Bounds on the domination number in oriented graphs

${ }^{1}$ Mostafa Blidia and ${ }^{2}$ Lyes Ould-Rabah
Lamda-RO, Department of Mathematics, University of Blida.
B.P. 270, Blida, Algeria.
E-mail: ${ }^{1}$ m_blidia@yahoo.fr, ${ }^{2}$ l.ouldrabah@yahoo.fr

March 19, 2010

Abstract

A dominating set of an oriented graph D is a set S of vertices of D such that every vertex not in S is a successor of some vertex of S. The minimum cardinality of a dominating set of D, denoted $\gamma(D)$, is the domination number of D. An irredundant set of an oriented graph D is a set S of vertices of D such that every vertex of S has a private successor, that is, for all $x \in S,|O[x]-O[S-x]| \geq 1$. The irredundance number of an oriented graph, denoted $\operatorname{ir}(D)$, is the least number of vertices in a maximal irredundant set. We denote by $\beta_{1}(D)$ and $s(D)$, the number of edges in a maximum matching and support vertices of the underlyng graph of an oriented graph D, respectively. In this paper, we show that for every oriented graph $D, s(D) \leq i r(D) \leq \gamma(D) \leqslant n(D)-\beta_{1}(D)$. We also give characterizations of oriented trees satisfying $\gamma(T)=n(T)-\beta_{1}(T)$ and oriented graphs satisfying $\gamma(D)=s(D)$ and $s(D)=n(D)-\beta_{1}(D)$, respectively.

Keywords: locating-domination, critical graph. 2000
Mathematics Subject Classification: 05C69, 05C15.

1 Introduction

An oriented graph (or digraph) D is a finite nonempty set of points called vertices together with a (possibly empty) set of ordered pairs of distinct vertices of D called arcs or oriented edges. An oriented graph D can be obtained from a simple graph G by assigning a direction (possibly both sense) to each edge of G. We say that G is the underlying graph of D and that D is an orientation of G. As with graphs, the vertex set of D is denoted by $V(D)$ and the arc set is denoted by $A(D)$. The oriented graph $D=(V, A)$ considered here has no loops and no multiple arcs (but pairs of opposite arcs are allowed). If $(x, y) \in A$, then the arc is oriented from x to y. The vertex x is called a predecessor of y and y is called a successor of x. If the reversal (y, x) of an $\operatorname{arc}(x, y)$ of D is also
present in D, we say that (x, y) is a reversible (symmetrical) arc. If $(x, y) \in A$ but $(y, x) \notin A$, then (x, y) is an asymmetrical arc.

The sets $O(u)=\{v:(u, v) \in A\}$ and $I(u)=\{v:(v, u) \in A\}$ are called the outset and inset of the vertex u. Likewise, $O[u]=O(u) \cup\{u\}$ and $I[u]=$ $I(u) \cup\{u\}$. If $S \subseteq V$ then $O(S)=\bigcup_{s \in S} O(s)$ and $I(S)=\bigcup_{s \in S} I(s)$. Similarly $O[S]=\bigcup_{s \in S} O[s]$ and $I[S]=\bigcup_{s \in S} I[s]$. The indegree of a vertex u is given by $i d(u)=|I(u)|$ and the outdegree of a vertex u is $o d(u)=|O(u)|$. The maximum outdegree of a vertex in D is denoted by $\Delta_{+}(D)$

Let G be the underlying graph of a oriented graph D. If $e=u v$ is an edge of G, then u and v are adjacent vertices, while u and e are incident, as are v and e. Furthermore, if e_{1} and e_{2} are distinct edges of G incident with a common vertex, then e_{1} and e_{2} are adjacent edges. The degree of a vertex v of G is the number of vertices adjacent to v. A vertex of degree one is called a leaf and its neighbor is called a support vertex. If u is a support vertex, then L_{u} will denote the set of leaves attached at u. An edge incident with a leaf is called a pendant edge. A tree T is a double star if it contains exactly two vertices that are not leaves. A double star with p and q leaves attached at each support vertex, respectively, is denoted by $S_{p, q}$. Denote by T_{x} the subtree induced by a vertex x and its descendants in a rooted tree T. The diameter $\operatorname{diam}(G)$ of a graph G is the maximum distance over all pairs of vertices of G. The corona $G \circ K_{1}$ of a graph G is obtained from G by adding a leaf at each of its vertices. For the underlying graph G of a oriented graph D, we denote by $n(D)=n(G), \ell(D)=l(G), s(D)=s(G), L(D)=L(G)$ and $S(D)=S(G)$ the number of vertices, leaves, support vertices and the set of leaves and support vertices of G, respectively.

A set of pairwise independent edges of G is called a matching in G. The number of edges in a maximum matching of G is the edge independence number $\beta_{1}(G)\left(=\beta_{1}(D)\right.$ if there is no ambiguity). If M is a specified matching in graph G, then every vertex of G is incident with at most one edge of M. A vertex that is incident with no edges of M is called an \bar{M}-vertex.

