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Abstract

Because of its natural and non-intrusive interaction, identity verification and recognition
using facial information is among the most active areas in computer vision research. Unfor-
tunately, it has been shown that conventional 2D face recognition techniques are vulnerable to
spoof attack, where a person tries to masquerade as another one by falsifying his biometric data
and there by gaining an illegitimate advantage.

This thesis explores different directions for software-based face anti-spoofing. In this con-
text, we proposed a new approach which can be applied in both static and dynamic face anti-
spoofing. The proposed approach consists of the following three main stages: 1) face alignment
and preprocessing; 2) feature extraction and selection; 3) classification. The purpose of face
alignment is to localize faces in images, rectify the 2D pose of each face and then crop the
region of interest. The preprocessing stage is important since the subsequent stages depend on
it and since it can affect the final performance of the system. Feature extraction and selection
stage extracts the facial features. These features are extracted either by a holistic method or by
a local method. The extracted features are then selected using a supervised feature selection
method in order to omit possible irrelevant features. In the last stage, the classification is used
to differentiate between real and fake faces.

The proposed methods are applied to several case studies for the face mode. At face align-
ment, the results show the advantage of using the rotation of face. At face representation stage,
the use of Frame-Difference improves the performance of the system. Also, a comparison be-
tween Multi-Block and Multi-Level on face representation is presented. The case studies are
furthermore used to demonstrate the framework and its potential in the evaluation of biometric
under spoofing attacks. Overall, the experimental results prove the importance of our method
for creating trustworthy face anti-spoofing systems.

Keywords
Computer Vision, Biometrics, Face Recognition, Spoofing-attacks, Counter-Measures, Anti-
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Spoofing, Liveness Detection, Presentation Attack, Face Representation, Frame-Difference,
Fisher-Score, Face Alignment.
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Résumé

En raison de son interaction naturelle et non intrusive, la vérification de l’identité et la
reconnaissance à l’aide d’informations faciales figurent parmi les domaines les plus actifs de
la recherche en vision par ordinateur. Malheureusement, il a été démontré que les techniques
classiques de reconnaissance faciale en 2D sont vulnérables aux attaques par usurpation, où une
personne tente de se faire passer pour une autre en falsifier ses données biométriques et en y
gagnant un avantage illégitime.

Cette thèse explore différentes directions pour l’anti-usurpation de visage basée sur le logi-
ciel. Dans ce contexte, nous avons proposé une nouvelle approche qui peut être appliquée dans
le cas statique et dynamique sur l’anti-usurpation de visage. L’approche proposée comprend
les trois étapes principales suivantes: 1) Alignement de visage et prétraitement; 2) L’extraction
et la sélection de caractéristiques; 3) Classification. Le but de l’alignement du visage est de
localiser les visages dans les images, de rectifier la pose 2D de chaque visage et ensuit de
recadrer la région d’intérêt. L’ étape de prétraitement est importantes car les étapes ultérieures
en dépendent et peuvent affecter les performances finales du système. L’ étape d’extraction et
de sélection de caractéristiques permet d’extraire les traits du visage. Ces caractéristiques sont
extraites soit par une méthode globale ou par une méthode local. Les caractéristiques extraites
sont ensuite sélectionnées en utilisant un procédé de sélection de caractéristique supervisée afin
d’éliminer d’éventuelles fonctions non pertinentes. Dans la dernière étape, la classification est
utilisée pour la différentier entre les visages réels et faux.

Les méthodes proposées sont appliquées à plusieurs études de cas pour le mode visage.
À l’alignement du visage, les résultats montrent l’avantage d’utiliser la rotation du visage. À
l’étape de la représentation du visage, l’utilisation de la différence de frame améliore les per-
formances du système. De plus, une comparaison entre la représentation multi-blocs et multi-
niveaux est présentée. Les études de cas sont en outre utilisées pour démontrer le système
et son potentiel pour l’évaluation des attaques biométriques, sous usurpation d’identité. Dans
l’ensemble, les résultats expérimentaux prouvent l’importance de notre méthode pour la création
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de systèmes fiables pour anti-usurpation de visage.

Mote Clé
Vision par Ordinateur, Biométrie, Reconnaissance de Visage, Attaques par Usurpation d’identité,
Contre-Mesures, Anti-Usurpation, Détection de Vivacité, Attaque de Présentation, Représentation
de Visage, Différence de Frame, Score de Fisher, Alignement de Visage.
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Jiménez D, Mohammadi A, Bhattacharjee S, Marcel S, Volkova S, Tang Y, Abe N, Li L,
Feng X, Xia Z, Jiang X, Liu S, Shao E, Yuen P C, Almeida W R, Andalé F, Padilha E,
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3 1. Introduction

1.1 Introduction

Figure 1.1: General diagram of a biometric system specifying the modules where the three types of anti-
spoofing techniques may be integrated (sensor-level, feature-level and score-level). Also
displayed are the two different type of attacks for which anti-spoofing techniques may offer
protection: spoofing and attacks carried out with synthetic or reconstructed samples [1].

There are numerous types of identity documents: national identity card, passports, social

security card, health insurance card, employer’s card, banker’s card, driving license, etc. Most

of the identity documents, with the exception of the national identity card, are function-specific

and context-dependent, even though in practice they may be accepted in other contexts. Identity

management for persons using biometrics has indeed become a reality not only because of the

biometric passport (e-passport) but also because of the presence of more and more biometric-

enabled applications for personal computers and mobile phones [2]. Furthermore, a growing

number of developing countries are using biometric technologies to create national identifica-

tion programs.

Biometric technology has much application in our life. They include access control, bor-

der control, civil registry, entertainment, finance, forensic, health care, law enforcement, social

media, social networking, surveillance, robotics, human-computer interaction, games, trans-

portation, etc. This technology is needed and dominated by security-related applications in a
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1. Introduction 4

lot of markets due to increasing security threats in recent times [3]. Also, increase in unautho-

rized immigration, visa fraud, credit card fraud, border intrusion, and so on leads to a growing

need for high security. Such see the importance of biometric technology and have been shown

to be promising candidates for either replacing or augmenting conventional security technolo-

gies. For those applications of biometric more than for others, reliable recognition is of great

importance.

The biometric technology such we can see the importance of uses as security in a lot of

application also is easy to attack (spoof). Attacks and vulnerabilities of biometric systems that

are being reported to the public from hacking groups [1] attempting to get recognition, from real

criminal cases, or even from live demonstrations at biometric and security specific conferences.

As a consequence, in recent years, there has been an increasing interest in the evaluation of

biometric systems security, which has led to the creation of numerous and very diverse initia-

tives focused on this field of research: publication of many research works disclosing and evalu-

ating different biometric vulnerabilities, proposal of new protection methods, related books and

book chapters, Ph.D. and MSc theses which propose and analyze different biometric spoofing

and anti-spoofing techniques, publication of several standards in the area and of different sup-

porting documents and protection profiles in the framework of the security evaluation standard

common criteria for the objective assessment of commercial systems, certification of different

commercial products in the framework of the common criteria, patented anti-spoofing mecha-

nisms for biometric systems, specific tracks, sessions and workshops in biometric specific and

general signal processing conferences, organization of competitions focused on vulnerability

assessment, acquisition of specific datasets, creation of groups and laboratories specialized in

the evaluation of biometric security, European projects with the biometric security topic as their

main research interest.

In the last years, the spoofing biometric security context described above has promoted, and

the significant amount of research which has resulted in publications in journals, conferences,

and media, describing new anti-spoofing algorithms and systems that intend to make this tech-

nology safer. The most deployed, popular and mature modalities such as a face, fingerprints an

iris in biometric technology are also been shown to be the most exposed to spoofing. At the

4



5 1. Introduction

moment, the amount of new contributions and initiatives in the area of anti-spoofing requires

a significant condensation effort to keep track of all new information in order to form a clear

picture of the state-of-the-art as of today. As an example, a series of chronological milestones

related to the evolution of biometric spoofing are shown in Figure. 1.1.

1.2 Background and Motivation

Biometric experts agree that it is impractical to prevent a collection of biometric data from

an individual [4]. The ANSI standard committee formulated what is called a security axiom for

biometrics: “The security of a biometric system cannot rely on keeping biometric data secret”

[5]. Rather, they recommend building preventive measurements to defend against fabricated

replicas of biometric samples. O’Gorman [6] rightfully declares that it is not the secrecy what

makes a good authenticator, but the difficulty to counterfeit the original. He argues that copy-

resistance goes along with uniqueness as a fundamental principle a good biometrics should

stand upon [7]. This gives the essence of the motivation to develop counter-measures to spoofing

attacks in order to foster even wider adoption of biometrics as an authentication method.

Due to the increasing need and investments for security applications, authentication by bio-

metric verification is becoming increasingly common in corporate and public security systems.

The reason is that biometrics enable reliable and efficient identity management systems by us-

ing physical and behavioral characteristics of the subjects that are permanent, universal and easy

to access [8]. Each biometric trait has their own advantages and disadvantages. For example,

the fingerprint is the most wide-spread biometric from a commercial point of view [9], how-

ever, it requires strong user collaboration. Similarly, iris recognition is very accurate, however,

it highly depends on the image quality and also requires the active participation of the sub-

jects. Face recognition is advantageous in terms of both accessibility and reliability. It allows

identification at relatively high distances for unaware subjects that do not have to cooperate.

It is important to note that the spoofing attacks arise as an issue from the practical usage of

biometrics, rather than as a problem inspired by a scientific curiosity. Ever since Matsumoto et

al. [10] demonstrated the vulnerability of several commercial fingerprint recognition devices to

5
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spoofing attacks with gummy fingers, every new commercial biometric authentication system is

being put to similar tests by security enthusiasts. For example, the authors in [11] successfully

deceived the face authentication systems of several laptops with fake facial images at the Black

Hat Security Conference. The first commercial fingerprint authentication on smartphones has

been spoofed with artificial fingers too [12]. While the goal of the above-mentioned examples is

to draw attention to the vulnerability of biometric recognition systems, criminal acts involving

spoofing attacks on deployed biometric systems have been recorded as well. The case of an

illegal immigrant trying to deceive the airport fingerprint scanner in Japan with a tape with

someone else’s fingerprint is one of the examples [13]. Another one [14] concerns a doctor who

falsely registers her colleagues as present at work by spoofing the fingerprint scanner tracking

the employee attendance.

In this thesis, two challenges in face recognition are analyzed, which are spoofing and dis-

guise variations. Although these challenges affect the performances of 2D face recognition

systems significantly, the studies on these topics are limited. In a spoofing attempt, a person

tries to masquerade as another person and thereby, tries to gain access to a recognition system.

Since face data can be acquired easily in a contact less manner, spoofing is a real threat for face

recognition systems. Due to the limited number of studies on this topic, today spoofing (includ-

ing anti-spoofing) is a very popular topic for researchers in face recognition domain. In this

dissertation, the main motivation is to develop countermeasure techniques in order to protect

face recognition systems against spoofing attacks. For this purpose, we investigated 2D face

anti-spoofing see Figure. 1.2.

1.3 Objectives and Contributions

The most common spoofing attacks to face recognition systems are achieved by using pho-

tographs and videos due to their convenience and low cost. It has been shown that face recogni-

tion systems are vulnerable to photograph and video attacks. The aim is to develop non-intrusive

countermeasures without extra devices and human involvement which can be integrated into ex-

isting face recognition systems to protect them against spoofing attacks.

6



7 1. Introduction

Figure 1.2: Example of face spoofing.

This thesis focuses on exploring software-based approaches for improving the robustness of

2D face authentication systems to spoofing attacks. All proposed methods are based on analyz-

ing single image or short video sequences captured with conventional cameras, i.e. the sensor

embedded in the face verification system that acquires the samples for the actual recognition.

1.4 Thesis Outline

The rest of this thesis is as follows:

Chapter 2 gives an overview on face anti-spoofing, including an introduction to the vulner-

abilities of face authentication systems, a literature review of the state-of-the-art techniques and

description of the publicly available databases used in the experiments of this thesis.

