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Abstract. The SAT problem is shown to be the first decision NP-
complete problem (Cook,71). It is central in complexity theory. In the
last decade, the satisfiability proof procedures are improved by symme-
try elimination. A CNF formula usually contains an interesting number
of symmetries. There are two kinds of symmetry exploitation. The first
one corresponds to global symmetry breaking, that is, only the sym-
metries of the initial problem (the problem at the root of the search
tree) are detected and eliminated. The second one deals with all local
symmetries that appear at each node of the search tree. Local symme-
try has to be detected and eliminated dynamically during the search.
Exploiting such symmetries seems to be a hard task. Almost all of the
known works on symmetry in satisfiability are on global symmetry. Only
few works are carried on local symmetry, despite their importance in
practice. An important challenge is then to detect and break local sym-
metries efficiently during the search. The work that we present here is a
contribution towards an answer to this hard challenge. We present a new
method for local symmetries breaking that consists in detecting dynam-
ically local symmetries by reducing the remaining partial SAT instance
at each node of the search tree to a graph that has an equivalent auto-
morphism group than the symmetry group of the partial SAT instance.
We used the software Saucy to compute the automorphism group and
implemented a local symmetry cut in a SAT solver. We experimented
this method on several SAT instances and compared it with a method
exploiting global symmetries. The results obtained are very promising.
Local symmetry improves global symmetry on some hard instances and
is complementary to global symmetry.

1 Introduction

Krishnamurthy in [20] introduced the symmetry principle in propositional calcu-
lus and showed that some tricky formulas can have short proofs when augmenting
the resolution proof system by the symmetry rule. Symmetries are used earlier
for the resolution of many problems such as the eight queens [15]. They are also
introduced into the resolution of a constraints satisfaction problem [13, 26, 3], in
an intelligent algorithm of Backtracking [9] and in the first order logic [11]. Sym-
metry becomes an important notion in constraint programming. During the last
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decade, several works on symmetry breaking for the satisfiability problem and
in CSPs appeared. Nevertheless, few search works deal with dynamic symmetry
detection and elimination [4–7, 14]. Most of the methods exploiting symmetries
deal only with global symmetries [17, 2, 1], that is, the symmetries of the initial
problem corresponding to the root of the search tree . A symmetry of a logical
formula is a literal permutation leaving invariant the formula. There are many
problems in artificial intelligence which contain an important number of symme-
tries when expressed in CNF formulas. The importance of symmetry breaking
when solving these problems can be seen on some difficult problems which are
badly handled by the classic search methods. Take for instance the Pigeon-holes
problem [8, 16], or the Ramsey problem [18]. Both problems are known to be hard
for the classic resolution methods, and they are well represented in first order
logic by a small set of formulas that becomes very wide when we calculate all the
propositional terminal instantiations. The set of propositional clauses obtained,
contains an important number of symmetries. That is, the set of clauses remains
invariant under several variable permutations. Exploiting such permutations re-
sults in a polynomial complexity for the satisfiability proof while both problems
are known to be exponential for the methods that do not take into account sym-
metry breaking. The satisfiability problem is generic, several problems in other
field can be reduced to the satisfiability checking. For example, automatic de-
duction, configuration, planning, scheduling, etc. Several symmetry elimination
methods for the satisfiability problem are introduced [17, 2, 1]. But, almost all of
them deal only with global symmetry and ignore the treatment of local symme-
tries. This is due to the difficulty of detecting and exploiting them dynamically,
contrary to global symmetries that can be treated by static approaches that are
easier to implement. An approach of dynamic detection of local symmetries in
propositional logic was proposed in [4–6]. but this method is incomplete, in the
sense that it detects only some local symmetries, not the total group of local
symmetry. An alternative to this method is to adapt and use the graph auto-
morphism computational tool Saucy [2] that is able to detect all the local sym-
metries during search, since the group of automorphisms of the graph deduced
from the SAT instance is identical to the symmetry group of the SAT instance.
In this paper, we present an alternative local symmetry breaking method for the
SAT problem that exploits the total group of symmetry. This method consists
in reducing incrementally the logical sub-formula defined at each search node
to a graph on which we apply graph automorphism detection tools like Saucy
[2]. Symmetry elimination is implemented in a SAT solver that we experimented
and compared on several SAT instances. The obtained results are very promising
and show that local symmetry breaking outperforms global symmetry breaking
on some SAT instances and its combination with global symmetry seems to be
complementary. The rest of the paper is organized as follows: Section 2 gives
some background on the satisfiability problem and permutations. Section 3 de-
fines the symmetry principle and gives some symmetry properties. The fourth
section describes the new symmetry detection and elimination method that we
propose. Section 5 shows how the symmetry cut is integrated in a tree search
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method like Davis and Putnam procedure. We evaluate the proposed method in
the sixth section where several SAT instances are tested and where a comparison
of our method with some other existing methods is given. Finally, we conclude
the work in Section 7.

