Note on b-colorings in Harary graphs

Zoham Zemir ${ }^{\dagger}$, Noureddine Ikhlef Eschouf ${ }^{\ddagger}$ and Mostafa Blidia ${ }^{\dagger}$
${ }^{\dagger}$ LAMDA-RO, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria. E-mail: zohaze@yahoo.fr, mblidia@hotmail.com
${ }^{\ddagger}$ University Yahia Farès of Medéa. nour_echouf@yahoo.fr,

Abstract

A b-coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes. The b-chromatic number $b(G)$ is the largest integer k such that G admits a b-coloring with k colors. In this note, according to the values taken by the order n of a graph, we determine exact values or bounds for the b-chromatic number of $H_{2 m, n}$ which is the Harary graph $H_{k, n}$ when k is even. Therefore our result improves the result concerning the b-chromatic of p-th power graphs of cycles and give a negative answer to the open problem of Effantin and Kheddouci.

Keywords: Coloration, b-coloring, b-chromatic number. AMS Subject Classification: 05C69.

1 Introduction

A proper coloring of a graph $G=(V, E)$ is a mapping c from V to the set of positive integers (colors) such that any two adjacent vertices are mapped to different colors. Each set of vertices colored with one color is a stable set of vertices or color class of G, so a coloring is a partition of V into stable sets. The smallest number k for which G admits a coloring with k colors is the chromatic number $\chi(G)$ of G.

A b-coloring is a proper coloring such that every color class i contains at least one vertex that has a neighbor in all the other classes. Any such vertex will be called a b-dominating vertex of color i. The b-chromatic number $b(G)$ is the largest integer k such that G admits a b-coloring with k colors.

The motivation of this special coloring is as follow. Let c be an arbitrary proper coloring of G and suppose we want to decrease the number of colors by recoloring all the vertices of a given color class X with other colors that is by
putting the vertices of X in other color class. Then this is possible if and only if no vertex of X is a b-dominating vertex. In other words, one color can be recuperated by recoloring each vertex of some fixed color class if and only if the coloring c is not a b-coloring.

The open neighborhood of a vertex $v \in V$ is $N(v)=\{u \in V \mid u v \in E\}$, i.e, the set of all vertices adjacent with v. The closed neighborhoods of v is $N[v]=N(v) \cup\{v\}$. The degree of a vertex v of G is $d(v)=|N(v)|$. By $\Delta(G)$ we denote the maximum degree of G. Let $\Delta(G)$ be the maximum degree in G, and let $m(G)$ be the largest integer k such that G has k vertices of degree at least $k-1$. It is easy to see that every graph G satisfies

$$
b(G) \leq m(G) \leq \Delta(G)+1
$$

(the first inequality follows from the fact that if G has any b-coloring with k colors then it has k vertices of degree at least $k-1$; the second inequality follows from the definition of $m(G)$). Irving and Manlove [10, 18] proved that every tree T has b-chromatic number $b(T)$ equal to either $m(T)$ or $m(T)$ 1 , and their proof is a polynomial-time algorithm that computes the value of $b(T)$. On the other hand, Kratochvíl, Tuza and Voigt [17] proved that it is NP-complete to decide if $b(G)=m(G)$, even when restricted to the class of connected bipartite graphs such that $m(G)=\Delta(G)+1$. These NP-completeness results have incited searchers to establish bounds on the b-chromatic number in general or to find exact or approximate values for subclasses of graphs (see: $[2,3,4,6,5,7,8,9,11,12,13,14,15,17,16])$.

For $2 \leq k<n$, the Harary graph $H_{k, n}$ on n vertices is defined by West [19] as follows: Place n vertices around a circle, equally spaced. If k is even, $H_{k, n}$ is formed by making each vertex adjacent to the nearest $\frac{k}{2}$ vertices in each direction around the circle. If k is odd and n is even, $H_{k, n}$ is formed by making each vertex adjacent to the nearest $\frac{(k-1)}{2}$ vertices in each direction around the circle and to the diametrically opposite vertex. In both cases, $H_{k, n}$ is k-regular. If both k and n are odd, $H_{k, n}$ is constructed as follows. It has vertex $v_{0}, v_{1}, \ldots, v_{n-1}$ and is constructed from $H_{k-1, n}$ by adding edges joining vertex v_{i} to vertex $v_{i+\frac{(n-1)}{2}}$ for $0 \leq i \leq \frac{(n-1)}{2}$.