Chapter 3 describes the key ideas behind texture based face anti-spoofing, then summarizes

the main findings in print and video attack detection.

Chapter 4 illustrates the methods proposed in the previous chapters on case studies in the

face mode. The case studies are based on several state-of-the-art face anti-spoofing systems

and include extensive experiments to assess their performance on databases in face spoofing

detection.

Chapter 5 conclude the thesis with a summary of its contributions and achievements and

we give an outline of possible directions for future work.
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11 2. Overview on biometric anti-spoofing

2.1 Introduction

For good and fast security, many applications face recognition has become an important

topic. The biometric system is a security identification and authentication system. Such sys-

tem uses automated methods of verifying or recognizing the identity of a living person based

on his physiological or behavioral characteristics. Which is permanent, universal and easy to

access. These characteristics include fingerprints, facial, Iris, and voice. This is why the topic

of biometrics attracts higher attention today.

In this section, we give first a general introduction to the vulnerabilities of biometric systems

and anti-spoofing. Then, the scope is narrowed down to 2D face modality and various aspects

of face anti-spoofing, including different attack scenarios and the state of the art in face spoof

detection with a particular focus on software-based countermeasures. Finally, face spoofing

related benchmark datasets are introduced which have been the basis of the work in this thesis.

2.2 Biometric anti-spoofing

To understand biometric spoofing and come with practically usable anti-spoofing systems,

one needs to go through several stages. Studying biometrics in general is the first stage. the sec-

ond stage is face recognition. In the last stage, we studied spoofing attacks on face recognition

and how they are created and performed.

2.2.1 Biometrics in General

Biometric systems are usually consist of the following components (See Figure. 2.1):

• Sensor module: this module acquires biometric data (e.g. face image).

• Feature extraction module: This module is used to extract features of a biometric trait

(e.g. fingerprint minutiae).

• Matching module: The matching module compares the acquired biometric features with

the stored biometric templates and then match (similarity) scores are generated.

11



2. Overview on biometric anti-spoofing 12

• Decision-making module: The user’s identity is is accepted or rejected based on the

scores.

Figure 2.1: biometric system architecture.

There are two modes in biometric systems, which are enrollment mode and authentication

mode. Furthermore, authentication is achieved either in verification mode or identification mode

[15].

• Enrollment mode: Subjects present one or more biometric data samples. The biometric

templates are generated from these samples. These templates constitute the gallery set.

Enrollment is generally performed in a well-controlled environment.

• Authentication mode: Biometric data of user is acquired and used by the system either

for verification or identification purposes. The biometric data captured for recognition is

a probe sample.

In verification mode, the probe sample is matched with the claimed template for vali-

dation, and it either accepts or rejects the identity claimed. Verification is one-to-one

matching.

On the other hand, in identification mode, all biometric references in the gallery are ex-

amined and the one with the best match-score denotes the class of the input.

In verification mode, if the match score is above some threshold, the identity claimed is

accepted. Otherwise, it is rejected. There are four outcomes of this setting which are:

12



13 2. Overview on biometric anti-spoofing

• True accept: the person is a genuine and the demand is verified.

• True reject: the person is an impostor and the demand is not verified.

• False accept: the person is an impostor and the demand is verified.

• False reject: the person is a genuine and the demand is not verified.

In order to show the verification performances of the recognition systems, generally ROC curve

is utilized. It represents the probability of true acceptance versus probability of false acceptance.

In this thesis, we report the verification performances not only using ROC curves. In some cases,

we also show verification performances using DET curve, which is a variant of ROC curve. The

primary difference is that y-axis is the false rejection rate instead of true acceptance rate in DET

curve. Finally, in this study, we also use the term EER to show verification performances. EER

is the value where False Acceptance Rate (FAR) and False Rejection Rate (FRR) are equal (See

Figure. 2.2).

Figure 2.2: False rejection rate and false acceptance rate of a biometric verification system.

13
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2.2.2 Face Recognition

The human face plays an important role in our social interaction by conveying people’s

identity. Using the human face as a key to security, biometric face recognition (See Figure 2.3)

technology has received significant attention in the last several years due to its potential for a

wide variety of applications in both law enforcement and non-law enforcement.

As compared with other biometrics systems using fingerprint, palm-print and iris, face

recognition has distinct advantages because of its non-contact process. Face images can be

captured from a distance without touching the person being identified, and the identification

does not require interacting with the person. In addition, face recognition serves the crime de-

terrent purpose because face images that have been recorded and archived can later help identify

a person.

Figure 2.3: Examples of face recognition system.

2.2.3 Spoofing attacks in face recognition

The main reason spoofing attacks in face recognition is that a biometric sample is a face

represented in a digital image, which is intrinsically highly reproducible by several means like

printed photos and electronic portable devices (laptops and even cellular phones) capable of

showing images and videos [16–19]. In the context of face biometrics, an impostor tries to

access the system as a valid user with three approaches (See Figure 2.4) [16, 20–22]:

14
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• Showing a photography of a valid user (See Figure 2.4(a))

• Showing a video of a valid user (See Figure 2.4(c))

• Showing a 3D facial model of a valid user (See Figure 2.4(b))

(a) photography (b) 3D facial model

(c) video

Figure 2.4: Examples of face spoofing.

Besides, a face recognition system can be built with very low cost hardware, and it is partic-

ularly suitable for low risk application. Therefore, in these cases, adding of specific hardware

or interaction to ensure reliability is not necessarily an affordable solution. This implies that a

simple photo spoofing attack can represent a security problem for a face recognition system. In

fact, most of papers in the literature refer to the problem as a task of photo attack detection as it

represents a cheap and effective way to perform an attack. Commonly cited papers refer to the

problem of photo attack detection in two major complementary directions [17–19] :

15
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• Static analysis, based on the fundamental idea that during the manufacturing process of

a photo attack, a certain loss of information occurs and also peculiar noise is introduced

[18].

• Video analysis, that tries to detect, as humans do, facial physiological clues like blinks,

mouth movements and changes in facial expression [18].

For anti-spoofing methods there are four major categories [22, 23]: data-driven characteri-

zation, user behavior modeling, user interaction need, and the presence of additional devices.

To counteract the threat of spoofing, various liveness detection methods have been inves-

tigated, particularly for the three main physical biometric methodologies: fingerprint [24, 25]

face [26,27] and iris [20] recognition. However, all liveness detection techniques can be classi-

fied into one of the following three categories [28, 29]:

• Intrinsic properties of a living body: A living human body exhibits a number of mea-

surable properties such as: density and elasticity (physical), capacity, resistance, and

permittivity (electrical), reflectance and absorbance (spectral), color and opacity (visual).

• Involuntary signals of a living body: Pulse, blood pressure, fluctuation of papillary size,

perspiration, blood flow brain wave signals, and electrical heart signals.

• Bodily responses to external stimuli: Those are challenge-response methods that either

look for voluntary or reflexive behavioral responses from the user. Asking user to smile

or blink is an example of a voluntary behavioral response. Pupil dilation is an example of

involuntary response.

2.3 State of the art in face anti-spoofing

There are many different terms to differentiate between biometric trait originates from a

living legitimate subject or from some other source as as anti-spoofing, spoof detection, and

presentation attack detection. Also, there is another term referred called liveness detection and

is a synonym for spoof detection in some fields but, in general, it can be used to refer to a more

16
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limited problem of sensing vitality signs, like eye blinking or heartbeat. In this thesis, this term

is treated as a subcategory for anti-spoofing methods.

Spoofing attack detection can be performed before capturing the actual biometric data or

when processing the acquired sample using three different approaches:

• 1) use only the information acquired for identification purposes.

• 2) further process the data or acquire additional information over time to find clues of a

possible spoofing attack.

• 3) use additional sensors and software to find out a representation that is more suitable for

capturing inherent differences between genuine subjects and fake ones than the original

biometric data.

The anti-spoofing research has mainly concentrated on further processing and collecting the

biometric data, or using additional instruments because based on the acquired biometric sample

it is really hard to tell if the presented biometric trait is valid or not [2].

Like in the case of attack terminology, there exists no unified taxonomy for the different

spoof detection approaches. The aforementioned techniques can be categorized in several ways,

e.g. based on the working mechanisms into methods utilizing the intrinsic properties of the

biometric samples, liveness cues or contextual information, or based on the biometric system

module in which they are integrated into sensor-level (hardware-based), feature-level (software-

based) or score-level techniques.

In this thesis, however, the score-level techniques are not considered as a separate technique

but as a part of the whole biometric system design which is a research topic of its own that

is not related only to anti-spoofing and has not been explored much yet. Thus, a three-part

categorization is followed dividing the individual spoof detection schemes into hardware-based,

software-based and multi-modal techniques.

There are many ways to detect spoof attacks. In this work, we will study two part of face

anti-spoofing methods which are Hardware-based and Software-based techniques. In the fol-

lowing section, we present all previous work in face anti-spoofing techniques (See Table 2.1).

17
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2.3.1 Hardware based techniques

The Hardware-based techniques advocate incorporating extra hardware devices in order to

differentiate between the real and the fake faces.

We give in this section the recent work in this domain Ng et al. [30] used randomized

temporal effective cues in the form of facial expressions to verify the liveness of users. Pavlidis

et al. [31] showed that band of the near-infrared (1.4um− 2.4um) is particularly advantageous

for disguise detection purposes. Chetty et al. [32] combined acoustic and visual feature vectors

to distinguish live synchronous audio-video recordings from Replay-Attacks that use audio with

a still photo. Erdogmus et al. [33] used the depth information to discriminate between the real

and the 2D spoofing attacks. Smith et al. [34] proposed an approach for face recognition systems

that can counter the attacks by using the color reflected from the user face which is displayed on

the mobile devices. These reflections are used to determine whether the images were captured

in real-time. Wang et al. [35] proposed a novel face liveness detection approach to counter

spoofing attacks by recovering sparse 3D facial structure. Other methods [36–38] used different

visual spectrum (complementary infrared, near infrared...) to distinguish between the genuine

faces and the spoof attacks.

2.3.2 Software based techniques

The software-based techniques use the simple Red Green Bleu (RGB) images to detect the

spoof attacks. These methods can be divided into static based and dynamic based techniques.

The static based techniques are applied on a single image, while the dynamic based techniques

are applied on video sequences. In below we give the recent work on the both static and dynamic

techniques respectively.

The most used methods to differentiate between the real faces and the fake ones are based on

texture analysis. Texture analysis counter-measures take advantage of texture patterns that may

look unnatural when exploring the input image data. Examples of detectable texture patterns are

printing failures or overall image blur. In [27], they described a method for print-attack detection

by exploiting the differences in the 2-D Fourier spectra by comparing the hard-copies of client

faces and the real accesses. The method work well for down-sampled photos of the attacked

18
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identity, but is likely to fail for higher-quality samples. Li et al. [27] detected print-attacks

by exploiting differences in the 2-D Fourier spectra of hard-copies of faces and real accesses.

The method works well for down-sampled photo attacks, but is likely to fail for higher-quality

samples. Bai et al. [39] analyzed the micro-textures using a linear SVM classifier to detect

spoof attacks.

In [40, 41], the authors used the LBP as a descriptor to detect the spoof attack. Also

in [42], the authors used other variant of the LBP descriptor which is Local Binary Patterns

Variance (LBPV) that was used to differentiate between the real and the fake faces. Yang et

al. [43] introduced a face recognition based on pooling the features extracted from the different

face components using the Fisher criterion. Wen et al. [44] proposed a method based on Image

Distortion Analysis (IDA). They used four different features: specular reflection, blurriness,

chromatic moments and color diversity were used to represent the face images. These features

can capture the differences between the real and the fake images without capturing the details

information related to the user-identity. Patel et al. [45] studied the effect of the different chan-

nel of the RGB color spaces (R,G, B, and Gray Scale) and the different face regions on the

performance of the LBP and Dense Scale Invariant Feature Transform (DSIFT) based methods.