2 Some background on propositional logic

2.1 Propositional logic

We shall assume that the reader is familiar with the propositional calculus. We
give here, a short description, a more complete description can be found in [21].
Let V be the set of propositional variables called only variables. Variables will
be distinguished from literals, which are variables with an assigned parity 1 or 0
that means True or False, respectively. This distinction will be ignored whenever
it is convenient, but not confusing. For a propositional variable p, there are two
literals: p the positive literal and ¬p the negative one.

A clause is a disjunction of literals {p1, p2, . . . , pn} such that no literal appears
more than once, nor a literal and its negation at the same time. This clause is
denoted by p1 ∨ p2 ∨ . . .∨ pn . A system F of clauses is a conjunction of clauses.
In other words, we say that F is in the conjunctive normal form (CNF).

A truth assignment to a system of clauses F is a mapping I defined from
the set of variables of F into the set {True, False}. If I[p] is the value for the
positive literal p then I[¬p] = 1 − I[p]. The value of a clause p1 ∨ p2 ∨ . . . ∨ pn
in I is True, if the value True is assigned to at least one of its literals in I, False
otherwise. By convention, we define the value of the empty clause (n = 0) to be
False. The value I[F ] of the system of clauses is True if the value of each clause
of F is True, False, otherwise. We say that a system of clauses F is satisfiable
if there exists some truth assignments I that assign the value True to F , it is
unsatisfiable otherwise. In the first case I is called a model of F . Let us remark
that a system which contains the empty clause is unsatisfiable.

It is well-known [27] that for every propositional formula F there exists a
formula F ′ in conjunctive normal form(CNF) such that the length of F ′ is at
most 3 times as long as the formula F and F ′ is satisfiable iff F is satisfiable. In
the following we will assume that the formulas are given in a conjunctive normal
form.

2.2 Permutations

Let Ω = {1, 2, . . . , N} for some integer N , where each integer might represent
a propositional variable. A permutation of Ω is a bijective mapping σ from Ω
to Ω that is usually represented as a product of cycles of permutations. We
denote by Perm(Ω) the set of all permutations of Ω and ◦ the composition of
the permutation of Perm(Ω). The pair (Perm(Ω), ◦) forms the permutation
group of Ω. That is, ◦ is closed and associative, the inverse of a permutation is
a permutation and the identity permutation is a neutral element. A pair (T, ◦)
forms a sub-group of (S, ◦) iff T is a subset of S and forms a group under the
operation ◦.
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The orbit ωPerm(Ω) of an element ω of Ω on which the group Perm(Ω) acts
is ωPerm(Ω)={ωσ : ωσ = σ(ω), σ ∈ Perm(Ω)}.

A generating set of the group Perm(Ω) is a subset Gen of Perm(Ω) such
that each element of Perm(Ω) can be written as a composition of elements of
Gen. We write Perm(Ω)=< Gen >. An element of Gen is called a generator.
The orbit of ω ∈ Ω can be computed by using only the set of generators Gen.

3 Symmetry

Since Krishnamurthy’s [20] symmetry definition in propositional logic, several
other definitions are given in the CP community. Freuder in his work [13], in-
troduced the notions of full and neighborhood interchangeabilities, where two
domain values are interchangeable in a CSP, if they can be substituted for each
other without any effects to the CSP. In the other hand Benhamou in [3] de-
fined two levels of semantic symmetry and a notion of syntactic symmetry. He
also showed that the Full interchangeability of Freuder is a particular case of
semantic symmetry and Neighborhood interchangeability is a particular case of
syntactic symmetry. More recently a work of Cohen et al [10] discussed most of
the known symmetry definitions in CSPs and gathered them in two definitions:
symmetry of solutions (semantic) and symmetry of constraints (syntactic). Al-
most all of these definitions can be identified to belong to the two families of
symmetry: syntactic symmetry or semantic symmetry. We will define in the fol-
lowing both semantic and syntactic symmetry in propositional logic and show
their relationship with the solution and constraint symmetries in CSPs.

