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Abstract 

 Gray-Level Co-occurrence Matrix (GLCM) is one of the most used methods for 

texture representation. It is generated by calculating the occurrence frequency of gray-level 

pairs within a texture image. Because it can be computed only from gray-level images, a 

significant amount of information that could be provided by color is totally ignored.  Many 

literature works attempt to integrate information about color into the GLCM. However, most 

of these works suffer from numerous weakness such as miss-integration of color and hard 

mapping.  In this research, we propose a generalization of GLCM from gray-level to HSV color 

space, which we refer to as Modified Integrative Color Intensity Co-occurrence Matrix 

(MICICM). To reach such a generalization, a soft mapping function, which determines for each 

pixel value the bin it falls into, is needed.  In the previous studies, this function uses a hard 

mapping where all pixel values that fall in a bin are considered as the same, regardless their 

values. This presents a number of drawbacks. To fix them, we introduce a soft color and gray-

level mapping scheme based on a set of weight assignment functions we propose. In our 

scheme, each pixel is mapped to more than one possible color (and gray level) bin, in order to 

avoid the drawbacks of hard mapping. Experimental results demonstrate the effectiveness of 

our MICICM compared to those of the state of the art. The findings of this investigation 

complement those of earlier studies and make several noteworthy contributions to image 

representation. 

Keywords: Co-occurrence matrix, GLCM, MICICM, image features, fuzzy mapping, texture. 
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Résumé 

 Gray-Level Co-occurrence Matrix (GLCM) est l'une des méthodes les plus utilisées 

pour la représentation de texture. Elle est générée en calculant la fréquence d'occurrence des 

paires de niveaux de gris dans une image de texture. Parce qu'elle peut être calculée uniquement 

à partir des images de niveaux de gris, une quantité importante d'informations qui pourraient 

être fournies par la couleur est totalement ignorée. Beaucoup des travaux de la littérature tentent 

d'intégrer des informations sur la couleur dans le GLCM. Cependant, la plupart de ces travaux 

souffrent de nombreuses faiblesses telles que mal-intégration de la couleur et du mappage dur. 

Dans cette recherche, nous proposons une généralisation de GLCM du niveau de gris à l’espace 

de couleur HSV, que nous appelons Modified Integrative Color Intensity Co-occurrence Matrix 

(MICICM). Pour parvenir à une telle généralisation, une fonction de mappage douce, qui 

détermine pour chaque valeur de pixel le bin il tombe dans, est nécessaire. Dans les études 

précédentes, cette fonction utilise un mappage dur où toutes les valeurs de pixels qui tombent 

dans un bin sont considérés comme les mêmes, quelle que soit leur valeur. Ceci présente un 

certain nombre d'inconvénients. Pour les corriger, nous introduisons un schéma basé sur le 

mappage doux de couleur et de niveau de gris basé sur un ensemble de fonctions d'affectation 

de poids que nous proposons. Dans notre système, chaque pixel est mappé à plus d’un bin de 

couleur possible (et niveau de gris), afin d'éviter les inconvénients du mappage dur. Les résultats 

expérimentaux démontrent l'efficacité de notre MICICM par rapport à ceux de l'état de l'art. 

Les résultats de cette investigation complètent celles des études antérieures et font plusieurs 

contributions remarquables à la représentation de l'image. 

Mots clés : matrice de Cooccurrence, GLCM, MICICM, caractéristiques de l'image, le 

mappage flou, texture. 
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 ملخص

ستخراج هاته   GLCMتعد مصفوفة ال   واحدة من أكثر التقنيات المستعملة في تمثيل صور التراكيب، ويمكن ا

في الصففورة، وه ه يتح حسففاب ا فقس باسففتعمال بشففكل متتالي مسففتويين رماييين المصفففوفة  ن يريح حسففاد معدل   ور 

لمعلومات التي تصف اهلوان يكون مصيرها الضياع  ن استعمال المستويات الرمايية في الصورة فأن كمية كبية جدا من ا

هذه التقنية. قام  دة باحثون بمحاولة تضفففمين معلومات اهلوان في هاته التقنية  ير أن العديد منه هاته المحاوتت تعا ي من 

ستعمال اتسقاي القاسي للألوان. ا طلاقا من الم ،  قوم في HSVستوي اللو ي  قائص مختلفة مثل سوء تضمين اهلوان او ا

المجال  لونكل ل مثل هذا التعميح، يجب إيجاي صففي ة تحدي يتحققتعميح ل اته التقنية لتشففمل اهلوان. حت   حهذا البحث باقترا

تتبن  معظح ات مال السفففففابقة اسفففففقاي صفففففارم للألوان اين يتح ا تبار جميت اتلوان، التي تنتمي ال  مجال  الذي ينتمي اليه.

واحد، متطابقة ب ض النظر  ن قيم ا، وهذا ما يؤيي ال  جملة من النقائص. للتخلص من هاته المشفففففففاكل،  قوم في بحثنا 

ا  ل  مجمو ة من الدوال الرياضففففية التي تسففففند لكل لون بتقديح مخطس ب دف اتسففففقاي اللطيف للألوان والذي يقوم أسففففاسفففف

هذا  اجريناها فيالتي التجارد  تؤكداوزان مختلفة، كل وزن من هاته اتوزان يحدي  سفففففففبة ا تماء اللون ال  مجال معين. 

ل باقي مالنتائج المتحصففففففل  لي ا في هذا البحث تك تفوق صففففففي تنا  ن باقي الصففففففيي المقترحة في ات مال اه ر . البحث

 ات مال المنجزة في هذا السياق كما تقدم مجمو ة من المساهمات الملحو ة في فن تمثيل الصور.

 طيف، صور التراكيب.ل،  صائص الصور، اتسقاي المصفوفة الظ ور المتتالي كلمات مفتاحية:
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Chapter I.  GENERAL 

INTRODUCTION 

 A digital image is a two or three-dimensional numerical representation of a physical 

scene or interior structure of an object. This representation comes in form of a fixed-size array 

of real or complex numbers. Each array’s element represents the values that describes the 

corresponding pixel (two-dimensional image) or voxel (three-dimensional image). Digital 

images hold meaningful information that can be extracted using the means of image processing 

techniques. These techniques such as edge detectors (Shrivakshan and Chandrasekar 2012)  or 

neural networks (Rojas 2013) are inspired from human visual perception. 

 There are numerous of techniques that are used in automatic image analysing, each 

one could be useful to analyse the image from one or more aspect, e.g. object recognition 

(Grimson and Huttenlocher 1990)  is used for localizing objects within an image, image 

segmentation (Morel and Solimini 2012) is for segmenting the image into a set of distinctive 

areas, motion detection (Borst and Egelhaaf 1989) is for detecting a moving object within an 

image, etc. However, there is no generic technique that cover all the aspects. 

 Digital image analysis is the arts of using these techniques to allow a machine (i.e., 

computer or some other electrical device) to, automatically, study an image to obtain the most 

meaningful information about its contents. These information could be, then, exploited to take 

a decision by a specialist or the machine itself. 
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I.1 Image Analysis Applications 

 It is known that computers are capable of analysing a large amounts of data in a short 

time. Moreover, computers can efficiently deals with tasks that require complex computation, 

or extract quantitative information. On the other hand, the human visual cortex can extract 

higher-level information, which makes it an excellent analysis tool. Therefore, Image analysis 

tries to invent perception models inspired by human vision trying to grasp image meanings as 

human does. 

 Because of the importance and the vital role that digital image analysis plays, its 

applications are continuously expending through almost al l areas of science and industry, 

including: 

 Medicine 

 Medical image analysis (MIA) is the science that exploits different imaging modalities 

and digital image analysis techniques in order to solve/analyse medical problems. For example, 

Magnetic Resonance Imaging (MRI) is a safe medical imaging technique used to photograph 

the anatomy and physiological processes of the body in health and sickness. MIA uses machine 

vision and machine learning techniques to, automatically, identify and localize anomalies in 

human tissues using MRI images.  Commonly, after imaging the brain, the image is then 

analysed by a specialist to localize damaged tissues. In MIA , however, segmentation 

techniques could be used to automate such a tedious process (Bandhyopadhyay and Paul 2012). 

Figure 1 shows the result of MRI brain image segmentation using Multi-Atlas Propagation with 

Enhanced Registration (MAPER) method as it is described in (Heckemann, Keihaninejad et al. 

2010). 
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Figure 1. The result of MRI brain image segmentation, using MAPER method (Heckemann, 

Keihaninejad et al. 2010). 

 MIA can solve numerous problems such as, segmentation (i.e., delineating different 

organs), classification (e.g., determining types of leukocytes), registration (i.e., comparing 

different modalities/patients), reconstruction (e.g., making 3d-measurments), measuring flow 

(e.g., inside aorta), reconstructing flow fields (e.g., inside the heart), building shape priors 

efficiently, visualizing results, etc. 

 Security 

 In defense and security applications, Image processing approach aims to reduce the 

workload of human analysts in order to handle the ever-increasing volume of image data that 

is being collected. In addition, it aims to develop algorithms and approaches that will 

significantly assist to build fully autonomous systems capable of decisions and actions based 

only on sensor inputs. Because of this, advanced policies of security privacy such as fingerprint, 

eyeprint and facial detection are needed so that preclude mistaken identities and address frauds. 

An image of the finger, eye or face is taken then analysed to identify/authentify the users 

(Galbally, Marcel et al. 2014). Figure 2 shows an image of fingerprint after analysing and 

localizing all its significant components. 
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(a) (b) 

Figure 2. Fingerprint analysis. (a) Inputted fingerprint (b) outputted interest points that 

differs one print from others. 

 Image processing in defense and security can solve numerous problems such as, 

information assurance (e.g., watermarking and visual secret sharing protocols), steganography, 

target detection and tracking (e.g., abnormal event detection, human detection and tracking), 

and biometrics (e.g., iris recognition, face recognition and multicliet identification). 

 Microscopy 

 The main goal in imaging-based biological experiments is to extract structural, spatial 

and functional quantitative information about biological phenomenons accurately and 

automatically. For a given swab image, it is unlikely for human naked eye to count or define 

the properties of different germs. Microscopy image processing extracts precisely all useful 

information about the swab, such as number, size and types of different germs or truck their 

motions in order to define their behaviour pattern (Harder and Rohr 2013). Figure 3 shows an 

example of microscopic cell-split automatic tracking. 
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Figure 3. Examples of detected mitosis events in different types of image data(Harder and 

Rohr 2013). 

 Acoording to  (Rittscher, Machiraju et al. 2008), microscopy image processing solves 

numerous problems such as, intelligent image acquisition, deconvolution, denoising and 

restoration; registration and mosaicing; segmentation, tracing, and tracking; classification and 

clustering; and modeling. 

 Robotics 

 Robots can be equipped with multiple vision sensors for better capability to compute 

the depth of a sense in the environment. By analysing the input image sequence, the robot can 

detect obstacle locations, types, and distances in order to construct an occupancy grid-map 

about the outdoor environment (Carloni, Lippiello et al. 2013). Figure 4 shows an example of 

an occupancy grid-map constructed after the robot has explored the environment.   
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(a)                                                                       (b) 

Figure 4. An example of an occupancy grid map of an outdoor environment that has been 

constructed by a robot (Carloni, Lippiello et al. 2013). 

 Retrieval 

 It is a tedious and very time-consuming task for a user that has an image or a sketch, 

to find all similar images from a big collection. By using image analysis techniques, this task 

become faster and easier. Content-based image retrieval (CBIR) (Veltkamp, Burkhardt et al. 

2013) uses the content of the image rather than its metadata such as keywords or tags. Figure 5 

depicts a general scheme of CBIR system where the input is an image example and the output 

is a set of images with similar content. Because this subject is particularly related to our 

research, we will discuss it, along with the techniques it uses, in details in Chapter IV. 
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Figure 5. General Scheme of CBIR system. 

 These different uses of image analysis techniques have a main issue which is image 

representation. For example, CBIR system needs an image representation that works for a 

heterogeneous image dataset (e.g., landscapes, fruits, cities. etc.). A global information like 

quantities of different colors within the image could fully satisfy this task (Swain and Ballard 

1991). However, fingerprint analysis needs a more sophisticated representation that localize the 

interest points within the image. Hence, we can see that there is no generic representation that 

works for all tasks, 

I.2 Scope of the Research 

 In this research, we have focused on global (i.e., absolute) color-texture features, and 

the validation study was thus performed using these features in matching and texture retrieval 

tasks. Numerous color-texture features, that are robust to different image distortions, have been 

proposed in the literature. These features can be categorized into three main approaches namely 

statistical, structural, and frequency based. Features show best performance when they are 

compatible with the structures of texture presented in the image. Therefore, there is no one type 

of texture feature that is superior to the others in all cases. For the applications of matching and 

image retrieval, statistical features are generally used due to their simplicity and rapidity, and 

they will be the focus of this research. One of the oldest, most successful and used statistical 

feature in texture representation is Gray Level Co-occurrence Matrix(GLCM) (Haralick and 

Shanmugam 1973).  Due to the numerous weaknesses that GLCM is suffers from, many 
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literature works have suggested to improve it in terms of rapidity, robustness and generalization. 

Since that GLCM has been proposed to deal with gray-level textures, the scope of this research 

interests in generalizing it so it became able to deal also with color textures.  

 As we will see in Chapter III, many proposed GLCM generalizations in the literature 

are limited in terms of their robustness to different imaging conditions. For this reason, the 

developed Modified Integrative Color Intensity Co-occurrence Matrix (MICIM) in this research 

should comply with but not limited to the following criterions that should apply to all GLCM 

generalizations. 

1. Photometric Robustness: The features should be robust to lighting direction, shadow 

and shading changes. 

2. Geometric Robustness: The features should be invariance to viewpoint, zoom, and 

orientation variations. 

3. Generality: should be robust to variations of color space in which the image is 

represented (i.e., color or gray level). Additionally, it must be applicable for different 

tasks such as matching, retrieval and classification. 

 The previous requirements improve the repeatability of texture features. It means that 

the same texture type can be detected repeatedly regardless the variation of imaging conditions. 

To validate a feature for those requirements, an appropriate dataset should be selected to 

perform a texture matching or texture recognition. To ensure greater credibility, the evaluation 

has been carried out using a well-known dataset that contains only texture images (see VI.1.1). 

Our main goal is to study other generalizations of the GLCM and compare them with our 

proposed generalization method under the same experimentation conditions set. 
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I.3 Contribution 

 Since there is no generic representation that works for all tasks, an appropriate image 

representation should be selected for each task. Recent works have tried to generalize some 

representation to cover more tasks. Generalizing a representation makes us avoid choosing the 

appropriate representation, increases the performance and reduces the calculation by 

considering only one representation instead of many.  

 Gray Level Co-occurrence Matrix (GLCM)(Haralick and Shanmugam 1973) is a 

widely used texture representation. However, it suffers from the fact that it can be used only 

with gray-level images. Using it along with color histogram(Swain and Ballard 1991) could 

partially generalize it and make it suitable for color images. Nevertheless, this solution lies the 

problem of selecting a weight for each feature, and increases the complexity. In this research, 

we propose a generalization of GLCM so it can be used with color images without resort to any 

other color representations. This representation which we refer to as Modified Integrative Color 

Intensity Co-occurrence Matrix (MICICM) (Khaldi and Kherfi 2016) holds information about 

both color and intensity of texture images. To reach such a generalization, a mapping function, 

which determine for each pixel-value the bin it falls into, is needed.  In the previous studies, 

this function uses a hard mapping where all pixel values that fall in a bin are considered as the 

same, regardless of their values. This presents a number of drawbacks. To fix them, we 

introduce a new color and gray-level mapping scheme based on a set of weight assignment 

functions we propose. This scheme is based on a set of weight assignment functions that we 

define, where each pixel is mapped to more than one possible color (and gray-level) bin, in 

order to avoid the drawbacks of hard color mapping as we will explain hereafter. This is justified 

by the fact that most hue values in the Hue, Saturation, and Value (HSV) color space result 

from the mixing of more than one color. By using the MICICM, the image is compactly 

represented with few features that come in form of third order statistical moments, which make 

it suitable for real time systems. It can be used in different applications of image processing and 

pattern recognition. 

 In this research, we have developed a CBIR system based on numerous color/texture 

features including MICICM. In our System, Querying can be done simply by submitting an 

example image. The returned result is then appeared in form of sorted list from the most relevant 
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image to the least one. We use this CBIR to evaluate and compare the results obtained by our 

MICICM against the other methods. 

I.4 Thesis Outline 

Chapter II: Image Features  

 In the second chapter, we introduce the different techniques of image representation. 

In addition, we review the most known features proposed in literature in recent years. For 

simplicity, these latters have been categorized into three main approaches namely, color, 

texture, shape and interest point features.  Chapter II can be seen as a general literature review 

of related works. 

Chapter III: Chapter IIIGLCM Generalization, related work 

 In this chapter, we present the literature works that are most relevant to ours. These 

works share a common aim that is attempting to generalize the GLCM from the gray-level space 

to color space. Because our research deals with two issues namely color sampling/mapping and 

color integration, the listed works has been categorized according to the issue they are trying to 

resolve. We explain in detail, discuss, and then criticize each work separately. 

Chapter IV: Content-Based Image Retrieval 

 This research aims to propose a generalized representation of the texture based on the 

GLCM. This representation can be exploited in various image processing/analysis tasks such 

as content-based image retrieval systems. In this chapter, we introduce and define the CBIR 

and the benefits it offers. We firstly list the different types of query formulation in the CBIR, 

the features it uses, and the applications it might be used for.  In addition, we list some CBIR 

prototypes that are operational and online for public. 

Chapter V: Modified Integrative Color Intensity Co-occurrence Matrix 

 In Chapter V, we introduce our proposed generalization of GLCM untitled Modified 

integrative color intensity co-occurrence matrix. We start this chapter by analyzing the HSV 

color space that we use in our proposed representation. We explain the proposed color (resp., 
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gray level) mapping formulas, then list the different steps that constitute our MICIM extracting 

scheme. Finally, we try to make this scheme clearer by applying it on an example. 

Chapter VI: Experimentation and Validation 

 In this chapter, we evaluate, compare, and discuss our proposed method of texture 

representation. The comparison has been considered against other three works that aims to 

generalize the GLCM.
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Chapter II. IMAGE 

FEATURES 

 In machine learning, pattern recognition(Aiadi, Khaldi et al. 2016, Aiadi and Kherfi 

2016) and image processing, a feature could be defined as a vector of values that are derived 

from an initial big set of measured data (i.e., dimensionality reduction). Feature vectors are 

generally tends to be informative and non-redundant. A specific structure in the image can often 

be represented in different ways based on the selected feature. If we take ‘Edge’ feature as an 

example then, each pixel within the image is described using a boolean that determines, for 

each pixel ,whether an edge is present or not (i.e., ‘true’ for the presence of edge and ‘false’ for 

the absence). Alternatively, we can use a richer representation that provides a certainty 

measures (e.g., orientation of the edge) instead of a simple boolean. Similarly, an image could 

be represented in terms of colors using values that describe the quantities of different colors 

within the image. In some cases, solving a complicated problem may require a more 

sophisticated feature with a higher level of details, however, such a feature causes more 

computation and time consuming.  

  Features can be used to facilitate the subsequent learning, generalization, matching, 

etc. Each of these features was intended to describe a specific aspect(Deselaers, Keysers et al. 

2008). Color(Lu and Chang 2007), shape(Wu and Wu 2009) , texture(Jalaja, Bhagvati et al. 

2005) and interest points such as Scale-Invariant Feature Transform (SIFT)(Lowe 1999), 
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Binary Robust Invariant Scalable Keypoints (BRISK)(Leutenegger, Chli et al. 2011) and 

Speeded Up Robust Features (SURF)(Bay, Ess et al. 2008), are among the main aspects. Images 

features can be broadly categorized into four main categories namely, color, texture, interest 

point and shape features. However, a features vector suffers sometimes from the high 

dimensionality that prevent systems from executing real time tasks. Thus, a dimensionality 

reduction process that reduces the information quantity and conserves the representation quality 

might be needed to overcome this issue. 

II.1 Color Features 

 Color is one of the most basic and used feature in image representation.  It consists in 

extracting first order moments (e.g., appearance frequency of yellow pixels) from the image. 

There are three main approaches for color feature extraction presented in literature namely, 

global, fixed-size regions, and segmentation-based approach. 

 Global Approach 

 In this approach, images are represented using values that describe the global visual 

view. Since no pre-processing tasks are needed, features extraction in this approach is usually 

fast and sample. However, these features suffer from a common weakness which is their 

inability to describe the spatial distribution of colors within images. Most global-based color 

features encode the extracted information in form of a histogram. Examples of such features 

are global color histogram(Swain and Ballard 1991), cumulative color histogram(Stricker and 

Orengo 1995) and statistical color moments. 