Their experiments show that extracting the texture from the red channel gives the best results.

Boulkenafet et al. [46] proposed a method of face anti-spoofing based on color texture analysis.

After representing the RGB images in two color spaces: Hue, Saturation, and Value (HSV)

and Luminance; Chroma Blue; Chroma Red (YCbCr), they used the LBP descriptor to extract

the texture features from each channel then they concatenated these features to differentiate

between real and fake faces.

Galbally et al. [47] proposed an Image Quality Assessment (IQA) using 14 quality mea-

sures to distinguish between the real and the fake faces. In [48] the same authors evaluated 25

different quality measures, which were also used for fingerprint and iris anti-spoofing.

Recently, some methods such as [49, 50] used the user specific information to enhance the

performance of the texture based face anti-spoofing methods. Biggio et al. [51] addressed the

problem of spoof attacks on biometrics by using two modals which are face and fingerprint.

They tested different score-fusion rules such as Sum, Product, Weighted sum by Linear Dis-
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criminant Analysis (LDA), LikeLihood ratio (LLR) and Extended LikeLihood ratio (ELLR).

Motion analysis one is interested in detecting clues generated when two dimensional coun-

terfeits are presented to the input camera system [40,52,53], for example photos or video clips.

Kollreider et al. [26] evaluated the trajectories of selected part of the face from short sequence

of images using a simplified optical flow analysis followed by a heuristic classifier. The same

authors introduced a method [54] to fuse these scores with liveness properties such as eye-blinks

or mouth movements. Bao et al. [55] proposed a method to detect attacks produced with planar

media using optical flow based motion estimation.

Arashloo et al. [56] used kernel discriminant analysis fusion to combine two spatial tem-

poral descriptors Multiscale Binarized Statistical Image Features on Three Orthogonal Planes

(MBSIF-TOP) and Multiscale Local Phase Quantization on Three Orthogonal Planes (MLPQ-TOP).

Pereira et al. [57] also worked with the dynamic texture based on Local Binary Patterns on Three

Orthogonal Planes (LBP-TOP) to differentiate between real and fake person. This last method

showed better performances compared to the simple LBP methods proposed in [40–42]. The

reason behind the good results of LBP-TOP is that temporal information plays an important

role in face anti-spoofing. Pinto et al. [58] proposed a method based on temporal and spectral

information, which use the time-spectral features as low-level descriptors and use the visual

codebook concept to find mid-level features descriptors. Tirunagari et al. [59] proposed an al-

gorithm called Dynamic Mode Decomposition (DMD) to capture the visual dynamics while

LBP is used to capture the dynamic patterns. Bharadwaj et al. [60] used the Eulerian motion

magnification to enhance the motion cues. It was found that extracting Histogram of Oriented

Optical Flow (HOOF) from the enhanced video yields an enhanced result with respect to the

state-of-the-art results on the Replay-Attack database. Komulainen et al. [61] also used a fu-

sion between the motion and the texture features to enhance the classification performances.

Kollreider et al. [62] proposed novel strategies to avert advanced spoofing attempts such as re-

played videos by analyzing the motion of the lips only. Liveness detection tries to capture signs

of life from the user images by analyzing spontaneous movements that cannot be detected in

photographs, such as eye blinks which are supposed to occur once every 2-4 seconds in hu-

mans [17, 63]. Pan et al. [64] exploited the observation that humans blink once every (2-4 s)
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and proposed an eye blink-based anti-spoofing method.

Garcia et al. [65] proposed face spoofing detection by searching for Moiré patterns due to the

overlap of the digital grids. Their detection is based on peak detection in the frequency domain.

They used SVM with Radial Basis Function Kernel (RBF Kernel) for the classification. They

conducted their experiments on Replay Attack Corpus and Moiré databases.

Other techniques in face anti-spoofing are based on textures using 3D modal such as [66,

67]. In 3D modal, the attacker uses a mask to spoof the system because of that the use of

wrinkles would be a great assistant to detect the attack. In [66], they presented a study which

addresses the spoofing issue by analyzing the feasibility to perform low-cost attacks with self-

manufactured three-dimensional (3D) printed models to 2.5D and 3D face recognition systems.

Erdogmus and Marcel [67] inspected the spoofing potential of subject-specific 3D facial masks

for different recognition systems and address the detection problem of this more complex attack

type. Also, the authors performed experiments on two different databases.

Recently, deep learning approaches have been used in face anti-spoofing, especially using

Convolutional Neural Network (CNN). For instance, authors in [68] focused on two general-

purpose approaches to build image-based anti-spoofing systems using convolutional networks.

Their systems deal with several attack types in three biometric modalities, iris, face, and fin-

gerprint. The first approach consists of learning suitable convolutional network architectures

for each domain, while the second approach focuses on learning the weights of the network via

back-propagation.

2.4 Face Spoofing Databases

The majority of face-spoofing databases provide only real access and spoofing attack sam-

ples for the clients. The directions for face anti-spoofing explored in this thesis are largely

based on five publicly available databases, the NUAA Photo Imposter Database, the Replay-

Attack Database, the CASIA Face Anti-Spoofing Database, the MSU Mobile Face Spoofing

Database and OULU-NPU face PAD Database which are introduced in this section.
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Table 2.1: A summary of published methods on face spoof detection

Athors Methods Data-bases years

Kollreider et al. [62] Motion
MIT–CMU

YALE Recaptured 2007

Biggio et al. [51] Multimodal

LivDet11
Photo Attack

Personal Photo Attack
Print Attack

2011

Chingovska et al. [41] Texture
REPLAY ATTACK

CASIA FAS
NUAA photograph imposter

2012

Määttä et al. [40] Texture
Yale Recaptured
PRINT ATTACK 2012

Kose & Dugelay [42] Texture NUAA photograph imposter 2012

Erdogmus & and Marcel [67] 3D
Morpho

3D Mask Attack 2013

Yang et al. [43] Texture
NUAA photograph imposter

CASIA FAS
PRINT ATTACK

2013

Komulainen et al. [61] Motion REPLAY ATTACK 2013

Galbally & Marcel [47] Image Quality Assessment
CASIA FAS

REPLAY ATTACK 2014

Galbally et al. [48] Multimodal
Iris spoof, Iris-Synthetic

LivDet
REPLAY-ATTACK

2014

Bharadwaj et al. [60] Motion
PRINT ATTACK

REPLAY ATTACK
CASIA FAS

2014

Pereira et al. [57] Motion
REPLAY ATTACK

CASIA FAS 2014

Menotti et al. [68] Deep Learning
Warsaw, Biosec & MobBIOfake

Replay-Attack & 3DMAD
Biometrika, CrossMatch, Italdata & Swipe

2015

Garcia & Queiroz [65] Moiré-Pattern
Replay Attack

Moiré 2015

Yang et al. [49] Person-Specific
CASIA FAS

REPLAY ATTACK 2015

Chingovska & Anjos [50] Person-Specific REPLAY ATTACK 2015

Wen et al. [44] Motion
REPLAY ATTACK

CASIA FAS
MSU MFS

2015

Pinto et al. [58] Motion

CASIA FAS
REPLAY ATTACK

UVAD
3DMAD

2015

Tirunagari et al. [59] Motion
PRINT ATTACK

REPLAY ATTACK
CASIA FAS

2015

Arashloo & Kittler [56] Texture
REPLAY ATTACK

CASIA FAS
NUAA photograph imposter

2015

Boulkenafet et al. [46] Colour Texture
CASIA FAS

REPLAY ATTACK 2015

Patel et al. [45] Colour Texture
REPLAY ATTACK

CASIA FAS
MSU MFS

2015

Galbally and Satta [66] 3D
3DFS-DB

EURECOM MASK-ATTACK DB
IDIAP MASK-ATTACK DB

2016
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2.4.1 NUAA Photo Imposter Database

The NUAA Photograph Imposter Database 1 (PID) is proposed by Tan et al. [69] can be

considered as the first publicly available spoofing database because the evaluation is based on

binary classification task of differentiating genuine faces from fake ones with a predefined pro-

tocol. The dataset contains images of both real client accesses and photo attacks using both

photo-quality and laser-quality prints that were collected in three sessions at intervals of about

two weeks. During each session, the environmental and illumination conditions were differ-

ent. Examples of cropped facial images from the database can be seen in Figure. 2.5. The

client accesses and spoofing attacks were recorded using a generic webcam with resolution of

640 × 480 pixels and altogether there are about 500 images (20fps) for each subject’s record-

ing. When capturing the data, the main idea was to make the live subjects look like a static as

much as possible by minimizing the movements and the eye-blinking, i.e. resembling a pho-

tograph. In contrast, five different photo-attacks were simulated using 2D facial prints with

varying motions. The high-quality photos of the targeted person were printed on photographic

paper of two sizes 6.8cm× 10.2cm (small) and 8.9cm× 12.7cm (big) using a traditional devel-

opment method, or on a 70g white A4 paper using a conventional Hewlet-Packard color printer.

Unfortunately, the printing option is not included in the metadata of the database.

Figure 2.5: Illustration of the samples from the database. In each column (from top to bottom) samples
are respectively from session 1, session 2 and session 3. In each row, the left pair are from a
live human and the right from a photo.

1http://parnec.nuaa.edu.cn/xtan/data/nuaaimposterdb.html
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The dataset is composed of images of fifteen subjects (in three sessions for most of the

subjects) that are decomposed into two separate sets for training and testing purposes. The

training set consists of images from the first two sessions only. The test set consists of the

images from the remaining third session. The training set contains altogether 1,743 face images

of nine real clients (889 and 854 from the first and the second sessions, respectively) and 1,748

imposter images of the same nine clients (855 and 893 images from the first and the second

sessions, respectively). The test set is constructed from 3,362 client samples and 5,761 imposter

images taken during the third session. Only three clients who took part in the first two sessions

attended the third session.

Furthermore, six new clients and their photographs are introduced in the test set to further in-

crease the level of difficulty. There is no specific development set provided in the database, thus

cross-validation or fixed validation set has to be used for tuning the algorithms. The database

contains also the data needed for face normalization and the geometrically normalized face im-

ages of 64 × 64 pixels which were used in the experiments by Tan et al. [69], thus making it

easier to compare the results between different spoof detection techniques.

2.4.2 Replay-Attack Database

The Replay-Attack Database 2 is proposed by Chingovska et al. [41] and its subsets (the

Print-Attack Database 3 [52] and the Photo-Attack Database [70]) consist of short video record-

ings (roughly ten seconds) of both real accesses and corresponding attack attempts. The studied

attack scenarios in the dataset can be categorized based on display media, A4 sized hard copy

(print), iPhone 3GS (mobile) and iPad with a resolution of 1024 × 768 (high def) and two at-

tack types, photo and video. Also two illumination conditions are introduced: controlled with

uniform background scene and fluorescent lamp illumination and adverse with non-uniform

background scene and day-light illumination. The videos clips were captured using an Apple

13-inch MacBook laptop and its embedded webcam with a relatively low-quality resolution of

320× 240 pixels (QVGA) at 25 fps.

2https://www.idiap.ch/dataset/replayattack
3https://www.idiap.ch/dataset/printattack
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When recording the real client accesses of fifteen seconds, the subjects were asked to look at

the laptop camera as during normal authentication process. Unlike in traditional laptop authen-

tication scenario, the laptop was placed on top of a small stand in order to capture frontal-pose

faces. For creating the attacks, two photographs and two video clips were taken of each person

in each of the two illumination and background settings used for recording the real accesses.

The first photograph/video clip was recorded using iPhone 3GS (3.1 megapixel camera) and

the second using a high-resolution 12.1 megapixel Canon Power-Shot SX200 IS camera. To

maximize the attack quality, the subjects were asked to look up-front like in the case real ac-

cess attempts. Furthermore, each spoofing attack video clip of ten seconds was recorded with

two different support modes, hand-held and fixed-support. Figure 2.6 shows examples of the

genuine and attack samples in the different conditions explored by the Replay Attack Database.

