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NOTATIONS

ak
Pl The k' partial derivative.
i
lal=a1+ -+ an, a=(ag, - ,a,) €R™

I : Identity operator.

V : The gradient operator.

A : The Laplace operator.

A% = AA : The biharmonic operator.

0, = n -V : The derivative according to the normal.
%) : The boundary of €.

Q) : The closure of Q.

Q) : The interior of €.

11220y = fo | (@) Pda.

H? : The usual Sobolev space.
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INTRODUCTION

Cauchy problems for elliptic operators are encountered in many practical applications
such as electrocardiography (ECG) and plasma physics. In addition, Cauchy problems

play an important role in inverse problems, (see [11]).

The ill-posedness of the Cauchy problem was first pointed out by J. Hadamard in his
lectures at Yale University, 1923 (see [15]) who proved that it is ill-posed in the case of

linear second order elliptic equations.

The most popular regularizing methods for ill-posed problems are the Tikhonov regu-
larization or a so-called quasi reversibility method and the stabilized finite-element meth-
ods. Stabilized finite element methods have emerged as an efficient and reliable tool for
the design of computational methods for ill-posed elliptic problems, which are represent-
ing a general technique for the regularization of the standard Galerkin method in order

to improve its stability properties, (see [2| and [5]).

In this work we will study the ill-posed elliptic Cauchy problem and present a sta-
bilized conforming and nonconforming finite element methods to solve it. This thesis

structured as follows:
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In the first chapter, we recall basic definitions for elliptic Cauchy problem and we
introduce Hadamard’s concept of well-posedness, and we describe the methods for solving

an ill-posed problem, this chapter is based on the references [13], [15], [16], [23], [25], [26].

In the second chapter, we show some inequalities to prove the uniqueness of elliptic
Cauchy problem and we consider the elliptic Cauchy problem for the Laplace operator,

and we introduce the conditional stability estimates for ill-posed problems.

In the third chapter, we consider the stabilized finite element method, a conforming
finite element method in section one and in section two we present Crouzeix-Raviart non-

conforming finite element method.

In the last chapter, we present numerical examples for stabilized finite element method

which was introduced in the third chapter, by using FreeFEM++.




CHAPTER 1

(ENERALITIES

1.1 SOME PRELIMINARIES OF ELLIPTIC CAUCHY PROBLEM

Definition 1.1.1

The principal part of the differential operator

L=L(,D): =33 tfarasan (@)D D52 - D"
i=0 |a|=i
= Z ao(z)D® on Q) C R"
|| <m
1s
Lp(z,D) = > aa(z)D".
|a|=m

The coefficients a,(z) are complex-valued functions of x, and D{*, D* are partial differ-

ential operators defined by

[£%}

pei— O and Do ﬁpgi _
=1

portoet-tan

! o C9x2 982 . Ogon”
7 1 2 n

Remark 1.1.2

The principal part is also called the principal symbol.
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1.1. SOME PRELIMINARIES CHAPTER 1.

Definition 1.1.3
A characteristic form of L at x €  is the homogeneous polynomial of degree m on R"

defined by
X(@,8) = Lp(x,&) = > aa(z)&”  ((€R")

la=m

Definition 1.1.4
The vector £ # 0 is called characteristic for L at x if x(x,&) = 0, and the set of all such

¢ is called the characteristic variety of L at x and is denoted by char,(L):

chary(L) = {€ £ 0, x(z,&) =0}

Definition 1.1.5
We say L is elliptic at z if
char, (L) =0,

and elliptic on € if it is elliptic for each z € €.

Example 1.1

Consider the second-order partial differential operator in two variables

L(z,D) = Z aq(z)D”

|| <2

Oé:(Oél,OQ) ozi:O,l,Z ’Oé| =01+ Qo

then
L(z,D) = a(o,o)(:zc)D((lO) + a0 (x)D(LO) + a(071)(:p)D(071)
+ a2,0) () DY + a1y () DMV + a2 () DO,
Where
9 )
pDOo) _ g pio — < pon _ 9
’ 81617 83’;2
Om 0z, 0z’ 03




1.1. SOME PRELIMINARIES CHAPTER 1.

and thus, L becomes

0? 0? 0?

L($1> T2, D) = G(2,0) (331, $2)8_:c% + &(1,1)(951, $2)axlax2 + Cl(o,z)(ﬂé’h $2)a—x%
+a T1,T2)— +a T1,To)=—— +a T1,T2).
(1,0) (21 2>8x1 (0,1) (71 2)(%2 0,0) (%1, T2)

Let £ e R2\ {0} (£ =(&,&)), then

X(Sl?l,l‘%f) = LP(ﬂil, T2, f) = G(2,0) (5171, 562)5% + a(1,1)(5€1, 132)5152 + a(o,z)(fﬁ, 1’2)53
L(zy, 29, D) is elliptic at a point (z1,z2) € Q C R? if x(x1, 22, &) # 0.
Definition 1.1.6

A hypersurface S is called characteristic for L at x € S if the normal vector v(z) to S at

x is in char, (L), otherwise S is called non-characteristic.

1.1.1 The General Cauchy Problem

The Cauchy problem

Consider the linear partial differential equation of order m
L(xz,D)u = Z ao(x)D%u(x) = f(2) on R" (1.1)
lo|<m
Let S be a given hypersurface in R” and let n = n(x) denote the unit vector normal to
S at x (S is non-characteristic for L). Suppose that on S the values of u and all of its

directional derivatives in the direction n of order up to m — 1 are given, moreover

ou oty
uls = o, on =P WSZSOm—L (1.2)

S

The Cauchy! problem for the differential operator L(z, D) with the Cauchy data (g, 1, - - -

on S consists in finding a solution u of equation (1.1) defined in a domain 2 containing S
and satisfying conditions (1.2) on S.

The surface S is called the initial surface of the problem and the conditions (1.2) are
called the initial conditions. The given functions ¢q, @1, , @;,m_1 which are defined on S

are called the initial data.

! Augustin-Louis Cauchy (1789-1857) French mathematician.

5

) (pmfl)



1.1. SOME PRELIMINARIES CHAPTER 1.

Definition 1.1.7

The surface S in R™ is said to be analytic if it is described by an equation of the form
F(xy, -+ ,2,) =0
where F' is an analytic function.

The Cauchy-Kowalewsky Theorem and Holmgren’s Theorem

Theorem 1.1.8 (Cauchy-Kowalewsky)

Let S be an analytic hypersurface of R" and L(z, D) is an operator with analytic coeffi-
cients in some neighbourhood of a point xy € S (S is non-characteristic for L). We take
f.e; j=0,---,m—1which are analytic in the neighbourhood of xy. Then the Cauchy
problem (1.1)-(1.2) has a solution u(x) which is defined and analytic in a neighborhood

of xy, and this solution is unique in the class of analytic functions.

Proof.
See [9, p 330]. =

Remark 1.1.9

The Cauchy-Kowalewsky? theorem is a theorem of fundamental importance in the theory
of partial differential equations. However its practical usefulness is often limited by the
stringent requirement that the initial data and the right-hand side of the equation must
be analytic and by the fact that it asserts the existence and uniqueness of the solution

only in a (possibly very small) neighborhood of a point.

Remark 1.1.10
The Cauchy-Kowalewky theorem provides uniqueness of the solution just in the restricted

class of analytic functions. A priori, there may be other non-analytical solutions.

Theorem 1.1.11 (Holmgren)
The Cauchy problem with the coefficients of L are analytic, given on an analytic non-

characteristic hypersurface S, has at most one solution in a neighbourhood of S.

2Sofya Vasilyevna Kowalewsky (1850-1891) Russian mathematician.

6



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

Proof.
See [25, p 34]. m

1.2 WELL POSED AND ILL POSED PROBLEMS

In general, it is impossible to find explicit expressions of all solutions of all PDEs. In
the absence of explicit solutions, we need to seek methods to prove existence of solutions
of PDEs and discuss properties of these solutions. A given PDE may not have solutions
at all or may have many solutions, when it has many solutions, we intend to find side
conditions to pick the most reasonable solutions. So Hadamard?® introduced the notion of

well-posed problem in the beginning of the twentieth century, (see [19]).

Definition 1.2.1

A problem is called well-posed in the sense of Hadamard if:
1. there exists a solution to the problem (existence),
2. there is at most one solution to the problem (uniqueness),

3. the solution depends continuously on the data (stability).

Remark 1.2.2
The third condition means that small variations on the data imply small variations on

the solution.

Definition 1.2.3
An ill-posed problem is a problem that does not satisfy at least one of the well-posedness

conditions.

Remark 1.2.4

In the theory of ill posed problems, the main attention is focused on the third condition.

3Jacques-Salomon Hadamard (1865-1963) French mathematician.




1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

1.2.1 Examples of well-posed problems

1. Let us now consider the Laplace’s equation with Dirichlet boundary conditions

{—Au:O in Q:=Rx(0,1),

u(x,0) = gp(x), u(z,1)=0 VzeR, (1.3)

1

with g,(z) := —sin(nx), for any z € R, this problem has a unique solution (by
n

Theorem (1.1.8)). Then the solution is

1

m sin(na:) (eny — en(27y))

uﬂ(xﬂ y) =

vanishes uniformly as n — oo.

And thus, the problem (1.3) is well-posed.

2. Let © be a bounded domain of R™ and f, g be sufficiently regular functions. The
Dirichlet problem for the operator —A + AI :
find v : Q — R such that

{—Au+Au—f in 0,

(1.4)
u=g, on 0N
is well-posed for any A > 0.

The Neumann problem for the operator —A+ I is well-posed for A > 0, (See (1.6)).

3. Let us consider the Cauchy problem

A?u=0 in €,
: ‘ (1.5)
O lu=f;, j=1,2 on 09,
with f; real analytic on 02 for j =1, 2.

This problem is well-posed.

1.2.2 Examples of ill-posed problems

1. Let © be a bounded domain of R” and f : Q@ — R, ¢ : 02 — R be prescribed

functions. We search for u : 2 — R such that

{—Au =f in

(1.6)
Opu = g, on 0}

8



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

this problem is ill-posed, because if u is a solution then u + C' is also a solution for

any constant C, thus the problem (1.6) has an infinity of solutions.

2. (Hadamard’s example) [15]

Let us consider the Cauchy problem for the Laplace equation

Aus(‘ruy):()? V(J/’,y) ERXR—F

us(z,0) =0, for every x € R (1.7)
du.

81; (x,0) = esin(z/e) for every z € R

this problem satisfy the assumption of the Cauchy-Kowalewsky theorem. This the-
orem implies that there exists a unique solution to the problem (1.7) in the class of
analytic functions.

