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Abstract

A dominating set of an oriented graph D is a set S of vertices of
D such that every vertex not in S is a successor of some vertex of S.
The minimum cardinality of a dominating set of D; denoted (D), is the
domination number of D. An irredundant set of an oriented graph D is a
set S of vertices of D such that every vertex of S has a private successor,
that is, for all x 2 S; jO[x]�O[S � x]j � 1. The irredundance number
of an oriented graph, denoted ir(D), is the least number of vertices in
a maximal irredundant set. We denote by �1(D) and s(D); the number
of edges in a maximum matching and support vertices of the underlyng
graph of an oriented graph D; respectively. In this paper, we show that for
every oriented graph D, s(D) � ir(D) � (D) 6 n(D)� �1(D). We also
give characterizations of oriented trees satisfying (T ) = n(T ) � �1(T )
and oriented graphs satisfying (D) = s(D) and s(D) = n(D) � �1(D);
respectively.

Keywords: locating-domination, critical graph.2000
Mathematics Subject Classi�cation: 05C69, 05C15.

1 Introduction

An oriented graph (or digraph) D is a �nite nonempty set of points called
vertices together with a (possibly empty) set of ordered pairs of distinct vertices
of D called arcs or oriented edges. An oriented graph D can be obtained from
a simple graph G by assigning a direction (possibly both sense) to each edge of
G. We say that G is the underlying graph of D and that D is an orientation of
G. As with graphs, the vertex set of D is denoted by V (D) and the arc set is
denoted by A(D). The oriented graph D = (V;A) considered here has no loops
and no multiple arcs (but pairs of opposite arcs are allowed). If (x; y) 2 A;
then the arc is oriented from x to y. The vertex x is called a predecessor of y
and y is called a successor of x. If the reversal (y; x) of an arc (x; y) of D is also
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present in D; we say that (x; y) is a reversible (symmetrical) arc. If (x; y) 2 A
but (y; x) =2 A; then (x; y) is an asymmetrical arc.
The sets O(u) = fv : (u; v) 2 Ag and I(u) = fv : (v; u) 2 Ag are called

the outset and inset of the vertex u. Likewise, O[u] = O(u) [ fug and I[u] =
I(u) [ fug: If S � V then O(S) =

[
s2S
O(s) and I(S) =

[
s2S
I(s). Similarly

O[S] =
[
s2S
O[s] and I[S] =

[
s2S
I[s]: The indegree of a vertex u is given by

id(u) = jI(u)j and the outdegree of a vertex u is od(u) = jO(u)j : The maximum
outdegree of a vertex in D is denoted by �+(D)
Let G be the underlying graph of a oriented graph D: If e = uv is an edge

of G, then u and v are adjacent vertices, while u and e are incident, as are
v and e. Furthermore, if e1 and e2 are distinct edges of G incident with a
common vertex, then e1 and e2 are adjacent edges. The degree of a vertex v of
G is the number of vertices adjacent to v. A vertex of degree one is called a
leaf and its neighbor is called a support vertex. If u is a support vertex, then
Lu will denote the set of leaves attached at u. An edge incident with a leaf
is called a pendant edge. A tree T is a double star if it contains exactly two
vertices that are not leaves. A double star with p and q leaves attached at
each support vertex, respectively, is denoted by Sp;q: Denote by Tx the subtree
induced by a vertex x and its descendants in a rooted tree T . The diameter
diam(G) of a graph G is the maximum distance over all pairs of vertices of G.
The corona G �K1 of a graph G is obtained from G by adding a leaf at each of
its vertices. For the underlying graph G of a oriented graph D; we denote by
n(D) = n(G); `(D) = l(G), s(D) = s(G); L(D) = L(G) and S(D) = S(G) the
number of vertices, leaves, support vertices and the set of leaves and support
vertices of G; respectively.
A set of pairwise independent edges of G is called a matching in G. The

number of edges in a maximum matching of G is the edge independence number
�1(G) (= �1(D) if there is no ambiguity). If M is a speci�ed matching in graph
G, then every vertex of G is incident with at most one edge of M . A vertex
that is incident with no edges of M is called an M -vertex.
A set S � V of an oriented graph D is independent if and only if for all