A set $S \subseteq V$ of an oriented graph D is independent if and only if for all $x, y \in S, x \notin O(y)$. The size of the largest independent set in D is denoted by $\beta(D)$.

A set $S \subseteq V$ of an oriented graph D is a dominating set of D if, for all $v \notin S, v$ is a successor of some vertex $s \in S$ or $O[S]=V(D)$. We use the notation $\gamma(D)$ to represent the domination number of an oriented graph, i.e., the minimum cardinality of a set $S \subseteq V$ which is dominating. A set $S \subseteq V$ is irredundant if, for all $x \in S,|O[x]-O[S-x]| \geq 1$. If $y \in O[x]-O[S-x]$, then we say that y is a private successor of x with respect to S. Observe that x may be its own private successor. The irredundance number of an oriented graph, denoted $\operatorname{ir}(D)$, is the least number of vertices in a maximal irredundant set. It is clear that $\operatorname{ir}(D) \leq \gamma(D)$. A dominating set of D with minimum cardinality is called a $\gamma(D)$-set. For more details on domination in graphs, see the monographs by

Haynes, Hedetniemi, and Slater [4, 5].
In general, domination in oriented graphs has not been studied as intensively studied as that in graphs without orientation. In [3], Ghoshal, Lasker, and Pillone consider related topics in oriented graphs and suggest further avenues of study. Gallai-type results have been considered in [7]. In [1], Albertoon and al. characterize oriented trees satisfying $\gamma(D)+\Delta_{+}(D)=n$ and thus satisfying $\operatorname{ir}(D)+\Delta_{+}(D)=n$.

In this paper, we show that for every oriented graph $D, s(D) \leq i r(D) \leq$ $\gamma(D) \leqslant n(D)-\beta_{1}(D)$. We also give characterizations of oriented trees satisfying $\gamma(T)=n(T)-\beta_{1}(T)$ and oriented graphs satisfying $\gamma(D)=s(D)$ and $s(D)=$ $n(D)-\beta_{1}(D)$, respectively.

2 Bounds

Before presenting our results, we recall some know bounds of a dominating number in oriented graphs.

Theorem 1 [5] For any oriented graph D on n vertices, $\frac{n(D)}{1+\Delta_{+}(D)} \leq \gamma(D) \leqslant$ $n(D)-\Delta_{+}(D)$.

Theorem 2 [6] For a strongly connected oriented graph D on n vertices, $\gamma(D) \leqslant$ $\left\lceil\frac{n(D)}{2}\right\rceil$.

Observation 3 Let D be an oriented graph.

1. Let x be a vertex of D such that $I(x)=\varnothing$. Then every $\gamma(D)$-set contains x.
2. Let v be a support vertex of D. Then every $\gamma(D)$-set contains at least one vertex of $L_{v} \cup\{v\}$.

Recall that the number $\beta_{1}(D)$ can be computed for any graph in polynomial time [2]. Therefore, the following bounds can also be computed in polynomial time.

Theorem 4 For any oriented graph D on n vertices, $s(D) \leq i r(D) \leq \gamma(D) \leqslant$ $n(D)-\beta_{1}(D)$.

Proof. Let S be a $\operatorname{ir}(D)$-set of D. For every support vertex v such that $S \cap\left(L_{v} \cup\{v\}\right)=\varnothing$, correspond at least one vertex $z \in S$ with v its unique private successor (this is possible for otherwise $S \cup L_{v}$ is an irredundant set which contradicts the maximality of S). If z is a support vertex, then $L_{z} \in S$.

Indeed, all pendant edges attached at v are oriented from $y \in L_{v}$ to v (may be symmetrically). So, $\operatorname{ir}(D)=|S| \geq s(D)$.

Let $M=\left\{x_{i} y_{i}: 1 \leq i \leq \beta_{1}\right\}$ be a set of edges of a maximum matching in the underlying graph G of D with Z_{M} the set of all \bar{M}-vertices of G (which are incident with no edges of M). Without loss of generality, we suppose that $\left(x_{i}, y_{i}\right)$ is an arc of $D ; 1 \leq i \leq \beta_{1}$. It is clear that $S=\left\{x_{1}, x_{2}, \ldots x_{\beta_{1}}\right\} \cup Z_{M}$ is a dominating set of D. So, $\gamma(D) \leq|S|=\left|\left\{x_{1}, x_{2}, \ldots x_{\beta_{1}}\right\}\right|+\left|Z_{M}\right|=\beta_{1}+n-2 \beta_{1}=$ $n-\beta_{1}$, which implies the upper bound $\gamma(D) \leqslant n(D)-\beta_{1}(D)$.

Note that the difference between $\gamma(D)$ and $\operatorname{ir}(D)$ can be arbitrarily large even for oriented trees. To see this, consider the oriented tree of Figure 1, where $\gamma(T)=p+2$ and $\operatorname{ir}(T)=2=s(D)$.