II.1.1.1 Global Color Histogram 

 Because of its stability, simplicity of calculation in addition to its invariance to 

rotation, translation and scale changes, global color histogram (Swain and Ballard 1991) is a 

widely used feature. It represent the quantity of colors in the image. In simpler word, each cell 

H(i) in a histogram represents the number of pixels with the value i. For a given Image I, the 

global color histogram H of this image can be calculated using Eq. (1). 
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𝐺𝐶𝐻(𝑘) =  ∑ ∑ 𝑓(𝐼[𝑖, 𝑗])𝑀
𝑗=1

𝑁
𝑖=1 , where 𝑓(𝑥) = {

1 𝑖𝑓 𝐼[𝑖, 𝑗] = 𝑘

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

II.1.1.2 Cumulative Color Histogram 

 Along the lines of color histogram, cumulative color histogram does not just count for 

each bin its occurrence frequency, but also sum it up with the occurrence frequency of all the 

smaller bins. It can be calculated using formula showed in Eq. (2). 

𝐶𝐶𝐻(𝑘) =  ∑ ∑ ⟦𝑓(𝐼[𝑖, 𝑗]) + ∑ 𝐻(𝑘))𝑘−1
𝑙=1 ⟧𝑀

𝑗=1
𝑁
𝑖=1   , where 𝑓(𝑥) = {

1 𝑖𝑓 𝐼[𝑖, 𝑗] = 𝑘

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

II.1.1.3 Statistical Color Moments 

 Color moments(Flickner, Sawhney et al. 1995) are ones of the simple yet very 

effective features which assume that the content of the image can be interpreted as a probability 

distribution. Hence, this probability distribution could be described using a set of unique 

moments (e.g., mean, standard deviation, and skewness). Mean(𝜇), standard deviation(𝜎) and 

skewness(𝛾) can, respectively, be calculated using Eq. (3)-(5), where N is the width and M is 

the length of the corresponding image. 𝐼[𝑖, 𝑗] is a pixel from the image, which is located at the 

column i and the row j.  

𝜇 =  
∑ ∑ 𝐼[𝑖, 𝑗]𝑀

𝑗=1
𝑁
𝑖=1

𝑁 ×𝑀
 (3) 

𝜎 = √
∑ ∑ (𝐼[𝑖, 𝑗] − 𝜇)2𝑀

𝑗=1
𝑁
𝑖=1

𝑁 × 𝑀
 (4) 
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𝑠 = √
∑ ∑ (𝐼[𝑖, 𝑗] − 𝜇)3𝑀

𝑗=1
𝑁
𝑖=1

𝑁 × 𝑀
 (5) 

 Many other color features have been introduced in literature, we mention: (Huang, 

Kumar et al. 1997, Manjunath, Ohm et al. 2001, Paschos, Radev et al. 2003, Chaira and Ray 

2005, Nallaperumal, Banu et al. 2007, Williams and Yoon 2007). 

Figure 6 shows an example of an image, and some of its corresponding color features. 

(a)

(b)

R G B

𝜇 163,59 168,22 149,43

𝜎 64,4 60,63 73,99

𝛾 -1,06 -0,75 -0,84

(c)

(d)

 

Figure 6. Extracting color features from an image where (a) is a given image, (b) is the extracted 

color histogram, (c) is the cumulative color histogram and (d) is a matrix of color moments.  

 Fixed-size Regions Approach 

 The fixed-size regions features divide, as a pre-processing step, the image into a set of 

cells that have a fixed size. Then, they extract color information from each cell separately. 

Finally, the extracted information are encoded in a single vector (generally, a large vector). 
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Examples of such features are Local Color Histogram(LCH)(Swain and Ballard 1991) and Cell 

Color Histogram (CCH)(Stehling, Nascimento et al. 2003). 

II.1.2.1 Local Color Histogram 

 After dividing the image into a set of N equal blocks, LCH(Swain and Ballard 1991) 

extracts for each region its color histogram. Then, it combines these N histograms into one 

single histogram. LCH includes information about distribution of colors within different 

regions. The dissimilarity between two images is calculated by summing up the GCH distances 

between all possible pair of blocks (one of them in the first image and the other in the second). 

LCH costs usually in generating a very large vector.  

II.1.2.2 Cell Color Histogram 

 In order to minimize the size of LCH, cell color histogram(Stehling, Nascimento et al. 

2003) suggests to generate a histogram of regions instead of colors. It calculates for each color, 

the number of regions in which this color appears (the size of the vector is equal to the number 

of colors in the color space).  

 Many other features have been proposed in this context (Swain and Ballard 1991, 

Manjunath, Ohm et al. 2001, Li 2003, Sun, Zhang et al. 2006).  

 Segmentation-based Approach 

 Unlike Fixed-size regions, segmentation based approach divides the images into a set 

of regions that may vary from one image to another. This division is usually made as a pre -

processing step using segmentation, pixel classification or clustering algorithms, which 

increases the complexity of this approach. Although they are more complex, features based on 

this approach offer better effectiveness. Many segmentation-based features have been 

introduced in literature (Pass, Zabih et al. 1997, Deng, Manjunath et al. 2001, Manjunath, Ohm 

et al. 2001, Stehling, Nascimento et al. 2001, Stehling, Nascimento et al. 2002, Lee, Lee et al. 

2003, Palm 2004, Wong, Po et al. 2007, Yang, Chang et al. 2008, Chen, Jia et al. 2012). 

 It appears that color features are not enough to fully-represent the content of images. 

Therefore, color distribution could provide more meaningful information than color occurrence 
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frequency. A sufficient representation of image content could be reached by combining color 

with texture features. 

II.2 Shape Features 

 Humans consider Shape as an important cue for identifying and recognizing real-word 

object. Shape features look for an effective way to represent object based, either, on its exterior 

boundary information (i.e., contour based) or the interior region (i.e., region based) that the 

object occupies in the image(Zhang and Lu 2004). According to (Yang, Kpalma et al. 2008), 

an efficient shape feature must has some essential properties such as:  

 Identifiability: perceptually similar objects must have the same shape features that 

differ from others. 

 Translation, rotation and scale invariance: the location, the rotation or the scale 

changes of the object within the images must not affect shape features.  

 Affine invariance: an affine transform can be constituted using sequences of 

translations, scales, flips, rotations and shears. Shape features must be as invariant as 

possible with affine transforms. 

 Noise resistance: shape features must be highly robust against noise. 

 Occultation invariance: shape feature of a part of an object must not change compared 

to the one that is extracted from full object. 

 Statistically independent: two different shape features must be statistically 

independent (i.e., uncorrelated). 

 Reliability: dealing with the same patterns means extracting the same shape features.  

 Many techniques have been proposed to represent shape features, Yang et al.(Yang, 

Kpalma et al. 2008) have organized the existing techniques of shape-based features extraction 

as it is illustrated in Figure 7. 
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Figure 7. An overview of shape description techniques(Yang, Kpalma et al. 2008). 

 In contrast to the significant progress made in colour and texture representation, 

extracting shape features still an open issue due to the inherent complexity. In particular, it must 

identify regions occupied by an object in order to describe its shape. A number of known 

segmentation techniques combine low-level features with region-growing or split-and-merge 

processes to fulfil such a task. Generally, it is extremely hard to precisely segment an image 

into meaningful regions using low-level features due to: shadows, occlusions, non-uniform 

illumination, reflectivity, etc. 

 After segmenting different objects within a surface, their shapes (resp., forms) have to 

be described, indexed, and then compared. However, capturing all the aspects of visually 
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perceived shapes as well as their comparison is a hardly possible process, and there is therefore 

no mathematical description able to accomplish this. This is because the elusive nature of 

shapes that hinder any formal analysis trading-off between the complexity of characterising 

shapes and the capability to describe and compare shapes of interest. Indeed, objects within an 

image can be characterised using either contour-based or region-based techniques or can also 

be a combination of the two. 

 Boundary-Based Representation of Shape 

 In boundary-based representation approach, shapes are described by closed curves 

surrounding them. These curves can be specified in numerous ways such as, chain codes, 

polygons, circular arcs, splines, or boundary Fourier descriptors. Figure 8 shows some examples 

of boundary-based representation techniques. 

   

(a) (b) (c) 

Figure 8. Some techniques of boundary-based representation of shape. (a) Chain code 

707113235465, (b) polygonal approximation, and (c) arc-based approximation. 

 Many authors used chain code descriptor for various applications. It represents the 

object boundary by a sequence of integer, where each integer describes a one line from the 

boundary, which has a specified length and direction. Chain code provides a storage efficient 

representation of the object’s boundary(Yang, Kpalma et al. 2008). 

 Alternatively, the boundary features could be represented as an ordered polygonal 

approximation. This technique tries to deform a pre-defined sketch set to adjust it to the shape 

of the target models.  
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 Region-Based Representation of Shape 

 Region-based representation consists in specifying the body of an object within the 

closed boundary (interior description) as it is illustrated in Figure 9. The specified body is then 

represented using moment invariants, primitives collection (e.g., rectangles, disks, quadrics, 

etc.), deformable templates, skeletons, or simply a set of points.  

  

(a) (b) 

Figure 9. Example of region based segmentation where (a) is the original object, and (b) is 

the interior area of the object 

 By using skeletons, each shape could be represented with an axis of symmetry between 

a chosen pair of boundaries. One of the simplest skeletons is given by the medial axis that is 

defined as the trace of a locus of inscribed maximum-size circles. Usually, a skeleton is 

represented by a graph. 

 Another variant of the medial axis is the propagation from the boundaries, which 

creates a shock set (similar to a "grassfire" initiated from the boundaries). Shocks refers to 

singularities that are created from fronts propagating collisions. Thus, a shock graph is formed 

by adding shock dynamics to each point and grouping the monotonical ly flowing shocks into 

branches. Compared to the skeletal one, the shock graph produces a finer partition of the medial 

axis. 

 As shape is also defined in terms of presence and distribution of oriented parts, the 

quantitative characteristics of objects within an image (e.g., angular spectra of image 

components or edge directionality) may be used as global shape descriptors. For example, 
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the blobworld model replaces each object with a blob, or an ellipse (identified by its centroid 

and scatter matrix) in order to efficiently describe objects separated from the background. Each 

blob is also characterised with two additional measures which are the mean texture and the two 

dominant colours. Expectation - Maximisation (EM) algorithm is used to segment the initial 

images based on colour and texture features. 

II.3 Interest Point Features 

 Interest point is a recent terminology in computer vision, which concerns in localizing 

some points with some specific properties in the image (Lowe 1999, Dalal and Triggs 2005, 

Calonder, Lepetit et al. 2008, Calonder, Lepetit et al. 2010, Rublee, Rabaud et al. 2011, Alahi, 

Ortiz et al. 2012). According to (Lindeberg 2013, Lindeberg 2013),an interest point could be 

characterized as follows:  

 It has a clear, preferably mathematically well-founded, definition. 

 It has a well-defined position in the image. 

 Its local pixel-neighbourhood is rich of information contents. 

 It is robust to local and global perturbations in the image (e.g., brightness/ illumination 

changing). 

II.4 Texture Features 

 Texture refers to visual patterns that have properties of homogeneity and does not 

result from the presence of one single color or intensity(Smith and Chang 1996). Typical 

examples of natural texture could be found in clouds, trees, bricks, grass, flowers, etc. Texture 

remains a poorly defined concept (Tuceryan and Jain 1993). Figure 10 shows an example of 

two types of texture. 
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(a) (b) 

Figure 10. Example of two types of texture, (a) natural texture and (b) artificial texture.  

 Texture can be easily recognized when it is seen, however, it is very difficult to define. 

This difficulty can be attributed to the various texture definitions given by vision researchers. 

We list some of these definitions as follows. 

a. “We may regard texture as what constitutes a macroscopic region. Its structure is simply 

attributed to the repetitive patterns in which elements or primitives are arranged 

according to a placement rule.”(Tamura, Mori et al. 1978). 

b. “A region in an image has a constant texture if a set of local statistics or other local 

properties of the picture function are constant, slowly varying, or approximately 

periodic.”(Sklansky 1978). 

c. “The image texture we consider is nonfigurative and cellular... An image texture is 

described by the number and types of its (tonal) primitives and the spatial organization 

or layout of its (tonal) primitives... A fundamental characteristic of texture: it cannot be 

analyzed without a frame of reference of tonal primitive being stated or implied. For 

any smooth gray-tone surface, there exists a scale such that when the surface is 

examined, it has no texture. Then as resolution increases, it takes on a fine texture and 

then a coarse texture.”(Haralick 1979). 

d. “Texture is defined for our purposes as an attribute of a field having no components that 

appear enumerable. The phase relations between the components are thus not apparent. 
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Nor should the field contain an obvious gradient. The intent of this definition is to direct 

attention of the observer to the global properties of the display — i.e., its overall 

“coarseness,” “bumpiness,” or “fineness.” Physically,  nonenumerable (aperiodic) 

patterns are generated by stochastic as opposed to deterministic processes. Perceptually, 

however, the set of all patterns without obvious enumerable components will include 

many deterministic (and even periodic) textures.”(Richards and Polit 1974). 

e. “Texture is an apparently paradoxical notion. On the one hand, it is commonly used in 

the early processing of visual information, especially for practical classification 

purposes. On the other hand, no one has succeeded in producing a commonly accepted 

definition of texture. The resolution of this paradox, we feel, will depend on a richer, 

more developed model for early visual information processing, a central aspect of which 

will be representational systems at many different levels of abstraction. These levels 

will most probably include actual intensities at the bottom and will progress through 

edge and orientation descriptors to surface, and perhaps volumetric descriptors. Given 

these multi-level structures, it seems clear that they should be included in the definition 

of, and in the computation of, texture descriptors.”(Zucker and Kant 1981). 

f. “The notion of texture appears to depend upon three ingredients: (i) some local‘order’ 

is repeated over a region which is large in comparison to the order’s size,(ii) the order 

consists in the nonrandom arrangement of elementary parts, and (iii) the parts are 

roughly uniform entities having approximately the same dimensions everywhere within 

the textured region.”(Hawkins 1970) 

 Since there is no agreement in defining the texture as a concept, we rather define it as 

the benefits it ensures. “Texture features provide important information about patterns and the 

relationship between them within a surface”. For this reason, texture is a very important and 

useful feature in image retrieval, recognition and classification. Several approaches have been 

proposed to represent texture. We mention the three most known ones which are statistical, 

frequency and geometrical.  

 Statistical Methods 

 Statistical methods are based on counting the occurrence frequency of some specific 

patterns within a texture image. For example, counting the occurrence frequency of color pairs 
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such as red-blue, white-black, etc. A large number of statistical features have been proposed in 

literature starting from first order statistics to higher order ones (Haralick and Shanmugam 

1973, Unser 1986, Kovalev and Volmer 1998, Tao and Dickinson 2000, Carkacioglu and 

Yarman-Yural 2001, Manjunath, Ohm et al. 2001, Çarkacıoǧlu and Yarman-Vural 2003, Zhou, 

Xin et al. 2003, Hadjidemetriou, Grossberg et al. 2004, Huang and Liu 2007, Kiranyaz, Ferreira 

et al. 2008). 

II.4.1.1 Tamura Features 

 After he proposed a set of specifications for texture, Tamura(Tamura, Mori et al. 1978) 

has showed them to pattern recognition invistigators in order to determine which ones among 

them are the common to all texture.  Six of them fullfil this comnuness condition, which are: 

1. Coarseness (Coarse versus Fine): coarseness is one of the fundamental features of 

texture. It refers to the scale changes between patterns. When two patterns differ only 

in scale, the magnified one is coarser. 

2. Contrast (High versus Low contrast): The contrast of a given image can be measured 

by converting it to gray level, such that each value represents the contrast of its 

corresponding pixel. For given two images, the image with sharp edges (i.e., contrast 

rapidly changes) has higher contrast. 

3. Directionality (Directional versus Nondirectional): Directionality describes the global 

property of a texture region. It stands for measuring the total degree of directionality of 

patterns within a given area. Patterns that belong to the same area will have the same 

directionality even if they differs in orientation. 

4. Line-likeness (Line versus Blob-like): this feature is concerned with the shape of 

elements that constitute a texture. In contrast to Blob-like, Line-like feature describes 

the sharpness of the edges in texture images. 

5. Regularity (Regular versus Irregular): This feature describes the variation rule that has 

been used for patterns placement. Since they have no regular placement rule, natural 

textures tend to be Irregular. Conversely, fine texture seems to be perceived as regular.  

6. Roughness (Rough versus Smooth): This feature is meant to be used with tactile textures, 

and not for visual ones. However, human perception is usually able to visually 

distinguish rough textures from smooth ones. 
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 Tamura has approximately formulated those features mathematically based on the 

judgement of human subjects.  

II.4.1.2 Laws Texture Energy Measures 

 An alternative approach for measuring texture energy is by using local masks to detect 

various types of patterns that constitute a texture. Laws(Laws 1980) has developed method that 

measures the energy of texture. He define different types of masks for the image to be 

convoluted with. These masks are a result of multiplying one vector with another from the 

following ones. 

𝐿5 (𝐿𝑒𝑣𝑒𝑙)  =  [  1        4      6    4       1  ] : Gives the centre-weighed local average. 

𝐸5 (𝐸𝑑𝑔𝑒)  =  [ −1 − 2     6     1      2  ] : For detecting region edges. 

𝑆5 (𝑆𝑝𝑜𝑡)  =   [ −1       0     2     0   − 1  ] : For detecting spots or isolated points. 

𝑅5 (𝑅𝑖𝑝𝑝𝑙𝑒)  =  [ −1 − 2     6     1        2  ] : Detects ripples and waves. 

 The outer product of all possible two vectors (24 = 16) gives sixteen masks. For 

example, the mask L5E5 is calculated by multiplying L5 and E5 as follows:  

[
 
 
 
 
 
 
1

4

6

4

1]
 
 
 
 
 
 

× [−1 − 2   6  1  2  ] =

[
 
 
 
 
 
 
−1 −2 −6 1 2

−4 −8 −24 4 8

−6 −12 −36 6 12

−4 −8 −24 4 8

−1 −2 −6 1 2 ]
 
 
 
 
 
 

  

 Firstly, Laws convolve the image with a Mean mask in order to remove the effects of 

illumination. Then, he applied each of the masks on this pre-processed image, producing sixteen 

filtered images. Finally, he extracts the energy map for each of the filtered images according to 

Eq. (6). Where, Fk is the result of filtering a given image with the kth mask.  𝐹𝑘[𝑖, 𝑗] Is the value 

of the pixel with the index (i, j) from this filtered image. 
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𝐸𝑘[𝑟, 𝑐] =  ∑ ∑ |𝐹𝑘[𝑖, 𝑗]|

𝑟

𝑖=𝑟−7

𝑐

𝑗=𝑐−7

 (6) 

 Thus, the image shall be represented with nine final maps. We said nine instead of 

sixteen because some energy maps are combined due to their symmetry. For example, L5E5 

and E5L5 which respectively describes vertical and horizontal edge. The final energy maps can 

be used later on to cluster the image into regions of a uniform texture. 

II.4.1.3 Autocorrelation Features 

 The repetitive nature of placement of texture elements in the image is a very important 

characteristic of many textures. The amounts of texture regularity, fineness and coarseness 

present in the image can be assessed using autocorrelation function. The autocorrelation 

function 𝜌(𝑥, 𝑦) of each transmission (𝑥, 𝑦) of a given image I is formally defined as follows: 

𝜌(𝑥, 𝑦) =
∑ ∑ 𝐼(𝑢, 𝑣)𝐼(𝑢 + 𝑥, 𝑣 + 𝑦)𝑁

𝑣=0
𝑁
𝑢=0

∑ ∑ 𝐼(𝑢, 𝑣)2𝑁
𝑣=0

𝑁
𝑢=0

 (7) 

 Autocorrelation function is highly related to the size of the texture primitive (i.e., 

textons). For a coarse texture (large size primitives), then the autocorrelation function will drop 

off slowly; otherwise (small size primitives), it will drop off very rapidly. This function will 

exhibit peaks and valleys for regular textures. It drops off and rises again in periodic manner as 

the primitives are spatially periodic. The relationship between the autocorrelation and the power 

spectrum function is therefore that they are Fourier transforms of one another(Yaglom 2004). 