x; y 2 S; x =2 O(y): The size of the largest independent set in D is denoted by
�(D):
A set S � V of an oriented graphD is a dominating set ofD if, for all v =2 S; v

is a successor of some vertex s 2 S or O[S] = V (D): We use the notation (D)
to represent the domination number of an oriented graph, i.e., the minimum
cardinality of a set S � V which is dominating. A set S � V is irredundant
if, for all x 2 S; jO[x]�O[S � x]j � 1: If y 2 O[x] � O[S � x], then we say
that y is a private successor of x with respect to S. Observe that x may be its
own private successor. The irredundance number of an oriented graph, denoted
ir(D); is the least number of vertices in a maximal irredundant set. It is clear
that ir(D) � (D): A dominating set of D with minimum cardinality is called
a (D)-set. For more details on domination in graphs, see the monographs by

2

21



Haynes, Hedetniemi, and Slater [4, 5].
In general, domination in oriented graphs has not been studied as intensively

studied as that in graphs without orientation. In [3], Ghoshal, Lasker, and
Pillone consider related topics in oriented graphs and suggest further avenues
of study. Gallai-type results have been considered in [7]. In [1], Albertoon and
al. characterize oriented trees satisfying (D)+�+(D) = n and thus satisfying
ir(D) + �+(D) = n:
In this paper, we show that for every oriented graph D, s(D) � ir(D) �

(D) 6 n(D)��1(D). We also give characterizations of oriented trees satisfying
(T ) = n(T ) � �1(T ) and oriented graphs satisfying (D) = s(D) and s(D) =
n(D)� �1(D); respectively.

2 Bounds

Before presenting our results, we recall some know bounds of a dominating
number in oriented graphs.

Theorem 1 [5] For any oriented graph D on n vertices,
n(D)

1 + �+(D)
� (D) 6

n(D)��+(D).

Theorem 2 [6] For a strongly connected oriented graph D on n vertices,(D) 6�
n(D)

2

�
:

Observation 3 Let D be an oriented graph.

1. Let x be a vertex of D such that I(x) = ?: Then every (D)-set contains
x.

2. Let v be a support vertex of D. Then every (D)-set contains at least one
vertex of Lv [ fvg:

Recall that the number �1(D) can be computed for any graph in polynomial
time [2]. Therefore, the following bounds can also be computed in polynomial
time.

Theorem 4 For any oriented graph D on n vertices, s(D) � ir(D) � (D) 6
n(D)� �1(D):

Proof. Let S be a ir(D)-set of D. For every support vertex v such that
S \ (Lv [ fvg) = ?; correspond at least one vertex z 2 S with v its unique
private successor (this is possible for otherwise S[ Lv is an irredundant set
which contradicts the maximality of S). If z is a support vertex, then Lz 2 S:
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Indeed, all pendant edges attached at v are oriented from y 2 Lv to v (may be
symmetrically). So, ir(D) = jSj � s(D):
Let M = fxiyi : 1 � i � �1g be a set of edges of a maximum matching in

the underlying graph G of D with ZM the set of all M -vertices of G (which
are incident with no edges of M): Without loss of generality, we suppose that
(xi; yi) is an arc of D; 1 � i � �1. It is clear that S = fx1; x2; :::x�1g [ ZM is a
dominating set of D. So, (D) � jSj = jfx1; x2; :::x�1gj+ jZM j = �1+n�2�1 =
n� �1; which implies the upper bound (D) 6 n(D)� �1(D):

Note that the di¤erence between (D) and ir(D) can be arbitrarily large
even for oriented trees. To see this, consider the oriented tree of Figure 1, where
(T ) = p+ 2 and ir(T ) = 2 = s(D):

Figure 1

Next in Section 3 and 4, we present characterizations of special oriented
graphs achieving equality in each bound of s(D) � (D) 6 n(D)� �1(D):
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3 Characterization of directed trees achieving
the upper bound

We begin by giving useful results:

