pi −
∑

{j∈βk|j≺i}
pj)) (3.9)

where lstk+1 is the latest starting time of the job subsequence αk+1. As the
variable Dk+1 corresponds to the latest finishing time of Job tk+1, it comes that
lstk+1 = Dk+1 − ptk+1 −

∑
j∈αk+1

pj . Therefore, the constraints (3.4), (3.5) and
(3.6), according to Equation (3.9), give to Dk its value.

Obviously, it can be observed that the values of the Rk and Dk variables
of the MIP can directly be deduced from the values of the x+

ki and x−ki binary
variables. In [4], it is shown that if z = mink=1,...,m(Dk−Rk−ptk

) is maximized
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while respecting the constraints, then the obtained sequence dominates all the
others. Indeed, the authors give the proof that, for any feasible combination
of the x+

ki and x−ki variables respecting the MIP constraints, a job sequence is
obtained having its maximum lateness Lmax strictly equals to −z. Therefore,
maximizing z is strictly equivalent to minimize the maximum lateness Lmax and
it can be asserted that any sequence α1 ≺ t1 ≺ β1 ≺ · · · ≺ αm ≺ tm ≺ βm is
feasible if and only if z = mink=1,...,m(Dk − Rk − ptk

) ≥ 0. In the case where
z∗ < 0, there obviously does not exist any feasible sequence of n jobs for the
considered problem.

4 Dominance condition for the 1|rj|
∑

Uj problem

In this section, the
∑

Uj criterion is considered. Searching optimal solution for
1|rj |

∑
Uj problem amounts to determine a feasible sequence for the largest

selection of jobs E ⊆ V . Let E∗ be this selection. The jobs of E∗ are on time
while others are late. The late jobs can be scheduled after the jobs of E∗ in
any order. So they do not need to be considered when searching a feasible job
sequence for on-time jobs. Consequently, Theorem 1 can be applied only to the
jobs belonging to E∗. There are

∑
k=1...n Ck

n possible different selections of jobs.
Regarding the

∑
Uj criterion, the following corollary is proved.

Corollary 1 The union of all the dominant sequences that Theorem 1 charac-
terizes for each possible selection of jobs is dominant for the

∑
Uj criterion.

Proof. The proof is obvious since the union of all the sequences that Theorem 1
characterizes for any possible selection necessarily includes the dominant se-
quences associated with E∗, hence an optimal solution. ut

As already pointed out, the number of possible job selections is quite large.
Nevertheless, as explained in [16], it is not necessary to enumerate all the possible
job selections to get the dominant sequences. Indeed, they can be characterized
using one or more master-pyramid sequences. The notion of a master-pyramid
sequence is somewhat close to the notion of a master sequence that Dauzères-
Pérès and Sevaux proposed in [8]. It allows to easily verify if a job sequence
belongs to the set of dominant sequences that Theorem 1 characterizes. For
building up a master-pyramid-sequence associated with a job selection E ⊆ V ,
the mE tops and pyramids have first to be determined. Then, knowing that
the set of dominant sequences is in the form α1(E) ≺ t1(E) ≺ β1(E) ≺ · · · ≺
αk(E) ≺ tk(E) ≺ βk(E) ≺ · · · ≺ αmE

(E) ≺ tmE
(E) ≺ βmE

(E), it is assumed
that any non-top job j is sequenced both in αk(E) and βk(E) (these subsequences
being ordered as described in Theorem 1), ∀k such that u(j) ≤ k ≤ v(j). For
illustration, let us consider a problem instance with 7 jobs such that the relative
order among the release and due dates of the jobs is r6 < r1 < r3 < r2 <
r4 < d2 < d3 < d4 < (r5 = r7) < d6 < d5 < d1 < d7. For this example,
the-master-pyramid-sequence associated with the selection E = V is (tops are
in bold):

σ∆(V ) = (6, 1, 3,2, 3, 6, 1, 6, 1,4, 6, 1, 1,5, 1,7)
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Any job sequence of n jobs compatible with σ∆(V ) belongs to the set of
dominant sequences. A sequence s is said compatible with the master-pyramid
sequence σ∆(V ) if the order of the jobs in s does not contradict the possible
orders defined by σ∆(V ), this will be denoted as s b σ∆(V ). Under the hypoth-
esis that all tops are on-time, it is obvious that σ∆(V ) also characterizes the set
of dominant sequences (according to the

∑
Uj criterion) of any job selection E

such that {t1, . . . , tm} ⊆ E. Indeed, the master-pyramid sequence σ∆(E) asso-
ciated with such a selection is necessarily compatible with the master-pyramid
sequence σ∆(V ), i.e., if s is a job sequence such that s b σ∆(E) then s b σ∆(V ).