3.1 Symmetry in propositional logic

Definition 1 (Semantic symmetry). Let F be a propositional formula given
in CNF and LF its complete 1 set of literals. A semantic symmetry of F is a
permutation σ defined on LF such that F |= σ(F) and σ(F) |= F .

In other words a semantic symmetry of a formula is a literal permutation
that conserves the set of the models of the formula. We recall in the following
the definition of syntactic symmetry given in [4, 5]

Definition 2 (Syntactic symmetry). Let F be a propositional formula given
in CNF and LF its complete set of literals. A syntactic symmetry of F is a
permutation σ defined on LF such that the following conditions hold:

1. ∀` ∈ LF , σ(¬`) = ¬σ(`),
2. σ(F) = F

In other words, a syntactical symmetry of a formula is a literal permutation
that leaves the formula invariant. If we denote by Perm(LF ) the group of permu-
tations of LF and by Sym(LF ) ⊂ Perm(LF ) the subset of permutations of LF
that are the syntactic symmetries of F , then Sym(LF ) is trivially a sub-group
of Perm(LF ).
1 The set of literals containing each literal of F and its negation
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Remark 1. The symmetry definitions introduced in CSPs [10] are related to the
former ones introduced in propositional logic. Consider for instance the direct
SAT encoding F of a CSP P [19] where a boolean variable is introduced for each
CSP variable-value pair, and where a clause forbidding each tuple disallowed
by a specific constraint is added as well as another clause ensuring that a value
is chosen for each variable in its domain. It is then trivial that the solution
symmetry of the CSP P is equivalent to the semantic symmetry (Definition 1)
of its SAT encoding F and the constraint symmetry of P is equivalent to the
syntactic symmetry (Definition 2) of F .

Theorem 1. Each syntactical symmetry of a formula F is a semantic symmetry
of F .

Proof. It is trivial to see that a syntactic symmetry is a sufficient condition to
a semantic symmetry. Indeed, if σ is syntactic symmetry of F , then σ(F) = F ,
thus it results that F and σ(F) have the same set of models. Each syntactic
symmetry is a semantic symmetry and the converse is in general not true.

Example 1. Let F be the following set of clauses: F={a∨b∨c,¬a∨b,¬b∨c,¬c∨
a,¬a ∨ ¬b ∨ ¬c} and σ1 and σ2 two permutations defined on the complete set
LF of literals occurring in F as follows:
σ1=(a, b, c)(¬a,¬b,¬c)
σ2=(a,¬a)(b,¬b)(c,¬c)
Both σ1 and σ2 are syntactic symmetries of F , since σ1(F)=F=σ2(F).

In the sequel we deal only with syntactic symmetry, we say only symmetry
to designate syntactic symmetry.

Definition 3. Two literals ` and `′ of a formula F are symmetrical if there
exists a symmetry σ of F such that σ(`) = `′.

Definition 4. Let F be a formula, the orbit of a literal ` ∈ LF on which the
group of symmetries Sym(LF ) acts is `Sym(LF )={σ(`) : σ ∈ Sym(LF )}
Proposition 1. All the literals in the orbit of a literal ` are symmetrical two by
two.

Proof. The proof is a trivial consequence of the previous two definitions

Example 2. In Example 1, the orbit of the literal a is aSym(LF )= {a, b, c,¬a,¬b,¬c}.
We can see that all the literals are in the same orbit. Thus, they are all sym-
metrical.

If I is a model of F and σ a symmetry, we can get another model of F by
applying σ on the variables which appear in I. That is, if I is a model of F then
σ(I) is a model of F . A symmetry σ transforms each model into a model and
each no-good into a no-good. In the following propositions, we assume that σ is
a symmetry of the set of clauses F .
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Proposition 2. Let ` be a literal, σ a symmetry such that `′ = σ(`) and I ′ =
σ(I). If I is such that I[`] = True, then I ′ is such that I ′[`′] = true

Proof. The proof is trivial. Indeed, if ` is true in the model I then σ(`)= `′ will
be true in the model σ(I)=I ′.

we deduce the following proposition.

Proposition 3. If a literal ` has the value true in a model of F , then σ(`) will
have the value true in a model of F .

Theorem 2. Let ` and `′ be two literals of F that are in the same orbit with
respect to the symmetry group Sym(LF ), then ` is true in a model of F iff `′ is
true in a model of F .