Consider an image I in the spatial domain and its Fourier transform 𝐹(𝑢, 𝑣). Then, the quantity 

|𝐹(𝑢, 𝑣)|2 , where |x| refers to the modulus of a complex number x , is defined as I’s power 

spectrum. Figure 11 illustrates the power spectrum extracted from a texture image, it also shows 

how the directionality of a texture effects the distribution of energy. 
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(a) (b) 

Figure 11. Extracting the power spectrum from a given image. (a) A direction-full texture 

image, and (b) its power spectrum that reflects in the directional distribution of energy. 

II.4.1.4 Co-occurrence Matrices 

 Gray-Level Co-occurrence Matrix (GLCM)(Haralick and Shanmugam 1973) is 

amongst the well-known and widely used techniques for texture representation. This 2D matrix 

accumulates a set of second order statistics, which measures the spatial dependency of two gray 

levels given a displacement vector(∆𝑥, ∆𝑦). A set of texture features such as energy, contrast, 

entropy, homogeneity and correlation are then derived from the co-occurrence matrix. they 

holds statistics about the co-existence of some values at a given offset. However, the GLCM 

suffers from a number of shortcomings. For example, it appears that there is no general solution 

for optimizing the displacement vector(Chen, Pau et al. 1993). Usually, the gray-level space is 

quantized in order to reduce the size of the matrix and keep it manageable.  More details will be 

given in Chapter III about this approach of representation. 

 Frequency Methods 

 Unlike spatial domain, frequency domain defines the texture as a set of signals with a 

given frequency, amplitude and direction. Frequency-based methods, firstly, transform the 

image into a set of frequency bands (e.g., by using Fourier Transform (FT)), then, they extract 

the energy feature carried by each of those bands resulting in feature vector. This vector could 

be used, later on, to identify images. Many frequency-based methods have been proposed in 
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literature (Manjunath and Ma 1996, Rubner and Tomasi 1999, Ro and Kang 2000, Wu, 

Manjunath et al. 2000, Sim, Kim et al. 2001, Yang and Liu 2002, Wang, Feng et al. 2004, Lee 

and Chen 2005, Han and Ma 2007, Janney and Yu 2007, Montoya-Zegarra, Beeck et al. 2008). 

II.4.2.1 Gabor Filters-based Features 

 Gabor filters-based features extraction(Daugman 1980, Daugman 1985) is a popular 

frequency-based method. It uses a predefined filter set (i.e., filter bank) that varies in scale and 

orientation in order to define the different types of textures. In the spatial domain, a 2D Gabor 

filter is defined as a Gaussian kernel modulated by a complex sinusoidal plan as follows:  

𝐺(𝑥, 𝑦) =
𝑓2

𝜋𝛾𝜂
exp (−

𝑥′2 + 𝛾2𝑦′2

2𝜎2
) exp (𝑗2𝜋𝑓𝑥′ + 𝜙) (8) 

𝑥′ = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃) (9) 

𝑦 ′ = −𝑥𝑠𝑖𝑛(𝜃) + 𝑦𝑐𝑜𝑠(𝜃) (10) 

where 𝑓and 𝜃 are dedicated, respectively, to specify the desired frequency and orientation of 

the corresponding filter. 

 By varying the values of the different parameters, a number of filters could be 

generated. Figure 12 shows an example of a filter-bank (40 filters) generated using different 

orientations and frequencies (8 orientations and 5 frequencies). 
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Figure 12. A set of 40 Gabor filters extracted using different frequencies and orientations. 

 After convoluting the image with a selected set of filters, various statistical measures 

could be extracted from the resulted images. For example, the mean and the variance are two 

features amongst many others. 

 Gist is a specific type of Gabor filter-based features. It convolves the image with 32 

predefined filters that vary for 4 scales and 8 orientations. This process produces 32 feature 

maps from the original image. Then, each feature map is divided into 16 equal regions (4x4 

grid). After concatenating the values’ averages of these regions for all maps, we get a 512 

(32x16) length Gist descriptor. 

 Robustness to scale, orientation, translation and image noise make Gabor filter-based 

features very powerful. However, they suffer from the high computation. This last drawback is 

resulted from the big size of feature vector that is extracted from each image. For example, if 

we have an image I with dimensions of 400 × 400, and we want to extract features based on 

filter bank that contains 40 filters, then its vector size will be 400 × 400 × 40 = 6400000 

elements. 

II.4.2.2 Discrete Wavelet Transform Features 

 For a given data vector with a length equal to  𝑛2  (such that  𝑛 ∈ 𝑁), the discrete 

wavelet transform (DWT) is a linear operator that transforms this vector into a numerically 

different vectors with the same length. In other words, DWT is a tool that separates the data 
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into different frequency components, and then studies separately each component based on the 

resolution matched to its scale. 

 As it is illustrated in Figure 13, DWT decompose the image, using a cascade of filtering 

followed by a factor 2 subsampling, into:  

1. Coarse approximation by convolving it with low-pass filter. 

2. Detail information by convolving it with high-pass filter.  

 

Figure 13. DWT fast algorithm schematic diagram, where H and G respectively are high-pass 

and low-pass filters, and 2 denotes down-sampling. 

the outputs of these filters are given by the equations Eq. ((11)) and (12)), where h(n) and l(n) 

are two coefficients of low and high-pas filters respectively. 

𝑐𝐷𝑗+1(𝑝) = ∑ ℎ(𝑛 − 2𝑝)

+∞

𝑛=−∞

𝑐𝐷𝑗(𝑛) (11) 

𝑐𝐴𝑗+1(𝑝) = ∑ 𝑙(𝑛 − 2𝑝)

+∞

𝑛=−∞

𝑐𝐷𝑗(𝑛) (12) 

 This decomposition is performed recursively on low-pass approximation coefficients 

obtained at each level, until reaching the necessary iterations. Different direction could be 

considered with each decomposition , for example: 0o (horizontal), 45o (diagonal) and 90o 

(vertical). Those coefficients are considered as features for the image from which they were 

extracted. Typical examples of such methods are Haar (Talukder and Harada 2010), Daubechies 

(Wang, Wiederhold et al. 1998) and the dual-tree complex (DℂWT)(Selesnick, Baraniuk et al. 

2005) wavelet transforms. 
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 Geometrical Methods 

 Geometrical methods aim to identify texture elements (i.e., primitives or textons or 

textels) that constitute a texture (Julesz 1981, Zhu, Guo et al. 2005, Fan, Li et al. 2008). These 

elements are arranged according to an arrangement rule. Thus, a texture could geometrically be 

defined as Eq. (13) shows. 

𝑓 = 𝑅(𝑒) (13) 

where f is the texture image, R is an arrangement rule and e is a texture element. 

II.4.3.1 Local Binary Pattern 

 Local binary Pattern (LBP)(Ojala, Pietikäinen et al. 1996) has proven its ability as a 

powerful feature in many applications including texture classification and segmentation. The 

basic LBP operator is computed by assigning each pixel within the image to a binary code of 

eight bits. This code is computed by considering the center pixel of a neighborhood , with a 

given radius R, as a threshold value. The decimal value that corresponds to the binary one is 

then used to replace the original value of the center pixel. P is the set of neighbor pixels except 

the central one. For example, for a given R equals three, the appearance frequency of each code 

(i.e., pattern) in the image is then computed to constitute a histogram of 256 ( 28) dimensions. 

Figure 14 shows an example of the LBP calculation.  

 

Figure 14. Example of extracting LBP value from a pixels neighborhood. 
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 As a formula, the LBP code of a given pixel that is located at the point (𝑥𝑐 , 𝑦𝑐) is given 

by Eq. (14). 

𝐿𝐵𝑃𝑃,𝑅 =  ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑝

𝑃−1

𝑝=0

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠(𝑥) =  {
1     𝑖𝑓 𝑥 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

 By assuming that R equals three, there exist 58 amongst the 256 patterns provide more 

information than others do. This makes possible to use a smaller subset of patterns to describe 

image texture. These patterns are called uniform and contain at most two contiguous bit suits. 

Later on, LBP was extended to cover neighborhoods with different sizes(Ojala, Pietikainen et 

al. 2002). 

II.4.3.2 Weber Local Descriptor 

 Weber Local descriptor (WLD) (Chen, Shan et al. 2008, Chen, Shan et al. 2010) 

consists in extracting, from each pixel, two components namely, differential excitation and 

orientation. Such that, the differential excitation component is a function that represents the 

ratio between the intensity of the current pixel and the relative intensity differences of this pixel 

against its neighbors. The orientation component is the gradient orientation of the 

corresponding pixel. Thus, WLD uses these two components to constitute a feature vector (i.e., 

histogram). For a given image I, Figure 15 depicts a WLD feature extraction scheme. 
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Figure 15. An illustration of WLD histogram extraction for a given image (Chen, Shan et al. 

2008). 

 As it is illustrated in Figure 15, WLD extracts for each pixel Ic, in a given image, two 

measures namely, differential excitation 𝜉(𝐼𝑐) and orientation 𝜃(𝐼𝑐). These two measures can be 

calculated using Eq. (15) and Eq. (16) respectively. 

𝜉(𝐼𝑐) = 𝑎𝑟𝑐𝑡𝑎𝑛 [∑ (
𝐼𝑖 − 𝐼𝑐

𝐼𝑐
)

𝑝−1

𝑖=0

] (15) 

𝜃(𝐼𝑐) = 𝑚𝑒𝑑𝑖𝑎𝑛(
𝐼𝑅(𝑖+4) − 𝐼𝑖

𝐼𝑅(𝑖+6) − 𝐼𝑅(𝑖+2)
) (16) 

such that, 𝑖𝜖(0, 1, 2, 3,… , 𝑝 − 1)  are indices of Ic‘s neighbors, and 𝑅(𝑥) = 𝑚𝑜𝑑(𝑥, 𝑝),. 
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 After having 𝜉(𝐼𝑐) and 𝜃(𝐼𝑐) extracted from all pixels of the image, WLD subsample 

the value space then map each differential excitation and orientation to its corresponding bin. 

The result is, therefore, a matrix M where each cell M(i, j) represents the occurrence frequency 

of a pixel that has the values i as orientation and j as differential excitation. Finally, by 

combining all rows of this matrix (each row represents a sub-histogram of some specific 

orientation) we get the final WLD histogram which can be used, later on, for matching process 

or similarity calculation. 

II.5 Dimensionality Reduction 

 Sometimes, feature vector dimensions are too high to be handled in a reasonable 

amount of time, which make them unsuitable especially for real time systems. Selecting a 

feature subset from an initial bigger set of features reduces the space dimensionality by 

discarding the “less significant” features. These technics aim to minimise the error of 

approximation by projecting the original data vectors to a lower-dimensional space. The main 

goal of such transformation is to reach a space in where the transformed features are extremely 

uncorrelated, that is, the covariance matrix of the transformed data set becomes diagonal. 

Instance of such a techniques are the principal component analysis (PCA), Karhunen-Loeve 

transform (KLT) and singular value decomposition (SVD). Despite particular numerical 

algorithms are different, all the latter methods are equivalent in essence. The data-set scatter 

(i.e., variance) around each new coordinate axis decides which subset of variables should be 

chosen. This subset usually have to preserve a high scatter percentage (e.g., 95% or 99%) of 

the original dataset. By discarding dimensions with smaller variance, this approach minimises 

the mean squared error. In other words, the original vectors are closer, in Euclidean distance, 

to their decorrelated projections than other transformations. However, this approach suffers 

from a number of shortcomings such as data-dependency, computationally expensive, and it 

does not suite for dynamic data sets. 

 Principal Component Analysis 

 Principal component analysis (PCA) aims to draw a smaller number of uncorrelated 

vectors called “principal components” by operating a linear transformation on a big set of 

possibly highly correlated feature vectors. The maximal variability (i.e., scatter) in the feature 
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vectors projected onto this the first principal component, and the second component accounts 

for the second maximal remaining variability, and so on. The flowing formula explains how to 

obtain the principal components  𝑓𝑘  with 𝑘 = 1 …𝐾 , 𝑚 is the mean, and 𝑆  is the covariance 

matrix. 

𝑓𝑘 = [𝑓𝑘,1, 𝑓𝑘,2 , … , 𝑓𝑘,𝑛]
𝑇 ; 𝑚 =

1

𝐾
∑ 𝑓𝑘
𝐾
𝑘=1 ; 𝑆 =

1

𝐾−1
∑ (𝑓𝑘 − 𝑚)(𝑓𝑘 − 𝑚)𝑇𝐾
𝑘=1   (17) 

𝑆𝑖𝑗 measures the covariance between the vector components 𝑓𝑖 and 𝑓𝑗, and 𝑆𝑖𝑖  is the variance of 

the component 𝑓𝑖 . S is a symmetric matrix that has an orthogonal basis of eigenvectors 𝑒𝑖. 

𝑒1, 𝑒2, … , 𝑒𝑛 ⟺ 𝑆𝑒𝑖 = 𝜆𝑖𝑒𝑖 ; 𝑖 = 1,2,… , 𝑛; 𝑒𝑖
𝑇𝑒𝑗 = {

1        𝑖𝑓 𝑖 = 𝑗

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆3 (18) 

 The feature variability that is concentrated along each particular eigenvector is 

specified by the proportion of the corresponding eigenvalue compared to the total sum of 

eigenvalues. In other words, eigenvectors are ordered, from the biggest to the smallest, 

according to the decreasing eigenvalues λ i. Thus, the first eigenvector is directed along the line 

where the biggest feature scatter is projected within the new space; the second eigenvector is 

directed along the line corresponding to the biggest remaining scatter, and so forth (Figure 16). 

In preference using only a few basis vectors of the orthogonal basis instead of using all the 

covariance-matrix eigenvectors. Hence, PCA allows highly reducing the data dimensionality 

without information loss (or minimum losses), and thus simplify the representation. 

𝑓𝑘 =∑𝑤𝑘,𝑗𝑒𝑗

𝑣

𝑗=1

; 𝑤𝑘,𝑗 = 𝑓𝑘
𝑇𝑒𝑗 = ∑𝑓𝑘,𝑗𝑒𝑗,𝑖

𝑛

𝑖=1

 (19) 
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Figure 16. Dimensionality reduction 

 Figure 16 shows an example for a set of artificial data (depicted with small 

blue dots) represented in 2D space defined by the feature vectors f = (f1, f2). Applying 

PCA to these data results in the two eigenvectors drawn by black arrows, where the 

first eigenvalue λ1 = 0.1788 is much greater than the second eigenvalue λ2 = 0.0008. 

This result indicates that almost all the feature variation are held by the first 

eigenvector, which means that this data can approximately be represented with a 1D 

space obtained by the projection of the data onto the line along the first eigenvector.  

 Multidimensional Scaling 

 Multidimensional scaling is an alternative of PCA, which is based on a 

nonlinear mapping from k-dimensional feature space to n-dimensional one (k << n). 

Yet, no general theory or precise definition has been given to this approach.  Although 

numerous statements of this approach exist, multidimensional scaling attempts to 

minimise diversities of pairwise Euclidean-distances between objects in a dataset. 
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 Commonly, a nonlinear mapping provides better dimensionality reduction 

than linear methods. However, it suffers from the expense of heavier computations. 

In addition, this approach is data-dependent too, and it poorly suits for dynamic 

datasets. 

 Geometric Hashing 

 In contrast to PCA and multidimensional scaling, geometric hashing is a data 

independent approach, which performs data mapping from n-dimensional feature space to a 

very low-dimensional ones (i.e., the 1D real line or the 2D real plane). Generally, it uniformly 

spreads the given data over the range of a low-dimensional space, such that the metric properties 

of the hashed space significantly differ from those of the original space. In case when only the 

local metric properties of a low-dimensional feature space are needed to be maintained, 

geometric hashing is therefore applied for indexing. However, dimensionality increasing of the 

original space leads to difficulties in designing a good hashing function. 

 Generally, dimensionality reduction facilitates the indexing of multidimensional 

feature spaces, and the data analysis is then performed on the transformed data rather than the 

original one. It also eliminates the impacts of the "curse of dimensionality" issue and improves 

the results. 

II.6 Conclusion 

 In this chapter, we have seen how an image can be represented using a derived values, 

that are called features, from its content. These features were mainly categorized into four main 

approaches namely color, shape, interest-point and texture features. There is no generic feature 

that can be used for all kind of image analysis tasks, instead, different features could be 

combined (e.g., color and texture) for better image representations.  Moreover, we found out 

that most of the features such as GLCM suffers from numerous drawbacks and needed to be 

improved or generalized to cover more representation aspects.  In this latter chapter, we have 

seen how dimensionality reduction of feature vectors operates. This latter facilitates the 

indexing of multidimensional feature spaces and eliminates the impacts of the "curse of 

dimensionality" issue.
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Chapter III. GLCM 

GENERALIZATION, 

RELATED WORK 

 Co-occurrence matrix-based features describes the interaction between pixels of a 

given neighbourhood. These features interest in extracting statistics that describe this 

interaction in effective way (i.e., correlation, variance, etc.). Many Co-occurrence matrix-based 

features have been proposed in literature, the GLCM is amongst the widely known ones. In this 

chapter, we list the most relevant literature works which are based on extracting color (resp., 

gray-level) co-occurrence matrix from images.  

III.1 Gray Level Co-occurrence Matrix 

 The GLCM(Haralick and Shanmugam 1973)  is generated by calculating the 

occurrence frequency of gray-level pairs within a texture image. In simpler words, let us 

suppose that M is a GLCM. Then, each element M(i, j) represents the frequency of a gray-level 

j  that appears at a given offset (∆𝑥, ∆𝑦) from a gray level i. For a given image I, and for an 

offset(∆𝑥, ∆𝑦), the GLCM can be extracted using Eq. (20). 
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𝐺𝐿𝐶𝑀(𝑖, 𝑗) =  ∑∑ {
1,   𝑖𝑓 𝐼(𝑝, 𝑞) = 𝑖 𝑎𝑛𝑑 𝐼(𝑝 + ∆𝑥, 𝑞 + ∆𝑦) = 𝑗 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         

𝑀

𝑞=1

𝑁

𝑝=1

 (20) 

 After having proposed the GLCM, Haralik has extracted a set of features from it, 

namely, angular second moment, contrast, correlation, variance, inverse different moment, sum 

average, sum variance, sum entropy, entropy, difference variance, difference entropy, maximal 

correlation cofficient and three other mesures of correlation namely f11, f12 and HXY.  

 Figure 17 shows an exemple of extracting the co-occurrence matrix from a given 

image, and then extracting some features from this matrix. 

0,057 0,013 0,001 0

0,0131 0,165 0,017 0

0,001 0,017 0,279 0,008

0 0 0,008 0,417

Contrast = 0,088

Correlation= 0,950

Homogeneity= 0,959

Energy = 0,283

(a) (b) (c)

 

Figure 17. Extracting GLCM features from an image. (a) is a given image, (b) is the extracted 

GLCM (M) and (c) represents four statistical features extracted from this GLCM. 

 In addition to its simplicity, the GLCM has proven its ability to represent the gray-

level texture in a good way. However, since it holds information about gray levels only, the 

GLCM is not able to deal with color textures. Integrating color information into the GLCM is 

still an open issue. 

 Although it is a fourty-years old method, many comparative studies have proven that 

GLCM is one of the best texture representations. We mention the work of Ohanian and 

Dubes(Ohanian and Dubes 1992) , where they compare and evaluate four texture methods, 

namely GLCM(Haralick and Shanmugam 1973), Markov Random Field(Cross and Jain 1983), 

fractal-based method(Pentland 1984) and multi-channel filtering(Farrokhnia and Jain 1991). 
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Their evaluation involves four test sets, two of them are synthetic and the others are natural. 

Results indicate that the GLCM outperforms the other methods. Nurhaida et al.(Nurhaida, 

Manurung et al. 2012) have compared the performance of three methods for the classification 

of Batik texture dataset. These methods are GLCM, Canny Edge Detection, and Gabor Filters. 

Experimental results showed that the GLCM has again yielded the best classification accuracy.  

 Although the GLCM has proven its effectiveness as a texture representation, four main 

issues should be addressed in order to improve its accuracy and the results it yields:  

Color integration: Since the GLCM is computed from gray-level images only, color 

information, which may be very important, is totally ignored. Several studies have been 

conducted to tackle this issue(Palm 2004, Arvis, Debain et al. 2011)  

Multi-spectral integration: some attempts have been done to integrate information extracted 

from the different spectral bands, composing a multi-spectral image, into a co-occurrence 

matrix(Khelifi, Adel et al. 2010). 

Color sampling and mapping: sampling is the process of dividing a space into a set of bins, 

whereas, mapping is the process of determining the bin that corresponds to a given value. Color 

sampling and mapping are critical processes since the better they are, the better results are. 

Vadivel et al.(Vadivel, Sural et al. 2005) propose a mapping method where they take into 

account information about both color and gray level. 