Figure 2.6: Examples from the Replay-Attack Database. The first row presents images taken from the
controlled scenario, while the second row corresponds to the images from the adverse sce-
nario. From the left to the right: real faces and hand video, hand photo, fixed video and fixed
photo.

In total, the Replay-Attack Database contains 50 different identities and 1,300 video clips of

which 300 correspond to real-accesses (three trials in two different conditions for each of client.

The first trial for each subject is dedicated solely for evaluating face verification systems, i.e.

not used for evaluating anti-spoofing performance. The remaining 200 real-accesses and 1,000

attack video clips are divided into training, development and test sets (360, 360 and 480 videos,
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respectively) for evaluating the binary spoof detection classifiers. The subject-disjoint subsets

were randomly selected, i.e. identities that are on one of the subsets do not appear in any

other set. Thus, the anti-spoofing models are not trained for detecting person-specific appear-

ance or facial dynamics. In order to enable system-level evaluation, i.e. the joint operation

of recognition and anti-spoofing algorithm, the identities between the verification protocol and

anti-spoofing protocols match. The dataset provides eighteen protocols for evaluating the effec-

tiveness of the anti-spoofing methods under different conditions, including support, fake face

type and quality.

The training set is used for training the countermeasure, whereas the development set oper-

ates as a separate validation set for estimating a threshold value to be used on the test set. The

database protocol defines the EER as a decision threshold. The actual test set is used only to

report results. As a performance measure, the protocol suggests reporting the HTER on the test

data. The dataset provides also automatically annotated face bounding boxes for convenience.

2.4.3 CASIA Face Anti-Spoofing Database

The CASIA Face Anti-Spoofing Database 4 (FASD) is proposed by Zhang et al. [71] in-

troduces some significant improvements to previous databases because it provides more varia-

tions in the collected data. The authors indicated that imaging quality of different cameras is

an important factor that may influence the robustness of anti-spoofing techniques, especially

methods analyzing the facial texture. Thus, the database contains data from 50 real clients and

the corresponding forged samples collected using three different devices with varying quality,

old webcam (low quality) with resolution of 480 × 640, new webcam (normal quality) both

with resolution of 640 × 480 and a Sony NEX-5 digital system camera with a resolution of

1920 × 1080 (high-quality). However, in order to save memory and computational burden, the

original 1920 × 1080 resolution videos have been cropped into patches of 1280 × 720 pixels

which contain only the face region, thus maximizing the appearance quality of the target faces.

Example images of a genuine face at the different imaging qualities can be seen in Figure 2.7.

Both real client accesses and the corresponding attack attempts are captured in natural office

4http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
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Figure 2.7: Samples showing the different imaging qualities (low, normal and high, respectively) ex-
tracted from the CASIA FASD.

scenes. The subjects are required to exhibit eye blinking during data capture as the authors argue

that motion is crucial cue for face spoof detection, thus it is important to provide motion like in

challenge-response based systems. The attack scenarios in the dataset are based on three types

of fake faces which include warped photo, cut photo (photographic mask) and video attacks.

The high-quality samples of the targeted faces were generated from the videos captured with

the Sony NEX-5. The facial prints were printed on copper paper in order to achieve better

quality spoofs compared to conventional A4 printing paper and to avoid printing artefacts that

are very obvious in the Replay-Attack Database [41]. The warped photo attacks were performed

like in the work by [17, 54, 69]. The eye regions were cut off in order to create photographic

masks and eye blinking was simulated either by the attacker or by sliding another piece of

paper behind the resulting cut photo (See Figure 2.8). The video attacks were executed using

iPad with a screen resolution of 1024× 768, thus the original high resolution of 1280× 720 is

downsized compared to the photo attacks (See Figure 2.8).

Figure 2.8: Samples showing the different media attacks (warped, cut and video, respectively) extracted
from the CASIA FASD.

Altogether the database consists of 600 video clips and the identities are divided into subject-
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disjoint subsets for training and testing (240 and 360, respectively). Since the main purpose

of the database is to investigate the possible effects of different fake face types and imaging

qualities, the test protocol consists of seven scenarios in which particular train and test samples

are to be used. The quality test considers the three imaging qualities separately, low (1), normal

(2) and high quality (3), and evaluates the overall spoof detection performance under a variety

of attacks at the given imaging quality. Similarly, the fake face test assesses how robust the

anti-spoofing measure is to specific fake face attacks, warped photo (4), cut photo (5) and video

attacks (6), regardless of the imaging quality. In the overall test (7), all data is used to give

a more general evaluation. Examples of the different scenarios in the database can be seen in

Figure 2.9. The results of each scenario are reported as DET curves and EER. Results of a

baseline system are also provided along the database. Inspired by the work by [69], the baseline

system considers the high frequency information in the facial region using multiple Difference

of Gaussian (DoG) features and SVM classifier.

N1 N2 N3 N4

L1 L2 L3 L4

H1 H2 H3 H4

Figure 2.9: Samples from the CASIA face anti-spoofing database. L, N and H for Low, Normal and
High quality, respectively. 1, 2, 3 and 4 for real face, warped photo, cut photo and video
attacks, respectively.

2.4.4 MSU Mobile Face Spoofing Database

The publicly available MSU Mobile Face Spoof Database 5 (MFSD) is proposed by Wen et

al. [44] for face spoof attacks was produced at the Michigan State University by the Patterns
5http://biometrics.cse.msu.edu/Publications/Databases/MSUMobileFaceSpoofing/index.htm
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Recognition and Image Processing (PRIP) group. The database consists of 280 video clips

of photo and video attack attempts to 35 clients. It was made by mobile phone to capture

both genuine face and spoof attacks. They used two types of cameras: 1) built-in camera in

MacBook Air 13 inch (640 × 480) and 2) front-facing camera of the Google Nexus 5 Android

phone (720× 480). Each subject had two videos recordings, the first one is captured by Laptop

camera and the second one is captured using Android camera (See Figure 2.10). To generate

the attacks, high-resolution video was captured for each subject using two devices: 1) Canon

Power Shot 550D SLR camera, recording 18.0M pixel photographs and 1080p high-definition

video clips, 2) iPhone 5S back-facing camera, recording 1080p video clips. There are three

types of spoof attack, the first one 1) high-resolution replay video attacks using an iPad Air

screen, with resolution of 2048× 1536, the second 2) mobile phone replay video attacks using

an iPhone 5S screen, with resolution of 1136× 640, and the last 3) printed photo attacks using

an A3 paper with fully-occupied printed photo of the client’s biometry, with paper size of :

11′× 17′ (279mm x 432 mm), printed by a HP Colour Laserjet CP6015xh printer, with printing

resolution of 1200 × 600 dpi. In the last, to evaluate the performance, the 35 subjects of MSU

MFSD database were divided into two subsets, 15 subject for training and 20 subject for testing.

(a) (b) (c) (d)

Figure 2.10: Example images of genuine and spoof faces of one of the subjects in the MSU MFSD
database captured using Google Nexus 5 smart phone camera (top row) and MacBook Air
13” laptop camera (bottom row). (a) Genuine faces; (b) Spoof faces generated by iPad for
video replay attack; (c) Spoof faces generated by iPhone for video replay attack; (d) Spoof
faces generated for printed photo attack.
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Figure 2.11: Samples of the subjects recorded in the database.

2.4.5 OULU-NPU face PAD Database

The aim of the dataset is particularly at evaluating the generalization of new PAD methods

in more realistic mobile authentication scenarios by considering three covariates: unknown

environmental conditions (namely illumination and background scene), acquisition devices and

Presentation Attack Instruments (PAI), separately and at once. In the following, we describe

the new OULU-NPU face PAD database and its evaluation protocols in detail.

2.4.5.A Collection of real access attempts

The OULU-NPU presentation attack detection database 6 is proposed by Boulkenafet et

al. [72] includes short video sequences of real access and attack attempts corresponding to 55

subjects (15 female and 40 male). Figure 2.11 shows samples of these subjects. The real access

attempts were recorded in three different sessions separated by a time interval of one week.

During each session, a different illumination condition and background scene were considered

(See Figure2.12):

• Session 1: The recordings were taken in an open-plan office where the electronic light

was switched on and the windows blinds were up and the windows were located behind

the users.

• Session 2: The recordings were taken in a meeting room where the electronic light was

the only source of illumination.

6https://sites.google.com/site/oulunpudatabase/

30



31 2. Overview on biometric anti-spoofing

(a) Session 1 (b) Session 2 (c) Session 3

Figure 2.12: Sample images of a real subject highlighting the illumination conditions across the three
different scenarios.

• Session 3: The recordings were taken in a small office where the electronic light was

switched on and the windows blinds were up and the windows were located in front of

the users.

During each session, the subjects recorded two videos of themselves (one for the enrollment

and one for the actual access attempt) using the frontal cameras of the mobile devices. In

order to simulate realistic mobile authentication scenarios, the video length was limited to five

seconds and the clients were asked to hold the mobile device like they were being authenticated

but without deviating too much from their natural posture while normal device usage.

The recent advances in sensor technology have introduced high-resolution cameras also to

the mid-range models of the last generation mobile devices capable of capturing good quality

images (and videos) in daylight and indoor conditions. Considering that the acquisition quality

of the embedded (both front and rear) cameras can be expected to be growing generation by

generation, we selected six smartphones with high-quality front-facing cameras in price range

from 250e to 600e for the data collection:

• Samsung Galaxy S6 edge (Phone 1) with 5 MP frontal camera.

• HTC Desire EYE (Phone 2) with 13 MP frontal camera.

• MEIZU X5 (Phone 3) with 5 MP frontal camera.

• ASUS Zenfone Selfie (Phone 4) with 13 MP frontal camera.

31



2. Overview on biometric anti-spoofing 32

(a) Samsung (b) HTC (c) MEIZU (d) ASUS (e) Sony (f) OPPO

Figure 2.13: Sample images showing the image quality of the different camera devices.

• Sony XPERIA C5 Ultra Dual (Phone 5) with 13 MP frontal camera.

• OPPO N3 (Phone 6) with 16 MP rotating camera.

The videos were recorded at Full HD resolution, i.e. 1920× 1080 using the frontal cameras

of the six mobile devices and the same camera software installed on each device. Even though

the nominal camera resolution of some mobile devices is the same, like Sony XPERIA C5

Ultra Dual, HTC Desire EYE and ASUS Zenfone Selfie (13 MP), significant differences can be

observed in the quality of the resulting videos as demonstrated in Figure 2.13.

2.4.5.B Attack creation

Assuming that the legitimate users are trying to get authenticated in multiple conditions,

it is important to collect the data of genuine subjects in multiple lighting conditions from the

usability point of view. In contrast, the attackers try to present as high-quality artifact as they

can to the input camera in order to maximize the chance of successfully fooling a face biometric

system. Therefore, the attacks should be carefully designed and conducted in order to guarantee

that they are indeed hard to detect.

During each of the three sessions, a high-resolution photo and video of each user was cap-

tured using the back camera of the Samsung Galaxy S6 Edge phone capable of taking 16 MP

still images and Full HD videos. These high resolution photos and videos were then used to

create the presentation attacks. The attack types considered in this database are print and video-

replay attacks:
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(a) Print 1 (b) Print 2 (c) Print 3 (d) Print 4

Figure 2.14: Samples of print and replay attacks taken with the front camera of Sony XPERIA C5 Ultra
Dual.

• Print attacks: The high resolution photos were printed on A3 glossy paper using two

different printers: a Canon imagePRESS C6011 (Printer 1) and a Canon PIXMA iX6550

(Printer 2).

• Video-replay attacks: The high-resolution videos were replayed on two different display

devices: a 19” Dell UltraSharp 1905FP display with 1280 × 1024 resolution (Display 1)

and an early 2015 Macbook 13” laptop with Retina display of 2560 × 1600 resolution

(Display 2).