We denote by $\operatorname{dist}_{G}(x, y)$ the distance between vertices x and y in G. The p-th power graph G^{p} with $p \geq 1$ is a graph obtained from G by adding an edge between every pair of vertices x and y with $\operatorname{dist}_{G}(x, y) \leq p$, in particular $G^{1}=G$. The p-th power graph of a cycle C_{n} with $p \geq 1$ which is C_{n}^{p} is the the Harary graph $H_{k, n}$ with $k=2 p$. In [5], Effantin and Kheddouci investigate the b-chromatic number of the p-th power graph, so, they determine exact values and bounds for b-chromatic number of the p-th power graph of paths and the p-th power graph of cycles.

In this note, according to the values taken by the order n of a graph, we determine exact values or bounds for the b-chromatic number of $H_{2 m, n}$ which is the Harary graph $\mathrm{H}_{k, n}$ when k is even. Therefore our result improves the result
in [5], concerning the b-chromatic of p-th power graphs of cycles. Also we give a negative answer to the open problem of Effantin and Kheddouci.

2 Main result

Theorem 1 Let $H_{2 m, n}$ be the Harary graph. Then

$$
b\left(H_{2 m, n}\right)=\left\{\begin{array}{lr}
2 m+1 & \text { if } n=2 m+1 \text { or } n \geq 4 m+1 \\
2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor & \text { if }\left\lceil\frac{5 m+3}{2}\right\rceil \leq n \leq 4 m \\
\geq n-m-1 & \text { if } 2 m+2 \leq n<\left\lceil\frac{5 m+3}{2}\right\rceil
\end{array}\right.
$$

Proof. We distinguish between four cases according to each value of the order of $H_{2 m, n}$.

Case 1: $\boldsymbol{n}=\mathbf{2 m}+\mathbf{1}$. Then $H_{2 m, n}$ is a clique of order $2 m+1$ and clearly $b\left(H_{2 m, n}\right)=\chi\left(H_{2 m, n}\right)=2 m+1$.

Case 2: $\boldsymbol{n} \geq \mathbf{4 m}+\mathbf{1}$. Since $\Delta\left(H_{2 m, n}\right)=2 m, b\left(H_{2 m, n}\right) \leq \Delta\left(H_{2 m, n}\right)+$ $1=2 m+1$. To prove equality, we construct a b-coloring with $2 m+1$ colors $0,1,2, \ldots, 2 m$ as follow. Let $v_{0}, v_{1}, \ldots, v_{n-1}$ be vertices of $H_{2 m, n}$ in this order around the circle. First, assign color 0 to v_{0}. Since $n \geq 4 m+1$, we begin by coloring the nearest $4 m$ vertices to $v_{0} ; 2 m$ vertices in each direction around the circle according to the ordering of vertices. Assign color i to $v_{i} ; i=1, \ldots, 2 m$ and color $i-(n-2 m-1)$ to $v_{i} ; i=n-2 m, \ldots, n-1$. The vertices v_{i} and v_{j} are adjacent if $i-m \leq j \leq i+m$ where addition is taken modulo n. A vertex v_{i} and a vertex v_{j} have the same color if $i=j-(n-2 m-1)$ for $i \in\{1, \ldots, 2 m\}$ and $j \in$ $\{n-2 m, \ldots, n-1\}$, so $i-2 m-1 \geq j=i+n-2 m-1 \geq i+4 m+1-2 m-1=i+2 m$. Hence two vertices with a same color are not adjacent, which implies that the partial coloring is proper. Also, we can see easily that the vertices $v_{i} ; i=1, . ., m$ and the vertices $v_{i} ; i=n-m, \ldots, n-1$ with v_{0} are b-dominating vertices for this partial proper coloring. Finally, extend this partial proper coloring to a proper coloring of $H_{2 m, n}$ as follow. Color the remaining vertices in the whole graph in arbitrary order, assigning to each vertex a color from $\{0,1, \ldots, 2 m\}$ different from the colors already assigned to its neighbors which is in fact an extension by a standard greedy coloring algorithm. We obtain a b-coloring with $2 m+1$ colors in which the vertices $v_{0}, v_{1}, \ldots, v_{m}, v_{m-n}, \ldots v_{n-1}$ are b-dominating vertices.