Extracting new features: Besides the features introduced by Haralick in his original work on 

GLCM(Haralick and Shanmugam 1973), many other authors have proposed new ones. 

Examples include(Dacheng, Xuelong et al. 2002, Palm 2004). 

 This thesis addresses two issues among those cited above. The first one concerns color 

integration while the second is sampling and mapping.  

III.2 Combining and Integrating Color 

 As we have explained before, GLCM is a representation of a texture image in the gray-

level space (i.e., mono channel). Color integration is the process of generalizing the GLCM in 

order to make it able to represent color images (i.e., multi-channel). To fulfill such a task, a 
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number of color spaces have been used in literature, such as Red, Green and Blue (RGB); HSV; 

Luminance, a-axes and b-axes (L*a*b); Luv; and Hue-Max-Min-Diff (HMMD)(Stanchev, 

Green Jr et al. 2003). 

 Combining GLCM with HSV Color Histogram 

 In order to improve CBIR accuracy and efficiency, authors of (Kong 2009, Reddy 

2010) suggest to use both color and texture features as image descriptors. In order to separate 

chromatic from the achromatic colors, all features has been extracted within HSV color space. 

Firstly, he has quantized hue channel into eight bins according to the color model of substantial 

analysis. Both saturation and intensity were quantized into three bins in accordance with the 

human vision thresholding system. Then, Kong extracted, as color feature, a 3 × 3 × 8 =

72 length cumulative color histogram as the next formula shows. 

𝐻𝑖𝑠𝑡(𝑘) = ∑∑𝑠(𝐼(𝑖, 𝑗)); 𝑠(𝑝) = {
1 𝑖𝑓 9𝐻𝑝 + 3𝑆𝑝 + 𝑉𝑝 = 𝑘

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑀

𝑗=1

𝑁

𝑖=1

 (21) 

where I is an image that has height N and width M. 𝐻𝑝,  𝑆𝑝and 𝑉𝑝 respectively are the bins in 

which hue, saturation and intensity of the corresponding pixel p are falling in. 

The adopted channel quantization is presented in the following formulas. Where H, S, and V 

respectively are the mapping results for hue (h), saturation (s) and intensity (v) channel for a 

given pixel p. 

𝐻 =

{
 
 
 
 

 
 
 
 
0    𝑖𝑓 ℎ 𝜖[316, 20]  

1    𝑖𝑓 ℎ 𝜖[31, 40]     

2    𝑖𝑓 ℎ 𝜖[41, 75]      

3    𝑖𝑓 ℎ 𝜖[76, 155]   

4   𝑖𝑓 ℎ 𝜖[156, 190]

5    𝑖𝑓 ℎ 𝜖[192, 270]

6    𝑖𝑓 ℎ 𝜖[271, 295]

7    𝑖𝑓 ℎ 𝜖[296, 315]

 (22) 

𝑆 = {

0    𝑖𝑓 𝑠 𝜖[0, 0.2[    

1    𝑖𝑓 𝑠 𝜖[0.2, 0.7[

2  𝑖𝑓 𝑠 𝜖[0.7, 1]     

 (23) 

𝑉 = {

0    𝑖𝑓 𝑣 𝜖[0, 0.2[    

1    𝑖𝑓 𝑣 𝜖[0.2, 0.7[

2   𝑖𝑓 𝑣 𝜖[0.7, 1]     

 (24) 
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 Such a quantification is effective in minimizing effects of light intensity, and reducing 

the computational complexity and therefore the execution time. 

 After having the cumulative color histogram extracted, they combined it with four of 

GLCM features namely, energy, contrast, entropy and inverse difference. The proposed 

approach has been evaluated using a CBIR system. Outcomes reported in Kong’s experiments 

indicate that after combining GLCM with the cumulative color histogram the results were well 

improved.  

Later on, the same approach has been adopted by (Kavitha, Rao et al. 2011). This time however, 

each image is explicitly divided into a set of six equal sized sub-blocks, and then extract from 

each sub-block a cumulative histogram in addition to four of GLCM features namely, energy, 

contrast, entropy and inverse difference. Finally, all the extracted features are combined in order 

to formulate the final feature vector. According to their experiments, the proposed approach 

outperforms the former one in which sub-dividing the image is not considered. 

However, such approaches neglect the correlation between the color and gray-level features. 

Additionally, weights for color feature and texture features must be explicitly defined which 

raises another problem of weight assignment. 

 Combining GLCM with RGB Color Moments 

 Another attempt to resolve the lack of color information in case of using GLCM has 

been done by (Huang 2007, Kaya and Kayci 2014). In the latter work, an application of neural 

network and image processing techniques has been presented for detecting and classifying a set 

of the pre-mentioned Phalaenopsis seedling diseases. The author decided to use nine texture 

features extracted from GLCM along with other three color-features extracted using RGB color 

space. The texture features are contrast, uniformity, maximum probability, homogeneity, 

inverse difference, difference variance, diagonal variance, entropy, and difference entropy, 

whereas the color features are the red channel mean (Rmean), green channel mean (Gmean), and 

blue channel mean (Bmean). 

 As a classifier, Huang used a back propagation neural network (BPNN) which consists 

of three layers: input layer, hidden layer, and output layer. The input layer has 21 nodes, three 
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of them are for color features (Rmean, Gmean and Bmean), while the remaining 18 ones are for 

texture features, as Figure 18 shows. The output layer was made of four nodes correspond to 

four categories namely, BSR, PBR, BBS and OK. At the beginning, the number of nodes 𝑛ℎ  in 

the hidden layer was calculated using formula in Eq. (25. 

𝑛ℎ = [
𝑛𝑖+𝑛𝑜

2
] + √𝑛𝑝  (25) 

such that 𝑛𝑖 and 𝑛𝑜are the number of input and output nodes respectively, and 𝑛𝑝  indicates the 

number of images in the training set. 

 

Figure 18. General shceme of the used BPNN classifier(Huang 2007). 

 Likewise, the same features (i.e., dominant color descriptor (DCD)(Chang, Sikora et 

al. 2001) and GLCM) in these works has been adopted by(Rao, Rao et al. 2011). After dividing 

the image into 8-coarse partitions, Rao et al. extracted those features along with invariant 

moments of gradient vector flow fields, as shape features, from each partition. Finally, they 

construct a combined feature vector for color, texture and shape. This final feature vector has 

been used to evaluate e CBIR system where the result indicates a slightly improvement. 

 As features are extracted separately from each channel of the color space, these 

approaches suffer from the absence of correlation between color-texture features and color-

color features. 
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 Generalized Gray-Level Difference Method 

 In(Khelifi, Adel et al. 2010), the authors propose to use a Generalized Gray-Level 

Difference Method (GGLDM) as an extension of the GLCM to multi-spectral images by 

assuming joint information between different spectral bands. The co-occurrence probabilities 

are not calculated between gray levels, but rather between vectors of gray levels. Each 

component in a vector represents a value of a given pixel within a specific spectral band. The 

distance between vectors is calculated using the probability function P(G(V; V∆|d; θ) = (k1; 

k2:::kNb )), where V and V∆ are two vectors with spectral components (i1; i2; i3:::iNb ) and 

(j1, j2; j3:::jNb ), respectively, d is a given distance and θ is a given direction  (Figure 19). 
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Figure 19. Extraction GGLDM from a multi-spectral image. 

 Subsequently, authors have modified the original GLCM’s features to fit their new 

representation as Eq. (26)-(30) show: 

Contrast =∑ ‖𝐷𝑖‖
2
𝑃(𝑉𝑖 , 𝑉∆

𝑖)𝑖=𝑚
𝑖=1   (26) 

Angular Second Moment =∑ 𝑃(𝑉𝑖 , 𝑉∆
𝑖)2𝑖=𝑚

𝑖=1  (27) 
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Entropy = ∑ 𝑃(𝑉𝑖 , 𝑉∆
𝑖) 𝑙𝑜𝑔 (𝑃(𝑉 𝑖 , 𝑉∆

𝑖)) .𝑖=𝑚
𝑖=1   (28) 

Mean =  ∑ ‖𝐷𝑖‖𝑃(𝑉𝑖 , 𝑉∆
𝑖)𝑖=𝑚

𝑖=1  (29) 

Inverse Difference Moments =  ∑
𝑃(𝑉 𝑖,𝑉∆

𝑖)

‖𝐷𝑖‖+1
.𝑖=𝑚

𝑖=1  (30) 

where ‖𝐷𝑖‖
2
= [(𝑘1

𝑖)2 + (𝑘2
𝑖 )2 + ⋯+ (𝑘𝑁𝑏

𝑖 )2], Nb is the number of columns in GGLDM. 

 Similarly, other literature works tried to generalize the co-occurrence matrix to multi 

spectral images. In (Hauta-Kasari, Parkkinen et al. 1996), authors define a set of color classes 

for a pixel to be a part of. After mapping each color spectrum in the multi -spectral image to its 

appropriate class, they extract their final co-occurrence matrix. In (Huang, Liu et al. 2014), 

authors proposed a representation of texture in multi/hyper spectral images using clustering 

algorithms (i.e., k-means and fuzzy c-means) and sparse representation.  

 Although these methods can be used to represent images in different color spaces (e.g., 

RGB, HSV or L*a*b*) by considering each channel as a spectral band, they does not take into 

account the correlation between these channels. In addition, they ignores the fact that some 

spectral bands are more important than others are. 

 HSI Co-occurrence Matrix 

 In(Shearer and Holmes 1990), the authors have proposed to use Hue, Saturation and 

Intensity (HSI) color space to derive, from the image, three co-occurrence matrices that attribute 

hue, saturation and intensity. Then, they have extracted a set of 33 features (i.e., 11 features per 

matrix) from these matrices in order to be used in texture image discrimination. However, the 

major weakness of this method is that it ignores the correlation between the HSI color channels. 

 Many other works in literature have adopted the HSI co-occurrence matrix. In 

(Shuttleworth, Todman et al. 2002), the authors adopted this method in order to automatically 

classify images of colon tissue and identify the colorectal cancer. Results showed that this 

method outperforms the GLCM. Similarly, authors of (Pydipati, Burks et al. 2006) suggested 
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using this method  to identify diseased and normal citrus leaves under laboratory conditions. 

Experimental results showed a high classification accuracy for all leaf classes. In (Drimbarean 

and Whelan 2001), the authors conduct a comparative study between different texture features 

namely Distance Cosine Transform (DCT)(Unser 1986), Gabor filter-based features(Daugman 

1980, Daugman 1985) and a co-occurrence matrix extracted using HSI color space. The 

obtained experimental results indicate that incorporating color information improves the 

performance of the examined texture analysis techniques. 

 HSI-Luminance Co-occurrence Matrix 

 In addition to the 33 features proposed by Shearer(Shearer and Holmes 1990), Chang 

et al.(Chang, Zaman et al. 2012) have included 11 other features that have been extracted from 

a co-occurrence matrix of National Television System Committee (NTSC) luminance (L). 

Nevertheless, this method suffers from the same drawback which is the absence of correlation 

between the color channels. 

 Hue Co-occurrence Matrix 

 Shim et al.(Shim and Choi 2003) tried to resolve the issue of integrating color into the 

GLCM by extracting it from the hue channel of the HSV color space. In their study, they have 

considered quantizing the color space into 16 bins, in addition to a displacement vector that is 

defined as: (∆𝑥, ∆𝑦) 𝜖 ((1,0), (−1,0), (0,1), (0,−1))  (i.e., only four adjacent neighbours) 

which was sufficient for their experiments.  

 In simpler words, let I be an 𝑁 × 𝑀 image quantized into m colors, and p(x, y) is the 

color value of a pixel with the index (x, y). Then, Shim et al.’s simplified CCM is given by Eq. 

(31). 

𝐻1(𝑖, 𝑗) = 𝜂((𝑝(𝑥, 𝑦), 𝑝(𝑁(𝑥,𝑦)) == (𝑖, 𝑗)) =  𝛼 ∑ 𝐶𝑗(𝑥
′, 𝑦 ′)(𝑥′ ,𝑦′)∈𝑁(𝑥;𝑦)

  (31) 
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where 𝜂 indicates the number of times that the pixel pair (𝑝(𝑥, 𝑦), 𝑝(𝑁(𝑥,𝑦))) equals the value 

of the color indices (𝑖, 𝑗) , 𝑁(𝑥,𝑦) refers to the 4-neighbors of the pixel 𝑝(𝑥, 𝑦) , 𝛼  is a 

normalization constant which equals (𝑁 × 𝑀) 4⁄ , and 𝐶𝑗(𝑥, 𝑦) is given by Eq. (32). 

𝐶𝑗(𝑥, 𝑦) = {
1       𝑖𝑓 𝑝(𝑥, 𝑦) = 𝑖

0                        𝑒𝑙𝑠𝑒
 (32) 

 Shim et al. does not derive any statistical moments from the proposed Color Co-

occurrence Matrix (CCM). Instead, they concatenated its diagonal and non-diagonal elements 

in order to formulate a final histogram which is used to index texture images. The latter step 

was justified by the claim that homogeneous color regions of the image contribute to the 

diagonal elements of CCM whereas the non-homogeneous regions to the non-diagonal elements 

of CCM. The feature vector of an image I is given, therefore, by Eq. (33). 

𝐹1 = (𝐻𝐷
1 , 𝐻𝑁

1 ) (33) 

where,  𝐹1is the Modified CCM (MCCM), 𝐻𝐷
1  and 𝐻𝑁

1  are, respectively, the diagonal and non-

diagonal elements of CCM.  

 Despite it incorporates color information, CCM suffers from numerous drawbacks. 

First, by limiting themselves to color only (i.e., hue channel), information about intensity is 

completely lost. Which means that it is able to deal only with mages that are represented in 

single channel space. Second, using the CCM ’s diagonal and non-diagonal elements, as they 

are, instead of deriving third order moments from them, makes it very sensitive to color changes 

and cost sometimes more computation. In simpler words, two images that represent the same 

texture but in different colors cannot be yielded as similar by CCM. 

 Single-Channel & Multi-channel Co-occurrence Matrices 

 Another attempt to integrate color has been done by Palm(Palm 2004). He has 

proposed two alternative methods using Luv color space. He justified  using Luv instead of 

RGB by the fact that RGB color space channels are highly correlated (Tan and Kittler 1994, 

Wandell 1996). Such a correlation between the channels makes the features very sensitive to 
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tinting, toning and shading. Thus, he has transferred images from RGB into Luv color space, 

where the channels are de-correlated, using the formula in Eq. (34). 

(
𝐿
𝑈
𝑉
) =  𝐻𝐿𝑈𝑉  . (

𝑅
𝐺
𝐵
) =

1

√6
(
√2
2
0

√2
−1

√3

√2
−1

−√3

)(
𝑅
𝐺
𝐵
) (34) 

 After transferring the image into Luv color space, Palm suggested using two methods 

for extracting the co-occurrence matrix. In the first method, three Single-channel Co-occurrence 

Matrices (SCM) has been defined. He firstly assumed a limited k-dimensional Cartesian space 

like RGB or LUV with k= 3. Then, each SCM (i.e., 𝑆𝐶𝑑
𝑘 ) corresponds to a GLCM that is 

extracted from the kth color channel (i.e., 𝑓𝑘 ) of the image, where 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑘)
𝑇  is 

calculated using Eq. (35). 

Pr(𝑤𝑘 , 𝑤
𝑘
) = 𝑆𝐶𝑑

𝑘(𝑤,𝑤) = Pr (𝑓𝑘(𝑝1) = 𝑤 ∧ 𝑓𝑘(𝑝2) = 𝑤 ∧ |𝑝1 − 𝑝2| = 𝑑) (35) 

where Pr(𝑤𝑘 , 𝑤
𝑘
)is the joint probability that indicates the adjacency of 𝑤𝑘  and 𝑤

𝑘
 on the 

same channel 𝑓𝑘; 𝑝1and 𝑝2are two pixels from the image, and d is a displacement distance. 

 The major weakness of SCM is that it completely ignores the correlation between the 

three channels. In addition, it considers all channels as important as the same, however,  some 

channels are less important comparing to others (e.g., image shading is not as important as color 

changing).  

 In the second method, the correlation was partially covered by using three Multi-

channel Co-occurrence Matrices (MCM). Two of these matrices, namely LV and UV represent 

the chromatic information, whereas, the achromatic information is represented by the LU 

matrix. In other words, Palm introduces multi-channel co-occurrence matrices (MCMs) 

𝑀𝐶𝑑
𝑘1,𝑘2

 which count the pairwise occurrence of values in two different bands 𝑓𝑘1 and 𝑓𝑘2, as 

Eq. (36) shows. 

Pr(𝑤𝑘1 , 𝑤
𝑘2
) = 𝑀𝐶𝑑

𝑘1,𝑘2(𝑤,𝑤) = Pr (𝑓𝑘1(𝑝1) = 𝑤 ∧ 𝑓𝑘2(𝑝2) = 𝑤 ∧ |𝑝1 − 𝑝2| = 𝑑) (36) 
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where Pr(𝑤𝑘1 , 𝑤
𝑘2
)is the joint probability that indicates the adjacency of 𝑤𝑘1and 𝑤

𝑘2
 on the 

channels 𝑓𝑘1  and 𝑓𝑘2 , respectively. 𝑝1 and 𝑝2 are two pixels from the image, and d is a 

displacement distance. 

 By adopting this latter method, true, tint, tone and shaded colors are taken into account. 

However, it neglects the correlation between the chromatic and the achromatic channels.  

 Color-features combined GLCM 

 Arvis et al.(Arvis, Debain et al. 2011) tried to generalize the GLCM to multispectral 

images. Let 𝐶1 , 𝐶2, … 𝐶𝑛be the channels of color space in which the image has been represented. 

Thier generalization can be calculated according to Eq. (37). 

𝑀𝑑(𝐶𝑢 ,𝐶𝑣)
(𝑖, 𝑗) = #((𝑠, 𝑠 + 𝑑) ∈ 𝑅2|𝐶𝑢(𝑠) = 𝑖 ∧ 𝐶𝑣(𝑠 + 𝑑) = 𝑗) (37) 

where s is a given point within the channel 𝐶𝑢  of the image, and d is a displacement vector. 

 In their method, colour images are coded using three channels, leading to six different 

matrices. The first three matrices, namely (R,R), (G,G), (B,B),  represents the gray-level 

information and can be extracted from each single channel as standard greyscale co-occurrence 

matrices. Whereas, the three others, namely (R,G), (R,B), (G,B), represents the color 

information and take into account the correlations between two channels each time. Therefore, 

this method lead to a total of 30 texture features (5 features from each matrix).  Figure 20 

illustrates the scheme corresponding to this method. 
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Figure 20. Illustration of the multispectral RGB-method applied to an image from the class 

FOOD0006 from VisTex dataset(Arvis, Debain et al. 2011). 

 An alternative solution proposed by Arvis et al. to reduce the number of features. It 

consists in changing the color space of the image in order to obtain one channel for luminance 

and two others for chrominance information, as Figure 21 shows. Therefore, they use HSV 

color space because it corresponds better to how people experience colour than the RGB does. 
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Figure 21. Illustration of the multispectral HSV-method applied to an image from the class 

FOOD0006 from VisTex(Arvis, Debain et al. 2011). 

 In the later method, the correlation between the features extracted from Value-channel 

matrix and those of Hue and Saturation channels is not covered. Another issue this method 

suffers from is how to choose suitable weights to be assigned to each of the GLCM and color 

features. 
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III.3 Color Sampling and Mapping 

 Human vision is a quite complicated process. At low illumination, only the rod cells 

are stimulated, which leads to gray-level perception of objects. However, as illumination 

increases, the cone cells become more stimulated, which leads to color perception(Vadivel, 

Sural et al. 2005). Hence, various color spaces, including HSV, Luv, L*a*b and XYZ have been 

introduced in order to simulate this complicated process of gray-level/color perception. After 

having the color space chosen, a sampling process is need to be set. The sampling is the process 

of dividing the channel into a set of ranges. Whereas the mapping is process that defines for a 

given value the range it belongs to. 