Proof. If ` is in the same orbit as `′ then it is symmetrical with `′ in F . Thus,
there exists a symmetry σ of F such that σ(`) = `′. If I is a model of F then
σ(I) is also a model of σ(F) = F , besides if I[`] = true then σ(I[`′]) = true
(Proposition 2). For the converse, consider ` = σ−1(`′), and make a similar proof.

Corollary 1. Let ` be a literal of F , if ` is not true in any model of F , then
each literal `′ ∈ orbitLF is not true in any model of F .

Proof. The proof is a direct consequence of Theorem 2

Corollary 1 expresses an important property that we will use to break local
symmetry at each node of the search tree. That is, if a failure is detected after
assigning the value True to the current literal `, then we compute the orbit of `
and assign the value false to each literal in it, since by symmetry the value true
will be contradictory, then will not participate in any model of the considered
formula.

Many hard problems for resolution have been shown to be polynomial when
using symmetry in resolution. For instance, finding some of the Ramsey’s num-
bers or solving the pigeon-hole problem are known to be exponential for classical
resolution, while short proofs can be made for both them when adding the sym-
metry rule to the resolution proof system. We will show now how to detect
dynamically the local symmetry.

4 Local symmetry detection and elimination

Local symmetries have to be detected dynamically at each node of the search
tree. Dynamic symmetry detection had been studied in [4, 5] where a local syn-
tactic symmetry search method had been given. However, this method is not
complete, it detects only one symmetry σ at each node of the search tree when
failing in the assignment of the current literal `. A heuristic is used on the vari-
able permutations of σ in order to get a maximal number of literals in the same
cycle of permutations as the one where ` appears. Despite this heuristic, this
method does not detect all the symmetrical literals with ` corresponding to the
orbit of `, since it does not use all the local symmetries.

427



As an alternative to this incomplete symmetry search method, we adapted
Saucy [2] to detect all the local syntactic symmetries and show how to break such
symmetries during search. Saucy is a tool for computing the automorphism group
of a graph. Other tools like Nauty [22] or the most recent methods AUTOM [25]
or the one described in [23] can be adapted to search local symmetry. It is shown
in [25] that AUTOM is the best method. Because the source code of AUTOM is
not free, and more recently Saucy had been improved [12]; we chose Saucy. It is
shown in [17, 2, 1] that each CNF formula F can be represented by a graph GF
that is built as follows:

– Each boolean variable is represented by two vertices (literal vertices) in GF :
the positive literal and its negation. These two vertices are connected by an
edge in the graph GF .

– Each non binary clause is represented by a vertex (a clause vertex). An edge
connects this vertex to each vertex representing a literal of the clause.

– Each binary clause is represented by an edge connecting the vertices repre-
senting its two literals. We do not need to add vertices for binary clauses.

An important property of the graph GF is that it preserves the syntactic
group of symmetries of F . That is, the syntactic symmetry group of the formula
F is identical to the automorphism group of its graph representation GF , thus
we use Saucy on GF to detect the syntactic symmetry group of F . Saucy returns
a set of generators Gen of the symmetry group from which we can deduce each
symmetry. Saucy offers the possibility to color the vertices of the graph such
that, a vertex is allowed to be permuted with another vertex if they have the
same color. This restricts the permutations to the nodes having the same color.
Two colors are used in GF , one for the vertices corresponding to the clauses
of F and the other color for the vertices representing the literals of LF . This
allows to distinguish the clause vertices from the literal vertices, then prevent
the generation of symmetries between clauses and literals. The source code of
Saucy can be found at (http://vlsicad.eecs.umich.edu/BK/SAUCY/).

Example 3. Let F be the CNF formula given in Example 1. Its associated GF
is given in Figure 1

c2

¬aa

¬bb

c ¬c

c1

Fig. 1. The graph GF corresponding to F
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Dynamic symmetry detection: Consider a CNF formula F , and a partial
assignment I of F where ` is the current literal under assignment. The assign-
ment I simplifies the given formula F into a sub-formula FI that defines a state
in the search space corresponding to the current node nI of the search tree. The
main idea is to maintain dynamically the graph GFI

of the sub-formula FI cor-
responding to the local sub-problem defined at the current node nI , then color
the graph GFI

and compute its automorphism group Aut(FI). The sub-formula
FI can be viewed as the remaining sub-problem corresponding to the unsolved
part. By applying Saucy on this colored graph we can get the generator set Gen
of the symmetry sub-group existing between literals of LFI

from which we can
compute the orbit of the current literal ` that we will use to make the symmetry
cut.