The print and video-replay attacks were then recorded using the frontal cameras of the six

mobile phones. While capturing the print attacks, the facial prints were held by the operator

and captured with stationary capturing devices in order to maximize the image quality but still

introduce some noticeable motion in the print attacks. In contrast, when recording the video-

replay attacks both of the capturing devices and PAIs were stationary. Furthermore, we paid

special attention that the background scene of the attacks matches the real accesses during each

session and that the attack videos do not contain the bezels of the screens or edges of the prints.

Figure 2.14 shows samples of the attacks captured using the Sony XPERIA C5 Ultra Dual.

2.4.5.C Evaluation protocols

To evaluate the performances of the face PAD methods on the OULU-NPU database, we

designed four protocols.

33



2. Overview on biometric anti-spoofing 34

• Protocol I: The first protocol is designed to evaluate the generalization of the face PAD

methods under different environmental conditions, namely illumination and background

scene. As the data is recorded in three sessions with different illumination conditions

and locations, the train, development and evaluation sets can be constructed using video

recordings taken from different sessions, See Table 2.2.

• Protocol II: Since different PAI (i.e. different displays and printers) create different arti-

facts, it is necessary to develop face PAD methods robust to this kind of variations. The

second protocol is designed to evaluate the effect of the PAI variation on the performance

of the face PAD methods by introducing previously unseen PAI in the test set as shown

in Table 2.2.

• Protocol III: One of the critical issues in face anti-spoofing and image classification in

general is the generalization across different acquisition devices. A Leave One Camera

Out (LOCO) protocol is designed to study the sensor interoperability of the face PAD

methods. In each iteration, the real and the attack videos recorded with five smartphones

are used to train and tune the countermeasure model. Then, the generalization of the

method is assessed using the videos recorded with the remaining smartphone.

• Protocol IV: In the last and most challenging scenario, the previous three protocols are

combined to simulate the real-world operational conditions. To be more specific, the

generalization abilities of the face PAD methods are evaluated simultaneously across pre-

viously unseen illumination conditions, background scenes, PAIs and input sensors, Table

2.2.

In all these protocols, the 55 subjects were divided into three subject-disjoint subsets for

training, development and testing (20, 15 and 20, respectively). Tables 2.2 gives a detailed

information about the video recordings used in the train, development and test sets of each

protocol.

For the performance evaluation, they selected the recently standardized ISO/IEC 30107-3

metrics [71], Attack Presentation Classification Error Rate (APCER) and BonaFide Presentation
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Table 2.2: The detailed information about the video recordings in the train, development and test sets of
each protocol.

Protocol Subset Session Phones Users Attacks created using # real videos # attack videos # all videos

Protocol I
Train Session 1,2 6 Phones 1-20 Printer 1,2; Display 1,2 240 960 1200
Dev Session 1,2 6 Phones 21-35 Printer 1,2; Display 1,2 180 720 900
Test Session 3 6 Phones 36-55 Printer 1,2; Display 1,2 240 960 1200

Protocol II
Train Session 1,2,3 6 Phones 1-20 Printer 1; Display 1 360 720 1080
Dev Session 1,2,3 6 Phones 21-35 Printer 1; Display 1 270 540 810
Test Session 1,2,3 6 Phones 36-55 Printer 2; Display 2 360 720 1080

Protocol III
Train Session 1,2,3 5 Phones 1-20 Printer 1,2; Display 1,2 300 1200 1500
Dev Session 1,2,3 5 Phones 21-35 Printer 1,2; Display 1,2 225 900 1125
Test Session 1,2,3 1 Phones 36-55 Printer 1,2; Display 1,2 60 240 300

Protocol VI
Train Session 1,2 5 Phones 1-20 Printer 1; Display 1 200 400 600
Dev Session 1,2 5 Phones 21-35 Printer 1; Display 1 150 300 450
Test Session 3 1 Phones 36-55 Printer 2; Display 2 20 40 60

Classification Error Rate (BPCER):

APCERPAI =
1

NPAI

NPAI∑
i=1

(1−Resi) (2.1)

BPCER =

NBF∑
i=1

(Resi)

NBF

(2.2)

Where, NPAI , is the number of the attack presentations for the given PAI,NBF is the to-

tal number of the bona fide presentations. Resi takes the value 1 if the ith presentation is

classified as an attack presentation and 0 if classified as bona fide presentation. These two met-

rics correspond to the FAR and FRR commonly used in the PAD related literature. However,

APCERPAI is computed separately for each PAI (e.g. print or display) and the overall PAD

performance corresponds to the attack with the highest APCER, i.e. the ”worst case scenario”.

2.5 Conclusion

In this chapter, we started with a short introduction and introduction to general biometrics

and face recognition in face anti-spoofing which is analyzed in two parts as face spoofing and

face anti-spoof. Next, we presented the state-of-the-art. Since in this thesis the variations due

to facial alterations are analyzed, we presented an in-depth description for the current state of

these variations. Then, to the best of our knowledge, we gave a brief description of 5 pub-

35



2. Overview on biometric anti-spoofing 36

licly available face spoofing databases, differing in the data format, the number of clients and

samples, protocol, types of attacks, as well as the quality of the recording devices.
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3.1 Introduction

There are several types of spoofing attacks such as photograph, video or mask attacks. In our

study, we first analyzed photograph attacks. This preliminary study helped us to gain an insight

on the topic of face spoofing and countermeasures. Various approaches have been developed to

detect photograph spoofing. The existing techniques mainly concentrate on liveness detection

and motion analysis. There are also several countermeasure techniques based on texture anal-

ysis, which can be applied on single images. Face anti-spoofing can be divided in four main

components are: face preprocessing, feature extraction, face representation, features selection

and classification.

3.2 Face preprocessing

Preprocessing of facial image data is very important part of face recognition. Also face

is one of the most common parts used by people to recognize each other. But the last one

it is easily affected by light condition and facial expression changing and other reasons [73].

So before extracting features we can preprocess face images to improve the face recognition

rate. Finally we explain how we use preprocessing step by step which are: face detection, eyes

localization and face normalization.

3.2.1 Face detection

Face detection is an important step in many computer vision systems, like face spoofing in

our works. So for this reason we use VJ algorithm [74] in our test to detect the ROI which is

the face in our case (See Figure 3.1). The characteristics of VJ algorithm which make it a good

detection algorithm are [75]:

• Robust: very high detection rate (true-positive rate) and very low false-positive rate al-

ways.

• Real time: VJ can be used in real time application.
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• Face detection only (not recognition): The goal is to distinguish faces from non-faces

(detection is the first step in the recognition process).

The algorithm of VJ has four stages [75]:

• Haar Feature Selection

• Creating an Integral Image

• Adaboost Training

• Cascading Classifiers

Figure 3.1: Example face detection using VJ

3.2.2 Eyes localization

The importance of detecting and localizing eyes position in face is decisive for the ini-

tialization of many application like face recognition, face expression, face anti-spoofing, age

estimation, gender classification, etc. The difference between eyes detection and eyes localiza-

tion is that the last one are given more accurate prediction of the eye positions than the first

one. The algorithm which we use in our test is called PS [76] model for precise eye localization

that’s is good for face images taken under uncontrolled conditions, but can’t localize the eyes

directly. We must detect the face first and resize it into (100× 100). This is the reason why we

use VJ algorithm (See Figure 3.2).
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Figure 3.2: Example eye localization by PS algorithm.

3.2.3 Face normalization

After face detection and eye localization, we must normalize the face. In face normalization,

we rotate and crop the face depending on the coordinate of eyes (See Figure 3.3) which was

obtained by eye localization algorithm [76]. In the figure 3.4 and equations below we try to

explain how to rotate and crop the face using the coordinates of eyes. Then after rotate and crop

the face we resize the ROI.

R1 L1

(a)

R2 L2

(b)
(c)

Figure 3.3: Example of face alignment. a) face & eyes detection b) pose correction c) face ROI.

L1x = (Lx × (m/100) + bbox(1), Ly × (m/100) + bbox(2))

R1x = (Rx × (m/100) + bbox(1), Ry × (m/100) + bbox(2))
(3.1)

θ = tan−1(
R1y − L1y
R1x − L1x

) (3.2)
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L2x = Cx + (L1x − Cx).cos(θ)− (L1y − Cy).sin(θ)

L2y = Cy + (L1x − Cx).sin(θ) + (L1y − Cy).cos(θ)

R2x = Cx + (R1x − Cx).cos(θ)− (R1y − Cy).sin(θ)

R2y = Cy + (R1x − Cx).sin(θ) + (R1y − Cy).cos(θ)

(3.3)

Figure 3.4: Detail of rotate & crop of face

3.3 Features extraction

We studied three famous descriptors in texture that can be applied for extracting the fea-

tures from face spoofing challenges, motivated by its invariance and respect to monotonic gray

scale transformations. Those descriptors are: LBP, LPQ, and BSIF. We explain below those

descriptors in the details.

3.3.1 Local Binary Pattern

Local Binary Pattern is a texture descriptor proposed by Ojala et al. [77], it is power-full in

extracting the features from image to give a one vector in each image. The descriptor is given

by calculating the difference between a pixel of an image by threshold a 3 × 3 neighborhood
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RGB size (16,16) Gray-Scale

123 147 145
130 145 146
123 132 145

0 1 1
0 1
0 0 1

01111000
Binary to

120
Decimal

Figure 3.5: An example of Local Binary Pattern

and the center pixel value with the condition to gives 0 or 1. With those binary number are gives

as direction clockwise we must convert to decimal number like figure 3.5.

The first LBP descriptor is used with (3 × 3) neighborhoods like in figure 3.5. In another

term, given value of each position of pixel (xc, yc). The LBP features is obtained by comparison

between center pixel (pc) and the around pixels (pn), n(0,1,..7). In below we give the expression

with equation 3.4

LBP (xc, yc) =
7∑

n=0

S(pn − pc)2n (3.4)

Where:

• pc: center pixel which is the value of pixel (xc, yc)

• pn: values of around center pixel pc

• S(X): is defined as:

S(X) =

1 if X ≥ 0

0 otherwise.

(3.5)

• X : is pn − pc
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(8,1) (8,2) (16,2)

Figure 3.6: ELBP different sample points (P) and radius (R)

There is another variation of the original LBP called Extended Local Binary Pattern (ELBP)

[78]. The ELBP is working with a different size on neighborhoods, using circular neighbor-

hoods and bilinear interpolation of pixel values. The equation 3.6 defined the ELBP:

LBPP,R(xc, yc) =

p−1∑
p=0

S(gp − gc)2p (3.6)

We give some examples in below withELBPP,R which are: ELBP(8,1),ELBP(8,2) andELBP(16,2).

Where, P is sampling points on a circle and R is the radius.

After described the ELBPP,R method, there is another extension of original LBP called

Local Binary Pattern uniform [79] which defined by equation 3.7:

LBP u2
P,R(xc, yc) =

p−1∑
p=0

S(gp − gc)2p (3.7)

The LBP uniform called with this name uniform if only have at least two transition from 0

to 1 or vice versa. We give an example to explain the uniform pattern, like 00000000 have zero

transition, 11111111 zero transition, 00111000 two transition and 00001111 one transition.

In another hand, when there is more than two transition is non-uniform like 00110011 have

three transitions, 01010101 seven transitions, 00110101 five transitions and 10101111 four tran-

sition. In all uniform LBP mapping there is a separate label on each output given by convert

binary to decimal however non-uniform LBP have one label is 58 of 8 sampling points and 242

of 16 sampling points. Finally, the number for mapping for pattern of the LBP with P sample

point is given by this relation P (P − 1) + 3. In the case of P = 8 it is has 59 bins and for P =

16 it is has 243 bins. Also, each LBP code can be considered as micro texture which are: Spot,
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Spot Spot/flat Line end Edge Corner

Figure 3.7: Different texture primitives detected by the LBP

Spot/flat, Line end, Edge and in the last Corner. We give an example for those micro-texture in

figure 3.7.