 Integrated Color Intensity Co-occurrence Matrix 

 In order to differentiate scotopic from photopic vision, one may think to establish a 

threshold to distinguish a low luminance from a high one. However, such a hard thresholding 

could result in a confusion near the boundaries between high and low illuminations. Vadivel et 

al.(Vadivel, Sural et al. 2005) attempted to resolve this issue by trying to understand how human 

vision operates and by analysing the visual properties of the HSI color space. Then, they 

employed saturation and intensity channels to determine the extent to which a given pixel is a 

color  𝑊𝑐𝑜𝑙  and the extent to which it is a gray level  𝑊𝑔𝑟𝑎𝑦 . Given a pixel p with three 

components (H, S, I) which corresponds to hue, saturation and intensity respectively, 

then,  𝑊𝑐𝑜𝑙  must satisfy the following constraints: 

a)  𝑊𝑐𝑜𝑙(𝑆, 𝐼) ∈ [0,1] . 

b) 𝐼𝑓 𝑆1  >  𝑆2 then  𝑊𝑐𝑜𝑙(𝑆1, 𝐼) >  𝑊𝑐𝑜𝑙(𝑆2, 𝐼). 

c) 𝐼𝑓 𝐼1  >  𝐼2 then  𝑊𝑐𝑜𝑙(𝑆, 𝐼1) >  𝑊𝑐𝑜𝑙(𝑆, 𝐼2). 

d)  𝑊𝑐𝑜𝑙(𝑆, 𝐼) changes slowly with S for high values of I.  

e)  𝑊𝑐𝑜𝑙(𝑆, 𝐼) changes sharply with S for low values of I. 

 They proposed the formula given in Eq. (38) and Eq. (39) in order to calculate the 

extent of color and gray level, respectively, where S stands for saturation , I for intensity, r1 and 
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r2 are constants that depend on the particular application in which ICICM is used. In(Vadivel, 

Sural et al. 2005) 𝑟1and 𝑟2  have been estimated empirically. 

Wcol(S, I)  =  {𝑆
𝑟1∗(

255
𝐼
)𝑟2

 𝑓𝑜𝑟 𝐼 ≠ 0

0 𝑓𝑜𝑟 𝐼 = 0
 (38) 

𝑊𝑔𝑟𝑎𝑦(𝑆, 𝐼) = 1 − 𝑊𝑐𝑜𝑙(𝑆, 𝐼) (39) 

 In order that Wcol(S, I)  of Eq. (38) satisfies the conditions (a)–(e), 𝑟1should take a 

value slightly higher than 0 and 𝑟2  should take a value slightly less than 1. Vadivel et al. have 

performed a set of experiments on the MIT texture dataset. They, have used different 

combinations of 𝑟1  and 𝑟2 and cal-culated recall and precision for different queries. It is found 

that a combination of 𝑟1 = 0.1 and 𝑟2 = 0.85  gives the best average recall and precision. 

 They applied their method to extract a color histogram that they evaluated in image 

retrieval context. Later on, they tried to adopt the same method for texture representation  

(Vadivel, Sural et al. 2007) and proposed an Integrated Color Intensity Co-occurrence Matrix 

(ICICM). This matrix holds both color and intensity information of a texture image. It is 

constituted of four sub-matrices as follows:  

𝐼𝐶𝐼𝐶𝑀 = (
𝐼𝐶𝐼𝐶𝑀𝑐𝑐 𝐼𝐶𝐼𝐶𝑀𝑐𝑔

𝐼𝐶𝐼𝐶𝑀𝑔𝑐 𝐼𝐶𝐼𝐶𝑀𝑔𝑔
) 

where ICICMcc holds information about the co-occurrence of color-color pairs, ICICMcg holds 

information about the co-occurrence of color-gray pairs, ICICMgc holds information about the 

co-occurrence of gray-color pairs and ICICMgg holds information about the co-occurrence of 

gray-gray pairs. 

 These matrices are updated according to Algorithm 1, where QH and QI are the 

quantization factors for hue and intensity, respectively. For a given pixel px with an index (m, 

n), ℎ𝑙(𝑚,𝑛) and 𝑔𝑙(𝑚,𝑛)  denote, respectively, its hue and gray-level values, S is its saturation and 

I is its intensity, ℎ𝑙𝑁(𝑚,𝑛) and 𝑔𝑙𝑁(𝑚,𝑛) are, respectively, hue and gray-level values of px’s 

neighbor (with the index N(m, n)), the operator += stands for incrementing variables. 
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Algorithm 1: Updating ICICM 

Input  :  

Output: 

An image I  

The ICICM matrix 

1: foreach co-occurrence of pixels (𝐼(𝑚,𝑛) , 𝐼𝑁(𝑚,𝑛)) in I 

2:       𝐼𝐶𝐼𝐶𝑀 [
ℎ𝑙(𝑚,𝑛)

𝑄𝐻
,
ℎ𝑙𝑁(𝑚,𝑛)

𝑄𝐻
] += 𝑊𝑐𝑜𝑙

(𝑚,𝑛)(𝑆, 𝐼) +  𝑊𝑐𝑜𝑙
𝑁(𝑚,𝑛)(𝑆, 𝐼) 

3:      𝐼𝐶𝐼𝐶𝑀 [
ℎ𝑙(𝑚,𝑛)

𝑄𝐻
,
𝑔𝑙𝑁(𝑚,𝑛)

𝑄𝐼
] += 𝑊𝑐𝑜𝑙

(𝑚,𝑛)(𝑆, 𝐼) +  𝑊𝑔𝑟𝑎𝑦
𝑁(𝑚,𝑛)(𝑆, 𝐼) 

4:      𝐼𝐶𝐼𝐶𝑀 [
𝑔𝑙(𝑚,𝑛)

𝑄𝐼
,
ℎ𝑙𝑁(𝑚,𝑛)

𝑄𝐻
] += 𝑊𝑔𝑟𝑎𝑦

(𝑚,𝑛)(𝑆, 𝐼) +  𝑊𝑐𝑜𝑙
𝑁(𝑚,𝑛)(𝑆, 𝐼) 

5:      𝐼𝐶𝐼𝐶𝑀 [
𝑔𝑙(𝑚,𝑛)

𝑄𝐼
,
𝑔𝑙𝑁(𝑚,𝑛)

𝑄𝐼
]+= 𝑊𝑔𝑟𝑎𝑦

(𝑚,𝑛)(𝑆, 𝐼) +  𝑊𝑔𝑟𝑎𝑦
𝑁(𝑚,𝑛)(𝑆, 𝐼) 

6: end foreach 

 Fuzzy Color Co-occurrence Matrix 

 Another attempt to improve the mapping task has been carried out by Ledoux et 

al(Ledoux, Losson et al. 2015). They proposed a Fuzzy Color Co-occurrence Matrix (FCCM) 

that describes the interaction between neighboring pixels in RGB color space. For a given image 

I in the RGB color space, the FCCM can be calculated using Eq. (40). 

𝐹𝐶𝐶𝑀(𝑐, 𝑐 ′) = ∑ ∑ min (𝜇𝑆𝑐(𝑝),  𝜇𝑆𝑐′(𝑝
′) )

𝑝′∈𝑁𝑝𝑝∈𝐼

 
(40) 

where p is a pixel from I that has a pixel neighborhood  𝑁𝑝  and 𝑝′ is thus a neighbor of p. 

𝑐 𝑎𝑛𝑑 𝑐 ′ are two bins resulted from the sampling of the color space. 𝜇𝑆𝑐(𝑝) represents the 
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membership degree of the pixel p to the bin c. In order to calculate this degree of relationship, 

Ledoux et al. suggest to use either a Gaussian function (Eq. (41)) or a Triangular one (Eq. (42)). 

μSc(p) =  e
−‖−x−c‖2

2α2  (41) 

 𝜇𝑆𝑐(𝑝) = max (0, 1 −
‖𝑥 − 𝑐‖

𝛽
) (42) 

where ‖𝑥 − 𝑐‖ refers to the Euclidean distance between color x and bin c. 𝛼 and 𝛽 are two 

parameters designed to ensure that 𝜇𝑆𝑐(𝑝)  converges to the value 0.5 near the boundaries of 

the bin c. 

 Regardless their good work trying to integrate the fuzziness into CCM, the method of 

Ledoux et al. suffers from numerous drawbacks. Firstly, by using only chromatic channels (i.e., 

R, G and B), information that concerns achromatic channel is totally lost. Secondly, they 

considered each pair of neighboring sites (𝑝, 𝑝′) contributes to 𝐹𝐶𝐶𝑀(𝑐, 𝑐 ′) by adding only the 

minimum between  𝜇𝑆𝑐(𝑝) and 𝜇𝑆𝑐′(𝑝
′) , whereas, other non-minimum values are neglected 

regardless their meaning (e.g., min (1, 5) = min (1, 2)). In simpler words, a set of different pixel 

pairs could contribute to the same FCCM cell because they have the same minimum. Moreover, 

Euclidean distance is not suitable for calculating similarities between RGB colors. For example, 

if we have two green colors with (R, G, B) values of  𝑐1 = (160,190,0) , 𝑐2 = (0,255,0) and a 

yellow color with an (R, G, B) value of 𝑐3 = (255,220,70), then, an euclidean distance 

between these three colors tells us that 𝑐1  is more similar to 𝑐3  than c2 ( ‖𝑐1 − 𝑐3‖ =

134, ‖𝑐1 − 𝑐2‖ = 172), which is incorrect. 

III.4 Conclusion 

 In this chapter, we have seen that many works attempted to improve the GLCM. The 

main issue these works focused on is how to incorporate color information within GLCM 

without resorting to any other kind of features. They confronted many difficulties trying to deal 

with presence of multitude of channels. Other problem is how to perform an optimal color 

sampling and mapping task, and avoid the problems the hard mapping raises.  It is true that the 
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proposed improvements have enhanced the results. However, it incorporates new issues as loss 

of correlation between different color channels, the ignorance of some color channels, the high 

computation, etc. 
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Chapter IV. CONTENT

-BASED IMAGE 

RETRIEVAL 

 Now days, large amounts of internal and external memory become increasingly 

cheaper. Hence, both public and personal image datasets have grown so rapidly. Image datasets 

are meant to store different kinds of art collections as, medical, satellite, and general photograph 

collections. These datasets might be used for various applications. For example, User may want 

to find images of ‘elephants’, another may want ‘sunrise’ or may even abstract concepts such 

as ‘happiness’ or ‘love’. 

 Image datasets may contain hundreds, thousands or millions of images that are usually 

annotated with keywords provided by humans. However, images can be automatically 

annotated (resp., retrieved) using their content, where this content could be a color distribution, 

texture or forms within the image. Thus, many commercial and public retrieval systems have 

been built and are already in use to fulfil such tasks. In this chapter, we introduce and discuss 

various methods used by content-based image retrieval systems. 
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IV.1 Query Formulation 

 For a user, there are mainly tow methods to find the images that he is looking 

for(Kherfi 2008). In the first method, he can browse a catalogue provided by the CBIR interface 

to find potentially good images. However, such a method might be tedious and time waster. In 

the second method, User can simply use CBIR interface to formulate a query that describes the 

desired image. A query can be either a text or an example image. However, using a query is a 

delicate problem and more difficult than it seems, which arises the following two questions: 

1. How one can precisely describes his desired image using only a limited number of 

tools provided by a CBIR? 

2. How CBIR interprets and understands exactly one’s desire from a simple query?  

 Over the past few years, considerable advances have been made to facilitate the 

interactions between the user and CBIR during the query formulation. 

 Query by Text 

 In this type of queries, users express their needs using words. For example, user that 

looks for some kind of landscape provides the CBIR with a sentence such as ‘mountain  with 

icecap peak surrounded by trees while sun rises’. One challenge with this type of querying is 

how to analyze the words in order to extract the user‘s most significant ones. In addition, 

understanding the exact meaning of the sentence is an extremely hard task, since that the 

sentence is not a simple set of unlinked words. For example, the word ‘Jaguar’ is used for 

different means and it can be understand, therefore, from the context of the sentence. If one 

formulates ‘find jaguar on tree’ the CBIR must be able to understand that the user wants image 

of jaguar the animal. Whereas, if the query is ‘find jaguar on road’ the results must be images 

of jaguar the car.  

Text-based queries for image retrieval offer some pros: 

1. Words are natural way used in real-life allowing users to express their selves. 

2. Text-search techniques were a subject of research over decades and can be exploited 

directly in image retrieval. 
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3. Some concepts, such as ‘love’ are extremely hard to be expressed using image 

example, instead, using text to find similar annotated image is more useful. 

Despite the pros text-based querying offers, it suffers from numerous drawbacks: 

1. Because people often do not take the time to annotate their photos, most collections 

does not contain any text along with the images. For this reason, text-query 

techniques become useless. 

2. Different users may annotate the same image with different concepts, which makes 

it subjective. Actually, annotations expresses the annotator more than the image 

itself (Jain 1995). 

3. A collection that is annotated with one language can be only queried with the same 

language. An alternative solution might be in translating the query before submitting 

it. 

4. Some text-based image retrievals use the text surrounding the image as an 

annotation (e.g., images within web pages). However, it is hard to determine which 

words in the text are relevant and which are not. 

5. Text-based querying lacks refinement and may yield ambiguous results. Using the 

query ‘Bolt’, Figure 22 illustrates the obtained result from Google image. We can 

see that the retrieval confused ‘bolt’ as a dog of the movie, ‘Usain Bolt’ the Olympic 

runner, or ‘bolt’ as a metallic tool. 

 

Figure 22. Results obtained from Google image using the word 'bolt'. 
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6. It is impossible for text to describe the full details, which demonstrates the limitation 

of the capacity of text. For example, if one want to find images that are highly similar 

to the one in Figure 23, it extremely difficult or even impossible to describe such a 

scene, with high details, using only words. 

 

Figure 23. Illustration of the limitation of text to describe the content of an image. 

 Query by Image 

 As we have seen before, text-based image retrieval has a set of limitations which drive 

researchers to think whether it is better to let images speak for themselves. Hence, they 

suggested allowing users to formulate their queries using images instead of words, and then the 

system has to find other similar images. Indeed, dealing with queries that come in form of image 

needs different means than the ones used with textual queries. This new method is called 

content-based image retrieval (CBIR). Next, we will summarize different ways that can be used 

to formulate a CBIR query. However, one should note that there exist certain common steps for 

most of the methods, which are: 

1. Before putting the CBIR in use, visual descriptors must be extracted from all images 

of the collection. 

2. Generally, CBIR must extract the same visual descriptors from the query. 

3. CBIR searches for similar images by comparing the descriptor extracted from the 

query with those extracted from the collection images. 
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IV.1.2.1 Using Provided Feature Values 

 This querying technique asks the user to provide a numerical value for each feature, as 

in Web-Wise(Wei, Li et al. 1998) image retrieval. For example, if the dataset images are 

described using color moments or Fourier descriptors, then the user is required to provide a 

numerical value for these features that corresponds to the desired image. However, such a 

technique is very difficult to be used by an image-processing specialists rather than an ordinary 

user. First, an ordinary user may not understand feature meaning, such as color moments or 

Fourier descriptors. Second, it is very hard, even for a specialist, to turn one’s needs (i.e., the 

image that he is looking for) into a set of numerical values. 

IV.1.2.2 Using Example Image 

 Querying by image example is definitely the most successful and used technique. The 

principle of this technique is very simple: after submitting an example image by user, the CBIR 

retrieves and shows the resemble ones. Querying by example image can be summarized as 

follows: 

1. The CBIR starts by proposing to the user a catalogue of images to select from. 

Alternatively, the user can simply submit, to the CBIR, an example image that he 

want to find the resemble ones. 

2. The CBIR browses through the dataset looking for images that resemble to the 

query, then, it returns and shows the result to the user in form of sorted list from the 

most to the least relevant image. 

 The catalogue of images that CBIR proposes at the beginning might be chosen 

randomly or intelligently. Thus, choosing these images wisely makes the retrieval more 

productive and quicker. 

IV.1.2.3 Using Sketches and Icons 

 Some retrievals, such as(Lew 2000), involves granting users to draw a sketch that 

approximately shows what he is looking for. Creating as well as coloring sketches can be done 

using a mouse or an electronic pen. 
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 Alternatively, user can use a list of icons (e.g., sun, mountain, tree, car, etc.), pre-

proposed by CBIR, in order to design the query. An example of icon-based query CBIR can be 

found in (Lew 2000). 

 After discussing the different types of formulating an image query, we find out that 

CBIR techniques have numerous advantages, including: 

1. Unlike text-based image retrieval (TBIR) which requires the dataset to be annotated, 

CBIR techniques can be exploited even if the dataset does not contain any text.  

2.  They perform well with images that contain very complex scenes, which can not be 

described using words only. 

3. CBIR results are more objective than TBIR. 

4. It allows a higher level of refinement than text. For example, looking for images that 

visually resemble the one in Figure 23 is quite plausible using example images. 

IV.2 Features extraction 

 “The fact of designing and extracting visual features which accurately represents the 

content of images is perhaps the pillar of content-based search”(Kherfi 2008). Over decades, 

many features have been proposed in literature. We have discussed different types of features 

in Chapter II. However, one should note that features extraction is not a completely resolved 

problem. 

IV.3 Comparing Feature 

 After extracting the features of the query image, CBIR uses a similarity measures to 

find similar features and thus similar images in the dataset. Many types of similarity measures 

have been proposed in literature including: 

 Minkowski Distances 

 They are a set of distance functions that are defined, for two given feature 

vectors 𝑉and 𝑉′, as: 
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𝑑𝑝(𝑉, 𝑉
′) = (∑(𝑉𝑛 − 𝑉𝑛

′)

𝑛

𝑛=1

)

1
𝑝

 (43) 

 The well known 𝑑2 (i.e., Euclidean distance) is widely used in computing similarity 

scores between images. It is a very simple distance that has a low computation cost (i.e., 𝒪(𝑁)). 

Other frequently used Minkowski distances are d1 (i.e., as Manhattan distance), and d∞ (i.e., 

maximum distance). 

 Histogram Intersection 

 It has been proposed by Swain et al.(Swain and Ballard 1991) in order to compare the 

distance measure between histograms. It consists in calculating the common part of two 

histograms. It is given by: 

𝑑∩(𝑉, 𝑉
′) = ∑min (𝑉𝑛 − 𝑉𝑛

′)

𝑁

𝑛=1

   (44) 

  Relative Bin Deviation 

 It calculates the bin-wise deviation between two vectors, Eq. (45) shows relative 

deviation calculation formula: 

𝑑𝑟𝑏𝑑(𝑉, 𝑉
′) = ∑

√(𝑉𝑛 − 𝑉𝑛
′)2

1
2
(√𝑉𝑛

2 + √𝑉𝑛
′2)

𝑁

𝑛=1

 (45) 

 𝓧 − 𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞 

 𝒳2 − distance consists in determining whether two given probabilistic distributions 

differs or no. it is given by: 
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𝑑𝑥2(𝑉, 𝑉
′) = ∑

𝑉𝑛 − 𝑉′𝑛

𝑉𝑛 + 𝑉′𝑛
. 𝑥

𝑁

𝑛=1

 (46) 

 Kullback-Leibler Divergence 

 It is also called discrimination information (Kullback 1987). It has been proposed in 

information theory to measure the difference between two probability distributions P and Q. It 

calculates the efficiency of coding one probability using the other. For two given 

vectors 𝑉 and 𝑉 ′, Kullback-Leibler divergence can be calculated using formula in Eq. (47) 

𝑑𝐾𝐿(𝑉, 𝑉
′) = ∑ 𝑉𝑛𝑙𝑜𝑔

𝑉𝑛

𝑉′𝑛

𝑁

𝑛=1

 (47) 

 Kullback-Leibler divergence is neither symmetric nor numerically stable. 

 Jensen Shannon Divergence 

 Known as Jeffrey divergence. It is based on the Kullback–Leibler divergence with 

some notable improvements including that it is symmetric and has a finite value. It is given by 

Eq. (48). 

𝑑𝐽𝑆𝐷(𝑉, 𝑉
′) = ∑ 𝑉𝑛𝑙𝑜𝑔

2𝑉𝑛

𝑉𝑛 + 𝑉′𝑛
+ 𝑉′𝑛𝑙𝑜𝑔

2𝑉′𝑛

𝑉𝑛 + 𝑉′𝑛

𝑁

𝑛=1

 (48) 

 Bhattacharyya Distance 

 Also called fidelity. It measures the overlapping extent between two statistical 

(continuous or discrete) samples or populations. It is defined by the following formula: 
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𝑑𝐵𝐶𝐴(𝑉, 𝑉
′) = ∑√𝑉𝑛 × 𝑉′𝑛

𝑁

𝑛=1

 
  

 (49) 

Some other extensions of this distance have been proposed in (Nölle 2003), which are : 

 𝑑𝐵𝐶𝐴(𝑉, 𝑉
′) = 1 − 𝑑𝐵𝐶𝐴(𝑉, 𝑉

′) (50) 

𝑑√1−𝐵𝐶𝐴(𝑉, 𝑉
′) = √1 − 𝑑𝐵𝐶𝐴(𝑉, 𝑉

′) (51) 

𝑑(2−𝐵𝐶𝐴)(𝑉, 𝑉
′) = 𝐿𝑜𝑔(2 − 𝑑𝐵𝐶𝐴(𝑉, 𝑉

′)) (52) 

𝑑𝑎𝑟𝑐𝑐𝑜𝑠(𝐵𝐶𝐴)(𝑉, 𝑉
′) =

2

𝜋
𝑎𝑟𝑐𝑐𝑜𝑠(𝑑𝐵𝐶𝐴(𝑉, 𝑉

′)) (53) 

𝑑sin (𝐵𝐶𝐴)(𝑉, 𝑉
′) = √1 − (𝑑𝐵𝐶𝐴(𝑉, 𝑉

′))2 (54) 

 Quadratic Forms Distance 

 Quadratic Forms distance is capable of calculating the similarities between cross-bins. 