The solution to the problem (1.7) can be obtained using separation of variables as
follow:

we put u.(z,y) = f(x)g(y), we then get

2 2
0°u, 0%u,

5 :f”(lﬁ)g<y)7 8y2 :f(x)g//(y)

implies this
Pu.  Ou.

Aue = -5+ o [ (@)g(y) + f(x)g"(y) =0

So

@) _ 9" _

f(x) 9(y)

if C' > 0 we find the trivial solution, then C' < 0 and we may write C = —r? < 0,
so we have

) 9"y _ s

f(x) 9(y)
then

@)+ f(x) =0, g¢"(y)—r’gly) =0

thus

f(x) = Cycos(rz) + Cysin(ra) and g(y) = Cscosh(ry) + Cysinh(ry)




1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

and therefore
us(z,y) = (Cq cos(rz) + Cysin(rzx))(Cs cosh(ry) + Cysinh(ry))
According to the boundary conditions, we would find
ue(x,y) = esin(x/¢) sinh(y/e)

Otherwise, a solution to

Auc(z,y) =0, V(z,y) ERxRy

us(z,0) =0, for every x € R
du.
8uy (,0)=0 for every z € R

is u.(x,y) = 0. Note that

lim )5sin <§> - 0‘ = lim lesin <§>‘ =0

e—0 e—0 g

Nevertheless, for any fixed y > 0
tim -z, y) — 0] = lim Ju (. )] = +oo

Thus a very small change in the initial data results in a large change in the solution.
Therefore, the requirement that the solution depends continuously on the data does
not hold.

We can see it by taking different values for € at y = 1 and x € [0, 7], then we obtain:

Figure 1.1: The solution for £ = 0.010 (left) and for € = 0.012 (right)

10



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

3. Consider the following Cauchy problem for the Helmholtz equation (see [22]) in the
rectangle Q = (0,a) x (0,b) :

(Au(z,y) + K*u(z,y) =0, ¥ (z,9) € Q
u(z,0) = f(x), 0<z<a
ou (1.8)
i, = <z <
ay($,0) g(x) 0<z<a
(- ul(0,y) = ula,y) = 0<y<b

where k is the wave number and f, g € L?*(0,a). The solution to this problem can

be obtained using separation of variables in the form
+0o0 n
u(x,y) = E sin (—x) (A, cosh(A\y) + A, ' By, sinh(\,y))
a
n=0

where \, = va—2n?n? — k2 and the coefficients A,, and B,, are given by

2 [ 2 [
A,=- [ f(x)sin " de and B, = —/ g(x)sin "y da.
0 a

a f, a a
Since the estimate |lul|r2@) < C(||f|l200,0) + |9]l22(0,0)) can not hold in general,
the requirement that the solution depends continuously on the data does not hold.

This estimate can not hold for any reasonable choice of f and g (as in the above

example).

11



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

What are the methods for solving an ill-posed problem?

In general to solve an ill-posed problems there is two techniques as in this schema

111 posed problem

Hight order

infinite dimension

Discretization Regularization
FEM (Tikhonov)

Stabilization Discretization

FEM FEM

Only few FE

are available

Well ;:msed

discret problem

For the regularisation or Tikhonov regularization methods we refer the reader to ref-
erence |7] by using the quasi-reversibility method.
Routhly speaking, the quasi-reversibility method was proposed to solve the Cauchy prob-
lem for elliptic equations, it consists of transforming the ill-posed second-order initial
problem into a family (depending on a small parameter ) of fourth-order problems.
We consider the following problem for Laplace’s equation. We seek to determine u satis-
fying

Au =0, in (2
u =1 on I' (1.9)

Ot =1y on I’

Where Q CR* (n=2,3) and I' C 99, v € H2(I") and ¢, € H-2(I').
In the method of quasi-reversibility we replace the problem (1.9) by the following;:

12



1.2. WELL POSED AND ILL POSED PROBLEMS CHAPTER 1.

find u, such that
A(Au.) — eAu. + eu. =0, in (2
U =1y on [’ (1.10)
Onlle =11 on I’
where ¢ is a small positive parameter. For more detail see 7], [8] and [20]. The main

point of this method is that (1.10) is well-posed problem and that u. converge to u as e

tends to 0.

Remark 1.2.5 In (1.10)
» There is an additional parameter e.

» We have fourth-order problem.

So in our study we will use the other method (discretization-stabilization).

13



CHAPTER 2

CONDITIONAL STABILITY FOR THE
ILL-POSED ELLIPTIC CAUCHY PROBLEM

The main objective of this chapter is to explain and to prove the conditional stability for

the ill-posed Cauchy problem for Laplace operator.

2.1 SOME INEQUALITIES

Let us now focus on some inequalities which can be applied to the estimation of stability.
There are two families of such inequalities:

e Carleman' estimates,

e Three-spheres inequalities.

Both types have been successfully used in the study of stability, and they are strictly
intertwined, in fact three-spheres inequalities can be deduced by Carleman estimates.
(see [1])

!Torsten Carleman (1892-1949) Swedish mathematician.

14



2.1. SOME INEQUALITIES CHAPTER 2.

2.1.1 Carleman estimates

Lemma 2.1.1 Let w € H?

loc

(RM), (N > 2) such that 2
supp w C Dy = {2 €RY ;e < |z < 1o}

we then have

N
/ r-AwVw dr = (= — 1)/ Vw|? dx (2.1)
D 2 D
€,70 €,70
N
/ x - wVw de _ - / (2.2)
De.ry |35|7 Derg
Proof. By density it is enough to take w € D(D.,,), let ¢ be a function defined by
Vwl|?
p(r) ==z %

it is clear that

by Stokes formula we get

/ div(¢) dx :/ ¢-nds =0 (2.3)
Ds,ro 8De,r0
From this
) 2 | w’2
/ div(¢) de = / ]V |“+az-V dx
Dery Dery 2
= / (E|Vw|2+x~D2wVw) de =0 (2.4)
De.ro

Otherwise

N

Pw Ow
D*wVw dr = ; —d
/Dx WV d Z/Dx Zaxa%a% .

Zsupp v := {z € RN, v(x) # 0}.

15



2.1. SOME INEQUALITIES CHAPTER 2.
and
N
Pw  Ow / ow 0*w Pw Ow
ri———— dr = ri——— dr + / ri————— dx
jzl /577‘0 81‘18%’] al'j Dery Oxz (‘995? ; Dery 8@8% aZL‘j
ow 0*w / ow 0w
= Ti——— dv — Ti—— dx
/Dmo Ox; 0x3 ; Den, Oxi 077
ow 0w al ow O*w
= 2/ Ti——— dr — / Ti——— dx
DE,TO 8%2 al’? jzl De,ro 81’1 8x§
ow 0*w ow
= 2 i——— dr — i—Aw d
/DWO o dz; Ox? o /Dw"o v ox; war
then
N
ow O*w ow
- D? dr = 2 i——— dr — i—Aw d
/Dm‘ox wVw dx ;( /Dm x Dz: 02 x /I)emx oz, w x)
N
ow O*w
= 2 i——— dr — VwAw d
;/wox J2: 027 x /De‘mx wAw dx
= —/ Vw|? dov — / z - VwlAw dx (2.5)
De,'ro De,'ro
by (2.4) and (2.5), we find that
N 2
r-AwVwdr = (= —1) |\Vwl| dzx
Derg 2 Dery
as required.
To get the second formula 2.2, we use 2.3 with
2
w
and therefore
[ mo = [, (oreteo v ()
iv r = w*+ T - x
Dery Doy \2J2]7 2|a[7
2 2
:ﬁ/ w—dx+/ 2V (= dr = 0 (2.6)
2 Jp.,, lzP De.rg 2|z

16



2.1. SOME INEQUALITIES CHAPTER 2.

Otherwise

w* V(w?) w? _
IR NS - S A G

dx —yw?

€,70

by (2.6) and (2.7), we find the required formula. =

Theorem 2.1.2 (Carleman estimates) [14]

Let u € H2 (RY)(N > 2) satisfying:
supp u C D¢,y = {2 €RY ; € < |z| < 1o}

with 0 < € < rg < 1. Then there exists a constant 5, > 0 and there exists C, depending

on [y only, then for every 3, (8 > [5y) we have

2 dx C() 2
[ owPenn) o < 5 sl A (28)
ETO T

€,70

Proof. Let ¢g(x) = exp(ﬁ) and ¢g(z) = exp(—ﬁ) We define a function w by

w = gu,
then u = ¢gw. Note that:
Au = ¢gAw + 2V gz - Vw + Aggw

with Vg = mﬁ% ¢p and Agg = |x\g+2

(N—2—5+‘x%) ¢3, then
|Aul? = |¢psAw + 2V ¢ - Vw + Aggw|?
= ¢5lAw|® + 4|Ves - Vwl® + (Ags)?*[w]* + 2¢5A¢s Aww
+ 4¢5V¢5 - AwVw + 4A¢5V¢5 -wVw.
In particular, we have:

B3 B¢ 5
P |5+2x AwVw —|—4| 2+ (N 2—6+|x|ﬁ>x-wVw

17
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SO

|AuP3|z|"? > 48z - AwVw

432 433
M%(N—Q—ﬁ)x-wVw—l—ix-wVw.

+ || 26+2

According to density, we assume that v € D(D,,,).

Integrating over D, ,, we obtain

/ |Au*3|z|7T? do > 4P z - AwVw dz
Ds,ro

De,ro
4B%(N -2 v Vo 2
+46*(N — —B)D T-w ww+ﬁ ; T-w wm.
€,7( €,7Q

Since w = Ypu, we can deduce by Lemma 2.1.1 that

[aaziel arz 2600 -2) [ 9GP
Derg

De,ro

dx
+253(2/@+2—N)/ Y5
De.ry 2]
dx
_2B2N_2_62/ U21/}2
( " o,
dx
> 28328 +2— N 22— —
22008 +2-N) [ v
dx

25N -2 9 [

212
- |ul wﬁw ( because N > 2)

As supp u C D, and |z| — |z|? a increasing function, then

dx dx
el I
/D ez =10 e

»T0

Therefore
dx
[P az r @) [ e
De,ro De,'ro
where
46" = 283(N — 2) = 2rj BA(N — 2 — B)?
F(p) = 51
for rqg < 1, we get 6lirf F(B) = 4. Hence we take § > [y with F(5y) > 1/Cj to obtain
— 400

the result. m
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2.1.2 The uniqueness in Cauchy’s problem for elliptic equations

We can generalize the Holmgren theorem in the case of constant coefficients and the
Cauchy-Kowalewsky theorem in the case of the analytic coefficients, to prove the unique-

ness of solution for the elliptic Cauchy problem by using of Carleman estimates.