Case 3: $\left\lceil\frac{5 m+3}{2}\right\rceil \leq n \leq 4 m$.
First, we show that $b\left(H_{2 m, n}\right) \leq 2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor$. Suppose to the contrary that $H_{2 m, n}$ admits a b-coloring with k colors, $k \geq 2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor+1$.
Claim 1 There exists at least one color class with one vertex.
Proof of Claim 1: Otherwise every color class has at least two vertices, so $n \geq 2 k \geq 4 m-2\left\lfloor\frac{4 m-n}{3}\right\rfloor+2$ and since $\left\lfloor\frac{4 m-n}{3}\right\rfloor \leq \frac{4 m-n}{3}, n \geq 4 m+6$, a
contradiction.
Let $0, \ldots, k-1$ be the colors used by a b-coloring of $H_{2 m, n}$. Without loss of generality let v_{0} be the only vertex with color 0 . So, v_{0} is a b-dominating vertex of color 0 and there are at least $k-1$ other b-dominating vertices with distinct colors adjacent to v_{0}.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the neighborhood of v_{0} in each direction around the circle in right and left direction of v_{0} respectively.

Let x_{i} (resp. y_{j}) be the lastest b-dominating vertex in X (resp. Y). Set $A=\left\{x_{k} \in X: k \leq i\right\}$ and $B=\left\{y_{k} \in X: k \leq j\right\}$. Let $Z=V \backslash\left(\left\{v_{0}\right\} \cup X \cup Y\right)$ be the set of the non neighborhood of v_{0}. Let $V_{i j}$ (resp. $\overline{V_{i j}}$) be the set of vertices between x_{i} and y_{j} in left (resp. right) direction of x_{i} around the circle, that is $v_{0} \in V_{i j}$ and $v_{0} \notin \overline{V_{i j}}$.

If $3 m+1 \leq n \leq 4 m$, then $|Z|=n-(2 m+1) \geq m$; so $\left|\overline{V_{i j}} \cup\left\{x_{i}, y_{j}\right\}\right| \geq$ $|Z|+2 \geq m+2$. Also we have

$$
\begin{aligned}
|A|+|B|+1 & \geq k \geq 2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor+1 \geq 2 m-\frac{4 m-n}{3}+1 \\
& \geq \frac{2 m+n}{3}+1 \geq \frac{2 m+3 m+4}{3}=\frac{5 m+4}{3}=m+\frac{2 m+4}{3} \\
& \geq m+2
\end{aligned}
$$

then $\left|V_{i j} \cup\left\{x_{i}, y_{j}\right\}\right| \geq m+2$. Hence x_{i} is not adjacent to y_{j}.
The lastest b-dominating vertex x_{i} in A needs at least $k-m$ colors which are assigning to some b-dominating vertices at the end of B, so we need at least $k-m$ distinct vertices with this colors which belong to $V\left(H_{2 m, n}\right)-\left(\left\{v_{0}\right\} \cup A \cup B\right)$ and which are adjacent to x_{i}. Let A^{\prime} be the set of this vertices required by x_{i}. Similarly the lastest b-dominating vertex y_{j} in B needs at least $k-m$ colors which are assigning to b-dominating vertices at the end of A, so we need at least $k-m$ distinct vertices with this colors which belong to $V\left(H_{2 m, n}\right)-\left\{v_{0}\right\} \cup A \cup B$ and which are adjacent to y_{j}. Let B^{\prime} be the set of vertices required by y_{j}. Since the colors needed by x_{i} are in the neighborhood of y_{j} and the colors needed by y_{j} are in the neighborhood of x_{i}, this colors are different, so A^{\prime} and B^{\prime} are disjoint. Thus

$$
\begin{aligned}
n & \geq|A|+|B|+1+\left|A^{\prime}\right|+\left|B^{\prime}\right| \geq k+2(k-m)=3 k-2 m \\
& \geq 3\left(2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor+1\right)-2 m=4 m-3\left\lfloor\frac{4 m-n}{3}\right\rfloor+3 \\
& \geq 4 m-4 m+n+3=n+3,
\end{aligned}
$$

a contradiction.
Now we suppose that $\left\lceil\frac{5 m+3}{2}\right\rceil \leq n \leq 3 m$.
Claim 2 Each set X and Y contains at least $\frac{m+2}{2}$ b-dominating vertices.