3.3.2 Local Phase Quantization

The local phase quantization is a texture descriptor proposed by Ojansivu et al. [80]. Also It

was robust blur and outperform for texture classification compared others descriptors. In below

we explain the importance line of local phase quantization.

The spatial blurring is given by convolution between two matrices which are the image

intensity and a Point Spread Function (PSF), like equation 3.8 below:

g(x) = (f ∗ h)(x) (3.8)

Where:

• g(x) is the blurred image

• f(x) is the true image

• h(x) is point spread function (PSF)

• x is a vector of coordinates [x, y]T

The equation 3.8 transformed in the frequency domain with the discrete Fourier transforms

(DFT ) as g(x) is G(u), f(x) is F (u) and h(x) is H(u) and u is a vector of coordinates [u, v]T

in the last the equation 3.9 is given by :

G(u) = F (u).H(u) (3.9)
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the equation 3.9 is given also by two term are magnitude and phase

|G(u)| = |F (u)| . |H(u)|

G(u) = F (u) + H(u)
(3.10)

Always H is real value and H is equal to (0 or π) if the PSF is centrally symmetric. Further-

more, the shape of H for a regular PSF is close to a Gaussian or a sinc-function ensuring that

at least the low frequency values of H are positive. At these frequencies, H = 0 causing F

to be a blur invariant property. Because LPQ uses finite size 2-D discrete Short-Time Fourier

Transform (STFT) computed locally, this invariance is in part disturbed but is still pertinent.

In LPQ, the phase is examined in local neighborhoods Nx at each pixel position x =

[x1, x2]
T of the image f(x). These local spectra are computed using a discrete STFT defined

by:

F (u, x) =
∑
y

f(y)wR(y − x)e−2jπu
T y (3.11)

Where u is the frequency, and w(x) is a window function defining the neighborhood Nx. In

the case of regular LPQ, wR is aNR−by−NR rectangle given as wR(x) = 1 if |x1|, |x2| < N/2

and 0 otherwise.

The local Fourier coefficients are computed at four frequency points u1 = [a, 0]T , u2 =

[0, a]T , u3 = [a, a]T , and u4 = [a,−a]T , where a is a sufficiently small scalar to satisfyH(ui) >

0. For each pixel position this results in a vector

F (x) = [F (u1, x), F (u2, x), F (u3, x), F (u4, x)] (3.12)

The phase information in the Fourier coefficients is recorded by observing the signs of the

real and imaginary parts of each component in F (x). This is done by using a simple scalar

quantization

qi =

1 if gi ≥ 0

0 otherwise.

(3.13)
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Where gj is the j − th component of the vector G(x) = [ReF (x), ImF (x)].

The resulting eight binary coefficients q are represented as integer values between 0 − 255

using coding fLPQ (x) =
∑8

j=1 qj2
j−1. Finally, a histogram of these values from all positions

is composed, and used as a 256-dimensional feature vector in classification.

3.3.3 Binarized Statistical Image Features

Binarized Statistical Image Features is a descriptor of texture proposed by Kannala et al.

[81]. The BSIF represent by a binary code string for the pixels of a given image. The code

value of a pixel is considered as a local descriptor of the image into pixels surroundings.

Given an image patch X of size (l × l) pixels and a linear filter Wi of the same size, the

filter response si is obtained by :

si =
∑
u,v

Wi(u, v)X(u, v) = W T
i x (3.14)

Where vector notation is introduced in the latter stage. If we have n linear filters Wi, we may

stack them to a matrix W and compute all responses at once:

S = Wx (3.15)

Given a random sample of natural image patches, we determine the filters Wi so that the

elements si of s are as independent as possible when considered as random variables [81].

The binary code string b, which corresponds to image patch x, is obtained by binarizing each

element si of s as follows:

bi =

1 if si > 0

0 otherwise.

(3.16)

Where bi is the ith element of b.

In this manner one may compute a n− bit binary code string b for each pixel. As described

above, there are two parameters in BSIF descriptor: the filter size l and the length n of the bit

string.
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3.4 Face representation

Face representation is a technique which divides the face ROI into blocks to get more details

of the face. We apply then, any descriptor before using this technique. In below we explain two

technique which are: MB and ML.

3.4.1 Multi-Blocks face representation (MB)

MB is a technique which divide the face ROI into (n× n) sub-blocks. We apply one of our

descriptors and divide the face with MB to give us more features of the face ROI. Figure 3.8

shows how we divided a face in multi blocks.

Figure 3.8: Example of Multi-Blocks.

3.4.2 Multi-Levels face representation (ML)

ML algorithm is a technique to divide the face ROI into sub-blocks which combine all

features from different MB. In another term, we take the whole face ROI then we divided the

ROI in four sub-blocks (two MB) and so until we reach the intended n level (See Figure 3.9).

In the last, our results of ML is like this equation: 12 + 22 + 23 + ......+ 2n.

3.5 Features selection

In this section after we describe the algorithm which are used in our approach and those

algorithms have large vector (features). We must use method for selection and reducing the

large vector which named FS algorithm. In below we explain FS on detail. Fisher-score [82]
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Figure 3.9: Example Multi-Levels.

is one of the most known method for feature selection. The idea in FS is to select each feature

independently according to its scores under the Fisher criterion. We used FS in our approach to

select the features and reduce the bin histograms and keep the best of histogram bins.

3.6 Classification

In this section, we are going to introduce the SVM machine learning algorithm. A SVM

is a supervised machine learning algorithm that can be employed for both classification and

regression purposes. SVMs are more commonly used in classification problems and as such,

this is what we will focus on in this section.

Support Vector Machines are based on the concept of decision planes that define decision

boundaries. A decision plane is one that separates between a set of objects having different class

memberships. A schematic example ((Fig. 3.10) is shown in the illustration. In this example,

the objects belong either to class GREEN or RED. The separating line defines a boundary on

the right side of which all objects are GREEN and to the left of which all objects are RED. Any

new object (white circle) falling to the right is labeled, i.e., classified, as GREEN (or classified

as RED should it fall to the left of the separating line). SVMs are based on the idea of finding a

hyperplane that best divides a dataset into two classes, as shown in the figure (3.10).
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Figure 3.10: Example of SVM

Support vectors are the data points nearest to the hyperplane, the points of a data set that,

if removed, would alter the position of the dividing hyperplane. Because of this, they can be

considered the critical elements of a data set. As a simple example, for a classification task with

only two features (like the figure 3.11), you can think of a hyperplane as a line that linearly

separates and classifies a set of data. Intuitively, the further from the hyperplane our data points

lie, the more confident we are that they have been correctly classified. We therefore want our

data points to be as far away from the hyperplane as possible, while still being on the correct

side of it. So when new testing data is added, whatever side of the hyperplane it lands will

decide the class that we assign to it.

The distance between the hyperplane and the nearest data point from either set is known

as the margin. The goal is to choose a hyperplane with the greatest possible margin between

the hyperplane and any point within the training set, giving a greater chance of new data being

classified correctly.
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Figure 3.11: Example of hyperplane

3.7 Conclusion

In this chapter, we studied the system of anti-spoofing attack. This system is based on anal-

ysis of different contrast and texture characteristics of captured and recaptured images. The face

anti-spoofing system has advantages, which is no need for user collaboration. There have been

several studies on countermeasure techniques for the detection of spoof attacks. Compared to

2D spoofing attacks such as photograph and video, 3D mask attacks to face recognition systems

is a considerably new subject. Even the impact of 3D mask attacks on existing recognition sys-

tems had not been analyzed before, in our study. In the next chapter, our proposed system of

spoof detection and comparison of existing methods are detailed.
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4.1 Introduction

In this chapter, we develop several case studies to employ the concepts introduced through-

out this thesis on the face biometrics. The case studies are based on several prominent face

anti-spoofing systems and state-of-the-the-art or face anti-spoofing features. The objective is

to demonstrate the benefits of the anti-spoofing systems in creating more trustworthy face bio-

metrics. In this research, we study two types of face spoofing: a photograph and a video of a

valid user. For the first type of attack, we present an anti-spoofing solution based on a holistic

representation of the face region, through a robust set of low-level feature descriptors, able to

capture the differences between live and spoof images. For the second attack, we perform an

analysis of the noise generated by the recaptured video to distinguish between both classes.

Usually, the system of face anti-spoofing divided on three phase, but in our approach consists

of six phases are: face preprocessing, motion extraction by frame difference, features extraction,

face representation, features selection, and classification. In the sections below we will give

the effectiveness of the first five phases, effectiveness of color texture and finally, present our

framework on face anti-spoofing.

4.2 Effectiveness of face alignment

In this section, we will explain the effectiveness of our proposed face alignment [83, 84]

(See section 3.2). We evaluated the proposed approach (See Figure 4.1) on the NUAA Photo-

graph Imposter Database [69]. In our experiments, we used Matlab2013b, beginning with VJ

algorithm [74] to locate all components of the face images. Using Stasm [85] to detect land-

mark of the face image, the eyes are localized. The coordinates of the eyes are used to adjust,

and then to crop the face as explain in (See section 3.2). All cropped faces are resized to a

consistent size 64× 64. We also divided the normalized faces in 9 block with overlapping algo-

rithm before applying LBPU2
(8,2) to extract the local features in each region of the image. In this

step, we computed the histogram of each block to get 59 bin histograms. We concatenated then

these histograms in a simple one of a 531bin. For classification, we used SVM classification.

We applied our approach using face detection without Stasm using the same image normaliza-
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Figure 4.1: The proposed approach :(a) VJ algorithm, (b) Active Shape Models with Stasm, (c) Crop and
normalzide the face, (d) Feature extraction using LBP and (e) Non-linear SVM classifier for
determining a real face or fake.

tion in NUAA databases in one hand. In other hand, we calculated the results using the VJ

algorithm [74] and Active Shape Model with Stasm [85]. Also, for 107 images not detected

by Stasm, we have used a manual detection by manual calculation coordinates of eyes. We

compared our results with those of the state-of-the-art: LBP+Gabor+HOG [20], LBP overlap-

ping [86], Bad Illumination Conditions [87]. For fair comparison, we used the same protocol

with other authors: 1743 live images, 1748 non-live, for train and 3362 live and 5761 non-live

samples for test.

The performance of the three detection (without Stasm, with Stasm, and manual correction)

associated with texture operator LBP in terms of ROC and DET curve are shown in (Fig.4.2 and

Fig. 4.3). From the results, we can notice that when using face alignment are good compared

to that without face alignment. The EER, shown in Table 4.1, indicates that the detection with

Stasm (EER= 2.4) is better than without Stasm (EER = 3.9). For the manual detection of 107

image not detected by Stasm (EER= 0.6) gives best results. So, we have to develop an algorithm

to detect automatically any coordinate of eyes.
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Table 4.1: Performance comparison between our proposed approach and the best results on the same
database using the same protocol.

Methods Accuracy % EER AUC
Bad Illumination Conditions [87]
LBP overlapping [86]
LBP+Gabor+HOG [20]

93
-

98

8.2
2.9
1.1

-
0.99
0.999

Without stasm [83]
With stasm [83]
With stasm (manual correction) [83]

97.31
98.41
99.61

3.9
2.4
0.6

0.9930
0.9975
0.9998

Figure 4.2: Performance (ROC curves) of the proposed approach without Stasm,with Stasm, and manual
correction.
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Figure 4.3: Performance (DET curves) of the proposed approach without Stasm, with Stasm, and manual
correction.

4.3 Effectiveness of frame difference (our contribution)

In our work, we propose an algorithm for face spoofing detection based on an extended

FD algorithm [88]. We also combine this extended frame difference algorithm with a ML

representation to take into account both dynamic and static information. This combination gave

us multiple parts of the foreground image (See Figure 4.4).