Lemma 2.1.3 Let € < r¢/2 < 1/2 and v € H}

loc

(R™), such that u = 0 in B(0,¢). We

assume that
|Au| < Clu| almost everywhere in B(0,19).
Then u = 0 almost everywhere in B(0,7(/2).

Proof. Let ¢ cut-off function belong to C§°(RY), supp ¢ C B(0,70) and p(x) =1 in B(0,70/2).

By application of the Carleman estimates to ¢ u, we get

Pl 2 Co , 2
exp(—3) do < — |A(pu)|” exp(—=)|z|" ™ dx
/Bm,m) 2272 Pl 5 Jpomn EE

In particular

Juf® 2 Co 2 2 B+2
exp(i—3) dz < —; |A(pu)|” exp(—73)|z|""" du
/B(o,m/z) |z|26+2 |z|? B B(0,r0) |z|P

00/ 2 2 2
-2 AP exp( ) |al**2 d
B4 B(0,r0/2) |2|P
C 2
cS [ AR e el dr

r0/2,r0

since |Au| < C|ul, we have

exp(—=) de < —— |u|” exp(—=)|z|" " dx
/B(O,TO/Q) |z |25+2 |z|P Ch B(0,r0/2) ||

(Jg/ , 2
+ — A(ou)|? exp(—)|z|?*? dx
5/ |A(pu)l P(|x|ﬂ)! |

r0/2,70

0200 To 2 dx
< TG M0yt / uf? exp(—) 2
gt o2 B(0,r0/2) 2|7 |z26+2

C{J 38+4 2 2 dx
LGt [ AP () o

Dr0/2,ro

19
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we choose 3 so large that C2Cy(re/2)%+*/3* < 1, to obtain

CQCO To 2 dx C() 2 dx
1 — 29 20)3p+4 / 2 __<_3/5+4/ A 2 Sy 2t
(-5 e R FA R A S P P

r0/2,70

and |z| — exp(2/]z]?)/|z|?**? a decreasing function, then

2 dx
P exp(——) —2_ cl/ uf? da
/B(O,TO/Q) |z]P7 [ |25 +2 B(0,r0/2)

2 dx
2 Ay e 2
[ sl oo < 6 A ds

T0/2,70 r0/2,70
where Cy = exp(2°1 /r5)(2/79)27 2. So

38+4

ul? de < / Alou)|? dx
/B(o,ro/z)| | = Bt = C2Cu(ro/2)35+ Jp [Alpu)

r0/2,r0

letting 6 — 400, we obtain

/ lul* dv = 0.
B(0,r0/2)

Namely that «w = 0 in B(0,79/2). m

Theorem 2.1.4 Let O be a connected open set in RY and u € H?

loc

(RY) satisfying
i. 320 €O, >0, u(x)=0in B(xg,e€)
ii. 3C >0, for almost all x € O, |Au| < Clu|

then u(x) =0, VzeO.

Proof. Let x € O. Since O is connected, we can find 7y < 1 and a sequence of n points
xg, X1, ..., T, = = such that
Vi <n, B(z;,ry) CO.
Moreover
VJ < (n — 1), |.Tj+1 - Ij’ < 7”0/2

since v = 0 in a neighborhood of xy, by Lemma 2.1.3, v = 0 in B(xg,7¢/2) and in
particular in a neighborhood of ;. By recurrence, if © = 0 in a neighborhood of x;, then

u = 0 in a neighborhood of z;1;. And thus we find the result. m
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Applying Theorem 2.1.4, we obtain the uniqueness of solution for the Cauchy problem
associated with the equation

Au+ Mu = f.

Theorem 2.1.5 Let O be a connected open set in RY. We assume that there exists
zo € 00 and € > 0 such that I'.(zg) = 00 N B(xy, €) sufficiently regular.
Let u € H?

2 (RN) be a solution in the sense of distributions to the equation

Au+ Mu=0

such that

ou
Urdz) =0 and Frp =0

then v =0 in O.

Proof. Let O. = O U B(xg, €) and u, be a function defined by

_Juin O
Y“Z10 in 0.—0

it is clear that u. belong to H? (O.). Moreover,

Au in O
AUEZ{O in O.—0

Therefore,

Au, +u. =0in L; (O,)

by Theorem 2.1.4, we deduce that u, =0in O,. m

2.1.3 A three-spheres inequality

Theorem 2.1.6 (Homogeneous equation)
Let u be a solution of Au+ Mwu =0 in B(0, R) and let Cy, 0 < Cy < 1 for every 7y, 79,73
with

0<2rg=1r <1y <r3< Ry, Rop=min{R,Copo}

then 3C >0, o € (0,1) such that

lullzas,,) < Cllullzas,,)lulls, ) (2.9)
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Proof. [17] Let ¢ € C§°(r3) defined by

such that

I, = fr<|x|<3r I, = 3r <]1:\<17’ I3 = 1r <]:c|<3r
1=470 = gl 2= 3370 < i BT g SIS s

3
10:{0<’$‘<7’0}, I4Z{ZT3<’$‘§T3}

We assume that
o| V| + ro|lAp| < ¢/rg on [0,3/2r] =Ig UT,

o| V| + r3|Ap| < ¢/r3 on ;.

By application of the Carleman estimates to pu, we get

2 dx 2
[Iebtuexn ) i < G [ 1Al (o) lal? da

i dx CO

) 2
R N A

Aul? ex
Au expl(

= | Jul* exp(
I>

2 dz 2
— [ u exp(5) s < Co / At exp( 2 dr 4

I>

1
Y|P de + @J

with
2
T=Co [ 18wl explr)lel* da
IUIs |'r’

then

2 dx
/I|u|26xp(m) 225 < COMQ/I |u|2exp(| |6)|x|6+2 de +J

2 di

2P e

< CoM?(1/2r3 )3’8+4/ |u)? exp(

I2
If we choose 3* > CoM?(1/2r3)3+4 then

2 dx
2P Tz <

Jul? exp(
I2

22



2.1. SOME INEQUALITIES CHAPTER 2.

Next we estimate J :

we have

|A(pu)| < [Aplul + 2|Vl Vu| + [Aul|p]

< [Apllul + 2|Ve||Vu| + M]u|
then
AGeu)| < (M + c/rd)lul + 2¢/ro|Vu] in T,

|A(pu)| < (M + ¢/rd)|u| + 2¢/r3|Vu| in I3.
And so

2

|x|ﬁ)|xlﬁ+2 dx

J < Cg/ (M + c/rd)ul + 2c/r0|Vu|)2exp(
I1
2
+ C’o/ ((M +¢/r3)|ul + 20/r3|Vu|)Qexp(W)|x|5+2 dx

I3

<c / (M + c/m22luf? + /2 Vul?) exp(—)lal 2 da

L |z

2
+ C’o/ (M + c/r3)*|ul? + 2¢/r3|Vul? )exp(| E )|z da
I3
2
< Co(M? + ¢/ry) |u\2exp( BE

I1

+ Co(M? +¢/r3) | |ul* exp(
I3

< Co(M? + C/Té)m(ro) lu|? de + CC’O/Tgm(TO) |Vul? dx
I1 Il

)]x|5+2 dx —i—CC’O/TO |Vu|? exp(
I1

)|x\5+2 dor + CCO/T’:? |Vu|? exp(
I3

B )|x|ﬁJr2 dx

2
||

2

|x|ﬁ)|ar;|5+2 dx

+ Co(M? + c/r3)m(r3/2) | |ul* dv + CCo/rim(r3/2) | |Vu|* dx
13 I3

where m(z) = exp(lﬁ)]yc\mr2

Let Is = {z € I : |z| < ro}, and therefore

2 dx 2 dx
[ul* exp(+—5) < [ Jul*exp(—73) <J
Is 2 e = I |77 [+
2 dx
= exp( ﬁ)/r2ﬁ+2 lu|? dz < |u|2exp(—ﬂ) T =/
ry Ts Is |77 ||
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2
— | |u> dz < h(ry)J, with h(ry) =r3""?/ exp(—)
Is T2

then

|u|2 der < h(rg)Cg(M2 + c/ré‘)m(ro) |u|2 dr + h(rg)C’C’o/rgm(ro) |Vu|2 dx
Is I Ii
(2.10)

+ h(ry)Co(M?* + c/rg)m(rg/Q)/ |u|?> dz + h(ry)CCo/ram(rs/2) 1 |Vul? dx

I3

by Caccippoli estimates, we obtain

\Vul? de < (M + ¢/rg) / lu|? da

BQT‘O\BTO/2

I1

\Vul> dv < (M +c¢/r3) / lu|? da.
i
’ B”’3\BT‘3/4

We add [ |u|* dz to (2.10), and we use Caccippoli inequality to obtain:
|z|<3/2ro

r2h+2 2
/ u)? de < —2— CO(MZ—l—C/TS‘)eXp(—ﬁ) M/ lu|? da
eXp(@) o Iy

|| <r2

BQTO\BTO/Z

98+1
Co(M? + Cfrd) exp(E )2 27+ / uf? da
SNEN 7 g

28+2 +1

B8
CCofrd exp(E)rl 2 J242(M + C /1) / ul? de
T

BTS\BTS/AL

We define a, ny, n3 by

1 1
a® = CCy, n? = (MQT’S + ﬁ) 7”§||“||L2(Bgr0)’ n3 = (M2r§ + T_Q) T%HUHL2(BT3)
0 3
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we then have

2 2
sy < e exp(S5)r + 3 and exp(S5)rs
0

2
< 27’§5r§a2n§ exp(—)

To
< 2A2r§’3 rg n§

< 2%127";lﬁ n%

we choose

B log(nl/n3)

- 2logry

and therefore

4o
log(n1/n3)

A2T22 IOg T2 2

[ullz2s,,) <2 nj

log(ni/n3)*

= 2A2(n1/n3)2°‘n§
= 2A2n%an§(1_a)

where
log ry

Q|+

log ry

then a € (0,1). m

Theorem 2.1.7 (Complete equation)
Let u be a solution of Au+ Mu = f in B(0, R) and if the hypothesis given in Theorem
(2.1.6) hold, then for every ri, 79, r3 with

O<2T0:7’1<7”2<7”3<R0,
3C >0, a €(0,1) such that

lullzz,) < Cllullras,) + &) (lull 2, + €)' (2.11)
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Proof. Let us consider the unique solution ug to
Aug + Mug =f in Bp
{ ug =0 on 0Bpg
we have that
luollL2sry < Cllflr2@n)-

Note that

Alu—ug) + M(u—up) = Au — Aug + Mu — Mug
= (Au+ Mu) — (Aug + Muy)

—f=f=0

then u — ug satisfies the hypotheses of Theorem 2.1.6. And thus, we find the required

formula. =

2.1.4 Propagation of smallness

Theorem 2.1.8 (Propagation of smallness in the interior) [1]

Let €2 be a bounded connected open set in R™ with boundary 02 of Lipschitz class with
constants py, My, (see Appendix) and let B,,(zo) C 2 be a fixed ball. Let Cj be as in
the thesis of Theorem 2.1.6. Let h, 0 < h < min{2Cypo, 2}, be fixed and let G C Q2 be a
connected open set such that dist(G,0Q) > h and Bra(z0) C G.