Lemma 5 Let D be a nontrivial oriented graph. If (D) = n(D)��1(D); then
every maximum matching M = fxiyi : 1 � i � �1g in the underlying graph G of
D with corresponding arcs (xi; yi) ; 1 � i � �1 and ZM the set of all M -vertices
of G, satis�es:

1. 8z 2 ZM , I(z) \ fx1; :::; x�1g = ?:

2. 8e = xy an edge of M and (x; y) a corresponding arc in D. If one end-
vertex z of e satis�es I(z) \ ((fx1; :::; x�1g � fxg) [ ZM ) 6= ?; then the
other end-vertex z0 of e veri�es I(z0) \ ((fx1; :::; x�1g � fxg) [ ZM ) = ?:

Proof. Let M = fxiyi : 1 � i � �1g be a maximum matching in the under-
lying graph G of D with corresponding arcs (xi; yi) ; 1 � i � �1 and ZM the set
of allM -vertices of G: First, suppose that there exists z 2 ZM such that I(z)\
fx1; :::; x�1g 6= ?: It is clear that S = fx1; :::; x�1g[ (ZM �fzg) is a dominating
set of D and jSj = jfx1; x2; :::x�1gj+ jZM � fzgj = �1+n�2�1�1 = n��1�1:
Then S is a dominating set of D of size less than n��1; a contradiction. Now as-
sume that there exists an edge e = xy ofM with a corresponding arc (x; y) in D,
which do not satisfy Part 2 of Lemma 5. Without loss of generality, suppose that
I(y)\((fx1; :::; x�1g�fxg)[ZM ) 6= ? and I(x)\((fx1; :::; x�1g�fxg)[ZM ) 6= ?:
Consider now S = ((fx1; :::; x�1g�fxg)[ZM ); it is clear that S is a dominating
set of D of size less than n� �1; a contradiction.

Observation 6 Let T be a tree.

1. If T is a tree obtained from a tree T 0 by attaching a vertex to a support
vertex of T 0, then �1(T ) = �1(T 0):

2. For every support vertex v of a nontrivial tree, there exits a maximum
matching M which contains a pendant edge with end-vertex v.

3. If T is a tree obtained from a tree T 0 by attaching an end-vertex of P2 to
a vertex of T 0, then �1(T ) = �1(T 0) + 1:

We call the oriented graph of Figure 2 the obstruction (pairs of opposite arcs
are allowed).
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Figure 2: The obstruction

Let
��!
K1;p be the oriented star (the underlying graph is a star) without the

obstruction as a subdigraph, that is, the oriented star with center x such that
jO(x) \ Lxj � 1:

Observation 7 Let T be a nontrivial oriented tree. If (T ) = n(T ) � �1(T );
then for every support vertex x of T; the subdigraph induced by Lx [ fxg is a
oriented star

��!
K1;p ; p � 1:

Proof. Assume that there exists a support vertex x of T such that Lx[fxg
is a oriented star

��!
K1;p ; p � 2 with the obstruction as a subdigraph. By Part

2 of Observation 6, we consider a maximum matching M which contains a
pendant edge with end-vertex x: Then Part 1 of Lemma 5 is not satis�ed, so
(T ) < n(T )� �1(T ); a contradiction.

We denote by
��!
Sp;q the oriented tree obtained from two oriented stars

��!
K1;p

and
��!
K1;q by attaching the center x of

��!
K1;p to the center y of

��!
K1;q where the

edge xy is arbitrary oriented.

Figure 3: The oriented tree
��!
Sp;q

We also denote by
�����!
P 12 (x; y) the oriented chain obtained from P2 = xy where

the edge xy is asymmetrically oriented from y to x; that is, (x; y) is not present.

And denote by
�����!
P 22 (x; y) the oriented chain obtained from P2 = xy where the

edge xy is oriented from x to y; possibly the arc (y; x) is also present.