Proof of Claim 2: To see this, assume that X or Y contains at most $\frac{m}{2}$ b-dominating vertices. Then

$$
2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor+1 \leq k \leq \frac{3 m}{2}+1
$$

which implies that $n \leq \frac{5 m}{2}$, a contradiction.
Claim 3 All the vertices of $A \cup B$ are b-dominating.

Proof. Proof of Claim 3: First we prove that x_{1} is a b-dominating vertex, Suppose that x_{1} with the color c_{1} is not b-dominating, so in the neighborhood of x_{1} there exists some missed color c_{1}^{\prime}, which implies that $Y \backslash\left\{y_{m}\right\}$ does not contain colors c_{1}^{\prime} and c_{1}. Since v_{0} is the only b-dominating vertex with his color, the color of y_{m} must be c_{1}^{\prime}. Hence $X \cup Y$ does not contain a b-dominating vertex with the color c_{1}, a contradiction. Similarly we can prove that y_{1} is a b dominating vertex. Now we suppose that A contains a non b-dominating vertex x_{l} with the color c_{l}. Let x_{p} and $x_{q} ; p<l<q$ the nearest b-dominating vertices in each direction around the circle; in right and left direction of x_{l} respectively. We denote by F the set of non b-dominating vertices between x_{p} and x_{q}; which contains at least x_{l}. By Claim 2, it is clear that $|F| \leq \frac{m-2}{2}$. As x_{l} is a non b-dominating vertex, so in the neighborhood of x_{l} there exists some missed color c_{l}^{\prime}, which implies that in V there is only one vertex of color c_{l}^{\prime}, because the color c_{l}^{\prime} does not exist in $N\left[x_{l}\right]$, so it bellow to $M=V \backslash N\left[x_{l}\right]$. Since

$$
|M|=\left|V \backslash N\left[x_{l}\right]\right|=|V|-\left|N\left[x_{l}\right]\right|=n-2 m-1 \leq 3 m-2 m-1=m-1,
$$

the subgraph $G[M]$ induced by M is a clique. Therefore there is one vertex y_{h} of color c_{l}^{\prime} in $G[M]$ and y_{h} is a b-dominating vertex, so $y_{h} \in B$. However x_{p} and x_{q} are adjacent to y_{h}. Then

$$
n=\left|V_{p h}\right|+\left|\overline{V_{q h}}\right|+\left|\left\{x_{p}, x_{q}\right\}\right|+|F| \leq 2 m+1+|F| \leq 2 m+1+\frac{m-2}{2}=\frac{5 m}{2},
$$

a contradiction
Let B^{\prime} be the set of b-dominating vertices in B such that no color in B^{\prime} is repeated in A. Let y_{t} be the last vertex of Y, whose color does not appear in A. y_{t} exists, otherwise $k=1+|A| \leq m+1$, a contradiction. So y_{t} is a b-dominating vertex and $y_{t} \in B^{\prime}$ and we have

$$
|A|+\left|B^{\prime}\right|+\left|\left\{v_{0}\right\}\right| \geq k \geq 2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor+1 \geq \frac{2 m+n}{3}+1 \geq \frac{3 m}{2}+2
$$

Claim $4 x_{i}$ is not adjacent to y_{t}.

Proof of Claim 4: If x_{i} is adjacent to y_{t}, then two cases arise: Assume that $V_{i t} \cup\left\{x_{i}, y_{t}\right\}$ induce a clique, thus $\left|V_{i t} \cup\left\{x_{i}, y_{t}\right\}\right| \leq m+1$ (the cardinality maximum of a clique in $H_{2 m, n}$ is $m+1$). Since $\left|V_{i t} \cup\left\{x_{i}, y_{t}\right\}\right| \geq|A|+\left|B^{\prime}\right|+$ $\left|\left\{v_{0}\right\}\right| \geq k$ and $k \geq \frac{3 m}{2}+2,\left|V_{i t} \cup\left\{x_{i}, y_{t}\right\}\right| \geq \frac{3 m}{2}+2$, a contradiction. Thus $V_{i t} \cup\left\{x_{i}, y_{t}\right\}$ does not induce a clique, so $\overline{V_{i t}} \cup\left\{x_{i}, y_{t}\right\}$ induce a clique. In this case since every vertex of A is b-domnating, y_{t} is adjacent to all vertices of A (otherwise it can not have the color of y_{t}). Hence $H_{2 m, n}$ is a clique which contradicts hypothesis.

