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Notations

I
∂k

∂xki
: The kth partial derivative.

I |α| = α1 + · · ·+ αn, α = (α1, · · · , αn) ∈ Rn.

I I : Identity operator.

I ∇ : The gradient operator.

I ∆ : The Laplace operator.

I ∆2 = ∆∆ : The biharmonic operator.

I ∂n = n · ∇ : The derivative according to the normal.

I ∂Ω : The boundary of Ω.

I Ω̄ : The closure of Ω.

I Ω̊ : The interior of Ω.

I ‖f‖2
L2(Ω) =

∫
Ω
|f(x)|2dx.

I Hs : The usual Sobolev space.
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Introduction

Cauchy problems for elliptic operators are encountered in many practical applications

such as electrocardiography (ECG) and plasma physics. In addition, Cauchy problems

play an important role in inverse problems, (see [11]).

The ill-posedness of the Cauchy problem was first pointed out by J. Hadamard in his

lectures at Yale University, 1923 (see [15]) who proved that it is ill-posed in the case of

linear second order elliptic equations.

The most popular regularizing methods for ill-posed problems are the Tikhonov regu-

larization or a so-called quasi reversibility method and the stabilized finite-element meth-

ods. Stabilized finite element methods have emerged as an efficient and reliable tool for

the design of computational methods for ill-posed elliptic problems, which are represent-

ing a general technique for the regularization of the standard Galerkin method in order

to improve its stability properties, (see [2] and [5]).

In this work we will study the ill-posed elliptic Cauchy problem and present a sta-

bilized conforming and nonconforming finite element methods to solve it. This thesis

structured as follows:
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In the first chapter, we recall basic definitions for elliptic Cauchy problem and we

introduce Hadamard’s concept of well-posedness, and we describe the methods for solving

an ill-posed problem, this chapter is based on the references [13], [15], [16], [23], [25], [26].

In the second chapter, we show some inequalities to prove the uniqueness of elliptic

Cauchy problem and we consider the elliptic Cauchy problem for the Laplace operator,

and we introduce the conditional stability estimates for ill-posed problems.

In the third chapter, we consider the stabilized finite element method, a conforming

finite element method in section one and in section two we present Crouzeix-Raviart non-

conforming finite element method.

In the last chapter, we present numerical examples for stabilized finite element method

which was introduced in the third chapter, by using FreeFEM++.
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Chapter 1

Generalities

1.1 Some preliminaries of elliptic Cauchy problem

Definition 1.1.1

The principal part of the differential operator

L ≡ L(x,D) : =
m∑
i=0

∑
|α|=i

a(α1,α2,··· ,αn)(x)Dα1
1 Dα2

2 · · ·Dαn
n

=
∑
|α|≤m

aα(x)Dα on Ω ⊂ Rn

is

LP (x,D) =
∑
|α|=m

aα(x)Dα.

The coefficients aα(x) are complex-valued functions of x, and Dαi
i , D

α are partial differ-

ential operators defined by

Dαi
i =

∂αi

∂xαii
and Dα =

n∏
i=1

Dαi
i =

∂α1+α2+···+αn

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

.

Remark 1.1.2

The principal part is also called the principal symbol.

3



1.1. SOME PRELIMINARIES CHAPTER 1.

Definition 1.1.3

A characteristic form of L at x ∈ Ω is the homogeneous polynomial of degree m on Rn

defined by

χ(x, ξ) = LP (x, ξ) =
∑
|α|=m

aα(x)ξα (ξ ∈ Rn)

Definition 1.1.4

The vector ξ 6= 0 is called characteristic for L at x if χ(x, ξ) = 0, and the set of all such

ξ is called the characteristic variety of L at x and is denoted by charx(L):

charx(L) = {ξ 6= 0, χ(x, ξ) = 0}

Definition 1.1.5

We say L is elliptic at x if

charx(L) = ∅,

and elliptic on Ω if it is elliptic for each x ∈ Ω.

Example 1.1

Consider the second-order partial differential operator in two variables

L(x,D) =
∑
|α|≤2

aα(x)Dα

α = (α1, α2) αi = 0, 1, 2 |α| = α1 + α2

then

L(x,D) = a(0,0)(x)D(0,0) + a(1,0)(x)D(1,0) + a(0,1)(x)D(0,1)

+ a(2,0)(x)D(2,0) + a(1,1)(x)D(1,1) + a(0,2)(x)D(0,2).

Where

D(0,0) = I, D(1,0) =
∂

∂x1

, D(0,1) =
∂

∂x2

D(1,1) =
∂2

∂x1∂x2

, D(2,0) =
∂2

∂x2
1

, D(0,2) =
∂2

∂x2
2

4



1.1. SOME PRELIMINARIES CHAPTER 1.

and thus, L becomes

L(x1, x2, D) = a(2,0)(x1, x2)
∂2

∂x2
1

+ a(1,1)(x1, x2)
∂2

∂x1∂x2

+ a(0,2)(x1, x2)
∂2

∂x2
2

+ a(1,0)(x1, x2)
∂

∂x1

+ a(0,1)(x1, x2)
∂

∂x2

+ a(0,0)(x1, x2).

Let ξ ∈ R2 \ {0} (ξ = (ξ1, ξ2)), then

χ(x1, x2, ξ) = LP (x1, x2, ξ) = a(2,0)(x1, x2)ξ2
1 + a(1,1)(x1, x2)ξ1ξ2 + a(0,2)(x1, x2)ξ2

2

L(x1, x2, D) is elliptic at a point (x1, x2) ∈ Ω ⊂ R2 if χ(x1, x2, ξ) 6= 0.

Definition 1.1.6

A hypersurface S is called characteristic for L at x ∈ S if the normal vector v(x) to S at

x is in charx(L), otherwise S is called non-characteristic.

1.1.1 The General Cauchy Problem

The Cauchy problem

Consider the linear partial differential equation of order m

L(x,D)u =
∑
|α|≤m

aα(x)Dαu(x) = f(x) on Rn (1.1)

Let S be a given hypersurface in Rn and let n = n(x) denote the unit vector normal to

S at x (S is non-characteristic for L). Suppose that on S the values of u and all of its

directional derivatives in the direction n of order up to m− 1 are given, moreover

u|S = ϕ0,
∂u

∂n

∣∣∣∣
S

= ϕ1, · · · ,
∂m−1u

∂nm−1

∣∣∣∣
S

= ϕm−1, (1.2)

The Cauchy1 problem for the differential operator L(x,D) with the Cauchy data (ϕ0, ϕ1, · · · , ϕm−1)

on S consists in finding a solution u of equation (1.1) defined in a domain Ω containing S

and satisfying conditions (1.2) on S.

The surface S is called the initial surface of the problem and the conditions (1.2) are

called the initial conditions. The given functions ϕ0, ϕ1, · · · , ϕm−1 which are defined on S

are called the initial data.
1Augustin-Louis Cauchy (1789-1857) French mathematician.

5



1.1. SOME PRELIMINARIES CHAPTER 1.

Definition 1.1.7

The surface S in Rn is said to be analytic if it is described by an equation of the form

F (x1, · · · , xn) = 0

where F is an analytic function.

The Cauchy-Kowalewsky Theorem and Holmgren’s Theorem

Theorem 1.1.8 (Cauchy-Kowalewsky)

Let S be an analytic hypersurface of Rn and L(x,D) is an operator with analytic coeffi-

cients in some neighbourhood of a point x0 ∈ S (S is non-characteristic for L). We take

f, ϕj j = 0, · · · ,m− 1 which are analytic in the neighbourhood of x0. Then the Cauchy

problem (1.1)-(1.2) has a solution u(x) which is defined and analytic in a neighborhood

of x0, and this solution is unique in the class of analytic functions.

Proof.

See [9, p 330].

Remark 1.1.9

The Cauchy-Kowalewsky2 theorem is a theorem of fundamental importance in the theory

of partial differential equations. However its practical usefulness is often limited by the

stringent requirement that the initial data and the right-hand side of the equation must

be analytic and by the fact that it asserts the existence and uniqueness of the solution

only in a (possibly very small) neighborhood of a point.

Remark 1.1.10

The Cauchy-Kowalewky theorem provides uniqueness of the solution just in the restricted

class of analytic functions. A priori, there may be other non-analytical solutions.

Theorem 1.1.11 (Holmgren)

The Cauchy problem with the coefficients of L are analytic, given on an analytic non-

characteristic hypersurface S, has at most one solution in a neighbourhood of S.
2Sofya Vasilyevna Kowalewsky (1850-1891) Russian mathematician.

6



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

Proof.

See [25, p 34].

1.2 Well posed and ill posed problems

In general, it is impossible to find explicit expressions of all solutions of all PDEs. In

the absence of explicit solutions, we need to seek methods to prove existence of solutions

of PDEs and discuss properties of these solutions. A given PDE may not have solutions

at all or may have many solutions, when it has many solutions, we intend to find side

conditions to pick the most reasonable solutions. So Hadamard3 introduced the notion of

well-posed problem in the beginning of the twentieth century, (see [19]).

Definition 1.2.1

A problem is called well-posed in the sense of Hadamard if:

1. there exists a solution to the problem (existence),

2. there is at most one solution to the problem (uniqueness),

3. the solution depends continuously on the data (stability).

Remark 1.2.2

The third condition means that small variations on the data imply small variations on

the solution.

Definition 1.2.3

An ill-posed problem is a problem that does not satisfy at least one of the well-posedness

conditions.

Remark 1.2.4

In the theory of ill posed problems, the main attention is focused on the third condition.
3Jacques-Salomon Hadamard (1865-1963) French mathematician.

7



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

1.2.1 Examples of well-posed problems

1. Let us now consider the Laplace’s equation with Dirichlet boundary conditions{
−∆u = 0 in Ω := R× (0, 1),

u(x, 0) = gn(x), u(x, 1) = 0 ∀x ∈ R,
(1.3)

with gn(x) :=
1

n
sin(nx), for any x ∈ R, this problem has a unique solution (by

Theorem (1.1.8)). Then the solution is

un(x, y) =
1

n(1− e2n)
sin(nx)(eny − en(2−y))

vanishes uniformly as n −→∞.

And thus, the problem (1.3) is well-posed.

2. Let Ω be a bounded domain of Rn and f, g be sufficiently regular functions. The

Dirichlet problem for the operator −∆ + λI :

find u : Ω̄→ R such that {
−∆u+ λu = f in Ω,

u = g, on ∂Ω
(1.4)

is well-posed for any λ ≥ 0.

The Neumann problem for the operator −∆+λI is well-posed for λ > 0, (See (1.6)).

3. Let us consider the Cauchy problem{
∆2u = 0 in Ω,

∂j−1
n u = fj, j = 1, 2 on ∂Ω,

(1.5)

with fj real analytic on ∂Ω for j = 1, 2.

This problem is well-posed.

1.2.2 Examples of ill-posed problems

1. Let Ω be a bounded domain of Rn and f : Ω → R, g : ∂Ω → R be prescribed

functions. We search for u : Ω̄→ R such that{
−∆u = f in Ω,

∂nu = g, on ∂Ω
(1.6)

8



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

this problem is ill-posed, because if u is a solution then u+ C is also a solution for

any constant C, thus the problem (1.6) has an infinity of solutions.

2. (Hadamard’s example) [15]

Let us consider the Cauchy problem for the Laplace equation
∆uε(x, y) = 0, ∀ (x, y) ∈ R× R+

uε(x, 0) = 0, for every x ∈ R
∂uε
∂y

(x, 0) = ε sin(x/ε) for every x ∈ R

(1.7)

this problem satisfy the assumption of the Cauchy-Kowalewsky theorem. This the-

orem implies that there exists a unique solution to the problem (1.7) in the class of

analytic functions.

The solution to the problem (1.7) can be obtained using separation of variables as

follow:

we put uε(x, y) = f(x)g(y), we then get

∂2uε
∂x2

= f ′′(x)g(y) ,
∂2uε
∂y2

= f(x)g′′(y)

implies this

∆uε =
∂2uε
∂x2

+
∂2uε
∂y2

= f ′′(x)g(y) + f(x)g′′(y) = 0

So
f ′′(x)

f(x)
= −g

′′(y)

g(y)
= C

if C ≥ 0 we find the trivial solution, then C < 0 and we may write C = −r2 < 0,

so we have
f ′′(x)

f(x)
= −g

′′(y)

g(y)
= −r2

then

f ′′(x) + r2f(x) = 0 , g′′(y)− r2g(y) = 0

thus

f(x) = C1 cos(rx) + C2 sin(rx) and g(y) = C3 cosh(ry) + C4 sinh(ry)

9



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

and therefore

uε(x, y) = (C1 cos(rx) + C2 sin(rx))(C3 cosh(ry) + C4 sinh(ry))

According to the boundary conditions, we would find

uε(x, y) = ε2 sin(x/ε) sinh(y/ε)

Otherwise, a solution to
∆uε(x, y) = 0, ∀ (x, y) ∈ R× R+

uε(x, 0) = 0, for every x ∈ R
∂uε
∂y

(x, 0) = 0 for every x ∈ R

is uε(x, y) ≡ 0. Note that

lim
ε→0

∣∣∣ε sin
(x
ε

)
− 0
∣∣∣ = lim

ε→0

∣∣∣ε sin
(x
ε

)∣∣∣ = 0

Nevertheless, for any fixed y > 0

lim
ε→0
|uε(x, y)− 0| = lim

ε→0
|uε(x, y)| = +∞

Thus a very small change in the initial data results in a large change in the solution.