Symmetry elimination: We use Corollary 1 to prune search spaces of tree
search methods. Indeed, if the assignment of the value true to the current literal
` defined at a given node nI of the search tree is shown to be a failure, then
the assignment of the value true to each literal in the orbit of ` will result in a
failure too. Thus, the value false has to be assigned to each literal in the orbit
of `. Therefore we prune the sub-space which corresponds to the assignment of
the alternative value true to these literals in the search tree. That is what we
call the symmetry cut.

5 Symmetry advantage in tree search algorithms

Now we will show how these detected symmetrical literals can be used to in-
crease the efficiency of CNF SAT algorithms. We choose in our implementation
the Davis Putnam (DP) procedure to be the baseline method that we want to
improve by the advantage of local symmetry elimination.

If I is an inconsistent partial interpretation in which the assignment of the
value true to the current literal ` is shown to be conflicting, then according to
Corollary 1, all the literals in the orbit of ` computed by using the group Sym(FI)
returned by Saucy are symmetrical to `. Thus, we assign the value false to each
literal in `Sym(LF ) since the value true is shown to be contradictory, and then
we prune the sub-space which corresponds to the value true assignments. The
resulting procedure called Satisfiable is given in Figure 2.

The function orbit(`,Gen) is elementary, it computes the orbit of the literal
` from the set of generators Gen returned by Saucy.

6 Experiments

Now we shall investigate the performances of our search techniques by experi-
mental analysis. We choose for our study some SAT instances to show the lo-
cal symmetry behavior in satisfiability. We expect that symmetry breaking will
be more profitable in real-life applications. Here, we tested and compared four
methods:
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Procedure Satisfiable(F);
begin

if F = ∅ then F is satisfiable
else if F contains the empty clause, then F is unsatisfiable

else begin
if there exists a mono-literal or a monotone literal ` then

if Satisfiable(F`) then F is satisfiable
else F is unsatisfiable

else begin
Choose an unsigned literal ` of F
if Satisfiable(F`) then F is satisfiable
else
begin

Gen=Saucy(F);

`Sym(LF )=orbit(`,Gen)={`1, `2, ..., `n};
if Satisfiable(F¬`1∧¬`2∧...∧¬`n) then F is satisfiable
else F is unsatisfiable

end
end

end

Fig. 2. The Davis Putnam procedure with local symmetry elimination

No-sym Global-sym Local-sym Global-Local-sym
Instance V ars : clauses Nodes T ime Nodes T imes Nodes T ime Nodes T ime

fpga10 8 SAT 120 : 448 6,637,776 44.41 449 0.02 9835 2.09 449 0.71
fpga10 9 SAT 135 : 549 - >1,000 284 0.02 57080 20.37 284 0.53
fpga12 8 SAT 144 : 560 6,637,776 35.79 165 0.00 9835 2.14 165 0.32
fpga13 10 SAT 195 : 905 - >1,000 4261 0.41 304,830 134.89 4261 14.08
Chnl10 11 220 : 1122 3,628,800 100.09 382 0.09 512 2.42 382 3.33
Chnl10 12 3 240 : 1344 3,628,800 120.72 322 0.10 512 2.63 322 3.41
Chnl11 12 3 264 : 1476 - >1,000 1123 0.26 1024 6.28 1123 12.09
Chnl11 13 286 : 1742 - >1,000 814 0.25 1024 7.38 814 10.96
Chnl11 20 440 : 4220 - >1,000 523 0.38 1024 18.93 523 18.90
Urq3 5 46 : 470 - >1,000 16384 0.16 30 0.09 15 0.00
Urq4 5 74 : 694 - >1,000 - >1,000 44 0.32 31 0.10
Urq5 5 121 : 1210 - >1,000 - >1,000 73 1.43 44 0.27
Urq6 5 180 : 1756 - >1,000 - >1,000 110 4.76 84 2.03
Urq7 5 240 : 2194 - >1,000 - >1,000 147 9.32 108 3.44
Urq8 5 327 : 3252 - >1,000 - >1,000 225 27.11 171 9.18

Table 1. Results on some SAT instances

1. No-sym: search without symmetry breaking by using the LSAT [24] as the
baseline method;

2. Global-sym search with global symmetry breaking. This method uses in
pre-processing phase the program SHATTER [2, 1] that detects and elimi-
nates the global symmetries of the considered instance by adding on it sym-
metry breaking clauses, then apply the solver LSAT to the resulting instance.
The CPU time of Global-sym in Table 1 includes the time that SHATTER
spends to compute the global symmetry.
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3. Local-sym: search with local symmetry breaking. This method implements
in LSAT the dynamic local symmetry detection and elimination strategy
described in this work. The CPU time of Local-sym includes local symmetry
search time.