Let u € H}.(Q) be a solution to the equation Au+ Mu = f, in . Let us assume that
An>0, Ey>0 st [[ullezsy@)y < 0 lullze < Eo.

Then
Jull 2y < Cln+e)(Eo+¢)' (2.12)

O\ 2
- ()
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and

C2Q|
0> w7

with C; >0 and o, 0 < @ < 1.

Proof. We shall need uniform three-spheres inequality in a domain slightly larger than

G. We can fix radii ry, r9, r3 as follows

h T3 h 1 h
— - R = —rp=——. K 1).
"3 2’ "2 5K 10K’ " 3T2 30K’ €(0.1)

With such a choice the inequality (2.11) applies with C' > 1 and «, 0 < a < 1.

Let us consider the set G as following
G = {z e R" | dist(z,G) < ri}.
We have that G™ is a connected open set containing GG such that

h < dist(G, 0R2)
< dist(G, G™) + dist(G™, 09)
< dist(G™, 092) + 1

which implies that

h h
dist(G”,@Q)2h—r1>h—r3:h—§:§:r3.

Since G™ is a connected open set in R™, then G™ is path-connected. And therefore, for
every y € G™, there exists a continuous path v : [0, 1] — G™ such that v(0) = zg, 7(1) =

y. Let us define 0 =ty < t; < --- <ty =1, according to the following rule. We set
b1 = max{t | [y(t) — x| = 2m} if |z, — y[ > 2r, (2.13)

otherwise we stop the process and set N = k+ 1, ty = 1 and |zg; — x| = 2r1. Since

ro = 3r; we have that B, (zx41) C B,,(x)) and therefore, by (2.11)

lull 2B, @)y +€ < C (||U||L2(BT2(xk)) +e)" (Ey+¢) "
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for k=0,---,N —1, where C' > 1 and o, 0 < a < 1. Denoting

lull 22(Bry () + €
Ey+e¢

my = )

we then have

Mme+1 < Cmy, fork=0,--- N—-1

and thus

my < Cm$_, < ComS , < -+ < Cm),

where C = C*et+a™ and § = oN. Hence we have obtained

=~ é _
lull 2, @y < C (lull2s,, @y +€)° (Bo+e)'™ (2.14)

1
it is clear that 1+a+---+a¥ < ]

and B, (o), -+, By (zn_1) are pairwise disjoint,
—a

by contradiction, we assume that

T — 2| <T
3z € B, (x1) N By, (x311) = e =2 <
[Tp1 — 2| <7

= |2pp1 — 2 — 2 + 2| <ok — 2|+ |Tr1 — 2| < 21 = |xpp — x| <21

which is a contradiction with (2.13). Then B,,(zx) N By (2441) =0 Vk=0,--- /N —1.
We have that

~ 5|2
C < O and (5204%217"?‘ (becauseC> land N < Z| |>
Let us tessellate R™ with internally non-overlapping closed cubes of side [ = % and let
n
Qj, 7 =1,---,J, be those cubes which intersect G. Clearly, any such cube is contained

n|Q|
2nry

J J
~ 25 _
/Gu2 = Z/ Z/B )u2 < JC?p5 (l[ull 2By, (wopy +2) ™ (Bo +2)*)
J=1 J=1

Tl

in a ball of radius 1 and center w; € G™ and J < . Therefore, from (2.14), we have

~o n 26 _
< Jc2p0 (HUHL2(BTO(%)) +€) (Eg +€)2(1 %)

< JC?pf (n+ ) (Eo + )22,

This completes the proof. m

28



2.1. SOME INEQUALITIES CHAPTER 2.

Remark 2.1.9

We can use Theorem 2.1.8 for proving Theorem 2.1.7 for every 0 < ry < ry < r3.

Theorem 2.1.10 (Global propagation of smallness)
Let €2 be a bounded connected open set in R" with boundary 02 of Lipschitz class with

constants pg, My. Let u € H*(Q) be a solution to the equation
Au+ Mu = f, in Q.
Let B,,(z9) C © and let us assume that
In>0, E>0 st [Jullzes, @y < 0 |ulme < E.

Then, we have

ol < B+ 2)e (22,

where

With ¢ >0 and p, 0 < pu < 1.

Proof.
See [1]. =
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2.2 THE ELLIPTIC CAUCHY PROBLEM FOR THE LAPLACE OPERA-
TOR

The Cauchy problem for the Laplace operator is one of the main examples of ill-posed
problems. One can pick up the harmonic functions with arbitrarily small Cauchy data on
a piece of the domain boundary, which will be arbitrarily large in the domain (as in the

famous example of Hadamard 1.7).

2.2.1 Classical problem

We consider the following linear elliptic Cauchy problem: find w : {2 — R such that

—Au =f, in (2
u =0 on I'p (2.15)
Ot =1 on Iy

where {2 be a convex polygonal (polyhedral) domain in RY,d = 2,3, I'p, ['y C 02 denotes
a simply connected parts of the boundary and f € L?*(£2), ¢ € H%(FN).

Weput I'=1p = TI.

As it is mentioned above, it is well-known that this problem is ill-posed in the sense of

Hadamard.

Lemma 2.2.1

There is at most one solution u € H?(2) which satisfies (2.15).

Proof.

It is a consequence of the uniqueness Theorem (2.1.5) with M =0. =

2.2.2 A variational setting

Let us introduce the spaces V and W by

Vi={ve HY(2):v|p =0}, W :={ve H(Q):v|r =0}
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where I := 002\ I'. Eq.(2.15) may be cast in the abstract weak formulation

(2.16)

find u € V such that
a(u,w) =l(w) Ywe W

where a : V x W+ R and [ : W + R are a bilinear and a linear form, given by

a(u,w) = /QVU-VU} dx, and l(w) = /wa dX—k/F@Dw ds

Since u ¢ W coercivity fails and inf-sup stability does not hold either in general (see [6]),
so the variational problem is ill-posed in general.
The lake of coerciveness makes it worthless to write down the minimization problem

related to the variational problem.

2.3 CONDITIONAL STABILITY

There is a rich literature on conditional stability estimates for ill-posed problems, which
used for the derivation of error estimates, without relying on the Lax-Milgram Lemma or
the Babuska-Brezzi Theorem.

The estimates are conditional, in the sense that they only hold under the condition that
the exact solution exists in some Sobolev space V' and it satisfies some a priori estimates
with respect to the norm of the considered spaces, hence we assume that the linear form

[(w) is such that the problem (2.16) admits a unique solution u € V.

Definition 2.3.1 (Conditional stability)
We say that a solution u of (2.16) satisfies the conditional stability if for some sufficiently

small € > 0, there hods
|l|lw < €in (2.16) then |j(u)| < = (e). (2.17)
where j:V = R and Z: RT — RT be a continuous, monotone increasing function,

with
lim =(z)=0.

z—07F
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2.3.1 Interior and global estimates

Theorem 2.3.2 [1] If (2.16) admits a unique solution u € H'(2), a conditional stability
of the form (2.17), with 0 < € < 1, holds for

j(u) = ||u||L2(w), wC f2: dist(w,@()) =0y o0 > 0
with
Z(x) = Cux®, Cue >0, ¢ :=¢(dyan) € (0,1) (2.18)

and for

J(u) == |Jul| 2¢0y, with Z(x) := Cy(|log(z)| + C)~°. (2.19)

with C,, C' >0, ¢ € (0,1).

Proof.
It suffices to apply Theorem 2.1.8 and Theorem 2.1.10. m

Remark 2.3.3
» The constant Cy in (2.18) grows monotonically in ||u||;2() (from Theorem 2.1.8)

» The constant C, in (2.19) grows monotonically in ||| g1(o). (from Theorem 2.1.10)
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CHAPTER 3

FINITE ELEMENTS APPROXIMATION OF
THE ILL-POSED PROBLEM (2.16)

3.1 CONFORMING FINITE ELEMENTS

3.1.1 A Finite element discretization

Let T, be a shape regular, conforming, subdivision of (2, the family of meshes {7} is
indexed by the mesh parameter h := max(diam(7)). 7 is a finite set of triangles such

that:
IL.YTeT,, TcCQ
2NV TeTh Th £ Ty = T1NTy =0
3. Ur=«a.
TeTh

Let F; be the set of interior faces in 7;, and Fr, Fr the set of element faces of 7, whose

interior intersects I" and I" respectively. We assume that Fr N Fr = ().
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Let X} the space of continuous, affine functions. We approximate the spaces V, W by

the following finite element spaces
Vi :=VNX}, and W, :=WnN X,
Then the discrete problem is given by

(3.1)

find u € V), such that
ah(uh,wh) = lh(wh) Ywy, € W,

where the forms ay(-,-) and [;(-) are discrete realisations of a(-,-) and [(-). The discrete

problem can be written as follow

Ny
find up, :== > u;p; € V), such that
j=1

an(up, @) = ln(d;) i=1,---, Ny

(3.2)

where the {¢;} and {¢;} are suitable bases for V,, and W), respectively, and N; =
dim(V},), Ny = dim(W}). The problem (3.2) may be written as the linear system

AU = I,
where A is an Ny x N, matrix, with coefficients A;; := an(p;, ¢;) and

U= (u17"' 7UN1)T7 L= (lh(¢1)7 7lh(¢N2>>T'

Observe that since we have not assumed N; = N, this system may not be square, but

even if it is, it may have zero eigenvalues. Possibly implies
1. non-uniqueness: 3 U € R \ {0} such that AU = 0;
2. non-existence: 3 L € R such that L ¢ TmA.

Hence, the discrete system may be ill-posed.