Therefore, the requirement that the solution depends continuously on the data does

not hold.

We can see it by taking different values for ε at y = 1 and x ∈ [0, π], then we obtain:

Figure 1.1: The solution for ε = 0.010 (left) and for ε = 0.012 (right)

10



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

3. Consider the following Cauchy problem for the Helmholtz equation (see [22]) in the

rectangle Ω = (0, a)× (0, b) :

∆u(x, y) + k2u(x, y) = 0, ∀ (x, y) ∈ Ω

u(x, 0) = f(x), 0 ≤ x ≤ a

∂u

∂y
(x, 0) = g(x) 0 ≤ x ≤ a

u(0, y) = u(a, y) = 0 0 ≤ y ≤ b

(1.8)

where k is the wave number and f, g ∈ L2(0, a). The solution to this problem can

be obtained using separation of variables in the form

u(x, y) =
+∞∑
n=0

sin
(nπ
a
x
) (
An cosh(λny) + λ−1

n Bn sinh(λny)
)

where λn =
√
a−2n2π2 − k2 and the coefficients An and Bn are given by

An =
2

a

∫ a

0

f(x) sin
nπ

a
x dx and Bn =

2

a

∫ a

0

g(x) sin
nπ

a
x dx.

Since the estimate ‖u‖L2(Ω) ≤ C(‖f‖L2(0,a) + ‖g‖L2(0,a)) can not hold in general,

the requirement that the solution depends continuously on the data does not hold.

This estimate can not hold for any reasonable choice of f and g (as in the above

example).

11



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

What are the methods for solving an ill-posed problem?

In general to solve an ill-posed problems there is two techniques as in this schema

For the regularisation or Tikhonov regularization methods we refer the reader to ref-

erence [7] by using the quasi-reversibility method.

Routhly speaking, the quasi-reversibility method was proposed to solve the Cauchy prob-

lem for elliptic equations, it consists of transforming the ill-posed second-order initial

problem into a family (depending on a small parameter ε) of fourth-order problems.

We consider the following problem for Laplace’s equation. We seek to determine u satis-

fying 
∆u =0, in Ω

u =ψ0 on Γ

∂nu =ψ1 on Γ

(1.9)

Where Ω ⊂ Rn (n = 2, 3) and Γ ⊂ ∂Ω, ψ0 ∈ H
1
2 (Γ ) and ψ1 ∈ H−

1
2 (Γ ).

In the method of quasi-reversibility we replace the problem (1.9) by the following:

12
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find uε such that 
∆(∆uε)− ε∆uε + εuε =0, in Ω

uε =ψ0 on Γ

∂nuε =ψ1 on Γ

(1.10)

where ε is a small positive parameter. For more detail see [7], [8] and [20]. The main

point of this method is that (1.10) is well-posed problem and that uε converge to u as ε

tends to 0.

Remark 1.2.5 In (1.10)

I There is an additional parameter ε.

I We have fourth-order problem.

So in our study we will use the other method (discretization-stabilization).

13



Chapter 2

Conditional stability for the
ill-posed elliptic Cauchy problem

The main objective of this chapter is to explain and to prove the conditional stability for

the ill-posed Cauchy problem for Laplace operator.

2.1 Some inequalities

Let us now focus on some inequalities which can be applied to the estimation of stability.

There are two families of such inequalities:

• Carleman1 estimates,

• Three-spheres inequalities.

Both types have been successfully used in the study of stability, and they are strictly

intertwined, in fact three-spheres inequalities can be deduced by Carleman estimates.

(see [1])
1Torsten Carleman (1892-1949) Swedish mathematician.

14
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2.1.1 Carleman estimates

Lemma 2.1.1 Let w ∈ H2
loc(RN), (N ≥ 2) such that 2

supp w ⊂ D̄ε,r0 = {x ∈ RN ; ε ≤ |x| ≤ r0}

we then have ∫
Dε,r0

x ·∆w∇w dx = (
N

2
− 1)

∫
Dε,r0

|∇w|2 dx (2.1)∫
Dε,r0

x · w∇w dx

|x|γ
=

γ −N
2

∫
Dε,r0

|w|2 dx

|x|γ
(2.2)

Proof. By density it is enough to take w ∈ D(Dε,r0), let φ be a function defined by

φ(x) = x
|∇w|2

2

it is clear that ∫
∂Dε,r0

φ · n ds = 0

by Stokes formula we get∫
Dε,r0

div(φ) dx =

∫
∂Dε,r0

φ · n ds = 0 (2.3)

From this ∫
Dε,r0

div(φ) dx =

∫
Dε,r0

(
N

2
|∇w|2 + x · ∇

(
|∇w|2

2

))
dx

=

∫
Dε,r0

(
N

2
|∇w|2 + x ·D2w∇w

)
dx = 0 (2.4)

Otherwise ∫
Dε,r0

x ·D2w∇w dx =
N∑
i=1

∫
Dε,r0

xi

N∑
j=1

∂2w

∂xi∂xj

∂w

∂xj
dx

2supp v := {x ∈ RN , v(x) 6= 0}.

15
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and
N∑
j=1

∫
Dε,r0

xi
∂2w

∂xi∂xj

∂w

∂xj
dx =

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
i

dx +
∑
j 6=i

∫
Dε,r0

xi
∂2w

∂xi∂xj

∂w

∂xj
dx

=

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
i

dx −
∑
j 6=i

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
j

dx

= 2

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
i

dx −
N∑
j=1

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
j

dx

= 2

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
i

dx −
∫
Dε,r0

xi
∂w

∂xi
∆w dx

then ∫
Dε,r0

x ·D2w∇w dx =
N∑
i=1

(
2

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
i

dx −
∫
Dε,r0

xi
∂w

∂xi
∆w dx

)

= 2
N∑
i=1

∫
Dε,r0

xi
∂w

∂xi

∂2w

∂x2
i

dx −
∫
Dε,r0

x · ∇w∆w dx

= −
∫
Dε,r0

|∇w|2 dx −
∫
Dε,r0

x · ∇w∆w dx (2.5)

by (2.4) and (2.5), we find that∫
Dε,r0

x ·∆w∇w dx = (
N

2
− 1)

∫
Dε,r0

|∇w|2 dx

as required.

To get the second formula 2.2, we use 2.3 with

φ(x) = x
w2

2|x|γ

and therefore∫
Dε,r0

div(φ) dx =

∫
Dε,r0

(
N

2|x|γ
w2 + x · ∇

(
w2

2|x|γ

))
dx

=
N

2

∫
Dε,r0

w2

|x|γ
dx +

∫
Dε,r0

x · ∇
(

w2

2|x|γ

)
dx = 0. (2.6)

16
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Otherwise∫
Dε,r0

x · ∇
(

w2

2|x|γ

)
dx =

∫
Dε,r0

x · ∇(w2)

2|x|γ
dx +

∫
Dε,r0

x · w
2

2
∇(|x|−γ) dx

=

∫
Dε,r0

x · w∇w dx

|x|γ
+

∫
Dε,r0

x · −γw
2

2|x|γ+2
x dx

=

∫
Dε,r0

x · w∇w dx

|x|γ
− γ

2

∫
Dε,r0

w2 dx

|x|γ
(2.7)

by (2.6) and (2.7), we find the required formula.

Theorem 2.1.2 (Carleman estimates) [14]

Let u ∈ H2
loc(RN)(N ≥ 2) satisfying:

supp u ⊂ D̄ε,r0 = {x ∈ RN ; ε ≤ |x| ≤ r0}

with 0 < ε < r0 ≤ 1. Then there exists a constant β0 > 0 and there exists C0, depending

on β0 only, then for every β, (β > β0) we have∫
Dε,r0

|u|2 exp(
2

|x|β
)

dx

|x|2β+2
≤ C0

β4

∫
Dε,r0

|∆u|2 exp(
2

|x|β
)|x|β+2 dx (2.8)

Proof. Let ψβ(x) = exp( 1
|x|β ) and φβ(x) = exp(− 1

|x|β ). We define a function w by

w = ψβu,

then u = φβw. Note that:

∆u = φβ∆w + 2∇φβ · ∇w + ∆φβw

with ∇φβ = βx
|x|β+2 φβ and ∆φβ = β

|x|β+2 (N − 2− β + β
|x|β ) φβ, then

|∆u|2 = |φβ∆w + 2∇φβ · ∇w + ∆φβw|2

= φ2
β|∆w|2 + 4|∇φβ · ∇w|2 + (∆φβ)2|w|2 + 2φβ∆φβ∆ww

+ 4φβ∇φβ ·∆w∇w + 4∆φβ∇φβ · w∇w.

In particular, we have:

|∆u|2 ≥ 4
βφ2

β

|x|β+2
x ·∆w∇w + 4

β2φ2
β

|x|2β+4

(
N − 2− β +

β

|x|β

)
x · w∇w

17
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so

|∆u|2ψ2
β|x|β+2 ≥ 4βx ·∆w∇w

+
4β2

|x|β+2
(N − 2− β)x · w∇w +

4β3

|x|2β+2
x · w∇w.

According to density, we assume that u ∈ D(Dε,r0).

Integrating over Dε,r0 we obtain∫
Dε,r0

|∆u|2ψ2
β|x|β+2 dx ≥ 4β

∫
Dε,r0

x ·∆w∇w dx

+ 4β2(N − 2− β)

∫
Dε,r0

x · w∇w dx

|x|β+2
+ 4β3

∫
Dε,r0

x · w∇w dx

|x|2β+2
.

Since w = ψβu, we can deduce by Lemma 2.1.1 that∫
Dε,r0

|∆u|2ψ2
β|x|β+2 dx ≥ 2β(N − 2)

∫
Dε,r0

|∇(ψβu)|2

+ 2β3(2β + 2−N)

∫
Dε,r0

|u|2ψ2
β

dx

|x|2β+2

− 2β2(N − 2− β)2

∫
Dε,r0

|u|2ψ2
β

dx

|x|β+2

≥ 2β3(2β + 2−N)

∫
Dε,r0

|u|2ψ2
β

dx

|x|2β+2

− 2β2(N − 2− β)2

∫
Dε,r0

|u|2ψ2
β

dx

|x|β+2
( because N ≥ 2)

As supp u ⊂ D̄ε,r0 and |x| 7−→ |x|β a increasing function, then∫
Dε,r0

|u|2ψ2
β

dx

|x|β+2
≤ rβ0

∫
Dε,r0

|u|2ψ2
β

dx

|x|2β+2

Therefore ∫
Dε,r0

|∆u|2ψ2
β|x|β+2 dx ≥ β4F (β)

∫
Dε,r0

|u|2ψ2
β

dx

|x|2β+2

where

F (β) =
4β4 − 2β3(N − 2)− 2rβ0β

2(N − 2− β)2

β4

for r0 < 1, we get lim
β→+∞

F (β) = 4. Hence we take β > β0 with F (β0) ≥ 1/C0 to obtain

the result.
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2.1.2 The uniqueness in Cauchy’s problem for elliptic equations

We can generalize the Holmgren theorem in the case of constant coefficients and the

Cauchy-Kowalewsky theorem in the case of the analytic coefficients, to prove the unique-

ness of solution for the elliptic Cauchy problem by using of Carleman estimates.

Lemma 2.1.3 Let ε < r0/2 < 1/2 and u ∈ H2
loc(RN), such that u = 0 in B(0, ε). We

assume that

|∆u| ≤ C|u| almost everywhere in B(0, r0).

Then u ≡ 0 almost everywhere in B(0, r0/2).

Proof. Let ϕ cut-off function belong to C∞0 (RN), supp ϕ ⊂ B(0, r0) and ϕ(x) = 1 in B(0, r0/2).