The lastest b-dominating vertex x_{i} in A needs at least $k-m$ colors which are assigning to some b-dominating vertices at the end of B^{\prime}, so we need at least $k-m$ distinct vertices with this colors which belong to $V\left(H_{2 m, n}\right)-\left(\left\{v_{0}\right\} \cup A \cup B^{\prime}\right)$ and which are adjacent to x_{i}. Let A^{\prime} be the set of this vertices required by x_{i}. Similarly the lastest b-dominating vertex y_{t} in B^{\prime} needs at least $k-m$ colors which are assigning to b-dominating vertices at the end of A, so we need at least $k-m$ distinct vertices with this colors which belong to $V\left(H_{2 m, n}\right)-\left\{v_{0}\right\} \cup A \cup B^{\prime}$ and which are adjacent to y_{t}. Let B_{1}^{\prime} be the set of vertices required by y_{t}. Since the colors needed by x_{i} are in the neighborhood of y_{t} and the colors needed by y_{t} are in the neighborhood of x_{i}, this colors are different, so A^{\prime} and B_{1}^{\prime} are disjoint. Thus

$$
\begin{aligned}
n & \geq|A|+\left|B^{\prime}\right|+\left|A^{\prime}\right|+\left|B_{1}^{\prime}\right|+1 \geq k+2(k-m)=3 k-2 m \\
& \geq 3\left(2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor+1\right)-2 m=4 m-3\left\lfloor\frac{4 m-n}{3}\right\rfloor+3 \\
& \geq 4 m-4 m+n+3=n+3
\end{aligned}
$$

a contradiction. So in all case, if $\left\lceil\frac{5 m+3}{2}\right\rceil \leq n \leq 4 m$, then $b\left(H_{2 m, n}\right) \leq$ $2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor$.

Now, we give a b-coloring of $H_{2 m, n}$ with $2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor$, when $\left\lceil\frac{5 m+3}{2}\right\rceil \leq$ $n \leq 4 m$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be vertices of $H_{2 m, n}$ in this order around the circle. Set $k=2 m-\left\lfloor\frac{4 m-n}{3}\right\rfloor$, then $n \leq 2 k$, otherwise $n>2 k$ implies that $n>4 m$, a contradiction. Since $n \leq 2 k$, we can color all vertices of $H_{2 m, n}$ by the following b coloring, assign color i to $v_{i} ; i=1, \ldots, k$ and color $i-(n-k)$ to $v_{i} ; i=k+1, \ldots, n$, according to the ordering of vertices. The vertices v_{i} and v_{j} are adjacent if $i-m \leq j \leq i+m$ where addition is taken modulo $n+1$. A vertex v_{i} and a vertex v_{j} have the same color if $i=j-(n-k)$ for $i \in\{1, \ldots, k\}$ and
$j \in\{k+1, \ldots, n\}$. Since

$$
\begin{aligned}
|j-i| & =n-k=n-2 m+\left\lfloor\frac{4 m-n}{3}\right\rfloor>n-2 m+\frac{4 m-n}{3}-1 \\
& =\frac{3 n-6 m+4 m-n-3}{3}=\frac{2 n-2 m-3}{3} \\
& \geq \frac{2 \frac{5 m+3}{2}-2 m-3}{3}=m
\end{aligned}
$$