Figure 1
Next in Section 3 and 4, we present characterizations of special oriented graphs achieving equality in each bound of $s(D) \leq \gamma(D) \leqslant n(D)-\beta_{1}(D)$.

3 Characterization of directed trees achieving the upper bound

We begin by giving useful results:
Lemma 5 Let D be a nontrivial oriented graph. If $\gamma(D)=n(D)-\beta_{1}(D)$, then every maximum matching $M=\left\{x_{i} y_{i}: 1 \leq i \leq \beta_{1}\right\}$ in the underlying graph G of D with corresponding arcs $\left(x_{i}, y_{i}\right) ; 1 \leq i \leq \beta_{1}$ and Z_{M} the set of all \bar{M}-vertices of G, satisfies:

1. $\forall z \in Z_{M}, I(z) \cap\left\{x_{1}, \ldots, x_{\beta_{1}}\right\}=\varnothing$.
2. $\forall e=x y$ an edge of M and (x, y) a corresponding arc in D. If one endvertex z of e satisfies $I(z) \cap\left(\left(\left\{x_{1}, \ldots, x_{\beta_{1}}\right\}-\{x\}\right) \cup Z_{M}\right) \neq \varnothing$, then the other end-vertex z^{\prime} of e verifies $I\left(z^{\prime}\right) \cap\left(\left(\left\{x_{1}, \ldots, x_{\beta_{1}}\right\}-\{x\}\right) \cup Z_{M}\right)=\varnothing$.

Proof. Let $M=\left\{x_{i} y_{i}: 1 \leq i \leq \beta_{1}\right\}$ be a maximum matching in the underlying graph G of D with corresponding arcs $\left(x_{i}, y_{i}\right) ; 1 \leq i \leq \beta_{1}$ and Z_{M} the set of all \bar{M}-vertices of G. First, suppose that there exists $z \in Z_{M}$ such that $I(z) \cap$ $\left\{x_{1}, \ldots, x_{\beta_{1}}\right\} \neq \varnothing$. It is clear that $S=\left\{x_{1}, \ldots, x_{\beta_{1}}\right\} \cup\left(Z_{M}-\{z\}\right)$ is a dominating set of D and $|S|=\left|\left\{x_{1}, x_{2}, \ldots x_{\beta_{1}}\right\}\right|+\left|Z_{M}-\{z\}\right|=\beta_{1}+n-2 \beta_{1}-1=n-\beta_{1}-1$. Then S is a dominating set of D of size less than $n-\beta_{1}$, a contradiction. Now assume that there exists an edge $e=x y$ of M with a corresponding $\operatorname{arc}(x, y)$ in D, which do not satisfy Part 2 of Lemma 5. Without loss of generality, suppose that $I(y) \cap\left(\left(\left\{x_{1}, \ldots, x_{\beta_{1}}\right\}-\{x\}\right) \cup Z_{M}\right) \neq \varnothing$ and $I(x) \cap\left(\left(\left\{x_{1}, \ldots, x_{\beta_{1}}\right\}-\{x\}\right) \cup Z_{M}\right) \neq \varnothing$. Consider now $S=\left(\left(\left\{x_{1}, \ldots, x_{\beta_{1}}\right\}-\{x\}\right) \cup Z_{M}\right)$, it is clear that S is a dominating set of D of size less than $n-\beta_{1}$, a contradiction.

Observation 6 Let T be a tree.

1. If T is a tree obtained from a tree T^{\prime} by attaching a vertex to a support vertex of T^{\prime}, then $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)$.
2. For every support vertex v of a nontrivial tree, there exits a maximum matching M which contains a pendant edge with end-vertex v.
3. If T is a tree obtained from a tree T^{\prime} by attaching an end-vertex of P_{2} to a vertex of T^{\prime}, then $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+1$.

We call the oriented graph of Figure 2 the obstruction (pairs of opposite arcs are allowed).

Figure 2: The obstruction
Let $\overrightarrow{K_{1, p}}$ be the oriented star (the underlying graph is a star) without the obstruction as a subdigraph, that is, the oriented star with center x such that $\left|O(x) \cap L_{x}\right| \leq 1$.

Observation 7 Let T be a nontrivial oriented tree. If $\gamma(T)=n(T)-\beta_{1}(T)$, then for every support vertex x of T, the subdigraph induced by $L_{x} \cup\{x\}$ is a oriented star $\overrightarrow{K_{1, p}} ; p \geq 1$.

Proof. Assume that there exists a support vertex x of T such that $L_{x} \cup\{x\}$ is a oriented star $\overrightarrow{K_{1, p}} ; p \geq 2$ with the obstruction as a subdigraph. By Part 2 of Observation 6, we consider a maximum matching M which contains a pendant edge with end-vertex x. Then Part 1 of Lemma 5 is not satisfied, so $\gamma(T)<n(T)-\beta_{1}(T)$, a contradiction.