By application of the Carleman estimates to ϕ u, we get∫
B(0,r0)

|ϕ|2|u|2

|x|2β+2
exp(

2

|x|β
) dx ≤ C0

β4

∫
B(0,r0)

|∆(ϕu)|2 exp(
2

|x|β
)|x|β+2 dx

In particular∫
B(0,r0/2)

|u|2

|x|2β+2
exp(

2

|x|β
) dx ≤ C0

β4

∫
B(0,r0)

|∆(ϕu)|2 exp(
2

|x|β
)|x|β+2 dx

=
C0

β4

∫
B(0,r0/2)

|∆u|2 exp(
2

|x|β
)|x|β+2 dx

+
C0

β4

∫
Dr0/2,r0

|∆(ϕu)|2 exp(
2

|x|β
)|x|β+2 dx

since |∆u| ≤ C|u|, we have∫
B(0,r0/2)

|u|2

|x|2β+2
exp(

2

|x|β
) dx ≤ C2C0

β4

∫
B(0,r0/2)

|u|2 exp(
2

|x|β
)|x|β+2 dx

+
C0

β4

∫
Dr0/2,r0

|∆(ϕu)|2 exp(
2

|x|β
)|x|β+2 dx

≤ C2C0

β4
(
r0

2
)3β+4

∫
B(0,r0/2)

|u|2 exp(
2

|x|β
)

dx

|x|2β+2

+
C0

β4
r3β+4

0

∫
Dr0/2,r0

|∆(ϕu)|2 exp(
2

|x|β
)

dx

|x|2β+2
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we choose β so large that C2C0(r0/2)3β+4/β4 < 1, to obtain(
1− C2C0

β4
(
r0

2
)3β+4

)∫
B(0,r0/2)

|u|2 exp(
2

|x|β
)

dx

|x|2β+2
≤ C0

β4
r3β+4

0

∫
Dr0/2,r0

|∆(ϕu)|2 exp(
2

|x|β
)

dx

|x|2β+2

and |x| 7−→ exp(2/|x|β)/|x|2β+2 a decreasing function, then∫
B(0,r0/2)

|u|2 exp(
2

|x|β
)

dx

|x|2β+2
≥ C1

∫
B(0,r0/2)

|u|2 dx∫
Dr0/2,r0

|∆(ϕu)|2 exp(
2

|x|β
)

dx

|x|2β+2
≤ C1

∫
Dr0/2,r0

|∆(ϕu)|2 dx

where C1 = exp(2β+1/rβ0 )(2/r0)2β+2. So∫
B(0,r0/2)

|u|2 dx ≤ C0r
3β+4
0

β4 − C2C0(r0/2)3β+4

∫
Dr0/2,r0

|∆(ϕu)|2 dx

letting β −→ +∞, we obtain ∫
B(0,r0/2)

|u|2 dx = 0.

Namely that u ≡ 0 in B(0, r0/2).

Theorem 2.1.4 Let O be a connected open set in RN and u ∈ H2
loc(RN) satisfying

i. ∃ x0 ∈ O, ∃ ε > 0, u(x) = 0 in B(x0, ε)

ii. ∃ C > 0, for almost all x ∈ O, |∆u| ≤ C|u|

then u(x) = 0, ∀ x ∈ O.

Proof. Let x ∈ O. Since O is connected, we can find r0 < 1 and a sequence of n points

x0, x1, ..., xn = x such that

∀j ≤ n, B(xj, r0) ⊂ O.

Moreover

∀j ≤ (n− 1), |xj+1 − xj| < r0/2

since u = 0 in a neighborhood of x0, by Lemma 2.1.3, u = 0 in B(x0, r0/2) and in

particular in a neighborhood of x1. By recurrence, if u = 0 in a neighborhood of xj, then

u = 0 in a neighborhood of xj+1. And thus we find the result.
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Applying Theorem 2.1.4, we obtain the uniqueness of solution for the Cauchy problem

associated with the equation

∆u+Mu = f.

Theorem 2.1.5 Let O be a connected open set in RN . We assume that there exists

x0 ∈ ∂O and ε > 0 such that Γε(x0) = ∂O ∩B(x0, ε) sufficiently regular.

Let u ∈ H2
loc(RN) be a solution in the sense of distributions to the equation

∆u+Mu = 0

such that

u|Γε(x0) = 0 and ∂u
∂n

∣∣
Γε(x0)

= 0

then u ≡ 0 in O.

Proof. Let Oε = O ∪B(x0, ε) and uε be a function defined by

uε =

{
u in O
0 in Oε −O

it is clear that uε belong to H2
loc(Oε). Moreover,

∆uε =

{
∆u in O
0 in Oε −O

Therefore,

∆uε + uε = 0 in L2
loc(Oε)

by Theorem 2.1.4, we deduce that uε ≡ 0 in Oε.

2.1.3 A three-spheres inequality

Theorem 2.1.6 (Homogeneous equation)

Let u be a solution of ∆u+Mu = 0 in B(0, R) and let C0, 0 < C0 ≤ 1 for every r1, r2, r3

with

0 < 2r0 = r1 < r2 < r3 < R0, R0 = min{R,C0ρ0}

then ∃ C > 0, α ∈ (0, 1) such that

‖u‖L2(Br2 ) ≤ C‖u‖αL2(Br1 )‖u‖1−α
L2(Br3 ) (2.9)
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Proof. [17] Let ϕ ∈ C∞0 (r3) defined by

ϕ(x) =

{
1 in I2
0 in I0 ∪ I4

such that

I1 =

{
r0 ≤ |x| <

3

2
r0

}
, I2 =

{
3

2
r0 ≤ |x| <

1

2
r3

}
, I3 =

{
1

2
r3 ≤ |x| ≤

3

4
r3

}
I0 = {0 < |x| < r0} , I4 =

{
3

4
r3 < |x| ≤ r3

}
.

We assume that

•|∇ϕ|+ r0|∆ϕ| ≤ c/r0 on [0, 3/2r0] = I0 ∪ I1,

•|∇ϕ|+ r3|∆ϕ| ≤ c/r3 on I3.

By application of the Carleman estimates to ϕu, we get∫
|ϕ|2|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤ C0

β4

∫
|∆(ϕu)|2 exp(

2

|x|β
)|x|β+2 dx

=⇒
∫

I2
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤ C0

β4

∫
I2
|∆u|2 exp(

2

|x|β
)|x|β+2 dx +

1

β4
J

=⇒ β4

∫
I2
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤ C0

∫
I2
|∆u|2 exp(

2

|x|β
)|x|β+2 dx + J

with

J = C0

∫
I1∪I3
|∆(ϕu)|2 exp(

2

|x|β
)|x|β+2 dx

then

β4

∫
I2
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤ C0M

2

∫
I2
|u|2 exp(

2

|x|β
)|x|β+2 dx + J

≤ C0M
2(1/2r3)3β+4

∫
I2
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
+ J

If we choose β4 > C0M
2(1/2r3)3β+4, then∫

I2
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤ J
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Next we estimate J :

we have

|∆(ϕu)| ≤ |∆ϕ||u|+ 2|∇ϕ||∇u|+ |∆u||ϕ|

≤ |∆ϕ||u|+ 2|∇ϕ||∇u|+M |u|

then


|∆(ϕu)| ≤ (M + c/r2

0)|u|+ 2c/r0|∇u| in I1,

|∆(ϕu)| ≤ (M + c/r2
3)|u|+ 2c/r3|∇u| in I3.

And so

J ≤ C0

∫
I1

(
(M + c/r2

0)|u|+ 2c/r0|∇u|
)2

exp(
2

|x|β
)|x|β+2 dx

+ C0

∫
I3

(
(M + c/r2

3)|u|+ 2c/r3|∇u|
)2

exp(
2

|x|β
)|x|β+2 dx

≤ C0

∫
I1

(
(M + c/r2

0)2|u|2 + c/r2
0|∇u|2

)
exp(

2

|x|β
)|x|β+2 dx

+ C0

∫
I3

(
(M + c/r2

3)2|u|2 + 2c/r2
3|∇u|2

)
exp(

2

|x|β
)|x|β+2 dx

≤ C0(M2 + c/r4
0)

∫
I1
|u|2 exp(

2

|x|β
)|x|β+2 dx + CC0/r

2
0

∫
I1
|∇u|2 exp(

2

|x|β
)|x|β+2 dx

+ C0(M2 + c/r4
3)

∫
I3
|u|2 exp(

2

|x|β
)|x|β+2 dx + CC0/r

2
3

∫
I3
|∇u|2 exp(

2

|x|β
)|x|β+2 dx

≤ C0(M2 + c/r4
0)m(r0)

∫
I1
|u|2 dx + CC0/r

2
0m(r0)

∫
I1
|∇u|2 dx

+ C0(M2 + c/r4
3)m(r3/2)

∫
I3
|u|2 dx + CC0/r

2
3m(r3/2)

∫
I3
|∇u|2 dx

where m(x) = exp( 2
|x|β )|x|β+2.

Let I5 = {x ∈ I2 : |x| ≤ r2} , and therefore∫
I5
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤
∫

I2
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤ J

=⇒ exp(
2

rβ2
)/r2β+2

2

∫
I5
|u|2 dx ≤

∫
I5
|u|2 exp(

2

|x|β
)

dx

|x|2β+2
≤ J
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=⇒
∫

I5
|u|2 dx ≤ h(r2)J, with h(r2) = r2β+2

2 / exp(
2

rβ2
)

then∫
I5
|u|2 dx ≤ h(r2)C0(M2 + c/r4

0)m(r0)

∫
I1
|u|2 dx+ h(r2)CC0/r

2
0m(r0)

∫
I1
|∇u|2 dx

(2.10)

+ h(r2)C0(M2 + c/r4
3)m(r3/2)

∫
I3
|u|2 dx + h(r2)CC0/r

2
3m(r3/2)

∫
I3
|∇u|2 dx

by Caccippoli estimates, we obtain∫
I1
|∇u|2 dx ≤ (M + c/r2

0)

∫
B2r0\Br0/2

|u|2 dx

∫
I3
|∇u|2 dx ≤ (M + c/r2

3)

∫
Br3\Br3/4

|u|2 dx.

We add
∫

|x|<3/2r0

|u|2 dx to (2.10), and we use Caccippoli inequality to obtain:

∫
|x|<r2

|u|2 dx ≤ r2β+2
2

exp( 2

rβ2
)
C0(M2 + C/r4

0) exp(
2

rβ0
)rβ+2

0

∫
I1
|u|2 dx

+
r2β+2

2

exp( 2

rβ2
)
CC0/r

2
0 exp(

2

rβ0
)rβ+2

0 (M2 + C/r2
0)

∫
B2r0\Br0/2

|u|2 dx

+
r2β+2

2

exp( 2

rβ2
)
C0(M2 + C/r4

3) exp(
2β+1

rβ3
)rβ+2

3 /2β+2

∫
I3
|u|2 dx

+
r2β+2

2

exp( 2

rβ2
)
CC0/r

2
3 exp(

2β+1

rβ3
)rβ+2

3 /2β+2(M + C/r2
3)

∫
Br3\Br3/4

|u|2 dx

≤ r2β
2 CC0

(
M2r2

0 +
1

r2
0

)
r2

2 exp(
2

rβ0
)rβ0

∫
B2r0

|u|2 dx

+ r2β
2 CC0

(
M2r2

3 +
1

r2
3

)
r2

2 exp(
2β+1

rβ3
)rβ3

∫
Br3

|u|2 dx

We define a, n1, n3 by

a2 = CC0, n
2
1 =

(
M2r2

0 +
1

r2
0

)
r2

2‖u‖L2(B2r0 ), n
2
3 =

(
M2r2

3 +
1

r2
3

)
r2

2‖u‖L2(Br3 )
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we then have

‖u‖L2(Br2 ) ≤ r2β
2 a2n2

1 exp(
2

rβ0
)rβ0 + r2β

2 a2n2
3 exp(

2

rβ0
)rβ0

≤ 2r2β
2 rβ0a

2n2
3 exp(

2

r0

)

≤ 2A2r2β
2 rβ0n

2
3

≤ 2A2r4β
2 n2

3

we choose

β =
α

2 log r2

log(n1/n3)

and therefore

‖u‖L2(Br2 ) ≤ 2A2r

4α

2 log r2

log(n1/n3)

2 n2
3

= 2A2r

log(n1/n3)2α

log r2
2 n2

3

= 2A2(n1/n3)2αn2
3

= 2A2n2α
1 n

2(1−α)
3

where
1

α
= 1 +

log r1

log r2

then α ∈ (0, 1).

Theorem 2.1.7 (Complete equation)

Let u be a solution of ∆u+Mu = f in B(0, R) and if the hypothesis given in Theorem

(2.1.6) hold, then for every r1, r2, r3 with

0 < 2r0 = r1 < r2 < r3 < R0,

∃ C > 0, α ∈ (0, 1) such that

‖u‖L2(Br2 ) ≤ C(‖u‖L2(Br1 ) + ε)α(‖u‖L2(Br3 ) + ε)1−α (2.11)
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Proof. Let us consider the unique solution u0 to{
∆u0 +Mu0 =f in BR

u0 =0 on ∂BR

we have that

‖u0‖L2(BR) ≤ C‖f‖L2(Rn).

Note that

∆(u− u0) +M(u− u0) = ∆u−∆u0 +Mu−Mu0

= (∆u+Mu)− (∆u0 +Mu0)

= f − f = 0

then u − u0 satisfies the hypotheses of Theorem 2.1.6. And thus, we find the required

formula.

2.1.4 Propagation of smallness

Theorem 2.1.8 (Propagation of smallness in the interior) [1]

Let Ω be a bounded connected open set in Rn with boundary ∂Ω of Lipschitz class with

constants ρ0, M0, (see Appendix) and let Br0(x0) ⊂ Ω be a fixed ball. Let C0 be as in

the thesis of Theorem 2.1.6. Let h, 0 < h < min{2C0ρ0,
r0
2
}, be fixed and let G ⊂ Ω be a

connected open set such that dist(G, ∂Ω) ≥ h and B r0
2

(x0) ⊂ G.