Nevertheless, σ∆(V ) does not necessarily characterize all the job sequences
being dominant for the

∑
Uj criterion. This assertion can easily be illustrated

considering a problem V with 4 jobs having the total order: rd < rb < rc <
ra < da < db < dc < dd. Job a is the top of the corresponding structure and the
master-pyramid sequence σ∆(V ) is (d, b, c,a, b, c, d). Now, let us imagine that a
is not selected (it is late and its interval can be ignored). In this case, there are
two tops b and c and the master-pyramid sequence σ∆(V \ {a}) is (d,b, d, c, d).
As it can be observed, σ∆(V \ {a}) is not compatible with σ∆(V ) since, in the
former, Job d cannot be sequenced between b and c, while it is possible in the
latter. This simple example shows that the complete characterization of the set
of dominant sequences requires to enumerate all the non-compatible master-
pyramid sequences, their number being possibly exponential in the worst case.

From now the focus is on a particular SMSP where any pyramid Pk, ∀k =
1, . . . , m is said perfect, i.e., ∀(i, j) ∈ Pk × Pk, (ri ≥ rj) ⇔ (di ≤ dj), i.e., the
execution intervals of the jobs belonging to Pk are included each inside the other.
By extension, when all the pyramids are perfect, the corresponding SMSP will
be said perfect. For this special case, the following theorem is proved:

Theorem 2 Given a perfect SMSP V , the master-pyramid sequence σ∆(V )
characterizes the complete set of sequences being dominant for the

∑
Uj cri-

terion.

Proof. Obviously, removing a job j from a perfect SMSP V produces a new per-
fect SMSP V \{j}. The proof goes by showing that the master pyramid sequence
σ∆(V \{j}) is compatible with σ∆(V ) (in other words, all the sequences that are
compatible with σ∆(V \ {j}) are also compatible with σ∆(V )). Let us assume
first that the removed job j is a non-top job. Since σ∆(V ) is built up according
to the position of the tops, removing j from V induces to remove j from all the
subsequences αk, βk of σ∆(V ) such that u(j) ≤ k ≤ v(j) and, in this case, the
relation σ∆(V \ {j}) b σ∆(V ) necessarily holds.
Let us assume now that j is a top having the index x (i.e., σ∆(V ) = (α1, t1, . . . , tx−1,
βx−1, αx, j, βx, αx+1, tx+1, . . . , tm, βm)). Two cases have to be considered: if j
is a top such that ∀i ∈ Px ⇒ i ∈ Px−1 or i ∈ Px+1, then σ∆(V \ {j}) =
(α1, t1, . . . , tx−1, βx−1, αx+1, tx+1, . . . , tm, βm) and in this case, σ∆(V \ {j}) is
obviously compatible with σ∆(V ). Otherwise, let k be the last job of αx (i.e.,
αx = (α′x, k)). Since the execution intervals of the jobs belonging to Px are in-
cluded each inside the other, the order of the jobs in αx matches the reverse
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order of the jobs of βx, therefore k is also the first job of βx (i.e., βx = (k, β′x)).
Then σ∆(V \ {j}) = (α1, t1 . . . tx−1, βx−1, α

′
x, k, β′x, αx+1, tx+1 . . . tm, βm) and in

this case, σ∆(V \ {j}) is obviously compatible with σ∆(V ). ut

5 Computing an upper bound for the 1|rj|
∑

Uj problem

In this section, we take an interest in finding a feasible job sequence in the form
α1 ≺ t1 ≺ β1 · · · ≺ αm ≺ tm ≺ βm that minimizes the

∑
Uj criterion, knowing

that a non-top j is not necessarily sequenced, that is the major difference with
Section 3. As discussed in Section 4, the sequences in this form are dominant
for the

∑
Uj criterion only under the hypothesis that the top jobs are sched-

uled on time. As it does not necessarily exist any optimal sequence satisfying
this assumption, finding an optimal sequence in this desired form only gives an
upper bound to the general 1|rj |

∑
Uj problem. Nevertheless, as shown by the

experiments (see Section 7), this upper bound is good and even often optimal.
The MIP formulation of Section 3 can easily be adapted for solving the

previous problem:

min z =
∑
{j∈V \{t1...tm}}(1−

∑v(j)
k=u(j)(x

−
jk + x+

jk)) +
∑m

k=1 ytk

s.t.