Now we define the Lagrangian L (see [5]) by:

1

1
L(up, zn) = an(upn, zn) — ln(zn) + §sv(uh — U, Up — U) — §sw(zh, zn)

where sy (up, — u,up, — u) and sy (zp, 2,) represents a penalty term.
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Since (up, zp,) is a saddle point of L, then

oL
aZh (u;“ Zh) 0
oL
0
auh (uha Zh)
L
We will need to compute — (us, z5) and — (up, 25) :
0z, ouy,

let (kq, ko) € V3, x W), we have that

L(up, + ki, zp, + ko) — L(un, zn) = ap(up + k1, 2 + ko) — lp (25 + k2)

1 1
+ §5V(uh + k1 —u,up + ky —u) — ESW(Zh + ko, zp, + k2)

1
— ap(up, zn) + lp(zn) — §sv(uh —u,up —u) + §sw(2h, zn)
~ ap,(un, ko) + ap(ky, 2n) — U (k2) + sv(un — u, k1) — sw(zn, k2)

thus
oL

azh

— (up, zn) = ap(un, wi) — sw(zn, wp) — (wy) =0

oL
duy,

We may then write the finite element method:

— (un, z1n) = an(vp, 2) + sy (up —u,vy) =0

Find (uy, z1) € Vi, x W), such that
ah(uh, wh) — Sw(Zh,wh) = lh(wh), Yw;, € W, (33)
ap(vn, zn) + sv(un,vn) = sy(u,vy), Yo, € Vj

A possible choice of stabilization operators for the problem are (see [3])

sv(wn) = 3 / helOwun][Owon]ds, with hy = diam(F)  (3.4)
FeFUFr
sw(zn, wp) = a(zp, wy) (3.5)
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Remark 3.1.1
e For this choice sy (u,vy,) is known if u € H?*(Q2) even when u is not known explicitly.
e The Lagrange multiplier z;, is the solution to the adjoint problem and is tends to zero

as h goes to zero (see Table 4.1 in Example 4.1).

Lemma 3.1.2

1/2

The quantities (sy (vp, v4))"? and (sy (wp, wy))'/? define norms on Vj, and W), respectively.

Proof.
First it is clear that zero is the only constant function in V},. Let v € V}, such that

sy (vp,vp) = 0. Then

[0nvp]je =0, Ve € F1UFr = Vv -n.=0,Ve € F
Since [vi]je = 0,Ve € F; U Fr then

[Owp]je = 0,Ve € FfUFr = Vo, -t. =0,Ve € F

Hence Vv, =0in Q — v, = Cte = v, = 0.
For sy it suffice to observe that W), € W C Hj(2) then we conclude by Poincaré’s

inequality. m

Corollary 3.1.3 sy and sy define semi-norms on H*(Q) + Vj, and H*(Q) + W}, respec-

tively,
for some s > 1, [v4up s, = sz(v+vh,v+vh)%, Yo € H*(2), v, € Zy,, with Z =V, W.
(3.6)
Let us now introduce on the space V}, x W}, the norm:
[(ns wi) I, = sv (vn, vn) + sw(wh, wh).
and other form of the formulation (3.3), find (up, z,) € Vi, x W}, such that
Al(un, z1), (vn, wp)] = Lp(vp,wy)  Y(vp, wp) € Vi, x Wy (3.7)
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where

Al(un, z1), (vn, wp)] = alup, wp) — sw(zn, wp) + alvw, zn) + sv(vp, up)

and
Lh(vh, wh) = lh(wh) + Sv<u, Uh)

Then we have the following stability estimate:

Lemma 3.1.4 Let (up, z;,) be a solution of the formulation (3.3), then

A((un, z1); (vn, wp))

| (wn, 20) || < sup

o) eVix Wi, 1 (Ons wn) ||

Proof.

If we take v, = uy, and wy, = —z,, we get

sup A((up, z1); (vp, w)) S A((up, z1); (vp, w))
o) eVix Wi, (Vs wn) || B | (vn, wn) |1
_ A(un, 20); (un, —21))
| (uny —21) |1
_ a(un, —z1n) — swzn, —2n) + alun, zn) + sy (up, up)
| (uny —2z1) |1

= || (un, zn) || n-

m

Theorem 3.1.5 The formulation (3.3) has a unique solution (us, z5).

Proof. To prove unique existence of (uy, zp) solution to (3.3) we need to show that there
are no zero eigenvalues to the system matrix corresponding to (3.3).
Assume that [, (wy,) = sy (u,vy) = 0 in (3.3) then

by Theorem 3.1.4 we get up, = 0, 2z, = 0 which is a contradiction. m

Galerkin Orthogonality
Taking the difference of 3.3 and the relation 2.16, with w = wy,, we obtain the Galerkin

orthogonality

a(up—u, wp)—sw(zn, wp)+a(vp, zn)+sy (up—u,v,) =0, for all(vy, wy) € Vi, xW,,. (3.8)
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3.1.2 Some lemma on forms and interpolants

Theorem 3.1.6 (Scott-Zhang) |[12]
Let p and [ satisfy 1 < p < oo and

[>1if p=1
[ > % otherwise.

Then, there is ¢ such that the following properties hold
(i) Stability: for all 0 < m < min(1,1),
Vh >0, Yo € W(Q), |ISZu0]lmpa < ¢ [v]lipa
(ii) Approximation: provided [ < k+ 1, for all 0 < m <1,

Vh >0, VT € T,Yv € Wl’p(V(T)) v = SZpv||mpr < h?m|v|l,p7,V(T)

where SZ;, : HY(Q) — Vj,,

Figure 3.1: The set V(7).

For more detail see [12].

Lemma 3.1.7

The quantities [[v].v = |Vv]|ra@) and [wllw = |h7 w2+ (3 27 wllFag)'?
FeFUFr
define norms on V' and W respectively.
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Lemma 3.1.8 The form bilinear a(-,-) satisfies the continuities
a(v —SZp,wp) < ||lv — SZpv||wv|whlsy, Yv eV, w, €W
Proof. By the Cauchy-Schwarz inequality, we find

a(v —SZpv,wy) = / V(v—=8Zuv) - Vwy, dx
0

<([ 1w —szhv>r2)1/2 (f |th|2)l/2

= |lv = SZpvl|s v (a(ws, wy))"?
= |lv = SZpvl|s v (sw(wp, wp))"?

= |lv = SZuv|l«v|whsy

Lemma 3.1.9 Forve V and ¢t > 0

v — SZylsy + lv — SZpvl|sy < Cy(v)h.
The factor Cy(v) > 0 will typically depend on some Sobolev norm of .
In particular, we have

Corollary 3.1.10
For v € H*(Q) be a solution of (2.15) there holds

|U — SZhu|sV + ||U - SZhUH*J/ S ChHU”H2(Q)
Lemma 3.1.11 There is Cy > 0 such that
|lw—SZpw|ew + |SZrw|sy < Cwlw|lw, YweW.

Proof. Let w e W,

(3.9)

(3.10)

(3.11)

(3.12)

lw = SZwllow = |h " w = SZpw)llz@y + (S W |w — SZpw|2a(p)

FeFUFr
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by trace inequality and Theorem 3.1.6 we get
lw = SZpwll w < Clwlia < Cllw|Le = Cllwllw.

|SZllay < ClUSZnwllw, = ClISZnw] (@ < Ol

this complete the proof. m
Lemma 3.1.12 Let u be a solution of 2.16, then

a(u —up, w — SZpw) < §(h)||lwlw + ||lw — SZrw|ww|u — upl YweW. (3.13)

BV

With §;(h) only depends on the properties of the interpolant SZ; and the data of the

problem, and satisfies lim §;(h) = 0.
h—0

Proof.

by integration by parts, we obtain

a(u—up,w—SZpw) =Y (/T —A(u—up)(w — SZpw) dx + / An(u — up)(w — SZw) ds)

TETH oT

= (fyw —SZpw) 20 + Z ([On(u = up)], w — SZpw) r2(p)
FeFUFr

We use the Cauchy-Schwarz inequality, to get

a(u — Up, W — SZhw) S ||fHL2(Q)”w - SZthLz(Q)

1/2 1/2
+< > h\[[an(u—uh)]]\2> ( > hlyw—szhwE)

FeFUFr FeFUFr
< fllz@hllw = SZpwllw

1/2 1/2
+< > h|[[(9n(u—uh)]]|2> ( > h_1|w—SZhw\2>

FeFUFr FeFUFr
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By (3.12), we find

a(u —up, w — SZpw) < Cwhl|fll L2 [lwllw

1/2 1/2
+< > h|[[8n(u—uh)]]|2> ( > h1|w—82hw\2>

FeFUFr FeF;UFp

1/2
< Cwhl| fllrz@ llwllw + < > hl[On(u - uh)]]|2> Jw = SZpwll.w

FeFUFr

= Owhl fllz2@llwllw + |u — up|s, [|w — SZpwll. w

= o(M)||lwllw + |w — SZpwllww|u — upls,

with §(h) = Cwh| f|lr2(0)-

3.1.3 Error analysis
A priori error analysis

Lemma 3.1.13 Let u be the solution of (2.16) and (uy, 25) the solution of the formulation
(3.3) for which (3.6), (3.9) and (3.10) hold. Then

u — uplsy + 28] < (14 V2)Cy(u)h.
Proof. Let &, := iyu — uy, by the triangle inequality
u = unls, <lu—ivuls, +[Enlsy (3.14)
and write
6nl2, + |2nl2, = sv(En &n) + aln, zn) — alén, zn) + sw(zn, 2n).
Using Eq.(3.8) with v, = &, and wy, = z;, we get

—a(&n, zn) + sw(zn, 2n) = alup, — u, z5) + sy (up — u, &)
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we then have

€n12, + |2nl%,, =5v(Ens &n) + alén, ) + alun — u, 2,)
+ sv(un — u, &)
=sv (&n, &n) + al8n, 2n) — alén, 2n) + alivu — u, z,)
— sv(&ns &n) + sv(ivu —u, &)

=sy(iyu —u, &) + alivu — u, zp).
By the Cauchy-Schwarz inequality in the first term
sy (v —u, &) < [ive — uls, [€nls,
and the continuity (3.9) in the second,
a(ivu —u, z,) < Cllive — ullwv|2nsy
Then by (3.10), we may deduce:

6nl2, 4 |znl2y, < live —uls, [6hlsy + llive — ullay|znls,

1
< Cyv(h' (|63, + 1ol )2
Otherwise, we have
2 2 \3 1

Then
|§h|8v + |Zh|sw S \/ECV(U)]’Lt

and by (3.10) and (3.14), we find that

[u—unlsy — [&nlsy < Ju—ivuls, < Cv(u)h’
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A posteriori error analysis

Theorem 3.1.14 Let u be the solution of (2.16) and (uy, z5,) the solution of the formu-
lation (3.3) for which (3.6), (3.10) hold. Assume that the problem (2.16) has the stability
property (2.17). Then

7 (u = un)| < Z(n(un, 21)) (3.15)
where the a posteriori quantity n(up, z;) is defined by
N(un, zn) := 6i(h) + Cw ([u — unls, + [2n]sy )

Corollary 3.1.15

For sufficiently smooth u there holds:
n(un, zn) < (k) + (1 +V2)Cyw Cy (u)h' (3.16)

Proof. Directly by Lemma 3.1.13.
]
Proof of Theorem 3.1.14.