Let u ∈ H1
loc(Ω) be a solution to the equation ∆u+Mu = f, in Ω. Let us assume that

∃ η > 0, E0 > 0 st ‖u‖L2(Br0 (x0)) ≤ η, ‖u‖L2(Ω) ≤ E0.

Then

‖u‖L2(G) ≤ C(η + ε)δ(E0 + ε)1−δ, (2.12)

where

C = C1

(
|Ω|
hn

) 1
2
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and

δ ≥ α
C2|Ω|
hn

with C1 > 0 and α, 0 < α < 1.

Proof. We shall need uniform three-spheres inequality in a domain slightly larger than

G. We can fix radii r1, r2, r3 as follows

r3 =
h

2
, r2 =

r3

5K
=

h

10K
, r1 =

1

3
r2 =

h

30K
, K ∈ (0, 1).

With such a choice the inequality (2.11) applies with C ≥ 1 and α, 0 < α < 1.

Let us consider the set Gr1 as following

Gr1 =
{
x ∈ Rn | dist(x,G) < r1

}
.

We have that Gr1 is a connected open set containing G such that

h ≤ dist(G, ∂Ω)

≤ dist(G,Gr1) + dist(Gr1 , ∂Ω)

≤ dist(Gr1 , ∂Ω) + r1

which implies that

dist(Gr1 , ∂Ω) ≥ h− r1 > h− r3 = h− h

2
=
h

2
= r3.

Since Gr1 is a connected open set in Rn, then Gr1 is path-connected. And therefore, for

every y ∈ Gr1 , there exists a continuous path γ : [0, 1]→ Gr1 such that γ(0) = x0, γ(1) =

y. Let us define 0 = t0 < t1 < · · · < tN = 1, according to the following rule. We set

tk+1 = max{t | |γ(t)− xk| = 2r1} if |xk − y| > 2r1, (2.13)

otherwise we stop the process and set N = k + 1, tN = 1 and |xk+1 − xk| = 2r1. Since

r2 = 3r1 we have that Br1(xk+1) ⊂ Br2(xk) and therefore, by (2.11)

‖u‖L2(Br1 (xk+1)) + ε ≤ C
(
‖u‖L2(Br2 (xk)) + ε

)α
(E0 + ε)1−α
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for k = 0, · · · , N − 1, where C ≥ 1 and α, 0 < α < 1. Denoting

mk =
‖u‖L2(Br2 (xk)) + ε

E0 + ε
,

we then have

mk+1 ≤ Cmα
k , for k = 0, · · · , N − 1

and thus

mN ≤ Cmα
N−1 ≤ C1+αmα2

N−2 ≤ · · · ≤ C̃mδ
0,

where C̃ = C1+α+···+αN and δ = αN . Hence we have obtained

‖u‖L2(Br1 (y)) ≤ C̃
(
‖u‖L2(Br1 (x0)) + ε

)δ
(E0 + ε)1−δ (2.14)

it is clear that 1+α+ · · ·+αN ≤ 1

1− α
and Br1(x0), · · · , Br1(xN−1) are pairwise disjoint,

by contradiction, we assume that

∃ z ∈ Br1(xk) ∩Br1(xk+1) =⇒

{
|xk − z| < r1

|xk+1 − z| < r1

=⇒ |xk+1 − z − xk + z| ≤ |xk − z|+ |xk+1 − z| < 2r1 =⇒ |xk+1 − xk| < 2r1

which is a contradiction with (2.13). Then Br1(xk)∩Br1(xk+1) = ∅ ∀ k = 0, · · · , N − 1.

We have that

C̃ ≤ C
1

1−α and δ ≥ α
C2|Ω|
hn

(
because C ≥ 1 and N ≤ C2|Ω|

hn

)
.

Let us tessellate Rn with internally non-overlapping closed cubes of side l =
2r1√
n

and let

Qj, j = 1, · · · , J, be those cubes which intersect G. Clearly, any such cube is contained

in a ball of radius r1 and center ωj ∈ Gr1 and J ≤ n
n
2 |Ω|

2nrn1
. Therefore, from (2.14), we have

∫
G

u2 ≤
J∑
j=1

∫
Qj

u2 ≤
J∑
j=1

∫
Br1 (ωj)

u2 ≤ JC̃2ρn0
(
‖u‖L2(Br1 (x0)) + ε

)2δ
(E0 + ε)2(1−δ)

≤ JC̃2ρn0
(
‖u‖L2(Br0 (x0)) + ε

)2δ
(E0 + ε)2(1−δ)

≤ JC̃2ρn0 (η + ε)2δ (E0 + ε)2(1−δ).

This completes the proof.
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Remark 2.1.9

We can use Theorem 2.1.8 for proving Theorem 2.1.7 for every 0 < r1 < r2 < r3.

Theorem 2.1.10 (Global propagation of smallness)

Let Ω be a bounded connected open set in Rn with boundary ∂Ω of Lipschitz class with

constants ρ0, M0. Let u ∈ H1(Ω) be a solution to the equation

∆u+Mu = f, in Ω.

Let Br0(x0) ⊂ Ω and let us assume that

∃ η > 0, E > 0 st ‖u‖L2(Br0 (x0)) ≤ η, ‖u‖H1(Ω) ≤ E.

Then, we have

‖u‖L2(Ω) ≤ (E + ε)ω

(
η + ε

E + ε

)
,

where

ω(t) ≤ C(
log

1

t

)µ , for t < 1.

With C > 0 and µ, 0 < µ < 1.

Proof.

See [1].
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2.2 The elliptic Cauchy problem for the Laplace opera-
tor

The Cauchy problem for the Laplace operator is one of the main examples of ill-posed

problems. One can pick up the harmonic functions with arbitrarily small Cauchy data on

a piece of the domain boundary, which will be arbitrarily large in the domain (as in the

famous example of Hadamard 1.7).

2.2.1 Classical problem

We consider the following linear elliptic Cauchy problem: find u : Ω → R such that
−∆u =f, in Ω

u =0 on ΓD

∂nu =ψ on ΓN

(2.15)

where Ω be a convex polygonal (polyhedral) domain in Rd, d = 2, 3, ΓD, ΓN ⊂ ∂Ω denotes

a simply connected parts of the boundary and f ∈ L2(Ω), ψ ∈ H 1
2 (ΓN).

We put Γ = ΓD = ΓN .

As it is mentioned above, it is well-known that this problem is ill-posed in the sense of

Hadamard.

Lemma 2.2.1

There is at most one solution u ∈ H2(Ω) which satisfies (2.15).

Proof.

It is a consequence of the uniqueness Theorem (2.1.5) with M = 0.

2.2.2 A variational setting

Let us introduce the spaces V and W by

V := {v ∈ H1(Ω) : v|Γ = 0}, W := {v ∈ H1(Ω) : v|Γ ′ = 0}
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where Γ ′ := ∂Ω \ Γ. Eq.(2.15) may be cast in the abstract weak formulation{
find u ∈ V such that
a(u,w) = l(w) ∀w ∈ W

(2.16)

where a : V ×W 7→ R and l : W 7→ R are a bilinear and a linear form, given by

a(u,w) :=

∫
Ω

∇u · ∇w dx, and l(w) :=

∫
Ω

fw dx +

∫
Γ

ψw ds

Since u /∈ W coercivity fails and inf-sup stability does not hold either in general (see [6]),

so the variational problem is ill-posed in general.

The lake of coerciveness makes it worthless to write down the minimization problem

related to the variational problem.

2.3 Conditional stability

There is a rich literature on conditional stability estimates for ill-posed problems, which

used for the derivation of error estimates, without relying on the Lax-Milgram Lemma or

the Babuska-Brezzi Theorem.

The estimates are conditional, in the sense that they only hold under the condition that

the exact solution exists in some Sobolev space V and it satisfies some a priori estimates

with respect to the norm of the considered spaces, hence we assume that the linear form

l(w) is such that the problem (2.16) admits a unique solution u ∈ V.

Definition 2.3.1 (Conditional stability)

We say that a solution u of (2.16) satisfies the conditional stability if for some sufficiently

small ε > 0, there hods

‖l‖W ′ ≤ ε in (2.16) then |j(u)| ≤ Ξ(ε). (2.17)

where j : V 7→ R and Ξ : R+ 7→ R+ be a continuous, monotone increasing function,

with

lim
x−→0+

Ξ(x) = 0.
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2.3.1 Interior and global estimates

Theorem 2.3.2 [1] If (2.16) admits a unique solution u ∈ H1(Ω), a conditional stability

of the form (2.17), with 0 < ε < 1, holds for

j(u) := ‖u‖L2(ω), ω ⊂ Ω : dist(ω, ∂Ω) =: dω,∂Ω > 0

with

Ξ(x) := Cuςx
ς , Cuς > 0, ς := ς(dω,∂Ω) ∈ (0, 1) (2.18)

and for

j(u) := ‖u‖L2(Ω), with Ξ(x) := Cu(| log(x)|+ C)−ς . (2.19)

with Cu, C > 0, ς ∈ (0, 1).

Proof.

It suffices to apply Theorem 2.1.8 and Theorem 2.1.10.

Remark 2.3.3

I The constant Cuς in (2.18) grows monotonically in ‖u‖L2(Ω) (from Theorem 2.1.8)

I The constant Cu in (2.19) grows monotonically in ‖u‖H1(Ω). (from Theorem 2.1.10)
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Chapter 3

Finite elements approximation of
the ill-posed problem (2.16)

3.1 Conforming finite elements

3.1.1 A Finite element discretization

Let Th be a shape regular, conforming, subdivision of Ω, the family of meshes {Th}h is

indexed by the mesh parameter h := max(diam(T )). Th is a finite set of triangles such

that:

1. ∀ T ∈ Th, T ⊂ Ω

2. ∀ T1, T2 ∈ Th, T1 6= T2 =⇒ T̊1 ∩ T̊2 = ∅

3.
⋃

T∈Th
T = Ω.

Let FI be the set of interior faces in Th and FΓ , FΓ ′ the set of element faces of Th whose

interior intersects Γ and Γ ′ respectively. We assume that FΓ ∩ FΓ ′ = ∅.
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Let X1
h the space of continuous, affine functions. We approximate the spaces V, W by

the following finite element spaces

Vh := V ∩X1
h and Wh := W ∩X1

h.

Then the discrete problem is given by{
find uh ∈ Vh such that
ah(uh, wh) = lh(wh) ∀wh ∈ Wh

(3.1)

where the forms ah(·, ·) and lh(·) are discrete realisations of a(·, ·) and l(·). The discrete

problem can be written as followfind uh :=
N1∑
j=1

ujϕj ∈ Vh such that

ah(uh, φi) = lh(φi) i = 1, · · · , N2

(3.2)

where the {ϕi} and {φi} are suitable bases for Vh and Wh respectively, and N1 =

dim(Vh), N2 = dim(Wh). The problem (3.2) may be written as the linear system

AU = L,

where A is an N1 ×N2 matrix, with coefficients Aij := ah(ϕi, φj) and

U = (u1, · · · , uN1)T , L = (lh(φ1), · · · , lh(φN2))T .

Observe that since we have not assumed N1 = N2 this system may not be square, but

even if it is, it may have zero eigenvalues. Possibly implies

1. non-uniqueness: ∃ Ũ ∈ RN1 \ {0} such that AŨ = 0;

2. non-existence: ∃ L ∈ RN1 such that L /∈ ImA.

Hence, the discrete system may be ill-posed.

Now we define the Lagrangian L (see [5]) by:

L(uh, zh) = ah(uh, zh)− lh(zh) +
1

2
sV (uh − u, uh − u)− 1

2
sW (zh, zh)

where sV (uh − u, uh − u) and sW (zh, zh) represents a penalty term.
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Since (uh, zh) is a saddle point of L, then

∂L

∂zh
(uh, zh) = 0

∂L

∂uh
(uh, zh) = 0

We will need to compute
∂L

∂zh
(uh, zh) and

∂L

∂uh
(uh, zh) :

let (k1, k2) ∈ Vh ×Wh, we have that

L(uh + k1, zh + k2)− L(uh, zh) = ah(uh + k1, zh + k2)− lh(zh + k2)

+
1

2
sV (uh + k1 − u, uh + k1 − u)− 1

2
sW (zh + k2, zh + k2)

− ah(uh, zh) + lh(zh)−
1

2
sV (uh − u, uh − u) +

1

2
sW (zh, zh)

' ah(uh, k2) + ah(k1, zh)− lh(k2) + sV (uh − u, k1)− sW (zh, k2)

thus 
∂L

∂zh
(uh, zh) = ah(uh, wh)− sW (zh, wh)− lh(wh) = 0

∂L

∂uh
(uh, zh) = ah(vh, zh) + sV (uh − u, vh) = 0

We may then write the finite element method:
Find (uh, zh) ∈ Vh ×Wh such that

ah(uh, wh)− sW (zh, wh) = lh(wh), ∀wh ∈ Wh

ah(vh, zh) + sV (uh, vh) = sV (u, vh), ∀vh ∈ Vh

(3.3)

A possible choice of stabilization operators for the problem are (see [3])

sV (uh, vh) :=
∑

F∈FI∪FΓ

∫
F

hF J∂nuhKJ∂nvhKds, with hF := diam(F ) (3.4)

sW (zh, wh) := a(zh, wh) (3.5)
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Remark 3.1.1

• For this choice sV (u, vh) is known if u ∈ H2(Ω) even when u is not known explicitly.