Rk ≥ rtk
, ∀k ∈ [1 m] (5.1)

Rk ≥ ri +
∑
{j∈Pk|rj≥ri} pjx

+
kj , ∀k ∈ [1 m], ∀i ∈ Pk (5.2)

Rk ≥ Rk−1 +
∑
{j∈Pk−1} pjx

−
(k−1)j + ptk−1

+
∑
{j∈Pk} pjx

+
kj , ∀k ∈ [2 m] (5.3)

Dk ≤ dtk
, ∀k ∈ [1 m] (5.4)

Dk ≤ di − ∑
{j∈Pk|dj≤di} pjx

−
kj , ∀k ∈ [1 m], ∀i ∈ Pk (5.5)

Dk ≤ Dk+1 −
∑
{j∈Pk+1} pjx

+
(k+1)j − ptk+1

− ∑
{j∈Pk} pjx

−
kj , ∀k ∈ [1 (m− 1)] (5.6)∑v(i)

k=u(i)(x
−
ki + x+

ki) ≤ 1 , ∀i ∈ Pk (5.7)

Dk −Rk ≥ ptk
(1− ytk

) , ∀k ∈ [1 m] (5.8)

ytk
, x−ki , x+

ki ∈ {0, 1} , ∀k ∈ [1 m], ∀i ∈ Pk

Dk , Rk ∈ Z , ∀k ∈ [1 m]
Let us comment this MIP. First, constraints (5.1)-(5.6) are identical to con-

straints (3.1)-(3.6) since integer variables Rk and Dk are determined in the same
way. Allowing a non-top job to be late is easy by relaxing constraint (3.7), replac-
ing it by constraint (5.7). As the feasibility of the obtained sequence is required,
the constraint Dk − Rk ≥ ptk

is set, ∀k = 1, . . . ,m. Nevertheless, we observe
that this constraint is a bit too strong since, when two consecutive tops tk and
tk+1 are such that dtk+1 − rtk

< ptk+1 + ptk
, the MIP is unfeasible (i.e., there

does not exist any feasible sequence that keeps both tk and tk+1 on time). For
avoiding this unfeasibility, the binary variable ytk

is introduced (see constraint
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(5.8)): ytk
equals 1 if the processing time of tk is ignored, 0 otherwise. Therefore,

the
∑

Uj criterion can easily be expressed using the binary variables ytk
, x+

ki

and x−ki since, if ytk
= 1, Top tk is late and, if

∑v(j)
k=u(j)(x

−
jk + x+

jk) = 0, non-top
job j is late.

6 Lower-bound for the 1|rj|
∑

Uj problem

In a minimization problem, a lower bound is obtained by relaxing some con-
straints and optimally solving the relaxed problem. According to Theorem 2,
when all the pyramids are perfect, the set of sequences in the form α1 ≺ t1 ≺
β1 · · · ≺ αm ≺ tm ≺ βm is dominant for the

∑
Uj criterion. Moreover, for any

problem, we know that it is always possible to decrease the rj values (or increase
the dj values) of some jobs in order to make the pyramids perfect, i.e., such that
∀(i, j) ∈ Pk × Pk, (ri ≥ rj) ⇔ (di ≤ dj), ∀k = 1, . . . , m (see Figure 1). Doing
so, a relaxed problem is obtained that can be optimally solved by the following
MIP:

min z =
∑
{j∈V \{t1...tm}}(1−

∑v(j)
k=u(j)(x

−
jk + x+

jk)) +
∑m

k=1 ytk

s.t.