We denote by $\overrightarrow{S_{p, q}}$ the oriented tree obtained from two oriented stars $\overrightarrow{K_{1, p}}$ and $\overrightarrow{K_{1, q}}$ by attaching the center x of $\overrightarrow{K_{1, p}}$ to the center y of $\overrightarrow{K_{1, q}}$ where the edge $x y$ is arbitrary oriented.

Figure 3: The oriented tree $\overrightarrow{S_{p, q}}$
We also denote by $\overrightarrow{P_{2}^{1}(x, y)}$ the oriented chain obtained from $P_{2}=x y$ where the edge $x y$ is asymmetrically oriented from y to x, that is, (x, y) is not present. And denote by $\overrightarrow{P_{2}^{2}(x, y)}$ the oriented chain obtained from $P_{2}=x y$ where the edge $x y$ is oriented from x to y, possibly the arc (y, x) is also present.

And denote by $H_{k}(z)$ the oriented tree obtained from oriented chains $\overrightarrow{P_{2}^{2}\left(x_{i}, y_{i}\right)}$ $; 1 \leq i \leq k$ and join every vertex $x_{i} ; 1 \leq i \leq k$ by an edge to vertex z, where at least one edge $x_{i} z$ is oriented from x_{i} to z (possibly symmetrically) and all others are arbitrary oriented. (For all these oriented graphs see Figure 4 and Figure 5.)

Figure 4: $\quad \overrightarrow{P_{2}^{1}(x, y)}$ and $\overrightarrow{P_{2}^{2}(x, y)}$

Figure 5: $\quad H_{k}(z)$

In order to characterize the oriented trees with $\gamma(T)=n(T)-\beta_{1}(T)$, we introduce the family \mathcal{F} of all trees T that can be obtained from a sequence T_{1}, $T_{2}, \ldots, T_{m}(m \geq 1)$ of oriented trees, where T_{1} is $\overrightarrow{P_{2}^{1}(x, y)}, \overrightarrow{P_{2}^{2}(x, y)}, T=T_{m}$, and, if $m \geq 2, T_{i+1}$ is obtained recursively from T_{i} by one of the five operations defined below.

- Operation \mathcal{O}_{1} : Add a vertex y and join y by an edge to a support vertex x of T_{i}, where the edge $x y$ is asymmetrically oriented from y to x.
- Operation \mathcal{O}_{2} : Add an oriented chain $\overrightarrow{P_{2}^{1}(x, y)}$ and join x by an edge to a vertex z of T_{i}, where the edge $x z$ is arbitrary oriented.
- Operation \mathcal{O}_{3} : Add an oriented chain $\overrightarrow{P_{2}^{2}(x, y)}$ and join x by an edge to a support vertex z of T_{i}, where the edge $x z$ is arbitrary oriented.
- Operation \mathcal{O}_{4} : Add oriented chains $\overrightarrow{P_{2}^{2}\left(x_{i}, y_{i}\right)} ; i=1, \ldots k$ and join every vertex x_{i} by an edge to a pendent vertex z of T_{i}, where the edge $x_{i} z$ is asymmetrically oriented from z to x_{i} for $i=1, \ldots k$.
- Operation \mathcal{O}_{5} : Add an oriented tree $H_{k}(z)$ and join z by an edge to a vertex w of T_{i} such that there exists a maximum matching M where w is a \bar{M}-vertex and where the edge $z w$ is arbitrary oriented.

Lemma 8 If a nontrivial oriented tree T is in \mathcal{F}, then $\gamma(T)=n(T)-\beta_{1}(T)$.
Proof. Let T be a nontrivial oriented tree of \mathcal{F}. To show that $\gamma(T)=$ $n(T)-\beta_{1}(T)$, we proceed by induction on m where $m-1$ is the number of operations performed to construct T from T_{1}. If $m=1$, then $T=\overrightarrow{P_{2}^{1}(x, y)}$ or $\overrightarrow{P_{2}^{2}(x, y)}$ and since $\beta_{1}(T)=1, \gamma(T)=1$ and $n\left(T_{1}\right)=2, \gamma(T)=n(T)-\beta_{1}(T)$. This establishes the basis case. Assume now that $m \geq 2$ and the result holds for all trees of \mathcal{F} that can be constructed from a sequence of at most $m-2$ operations. Let $T=T_{m}$ be a nontrivial oriented tree of \mathcal{F} constructed by $m-1$ operations, $T^{\prime}=T_{m-1}$ and assume that T^{\prime} has order $n\left(T^{\prime}\right), \beta_{1}\left(T^{\prime}\right)$ and $\gamma\left(T^{\prime}\right)$. By induction hypothesis applied to T^{\prime}, we know that $\gamma\left(T^{\prime}\right)=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$. We consider five cases depending on whether T is obtained from T^{\prime} by using $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}$ or \mathcal{O}_{5}.