• The Lagrange multiplier zh is the solution to the adjoint problem and is tends to zero

as h goes to zero (see Table 4.1 in Example 4.1).

Lemma 3.1.2

The quantities (sV (vh, vh))
1/2 and (sW (wh, wh))

1/2 define norms on Vh andWh respectively.

Proof.

First it is clear that zero is the only constant function in Vh. Let v ∈ Vh such that

sV (vh, vh) = 0. Then

J∂nvhK|e = 0, ∀e ∈ FI ∪ FΓ =⇒ ∇vh · ne = 0, ∀e ∈ F

Since JvhK|e = 0,∀e ∈ FI ∪ FΓ then

J∂tvhK|e = 0,∀e ∈ FI ∪ FΓ =⇒ ∇vh · te = 0,∀e ∈ F

Hence ∇vh = 0 in Ω =⇒ vh = Cte =⇒ vh = 0.

For sW it suffice to observe that Wh ⊂ W ⊂ H1
0 (Ω) then we conclude by Poincaré’s

inequality.

Corollary 3.1.3 sV and sW define semi-norms on Hs(Ω) + Vh and Hs(Ω) + Wh respec-

tively,

for some s ≥ 1, |v+vh|sZ := sZ(v+vh, v+vh)
1
2 , ∀v ∈ Hs(Ω), vh ∈ Zh, with Z = V,W.

(3.6)

Let us now introduce on the space Vh ×Wh the norm:

‖(vh, wh)‖2
h = sV (vh, vh) + sW (wh, wh).

and other form of the formulation (3.3), find (uh, zh) ∈ Vh ×Wh such that

A[(uh, zh), (vh, wh)] = Lh(vh, wh) ∀(vh, wh) ∈ Vh ×Wh (3.7)
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where

A[(uh, zh), (vh, wh)] := a(uh, wh)− sW (zh, wh) + a(vh, zh) + sV (vh, uh)

and

Lh(vh, wh) := lh(wh) + sV (u, vh)

Then we have the following stability estimate:

Lemma 3.1.4 Let (uh, zh) be a solution of the formulation (3.3), then

‖(uh, zh)‖h ≤ sup
(vh,wh)∈Vh×Wh

A((uh, zh); (vh, wh))

‖(vh, wh)‖h

Proof.

If we take vh = uh and wh = −zh, we get

sup
(vh,wh)∈Vh×Wh

A((uh, zh); (vh, wh))

‖(vh, wh)‖h
≥ A((uh, zh); (vh, wh))

‖(vh, wh)‖h

=
A((uh, zh); (uh,−zh))
‖(uh,−zh)‖h

=
a(uh,−zh)− sW (zh,−zh) + a(uh, zh) + sV (uh, uh)

‖(uh,−zh)‖h
= ‖(uh, zh)‖h.

Theorem 3.1.5 The formulation (3.3) has a unique solution (uh, zh).

Proof. To prove unique existence of (uh, zh) solution to (3.3) we need to show that there

are no zero eigenvalues to the system matrix corresponding to (3.3).

Assume that lh(wh) = sV (u, vh) = 0 in (3.3) then

by Theorem 3.1.4 we get uh = 0, zh = 0 which is a contradiction.

Galerkin Orthogonality

Taking the difference of 3.3 and the relation 2.16, with w = wh, we obtain the Galerkin

orthogonality

a(uh−u,wh)−sW (zh, wh)+a(vh, zh)+sV (uh−u, vh) = 0, for all(vh, wh) ∈ Vh×Wh. (3.8)
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3.1.2 Some lemma on forms and interpolants

Theorem 3.1.6 (Scott-Zhang) [12]

Let p and l satisfy 1 ≤ p ≤ ∞ and{
l ≥ 1 if p = 1

l > 1
p

otherwise.

Then, there is c such that the following properties hold

(i) Stability: for all 0 ≤ m ≤ min(1, l),

∀h > 0, ∀v ∈ W l,p(Ω), ‖SZhv‖m,p,Ω ≤ c ‖v‖l,p,Ω

(ii) Approximation: provided l ≤ k + 1, for all 0 ≤ m ≤ l,

∀h > 0, ∀T ∈ Th,∀v ∈ W l,p(V (T )) ‖v − SZhv‖m,p,T ≤ c hl−mT |v|l,p,,V (T )

where SZh : H1(Ω)→ Vh,

Figure 3.1: The set V (T ).

For more detail see [12].

Lemma 3.1.7

The quantities ‖v‖∗,V = ‖∇v‖L2(Ω) and ‖w‖∗,W = ‖h−1w‖L2(Ω) + (
∑

F∈FI∪FΓ
h−1‖w‖2

L2(F ))
1/2

define norms on V and W respectively.

38



3.1. CONFORMING FINITE ELEMENTS CHAPTER 3.

Lemma 3.1.8 The form bilinear a(·, ·) satisfies the continuities

a(v − SZhv, wh) ≤ ‖v − SZhv‖∗,V |wh|sW , ∀v ∈ V, wh ∈ Wh (3.9)

Proof. By the Cauchy-Schwarz inequality, we find

a(v − SZhv, wh) =

∫
Ω

∇(v − SZhv) · ∇wh dx

≤
(∫

Ω

|∇(v − SZhv)|2
)1/2(∫

Ω

|∇wh|2
)1/2

= ‖v − SZhv‖∗,V (a(wh, wh))
1/2

= ‖v − SZhv‖∗,V (sW (wh, wh))
1/2

= ‖v − SZhv‖∗,V |wh|sW

Lemma 3.1.9 For v ∈ V and t > 0 :

|v − SZhv|sV + ‖v − SZhv‖∗,V ≤ CV (v)ht. (3.10)

The factor CV (v) > 0 will typically depend on some Sobolev norm of v.

In particular, we have

Corollary 3.1.10

For u ∈ H2(Ω) be a solution of (2.15) there holds

|u− SZhu|sV + ‖u− SZhu‖∗,V ≤ Ch‖u‖H2(Ω). (3.11)

Lemma 3.1.11 There is CW > 0 such that

‖w − SZhw‖∗,W + ‖SZhw‖sW ≤ CW‖w‖W , ∀w ∈ W. (3.12)

Proof. Let w ∈ W,

‖w − SZhw‖∗,W = ‖h−1(w − SZhw)‖L2(Ω) + (
∑

F∈FI∪FΓ

h−1‖w − SZhw‖2
L2(F ))

1/2
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by trace inequality and Theorem 3.1.6 we get

‖w − SZhw‖∗,W ≤ C|w|1,Ω ≤ C‖w‖1,Ω = C‖w‖W .

‖SZhw‖sW ≤ C‖SZhw‖Wh
= C‖SZhw‖H1(Ω) ≤ C‖w‖H1(Ω)

this complete the proof.

Lemma 3.1.12 Let u be a solution of 2.16, then

a(u− uh, w − SZhw) ≤ δl(h)‖w‖W + ‖w − SZhw‖∗,W |u− uh|sV , ∀w ∈ W. (3.13)

With δl(h) only depends on the properties of the interpolant SZh and the data of the

problem, and satisfies lim
h−→0

δl(h) = 0.

Proof.

a(u− uh, w − SZhw) =

∫
Ω

∇(u− uh) · ∇(w − SZhw) dx

=
∑
T∈Th

∫
T

∇(u− uh) · ∇(w − SZhw) dx

by integration by parts, we obtain

a(u− uh, w − SZhw) =
∑
T∈Th

(∫
T

−∆(u− uh)(w − SZhw) dx +

∫
∂T

∂n(u− uh)(w − SZhw) ds
)

= (f, w − SZhw)L2(Ω) +
∑

F∈FI∪FΓ

(J∂n(u− uh)K, w − SZhw)L2(F )

We use the Cauchy-Schwarz inequality, to get

a(u− uh, w − SZhw) ≤ ‖f‖L2(Ω)‖w − SZhw‖L2(Ω)

+

( ∑
F∈FI∪FΓ

h|J∂n(u− uh)K|2
)1/2( ∑

F∈FI∪FΓ

h−1|w − SZhw|2
)1/2

≤ ‖f‖L2(Ω)h‖w − SZhw‖∗,W

+

( ∑
F∈FI∪FΓ

h|J∂n(u− uh)K|2
)1/2( ∑

F∈FI∪FΓ

h−1|w − SZhw|2
)1/2
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By (3.12), we find

a(u− uh, w − SZhw) ≤ CWh‖f‖L2(Ω)‖w‖W

+

( ∑
F∈FI∪FΓ

h|J∂n(u− uh)K|2
)1/2( ∑

F∈FI∪FΓ

h−1|w − SZhw|2
)1/2

≤ CWh‖f‖L2(Ω)‖w‖W +

( ∑
F∈FI∪FΓ

h|J∂n(u− uh)K|2
)1/2

‖w − SZhw‖∗,W

= CWh‖f‖L2(Ω)‖w‖W + |u− uh|sV ‖w − SZhw‖∗,W

= δl(h)‖w‖W + ‖w − SZhw‖∗,W |u− uh|sV

with δ(h) = CWh‖f‖L2(Ω).

3.1.3 Error analysis

A priori error analysis

Lemma 3.1.13 Let u be the solution of (2.16) and (uh, zh) the solution of the formulation

(3.3) for which (3.6), (3.9) and (3.10) hold. Then

|u− uh|sV + |zh|sW ≤ (1 +
√

2)CV (u)ht.

Proof. Let ξh := iV u− uh, by the triangle inequality

|u− uh|sV ≤ |u− iV u|sV + |ξh|sV (3.14)

and write

|ξh|2sV + |zh|2sW = sV (ξh, ξh) + a(ξh, zh)− a(ξh, zh) + sW (zh, zh).

Using Eq.(3.8) with vh = ξh and wh = zh we get

−a(ξh, zh) + sW (zh, zh) = a(uh − u, zh) + sV (uh − u, ξh)
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we then have

|ξh|2sV + |zh|2sW =sV (ξh, ξh) + a(ξh, zh) + a(uh − u, zh)

+ sV (uh − u, ξh)

=sV (ξh, ξh) + a(ξh, zh)− a(ξh, zh) + a(iV u− u, zh)

− sV (ξh, ξh) + sV (iV u− u, ξh)

=sV (iV u− u, ξh) + a(iV u− u, zh).

By the Cauchy-Schwarz inequality in the first term

sV (iV u− u, ξh) ≤ |iV u− u|sV |ξh|sV

and the continuity (3.9) in the second,

a(iV u− u, zh) ≤ C‖iV u− u‖∗,V |zh|sW

Then by (3.10), we may deduce:

|ξh|2sV + |zh|2sW ≤ |iV u− u|sV |ξh|sV + ‖iV u− u‖∗,V |zh|sW

≤ CV (u)ht(|ξh|2sV + |zh|2sW )
1
2 .

Otherwise, we have

(
|ξh|2sV + |zh|2sW

) 1
2 ≥ 1√

2
(|ξh|sV + |zh|sW ) .

Then

|ξh|sV + |zh|sW ≤
√

2CV (u)ht

and by (3.10) and (3.14), we find that

|u− uh|sV − |ξh|sV ≤ |u− iV u|sV ≤ CV (u)ht.
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A posteriori error analysis

Theorem 3.1.14 Let u be the solution of (2.16) and (uh, zh) the solution of the formu-

lation (3.3) for which (3.6), (3.10) hold. Assume that the problem (2.16) has the stability

property (2.17). Then

|j(u− uh)| ≤ Ξ(η(uh, zh)) (3.15)

where the a posteriori quantity η(uh, zh) is defined by

η(uh, zh) := δl(h) + CW (|u− uh|sV + |zh|sW ).

Corollary 3.1.15

For sufficiently smooth u there holds:

η(uh, zh) ≤ δl(h) + (1 +
√

2)CWCV (u)ht. (3.16)

Proof. Directly by Lemma 3.1.13.

Proof of Theorem 3.1.14.

Let e := u− uh ∈ V, for all w ∈ W we have:

a(e, w) = a(e, w − iWw) + a(e, iWw)

= a(e, w − iWw)− sW (zh, iWw) (By the Galerkin orthogonality)

= l(w − iWw)− a(uh, w − iWw)− sW (zh, iWw) (3.17)

and we identify r ∈ W ′ such that ∀w ∈ W,

(r, w)W ′,W = l(w − iWw)− a(uh, w − iWw)− sW (zh, iWw). (3.18)

We have shown that e satisfies equation (2.16) with right-hand side (r, w)W ′,W (by (3.17)).

Now apply the continuity (3.13), Cauchy-Schwarz inequality and the stability (3.12) in

the right-hand side of (3.18), leading to:

|(r, w)W ′,W | = |a(e, w− iWw)− sW (zh, iWw)| ≤ (δl(h) +CW |u− uh|sV +CW |zh|sW )‖w‖W .
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We conclude that

‖r‖W ′ ≤ δl(h) + CW (|u− uh|sV + |zh|sW )

and the claim (3.15) follows by assumption (2.17).