Let e :=u —wuy € V, for all w € W we have:

ale,w) = ale,w — iyww) + ale, iww)
= a(e,w —iww) — sw(zn, iww) (By the Galerkin orthogonality)

= l(w —iww) — a(up, w — iww) — Sw(zn, iww) (3.17)
and we identify r € W’ such that Yw € W,
(r, w)ww = l(w — iww) — a(up, w — iww) — sw(2n, iww). (3.18)

We have shown that e satisfies equation (2.16) with right-hand side (r, w)w w (by (3.17)).
Now apply the continuity (3.13), Cauchy-Schwarz inequality and the stability (3.12) in
the right-hand side of (3.18), leading to:

|(r, w)wrw| = |ale, w —iww) — sw(zn, iww)| < (01(h) + Cwlu — unlsy + Cwlzn|sy ) |lw]lw.
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We conclude that
[r{lwr < di(h) + Cw(|u — unlsy + |28 sy )

and the claim (3.15) follows by assumption (2.17). m

Corollary 3.1.16
Let uw € H?(£2) be the solution of (2.15) and wuy, 2, the solution of (3.3)-(3.4). Then

the conclusions of Lemma 3.1.13 and Theorem 3.1.14 hold for v — uy, z, with t =1 and

j(+), Z() given by (2.18) or (2.19).

Proof. We obtain the required by using Corollary 3.1.10. =

3.2 NONCONFORMING FINITE ELEMENTS

Let us consider the problem 2.15 with I'p # [y,

—Au =f, in (2
u =0 on I'p (3.19)
Opu =1 on Iy

where I'p, I’y are two subsets of the boundary 0f2, we denote the complement of the
Neumann boundary I'y := 062\ I'y. To exclude the well-posed case, we assume that
N\ (I'pUTIy) #0.

In this case, for the derivation of a weak formulation we introduce the spaces
Vi={ve HY(Q) :v|p, =0} and W :={ve H(2): v|ry, =0}

then we obtain a weak formulation

find u € V such that (3.20)
a(u,w) = l(w) Ywe W

where a : V x W+ R and [ : W + R are a bilinear and a linear form, given by

a(u,w) := /QVu -Vw dx, and l(w) := /wa dx—i—/F Yw ds

N

Remark 3.2.1

The same assumptions and the results when I'p = Iy, are valid in the case of I'p # I'y.
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3.2.1 Crouzeix-Raviart nonconforming finite element discretiza-
tion

Let {75} denote a family of shape regular and quasi tessellations of {2 into non-overlapping

simplices, such that V 177, T, € Ty, Ty # Ts
Ty N'T, consists of either the empty set, a common face or edge, a common vertex.

The diameter of T' € 7T, will be denoted hy and the outward pointing normal ny. The
family 7y, is indexed by h := max (hr).

TeT,
We denote the set of element faces in 75, by F and let F; denote the set of interior faces
and Fr the set of faces in some I' C 9f2. To each face F' € F we associate the mesh
parameter hp := diam(F') and a unit normal vector, ng. For interior faces its orientation
is arbitrary, but fixed. On the boundary 0f2 we identify np with the outward pointing

normal of 042.

Crouzeixz-Raviart finite element space

With the triangulation 7, we introduce the Crouzeix-Raviart finite element space (see

[10])
VR = {vh € L*(Q) : vpr € P(T) VT € Ty, and/ [on] ds =0 VF € E}
F
by the condition [,[vn] ds = 0, the space V,CE can be defined by

(UhELQ(Q) ZUh|T€]P1(T) VTGE )

vy, is continuous at midpoint of edges F;

Let F' € F, the associated basis function
r is defined by T,

PRAE) =\ 0 if E+£F.
T, 3
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Figure 3.2: Crouzeix-Raviart functions.  Figure 3.3: Crouzeix-Raviart basis.

The global interpolant operator of Crouzeix-Raviart ZZ% is defined as follows:
;" HY(Q) — ViR

= I (v)

with TR (v)(2) = Z v(ap)pr(x).

FeF
and on the reference element, we define the Crouzeix-Raviart interpolant by

¢8R (o ZN ()5 ()
1<3
where
. 1
Ni(d) = — /@ds.
|Fi| J &

Let now we define the subspace V,Cff of V,¢% by

th,}]? = {Uh S L2(Q) :Uh‘T - ]P)I(T) VT - 77” and/

[vp] ds =0 VFE}"Z-U}"F}
F

In the nonconforming finite element methods the approximate spaces Vh?ﬁ are not
contained in the spaces V, W. Then the discrete problem consists in finding a function

up € V,SIED such that,
for all wp, € Vh?]%,’ ah(uh,wh) = lh(wh),

where the approximate bilinear form ay(+,-) is defined by

n(Up, wy) Z/Vuh Vuw,, dx

TeT
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the linear form [(-) need not be approximated since the inclusion thﬁv C L*(Q2) holds.
In this case, we introduce the norms

HU”%Q(Q) = ZHU”%?(T) and HUH%Q(]—") = Z||U||%2(F)'
TeT FeF

As in the above section, we propose the formulation

Find (up, z) € V,fﬁ]; X V,f}z such that
ah(uh,wh) — Sw<2h,wh) = l(wh), Ywy, € th’ﬁv (321)
ah(vh, Zh) + Sv(uh, Uh) = Sv(u, Uh), Yoy, € Vh(f}%
A possible choice of stabilization operators for the problem in this case are (see [4])

sw (zn, wp) ::Z / Yw Vzp, - Vwy, dx (3.22)
T

TeT

sy (up,vp) == Z /F’yvh;l[uh]][[vh]] ds (3.23)

FeF,UFr,,
We have assumed u € H?() then by sobolev embedding u € C(Q) and thus sy (u, v;) = 0.
So, we can write (3.21) as follow
Find (up, 2,) € Vi % Vh(;ﬁv such that

ap(up, wp) — sw(zp, wy) = (wy), Ywy, € V,f}?v (3.24)

an(vn, zn) + sy (up,vp) =0, Yy, € Vh?ﬁ;,
Remark 3.2.2
Since the Dirichlet conditions on V,ﬁ% and Vh(?l{?v set on different parts of the boundary,
we will use the Nitsche’s method.
Nitsche’s method is a method to incorporate Dirichlet boundary conditions weakly, i.e.,
without specifying nodal values on the boundary, by impose boundary conditions via
penalization, but we introduce new terms may maintain consistency and coercivity of the
bilinear form, (see [18]).
Then the problem (3.24) can be written as follows

Find (up, z,) € VE" x VI such that
ah(uh, ’LUh) — bh(uh,wh) — Sw(Zh,wh) = Z(wh), Ywy, € VhCR (325)

an(Vn, zn) — bp(vn, 2n) + sy (up,vp) =0, Vo, € V;EH
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with the boundary term by(+, ) is defined by (see [4])
bp (v, wy) = Z / n - Vopwy, ds +/ n - Vwyuy, ds
Fera, \JFNIY FAlp

and we modify the stabilization sy (-, -) so that the stabilization parameter may be chosen

differently in the interior and on the boundary,

sw(zn, wp) = Z / YwVzp, - Vwy, dx + Z / 7W7bch}12hwh ds
T F

TeT FE]:FI/V

Remark 3.2.3

The penalty parameters vy, vy, Ywe are all strictly positive and independent of A.

Remark 3.2.4

If (un, 21) and (vn,wy) are restricted to V. x thﬁ}v in (3.25) we recover the formulation

(3.24), because V. x VhCI{“?V is in the kernel of the operator by(-,-).

Trace and inverse inequalities

Lemma 3.2.5 (Trace inequality) There exists C; > 0 such that for all v € H'(T') and
all F' e F,
1 1
[0l[z2m) < Celhg® [0l 2y + Rl VOl 2(a))-

Proof. Let v € HY(T) and let F € F

Let a is the vertex of T" opposite to F' and let us con-
sider the R2-valued function

_|F| (7=,
@)= -y

(note that §(z,y)|r = 1)
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Then by using of the divergence theorem, we find

ol = [ o = [ oP@enr) = [ (026) - nn
F oT or
:/div(|v|25)
T
:/2v5-Vv +/ lv[2div(0)
T T

< Crhrl|v|| 2y | VUl 2y + C2h;1||vl|2L2(T)

< ClhTHVUH%Q(T) + C2h%1||v||%2(T)-
m
Lemma 3.2.6 (Inverse inequality) There exists C; > 0 such that
hrl|Vonll ey + B2lonll 2y < Cillonllzzry, YT € Th, F € F and Vo, € VEE.

Proof. First a prove

hr||Von| 2y < Cllvnll 2o (3.26)
on the reference triangle, we have

0]y 7 < C||0n[|p2¢7) (all norms on finite-dimensional vector spaces are equivalent)

then

loplir < Oh51‘|vh||L2(T)'

By (3.26) and Lemma 3.2.5 we get

1
he|[Vonl L2y + hillvnllL2ry < Cllvnllzay + Cellvll 2y + Cihr || V|| 221

< Cil|lval| z2(r)-
™

Lemma 3.2.7 (Discrete trace inequality) For any v, € VCF there exists C' indepen-

dent of A, such that

hellOnonllizmy < ClIVOLl 2y VT € Th, F € F. (3.27)

49



3.2. NONCONFORMING FINITE ELEMENTS CHAPTER 3.

Proof. It is proved by using the equivalence of norms on the reference element. m

Lemma 3.2.8 (Poincaré inequality for piecewise constant functions)

Let vy, be a piecewise constant function, then there exists C' > 0 such that

lonlliey <C Y hetllvalll3-

FeF; U]:FN
Proof.

Let us consider the following auxiliary problem

—Ap =y in Q
e =0 on Of)

this is a well-posed problem. Moreover, by the elliptic regularity we have
[ellm2@) < Cllonllrze)

and

lonllZeey = D_lonllie = 2 /

TeT TeT
dp
=3 [aom=3 [ G
TeT/T TeT /0T on
500, -3
< Z/FhF%hF [un]-
FeF

By Cauchy-Schwarz inequality and normal trace Theorem, we get

_1
lonlZaey < Cllgllie 3 / Bt fon]

FE]'—Z'U./—'[‘N

< Clollieey S / B fon]

FeF; U]:FN

Approximation results of the Crouzeiz-Raviart interpolation

Lemma 3.2.9 For any function v € HY(T),

lo =Ty () |2y + hrlv = T () ey < Chplolmery,  t=1,2
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Proof.