4. Global-Local-sym: search that combines both the global and local sym-
metries. It consists in applying LSAT with local symmetry elimination on
the instance produced by SHATTER in the pre-processing phase.

on different SAT instances that are FPGA (Field Programmable Gate Array),
Chnl, Urquhart and some random graph coloring instances. The common base-
line search method for the three previous methods is LSAT. The complexity
indicators are the number of nodes of the search tree and the CPU time. Both
the time needed for computing local symmetry and global symmetry are added
to the total CPU time of search. The source codes are written in C and compiled
on a Pentium 4, 2.8 GHZ and 1 Gb of RAM.

6.1 The results on the different SAT instances

Table 1 shows the first results of the methods on some SAT instances. It gives
the instance, the instance size (variables/clauses), the number of nodes of the
search tree and the CPU time for each method.

Table 1 shows that Global-sym is in general better than Local-sym and No-
sym in both the number of nodes and the CPU time on the FPGA, and Chnl
problems, but Local-sym still able to solve them too. These problems contain a
great amount of global symmetries, that is why it is sufficient to break only the
global symmetry to solve them efficiently, eliminating local symmetry in these
problems may sometimes slow the resolution. The Urq instances are known to
be harder than the FPGA and the Chnl, we can see that No-sym is not able
to solve them and Global-sym solved only the Urq3 5 and failed to solve all
the other ones under the time limit. Local-sym solved all the Urq instances effi-
ciently, local symmetry elimination is then more profitable than global symmetry
on the Urq instances. We can see that in average the method Global-Local-sym
is better than all the other methods, it solved all the instances efficiently. It com-
pares well to Global-sym on the FPGA and Chnl instances and to Local-sym
on the Urq instances. It is then profitable to combine both symmetry elimina-
tions to solve these problems, the results confirmed that both methods could be
complementary.

6.2 The results on the graph coloring instances

Random graph coloring problems are generated with respect to the following
parameters: (1) n : the number of vertices, (2) Colors: the number of colors and
(3) d: the density which is a number between 0 and 1 expressed by the ratio :
the number of constraints (the number of edges in the graph) to the number of
all possible constraints. For each test corresponding to some fixed values of the
parameters n, Colors and d, a sample of 100 instances are randomly generated
and the measures (CPU time, nodes) are taken on the average.
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Fig. 3. Node and Time curves of the two symmetry methods on random graph coloring
where n = 30 and d = 0.5

We reported in Figure 3 the practical results of the methods: Global-sym, and
Local-sym, on the random graph coloring problem where the number of variables
is n = 30 and where the density is (d = 0.5). The curves give the number of
nodes respectivily the cpu time with respect to the number of colors for each
search method.

We can see on the node curves (the curves at the left) that Local-sym detects
and eliminates more symmetries than the Global-sym method and Global-sym
is not stable for graph coloring. From the CPU time curves (the curves at the
right), we can see that Local-sym is in average faster than Global-sym even that
Saucy is run at each node. Local symmetry elimination is profitable for solving
random graph coloring instances and outperforms dramatically global symmetry
breaking on these problems.

7 Conclusion and perspectives

Here, we extended symmetry detection and elimination to local symmetry. That
is, the symmetries of each CNF sub-formula defined at a given node of the
search tree and which is derived from the initial formula by considering the
partial assignment corresponding to that node. We adapted Saucy to compute
this local symmetry by maintaining dynamically the graph of the sub-formula
defined at each node of the search tree. Saucy is called with the graph of the
local sub-formula as the main input, and then returns the set of generators of the
automorphism group of the graph which is shown to be equivalent to the local
symmetry group of the considered sub-formula. The proposed local symmetry
detection method is implemented and exploited in the tree search method LSAT
to improve its efficiency. Experimental results confirmed that local symmetry
breaking is profitable for SAT solving and improves global symmetry breaking
on some of the considered problems, and its combination with global symmetry
seems to be complementary.

As a future work, we are looking to implement some weakened symmetry
conditions under which we may detect more symmetries, then experiment it and
compare its results with the ones given here.

Another interesting point is to try to detect local variable symmetries and
post dynamic constraints to break them, it will be important to compare the
static approaches that detect only global symmetries with this approach.
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