Corollary 3.1.16

Let u ∈ H2(Ω) be the solution of (2.15) and uh, zh the solution of (3.3)-(3.4). Then

the conclusions of Lemma 3.1.13 and Theorem 3.1.14 hold for u− uh, zh with t = 1 and

j(·), Ξ(·) given by (2.18) or (2.19).

Proof. We obtain the required by using Corollary 3.1.10.

3.2 Nonconforming finite elements

Let us consider the problem 2.15 with ΓD 6= ΓN ,
−∆u =f, in Ω

u =0 on ΓD

∂nu =ψ on ΓN

(3.19)

where ΓD, ΓN are two subsets of the boundary ∂Ω, we denote the complement of the

Neumann boundary Γ ′N := ∂Ω \ ΓN . To exclude the well-posed case, we assume that

∂Ω \ (ΓD ∪ ΓN) 6= ∅.

In this case, for the derivation of a weak formulation we introduce the spaces

V := {v ∈ H1(Ω) : v|ΓD = 0} and W := {v ∈ H1(Ω) : v|Γ ′N = 0}

then we obtain a weak formulation{
find u ∈ V such that
a(u,w) = l(w) ∀w ∈ W

(3.20)

where a : V ×W 7→ R and l : W 7→ R are a bilinear and a linear form, given by

a(u,w) :=

∫
Ω

∇u · ∇w dx, and l(w) :=

∫
Ω

fw dx +

∫
ΓN

ψw ds

Remark 3.2.1

The same assumptions and the results when ΓD = ΓN , are valid in the case of ΓD 6= ΓN .
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3.2.1 Crouzeix-Raviart nonconforming finite element discretiza-
tion

Let {Th} denote a family of shape regular and quasi tessellations of Ω into non-overlapping

simplices, such that ∀ T1, T2 ∈ Th, T1 6= T2

T1 ∩ T2 consists of either the empty set, a common face or edge, a common vertex.

The diameter of T ∈ Th will be denoted hT and the outward pointing normal nT . The

family Th is indexed by h := max
T∈Th

(hT ).

We denote the set of element faces in Th by F and let Fi denote the set of interior faces

and FΓ the set of faces in some Γ ⊂ ∂Ω. To each face F ∈ F we associate the mesh

parameter hF := diam(F ) and a unit normal vector, nF . For interior faces its orientation

is arbitrary, but fixed. On the boundary ∂Ω we identify nF with the outward pointing

normal of ∂Ω.

Crouzeix-Raviart finite element space

With the triangulation Th, we introduce the Crouzeix-Raviart finite element space (see

[10])

V CR
h =

{
vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th, and

∫
F

JvhK ds = 0 ∀F ∈ Fi
}

by the condition
∫
F
JvhK ds = 0, the space V CR

h can be defined by

V CR
h =

(
vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th

vh is continuous at midpoint of edges Fi

)

T1

T2

F

aF

•

• •

•

•

Let F ∈ F , the associated basis function
ϕF is defined by

ϕF (aE) =

{
1 if E = F ;
0 if E 6= F.
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Figure 3.2: Crouzeix-Raviart functions. Figure 3.3: Crouzeix-Raviart basis.

The global interpolant operator of Crouzeix-Raviart ICRh is defined as follows:

ICRh : H1(Ω)→ V CR
h

v 7→ ICRh (v)

with ICRh (v)(x) :=
∑
F∈F

v(aF )ϕF (x).

and on the reference element, we define the Crouzeix-Raviart interpolant by

ÎCRh (v̂)(x̂) :=
∑
i≤3

N̂i(v̂)ϕ̂i(x̂)

where

N̂i(v̂) =
1

|F̂i|

∫
F̂i

v̂ ds.

Let now we define the subspace V CR
h,Γ of V CR

h by

V CR
h,Γ :=

{
vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th, and

∫
F

[vh] ds = 0 ∀F ∈ Fi ∪ FΓ
}

In the nonconforming finite element methods the approximate spaces V CR
h,Γ are not

contained in the spaces V, W . Then the discrete problem consists in finding a function

uh ∈ V CR
h,ΓD

such that,

for all wh ∈ V CR
h,Γ ′N

, ah(uh, wh) = lh(wh),

where the approximate bilinear form ah(·, ·) is defined by

ah(uh, wh) =
∑
T∈T

∫
T

∇uh · ∇wh dx
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the linear form l(·) need not be approximated since the inclusion V CR
h,Γ ′N
⊂ L2(Ω) holds.

In this case, we introduce the norms

‖v‖2
L2(Ω) :=

∑
T∈T

‖v‖2
L2(T ) and ‖v‖2

L2(F) :=
∑
F∈F

‖v‖2
L2(F ).

As in the above section, we propose the formulation
Find (uh, zh) ∈ V CR

h,ΓD
× V CR

h,Γ ′N
such that

ah(uh, wh)− sW (zh, wh) = l(wh), ∀wh ∈ V CR
h,Γ ′N

ah(vh, zh) + sV (uh, vh) = sV (u, vh), ∀vh ∈ V CR
h,ΓD

(3.21)

A possible choice of stabilization operators for the problem in this case are (see [4])

sW (zh, wh) :=
∑
T∈T

∫
T

γW∇zh · ∇wh dx (3.22)

sV (uh, vh) :=
∑

F∈Fi∪FΓD

∫
F

γV h
−1
F JuhKJvhK ds (3.23)

We have assumed u ∈ H2(Ω) then by sobolev embedding u ∈ C(Ω) and thus sV (u, vh) = 0.

So, we can write (3.21) as follow
Find (uh, zh) ∈ V CR

h,ΓD
× V CR

h,Γ ′N
such that

ah(uh, wh)− sW (zh, wh) = l(wh), ∀wh ∈ V CR
h,Γ ′N

ah(vh, zh) + sV (uh, vh) = 0, ∀vh ∈ V CR
h,ΓD

(3.24)

Remark 3.2.2

Since the Dirichlet conditions on V CR
h,ΓD

and V CR
h,Γ ′N

set on different parts of the boundary,

we will use the Nitsche’s method.

Nitsche’s method is a method to incorporate Dirichlet boundary conditions weakly, i.e.,

without specifying nodal values on the boundary, by impose boundary conditions via

penalization, but we introduce new terms may maintain consistency and coercivity of the

bilinear form, (see [18]).

Then the problem (3.24) can be written as follows
Find (uh, zh) ∈ V CR

h × V CR
h such that

ah(uh, wh)− bh(uh, wh)− sW (zh, wh) = l(wh), ∀wh ∈ V CR
h

ah(vh, zh)− bh(vh, zh) + sV (uh, vh) = 0, ∀vh ∈ V CR
h

(3.25)

47



3.2. NONCONFORMING FINITE ELEMENTS CHAPTER 3.

with the boundary term bh(·, ·) is defined by (see [4])

bh(vh, wh) :=
∑
F∈F∂Ω

(∫
F∩Γ ′N

n · ∇vhwh ds +

∫
F∩ΓD

n · ∇whvh ds

)

and we modify the stabilization sW (·, ·) so that the stabilization parameter may be chosen

differently in the interior and on the boundary,

sW (zh, wh) :=
∑
T∈T

∫
T

γW∇zh · ∇wh dx +
∑

F∈FΓ ′
N

∫
F

γW,bch
−1
F zhwh ds

Remark 3.2.3

The penalty parameters γV , γW , γW,bc are all strictly positive and independent of h.

Remark 3.2.4

If (uh, zh) and (vh, wh) are restricted to V CR
h,ΓD
×V CR

h,Γ ′N
in (3.25) we recover the formulation

(3.24), because V CR
h,ΓD
× V CR

h,Γ ′N
is in the kernel of the operator bh(·, ·).

Trace and inverse inequalities

Lemma 3.2.5 (Trace inequality) There exists Ct > 0 such that for all v ∈ H1(T ) and

all F ∈ F ,

‖v‖L2(F ) ≤ Ct(h
− 1

2
T ‖v‖L2(T ) + h

1
2
T‖∇v‖L2(T )).

Proof. Let v ∈ H1(T ) and let F ∈ F

F

T

a
•

Let a is the vertex of T opposite to F and let us con-
sider the R2-valued function

δ(x, y) :=
|F |
2|T |

(
x− xa
y − ya

)

(note that δ(x, y)|F = 1)
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Then by using of the divergence theorem, we find

‖v‖2
L2(F ) =

∫
F

|v|2 =

∫
∂T

|v|2(δ · nT ) =

∫
∂T

(|v|2δ) · nT

=

∫
T

div(|v|2δ)

=

∫
T

2 v δ · ∇v +

∫
T

|v|2div(δ)

≤ C1hT‖v‖L2(T )‖∇v‖L2(T ) + C2h
−1
T ‖v‖

2
L2(T )

≤ C1hT‖∇v‖2
L2(T ) + C2h

−1
T ‖v‖

2
L2(T ).

Lemma 3.2.6 (Inverse inequality) There exists Ci > 0 such that

hT‖∇vh‖L2(T ) + h
1
2
T‖vh‖L2(F ) ≤ Ci‖vh‖L2(T ), ∀T ∈ Th, F ∈ F and ∀vh ∈ V CR

h .

Proof. First a prove

hT‖∇vh‖L2(T ) ≤ C‖vh‖L2(T ) (3.26)

on the reference triangle, we have

|v̂h|1,T̂ ≤ C‖v̂h‖L2(T̂ ) (all norms on finite-dimensional vector spaces are equivalent)

then

|vh|1,T ≤ Ch−1
T ‖vh‖L2(T ).

By (3.26) and Lemma 3.2.5 we get

hT‖∇vh‖L2(T ) + h
1
2
T‖vh‖L2(F ) ≤ C‖vh‖L2(T ) + Ct‖v‖L2(T ) + CthT‖∇v‖L2(T )

≤ Ci‖vh‖L2(T ).

Lemma 3.2.7 (Discrete trace inequality) For any vh ∈ V CR
h there exists C indepen-

dent of h, such that

hF‖∂nvh‖2
L2(F ) ≤ C‖∇vh‖2

L2(T ) ∀T ∈ Th, F ∈ F . (3.27)
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Proof. It is proved by using the equivalence of norms on the reference element.

Lemma 3.2.8 (Poincaré inequality for piecewise constant functions)

Let vh be a piecewise constant function, then there exists C ≥ 0 such that

‖vh‖2
L2(Ω) ≤ C

∑
F∈Fi∪FΓN

h−1
F ‖JvhK‖

2
F .

Proof.

Let us consider the following auxiliary problem{
−∆ϕ = vh in Ω

ϕ = 0 on ∂Ω

this is a well-posed problem. Moreover, by the elliptic regularity we have

‖ϕ‖H2(Ω) ≤ C‖vh‖L2(Ω)

and

‖vh‖2
L2(Ω) =

∑
T∈T

‖vh‖2
L2(T ) =

∑
T∈T

∫
T

v2
h

=
∑
T∈T

∫
T

(−∆ϕ)vh =
∑
T∈T

∫
∂T

∂ϕ

∂n
vh

≤
∑
F∈F

∫
F

h
1
2
F

∂ϕ

∂n
h
− 1

2
F JvhK.

By Cauchy-Schwarz inequality and normal trace Theorem, we get

‖vh‖2
L2(Ω) ≤ C‖ϕ‖H2(Ω)

∑
F∈Fi∪FΓN

∫
F

h
− 1

2
F JvhK

≤ C‖vh‖L2(Ω)

∑
F∈Fi∪FΓN

∫
F

h
− 1

2
F JvhK

Approximation results of the Crouzeix-Raviart interpolation

Lemma 3.2.9 For any function v ∈ H t(T ),

‖v − ICRh (v)‖L2(T ) + hT |v − ICRh (v)|H1(T ) ≤ ChtT |v|Ht(T ), t = 1, 2
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Proof.