Commonly, the FD technique computes the difference between the current and the previous

frame. A threshold is then used to obtain the foreground which is a binary image. The equation

It

It+1

FD

MB 3

MB 2

MB 1

ML 3

ML 2
ML 1

Figure 4.4: Principle of FD and ML.
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of the frame difference is given by:

Ft = |It − It−1| (4.1)

Where :

• Ft: Difference between two frames

• It: Current frame

• It−1: Previous frame

In our case, we used a threshold only to eliminate the unchanged pixels values between the

two successive frames. If there is a motion, the foreground pixels takes the value of the current

frame. However, if there is no motion, the foreground pixel is set to zero (see Equation 4.2).

Figures 4.5, 4.6 and Tables 4.2, 4.3 demonstrate the effectiveness of using our FD approach.

F ′(i, j)t =

 It(i, j) if F (i, j)t > T

0 otherwise.
(4.2)

Where:

• F ′t : Foreground

• T : Threshold = 0

In Table 4.2, we computed the entropy of the real and the fake face of the same person. The

entropy describes the quantity of information of the image, the image entropy equation is given

by [89]:

E = −
255∑
i=0

Pi.log2(Pi) (4.3)

where E is the entropy of F ′ and Pi is the probability of the color i. Both real and fake faces

have three quality (Low, Normal, and High). We took into account two type of attack, Printed
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and Video attack. We can observe that the entropy is greater in the case of real faces compared

to fake faces in all scenarios.

Table 4.2: Entropy

Qualities Real Printed Attacks Video attack

Low 4.16 1.76 1.58 1.96
Normal 4.13 2.17 1.57 1.79
High 4.92 3.87 3.35 4.68

FD
(L

ow
)

FD
(N

or
ma

l)

Real face Printed attacks Video attack

FD
(H

igh
)

Gr
ay

Sc
ale

Figure 4.5: Example of a genuine face and corresponding print and video attacks in grey-scale and FD.

Visually, we observe from Figure 4.5 that when computing the foreground of the real faces,

the facial features are more visible compared to the case of fake ones in all qualities and all types

of attack. From these remarks, we have been motivated to use FD in face anti-spoofing. This

frame difference allows us to extract motion in foreground and illustrate the fake faces. Then

the ML face representation is applied on the foreground of the frame difference that permits to

obtain multiple blocks then followed by texture descriptor. The use of FD (motion) combined

with ML [90] (representation) and texture description improve the results. This was proved

experimentally (See Figure 4.6 and Table 4.3).

We observe from Table 4.3 and Figure 4.6, when we used Texture descriptors (2) (LBP, LPQ
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Figure 4.6: Impact of FD (Motion) on Representation and Texture across the CASIA FASD.

and BSIF), we got an improvement in EER compared to using Motion (1) (FD) only by comput-

ing the histogram of FD directly. The results are better when we combined Motion and Texture

(4). Another aspect is when we using ML and MB Representations (3), this improves the results

of both motion (1) and texture (2). We can remark also that, combining Representation with

Motion (5) or with Texture (6) improves clearly the results. In the case of combining Motion

FD with Texture and Representation (7) the results are better compared to all previous methods.

Finally, adding FS to any method improves the EER. This is the reason why we choose to use

((Motion) FD + (Texture) LPQ + (Representation) ML + FS) as new approach.
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Table 4.3: Results in EER (%) on CASIA for Motion (FD), Representation (ML, MB) and Texture
(LBP,LPQ, BSIF).

Types of methods Methods Without fisher With fisher

Motion (1) FD 39.90 37.40

Texture (2)
BSIF 31.30 28.87
LBP 24.78 24.39
LPQ 23.15 22.38

Representation (3) MB 22.31 18.95

ML 21.41 18.55

Motion + Texture (4)
FD-BSIF 23.21 22.93
FD-LBP 21.86 21.70
FD-LPQ 22.04 21.11

Motion + Representation (5) FD-MB 20.62 19.91

FD-ML 20.05 19.07

Representation + Texture (6)

MB-BSIF 18.81 17.11
MB-LBP 14.41 12.50
MB-LPQ 17.69 17.03

ML-BSIF 18.02 16.61
ML-LBP 14.27 11.28
ML-LPQ 17.46 16.79

Motion + Representation + Texture (7)

FD-MB-BSIF 14.51 14.25
FD-MB-LBP 12.99 10.78
FD-MB-LPQ 07.27 07.23

FD-ML-BSIF 10.02 09.96
FD-ML-LBP 11.37 10.29
FD-ML-LPQ 05.49 04.62

4.4 Effectiveness of different descriptors (features extraction)

Visual information contained in images is usually represented by low-level feature descrip-

tors focusing on different types of information, such as color, texture, and shape. An adequate

feature descriptor is able to discriminate between regions with different characteristics and it al-

lows similar regions to be grouped together even when captured under noisy conditions. How-

ever, it is usually difficult to have a single feature descriptor adequate for many application
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domains [91]; this has motivated researchers to develop a variety of feature extraction methods.

We focus in our work on the development and the analysis of feature extraction methods so

that a better representation may be extracted from the visual information contained in images

and videos. In below, we present three famous descriptors (LBP, LPQ, and BSIF) with different

operators and we will study which one is good of each descriptor for our work.

4.4.1 Different operators of LBP

The size of the histogram in a multi-resolution analysis, in spatial domain, increases linearly

with the number of neighborhoods P . The choice of an appropriate LBP representation in the

planes is an important issue since it impacts the size of the histograms. Using uniform patterns

or rotation invariant extensions, in one or multiple planes, may bring a significant reduction in

computational complexity.

In this experiment, the effectiveness of different LBP operators presented in Table 4.4 and

Figure 4.7 show the performance, in terms of EER, configuring each plane as LBP(u2) (uniform

patterns), LBP(ri) (rotation invariant), and LBP(riu2) (rotation invariant uniform patterns).

Figure 4.7: Bar graph of EER on different operator of LBP.
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Table 4.4: EER on different operator of LBP

Operator of LBP EER (%)
LBP u2

(8,1) 04.06
LBPu2

(8,2) 03.71
LBP u2

(16,2) 03.71
LBP ri

(8,1) 10.55
LBP ri

(8,2) 09.39
LBP ri

(16,2) 25.66
LBP riu2

(8,1) 07.62
LBP riu2

(8,2) 09.51
LBP riu2

(16,2) 10.06

4.4.2 Different operators of LPQ

The LPQ value is first computed for every pixel of the given image. Next, local histograms

with 256 bins are computed within a sliding window. We compute the concatenated histogram

descriptor for varying window sizes and with different radius for the neighborhood of each pixel

see Table 4.5. In our experiments, we compare LPQ with different radius, windows sizes and

the results are present in Figure 4.8.

Figure 4.8: Bar graph of EER on different operator of LPQ.
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Table 4.5: EER on different operator of LPQ

Operator of LPQ EER (%) Operator of LPQ EER (%)
LPQ(3,0,1) 52.32 LPQ(11,0,1) 54.07
LPQ(3,0,2) 38.10 LPQ(11,0,2) 55.02
LPQ(3,0,3) 52.70 LPQ(11,0,3) 54.93
LPQ(3,1,1) 52.11 LPQ(11,1,1) 45.89
LPQ(3,1,2) 05.47 LPQ(11,1,2) 46.67
LPQ(3,1,3) 44.17 LPQ(11,1,3) 45.92
LPQ(5,0,1) 54.90 LPQ(13,0,1) 47.65
LPQ(5,0,2) 55.11 LPQ(13,0,2) 53.12
LPQ(5,0,3) 53.86 LPQ(13,0,3) 53.77
LPQ(5,1,1) 54.43 LPQ(13,1,1) 39.73
LPQ(5,1,2) 48.00 LPQ(13,1,2) 43.63
LPQ(5,1,3) 53.42 LPQ(13,1,3) 41.86
LPQ(7,0,1) 55.11 LPQ(15,0,1) 47.50
LPQ(7,0,2) 55.20 LPQ(15,0,2) 50.47
LPQ(7,0,3) 55.11 LPQ(15,0,3) 52.46
LPQ(7,1,1) 53.89 LPQ(15,1,1) 39.76
LPQ(7,1,2) 51.27 LPQ(15,1,2) 35.36
LPQ(7,1,3) 53.92 LPQ(15,1,3) 38.72
LPQ(9,0,1) 55.05 LPQ(17,0,1) 50.84
LPQ(9,0,2) 55.08 LPQ(17,0,2) 50.35
LPQ(9,0,3) 55.11 LPQ(17,0,3) 52.32
LPQ(9,1,1) 49.99 LPQ(17,1,1) 40.93
LPQ(9,1,2) 47.31 LPQ(17,1,2) 30.75
LPQ(9,1,3) 49.88 LPQ(17,1,3) 33.72

4.4.3 Different operators of BSIF

In our experiments, we use the standard filters, which represent eight different orientations

of edges. As before, we extract a local descriptor for different window sizes, overlap between

neighboring windows and different filter sizes (see Table 4.6) and concatenate each local his-

togram to a global histogram representation. For all experiments, we use 5 until 9-bit code

words and the 5× 5 until 17× 17 filters and the results are presented in Figure 4.9.
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Figure 4.9: Bar graph of EER on different operator of BSIF.

Table 4.6: EER on different operator of BSIF

Operator of BSIF EER (%) Operator of BSIF EER (%)
BSIF(5×5,5) 05.44 BSIF(13×13,5) 40.40
BSIF(5×5,6) 12.43 BSIF(13×13,6) 55.41
BSIF(5×5,7) 44.97 BSIF(13×13,7) 43.33
BSIF(5×5,8) 45.65 BSIF(13×13,8) 40.89
BSIF(5×5,9) 39.02 BSIF(13×13,9) 38.93
BSIF(7×7,5) 43.57 BSIF(15×15,5) 38.07
BSIF(7×7,6) 45.11 BSIF(15×15,6) 50.83
BSIF(7×7,7) 41.41 BSIF(15×15,7) 43.27
BSIF(7×7,8) 49.04 BSIF(15×15,8) 36.82
BSIF(7×7,9) 36.10 BSIF(15×15,9) 36.37
BSIF(9×9,5) 23.70 BSIF(17×17,1) 37.47
BSIF(9×9,6) 40.72 BSIF(17×17,1) 50.59
BSIF(9×9,7) 52.94 BSIF(17×17,1) 47.05
BSIF(9×9,8) 40.27 BSIF(17×17,1) 48.39
BSIF(9×9,9) 44.46 BSIF(17×17,1) 33.10
BSIF(11×11,5) 38.41
BSIF(11×11,6) 49.22
BSIF(11×11,7) 46.13
BSIF(11×11,8) 37.40
BSIF(11×11,9) 40.65
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Table 4.7: Comparison of number of frames in term of (EER)

Number of frame EER (%) Number of frame EER (%)
5
10
15
25
50
75
100

25.86
22.25
19.24
17.90
20.03
16.97
18.93

125
150
175
200
225
250
275

15.38
15.98
16.06
14.98
14.54
13.98
14.39

Table 4.8: Comparison between the different MB-LPQ

MB-LPQ divisions EER (%) without fisher score EER (%) with fisher score
1 x 1 13.98 13.31
2 x 2 15.94 15.47
3 x 3 17.72 15.95
4 x 4 21.19 18.59
5 x 5 14.30 13.96

4.5 Effectiveness of face representation

In our experiment, we choose the LPQ descriptor because it gives best results compared to

others studied descriptors. For the params of LPQ, we consider a window size of 5 × 5. We

used LPQ on the overall test of CASIA database because it have all qualities and attacks. We

take on each step N numbers of frames and calculate the EER for testing which the number of

frames gives the best results. After this test, we decided to take 250 frames on each video. The

Table 4.7 shows the result.

Now, we will compare our two face representation MB-LPQ and ML-LPQ [90]. The results

of MB-LPQ with and without FS are presented in Figure 4.10 and Figure 4.11 respectively.