It incorporates a matrix A that denotes the similarity between all possible bin pairs. For given 

two feature vectors 𝑉and 𝑉′, then the Quadratic form distance can be calculated by: 

𝑑𝑞𝑑𝑟(𝑉, 𝑉
′) = √(𝑉 − 𝑉′)𝑇 ∙ 𝐴 ∙ (𝑉 − 𝑉′) (55) 

where 𝐴𝑚,𝑛 denotes the similarity value between the two bins m and n, and it can be calculated 

by: 

𝐴𝑚,𝑛 = 1 −
𝑑2(𝑉𝑚 , 𝑉𝑛)

𝑑𝑚𝑎𝑥

 (56) 



CHAPTER IV  CONTENT-BASED IMAGE RETRIEVAL 

66 

 

where 𝑑2(𝑉𝑚 , 𝑉𝑛) the Euclidean distance between the two vector cells  𝑉𝑚  and 𝑉𝑛 , and 𝑑𝑚𝑎𝑥  is 

the maximum value of the matrix (1 − 𝐴). 

 Earth Movers Distance 

 The Earth Movers Distance (EMD) is a special case of the transportation problem. It 

consists in calculating the minimum amount of effort that is needed to perform a switch one 

distribution into the other by moving portions of distributions between the bins. It can be 

calculated by the following formula. 

𝑑𝐸𝑀𝐷(𝑉, 𝑉
′) =

∑ (𝑑𝑖,𝑗 × 𝑔𝑖,𝑗)𝑖 ,𝑗

∑ 𝑔𝑖,𝑗𝑖,𝑗

 (57) 

where 𝑑𝑖,𝑗 is the dissimilarity value between the bins i and j (i.e., 𝑑𝑖,𝑗 =  |𝑉𝑖 − 𝑉′𝑗|), and 𝑔𝑖,𝑗 ≥

0 is an optimal flow between 𝑉 and 𝑉′ such that the total cost is minimum. This flow must be 

subjected to the following constraints: 

a. ∑ 𝑔𝑖,𝑗𝑗 ≤ 𝑉𝑖  

b. ∑ 𝑔𝑖,𝑗𝑖 ≤ 𝑉′𝑗 

c. ∑ 𝑔𝑖,𝑗𝑖,𝑗 = min (𝑉𝑖, 𝑉
′
𝑗) 

 The major advantage of EMD is that each image in the collection can represented using 

a customized binning type. 

IV.4 Applications 

 Billions of images are being generated every increasing rate by many sources such as 

“defense, civilian satellites, military reconnaissance, surveillance flights, fingerprinting, mug-

shot-capturing devices, scientific experiments, biomedical imaging and home entertainment 

systems”. (Gudivada and Raghavan 1995).  Therefore, a content-based image retrieval (CBIR) 

system is required to efficiently use information from these image collections. Such a system 

helps users to retrieve their desired images based on the content. Application areas in which 

CBIR is a principal activity are numerous and diverse(Kherfi, Ziou et al. 2004). 
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 Intellectual Property 

 One application of CBIR is to grant image copyrights protection and prevent using 

images without the permission of the original owner. For example, Watermarking is a copyright 

protection technique that involves including the identity of the creator or distributor to the 

image. However, Watermarking is vulnerable to geometric distortions, image processing, and 

subterfuge attacks (Chang, Wang et al. 1998). In addition, the diversity in watermark schemes 

implies increasing of detection time exponentially. CBIR might be an excellent alternative 

solution to such a problem. Chang et al. (Chang, Wang et al. 1998) has proposed an example 

of a CBIR system designed to detect replicated images on the Web. 

 Filtering of Inappropriate Mature Content 

 Pornographic images and videos have invaded a large number of websites. Because of 

internet is available anywhere and accessible by children, pornographic images became a 

problem that many parents are concerned about. In addition, such images are undesired even 

for adults in some cultures. Therefore, there is an urgent need for a tool for filtering the 

inappropriate mature from the internet. Traditional solutions that try to prevent children from 

accessing undesirable websites are filter software such as NetNanny, Cyber Patrol, and 

CyberSitter (Wang, Li et al. 1998). These software use ip addresses or the text within documents 

to make their decision. Therefore, they are ineffective in most cases because pornography 

websites often contain more images and less text. Computer vision techniques have been 

explored to automatically identify pornographic images. For example, authors of (Fleck, 

Forsyth et al. 1996, Cao, Li et al. 2002) have proposed an algorithm that identifies images 

containing naked people. They use texture and color for skin filtering. A similar system was 

developed by (Chan, Harvey et al. 1999) to identify images of naked people using skin tone and 

limb shape. Integrating such tools in web CBIR helps considerably in identifying and filtering 

suspicious sites. IBCOW is a website classifier proposed by (Wang, Li et al. 1998). It simply 

scans then classifies websites into “objectionable” or “benign” based on their image content. 
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 Law Enforcement and Crime Prevention 

 Law enforcement and crime prevention have exploited CBIR for many purposes, such 

as fingerprint recognition (Marasco and Ross 2015), face recognition (Cevikalp and Triggs 

2010), DNA matching, shoe sole impressions (Bijhold and Geradts 2002) and surveillance 

systems (Eakins and Graham 1999). Internet can be used by criminals as a mean to promote 

their illicit goods and services such as illegal weapons and drugs. The existing of more visual 

information and less text in many websites prevents locating them relying exclusively on text  

retrieval techniques. Thus, integrating content-based with text-based techniques clearly makes 

the tool vital and able to locate such websites. Other illegal operations include using internet to 

call for violence, racism, and Nazism. 

 Travel and Tourism 

 People always want to know more about the new places before visiting them. They 

might want to see the map of the destination country, transportation networks, monuments and 

tourist attractions. In addition, tourists may also be interested in gaining a basic idea about the 

country’s way of life such as its markets, characteristic architecture, and traditional dress. 

Images may be the best means to provide such information. Thus, there is a need for an 

automatic retrieval to help tourists and travelers benefit. 

 Education and Training 

 Another important application field of image retrieval is education (Wactlar, Kanade 

et al. 1996, Van Der Zwan, Kukulska-Hulme et al. 1999). Students regularly need images to do 

research on particular subjects for two main purposes:  

1. As a source of information (e.g., a map of Algeria in 1980) or to show some cultural 

ideas (e.g., custom images of Algerian Tuareg). 

2. Teachers can also use these images to prepare the courses, and integrate them with other 

academic materials to better illustrate and explain the ideas.  
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 Such images are freely available on the World Wide Web. However, locating them 

manually is a very tedious and time-consumer task. Having a Web CBIR makes this task more 

reliable and easier. 

 Home Entertainment 

 Internet provides means of entertainment for many people, such as joke images, 

caricatures, comic strips, movie shots, and music clips. However, finding these images or the 

visual media that the people are looking for is often a trouble. Therefore, creating image and 

video retrieval tools for such purposes seems to be indispensable in helping users locate the 

sought images. Furthermore, cataloguing the visual content in certain index structure makes 

navigation to such materials easier and enjoyable. 

 Fashion, Architecture, and Engineering Design 

 International designers of graphics, fashions and industrials share their images of 

previous designs as a source of inspiration(Yang, Garrett Jr et al. 1994, Bird, Elliott et al. 1996). 

When developing new projects, architects and engineers may need to visualize plans, machine 

images and other related material. With the appearance of internet, these professionals become 

no longer limited to the local collections in their inspiration quest. The internet allows them to 

access other images and videos that may seem similar or different styles providing richer 

stimulation for their imagination. Thus, CBIR systems and browsing catalogs are useful in all 

these fields. 

 Historical and Art Research 

 Visual data can also be used by historians, archaeologists, and sociologists as a source 

of information or to support their research. Sometimes, accessing to original works of art is 

restricted (e.g., due to geographic gap, ownership constraints, or work physical-condition), 

researchers can use alternatives, which are found on the Web in the form of photographs or 

pictures of objects, to avoid this problem. A Web CBIR can save them time in looking for such 

materials. Examples of CBIR systems attempt to apply image retrieval techniques to art and 
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historical research include (Jain, Goel et al. 1997, Barnard and Forsyth 2001, Chen and Wang 

2002). 

IV.5 CBIR Systems 

 There are many CBIR prototypes proposed in recent years. In this section, we list and 

discuss the principles of some of these CBIR systems. It should be noted that most of the 

reviewed CBIR systems are prototypes. Some of them however do offer online demos. 

 Query by Image Content System 

 ‘IBM Almaden Research Center, San Jose, CA’ has developed Query by Image 

Content (QBIC)(Niblack, Barber et al. 1993) as a project studying methods to extend and 

complement TBIR by retrieving images and videos based on their content. As image features, 

QBIC uses: 

1. Color: the computed color features are, the 3D average color vector of an object /full-

image, and a 256-dimensional RGB color histogram in the color spaces: RGB, YIQ 

(luma, in-phase, quadrature), Lab (luminance, a-axes, b-axes) and Munsell. 

2. Texture: QBIC uses modified versions of the coarseness, contrast, and directionality of 

Tamura features.  

3. Shape: The shape features consist of shape area, circularity, eccentricity, major axis 

orientation and a set of algebraic moment invariants extracted from object contours. 

 QBIC allows queries based on example images, user-designed sketches and selected 

color and texture patterns. In the latter case, QBIC offers samplers to the user to choose its 

colors and textures from. The proportion of the desired color in the image is adjusted while 

moving sliders. 

 Netra 

 ‘Department of Electrical and Computer Engineering, University of California ’ has 

developed Netra(Ma and Manjunath 1999) image retrieval prototype that uses color, texture, 
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shape and spatial location features of segmented image regions of homogeneous colors to find 

and retrieve similar regions from the dataset. As features, Netra uses: 

1. Color: After quantizing and representing the RGB color space using 256 bins codebook, 

Netra extracts, for each image region c, a color vector 𝑓𝑐 = (𝑐0, 𝑝0, 𝑐1, 𝑝1, … 𝑐𝑛 , 𝑝𝑛) 

where 𝑐𝑖 is the index of bin i in the codebook, 𝑝𝑖  is the proportion of that color in the 

region c,  𝑝0 + 𝑝1 + ⋯𝑝𝑛 = 1, and n is the number of used colors to represent the 

corresponding region. 

2. Texture: texture has been represented by a feature vector 𝑓𝑡  that contains normalized 

mean and standard deviation of a series of Gabor wavelet transformations of the image: 

𝑓𝑡 = (𝜇0,0, … 𝜇𝑠,𝑘 , 𝜎0,0, … , 𝜎𝑠,𝑘)  where s indicates the scales number and k is the 

directions number. 

3. Shape: three feature vectors have been used to represent the shape information of a 

region namely 𝑓𝐾 , 𝑓𝑅  and𝑓𝑍 which represent, respectively, the curvature at each point 

on the contour, the distance between each contour’s point and centroid of the region, 

and each point as a complex number with real part equal to the x-coordinate, and the 

imaginary part equal to the y-coordinate. 

 Netra allows querying using a catalogue of images it offers. Alternatively, User can 

simply designed sketches using color and texture patterns. The proportion of the desired color 

in the image is adjusted while moving a slider. All images in the dataset have been segmented 

into homogeneous regions. Thus, User can simply click on one of the regions and select one of 

the four features color, spatial location, texture or shape. 

 VisualSEEk 

 ‘Image and Advanced Television Lab, Columbia University’ has developed a highly 

functional prototype system for visual features searching in image datasets. VisualSEEk(Smith 

and Chang 1997) finds images that contain the most similar-regions arrangements. It uses 

absolute and relative spatial color information, region centroid along with the width and height 

of the minimum bounding region rectangle. 

 To create a query, the user sketches some regions, and then locates and set dimensions 

for them on a given grid, and finally selects a color for each region. In addition, the user can 
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indicate the boundaries of locations, sizes and spatial relationships between the regions. After 

returning a preliminary result of images, the user is then able to search by example using the 

returned images. 

 MARS 

 ‘Department of Computer Science, University of Illinois’ started a project to design 

and develop an integrated multimedia information retrieval and dataset management 

infrastructure, entitled Multimedia Analysis and Retrieval System (MARS) (Ortega, Rui et al. 

1997). Specifically, MARS project can be categorized into multimedia content representation, 

multimedia information retrieval, multimedia feature indexing and multimedia database 

management. It supports querying by combining low-level features (i.e., color, texture, shape) 

and textual descriptions. 

1. Color: it is represented by a 2D histogram over the HS channels of the HSV color space. 

2. Texture: it is represented using two histograms, the first one measures the coarseness 

and the other one measures the directionality of the image, In addition to one scalar that 

defines the image contrast. 

3. Shape: The boundary shape of the extracted object is represented using means of Fourier 

descriptors. 

 In MARS, User can formulate complex queries using boolean operators. The desired 

features can either be specified using example (i.e., pointing an image that has such a property) 

or direct (i.e., by choosing colors or textures from available palette or a set of patterns). 

 PicToSeek 

 ‘Department of Computer Science, University of Amsterdam’ has proposed then 

integrated an image retrieval scheme into their PicToSeek system(Gevers and Smeulders 2000). 

The developers define color and shape invariants to be used as features, in the proposed system, 

independent of camera viewpoint, object’s geometry and illumination conditions. They 

analyzed the effect of various imaging conditions on the different color features, under the 

assumption of a dichromatic reflection model. As features, PicToSeek uses: 
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1. Color: represented by three histograms 𝐻𝑎 , 𝐻𝑏  and 𝐻𝑐, where 𝐻𝑎  and 𝐻𝑏 are computed 

based on a proposed color model (i.e.,  coded from the RGB color space), and 𝐻𝑐 is 

histogram of color edges. 

2. Shape: represented by two histograms 𝐻𝐷  and 𝐻𝐸 . The first one, is constructed on a 

discretized angle (i.e., angle between two color edges) while the latter on the cross ratio 

(i.e., cross-ratio between four color-edges originating in the same point). 

 A query image can be selected from a catalogue proposed by the system or simply by 

submitting an example image. User is also allowed to directly provide feature values of the 

desired image. 

 

IV.6 Conclusion 

 In this chapter, we introduce, explain and discuss in details the content -based image 

retrieval.  We firstly see how CBIR operates, how query types (i.e., by text and by image) 

differs, and what query by image offers as pros.  Then, we list a set of distance measures that 

can be used to calculate the similarity between features. Then, we explain how there is an ergent 

need for CBIRs in different application such as intellectual property, law enforcement, travel 

and tourism, education, etc. Finally, we list some CBIR prototypes that are online, operational, 

and public. 
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Chapter V.MODIFIED 

INTEGRATIVE COLOR 

INTENSITY CO-

OCCURRENCE 

MATRIX 

 As explained in Section III.3, Vadivel et al.(Vadivel, Sural et al. 2005, Vadivel, Sural 

et al. 2007) have succeeded to calculate the extent to which a given pixel is a color or gray level. 

However, their method uses a hard mapping scheme to assign a given color (or gray level) to 

the right bin, which represents a serious weakness. To illustrate this, let us take the example of  

Figure 24. The color quantization and mapping process they used considers that all the hue 

values p1, p2 and p3 are pure magentas, which is not precise. Indeed, these quantities represent 

different colors: p1 is a reddish magenta, p2 is a pure magenta and p3 is a bluish magenta. Even 

though a quantization process can attributes them to the same bin, they should not be considered 

to be the same, otherwise, a considerable amount of information about colors could be falsely 

interpreted. 
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Figure 24. The hard mapping used by Vadivel et al. considers that the three colors p1, p2 and 

p3 as pure magentas. However, p1 is a 55% magenta and 45% red; p3 is 60% magenta and 

40% blue. 

 Now, we will explain the steps of the method we propose, and show how it overcomes 

the raised issue. Given a color image I, we first transfer it into HSV color space, we then perform 

color mapping and gray-level mapping of each pixel, and finally, we extract our new 

representation MICICM (Khaldi and Kherfi 2016). These steps are detailed in the following 

three sub-sections.  

V.1 HSV Color Space Analysis 

 Hue, Saturation, Value (HSV) color model describes colors (tint) in terms of their 

shade (amount of gray) and brightness (luminance). Unlike RGB color model (Tan and Kittler 

1994, Wandell 1996), HSV channels are totally di-correlated which make it analogues to human 

vision. In other words, all tints, tones and shades of the some specific color have the same hue. 
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 HSV Model 

 Usually, HSV color model is described using a hexcone as it is illustrated in Figure 25. 

It has the following properties: 

a. It describes hue by a number ℎ𝜖[0 1] (resp., [0 2𝜋]) that specifies the position of 

the corresponding pure color on the color wheel. For example, ℎ = 0 refers to red, 

ℎ = 2
3⁄  is blue and ℎ = 5

6⁄  is magenta, and so forth. 

b. It describes saturation by a number 𝑠𝜖[0 1]  that specifies the position of the 

corresponding proportion of white in the color on wheel’s radius. For example, pure 

red has a saturation of 1, tints of red have saturations less than 1 and white has a 

saturation of 0. 

c. It describes value by a number 𝑣𝜖[0 1]  that specifies the position of the 

corresponding proportion of darkness, in the color, on hexcone’s vertical exes. It is 

also called lightness. For example, a value of 0 means that the color is black 

regardless its hue and saturation, with increasing in lightness color moves away 

from black. 

 

Figure 25. single-hexcone model of HSV color space. 
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 Converting RGB to HSV color space 

 Because the channels of RGB color-space are highly correlated with each other, 

describing images in terms of those channels makes their discrimination difficult. Hence, 

applying algorithms such as k-means(MacQueen 1967, Lloyd 1982), fuzzy clustering(Dunn 

1973, Bezdek 2013) or canny edge detection(Canny 1986), where each channel passed on the 

same algorithm, is useless because of the correlation between those channels. Therefore, 

transforming images from RGB into HSV color space helps to eliminate the correlation between 

these channels and permit to use the latter algorithms. An RGB color can be transformed into 

HSV color space using the following set of formulas (Eq. (58)-(60)).    

𝐻 =

{
 
 
 
 

 
 
 
 

0°                                                          𝑖𝑓 ∆= 0

60° × (
𝐺 ′ − 𝐵′

∆
 𝑚𝑜𝑑 6)              𝑖𝑓 𝐶𝑚𝑎𝑥 = 𝑅′

60° × (
𝐵′ − 𝑅′

∆
+ 2)                    𝑖𝑓 𝐶𝑚𝑎𝑥 = 𝐺′

60° × (
𝑅′ − 𝐺 ′

∆
+ 4)                    𝑖𝑓 𝐶𝑚𝑎𝑥 = 𝐵′

      (58) 

𝑆 = {

0                                                               𝑖𝑓 𝐶𝑚𝑎𝑥 = 0 
∆

𝐶𝑚𝑎𝑥

                                                        𝑖𝑓 𝐶𝑚𝑎𝑥 ≠ 0
 (59) 

𝑉 =  𝐶𝑚𝑎𝑥  (60) 

 

 

where  𝑅′ = 𝑅/255, 𝐺 ′ = 𝐺/255, 𝐵′ = 𝐵/255, 𝐶𝑚𝑎𝑥 = max (𝑅′, 𝐺 ′, 𝐵′) and 

∆= 𝐶𝑚𝑎𝑥 − min (𝑅′, 𝐺 ′, 𝐵′). 
 