And denote byHk(z) the oriented tree obtained from oriented chains
������!
P 22 (xi; yi)

; 1 � i � k and join every vertex xi ; 1 � i � k by an edge to vertex z; where
at least one edge xiz is oriented from xi to z (possibly symmetrically) and all
others are arbitrary oriented. (For all these oriented graphs see Figure 4 and
Figure 5:)
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Figure 4:
�����!
P 12 (x; y) and

�����!
P 22 (x; y)

Figure 5: Hk(z)

In order to characterize the oriented trees with (T ) = n(T ) � �1(T ); we
introduce the family F of all trees T that can be obtained from a sequence T1,

T2, : : :, Tm (m � 1) of oriented trees, where T1 is
�����!
P 12 (x; y) ,

�����!
P 22 (x; y) ; T = Tm,

and, if m � 2, Ti+1 is obtained recursively from Ti by one of the �ve operations
de�ned below.

� Operation O1 : Add a vertex y and join y by an edge to a support vertex
x of Ti, where the edge xy is asymmetrically oriented from y to x.

� Operation O2 : Add an oriented chain
�����!
P 12 (x; y) and join x by an edge to

a vertex z of Ti; where the edge xz is arbitrary oriented.

� Operation O3 : Add an oriented chain
�����!
P 22 (x; y) and join x by an edge to

a support vertex z of Ti, where the edge xz is arbitrary oriented.

� Operation O4 : Add oriented chains
������!
P 22 (xi; yi) ; i = 1; :::k and join every

vertex xi by an edge to a pendent vertex z of Ti; where the edge xiz is
asymmetrically oriented from z to xi for i = 1; :::k:

7

26



� Operation O5 : Add an oriented tree Hk(z) and join z by an edge to a
vertex w of Ti such that there exists a maximum matching M where w is
a M -vertex and where the edge zw is arbitrary oriented.

Lemma 8 If a nontrivial oriented tree T is in F , then (T ) = n(T )� �1(T ):

Proof. Let T be a nontrivial oriented tree of F : To show that (T ) =
n(T ) � �1(T ); we proceed by induction on m where m � 1 is the number of
operations performed to construct T from T1. If m = 1, then T =

�����!
P 12 (x; y) or�����!

P 22 (x; y) and since �1(T ) = 1; (T ) = 1 and n(T1) = 2; (T ) = n(T ) � �1(T ).
This establishes the basis case. Assume now that m � 2 and the result holds
for all trees of F that can be constructed from a sequence of at most m � 2
operations. Let T = Tm be a nontrivial oriented tree of F constructed by m�1
operations, T 0 = Tm�1 and assume that T 0 has order n(T 0); �1(T 0) and (T 0):
By induction hypothesis applied to T 0, we know that (T 0) = n(T 0) � �1(T 0):
We consider �ve cases depending on whether T is obtained from T 0 by using
O1;O2;O3;O4 or O5:
Case 1. Suppose that T was obtained from T 0 by operation O1. Let S0

be (T 0)-set. Then S0 [ fyg is a dominating set of T , so (T ) � jS0 [ fygj �
(T 0)+1: Let now S be a (T )-set of T: By Part 1 of Observation 3, S contains y.
Without loss of generality since x is a support vertex of T 0, either x is contained
in S or x is dominated by one vertex of Lx�fyg ; so S0 = S�fyg is dominating
set of T 0: So, (T 0) � jS0j = jS � fygj = (T )� 1: Thus, (T ) = (T 0) + 1: By
induction (T 0) = n(T 0)� �1(T 0) and by Part 1 Observation 6 �1(T ) = �1(T 0);
so (T ) = n(T 0)� �1(T 0) + 1 = n(T )� �1(T ):
Case 2. Suppose that T was obtained from T 0 by performing operation

O2: Let S0 be (T 0)-set. Then S0 [ fyg is a dominating set of T , so (T ) �
jS0 [ fygj � (T 0) + 1: Let now S be a (T )-set of T: By Part 1 of Observation
3, S contains y. Without loss of generality, we suppose that x =2 S (otherwise
replace x by z). So S0 = S � fyg is a dominating set of T 0: So, (T 0) �
jS0j = jS � fygj = (T ) � 1: Thus, (T ) = (T 0) + 1: By induction (T 0) =
n(T 0) � �1(T 0) and by Part 3 Observation 6, �1(T ) = �1(T