1. For t = 1, let v ∈ H1(T ) :

• ‖v − ICRh (v)‖L2(T ) ≤ ChT |v|H1(T ) ?

by A.3.2, we have

‖v − ICRh (v)‖2
L2(T ) ≤ C| detBT |‖v̂ − ÎCRh (v̂)‖2

L2(T̂ )

Let p ∈ P0(T̂ )

‖v̂ − ÎCRh (v̂)‖2
L2(T̂ )

= ‖v̂ + p− p− ÎCRh (v̂)‖2
L2(T̂ )

= ‖v̂ + p− ÎCRh (v̂ + p)‖2
L2(T̂ )

≤ 2
(
‖v̂ + p‖2

L2(T̂ )
+ |ÎCRh (v̂ + p)‖2

L2(T̂ )

)
≤ 2

(
‖v̂ + p‖2

H1(T̂ )
+ ‖ÎCRh (v̂ + p)‖2

L2(T̂ )

)
≤ C‖v̂ + p‖2

H1(T̂ )
∀ p ∈ P0(T̂ )

≤ C inf
p∈P0(T̂ )

‖v̂ + p‖2
H1(T̂ )

≤ C |v̂|2
H1(T̂ )

(Deny Lions Lemma)

and thus

‖v − ICRh (v)‖2
L2(T ) ≤ C| detBT ||v̂|2H1(T̂ )

≤ C ‖BT‖2 |v|2H1(T )

= C
h2
T

ρ̂2
|v|2H1(T )

= C h2
T |v|2H1(T ) (as required)

• |v − ICRh (v)|H1(T ) ≤ C|v|H1(T ) ?

we have

|v − ICRh (v)|2H1(T ) ≤ C ‖ detB−1
T ‖

2 | detBT | |v̂ − ÎCRh (v̂)|2
H1(T̂ )

≤ C ‖ detB−1
T ‖

2 | detBT |
(
|v̂|H1(T̂ ) + |ÎCRh (v̂)|H1(T̂ )

)2

≤ C ‖ detB−1
T ‖

2 | detBT |
(
|v̂|2

H1(T̂ )
+ |ÎCRh (v̂)|2

H1(T̂ )

)
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Moreover, we may write

|ÎCRh (v̂)|H1(T̂ ) = |ÎCRh (v̂)− c|H1(T̂ ) = |ÎCRh (v̂ − c)|H1(T̂ )

= |
3∑
i=1

N̂i(v̂ − c)ϕ̂i|H1(T̂ )

≤
3∑
i=1

|N̂i(v̂ − c)| |ϕ̂i|H1(T̂ )

≤ C
3∑
i=1

|N̂i(v̂ − c)|

with

|N̂i(v̂ − c)| =

∣∣∣∣∣ 1

|F̂i|

∫
F̂i

(v̂ − c) ds

∣∣∣∣∣ ≤ |F̂i|−1‖1‖L2(F̂i)
‖v̂ − c‖L2(F̂i)

= |F̂i|−2‖v̂ − c‖L2(F̂i)

≤ C ‖v̂ − c‖L2(T̂ )

then

|ÎCRh (v̂)|H1(T̂ ) ≤ C‖v̂−c‖L2(T̂ ) ≤ C|v̂|H1(T̂ )

(
by Poincaré-Wirtinger with c =

1

|T̂ |

∫
T̂

v̂

)
Therefore, we obtain

|v − ICRh (v)|2H1(T ) ≤ C ‖ detB−1
T ‖

2 | detBT | |v̂|2H1(T̂ )

≤ C ‖ detB−1
T ‖

2 ‖ detBT‖2 |v|2H1(T )

= C |v|2H1(T )

2. For t = 2 we use the same way.

Lemma 3.2.10 For any function v ∈ H t(T ) there holds

h
− 1

2
T ‖v − I

CR
h (v)‖L2(F ) ≤ Cht−1

T |v|Ht(T ), t = 1, 2

Proof. Let v ∈ H t(T ) for T ∈ Th, by using of Lemma 3.2.5 we get

‖v − ICRh (v)‖L2(F ) ≤ Ct(h
− 1

2
T ‖v − I

CR
h (v)‖L2(T ) + h

1
2
T |v − I

CR
h (v)|L2(T ))

= Ct h
− 1

2
T (‖v − ICRh (v)‖L2(T ) + hT |v − ICRh (v)|L2(T ))

then we obtain the required formula by using Lemma 3.2.9.
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Lemma 3.2.11 For all v ∈ H2(T ) and T ∈ Th,

h
1
2
T‖∂n(v − ICRh (v))‖L2(F ) ≤ ChT |v|H2(T )

Proof.

To obtain the required we use normal trace Theorem with Lemme 3.2.9 on the reference

element.

Lemma 3.2.12 For any vh ∈ V CR
h we have

h−1‖vh‖Ω ≤ cτ

(∑
F∈F

h−1
F ‖v̄h‖

2
L2(F )

) 1
2

Proof. It follows by norm equivalence of discrete spaces on the reference element that

for all T ∈ Th
‖v̂h‖2

L2(T̂ )
≤ C

∑
F̂∈∂T̂

‖¯̂vh‖2
L2(F̂ )

then

h−2
T ‖vh‖

2
L2(T ) ≤ C

∑
F∈∂T

h−1
F ‖v̄h‖

2
L2(F )

=⇒
∑
T∈T

h−2
T ‖vh‖

2
L2(T ) ≤ C

∑
F∈F

h−1
F ‖v̄h‖

2
L2(F )

=⇒ h−2‖vh‖2
Ω ≤ cτ

(∑
F∈F

h−1
F ‖v̄h‖

2
L2(F )

)

3.2.2 Stability estimates

Let us introduce the following compact form of the formulation (3.25),

find (uh, zh) ∈ Vh := V CR
h × V CR

h such that

Ah[(uh, zh), (vh, wh)] = l(wh) ∀(vh, wh) ∈ Vh

where

Ah[(uh, zh), (vh, wh)] := ah(uh, wh)− bh(uh, wh)− sW (zh, wh)

+ ah(vh, zh)− bh(uh, wh) + sV (vh, uh)
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Lemma 3.2.13 There exists c1, c2 > 0 such that

c1γ
1
2
W‖wh‖1,Ω ≤ sW (wh, wh)

1/2 ≤ c2γ
1
2
W‖wh‖1,Ω, ∀wh ∈ V CR

h,Γ ′N

Proof. To obtain the required, we use the inequality of Poincaré.

Let now define the semi-norm

|vh|sV := sV (vh, vh)
1/2, ∀vh ∈ V CR

h,ΓD

and the norm

‖wh‖sW := sW (wh, wh)
1/2, ∀wh ∈ V CR

h,Γ ′N

we introduce a mesh-dependent norm

|||vh|||V := γ
1
2
V ‖h∇vh‖L2(Ω) + γ

1
2
V ‖h

1
2 [∂nvh]‖Fi∪FΓN + |vh|sV . (3.28)

Lemma 3.2.14 For all v ∈ H2(Ω),

|||v − ICRh (v)|||V ≤ C γ
1
2
V h |v|H2(Ω)

Proof. It is given by Lemma 3.2.9, Lemma 3.2.10 and Lemma 3.2.11 .

We define a norm on V CR
h × V CR

h by

|||(uh, zh)||| := |||uh|||V + ‖zh‖sW .

Theorem 3.2.15 Assume that (γV γW ) ≤ 1. Then there exists a positive Cs independent

of γV , γW and h, such that

Cs|||(xh, yh)||| ≤ sup
(vh,wh)∈Vh

Ah[(xh, yh), (vh, wh)]
|||(vh, wh)|||

(3.29)

with (xh, yh) be a solution of the formulation (3.25).
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Proof.

First we calculate the following

ah(xh, wh) =
∑
T∈T

∫
T

∇xh · ∇wh dx =
∑
T∈T

(∫
T

(−∆xh)wh dx +

∫
∂T

∂nxhwh ds)

=
∑
T∈T

∫
∂T

∂nxhwh ds

=
∑
F∈F

(∫
F

∂nx
+
hw

+
h ds +

∫
F

∂nx
−
hw
−
h ds

)
=
∑
F∈F

∫
F

J∂nxhK{wh} ds

Let ξh ∈ V CR
h,Γ ′N

be a function defined by

∀ F ∈ Fi ∪ FΓN {ξh}|F := γV hF JnF · ∇xhKF .

In (3.25) we take wh = ξh and vh = 0, we then get

Ah[(xh, yh), (0, ξh)] = ah(xh, ξh)− bh(xh, ξh)− sW (yh, ξh)

=⇒ Ah[(xh, yh), (0, ξh)] + bh(xh, ξh) + sW (yh, ξh) = ah(xh, ξh) (3.30)

otherwise, we have

ah(xh, ξh) =
∑
F∈F

∫
F

JnF · ∇xhK{ξh} ds

=
∑

F∈Fi∪FΓN

γV

∫
F

hF JnF · ∇xhK2 ds

= γV ‖h1/2
F JnF · ∇xhK‖2

Fi∪FΓN
. (3.31)
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and

bh(xh, ξh) =
∑
F∈F∂Ω

(∫
F∩Γ ′N

n · ∇xhξh ds +

∫
F∩ΓD

n · ∇ξhxh ds

)

=
∑
F∈F∂Ω

∫
F∩ΓD

n · ∇ξhxh ds

=
∑
F∈F∂Ω

∫
F∩ΓD

h
1
2n · ∇ξhh−

1
2xh ds

≤

( ∑
F∈F∂Ω

‖h
1
2n · ∇ξh‖2

L2(F )

)1/2

‖h−
1
2xh‖L2(ΓD)

≤ C

(∑
T∈T

‖∇ξh‖2
L2(T )

)1/2

‖h−
1
2xh‖L2(ΓD) (by Lemma 3.2.7)

≤ C Ci ‖h−1ξh‖L2(Ω) ‖h−
1
2xh‖L2(ΓD)

≤ C Ci cτγ
1
2
V ‖h

1/2
F JnF · ∇xhK‖Fi∪FΓN |xh|sV (by Lemma 3.2.12)

By using Young’s inequality1 with a = (CCicτ )|xh|sV , b = γ
1
2
V ‖h

1/2
F JnF · ∇xhK‖Fi∪FΓN and

ε = 2 we get

bh(xh, ξh) ≤ (CCicτ )
2|xh|2sV +

1

4
γV ‖h1/2

F JnF · ∇xhK‖2
Fi∪FΓN

(3.32)

to bound sW (·, ·) we proceed as follow

sW (yh, ξh) ≤ ‖yh‖sW ‖ξh‖sW

≤ ‖yh‖sWCiγ
1
2
W‖h

−1ξh‖Ω (by Lemma 3.2.6)

≤ Ci cτ ‖yh‖sW (γV γW )
1
2γ

1
2
V ‖h

1/2
F JnF · ∇xhK‖Fi∪FΓN

≤ (Cicτ )
2‖yh‖2

sW
+

1

4
γV ‖h1/2

F JnF · ∇xhK‖2
Fi∪FΓN

(3.33)

where we used that (γV γW ) ≤ 1 and Young’s inequality.

Let α ∈ R,

Ah[(xh, yh), (αxh,−αyh + ξh)] = Ah[(xh, yh), (0, ξh)] + αsW (yh, yh) + αsV (xh, xh) (3.34)

1ab ≤ εa2

2
+

b2

2ε
∀a, b ∈ R and ε > 0.
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and from (3.30), (3.31), (3.32) and (3.33) we have

1

2
γV ‖h1/2

F JnF · ∇xhK‖2
Fi∪FΓN

− (CCicτ )
2|xh|2sV − (Cicτ )

2‖yh‖2
sW
≤ Ah[(xh, yh), (0, ξh)]

=⇒

1

2
γV ‖h1/2

F JnF · ∇xhK‖2
Fi∪FΓN

− (CCicτ )
2|xh|2sV−(Cicτ )

2‖yh‖2
sW

+ αsW (yh, yh) + αsV (xh, xh)

≤ Ah[(xh, yh), (αxh,−αyh + ξh)]

for α =
1

2
+ (Cicτ )

2 max(1, C2) we obtain

1

2

(
|xh|2sV + ‖yh‖2

sW
+ γV ‖h1/2

F JnF · ∇xhK‖2
Fi∪FΓN

)
≤ Ah[(xh, yh), (αxh,−αyh + ξh)]

(3.35)

To include ‖∇xh‖L2(Ω) we use Lemma 3.2.8

‖∇xh‖2
L2(Ω) ≤ C

∑
F∈Fi∪FΓN

h−1
F ‖J∇xhK‖

2
F

by decomposing the jump of the gradient and applying Lemma 3.2.6 we find

h−1
F ‖J∇xhK‖

2
F ≤ Ch−2(‖h

1
2 Jn · ∇xhK‖2

F + γ−1
V |xh|

2
sV

)

then

hγ
1
2
V ‖∇xh‖h ≤ C(γ

1
2
V ‖h

1
2 Jn · ∇xhK‖Fi∪FΓN + |xh|sV ). (3.36)

By 3.35 and 3.36, we may conclude that there exists c0 > 0 such that

c0|||(xh, yh)|||2 ≤ Ah[(xh, yh), (αxh,−αyh + ξh)] (3.37)

otherwise

|||(αxh,−αyh + ξh)||| ≤ α|||(xh, yh)|||+ |||(0, ξh)|||

and

|||(0, ξh)||| = ‖ξh‖sW

we have

‖ξh‖sW ≤ γW
1

2
Ci‖h−1ξh‖Ω (by Lemma 3.2.6)

≤ Cicτ (γWγV )
1
2 |||xh|||V (by Lemma 3.2.12)
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then

|||(αxh,−αyh + ξh)||| ≤ (α + Cicτ )|||(xh, yh)||| (3.38)

by (3.37) and (3.38) we get

(c0/(α + Cicτ ))|||(xh, yh)||| ≤
Ah[(xh, yh), (αxh,−αyh + ξh)]

|||(αxh,−αyh + ξh)|||

then

sup
(vh,wh)∈Vh

Ah[(xh, yh), (vh, wh)]
|||(vh, wh)|||

≥ Ah[(xh, yh), (αxh,−αyh + ξh)]

|||(αxh,−αyh + ξh)|||
≥ Cs|||(xh, yh)|||

with Cs = c0/(α + Cicτ ).