 After having all pixels of the image converted into HSV color space, they have to be 

mapped to their appropriate bins before start extracting the MICICM. In the next sub-section, 

we introduce our proposed fuzzy mapping scheme. 
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V.2 Color mapping and gray-level mapping 

 As we discussed above, the main drawback of the hard mapping is that it assigns each 

hue value to a unique bin and each gray-level value to a unique bin too. In order to avoid this 

drawback, we have developed a new mapping scheme where each color is mapped to two bins 

with different weights and each gray level to two bins with their weighs too. Indeed, most colors 

are not pure but rather result from the mixing of their true colors with the ones of their 

neighboring colors (either the left or the right one). Let us take the same example as above (i.e.,  

Figure 24). The hard mapping has considered p1 as a pure magenta. However, a careful 

inspection shows that it rather comes from mixing magenta (its true hue bin) with red (the right -

neighbor hue bin). Consequently, our mapping will assign it to both bins: red and magenta. In 

addition, it will calculate the contribution of magenta in producing p1, as well as the 

contribution of red. Similarly, we can say that p3 comes from mixing magenta (its true hue bin) 

with blue (the left-neighbor hue bin). Our mapping will therefore assign it to both bins: magenta 

and blue, and calculate the contribution of each to it. Finally, we notice that the right neighbor 

and the left neighbor hue bins should not participate together in producing the same color. If 

the color is situated in the left half of its true hue bin, then the left neighbor bin will participate 

in producing it. Otherwise, it is the right neighbor bin which will participate.  

In a similar way, we can say that each gray level may be considered as a combination of two 

bins which have participated in producing it (its true gray-level bin and one of the neighbors). 

Therefore, it will be assigned to both bins and the contribution of each bin will be calculated.  

In short, given a pixel with a hue h and a gray-level g, our mapping will calculate:  

1. 𝑊𝑐(ℎ) and 𝑊𝑐𝑁(ℎ), which, respectively, are the contribution of the true hue bin of h 

and the contribution of its neighbor hue bin.  

2. 𝑊𝑔(𝑔) and 𝑊𝑔𝑁(𝑔) which, respectively, are the contribution of the true gray-level bin 

of g and the contribution of its neighbor gray-level bin.  

We want the weights 𝑊𝑐(ℎ) and 𝑊𝑐𝑁(ℎ) to satisfy the following constraints: 

a. 𝑊𝑐(ℎ) [
1

2
, 1]  𝑎𝑛𝑑 𝑊𝑐𝑁(ℎ) [0,

1

2
]  . 

b. 𝑊𝑐𝑁(ℎ)  +  𝑊𝑐(ℎ) = 1. 
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c. If h is located in the left half of its true hue bin, then it is its left neighbor bin which 

contributes, otherwise, if h is located in the right half, then it is its right neighbor which 

contributes.  

d. The contribution is significant only if h is located near the boundary, and then it 

decreases quickly to stabilise around zero as soon as h moves away from the boundary 

to the center of its true hue bin.  

 Several functions may satisfy the constraints (a-d) stated above. After a detailed 

analysis, we found that the following functions (Eq. (61) and Eq. (62)) are quite satisfactory:  

𝑊𝑐𝑁(ℎ) =

{
 

 
1

2
𝑒
−|𝑡1

ℎ− 𝐻0
𝐻𝐵𝑖𝑛𝑆𝑖𝑧𝑒

|
𝑡2

   ; 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑏𝑖𝑛

1

2
𝑒
−|𝑡1

ℎ− 𝐻1
𝐻𝐵𝑖𝑛𝑆𝑖𝑧𝑒

|
𝑡2

  ; 𝑖𝑓 the 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑏𝑖𝑛

 (61) 

𝑊𝑐(ℎ) = 1 − 𝑊𝑐𝑁(ℎ) (62) 

where t1 and t2 are adjustment parameters. HBinSize is the size of a bin after sampling the hue 

channel. 𝐻0 is the smallest hue value of the bin in which h falls, and H1 is the greatest hue value 

of the same bin ( H1 = H0 + HBinSize). 

 In a similar way, we want the weights related to the gray-level perception to satisfy 

similar constraints. We therefore opted for the following functions (Eq. (63) and Eq. (64)):  

𝑊𝑔𝑁(𝑔) =

{
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2
𝑒
−|𝑘1
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; 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑏𝑖𝑛

1
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𝑒
−|𝑘1

𝑔− 𝐺1
𝐺𝐵𝑖𝑛𝑆𝑖𝑧𝑒

|
𝑘2

 ; 𝑖𝑓 the 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑏𝑖𝑛

 (63) 

𝑊𝑔(𝑔) = 1 − 𝑊𝑔𝑁(𝑔) (64) 

where k1 and k2 are adjustment parameters. GBinSize is the size of a bin after sampling the 

gray-level channel. 𝐺0 is the smallest gray-level value  of the bin in which g falls and G1 is the 

greatest gray-level value of the same bin ( G1 = G0 + GBinsize). 
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 Unlike FCCM(Ledoux, Losson et al. 2015), our function offers more flexibility and it 

better controls the range of contribution of neighbours to the color (resp. , gray level). t1 controls 

the max range that a neighbour color could reach in its contribution, whereas, t2 controls the 

softness the function within the defined range as Figure 26 shows. However, one should note 

that for a big values of t1 and t2 the proposed function becomes a hard mapping, whereas, for 

too small values the contribution of the neighbour may accurses even if the color is pure. 

Therefore, a suitable values for these two parameters should be empirically tuned as we did 

in VI.2. 

 

Figure 26. Behaviors of our mapping function 𝑊𝑐𝑁(ℎ) (resp. 𝑊𝑔𝑁(𝑔)) for different values 

of parameters t1 and t2. 

V.3 Extracting the Co-occurrence Matrix 

 Once colors and gray levels are mapped, we extract our MICICM. It is constituted of 

four sub-matrices as illustrated in Figure 27, where: 

 MICICMcc holds information about the co-occurrence of color-color pixel pairs. 

 MICICMcg holds information about the co-occurrence of color-gray pairs. 

 MICICMgc holds information about the co-occurrence of gray-color pairs. 

 MICICMgg holds information about the co-occurrence of gray-gray pairs. 
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 For example, MICICM(c1,c2) is the occurrence frequency of the hue pairs (h1, h2) 

such that the mapping result of h1 and h2 are, respectively, the bins c1 and c2. 

 c1 c2 … g1 g2 … 

c1 

MICICMcc MICICMcg c2 

… 

g1 

MICICMgc MICICMgg g2 

… 

Figure 27. General view of MICICM 

 Although our MICICM contains four sub-matrices like the ICICM of(Vadivel, Sural 

et al. 2007) does, there is a significant difference between them. In(Vadivel, Sural et al. 2007), 

each pixel is mapped to a unique color bin and to a unique gray-level bin. Therefore, a given 

pixel p1 and its neighbor p2 will contribute to only one cell in ICICMcc, one cell in ICICMcg, 

one cell in ICICMgc and one cell in ICICMgg. In our case, however, each pixel is mapped to 

two contributing color bins and two contributing gray-level bins. Since then, p1 and its neighbor 

p2 will contribute to four cells (𝑖. 𝑒. , 22 = 4) in MICICMcc, four cells in MICICMcg, four cells 

in MICICMgc and four cells in MICICMgg.  

 In order to make this latter point clearer, let us take the example of how they contribute 

to four cells in the first sub-matrix MICICMcc. First, Assume that p1 is a given pixel located at 

the point (𝑥, 𝑦) in the image that has a hue value  ℎ1 mapped to the two hue bins Qc1 and QcN. 

Second, p2 is another pixel which co-courses at a distance d from p1 (i.e., at the point (𝑥 +

∆𝑥, 𝑦 + ∆𝑦)) that has a hue value ℎ2  mapped to the two hue bins Qc2 and QcN2, as it is 

illustrated in Figure 28. Then, the pair (p1, p2) will contribute to the four following cells: 

MICICMcc(Qc1, Qc2), MICICMcc(Qc1, QcN2), MICICMcc(QcN1, Qc2) and 

MICICMcc(QcN1, QcN2). 
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Figure 28. Example of our proposed pixel mapping scheme. p1 is mapped to both the true hue 

bin Qc1 and the left-neighbor hue bin QcN1 (i.e., yellow and red); p2 is mapped to both the true 

hue bin Qc2 and the left-neighbor hue QcN2 (i.e., blue and Cyan). 

 The contribution of p1 and p2 to the first cell MICICMcc(Qc1, Qc2) should be 

reciprocally proportional to the weights Wc1 and Wc2 which, respectively, are the contributions 

of the true hue bins (i.e., Qc1 and Qc2) to produce p1 and p2. It also should be reciprocally 

proportional to the weights Wcol1 and Wcol2 which, respectively, are the color extent of p1 and 

the color extent of p2. We, therefore, take the product of these four quantities (i.e., Wc1, Wc2, 

Wcol1 and Wcol2) to update MICICMcc(Qc1, Qc2) such that𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐(𝑄𝑐1, 𝑄𝑐2) +=

(𝑊𝑐1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑐2 × 𝑊𝑐𝑜𝑙2). Similarly, we obtain the contribution to the three other 

cells of 𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐.  

 In the same way, MICICMcg, MICICMgc and MICICMgg are extracted. For a given 

image I, Algorithm 2 summarizes the needed different steps to, first, map both color and gray-

level values, and then, extract the MICICM, where: 

Wc1 : is the contribution of the true hue bin to produce p1. 
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Wcol1 : is the color extent of p1. 

Wc2 : is the contribution of the true hue bin to produce p2. 

Wcol2 : is the color extent of p2. 

WcN1 : is the contribution of the neighbor hue bin to produce p1. 

WcN2  : is the contribution of the neighbor hue bin to produce p2.  

Wg2  : is the contribution of the true gray-level bin to produce p2. 

WgN2 : is the contribution of the neighbor gray-level bin to produce p2. 

Wgray2:  is the gray-level extent of p2. 

Wg1  : is the contribution of the true gray-level bin to produce p1. 

WgN1 : is the contribution of the neighbor gray-level bin to produce p1. 

Wgray1:  is the gray level extent of p1. 

+= : stands for incrementing variables. 

Algorithm 2: Color mapping, gray-level mapping and MICICM calculation 

Input:  

Output: 

An image I  

The MICICM matrix 

1. ▷ First step: Color mapping and gray level mapping 

2.  foreach pixel px which has a hue value h and gray-level value g in I 

3. Compute its color extent 𝑊𝑐𝑜𝑙(𝑝𝑥) and its gray-level extent 𝑊𝑔𝑟𝑎𝑦(𝑝𝑥) according to 

Eq. (38) and Eq. (39). 

4. Determine the two color bins that contribute to this pixel, and calculate their 

respective contributions 𝑊𝑐(ℎ) and 𝑊𝑐𝑁(ℎ) according to Eq. (62) and Eq. (61). 
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5. Determine the two gray-level bins that contribute to this pixel, and calculate their 

respective contributions 𝑊𝑔(𝑔) and 𝑊𝑔𝑁(𝑔) according to Eq. (64) and Eq. (63). 

6. end foreach 

7. ▷ Second step: calculating MICICM. 

8. foreach co-occurrence of pixels (px1, px2) in I 

9. ▷ Calculating 𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐 

10.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[𝑄𝑐1, 𝑄𝑐2]        += (𝑊𝑐1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑐2 × 𝑊𝑐𝑜𝑙2) 

11.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[𝑄𝑐1, 𝑄𝑐𝑁2]     += (𝑊𝑐1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑐𝑁2 × 𝑊𝑐𝑜𝑙2) 

12.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[𝑄𝑐𝑁1,𝑄𝑐2]     += (𝑊𝑐𝑁1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑐2 × 𝑊𝑐𝑜𝑙2) 

13.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[𝑄𝑐𝑁1,𝑄𝑐𝑁2]  += (𝑊𝑐𝑁1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑐𝑁2 × 𝑊𝑐𝑜𝑙2) 

14.   ▷ Calculating 𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑔 

15.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑔[𝑄𝑐1, 𝑄𝑔2]       += (𝑊𝑐1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑔2 × 𝑊𝑔𝑟𝑎𝑦2)  

16.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑔[𝑄𝑐1, 𝑄𝑔𝑁2]    += (𝑊𝑐1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑔𝑁2 × 𝑊𝑔𝑟𝑎𝑦2)  

17.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑔[𝑄𝑐𝑁1,𝑄𝑔2]    += (𝑊𝑐𝑁1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑔2 × 𝑊𝑔𝑟𝑎𝑦2)  

18.  𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑔[𝑄𝑐𝑁1,𝑄𝑔𝑁2] += (𝑊𝑐𝑁1 × 𝑊𝑐𝑜𝑙1) × (𝑊𝑔𝑁2 × 𝑊𝑔𝑟𝑎𝑦2) 

19.  ▷ Calculating 𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑐 

20.  𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑐[𝑄𝑔1,𝑄𝑐2]        += (𝑊𝑔1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑐2 × 𝑊𝑐𝑜𝑙2) 

21.  𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑐[𝑄𝑔1,𝑄𝑐𝑁2]     += (𝑊𝑔1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑐𝑁2 × 𝑊𝑐𝑜𝑙2) 

22.  𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑐[𝑄𝑔𝑁1,𝑄𝑐2]     += (𝑊𝑔𝑁1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑐2 × 𝑊𝑐𝑜𝑙2) 

23.  𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑐[𝑄𝑔𝑁1,𝑄𝑐𝑁2]  += (𝑊𝑔𝑁1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑐𝑁2 × 𝑊𝑐𝑜𝑙2) 

24.   ▷ Calculating 𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑔 

25.  𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑔[𝑄𝑔1,𝑄𝑔2]       += (𝑊𝑔1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑔2 × 𝑊𝑔𝑟𝑎𝑦2) 

26.   𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑔[𝑄𝑔1,𝑄𝑔𝑁2]    += (𝑊𝑔1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑔𝑁2 × 𝑊𝑔𝑟𝑎𝑦2) 

27.  𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑔[𝑄𝑔𝑁1,𝑄𝑔2]    += (𝑊𝑔𝑁1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑔2 × 𝑊𝑔𝑟𝑎𝑦2) 

28.  𝑀𝐼𝐶𝐼𝐶𝑀𝑔𝑔[𝑄𝑔𝑁1,𝑄𝑔𝑁2] += (𝑊𝑔𝑁1 × 𝑊𝑔𝑟𝑎𝑦1) × (𝑊𝑔𝑁2 ×𝑊𝑔𝑟𝑎𝑦2) 

29.  end foreach 

V.4 A Detailed Example  

 Let us take the following example in order to illustrate the different steps of our 

algorithm. We want to extract the MICICM from the image I represented in Figure 29, where 

each cell contains respectively the hue, saturation and value of the corresponding pixel. For 
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example I(1, 1) = (31, 0.6, 0.7) means that the pixel I (1, 1) has a hue of 31, a saturation of 0.6 

and a value of 0.7. In our example, we gave all the pixels the same saturation (which equals 

0.6) and the same intensity (which equals 0.7). This has been deliberately done in order to 

alleviate calculations and allow the reader to focus his attention on the hue which varies from 

pixel to pixel. Furthermore, we will limit ourselves to the calculation of the first sub-matrix 

MICICMcc. The other sub-matrices are extracted in a similar way.  

(31, 0.6, 0.7) (85, 0.6, 0.7) (31, 0.6, 0.7) 

(151, 0.6, 0.7) (208, 0.6, 0.7) (151, 0.6, 0.7) 

(88, 0.6, 0.7) (31, 0.6, 0.7) (89, 0.6, 0.7) 

Figure 29. An example image represented in the HSV space. The three values in each pixel 

correspond respectively to hue, saturation and value. 

 Assume that the hue channel has been quantized into six bins namely, H1, H2, H3, H4, 

H5 and H6, as illustrated in Figure 30.  
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Figure 30. Quantizing hue channel into six bins labelled H1 to H6. 

 First Step: Calculating Color Extent and Gray-Level Extent 

 We firstly use Eq. (38) and Eq. (39) to calculate the color extent and the gray-level 

extent of each pixel. The parameters t1 and t2 has been set to 0.1 and 0.85 respectively, which 

are the optimal values given in (Vadivel, Sural et al. 2007). Since saturation and intensity are 

the same for all pixels, these latter will obtain the same color extent Wcol and the same gray-

level extent Wgray: 

 𝑊𝑐𝑜𝑙(0.6, 0.7) = 0.6
0.1×(

1

0.7
)
0.85

= 0.93  

 𝑊𝑔𝑟𝑎𝑦(0.6, 0.7) = 1 −  0.93 = 0.07 
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 Second Step: Hue Mapping 

 Since we are dealing with MICICMcc in this example, then we should identify the two 

hue bins (i.e., the true hue bin and its neighbor hue bin) that contribute to each pixel and 

calculate their respective contributions. Let us consider the top-left pixel I(1,1). According to 

our binning, and since its hue equals 31𝑜 , then it falls in the bin H2 (i.e., Qc (31) = 2) which 

represents its true hue bin. In addition, since it belongs to the left half of this bin, then the 

neighbor hue bin which contribute to it is the bin H1 (i.e., QcN(31) = 1). Now, according to Eq. 

(61) and Eq. (62), the contribution of the left neighbor hue bin and that of the true hue bin are 

respectively:  

WcN(31) =
1

2
e
−(5

31−1

60
)
2

≈ 0.49  

𝑊𝑐(31) = 1 − 𝑊𝑐𝑁(31) = 1 − 0.49 = 0.51  

These results are interpreted as follows: the hue of this pixel is a mixture of the 1 st bin (red) and 

the 2nd bin (yellow) with respective contributions of 0.49 and 0.51.  

 The other pixels are mapped in the same way, which gives the mapping matrix given 

in Fig. (32).a. For the sake of comparison, we give in Fig. (32).b the results of the mapping 

done by the ICICM. We notice that this method map each hue value to a unique bin regardless 

its position within this bin, which is imprecise. As an example, the pixel I(1, 1) has been mapped 

to the 2nd bin (yellow) although it is very close to the 1st bin (red). 

 

Figure 31. The hue Hc=31o is a yellow that is located near the boundaries of red. For 

MICICM, Hc could be considered as both yellow and red. For ICICM however, it is 

considered as yellow only. 
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H1 bin:  0.49 

H2 bin:  0.51 

H3 bin:  0.41 

H2 bin:  0.59 

H1 bin:  0.45 

H2 bin:  0.55 

H3 bin:  0.41 

H4 bin:  0.59 

H5 bin:  0.46 

H4 bin:  0.54 

H3 bin:  0.48 

H4 bin:  0.52 

H3 bin:  0.46 

H2 bin:  0.54 

H1 bin:  0.48 

H2 bin:  0.52 

H3 bin:  0.48 

H2 bin:  0.52 

 

H2 bin H2 bin H2 bin 

H4 bin H4 bin H4 bin 

H2 bin H2 bin H2 bin 

 

(a) (b) 

Figure 32. Results of hue channel mapping. The left part (a) is hue mapping based on our 

proposed scheme, where each value is represented by the contributing bins and their 

corresponding weights. For example the pixel I(1, 1) is mapped to the two bins H1 and H2 with 

respective weights 0.49 and 0.51. The right part (b) is a hue mapping based on ICICM, where 

each element is mapped to one bin only. For example the pixel I(1, 1) is mapped to the bin H2. 

 Third Step: Calculating MICICMcc 

 Now that the mapping is done, we extract our MICICMcc according to Algorithm 2. 

Let us take the example of the pair of pixels (𝐼(1,1), 𝐼(1,2)) to see how it contributes to the 

different cells of this matrix. From Figure 32.(a), the two bins that contribute to I(1,1) are H1 

and H2, with respective contributions of 0.49 and 0.51, and the two bins that contribute to I(1,2) 

are the H2 and the H3 with respective contributions of 0.59 and 0.41. Furthermore, we know 

that color extent of both pixels equals 0.93. Therefore, this pair will contribute to the four 

following cells within our matrix: MICICMcc(1,2), MICICMcc(1,3), MICICMcc(2,2) and 

MICICMcc(2,3). The four cells will be updated according to the lines 10-13 of Algorithm 2 as 

follows:  

𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[1, 2]+= (0.49 × 0.93) × (0.59 × 0.93) = 0.25   

𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[1, 3]+= (0.49 × 0.93) × (0.41 × 0.93) = 0.17   
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𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[2, 2]+= (0.51 × 0.93) × (0.59 × 0.93) = 0.26   

𝑀𝐼𝐶𝐼𝐶𝑀𝑐𝑐[2, 3]+= (0.51 × 0.93) × (0.41 × 0.93) = 0.18   

 Figure 33 gives the matrix obtained with our method (MICICMcc) as well as that 

obtained by the method of ref.(Vadivel, Sural et al. 2007) (ICICM). From this figure, we see 

that ICICM (H1, H2) = 0 which means that, in our image, there are no red pixels followed by 

yellow ones, whereas, MICICMcc (H1, H2) = 0.43 which means such a situation exists. CCM 

has considered that H2 never occurs after H1 because it did not map any pixel to H1, whereas 

our MICICM considers pixels near the boundaries of H1 as belonging to H1 too. The two 

occurrences of (H1, H2) are (I(1,1),  I(1,2)) and (I(3,2), I(3,3)). 