two vertices with a same color are not adjacent, which implies that the coloring is proper. Also, we can see easily that the vertices $v_{i} ; i=1, . ., m+1$ and the vertices $v_{i} ; i=n-k+m+2, \ldots, n$; with $k \leq m+2$, are b-dominating vertices for this proper coloring.
Case 4: $2 m+2 \leq n<\left\lceil\frac{5 m+3}{2}\right\rceil$.
To show that $b\left(H_{2 m, n}\right) \geq n-m-1$, we construct a b-coloring with $n-m-1$ colors as follow. Let $v_{1}, v_{2}, \ldots, v_{n}$ be vertices of $H_{2 m, n}$ in this order around the circle. Set $k=n-m-1$, then $n \leq 2 k$, otherwise $n>2 k$ implies that $n<2 m+2$, a contradiction. Since $n \leq 2 k$, we can color all vertices of $H_{2 m, n}$ by the following b-coloring, assign color i to $v_{i} ; i=1, \ldots, k$ and color $i-(n-k)$ to $v_{i} ; i=k+1, \ldots, n$, according to the ordering of vertices. The vertices v_{i} and v_{j} are adjacent if $i-m \leq j \leq i+m$ where addition is taken modulo $n+1$. A vertex v_{i} and a vertex v_{j} have the same color if $i=j-(n-k)$ for $i \in\{1, \ldots, k\}$ and $j \in\{k+1, \ldots, n\}$. Since

$$
|j-i|=n-k=n-n+m+1=m+1,
$$

two vertices with a same color are not adjacent, which implies that the coloring is proper. Also, we can see that the vertices $v_{i} ; i=1, . ., m+1$ and the vertices $v_{i} ; i=n-k+m+2, \ldots, n$; with $k \leq m+2$, are b-dominating vertices for this proper coloring, which completes the proof of Theorem 1.

Proposition 2 Let $H_{2 m, 2 m+3}$ be the Harary graph. Then
$n-m-1 \leq b\left(H_{2 m, 2 m+3}\right) \leq\left\lfloor\frac{6 m+9}{5}\right\rfloor$
And this bounds are sharp.
Proof. Let c be an arbitrary b-coloring of $H_{2 m, 2 m+3}$. The first inequality leads from Theorem 1. Let $v_{0}, v_{1}, \ldots, v_{2 m+2}$ be vertices of $H_{2 m, 2 m+3}$ in this order around the circle. Now we prove the second inequality. Since $|Z|=$ $\left|V \backslash\left(\left\{v_{0}\right\} \cup X \cup Y\right)\right|=2$, each color is repeated at most twice. Let k_{1} (resp. k_{2}) be the number of color classes with one vertex (resp. two vertices). By 1-class (resp. 2-class) we denote the color class with one vertex (resp. two vertices). Then $n=k_{1}+2 k_{2}$ and $b=k_{1}+k_{2}=n-k_{2}=2 m+3-k_{2}$.

If $k_{1}=1$, then $n-1=2 m+2=2 k_{2}$ which implies that $k_{2}=m+1$. So $b=n-m-1=m+2$.

Let $k_{1} \geq 3,\left(k_{1}\right.$ is odd integer since the order of $H_{2 m, 2 m+3}$ is odd and $\left.2 m+3=k_{1}+2 k_{2}\right)$.

We prove that the two nearest neighbors around the circle of a b-dominating vertex which belongs to an 1 -class are b-dominating vertices and everyone is contained in an 2-class. Let v_{0} be the vertex which belongs to an 1-class, v_{1} and v_{n-1} its nearest neighbors around the circle and v_{m+1}, v_{m+2} its non neighbors with $c\left(v_{m+1}\right)=a$ and $c\left(v_{m+2}\right)=b$. We must have $c\left(v_{1}\right)=b$ and $c\left(v_{n-1}\right)=a$ with v_{1} and $v_{n-1} b$-dominating vertices, because the vertices v_{m+1} and v_{m+2} can not be adjacent to the color of v_{0}. Therefore two b-dominating vertices where each one is in an 1-class are not consecutive around the circle. Also we prove that between two b-dominating vertices where each one belongs to an 1class, there exists at least two b-dominating vertices where each one belongs to an 2-class. Assume to the contrary that there exists one exactly b-dominating vertex which belongs to an 2-class. Without loss of generality, let v_{0} and v_{2} be the b-dominating vertices where each one belongs to an 1-class, so v_{1} is a vertex which belongs to an 2 -class. It is obvious to verify that this b-coloring is impossible. Hence $k_{2} \geq 2 k_{1}$ and since $n=k_{1}+2 k_{2}, k_{2} \geq \frac{2 n}{5}$. Consequently $b=2 m+3-k_{2} \leq\left\lfloor\frac{3 n}{5}\right\rfloor=\left\lfloor\frac{6 m+9}{5}\right\rfloor$.