Case 1. Suppose that T was obtained from T^{\prime} by operation \mathcal{O}_{1}. Let S^{\prime} be $\gamma\left(T^{\prime}\right)$-set. Then $S^{\prime} \cup\{y\}$ is a dominating set of T, so $\gamma(T) \leq\left|S^{\prime} \cup\{y\}\right| \leq$ $\gamma\left(T^{\prime}\right)+1$. Let now S be a $\gamma(T)$-set of T. By Part 1 of Observation $3, S$ contains y. Without loss of generality since x is a support vertex of T^{\prime}, either x is contained in S or x is dominated by one vertex of $L_{x}-\{y\}$, so $S^{\prime}=S-\{y\}$ is dominating set of T^{\prime}. So, $\gamma\left(T^{\prime}\right) \leq\left|S^{\prime}\right|=|S-\{y\}|=\gamma(T)-1$. Thus, $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. By induction $\gamma\left(T^{\prime}\right)=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$ and by Part 1 Observation $6 \beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)$, so $\gamma(T)=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)+1=n(T)-\beta_{1}(T)$.

Case 2. Suppose that T was obtained from T^{\prime} by performing operation \mathcal{O}_{2}. Let S^{\prime} be $\gamma\left(T^{\prime}\right)$-set. Then $S^{\prime} \cup\{y\}$ is a dominating set of T, so $\gamma(T) \leq$ $\left|S^{\prime} \cup\{y\}\right| \leq \gamma\left(T^{\prime}\right)+1$. Let now S be a $\gamma(T)$-set of T. By Part 1 of Observation $3, S$ contains y. Without loss of generality, we suppose that $x \notin S$ (otherwise replace x by z). So $S^{\prime}=S-\{y\}$ is a dominating set of T^{\prime}. So, $\gamma\left(T^{\prime}\right) \leq$ $\left|S^{\prime}\right|=|S-\{y\}|=\gamma(T)-1$. Thus, $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. By induction $\gamma\left(T^{\prime}\right)=$ $n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$ and by Part 3 Observation $6, \beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+1$, so $\gamma(T)=$ $n\left(T^{\prime}\right)-\beta_{1}(T)+2=n(T)-\beta_{1}(T)$.

Case 3. Suppose that T was obtained from T^{\prime} by performing operation \mathcal{O}_{3}. Let S^{\prime} be $\gamma\left(T^{\prime}\right)$-set. Then $S^{\prime} \cup\{x\}$ is a dominating set of T, so $\gamma(T) \leq$ $\left|S^{\prime} \cup\{x\}\right| \leq \gamma\left(T^{\prime}\right)+1$. Let now S be a $\gamma(T)$-set of T. Without loss of generality, we suppose that $x \in S$ and $y \notin S$ and since z is a support vertex of T^{\prime}, either z is contained in S or z is dominated by one vertex of L_{z}, so $S^{\prime}=S-\{x\}$ is a dominating set of T^{\prime}. So, $\gamma(T) \leq\left|S^{\prime}\right|=|S-\{x\}|=\gamma(T)-1$. Thus, $\gamma(T)=\gamma\left(T^{\prime}\right)+1$. By induction $\gamma\left(T^{\prime}\right)=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$ and by Part 3 of Observation 6, $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+1$, so $\gamma(T)=n\left(T^{\prime}\right)-\beta_{1}(T)+2=n(T)-\beta_{1}(T)$.

Case 4. Suppose that T was obtained from T^{\prime} by performing operation \mathcal{O}_{4}. Let S^{\prime} be $\gamma\left(T^{\prime}\right)$-set. Then $S^{\prime} \cup\left\{x_{1}, \ldots, x_{k}\right\}$ is a dominating set of T, so $\gamma(T) \leq$ $\left|S^{\prime} \cup\left\{x_{1}, \ldots, x_{k}\right\}\right| \leq \gamma\left(T^{\prime}\right)+k$. Let now S be a $\gamma(T)$-set of T. Without loss of
generality, we suppose that $x_{i} \in S$ and $y_{i} \notin S$ for $i=1, \ldots, k$ and since every edge $x_{i} z$ is asymmetrically oriented from z to x_{i} for $i=1, \ldots, k, S^{\prime}=S-\left\{x_{1}, \ldots, x_{k}\right\}$ is a dominating set of T^{\prime}. So, $\gamma\left(T^{\prime}\right) \leq\left|S^{\prime}\right|=\left|S-\left\{x_{1}, \ldots, x_{k}\right\}\right|=\gamma(T)-k$.Thus, $\gamma(T)=\gamma\left(T^{\prime}\right)+k$. By induction $\gamma\left(T^{\prime}\right)=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$ and by Part 3 of Observation $6, \beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+k$, so $\gamma(T)=n\left(T^{\prime}\right)-\beta_{1}(T)+2 k=n(T)-\beta_{1}(T)$.