 H1 H2 H3 H4 H5 H6 

H1 0 ,46 0,38 0 0 0 

H2 0,45 1,01 0,40 0 0 0 

H3 0,36 0,41 0 0,19 0,17 0 

H4 0 0 0,22 0,51 0,24 0 

H5 0 0 0,20 0,21 0 0 

H6 0 0,46 0,38 0 0 0 

 

 H1 H2 H3 H4 H5 H6 

H1 0 0 0 0 0 0 

H2 0 3.80 0 0 0 0 

H3 0 0 0 0 0 0 

H4 0 0 0 1.90 0 0 

H5 0 0 0 0 0 0 

H6 0 0 0 0 0 0 

 

(a) (b) 

Figure 33. The result of extracting the co-occurrence matrix. (a)  MICICM based on our 

mapping scheme. (b) ICICM based on the standard hard mapping. 

 Finally, we extract four features namely, contrast, correlation, energy and 

homogeneity, from each matrix. Table 1 shows the results. We see that the features extracted 

from the CCM are: 

 Contrast = 0: which suggests that the image is constant,  

 Homogeneity = 1: which says that the image is absolutely homogeneous (or uniform) 

without any texture.  
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 This is not precise at all since our image (Figure 29) was not constant, instead, its 

colors vary from pixel to pixel. As for the features calculated from our MICICM, they hold 

more meaningful information with Contrast = 1.3 and Homogeneity = 0.6.  

Table 1. Features extracted from both CCM and MICICM. 

 MICICM ICICM 

Contrast 1.3 0 

Energy 0.1 0.5 

Correlation 0.5 1 

Homogeneity 0.6 1 

 

V.5 Conclusion 

 In this chapter, we introduced our proposed generalization of GLCM in order to 

incorporate information about the colors within images.  To do so, we firstly convert the image 

from RGB to HSV color space to eliminate the correlation between the channels.   After 

sampling the color (resp., gray-level space), we perform a mapping task based on a set of weight 

assignment functions we propose. We then define the algorithm that lists the different steps of 

extracting the MICICM. Finally, we add up a detailed example of extracting the MICICM from 

a given image to make things clearer. In this later, we saw how our proposed method better 

deals with color information that the image incorporates by providing more meaningful features 

than the others does.
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Chapter VI. EXPERIM

ENTATION AND 

VALIDATION 

 We have evaluated our MICICM in the context of content-based image retrieval, 

however, it can be used in different other applications of image processing and pattern 

recognition. In the following, we will start by explaining the experimental setup. Then, w e will 

report the obtained results and discuss them.  

VI.1 Experimental setup 

As conditions of the experiment, we set the following: 

 Dataset 

 numerous texture-dataset benchmarks have been proposed in literature such as 

Brodatz(Valkealahti and Oja 1998), Meastex and Vistex(Singh and Sharma 2001), 

Outex(Ojala, Maenpaa et al. 2002), etc. 
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 In our research, we use OuTex benchmark(Ojala, Maenpaa et al. 2002) to perform our 

tests. There exists several releases of this dataset (The Center for Machine Vision and Signal 

Analysis (CMVS)). We choose Outex_TC_00016 because it contains the highest number of 

categories (29 categories, e.g., barley rice, canvas, chips, etc.) compared to the others. However, 

Outex_TC_00016 is made up of gray-level images only. As we want to test the color integration 

in the GLCM, color images are required. The color images that correspond to the ones of 

Outex_TC_00016 are available in(The Center for Machine Vision and Signal Analysis 

(CMVS)), we collect those images and we use them in our experiments. Figure 34 shows a 

representative sample from the collected images. 

 

Figure 34. Representative sample from collected OuTex texture images. 

 Each image has been rotated by 9 different angles (0o, 5o, 10o, 15o, 30o, 45o, 60o, 75o and 

90o) then subdivided into four equal sub-images which gives a total of 

 11484 images (319 × 9 × 4), half of which (5742 images) has been used for indexing 

and the other half for retrieval. Our built dataset is accessible and freely available in  

(Khaldi and Mohammed Lamine, 2016).   
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 Texture features 

 We compared the retrieval results of our proposed method MICICM (where hue and 

intensity channel are sampled, respectively, into 6 and 4 bins) with three other methods 

based on co-occurrence matrix: CCM(Palm 2004) (where hue channel is sampled into 

6 bins), FCCM(Ledoux, Losson et al. 2015) (where, R, G, and B are sampled into 2, 4 

and 2,  respectively) and ICICM(Vadivel, Sural et al. 2007) (where, hue and intensity 

channel are sampled, respectively, into 6 and 4 bins). 

 From each of these matrices, we extract four features, namely, contrast, correlation, 

energy and homogeneity according to Eq. (65)-(68).  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑∑(𝑖 − 𝑗)2  . 𝐶[𝑖][𝑗]

𝑁

𝑗=1

𝑁

𝑖=1

 (65) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑∑(𝑖 −  𝜇). (𝑗 −  𝜇) . 𝐶[𝑖][𝑗]

𝑵

𝒋= 

𝑵

𝒊= 

 (66) 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑∑𝐶[𝑖][𝑗]2
𝑵

𝒋= 

𝑵

𝒊= 

 (67) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑡𝑒𝑖𝑦 = ∑∑
1

1 +   (𝑖 − 𝑗)2
 . 𝐶[𝑖][𝑗]

𝑵

𝒋= 

𝑵

𝒊= 

  (68) 

such that C is the co-occurrence matrix and 𝜇  is the mean which is calculated according to Eq. 

(69). 

𝜇 =  ∑∑ 𝑖 . 𝐶[𝑖][𝑗]

𝑗𝑖

 (69) 
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 Evaluation metrics 

 Two main factors contribute to the quality of the retrieval. The first one is the 

percentage of retrieved relevant images, while the second is the right ranking of these latter. In 

order to evaluate the first aspect, we opted for two measures which have frequently been used 

in image retrieval: precision (P) and recall (R):  

 𝑃 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠 
 

 𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

 In retrieval, a feature that yields well-ranked images with less precision is better than 

the one that yields bad-ranked images with higher precision. Figure 35 shows an example of 

such a case. It appears that retrieval result Figure 35.(b) is more accurate, although, retrieval 

result Figure 35.(a) has more relevant images. 

 

(a) (b) 

Figure 35. Retrieval results of two different features. Retrieval result (a) is less accurate than 

retrieval result (b) although it has more images that are pertinent. 
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 In Such cases, the precision became a deceiver metric. To avoid falling in this problem, 

we resort to Mean Average Precision (MAP) which takes into account the ranking of the 

retrieved images. It is given by the following formula:  

𝑀𝐴𝑃 =  
∑ 𝐴𝑣𝑔𝑃(𝑞)
𝑄
𝑞=1

𝑄
,   Q is the number of queries and AvgP(q) is the average precision of a 

query q. 

 HSV color space sampling 

 We quantize intensity and hue channels, respectively, into 4 and 6 bins. However, 

these channels can be quantized using more or less bins. Too much bins (Figure 36.(c)) means 

more calculation, whereas, too less (Figure 36.(a)) means miss-mapping. Figure 36 shows 

examples of hue channel quantizing including our used one (Figure 36.(b)). Anyway, reader 

should understand that channel quantization does not have to be systematic (equal bin sizes).  

Instead, it might be customized based on the application field.  

 

(a) 

 

(b) 

 

(c) 
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Figure 36. Examples of hue channel quantizing: (a) quantized to 3 bins, (b) quantized to 6 

bins and (c) quantized to 12 bins. 

VI.2 Experimental results 

 In order to prove the efficiency of our method, we carried out three experiments, each 

is intended to measure a specific aspect. In the first experiment, we determine the best values 

of the parameters t1 and t2 for Eq. (61); k1 and k2 for Eq. (63). The aim of the second 

experiment is to, separately, compare features extracted from our MICICM with those extracted 

from CCM, FCCM and ICICM. The third experiment is dedicated to compare all  possible 

combinations of features extracted using each of the three methods. We report results in terms 

of precision, recall and MAP.  

 Choice of parameters 

 In this experiment, we try to determine the best values of the parameters t1, t2, k1 and 

k2 of the equations Eq.(61)-(64). In order to estimate these parameters correctly, we sample 12 

images from each category of texture; given that the total number of categories is 29, we obtain 

a sub-set of 348 images. The half of this sub-set has been used for indexation and the other half 

for retrieval. By considering a recall equal to 1, retrieval process is carried out using different 

combinations of the parameters 𝑡1, 𝑡2, 𝑘1 𝑎𝑛𝑑 𝑘2 .The yielded precisions for each combination 

are averaged then compared with the others. The best values of the parameters correspond to 

the combination that yields the highest average precision. Figure 37 shows examples of Eq.(61) 

plotted using different values of 𝑡1 and 𝑡2. 
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Figure 37. The contribution of a neighbor bin to a given hue value h according to the distance 

between h and the boundary H1. We use different value combinations for the parameters t1 

and t2. 

 From Figure 37 we see that the higher values of parameters are, the less neighbor 

contribution is. For example, for t1= 12 and t2 =12 the neighbor-bin contribution begins if the 

hue or the gray –level value is greater than 0.4. However, for t1= 4 and t2= 4 the neighbor bin 

starts contributing to the color or gray level if its value is greater than 0.1. We set  𝑡1 > 4, 

otherwise, the neighbor contribution will be extended to reach pure colors which is wrong. In  

contrast, if it is too high, it will yield a hard mapping. 

 Firstly, we set k1, k2 and t2 to 4 then estimate the precision for different values of t1. 

The obtained results using different values of t1 are listed in Table 2. 

Table 2. Precision yielded using Eq.(61) by setting k1, k2 and t2 to 4, and 𝑡1 > 4. 

t1 4 5 6 7 8 9 10 11 12 

precision 0,130 0,128 0,132 0,136 0,146 0,147 0,143 0,142 0,140 

 From Table 2, we see that the precision increments until it reaches the maximum of 

0.147. This maximum is yielded when we assign the value 9 to the parameter t1. 
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 In the same way, the parameter t2 is estimated by setting k1, k2 to 4 and t1 to its best 

value (i.e., 9). The obtained results are listed in Table 3. 

Table 3. Precision yielded using Eq.(61)  by setting k1 and k2 to 4, t1 to 9, and 𝑡2 > 4. 

t2 4 5 6 7 8 9 10 11 12 

precision 0,1471 0,1480 0,1493 0,1490 0,1484 0,1486 0,1483 0,1488 0,1487 

 From Table 3, we see that the precision increments until it reaches the maximum of 

0.1493. This maximum is yielded when we assign the value 6 to the parameter t2. 

 From the two previous evaluations, we have considered that the best results will be 

obtained when the values of the parameters t1 and t2 are respectively 9 and 6. In Figure 38 , 

Eq. (61) is plotted using these two values (i.e., t1= 9 and t2= 6). This curve seems to be 

satisfying to our constraints a-d. 

 

Figure 38. Eq. (61) plotted by setting the parameters t1 = 9 and t2 = 6. 

 Similarly, to define which values are best for the parameters k1 and k2 of Eq. (63), we 

perform the same steps as we did with t1 and t2. Table 4 shows the results of evaluating k1 by 

setting t1, t2 and k2 to 4; 
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Table 4. Precision yielded using Eq. (63) by setting t1, t2 and k2 to 4, and 𝑘1 > 4. 

k1 4 5 6 7 8 9 10 11 12 13 14 15 

precision 0,140 0,138 0,131 0,139 0,143 0,144 0,143 0,144 0,145 0,140 0,140 0,139 

 From Table 4, we see that the precision increments until it reaches the maximum of 

0.145. This maximum is yielded when k1 is equal to 12.  

 In the same way, the parameters k2 is estimated by setting t1, t2 to 4 and k1 to 9, results 

are listed in Table 5. 

Table 5. Precision yielded using Eq. (63) by setting t1 and t2 to 4,  k1 to 12, and 𝑘2 > 4. 

k2 4 5 6 7 8 9 10 11 12 

precision 0,1455 0,1458 0,1447 0,1448 0,1446 0,1447 0,1449 0,1449 0,1449 

 From Table 5, we see that the precision increments until it reaches the maximum of 

0.1458. This maximum is yielded when k2 is equal to 5. 

VI.2.1.1 Conducting a Second Iteration 

 In order to assure that these values are the best, we conduct a second iteration. Each 

time, three of these parameters are set to their best values, and then we estimate the precision 

while changing the fourth one. The obtained results are illustrated in Table 6. 

Table 6. Results of a second iteration for estimating t1, t2, k1 and k2. 

 4 5 6 7 8 9 10 11 12 

t1 0,1545 0,1519 0,1522 0,1539 0,1550 0,1558 0,1541 0,1440 0,1430 

t2 0,1378 0,1492 0,1558 0,1512 0,1509 0,1396 0,1389 0,1391 0,1388 

k1 0,1418 0,1387 0,1411 0,1495 0,1474 0,1482 0,1508 0,1522 0,1558 
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k2 0,1518 0,1558 0,1511 0,1495 0,1474 0,1482 0,1488 0,1479 0,1496 

 From the previous estimations, we found out that our method yields the best precisions 

when the values of the parameters t1, t2, k1 and k2 respectively are 9, 6, 12 and 5. By 

considering these values, we conduct evaluations on the full dataset in the following two 

subsections. 

 Individual Features Evaluation 

 After having features extracted (i.e., contrast, correlation, energy and homogeneity) 

from MICICM, FCCM, CCM and ICICM, we conduct retrieval using each feature separately. 

We take each image, from those dedicated to retrieval, as a query, and then we average recalls 

and precisions yielded by all the queries. The obtained results are shown in Figure 39.  
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(c) (d) 

Figure 39. Features Evaluation. (a) Contrast, (b) Correlation, (c) Energy and (d) 

Homogeneity. 

 From Figure 39, it appears that our method significantly outperforms the FCCM, CCM 

and ICICM for all features. In addition, as the recall increases, our method still outperform the 

three others. By taking homogeneity feature (i.e., Figure 39.(d)) as an example, we notice that 

the CCM has yielded the lowest result. This is may be explained by the fact that  some images 

are homogeneous in terms of color, however, the shade of colors may differs from pixel to 

another which is undetectable by capturing color information only. ICICM has overcome this 

drawback by considering both color and intensity, and yielded better performance than FCCM 

and CCM, whereas our MICICM has outperformed the others. By adopting the smart mapping, 

which is not taken into account by ICICM, our MICICM has successfully dealt with the images 

in which colors are near the boundaries.  This confirms the hypothesis arguing that using hard 

mapping degrades retrieval results.   

 Combined Features Evaluation 

 Since that in the previous experiment we have considered each feature separately, the 

aim of the current experiment is to prove that combining these features does not degrade the 
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retrieval performance but rather improves it.  The quadruple (i, j, k, l), which correspond 

respectively to contrast, correlation, energy and homogeneity, represents the features that have 

been taken into consideration. A value 1 in a quadruple means that the corresponding feature is 

considered, 0 in the opposite case. For example, 1101 refers to a combination of contrast, 

correlation and homogeneity. Figure 40 illustrates the obtained results for each combination. 

  

Figure 40. Precision histogram obtained using all possible feature combinations. The 

quadruple (i, j, k, l) corresponds, respectively, to contrast, correlation, energy and 

homogeneity (e.g., 1101 refers to a combination of contrast, correlation and homogeneity). 

From Figure 40 we notice that our method outperforms the ICICM, FCCM and CCM in all the 

possible combinations by an average of 5%, 9% and 21%, respectively. 

 In retrieval, a feature that yields well-ranked images with less precision is better than 

the one that yields bad-ranked images with higher precision. In such cases, the precision became 

a deceiver metric. To avoid falling in this problem, we employ the MAP metric. We have re-

evaluated all the possible combination of features with MAP metric. The obtained results have 

been illustrated in Figure 41. 
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Figure 41. Histogram of mean average precession (MAP) of CCM, ICICM and MICICM. 

The quadruple (i, j, k, l) corresponds, respectively, to contrast, correlation, energy and 

homogeneity (e.g., 1101 refers to a combination of contrast, correlation and homogeneity). 

 According to this Figure 41, our MICICM brings more relevant images in top positions 

than the two other methods. This has been achieved thanks to our mapping scheme where colors 

and gray levels are mapped in a better way.  

 Let us now take a look at the behavior of MAP for the four methods when the recall 

increases. We consider the combination of features 1100 where the results are shown in Figure 

42. We see that the difference between our method and the three others is noticeable. This 

proves that even for higher values of recall, the MAP achieved by our method still exceed the 

other ones.  
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Figure 42. MAP behavior in terms of recall 𝑅𝜖[0,05 0,5]. 

 From Figure 42, we notice that the three methods CCM, FCCM and ICICM are 

converging to the same MAP value while the recall increases. In addition, we see that when the 

recall reaches the value 0.5 the difference in MAP between these three methods become trivial. 

At the opposite, this difference remains high between the MAP yielded by our method and the 

ones of the others.  This difference is not affected too much even if the recall increases. 

VI.3 Conclusion 

In this chapter, we have evaluated the performance of our MICICM against three other related 

works namely CCM, ICICM and FCCM. This evaluation has been done considering three 

aspects that are precision, recall and map. Due to the high correlation between the 14 haralick’s 

features, we took into account only the four least correlated features namely contrast, 

correlation, variance and homogeneity.  As a dataset, we built and made online available a color 

dataset based on a gray-level Outex_TC_00016 dataset which has the highest number of 

categories and classes.  After estimating the parameters t1, t2, k1 and k2, and conducting the 

experiments, the results indicates that our MICICM has remarkably outperformed the others in 

terms of single and combined features.
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GENERAL 

CONCLUSION 

 Digital image analysis is the art of using the techniques that allow a machine (i.e., 

computer or some other electrical device) to, automatically, study an image in order to obtain 

useful information about its content. These information could be, then, exploited to take a 

decision by a specialist or the machine itself. 

 In machine learning, pattern recognition and image processing, a feature could be 

defined as a vector of values that are derived from an initial big set of measured data (i.e., 

dimensionality reduction). Feature vectors generally tend to be informative and non-redundant. 

A specific structure in the image can often be represented in different ways based on the selected 

image feature. Image features can be broadly categorized into four main categories namely, 

color, texture interest point and shape features. 

 GLCM is amongst the well-known and widely used techniques for texture 

representation. This matrix accumulates a set of second order statistics that measures the spatial 

dependency of two gray levels given a displacement vector(∆𝑥, ∆𝑦). Although the GLCM has 

proven its effectiveness as a texture representation, four main issues should be addressed in 

order to improve its accuracy and the results it yields: 

a. Color integration: Since the GLCM is computed from gray-level images only, color 

information, which may be very important, is totally ignored.  

b. Multi-spectral integration: integrate information extracted from the different spectral 

bands, composing a multi-spectral image, into a co-occurrence matrix. 

c. Color sampling and mapping: Color sampling and mapping are critical processes since 

the better they are, the better results are.  

d. Extracting new features: Besides the features introduced by Haralick in his original 

work on GLCM, many other authors have proposed new ones. 
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 In this research, we propose a generalization of GLCM so it can be used with color 

texture images without resort to any other color features. This representation which we refer to 

as Modified Integrative Color Intensity Co-occurrence Matrix (MICICM) holds information 

about both color and intensity. To reach such a generalization, a mapping function, which 

determine for each pixel value the bin it falls into, is needed.  In the previous studies, this 

function uses a hard mapping where all pixel values that fall in a bin are considered as the same, 

regardless their values. This presents a number of drawbacks. To fix them, we introduce a new 

color and gray-level mapping scheme based on a set of weight assignment functions we 

propose. In our scheme, each pixel is mapped to more than one possible color (and gray level) 

bin, in order to avoid the drawbacks of hard mapping. This scheme is based on a set of weight 

assignment functions that we define, where each pixel is mapped to more than one possible 

color (and gray-level) bin, in order to avoid the drawbacks of hard color mapping. This is 

justified by the fact that most hue values in the Hue, Saturation, and Value (HSV) color space 

result from the mixing of more than one color. By using the MICICM, the image is compactly 

represented with few features that come in form of statistical moments, which make it suitable 

for real time systems. It can be used for different applications of image processing and pattern 

recognition. 

 We have evaluated our MICICM in the context of content-based image retrieval, 

however, it can be used in different other applications of image processing and pattern 

recognition. Experimental results show that our method significantly outperforms others of the 

literature in terms of precision, recall and MAP. 

 The findings of this investigation complement those of earlier studies and make several 

noteworthy contributions to image representation. In the future, we will adopt the same 

principle in order to improve other existing features. Moreover, the proposed integrative feature 

can be used, in future works, to fulfil other tasks such as texture recognition.
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