0) + 1; so (T ) =
n(T 0)� �1(T ) + 2 = n(T )� �1(T ):
Case 3. Suppose that T was obtained from T 0 by performing operation

O3: Let S0 be (T 0)-set. Then S0 [ fxg is a dominating set of T , so (T ) �
jS0 [ fxgj � (T 0)+1: Let now S be a (T )-set of T:Without loss of generality,
we suppose that x 2 S and y =2 S and since z is a support vertex of T 0, either
z is contained in S or z is dominated by one vertex of Lz; so S0 = S � fxg
is a dominating set of T 0: So, (T ) � jS0j = jS � fxgj = (T ) � 1: Thus,
(T ) = (T 0) + 1: By induction (T 0) = n(T 0) � �1(T 0) and by Part 3 of
Observation 6, �1(T ) = �1(T 0)+1; so (T ) = n(T 0)��1(T )+2 = n(T )��1(T ):
Case 4. Suppose that T was obtained from T 0 by performing operation O4:

Let S0 be (T 0)-set. Then S0 [ fx1; :::; xkg is a dominating set of T , so (T ) �
jS0 [ fx1; :::; xkgj � (T 0) + k: Let now S be a (T )-set of T: Without loss of
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generality, we suppose that xi 2 S and yi =2 S for i = 1; :::; k and since every edge
xiz is asymmetrically oriented from z to xi for i = 1; :::; k; S0 = S �fx1; :::; xkg
is a dominating set of T 0: So, (T 0) � jS0j = jS � fx1; :::; xkgj = (T )� k:Thus,
(T ) = (T 0) + k: By induction (T 0) = n(T 0) � �1(T 0) and by Part 3 of
Observation 6, �1(T ) = �1(T 0)+k; so (T ) = n(T 0)��1(T )+2k = n(T )��1(T ):
Case 5. Suppose that T was obtained from T 0 by performing operation

O5: Let S0 be a (T 0)-set. Since there exists at least one edge xiz which is
oriented from xi to z; S0 [ fx1; :::; xkg is a dominating set of T , so (T ) �
jS0 [ fx1; :::; xkgj � (T 0) + k: Let now S be a (T )-set of T: Without loss
of generality, we suppose that xi 2 S and yi =2 S for i = 1; :::; k and z =2 S
(otherwise replace w by z). So S0 = S � fx1; :::; xkg is a dominating set of T 0:
So, (T 0) � jS0j = jS � fx1; :::; xkgj = (T ) � k: Thus, (T ) = (T 0) + k: By
induction (T 0) = n(T 0) � �1(T 0) and since there exists a maximum matching
M with w is a M -vertex, it is clear that �1(T ) = �1(T

0) + k + 1; so (T ) =
n(T 0)� �1(T ) + 2k + 1 = n(T )� �1(T ):

Theorem 9 If T is a nontrivial oriented tree of order n(T ), then (T ) = n(T )�
�1(T ) if and only if T 2 F .

Proof. If T 2 F , then by Lemma 8, (T ) = n(T ) � �1(T ): To prove that
if T is a nontrivial oriented tree of order n � 2; then (T ) = n(T ) � �1(T )
only if T 2 F , we process by induction on the order of T . If diam(T ) = 1

(the diameter of the underlying tree of the oriented tree), then T =
�����!
P 12 (x; y) or�����!