Let c be a b-coloring with $b\left(H_{2 m, 2 m+3}\right)$ colors (a mapping from V to the set of positive integers (colors)). We give examples which show that the bounds of Proposition 2 are sharp.

For each value of m we have checked the b-coloring given. (In each case the b-dominating vertices are marked by ${ }^{*}$).

1. $m=1, n=5, b\left(H_{2,5}\right)=n-m-1=\left\lfloor\frac{6 m+9}{5}\right\rfloor=3$

vertices	v_{0}^{*}	v_{1}^{*}	v_{2}^{*}	v_{3}	v_{4}
b-coloring	0	1	2	1	2

2. $m=6, n=15, b\left(H_{12,15}\right)=n-m=\left\lfloor\frac{6 m+9}{5}\right\rfloor=9$

vertices	v_{0}^{*}	v_{1}^{*}	v_{2}	v_{3}	v_{4}^{*}	v_{5}^{*}	v_{6}^{*}	v_{7}	v_{8}	v_{9}^{*}	v_{10}^{*}	v_{11}^{*}
b-coloring	0	1	5	7	2	3	4	8	1	5	6	7

v_{12}	v_{13}	v_{14}^{*}
2	4	8

3. $m=11, n=25, b\left(H_{22,25}\right)=n-m+1=\left\lfloor\frac{6 m+9}{5}\right\rfloor=15$

vertices	v_{0}^{*}	v_{1}^{*}	v_{2}	v_{3}	v_{4}^{*}	v_{5}^{*}	v_{6}^{*}	v_{7}	v_{8}	v_{9}^{*}	v_{10}^{*}	v_{11}^{*}
b-coloring	0	1	8	10	2	3	4	11	13	5	6	7

v_{12}	v_{13}	v_{14}^{*}	v_{15}^{*}	v_{16}^{*}	v_{17}	v_{18}	v_{19}^{*}	v_{20}^{*}	v_{21}^{*}	v_{22}	v_{23}	v_{24}^{*}
14	1	8	9	10	2	4	11	12	13	5	7	14

4. $m=16, n=35, b\left(H_{32,35}\right)=n-m+2=\left\lfloor\frac{6 m+9}{5}\right\rfloor=21$

vertices	v_{0}^{*}	v_{1}^{*}	v_{2}	v_{3}	v_{4}^{*}	v_{5}^{*}	v_{6}^{*}	v_{7}	v_{8}	v_{9}^{*}	v_{10}^{*}	v_{11}^{*}
b-coloring	0	1	11	13	2	3	4	14	16	5	6	7

v_{12}	v_{13}	v_{14}^{*}	v_{15}^{*}	v_{16}^{*}	v_{17}	v_{18}	v_{19}^{*}	v_{20}^{*}	v_{21}^{*}	v_{22}	v_{23}	v_{24}^{*}
17	19	8	9	10	20	1	11	12	13	2	4	14

v_{25}^{*}	v_{26}^{*}	v_{27}	v_{28}	v_{29}^{*}	v_{30}^{*}	v_{31}^{*}	v_{32}	v_{33}	v_{34}^{*}
15	16	5	7	17	18	19	8	10	20

5. $m=21, n=45, b\left(H_{42,45}\right)=n-m+3=\left\lfloor\frac{6 m+9}{5}\right\rfloor=27$

vertices	v_{0}^{*}	v_{1}^{*}	v_{2}	v_{3}	v_{4}^{*}	v_{5}^{*}	v_{6}^{*}	v_{7}	v_{8}	v_{9}^{*}	v_{10}^{*}	v_{11}^{*}
b-coloring	0	1	14	16	2	3	4	17	19	5	6	7

v_{12}	v_{13}	v_{14}^{*}	v_{15}^{*}	v_{16}^{*}	v_{17}	v_{18}	v_{19}^{*}	v_{20}^{*}	v_{21}^{*}	v_{22}	v_{23}	v_{24}^{*}
20	22	8	9	10	23	25	11	12	13	26	1	14

v_{25}^{*}	v_{26}^{*}	v_{27}	v_{28}	v_{29}^{*}	v_{30}^{*}	v_{31}^{*}	v_{32}	v_{33}	v_{34}^{*}	v_{35}^{*}	v_{36}^{*}	v_{37}
15	16	2	4	17	18	19	5	7	20	21	22	8

v_{38}	v_{39}^{*}	v_{40}^{*}	v_{41}^{*}	v_{42}	v_{43}	v_{44}^{*}
10	23	24	25	11	13	26