1. Fort =1, letve HY(T) :
[ ] HU —I;?R(U)HLQ(T) S ChT’U’[_p(T) ?

by A.3.2, we have
lo = ZF () |72y < Cldet Br|[[o — Z7™(0)|7
Let p € Po(T)

[0 = ZE0) 22y = 19+ = p = D)2,
= H@er—f;?R(ﬁer)H .
<2 (1[0 + pliZap) + |ICR<v +p>||L2(T )
<2(llo +p||H1(T) +IZTR 6+ ) e )
<Clo+pli g VpePo(T)

< int o+ ol
pEP(T)

| /\

C o7, ) (Deny Lions Lemma)

and thus

v = ZER(0) 22y < Cldet Brllof s,
< C 1Bl ol

h2
=C ﬁT |U|H1

=C h3 |v]H1(T) (as required)

[ ] ‘U —I;?R(U)|H1(T) S C‘U’Hl(T) ?

we have

[0 = TR0y < C || det By [det Byl [0 = ZER(0)
2
< € |[det B | [det Br| (Iolay + 1Z5%0) )

< C || det B [det Br| (|02 + 1Z57(0) By )
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Moreover, we may write

IZE(0)] 1 |ICR(@) — gy = 150 = )y
- |ZN @z‘Hl
< ZIN N il gy

<C Z’N’L(@
i=1

with

. 1 R

[Ni(D —c)| = 7l s (U—C) ds| < |Ej|” — g2y = [F N0 = cll g2
< C |0 = cll g2y

then

|ICR( )|H1 < C”@_C”B(T) < C|@|H1(T) (by Poincaré-Wirtinger with ¢ = |;‘ /T@>
Therefore, we obtain
0= Ty < C 1 det B |det Bl [0z,
< O et B || det B |* ol
=C ’U|12ql(T)
2. For t = 2 we use the same way.
n
Lemma 3.2.10 For any function v € H'(T') there holds
B llo = TR0 gy < OH Mol = 1,2
Proof. Let v € HY(T) for T € Ty, by using of Lemma 3.2.5 we get
lo — ZER@)llzecry < Colhin o = I (W) 2y + hlo — TE%(0) zacr)
= G b (o = ZE0) oy + bl = ZE7(0) o)

then we obtain the required formula by using Lemma 3.2.9. =
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Lemma 3.2.11 For all v € H*(T) and T € Ty,
3 CR
hil|On (v = 2y, ()l 2(r) < Chrlv]m )

Proof.
To obtain the required we use normal trace Theorem with Lemme 3.2.9 on the reference

element. m

Lemma 3.2.12 For any v, € V¢ we have

1
2
Wt onlle < e < > hf_«“lHT}hH%Q(F)>

FeF

Proof. It follows by norm equivalence of discrete spaces on the reference element that

forall T € Ty

ol < € S 112 s,

FeaT

then
hi?llonll e < C Z he' 10n]1Z2 )
Fear
— Zhj_“QHUhH%Q(T) < CZhEIHT’hH%%F)
TeT FeF
— h=2[lonlg < e (ZhEl\WhHi?(F))
FeF

n

3.2.2 Stability estimates

Let us introduce the following compact form of the formulation (3.25),
find (up, z1) € Vi := V,EE x V,E8 such that
Anl[(un, z1), (v, wp)] = Hwp)  Y(vp,wr) € Vg
where

Ah[(uh, Zh), (Uh, U)h>] = ah(uh, U)h> — bh(uh, wh) — 5W<Zh> wh)

+ ap(vn, 2n) — bp(up, wp) + sy (vy, up)
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Lemma 3.2.13 There exists ¢q, ¢y > 0 such that
1 1
crvillwnllie < swlwn,wn)? < ey llwnllie,  Vwn € ViR

Proof. To obtain the required, we use the inequality of Poincaré. m

Let now define the semi-norm
._ 1/2 CR
’Uh‘sv = Sv(’l)h,?]h> / , Vv, € Vh,FD

and the norm

lwnllsyy = sw(wn, wi)'/?, Yy, € ViER

we introduce a mesh-dependent norm

1 1 1
valllv := ¥ |hV vl L2@) + 75 102 [Onvn] | 7orr, + [valsy - (3.28)

Lemma 3.2.14 For all v € H*(Q),
Il = ZER)llv < C 3 I [olie)

Proof. It is given by Lemma 3.2.9, Lemma 3.2.10 and Lemma 3.2.11 . =

We define a norm on V% x V,€E by

[ Cuns za) I == unlllv + [zl sy -
Theorem 3.2.15 Assume that (yyyw) < 1. Then there exists a positive C; independent
of vv,yw and h, such that

A un), (vn,
Csll[(n, yn)l|| < sup wl(@ns yn), (Un, wa)]
(v, wn)€Vh [ (vn, wa)]l|

(3.29)

with (z,yn) be a solution of the formulation (3.25).
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Proof.

First we calculate the following

ah(ﬂ?}“’wh) - Z / th . th dx = Z
T

TeT TeT

= Z/ Opxpwy, ds
orT

TeT

— Z (/ Onxw; ds + / Onxy Wy, ds)
FeF T F

=Y [ [Onza]{wn} ds

rer/F

Let &, € Vh(,jzl“j’v be a function defined by
VFeFUFr, {&}HF == whrnp - Va,]p.
In (3.25) we take wy, = &, and v, = 0, we then get
An[(@n, yn), (0,&)] = an(@n, &) — br(@n, &) — sw(Yn: &)

= Ap[(@n,yn), (0,&n)] + bn(zh, &n) + sw(Yn, &n) = an(@h, &n)

otherwise, we have

an(Th,&n) = Z [np - Vap]{n} ds

rer/F

= Z WV/hF[[nF-Vxh]]Q ds
F

FeF; U]:FN

=y |[hi*[nr - V]

2
.F;U]'—FN .

(/(—Axh)wh dx + Oprpwy ds)
T oT

(3.30)

(3.31)

35



3.2. NONCONFORMING FINITE ELEMENTS CHAPTER 3.

and

e = 3 ([ nVagdss [0V
FeFon FNry, FnI'p

= Z / n - V&, ds
FNIlp

FeFaa
— Z/ hin-VEh 2oy, ds
FeFag J FOD
1/2
1 _1
< ( > ||h2n-V§h||%2(F>> 172 2| L2
FeFya

1/2
<C (Z||v§h”%2(T)> Hh_%thLz(pD) (by Lemma 3.2.7)
TeT

B _1
< C Gy M &l 2oy 1™ 22| 2y

Li1/2
S C Cz CT’YVHI’LF [[np : V.Z‘h]]

FiuFry | Thlsy (by Lemma 3.2.12)

1
By using Young’s inequality! with a = (CCyc;)|zpls,,b = V‘Q/thlpﬂ[[np . vxh]]H]-‘iu}‘FN and

e =2 we get

1
bn (s ) < (CCier)? a3, + ZWHh}v/Q[[”F V)l For, (3.32)

to bound sy (-, -) we proceed as follow

sw (s ) < ||Ynllow [1€nlls
1
< NlynllswCird |1h enlla (by Lemma 3.2.6)
L o112
< C; ¢r Nynllsw v 392 10 Ine - Varllzorr,

1
< (CierPllgnllz, + 3w Tne - Vanl oz, (3.33)

where we used that (yy7w) < 1 and Young’s inequality.
Let a € R,

Anl(n, yn), (axn, —ayn + &n)] = Anl(zh, yn), (0, 8n)] + asw (Yn, yn) + asv(zn, xs) (3.34)

L ca? 2
CLbST—‘r?&: Va,bERand€>0.
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and from (3.30), (3.31), (3.32) and (3.33) we have

1

57{/”@”[[”%“ Vapllzur, — (CCe)?lanls, — (Cico)llynllz, < Anl(2n,yn). (0, 6n)]
—

1
W lhi*[ne - V]

?Eiupr — (CCicr P |znl2, —(Cica?lunll2,, + asw (yn, yn) + sy (zn, 1)

< Anl(zn, yn), (@xn, —ayn + &)

1
for a = 3 + (Cic,)?* max(1, C?) we obtain

1
5 (\m\?v + lynll3, + 3 1hE T - Vo] %um) < Anl(zn, yn), (xn, —ayn + &)
(3.35)
To include ||V 12(q) we use Lemma 3.2.8
IVanlieo <C Y bt IVl
FefiUfFN
by decomposing the jump of the gradient and applying Lemma 3.2.6 we find
e IVl < CRE(h2 [0 - Vaalllf + 9 el )
then
1 1
W@ Vaalln < COENR2 IR - Van]ll murr, + [2alsy)- (3.36)
By 3.35 and 3.36, we may conclude that there exists ¢y > 0 such that
col || (zn, y) I1? < Anl(2n, yn), (an, —ayn + &) (3.37)
otherwise
[[(azn, —ayn + &) < alll(@n, yu)l| + [11(0, &)
and
€0, 1T = l€nllsw
we have

1 .
€ llsw < M5 Cill Glla (by Lemma 3.2.6)

< Cicr(yw )2 |||znl|lv - (by Lemma 3.2.12)
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then
[|(azn, —ayn + &) < (a+ Cicr)|[|(n, yu)|l] (3.38)

by (3.37) and (3.38) we get

Anl(zn, yn), (axn, —ayn + &)
|[[(awxp, —ayn + &)l

(co/ (a + Cier )| (@ns gl <

then

Anl(zn, yn), (Vn, wp)] > Anl(wh, yn), (n, —oyn + &)
B |[[(azn, —ayn + &)

sup > Ol (zn, y)| |

wnawomeve  1(0n; wn)ll]

with C5 = ¢o/(a+ Cic,). =

Corollary 3.2.16

There exist a unique solution for the formulation (3.25).

Proof. The system matrix corresponding to (3.25) is a square matrix and we only need
to show that there are no zero eigenvalues.

Assume that zero is an eigenvalue for the system matrix corresponding to (3.25), then by
Theorem 3.2.15 we get

For any solution (us, zp), Cyll|(un, zn)|l] < sup Ap[(un, z1), (Un, wp)]

=0
wrawevn || (wn, wi)]]

implying that (up, z,) = (0,0) which is a contradiction. m
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CHAPTER 4

NUMERICAL TESTS

In this chapter, we will present numerical examples for stabilized finite element method
which was introduced in chapter 3, by using FreeFEM++.
FreeFEM++ is a Free software to solve PDE using the Finite Element Method.