P 22 (x; y) which belongs to F . If diam(T ) = 2; then T =
��!
K1;p (see Observation

7) which is obtained from
�����!
P 12 (x; y) or

�����!
P 22 (x; y) by applying p � 2 times O1: If

diam(T ) = 3; then T =
��!
Sp;q which is obtained by applying operations O2 or O3

followed by zero or more repetitions of Operation O1: This establishes the basis
cases.
So we suppose that diam(T ) � 4; and that every nontrivial oriented tree T 0 of
order less than n satisfying (T 0) = n(T 0)��1(T 0) is in F . Let T be a nontrivial
oriented tree of order n satisfying (T ) = n(T ) � �1(T ): Consider a (T )-set
S of T . We consider the underlying tree of the oriented tree and we root T at
a vertex r of maximum eccentricity. Let x be a support vertex at maximum
distance from r in the rooted tree. Let Tu denote the subtree induced by a
vertex u and its descendants in the rooted tree T . We consider three cases.
Case 1. x is a support vertex with jLxj � 2: By Observation 7, the subdigraph
induced by Lx [ fxg is a oriented star

��!
K1;p ; p � 1 without the obstruction

as a subdigraph. So, there exists y attached to x with the edge xy asymmet-
rically oriented from y to x. Let T 0 = T � fyg: Then n(T 0) = n(T ) � 1 and
by Part 1 of Observation 6, �1(T ) = �1(T

0): By Part 1 of Observation 3, S
contains y, and since x is a support, without loss of generality S0 = S � fyg
is a dominating set of T 0 (x is dominated by a leaf of Lx � fyg or x 2 S): So,
(T ) � 1 � (T 0) � jS0j = jS � fygj = (T ) � 1: Thus (T 0) = (T ) � 1 =
n(T ) � �1(T ) � 1 = n(T 0) � �1(T 0): By induction on T 0, we have T 0 2 F , im-
plying that T 2 F because T is obtained by using Operation O1.

9
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From now on we may assume that jLxj = 1: Let Lx = fyg: Let z be the parent
of x in the rooted tree, since diam(T ) � 4; z exists.
Case 2. The edge xy is asymmetrically oriented from y to x; that is; (x; y)
is not present. Let T 0 = T � fx; yg: Then n(T 0) = n(T ) � 2 and by Part 3 of
Observation 6, �1(T ) = �1(T 0)+1: Also, by Part 1 of Observation 3, S contains
y. Without loss of generality, we suppose that x =2 S (otherwise replace x by
z). So S0 = S � fyg is dominating set of T 0: Thus, (T ) � 1 � (T 0) � jS0j =
jS � fygj = (T )�1 which implies that (T 0) = (T )�1 = n(T )��1(T )�1 =
n(T ) � �1(T 0) � 2 = n(T 0) � �1(T 0): By induction on T 0, we have T 0 2 F ,
implying that T 2 F because T is obtained by using Operation O2.
Case 3. The edge xy is oriented from x to y; possibly the arc (x; y) is symmet-
rical. Let us examine the following subcases:
Case 3.1. z is a support vertex in T . Let T 0 = T � fx; yg: Then n(T 0) =
n(T ) � 2 and by Part 3 of Observation 6, �1(T ) = �1(T

0) + 1: Without loss
of generality, we suppose that x 2 S and y =2 S (otherwise replace y by
x) and since z is a support vertex of T 0, either z is contained in S or z is
dominated by one vertex of Lz; so S0 = S � fxg is dominating set of T 0:
Thus, (T ) � 1 � (T 0) � jS0j = jS � fygj = (T ) � 1 which implies that
(T 0) = (T )� 1 = n(T )� �1(T )� 1 = n(T )� �1(T 0)� 2 = n(T 0)� �1(T 0): By
induction on T 0, we have T 0 2 F , implying that T 2 F because T is obtained
by using Operation O3.
Case 3.2. z is not a support vertex in T . We can suppose that every child x
of z in the rooted tree is a weak support with Lx = fyg in the underlying tree
and is a predecessor of y (otherwise we can apply Case 2). So, let

������!
P 22 (xi; yi)

; i = 1; :::; k (k � 1) be oriented chains where every xi is joined to the vertex z
in T:
- If the edge xiz is asymmetrically oriented from z to xi for i = 1; :::; k; then

consider T 0 = T �
k
[
i=1
fxi; yig: Since T has a diameter at least four, T 0 is non-

trivial oriented tree and z is a pendant vertex in T 0. Since n(T 0) = n(T ) � 2k
and by Part 3 of Observation 6, �1(T ) = �1(T 0) + k and it is a routine matter
to check (T 0) = (T ) � k: Hence (T 0) = (T ) � k = n(T ) � �1(T ) � k =
n(T )� �1(T 0)� 2k = n(T 0)� �1(T 0): Applying the inductive hypothesis to T 0,
we have T 0 2 F . Since T is obtained from T 0 by using Operation O4, T 2 F :
- If there exist an edge xiz which is oriented from xi to z (possibly symmet-
rically), then since diam(T ) � 4; let w be the parent of z in the rooted tree.