Rk ≥ rtk
+ ytk

(rnk
− rtk

) , ∀k ∈ [1 m] (6.1)

Rk ≥ ri + (1− x+
ik)(rnk

− ri)

+
∑
{j∈Pk|rj≥ri} pjx

+
kj , ∀k ∈ [1 m], ∀i ∈ Pk (6.2)

Rk ≥ Rk−1 +
∑
{j∈Pk−1} pjx

−
(k−1)j + ptk−1

+
∑
{j∈Pk} pjx

+
kj , ∀k ∈ [2 m] (6.3)

Dk ≤ dtk
+ ytk

(dnk
− dtk

) , ∀k ∈ [1 m] (6.4)

Dk ≤ di + (1− x−ik)(dnk
− di)

− ∑
{j∈Pk|dj≤di} pjx

−
kj , ∀k ∈ [1 m], ∀i ∈ Pk (6.5)

Dk ≤ Dk+1 −
∑
{j∈Pk+1} pjx

+
(k+1)j − ptk+1

− ∑
{j∈Pk} pjx

−
kj , ∀k ∈ [1 (m− 1)] (6.6)∑v(i)

k=u(i)(x
−
ki + x+

ki) ≤ 1 , ∀i ∈ Pk (6.7)

Dk −Rk ≥ ptk
(1− ytk

) , ∀k ∈ [1 m] (6.8)

ytk
, x−ki , x+

ki ∈ {0, 1} , ∀k ∈ [1 m], ∀i ∈ Pk

Dk , Rk ∈ Z , ∀k ∈ [1 m]

with:

• rnk
= min{j∈Pk} rj ;

• dnk
= max{j∈Pk} dj ;

This MIP differs from the one of Section 5 only by the addition of the terms
in bold that allow to deactivate the constraints of type (6.1), (6.2), (6.4) or
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(6.5) when some jobs are late. For instance, if tk is late, i.e., ytk
= 1, the term

ytk
(rnk
−rtk

) (ytk
(dnk
−dtk

) resp.) deactivates the constraint (6.1) (the constraint
(6.4) resp.). Indeed, we know that the inequality Rk ≥ rnk

(resp. Dk ≤ dnk
) is

obviously always verified. Similarly, in the case where i /∈ αk (i /∈ βk resp.), the
term (1−x+

ik)(rnk
−ri) ((1−x−ik)(dnk

−di) resp.) deactivates the constraint (6.2)
(the constraint (6.5) resp.). Note that the deactivation of constraints allows to
ensure that only the constraints that concern the on-time jobs are taken into
account.

Fig. 1. Two relaxation strategies for turning a problem into a perfect one

7 Numerical experiments

For evaluating the performances of our MIP models, Baptiste et al.’s problem
instances have been used (see [2]). For n ∈ {80, 100, 120, 140}, 120 problem
instances are provided and, for each of them, thanks to the authors who provide
us with their detailed results, either the optimal

∑
Uj value (OPT ) or, at least,

an upper-bound of this value (BEST ), is known. For each problem instance,
using a commercial MIP solver, we determined:

• two lower bounds by solving the MIP corresponding to the perfect SMSP
obtained either by relaxation of the ri (LBri) or by relaxation of the di

(LBdi), as explained in Section 6 ;
• one upper bound (UB) by solving the MIP described in Section 5.

In each experiment, the CPU time has been bounded to one hour. Table 1
displays, for the three kinds of MIP, the percentages of instances that were
optimally solved within one hour, as well as the min / mean / max CPU time.
For instance, when n = 80, the solver returns the optimal LBri value in 94.16%
of the cases, with a min / mean / max CPU time of 0.01/42.35/1395.4 seconds
respectively. The values of Table 1 can be compared with the percentage of time
the Baptiste et al.’s method finds an optimal solution in less than one hour (see
Table 3).
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Instances LBr LBd UB
N/Tcpu N/Tcpu N/Tcpu

n=80 94.16 % 96.66 % 98.33 %
(0.01; 42.35; 1395.54)s (0.02;61.15; 2363.76)s (0.02; 27.03; 1757.48)s

n=100 82.50 % 81.66 % 94.13 %
(0.02; 141.15; 3531.11)s (0.03; 85.70; 1318,86)s (0.02; 33.84; 1778.42)s

n=120 80.83 % 84.16 % 85 %
(0.02; 106.78; 1340.29)s (0.04; 108.43; 2149.83)s (0.02; 127.67; 2600.95)s

n=140 65.83 % 65.00 % 73.33 %
(0.05; 139.77; 1490.64)s (0.03; 173.97; 3072.82)s (0.02; 134.62; 2600.95)s

Table 1. Percentage of MIP solved to optimality

A few observations can be made at this point. First, even if some problem
instances seem very hard to solve, optimal solutions are found in most of the
cases. The computation of the upper bound is globally less time expensive than
the one of the lower bound. This is not surprising since in the former case,
because tops are assumed to be on time, the search space is less extended than
in the latter case, where any job can be late or on time. We also observe in
our experiments that the lower bound given by the relaxation of the di is often
better than the one obtained by relaxation of the ri. Since the two kinds of
relaxation are symetric, this is possibly due to the way problem instances have
been generated.