We choose the following examples as a numerical tests:

Example 4.1 [2]
We solve the Cauchy problem (2.15) on the unit square 2 = (0,1) x (0,1) C R?* with

I'={zxe(0,1),y=0u{z=1,y€(0,1)}

and the Neumann data is prescribed, we choose f such that the exact solution is u(z,y) =

30z(1 — z)y(1 — y). Then the results are as follows
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Figure 4.1: Subdivision of €.
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Figure 4.2: The approximate solution before stabilization (left) the exact solution (right).
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Figure 4.3: The approximate solution Figure 4.4: The approximate solution
after stabilization (d3). after stabilization.

We use unstructured meshes with 2"*3) elements on each side, n = 0, --- ,4, and we

fix the stabilization parameters (0.01) we then get Table 4.1.
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n | flu—unllr2@ | [[20llo @
0| 0.026 0.059
11 0.011 0.041
2 | 0.005 0.028
3 | 0.002 0.020
4 1 0.001 0.014
Table 4.1: The norms of error and z;, under variation of n.

YW = Tw HU_UhHLQ(Q) thHHl(Q)
0.001 | 0.0026 0.001
0.01 | 0.0026 0.019
0.1 | 0.0026 0.182
0.2 | 0.0026 0.358
0.5 | 0.0027 0.888

Table 4.2: The norms of error and z;, under variation of parameters.

We can see the stability of the approximate solution u;, by taking a small perturbation

in the data as follows

2

—th

18F uh for a small perturbation

16F

14F

121

1k

0er

06

04F

02f

] L I L I L I L I I
o 01 02 03 04 04 06 07 0g 089 1

Figure 4.5: uy(x,0.5) and uy(z,0.5) for f = f+ 0.3, ¥ = ¢ + 0.05.

61



CHAPTER 4.

Example 4.2 [7]
Let 2= (0,1) x (0,1) C R? in this example we consider the following model problem for

the numerical simulation:

Au =0, in (2
u = go on I (4.1)
Ohu = g1 on I’

this problem has the unique solution u(z,y) = —yz? + 3*/3.
We denote A = (0,0), B = (1,0), C = (1,1), D = (0,1), M(3,0) and N(3,1) in the

(x,y) coordinates,

D N c
Q
A M B '

We consider the 3 following cases :
e case 1: I'=[A, B|U[B,C|U|[C, D]
e case 2: I'=[M,B|U[B,C|U[C, N]
e case 3: I'=[B,(].

We compute artificial data gy and ¢g; on I' from the exact solution u, the results are

obtained using finite elements based on P, polynomials, on a 20 x 20 mesh.
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Figure 4.6: Subdivision of €.
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Figure 4.7: The exact solution.
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Figure 4.8: The approximate solution case 1 (left), case 2 (right) .
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Figure 4.9: The approximate solution case 3.

case Hu—uhHL2(Q) thHHl(Q)
1]0.196 0.100
2 10.196 0.091
3 10.196 0.082

Table 4.3: The norms of error and z; in the 3 cases.

Example 4.3 [21]

Let € be a square from which a disc is removed:
Q=(z,y) eR%0<2<10;-5<y <5\
with
Lo = [(z,y) € R? (z = 5)* +y* < 9]
In this example we consider the following model problem
—Au+ 0.0lu =0, in Q
U = 0, on vy U FO (42)
Op,u = —0.5, on I

where

IM={r=0Ux=10Uy = £5}

1 ={(0,1<y<5}U{(10,1 <y <5}

We Note that v, C I'y
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4! 7

The obtained results are as follow

TsoWalus

W- 445126
W-396.519

- 210083
W- 165 436
B- 116 579
W-70.2727
-3 666
W2 5407
W5 5474
W16.154
Wicz 761
0o 367

Figure 4.10: The approximate solution.

Example 4.4 (Nonconforming finite element method)
We solve the same example 4.1 but by scheme (3.25) with vy = yw = Ywpe = 0.01, then

we obtain
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i
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Figure 4.11: The approximate solution.

With a different number of triangles, we get

Number of triangles | |[u — up|r2@) | |2nlla1@) | [[0n(u — up) HH,%(F)
1800 | 0.0018 0.0016 0.0580
3200 | 0.0010 0.0009 0.0359
5000 | 0.0006 0.0006 0.0249
7200 | 0.0004 0.0004 0.0185

Table 4.4: The norms of error and z;, the normal derivative of error.
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CONCLUSION

In this thesis, we have presented stabilized finite element methods for the solution of the
ill-posed elliptic Cauchy problem, we prove Carleman estimates type and the three-spheres
inequality. By these inequalities, we show that the ill-posed Cauchy problem for Laplace

equation has a unique solution and conditional stability results can be obtained.

We have used the stabilized finite element method for the approximation of ill-posed
Cauchy problem of Laplace equation which proposed to formulate the problem as a con-
strained minimization problem that is regularized on the discrete level using tools known
from the theory of stabilized finite element methods. And we have got the error estimates

without using the Lax-Milgram lemma or the Babushka-Brezzi theorem.

As perspective, we will introduce the following cases to be addressed in the future
e Conforming method with u € H*(f2).
e Mixed discontinuous Galerkin finite element method.

e Generalized elliptic membrane shells.
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APPENDIX A

APPENDIX

A.1 THE CAcCIPPOLI INEQUALITY

The Caccippoli (or Reverse Poincare) inequality bounds similar terms to the Poincare

inequalities, but the other way around. The statement is this.
Theorem A.1.1 Let u : By, — R satisfy uAu > 0. Then
4
Vul? < — / u?,
B, " JBs,\B,
First prove a Lemma.

Lemma A.1.2
Ifu : By, — R satisfies uAu > 0, and ¢ : By, — R is non-negative with ¢ = 0 on 0B,,,

then
AVuP < [ uver,
Bay Bar
Proof. Consider
0< d*ulu.

Bar
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APPENDIX A.

Clearly [,, ¢*uVu dS =0, so apply Stokes’ theorem to get [, ¢*ulu+ [, V(d*u)-

Vu = 0. From this

Og—/ V(¢*u) - Vu :—2/ ouVeo-Vu —
Ba, Bay

and so

¢*|Vul? < —2/ puVe - Vu
BQT

B2r

IN

2 Vol|llV
/Bqu\uu 2
e /B 6| Vul|ul| Ve

¢*|Vul?,

B2r

1/2 1/2
< 2 ( ¢2|Vu|2> </ |u|2|V¢|2) . (By Cauchy-Schwarz inequality)
BQT BQT

Dividing and squaring then gives

FVaP <4 [ JuPToP

BQT BQT
[ |
To complete the proof of theorem A.1.1 pick
1 if |z| < 7
oz) = { 2T+|z‘ if r <lz| < 2r,
SO

0 on B,;
Ve(@)| = { % on By, \B,.

Substitute this into the lemma to obtain the result, namely

/ v < 2 / 2.
T2
B, BZT\B'I'

A.2 LIPSCHITZ REGULARITY

In the first we shall introduce the following notation

Bi(a)) ={y eR" | |y —a'| <r}, Bl =

B;(0),

Fa,b(m) = {y = (ylayn) S Rn’ ’y/ - $,| <a, ‘yn - xn‘ < b}a I‘a,b = Fa,b(o)-
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Definition A.2.1 [1]
We say that the boundary of €2 is of Lipschitz class with constants py, My > 0, if, for any

point p € 0f2, there exists a rigid transformation of coordinates under which p = 0 and

Qn FJCTO()’POQ?) = {iL’ = (5171, e 7‘%.71717'7771) = (xlfx”) < FJCTOO,PO ’ Ty > Z(.CE/)},
where Z : B,y is a Lipschitz function satisfying
Mo
Z(0) =0, 1Z]l < Mopo.
cot( B
(")

A.3 SOME RESULTS ABOUT THE REFERENCE POLYHEDRON

Definition A.3.1

The reference polyhedron 7 is the unit d-simplex, i.e, the triangle of vertices (0,0),(1,0),(0,1)
(when d = 2), or the tetrahedron of vertices (0,0,0),(1,0,0),(0,1,0),(0,0,1) (when
d=3).

Let us write the affine transformation
Fr(#) = Br(&) +bp, €T
where Br is a (d X d)-matrix.

Proposition A.3.2 (Seminorm transformation)

For all integer m > 0 and all v € H™(T'), define ¢ := vo Fr. Then 0 € H™(T'), and there

exists a constant C' = C'(m) > 0 such that

A~ m _ 1
|U|HW(T) < C||Br||™|det Br|~2|v|gm(r),

“1um 1,
0| g1y < C|| B[ |det BT|2|U|HT(T)>

where ||-|| is the matrix norm associated to the euclidean norm in R¢. There holds moreover

A~

hr _ h
— Bl < —
P Pr

IBr|| <
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with

pr = sup{diam(S)| S is a ball contained in 7'}

h and p are the diameter and the radius of the ball inscribed in the reference polyhedron

~>

Proof. See [24, p 86/87|. =

Definition A.3.3

A family of triangulations 7, is called regular if there exists a constant ¢ > 1 such that

@SU Yh > 0.
Pr

Lemma A.3.4 (Deny-Lions)

For every r > 0 there exists a constant C' = C(r,T) such that

inf Ip+ 0l grer iy < Clofgriazy VO € H(T).
peP,(T)

Proof. See [24, p 88]. =

Theorem A.3.5 (The Poincaré-Wirtinger inequality)

Assume that 1 < p < oo and that  is a bounded connected open subset of R™ with a
Lipschitz boundary. Then there exists a constant C, depending only on 2 and p, such
that for every u € WhP(Q),

u— (ﬁ/g}u(y) dy)

On the space I/VO1 P(Q2) we get the Poincaré inequality.

< C[|Vul[ e (o)
LP(Q)

Remark A.3.6
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Résumé

Dans ce travail, nous présentons le probléeme de Cauchy elliptique mal pose. Par
I’utilisation d’estimations de Carleman et I’inégalité de trois sphéres, nous montrons que
les resultats de stabilité conditionnelles peuvent étre obtenus. Ensuite, nous analysons les
méthodes d’éléments finis stabilisée. Des tests numériques qui illustrent et valider notre
approche sont également présente.

Mots clés : probléeme de Cauchy elliptique, probléeme mal posé, estimation de Carleman,
inéaalité de trois sphéres, méthode des éléments finis stabilisée.

Abstract

In this work, we present the ill-posed elliptic Cauchy problem. By the use of Carleman
estimates and the three-spheres inequality, we show that conditional stability results can
be obtained. Then we analyze the stabilized finite element methods. Numerical tests that
illustrate and validate our approach are also presented.

Key words: elliptic Cauchy problem, ill-posed problem, Carleman estimates, three-
spheres inequality, stabilized finite element method.