Let T 0 = T � (
k
[
i=1
fxi; yig [ fzg); n(T 0) = n(T ) � 2k � 1: Also, Since T has a

diameter at least four, T 0 is nontrivial oriented tree. It is a routine matter to
check (T 0) = (T )� k: If for every maximum matching M of T 0, w is incident
with at most one edge of M , then �1(T ) = �1(T 0) + k. So, (T ) = (T 0) + k �
n(T 0)� �1(T 0) + k = n(T 0)� �1(T ) + 2k = n(T )� 1� �1(T ) < n(T )� �1(T ); a
contradiction. However, there exists a maximum matching M with w as a M -
vertex. Hence, �1(T ) = �1(T 0)+k+1 and (T 0) = (T )�k = n(T )��1(T )�k =
n(T )� �1(T 0)� 2k � 1 = n(T 0)� �1(T 0): Applying the inductive hypothesis to
T 0, we have T 0 2 F . Since T is obtained from T 0 by using Operation O5, T 2
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F : This achieves the proof.

4 Characterization of digraphs achieving the lower
bound

Theorem 10 Let D be a oriented graph. Then (D) = s(D) if and only if the
oriented graph D veri�es :

1. For every vertex z of V (D)� (S(D) [ L(D)); I(z) \ S(D) 6= ?:

2. For every vertex x 2 S(D) with jLxj � 2; O(x) \ Lx = Lx:

3. Let L0 = fy 2 L = I(y)\S(D) = ?g; for every z 2 V (D)�(S(D)[L(D)),
(I(z) nO(L0)) \ S(D) 6= ?:

Proof. We �rst prove the part �only if�, suppose that one of the conditions
is not satis�ed. Then in all cases, (D) > s(D); a contradiction.
We prove the part �if�, by Theorem 4, (D) � s(D): We construct the

dominating set S0 as follow, set every support vertex with at least two leaves
in S0. If x is a support vertex with one leaf and O(x) \ Lx = ?; then set the
leaf in S0; if not set x in S0. By construction, jS0j = s(D) and S0 dominates all
vertices of S(D)[L(D): Suppose there exists a vertex z of V (D)�(S(D)[L(D))
which is not dominated by S0. By Part 1�= of Theorem 10, I(z)\S(D) 6= ?: Let
S00 = I(z)\S(D); by construction of S0 the leaves attached to support vertices of
S00 are in S0: Therefore, for every vertex x of S00 O(x)\Lx = ?; a contradiction
with Part 3�= of Theorem 10: So S0 is a dominating set. jS0j = s(D) � (D);
which implies that (D) = s(D):

Theorem 11 Let D be a oriented graph. Then (D) = s(D) = n(D)� �1(D)
if and only if the underlying graph G of D is a corona.

To prove Theorem 11, we use the following result due to Xu [8].

Theorem 12 [8]Let G be a graph. Then �(G)+ �1(G) � n(G):

Proof of Theorem 11. We �rst prove the part �if�. If the underlying

graph of D is a corona, then G has a perfect matching, �1(D) =
n(D)

2
= s(D):

By Theorem 4,
n(D)

2
= s(D) � (D) � n(D)��1(D) = n(D)�

n(D)

2
=
n(D)

2
:

Thus (D) =
n(D)

2
= s(D):

We prove the part �only if�, by Theorem 12, s(D) = n(D)� �1(D) �
�(D) and s(D) � l(D) � �(D): So, s(D) = l(D) = �(D) which implies that
V (D)� (S(D) [ L(D)) = ?: It follows that the underlying G of D is a corona.
This complete the proof
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