UB = LB with LB = LBr = LBd δ = UB − LB
Instances All instances Instances: Tcpu < 1h (min, mean, max)

n=80 70.83 % 73.21% (0; 0.38; 6)
n=100 70% 73.62 % (0; 0.39; 2)
n= 120 56.66% 60.68 % (0; 0.5; 2)
n=140 60.83 % 62.31 % (0; 1.45; 2)

Table 2. Percentages of optimal solutions

Table 2 takes an interest in the cases where the solution is optimal, i.e., the
upper bound equals one of the lower bounds (UB = LB = max(LBri, LBdi).
Two sub-cases are distinguished according if one considers the total set of in-
stances or only the instances for which the CPU time is lower than one hour.
As one can see, optimality can be proved in many cases, even if the Baptiste et
al.’s ad-hoc approach remains better from this point of view. Let us point out
that our MIP approach proves the optimality of 3 instances that were not opti-
mally solved by Baptiste et al.. The table also indicates the min / mean / max
difference between the upper bound and the best lower bound: it is always small
even for the largest instances.

Lastly, Table 3 gives a more tightened analysis of the quality of our upper
bound UB. It is compared with either the optimal value OPT found by the
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Instances Baptiste et al. Dauzère-Pérès et al. UB = OPT Tcpu < 1h UB ≤ BEST

n=80 96.70 % 117.3 s 98.3 % 49.0 s 95.83 % 27.03 s 100 %
n=100 90.00 % 273.5 s 95.0 % 78.4 s 90.00 % 33.84 s 100 %
n=120 84.20 % 538.2 s 93.3 % 89.70 s 81.66 % 127.64 s 99.17%
n=140 72.50 % 1037.3 s 73.3 % 233 s 71.66 % 134.62 s 98.33 %

Table 3. Analysis of the upper bound quality

Baptiste et al.’s method (when it is computed in less than one hour) or with the
best solution BEST that was returned otherwise. We observe that, nearly for
all the instances, our upper-bound equals the optimal or the best solution found
by the Baptiste et al’s method. Moreover, we also observe that its computation
is less time expensive in any cases. These observations seems to indicate that,
in order to increase the percentage of solutions that our approach is able to
certify optimal, the way to relax the problem for finding lower bounds should
be improved. Mixed relaxation schemes where ri and di values would be both
relaxed, for instance intending to minimize the sum of their variations, could be
explored.

8 Conclusion

Designing MIP models for solving efficiently basic SMSPs is of interest since
MIP approaches are often adaptable for dealing with new constraints or new
objective. As a proof of this statement, this paper shows how an original MIP
model, used for solving the 1|rj |Lmax problem, can be adapted for dealing with
the more complex 1|rj |

∑
Uj problem. Since the analytical dominance condition

used for designing the MIP formulation of the former problem is valid for the∑
Uj criterion only under some restrictions (tops are not late), only an upper

bound can be computed. However, as shown by the experiments, this upper
bound is optimal in most of the cases, or at least very close to the optimum.
In the particular case where the considered SMSP is perfect (see Section 4), the
paper gives a MIP model that allows to directly find the optimal

∑
Uj value.

Since it is always possible to relax the release dates or the due dates of any
SMSP in order to make it perfect, this MIP also allows to compute good lower
bounds.

For the future works, we plan to investigate preprocessing methods by ap-
plying variable-fixing techniques from Integer Linear Programming. Such tech-
niques, successfully used in several papers (see for instance [3]), allow to defini-
tively fix the value of some binary variables, namely those of ytk

, x+
ki and x−ki in

our MIP, intending to tighten the search space and speed up the solving phase.
We guess that these techniques will improve our approach from a computational
viewpoint such that it becomes more competitive in comparison with the best
existing branch and bound approaches.
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