Case 5. Suppose that T was obtained from T^{\prime} by performing operation \mathcal{O}_{5}. Let S^{\prime} be a $\gamma\left(T^{\prime}\right)$-set. Since there exists at least one edge $x_{i} z$ which is oriented from x_{i} to $z, S^{\prime} \cup\left\{x_{1}, \ldots, x_{k}\right\}$ is a dominating set of T, so $\gamma(T) \leq$ $\left|S^{\prime} \cup\left\{x_{1}, \ldots, x_{k}\right\}\right| \leq \gamma\left(T^{\prime}\right)+k$. Let now S be a $\gamma(T)$-set of T. Without loss of generality, we suppose that $x_{i} \in S$ and $y_{i} \notin S$ for $i=1, \ldots, k$ and $z \notin S$ (otherwise replace w by z). So $S^{\prime}=S-\left\{x_{1}, \ldots, x_{k}\right\}$ is a dominating set of T^{\prime}. So, $\gamma\left(T^{\prime}\right) \leq\left|S^{\prime}\right|=\left|S-\left\{x_{1}, \ldots, x_{k}\right\}\right|=\gamma(T)-k$. Thus, $\gamma(T)=\gamma\left(T^{\prime}\right)+k$. By induction $\gamma\left(T^{\prime}\right)=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$ and since there exists a maximum matching M with w is a \bar{M}-vertex, it is clear that $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+k+1$, so $\gamma(T)=$ $n\left(T^{\prime}\right)-\beta_{1}(T)+2 k+1=n(T)-\beta_{1}(T)$.

Theorem 9 If T is a nontrivial oriented tree of order $n(T)$, then $\gamma(T)=n(T)-$ $\beta_{1}(T)$ if and only if $T \in \mathcal{F}$.

Proof. If $T \in \mathcal{F}$, then by Lemma $8, \gamma(T)=n(T)-\beta_{1}(T)$. To prove that if T is a nontrivial oriented tree of order $n \geq 2$, then $\gamma(T)=n(T)-\beta_{1}(T)$ only if $T \in \mathcal{F}$, we process by induction on the order of T. If $\operatorname{diam}(T)=1$ (the diameter of the underlying tree of the oriented tree), then $T=\overrightarrow{P_{2}^{1}(x, y)}$ or $\overrightarrow{P_{2}^{2}(x, y)}$ which belongs to \mathcal{F}. If $\operatorname{diam}(T)=2$, then $T=\overrightarrow{K_{1, p}}$ (see Observation 7) which is obtained from $\overrightarrow{P_{2}^{1}(x, y)}$ or $\overrightarrow{P_{2}^{2}(x, y)}$ by applying $p-2$ times \mathcal{O}_{1}. If $\operatorname{diam}(T)=3$, then $T=\overrightarrow{S_{p, q}}$ which is obtained by applying operations \mathcal{O}_{2} or \mathcal{O}_{3} followed by zero or more repetitions of Operation \mathcal{O}_{1}. This establishes the basis cases.
So we suppose that $\operatorname{diam}(T) \geq 4$, and that every nontrivial oriented tree T^{\prime} of order less than n satisfying $\gamma\left(T^{\prime}\right)=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$ is in \mathcal{F}. Let T be a nontrivial oriented tree of order n satisfying $\gamma(T)=n(T)-\beta_{1}(T)$. Consider a $\gamma(T)$-set S of T. We consider the underlying tree of the oriented tree and we root T at a vertex r of maximum eccentricity. Let x be a support vertex at maximum distance from r in the rooted tree. Let T_{u} denote the subtree induced by a vertex u and its descendants in the rooted tree T. We consider three cases.
Case 1. x is a support vertex with $\left|L_{x}\right| \geq 2$. By Observation 7, the subdigraph induced by $L_{x} \cup\{x\}$ is a oriented star $\overrightarrow{K_{1, p}} ; p \geq 1$ without the obstruction as a subdigraph. So, there exists y attached to x with the edge $x y$ asymmetrically oriented from y to x. Let $T^{\prime}=T-\{y\}$. Then $n\left(T^{\prime}\right)=n(T)-1$ and by Part 1 of Observation $6, \beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)$. By Part 1 of Observation 3, S contains y, and since x is a support, without loss of generality $S^{\prime}=S-\{y\}$ is a dominating set of T^{\prime} (x is dominated by a leaf of $L_{x}-\{y\}$ or $x \in S$). So, $\gamma(T)-1 \leq \gamma\left(T^{\prime}\right) \leq\left|S^{\prime}\right|=|S-\{y\}|=\gamma(T)-1$. Thus $\gamma\left(T^{\prime}\right)=\gamma(T)-1=$ $n(T)-\beta_{1}(T)-1=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$. By induction on T^{\prime}, we have $T^{\prime} \in \mathcal{F}$, implying that $T \in \mathcal{F}$ because T is obtained by using Operation \mathcal{O}_{1}.