6. $m=26, n=55, b\left(H_{52,55}\right)=n-m+4=\left\lfloor\frac{6 m+9}{5}\right\rfloor=33$.

By looking into the disposition of the colors assigned to a b-coloring done on the previous examples, it is easy to generalize these examples, it suffices for this to take $m=5 k+1 ; k \in I N^{*}$, then we have $n=2 m+3=10 k+5$ and $b(G)=\frac{6 m+9}{5}=(n-m-1)+\frac{m-1}{5}=6 k+3$.

The examples 2-6 given before in the proof of Proposition 2 provide counterexamples to the open problem of Effantin and Kheddouci [5].

References

[1] C. Berge. Graphs. North Holland, 1985.
[2] M. Blidia, F. Maffray, Z. Zemir. On b-colorings in regular graphs. Disc. Appl. Math. 157 (2009) 1787-1793.
[3] S. Corteel, M. Valencia-Pabon, J.-C. Vera. On approximating the bchromatic number. Disc. Appl. Math. 146 (2005) 106-110.
[4] B. Effantin. The b-chromatic number of power graphs of complete caterpillars, J. Discrete Math. Sc. Cryptogr. 8 (2005) 483-502.
[5] B. Effantin, H. Kheddouci. The b-chromatic number of some power graphs. Discrete Mathematics and Theoretical Computer Science 6 (2003) 45-54.
[6] B. Effantin, H. Kheddouci. Exact values for the b-chromatic number of a power complete k-ary tree, J. Discrete Math. Sc. Cryptogr. 8 (2005) 117129.
[7] A. El-Sahili, M. Kouider. About b-colourings of regular graphs. Res. Rep. 1432, LRI, Univ. Orsay, France, 2006.
[8] T. Faik. La b-continuité des b-colorations: complexité, propriétés structurelles et algorithmes. PhD thesis, Univ. Orsay, France, 2005.
[9] C.T. Hoàng, M. Kouider. On the b-dominating coloring of graphs. Disc. Appl. Math. 152 (2005) 176-186.
[10] R.W. Irving, D.F. Manlove. The b-chromatic number of graphs. Discrete Appl. Math. 91 (1999) 127-141.
[11] R. Javadi, B. Omoomi. On b-coloring of Kneser graphs, Disc. Math. 306 (2009).
[12] R. Javadi, B. Omoomi. On b-coloring of cartesian product of graphs, Ars Combinatoria, to appear.
[13] M. Kouider. b-chromatic number of a graph, subgraphs and degrees, Res. Rep. 1392, LRI, Univ. Orsay, France, 2004.
[14] M. Kouider, M. Mahéo. Some bounds for the b-chromatic number of a graph, Disc. Math. 256 (2002) 267-277.
[15] M. Kouider, M. Mahéo. The b-chromatic number of the cartesien product of the graphs, Studia Sci. Math. Hungar 14 (2007) 49-55.
[16] M. Kouider, M. Zaker. Bounds for the b-chromatic number of some families of graphs. Disc. Math. 306 (2006) 617-623.
[17] J. Kratochvíl, Zs. Tuza, M. Voigt. On the b-chromatic number of graphs. Lecture Notes in Computer Science (Graph-Theoretic Concepts in Computer Science: 28th International Workshop, WG 2002) 2573 (2002), 310320.
[18] D.F. Manlove. Minimaximal and maximinimal optimisation problems: a partial order-based approach. PhD thesis. Tech. Rep. 27, Comp. Sci. Dept., Univ. Glasgow, Scotland, 1998.
[19] D.B. West. Introduction to Graph Theory, second edition, Prentice-Hall Upper Saddle River, NJ, 2001.