Corollary 3.2.16

There exist a unique solution for the formulation (3.25).

Proof. The system matrix corresponding to (3.25) is a square matrix and we only need

to show that there are no zero eigenvalues.

Assume that zero is an eigenvalue for the system matrix corresponding to (3.25), then by

Theorem 3.2.15 we get

For any solution (uh, zh), Cs|||(uh, zh)||| ≤ sup
(vh,wh)∈Vh

Ah[(uh, zh), (vh, wh)]
|||(vh, wh)|||

= 0

implying that (uh, zh) = (0, 0) which is a contradiction.
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Chapter 4

Numerical tests

In this chapter, we will present numerical examples for stabilized finite element method

which was introduced in chapter 3, by using FreeFEM++.

FreeFEM++ is a Free software to solve PDE using the Finite Element Method.

We choose the following examples as a numerical tests:

Example 4.1 [2]

We solve the Cauchy problem (2.15) on the unit square Ω = (0, 1)× (0, 1) ⊂ R2 with

Γ := {x ∈ (0, 1), y = 0} ∪ {x = 1, y ∈ (0, 1)}

and the Neumann data is prescribed, we choose f such that the exact solution is u(x, y) =

30x(1− x)y(1− y). Then the results are as follows
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Figure 4.1: Subdivision of Ω.

Figure 4.2: The approximate solution before stabilization (left) the exact solution (right).

Figure 4.3: The approximate solution
after stabilization (d3).

Figure 4.4: The approximate solution
after stabilization.

We use unstructured meshes with 2(n+3) elements on each side, n = 0, · · · , 4, and we

fix the stabilization parameters (0.01) we then get Table 4.1.
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n ‖u− uh‖L2(Ω) ‖zh‖H1(Ω)

0 0.026 0.059
1 0.011 0.041
2 0.005 0.028
3 0.002 0.020
4 0.001 0.014

Table 4.1: The norms of error and zh under variation of n.

γV = γW ‖u− uh‖L2(Ω) ‖zh‖H1(Ω)

0.001 0.0026 0.001
0.01 0.0026 0.019
0.1 0.0026 0.182
0.2 0.0026 0.358
0.5 0.0027 0.888

Table 4.2: The norms of error and zh under variation of parameters.

We can see the stability of the approximate solution uh by taking a small perturbation

in the data as follows

Figure 4.5: uh(x, 0.5) and uh(x, 0.5) for f = f + 0.3, ψ = ψ + 0.05.
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Example 4.2 [7]

Let Ω = (0, 1)× (0, 1) ⊂ R2 in this example we consider the following model problem for

the numerical simulation: 
∆u = 0, in Ω

u = g0 on Γ

∂nu = g1 on Γ

(4.1)

this problem has the unique solution u(x, y) = −yx2 + y3/3.

We denote A = (0, 0), B = (1, 0), C = (1, 1), D = (0, 1), M(1
2
, 0) and N(1

2
, 1) in the

(x, y) coordinates,

A
• •

M
•
B

•
C

•
N

•
D

Ω

We consider the 3 following cases :

• case 1: Γ = [A,B] ∪ [B,C] ∪ [C,D]

• case 2: Γ = [M,B] ∪ [B,C] ∪ [C,N ]

• case 3: Γ = [B,C].

We compute artificial data g0 and g1 on Γ from the exact solution u, the results are

obtained using finite elements based on P1 polynomials, on a 20× 20 mesh.
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Figure 4.6: Subdivision of Ω.

Figure 4.7: The exact solution.

Figure 4.8: The approximate solution case 1 (left), case 2 (right) .
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Figure 4.9: The approximate solution case 3.

case ‖u− uh‖L2(Ω) ‖zh‖H1(Ω)

1 0.196 0.100
2 0.196 0.091
3 0.196 0.082

Table 4.3: The norms of error and zh in the 3 cases.

Example 4.3 [21]

Let Ω be a square from which a disc is removed:

Ω = [(x, y) ∈ R2; 0 < x < 10;−5 < y < 5] \ Γ0

with

Γ0 = [(x, y) ∈ R2; (x− 5)2 + y2 ≤ 9]

In this example we consider the following model problem
−∆u+ 0.01u = 0, in Ω

u = 0, on γ1 ∪ Γ0

∂nu = −0.5, on Γ1

(4.2)

where

Γ1 = {x = 0 ∪ x = 10 ∪ y = ±5}

γ1 = {(0, 1 ≤ y ≤ 5} ∪ {(10, 1 ≤ y ≤ 5}

We Note that γ1 ⊂ Γ1
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Γ0

γ1 γ1

The obtained results are as follow

Figure 4.10: The approximate solution.

Example 4.4 (Nonconforming finite element method)

We solve the same example 4.1 but by scheme (3.25) with γV = γW = γW,bc = 0.01, then

we obtain
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Figure 4.11: The approximate solution.

With a different number of triangles, we get

Number of triangles ‖u− uh‖L2(Ω) ‖zh‖H1(Ω) ‖∂n(u− uh)‖H− 1
2 (Γ)

1800 0.0018 0.0016 0.0580
3200 0.0010 0.0009 0.0359
5000 0.0006 0.0006 0.0249
7200 0.0004 0.0004 0.0185

Table 4.4: The norms of error and zh, the normal derivative of error.
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Conclusion

In this thesis, we have presented stabilized finite element methods for the solution of the

ill-posed elliptic Cauchy problem, we prove Carleman estimates type and the three-spheres

inequality. By these inequalities, we show that the ill-posed Cauchy problem for Laplace

equation has a unique solution and conditional stability results can be obtained.

We have used the stabilized finite element method for the approximation of ill-posed

Cauchy problem of Laplace equation which proposed to formulate the problem as a con-

strained minimization problem that is regularized on the discrete level using tools known

from the theory of stabilized finite element methods. And we have got the error estimates

without using the Lax-Milgram lemma or the Babushka-Brezzi theorem.

As perspective, we will introduce the following cases to be addressed in the future

• Conforming method with u ∈ H1(Ω).

• Mixed discontinuous Galerkin finite element method.

• Generalized elliptic membrane shells.
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Appendix

A.1 The Caccippoli Inequality

The Caccippoli (or Reverse Poincare) inequality bounds similar terms to the Poincare

inequalities, but the other way around. The statement is this.

Theorem A.1.1 Let u : B2r −→ R satisfy u∆u ≥ 0. Then∫
Br

|∇u|2 ≤ 4

r2

∫
B2r\Br

u2.

First prove a Lemma.

Lemma A.1.2

If u : B2r −→ R satisfies u∆u ≥ 0, and φ : B2r −→ R is non-negative with φ = 0 on ∂B2r,

then ∫
B2r

φ2|∇u|2 ≤ 4

∫
B2r

|u|2|∇φ|2.

Proof. Consider

0 ≤
∫
B2r

φ2u∆u.
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Clearly
∫
∂B2r

φ2u∇u dS = 0, so apply Stokes’ theorem to get
∫
B2r

φ2u∆u+
∫
B2r
∇(φ2u) ·

∇u = 0. From this

0 ≤ −
∫
B2r

∇(φ2u) · ∇u = −2

∫
B2r

φu∇φ · ∇u −
∫
B2r

φ2|∇u|2,

and so∫
B2r

φ2|∇u|2 ≤ −2

∫
B2r

φu∇φ · ∇u

≤ 2

∫
B2r

φ|u||∇φ||∇u|

= 2

∫
B2r

φ|∇u||u||∇φ|

≤ 2

(∫
B2r

φ2|∇u|2
)1/2(∫

B2r

|u|2|∇φ|2
)1/2

. (By Cauchy-Schwarz inequality)

Dividing and squaring then gives∫
B2r

φ2|∇u|2 ≤ 4

∫
B2r

|u|2|∇φ|2.

To complete the proof of theorem A.1.1 pick

φ(x) =

{
1 if |x| ≤ r;
2r−|x|
r

if r < |x| ≤ 2r,

so

|∇φ(x)| =

{
0 on Br ;
1
r

on B2r\Br.

Substitute this into the lemma to obtain the result, namely∫
Br

|∇u|2 ≤ 4

r2

∫
B2r\Br

u2.

A.2 Lipschitz regularity

In the first we shall introduce the following notation

B′r(x
′) = {y′ ∈ Rn−1| |y′ − x′| < r}, B′r = B′r(0),

Γa,b(x) = {y = (y′, yn) ∈ Rn| |y′ − x′| < a, |yn − xn| < b}, Γa,b = Γa,b(0).
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Definition A.2.1 [1]

We say that the boundary of Ω is of Lipschitz class with constants ρ0, M0 > 0, if, for any

point p ∈ ∂Ω, there exists a rigid transformation of coordinates under which p = 0 and

Ω ∩ Γ ρ0
M0

,ρ0
(p) = {x = (x1, · · · , xn−1, xn) = (x′, xn) ∈ Γ ρ0

M0
,ρ0
| xn > Z(x′)},

where Z : B′ρ0
M0
→R is a Lipschitz function satisfying

Z(0) = 0, ‖Z‖
C0,1

(
B′ρ0
M0

) ≤M0ρ0.

A.3 Some results about the reference polyhedron

Definition A.3.1

The reference polyhedron T̂ is the unit d-simplex, i.e, the triangle of vertices (0, 0), (1, 0), (0, 1)

(when d = 2), or the tetrahedron of vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) (when

d = 3).

Let us write the affine transformation

FT (x̂) = BT (x̂) + bT , x̂ ∈ T̂

where BT is a (d× d)-matrix.

Proposition A.3.2 (Seminorm transformation)

For all integer m ≥ 0 and all v ∈ Hm(T ), define v̂ := v ◦FT . Then v̂ ∈ Hm(T̂ ), and there

exists a constant C = C(m) > 0 such that

|v̂|Hm(T̂ ) ≤ C‖BT‖m|detBT |−
1
2 |v|Hm(T ),

|v|Hm(T ) ≤ C‖B−1
T ‖

m|detBT |
1
2 |v̂|HT (T̂ ),

where ‖·‖ is the matrix norm associated to the euclidean norm in Rd. There holds moreover

‖BT‖ ≤
hT
ρ̂
, ‖B−1

T ‖ ≤
ĥ

ρT
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with

ρT := sup{diam(S)| S is a ball contained in T}

ĥ and ρ̂ are the diameter and the radius of the ball inscribed in the reference polyhedron

T̂ .

Proof. See [24, p 86/87].

Definition A.3.3

A family of triangulations Th is called regular if there exists a constant σ ≥ 1 such that

hT
ρT
≤ σ ∀h > 0.

Lemma A.3.4 (Deny-Lions)

For every r ≥ 0 there exists a constant C = C(r, T̂ ) such that

inf
p̂∈Pr(T̂ )

‖p̂+ v̂‖Hr+1(T̂ ) ≤ C|v̂|Hr+1(T̂ ) ∀v̂ ∈ H
r+1(T̂ ).

Proof. See [24, p 88].

Theorem A.3.5 (The Poincaré-Wirtinger inequality)

Assume that 1 ≤ p ≤ ∞ and that Ω is a bounded connected open subset of Rn with a

Lipschitz boundary. Then there exists a constant C, depending only on Ω and p, such

that for every u ∈ W 1,p(Ω),∥∥∥∥u− ( 1

|Ω|

∫
Ω

u(y) dy

)∥∥∥∥
Lp(Ω)

≤ C‖∇u‖Lp(Ω).

Remark A.3.6

On the space W 1,p
0 (Ω) we get the Poincaré inequality.
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Résumé 

 

 

 

 

 

 

 

Abstract 

            In this work, we present the ill-posed elliptic Cauchy problem. By the use of Carleman 

estimates and the three-spheres inequality, we show that conditional stability results can 

be obtained. Then we analyze the stabilized finite element methods. Numerical tests that 

illustrate and validate our approach are also presented. 

           Key words: elliptic Cauchy problem, ill-posed problem, Carleman estimates, three-

spheres inequality, stabilized finite element method. 

 

Dans ce travail, nous présentons le problème de Cauchy elliptique mal posé. Par 

l’utilisation d’estimations de Carleman et l’inégalité de trois sphères, nous montrons que 

les résultats de stabilité conditionnelles peuvent être obtenus. Ensuite, nous analysons les 

méthodes d’éléments finis stabilisée. Des tests numériques qui illustrent et valider notre 

approche sont également présenté. 

Mots clés : problème de Cauchy elliptique, problème mal posé, estimation de Carleman, 

inégalité de trois sphères, méthode des éléments finis stabilisée. 

 

ث و متراجحة ثلا . باستخدام تقديرات كارلمانthe ill-posed elliptic Cauchy problemنقدم  في هذا العمل،

أيضا  قدمنا. وطريقة العناصر المنتهية المستقرة الحصول على نتائج الاستقرار الشرطي. ثم نحلل ا منمكنتسطوح 

 .طريقتناتحقق من صحة تختبارات عددية التي توضح وإ

متراجحة ثلاث ، تقديرات كارلمان، elliptic Cauchy problem : ، ill-posed problem المفتاحيةلكلمات ا

 .طريقة العناصر المنتهية المستقرة،  سطوح

 