From now on we may assume that $\left|L_{x}\right|=1$. Let $L_{x}=\{y\}$. Let z be the parent of x in the rooted tree, since $\operatorname{diam}(T) \geq 4, z$ exists.
Case 2. The edge $x y$ is asymmetrically oriented from y to x, that is; (x, y) is not present. Let $T^{\prime}=T-\{x, y\}$. Then $n\left(T^{\prime}\right)=n(T)-2$ and by Part 3 of Observation 6, $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+1$. Also, by Part 1 of Observation 3, S contains y. Without loss of generality, we suppose that $x \notin S$ (otherwise replace x by z). So $S^{\prime}=S-\{y\}$ is dominating set of T^{\prime}. Thus, $\gamma(T)-1 \leq \gamma\left(T^{\prime}\right) \leq\left|S^{\prime}\right|=$ $|S-\{y\}|=\gamma(T)-1$ which implies that $\gamma\left(T^{\prime}\right)=\gamma(T)-1=n(T)-\beta_{1}(T)-1=$ $n(T)-\beta_{1}\left(T^{\prime}\right)-2=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$. By induction on T^{\prime}, we have $T^{\prime} \in \mathcal{F}$, implying that $T \in \mathcal{F}$ because T is obtained by using Operation \mathcal{O}_{2}.
Case 3. The edge $x y$ is oriented from x to y, possibly the $\operatorname{arc}(x, y)$ is symmetrical. Let us examine the following subcases:
Case 3.1. z is a support vertex in T. Let $T^{\prime}=T-\{x, y\}$. Then $n\left(T^{\prime}\right)=$ $n(T)-2$ and by Part 3 of Observation $6, \beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+1$. Without loss of generality, we suppose that $x \in S$ and $y \notin S$ (otherwise replace y by x) and since z is a support vertex of T^{\prime}, either z is contained in S or z is dominated by one vertex of L_{z}, so $S^{\prime}=S-\{x\}$ is dominating set of T^{\prime}. Thus, $\gamma(T)-1 \leq \gamma\left(T^{\prime}\right) \leq\left|S^{\prime}\right|=|S-\{y\}|=\gamma(T)-1$ which implies that $\gamma\left(T^{\prime}\right)=\gamma(T)-1=n(T)-\beta_{1}(T)-1=n(T)-\beta_{1}\left(T^{\prime}\right)-2=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$. By induction on T^{\prime}, we have $T^{\prime} \in \mathcal{F}$, implying that $T \in \mathcal{F}$ because T is obtained by using Operation \mathcal{O}_{3}.
Case 3.2. z is not a support vertex in T. We can suppose that every child x of z in the rooted tree is a weak support with $L_{x}=\{y\}$ in the underlying tree and is a predecessor of y (otherwise we can apply Case 2). So, let $\overrightarrow{P_{2}^{2}\left(x_{i}, y_{i}\right)}$ $; i=1, \ldots, k(k \geq 1)$ be oriented chains where every x_{i} is joined to the vertex z in T.

- If the edge $x_{i} z$ is asymmetrically oriented from z to x_{i} for $i=1, \ldots, k$, then consider $T^{\prime}=T-\bigcup_{i=1}^{k}\left\{x_{i}, y_{i}\right\}$. Since T has a diameter at least four, T^{\prime} is nontrivial oriented tree and z is a pendant vertex in T^{\prime}. Since $n\left(T^{\prime}\right)=n(T)-2 k$ and by Part 3 of Observation $6, \beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+k$ and it is a routine matter to check $\gamma\left(T^{\prime}\right)=\gamma(T)-k$. Hence $\gamma\left(T^{\prime}\right)=\gamma(T)-k=n(T)-\beta_{1}(T)-k=$ $n(T)-\beta_{1}\left(T^{\prime}\right)-2 k=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$. Applying the inductive hypothesis to T^{\prime}, we have $T^{\prime} \in \mathcal{F}$. Since T is obtained from T^{\prime} by using Operation $\mathcal{O}_{4}, T \in \mathcal{F}$.
- If there exist an edge $x_{i} z$ which is oriented from x_{i} to z (possibly symmetrically), then since $\operatorname{diam}(T) \geq 4$, let w be the parent of z in the rooted tree.
Let $T^{\prime}=T-\left(\bigcup_{i=1}^{k}\left\{x_{i}, y_{i}\right\} \cup\{z\}\right), n\left(T^{\prime}\right)=n(T)-2 k-1$. Also, Since T has a diameter at least four, T^{\prime} is nontrivial oriented tree. It is a routine matter to check $\gamma\left(T^{\prime}\right)=\gamma(T)-k$. If for every maximum matching M of T^{\prime}, w is incident with at most one edge of M, then $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+k$. So, $\gamma(T)=\gamma\left(T^{\prime}\right)+k \leq$ $n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)+k=n\left(T^{\prime}\right)-\beta_{1}(T)+2 k=n(T)-1-\beta_{1}(T)<n(T)-\beta_{1}(T)$, a contradiction. However, there exists a maximum matching M with w as a \bar{M} vertex. Hence, $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+k+1$ and $\gamma\left(T^{\prime}\right)=\gamma(T)-k=n(T)-\beta_{1}(T)-k=$ $n(T)-\beta_{1}\left(T^{\prime}\right)-2 k-1=n\left(T^{\prime}\right)-\beta_{1}\left(T^{\prime}\right)$. Applying the inductive hypothesis to T^{\prime}, we have $T^{\prime} \in \mathcal{F}$. Since T is obtained from T^{\prime} by using Operation $\mathcal{O}_{5}, T \in$
\mathcal{F}. This achieves the proof.

4 Characterization of digraphs achieving the lower bound

Theorem 10 Let D be a oriented graph. Then $\gamma(D)=s(D)$ if and only if the oriented graph D verifies :

1. For every vertex z of $V(D)-(S(D) \cup L(D)), I(z) \cap S(D) \neq \varnothing$.
2. For every vertex $x \in S(D)$ with $\left|L_{x}\right| \geq 2, O(x) \cap L_{x}=L_{x}$.
3. Let $L^{\prime}=\{y \in L / I(y) \cap S(D)=\varnothing\}$, for every $z \in V(D)-(S(D) \cup L(D))$, $\left(I(z) \backslash O\left(L^{\prime}\right)\right) \cap S(D) \neq \varnothing$.

Proof. We first prove the part "only if", suppose that one of the conditions is not satisfied. Then in all cases, $\gamma(D)>s(D)$, a contradiction.

We prove the part "if", by Theorem $4, \gamma(D) \geq s(D)$. We construct the dominating set S^{\prime} as follow, set every support vertex with at least two leaves in S^{\prime}. If x is a support vertex with one leaf and $O(x) \cap L_{x}=\varnothing$, then set the leaf in S^{\prime}, if not set x in S^{\prime}. By construction, $\left|S^{\prime}\right|=s(D)$ and S^{\prime} dominates all vertices of $S(D) \cup L(D)$. Suppose there exists a vertex z of $V(D)-(S(D) \cup L(D))$ which is not dominated by S^{\prime}. By Part $1^{\circ} /$ of Theorem $10, I(z) \cap S(D) \neq \varnothing$. Let $S^{\prime \prime}=I(z) \cap S(D)$, by construction of S^{\prime} the leaves attached to support vertices of $S^{\prime \prime}$ are in S^{\prime}. Therefore, for every vertex x of $S^{\prime \prime} O(x) \cap L_{x}=\varnothing$, a contradiction with Part $3^{\circ} /$ of Theorem 10. So S^{\prime} is a dominating set. $\left|S^{\prime}\right|=s(D) \geq \gamma(D)$, which implies that $\gamma(D)=s(D)$.

Theorem 11 Let D be a oriented graph. Then $\gamma(D)=s(D)=n(D)-\beta_{1}(D)$ if and only if the underlying graph G of D is a corona.

To prove Theorem 11, we use the following result due to $\mathrm{Xu}[8]$.
Theorem 12 [8]Let G be a graph. Then $\beta(G)+\beta_{1}(G) \leq n(G)$.
Proof of Theorem 11. We first prove the part "if". If the underlying graph of D is a corona, then G has a perfect matching, $\beta_{1}(D)=\frac{n(D)}{2}=s(D)$. By Theorem 4, $\frac{n(D)}{2}=s(D) \leq \gamma(D) \leq n(D)-\beta_{1}(D)=n(D)-\frac{n(D)}{2}=\frac{n(D)}{2}$. Thus $\gamma(D)=\frac{n(D)}{2}=s(D)$.

We prove the part "only if", by Theorem 12, $s(D)=n(D)-\beta_{1}(D) \geq$ $\beta(D)$ and $s(D) \leq l(D) \leq \beta(D)$. So, $s(D)=l(D)=\beta(D)$ which implies that $V(D)-(S(D) \cup L(D))=\varnothing$. It follows that the underlying G of D is a corona. This complete the proof

References

[1] J. Albertson, A. Harris, L. Langley, and S. Merz, "Domination parameters and Gallai-type theorems for directed trees." Ars Combin. 81 (2006) 201207.
[2] J. Edmonds, Paths, trees and flowers. Canad. J. Math. 17 (1965) 449-467.
[3] J. Ghoshal, R. Laskar and D. Pillone, "Topics on domination in directed graphs." In Domination in Graphs: Advanced Topics, T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), , Marcel Dekker, New York, 1998, 401-437.
[4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[6] Changwoo Lee, On the domination number of a digraph. Ph.D. Dissertation, Michigan State University (1994).
[7] S.K. Merz and D.J. Stewart, "Gallai-type theorems and domination in digraphs and tournaments." Cong. Numer., 154 (2002) 31-41.
[8] S. Xu, Relations between parameters of graphs. Discrete Math. 89 (1991), 65-88.