The results of ML-LPQ with and without FS are presented in Figure 4.12 and Figure 4.13

respectively. The Table 4.8 and Table 4.9 show the compared results of MB-LPQ and ML-LPQ

respectively.

We compared now the MB-LPQ with ML-LPQ. The Both descriptors are used with and

without FS. As we see in Table (4.8) and DET curves (Figures 4.11 and 4.10), MB-LPQ with

fisher score, the (EER = 13.31 %) is good compared the MB-LPQ without FS MB-LPQ, the

(EER = 13.98 %. After that in Table (4.9) and DET curves (Figures 4.13 and 4.12), ML-LPQ
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Figure 4.10: DET of MB-LPQ with FS.

Figure 4.11: DET of MB-LPQ without FS.
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Figure 4.12: DET of ML-LPQ with FS (3 level).

Figure 4.13: DET of ML-LPQ without FS (3 level).

Table 4.9: Comparaison between different levels of ML-LPQ

ML-LPQ Level EER (%) without FS EER (%) with FS
1 13.98 13.31
2 14.93 14.34
3 12.97 11.39
4 13.26 12.47
5 15.85 12.85
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Table 4.10: Comparison of the results (in EER %) between our proposed approach and the state-of-the-
art on CASIA data base

methodes & scenario

L
ow

(1
)

N
or

m
al

(2
)

H
ig

h
(3

)

W
ar

pe
d(

4)

C
ut

(5
)

V
id

eo
(6

)

O
ve

ra
ll(

7)

IQA [47] 31.7 22.20 05.60 26.10 18.30 34.40 32.40
DoG baseline [71] 13.00 13.00 26.00 16.00 06.00 24.00 17.00
LBPu28,1 [57] 11.00 17.00 13.00 13.00 16.00 16.00 16.00
LBP overlapping fisher [92] 07.20 08.80 14.40 12.00 10.00 14.70 13.10
Multi-LBP [60] 12.77 16.66 26.66 15.55 25.55 17.77 17.77
Mag-Multi-LBP [60] 07.22 13.33 29.44 14.44 22.22 13.33 15.74
HOOF [60] 16.66 30.00 26.11 15.55 17.77 38.88 21.11
Mag-HOOF [60] 17.22 33.33 22.77 12.22 20.00 36.60 22.22
HOOF + Multi-LBP [60] 09.44 20.55 16.66 10.00 16.66 24.44 15.55
Mag-HOOF + Mag-Multi-LBP [60] 06.11 23.33 13.88 10.00 14.44 20.00 14.44
CDD [93] 01.50 05.00 02.80 06.40 04.70 00.30 11.80
MB-LPQ(our) [90] 16.31 22.36 11.34 14.20 13.65 10.46 13.98
MB-LPQ fisher (our) [90] 13.37 13.12 08.45 12.11 11.43 07.61 13.31
ML-LPQ(our) [90] 14.83 08.95 05.41 15.83 10.01 10.06 12.97
ML-LPQ fisher (our) [90] 12.49 08.96 05.22 13.62 09.66 10.10 11.39

with FS, EER = 11.39 % is good compared to ML-LPQ without fisher score, EER = 12.97 %.

Finally, we that outcome ML-LPQ with FS is the best.

Now after discussion of our result and outcome that ML-LPQ with FS gives the best result.

To test the robustness of our system, we start now comparing our approach with state-of-the-

the-art on CASIA face anti-spoofing database, which already have 7 scenario called the low

quality (1), normal quality (2) and high quality (3), warped photo attack (4), cut photo attack

(5), video attack (6), the last scenario is overall test (7) which have all type of qualities and

attacks. The Table 4.10 shows the comparison of results between the state-of-the-art and the

7scenario of CASIA databases. Finally for more comparison we show the DET curves of all

scenarios using MB-LPQ and ML-LPQ with and without FS (See Figures 4.14, 4.15, 4.16 and

4.17).
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Figure 4.14: DET of MB-LPQ without FS, 7 scenario.

Figure 4.15: DET of MB-LPQ with FS, 7 scenario.
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Figure 4.16: DET of ML-LPQ without FS (3 level), 7 scenario.

Figure 4.17: DET of ML-LPQ with FS (3 level), 7 scenario.
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4.6 Effectiveness of Fisher-Score

Figure 4.18: The proposed approach using FS

In this section, we give results of our approach using FS as a solution to reduce of big

data [92], to approve the results. We give also a comparison of those results with the state-

of-the-art. The performance evaluation of the studied anti-spoofing algorithm is measured by

the EER using two challenge databases which are: NUAA Photograph Imposter Database and

CASIA Face Anti-Spoofing Database.

4.6.1 Results in NUAA Photograph Imposter Database

We compared our results with those of the state-of-the-art: LBP+Gabor+HOG [20], LBP

overlapping [86], LPQ [18], Bad Illumination Conditions [87]. For fair comparison, we used

the same protocol with other authors: 1743 live images, 1748 non-live, for train and 3362 live

and 5761 non-live samples for test. The performance of our approach with texture operators

LBP in terms EER, shown in (Table 4.11 and Figures (4.19, 4.20)), indicates that our approach

gives best results compared to the state-of-the-art.
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Table 4.11: Performance comparison between our proposed approach and the best results on the same
database and using the same protocol.

Methods EER%
Gabor [86]
Bad Illumination Conditions [87]
LPQ [18]
LBP overlapping Blocks [86]
LBP+Gabor+HOG [20]

09.50
08.20
04.90
02.90
01.10

LBP Without Stasm
LBP Without Stasm Fisher
8 1 Stasm
8 1 Stasm Fisher
8 2 Stasm
8 2 Stasm Fisher
16 2 Stasm
16 2 Stasm Fisher
16 2 Stasm M fisher(correction manual)

03.95
03.83
03.21
03.12
02.32
02.25
01.84
01.00
00.61

Figure 4.19: Performance (DET curves) of the proposed approach without (Stasm, Fisher), with
(Stasm,Fisher).
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Figure 4.20: Performance (ROC curves) of the proposed approach without (Stasm,Fisher), with
(Stasm,Fisher).

4.6.2 Results in CASIA Face Anti-Spoofing Database

This database has only two totally independent datasets train and test. For fair comparison,

we used the same protocols reported in [71]. The results presented on term of EER are computed

as two test. The first test is per-frame and the second test is per-video. Finally the first test gives

score as real image or fake one and the second test gives score as real video or not. The database

have seven scenarios in train and test, because the main purpose is to investigate the possible

effects of different fake face types and imaging qualities. The scenarios are: low (1), normal (2)

and high quality (3), warped photo (4), cut photo (5) and video attacks (6), overall test (7). The

results of each scenario are reported as EER in (Table 4.12).
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Table 4.12: Comparison of the results (in EER %) between our proposed approach and the state-of-the-
art.

Scenario (1) (2) (3) (4) (5) (6) (7)
IQA [47]
DoG baseline [71]
LBP [57]

31.7
13
11

22.2
13
17

5.6
26
13

26.1
16
13

18.3
6

16

34.4
24
16

32.4
17
16

Our [92] 7.2 8.8 14.4 12 10 14.7 13.1

4.6.3 Discussion of two databases

When using NUAA database, we have obtained an EER = 1% which represent the best result

compared to the other works (Table 4.11). In the case of CASIA database (Table 4.12), we got

good results for low and normal quality (EER=7.2% and 8.8%), but in high quality, the results

are poor performance compared to others. For warped photo and attack video, our results are

good compared to other groups. In addition, when using a cut photo, our results are a little

low compared to Zhang et al. [71]. In conclusion, the overall test in our work is better than the

others in the case of texture algorithm.

4.7 Effectiveness of color texture (challenge on IJCB)

We propose an approach based on MB-LPQ applied on color face images. We participate

with this work in a challenge conference IJCB 2017 [94]. The RGB face images of OULU-

NPU: A Mobile Face Presentation Attack Database are converted into YCbCr color space and

divided into multiple blocks [90,95]. The LPQ features are extracted from each block and then

concatenated into a single feature vector. The LPQ features extracted from each channel are

concatenated to form the overall face representation. Each video is represented with a single

vector by averaging feature vectors extracted from the first 10frames. The score for each video

is then computed using a Softmax classifier. The obtained results are illustrated in Table 4.13).
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Table 4.13: The performance of the proposed methods under four protocols which are: different illumi-
nation and location conditions, novel attacks, input camera variations, and environmental,
attack and camera device variations.

Protocol Methods
Dev Test

EER(%)
Display Print Overall

APCER(%) APCER(%) APCER(%) BPCER(%) ACER(%)
Protocol I MBLPQ 2.2 31.7 44.2 44.2 3.3 23.8
Protocol II MBLPQ 31.7 31.7 31.7 31.7 31.7 12.9
Protocol III MBLPQ 2.3± 0.6 5.8± 5.8 12.9± 4.1 12.9± 4.1 21.9± 22.4 17.4± 10.3
Protocol IV MBLPQ 3.6± 0.7 35.0± 25.5 45.0± 25.9 49.2± 27.8 24.2± 27.8 36.7± 4.7

4.8 Proposed framework

It−1

It

FD ML Hist FS
Lib-SVM

Real

Fake

Face pre-processing Representation Texture + Fisher Classification

Figure 4.21: Framework of our proposed approach.

The Figure 4.21 illustrates the general structure of our framework [88]. First, we detect

the face and localize the eyes center coordinates to normalize the ROI. Second, we extract the

motion by using the FD between consecutive faces. Then, we apply ML representation to get

multiple blocks to be used in features extraction. Features of all blocks are concatenated to get

one feature vector. We used all the previous steps for an input video of 6 seconds (150 frames),

then we averaged the feature vectors of all these frames. After that, we ranked the average

feature vector by FS. Finally, we used Lib-SVM as a classifier to differentiate between real and

fake faces.
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Table 4.14: Effect of different time window sizes on CASIA Face Anti-Spoofing Database

Frames EER % Frames EER %
5 38.59 100 26.60

10 29.23 125 25.08
15 31.04 150 23.15
25 29.18 175 23.37
50 25.91 200 23.77
75 25.91 225 23.70

4.8.1 Experimental Results

In this subsection we are discussing the effectiveness of choosing the FD associated with

ML representation. In this context, first we study the effect of frames number, then we discover

the superiority of ML compared to MB representation. Finally, we justify our choice of Frame

Difference+Multi Level (FD+ML) by showing the results of CASIA Database.

In Table 4.14, we tested the performance on CASIA-FAS database, with respect to different

time window size. Especially, we remarked that the average of 6 second (150 frame) gives

better result knowing that the video sequences in the CASIA-FASD can reach 10 second. We

observe also, that when using a sufficient number of frame (upto150) the noise of the shape of

fake faces will be detected easily.

Figure 4.22 shows a comparison between representations (ML and MB), texture descriptors

(LBP,LPQ and BSIF) and FD using different levels. The EER is presented as a function using

different levels. We observe from the Figure that the performance of ML is better than MB

when using the same descriptor. This is because the ML representation gives more detailed

information of the image than the MB. Also, we observe in this Figure that, when applying the

ML or MB on FD image the performance is improved compared to using them to the image

directly. We find that the performance of the combination FD+ML is the best among the other

combinations. In our tests, we used three descriptor to compare their performances with the FD

and the ML representation. We observe from the same Figure that the LPQ feature extractor in

our system gives the best results that is a consequence of the blur-invariant property of LPQ.

Also, we observe that there is variation in EER according to the number of level. From level 2

to level 8 the performance is improved progressively because each level takes the information
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Figure 4.22: Comparison between level number of face representation and FD on CASIA face anti-
spoofing.

of the previous levels and the actual level, so it represents more features. Based on the previous

analyses, we choose to use FD with ML representation in 8 level. We used also the FS to rank

the obtained features and that to improve the results as it is highlighted later on. Next, we will

compare our results with the state-of-the-art on CASIA-FAS database. This is summarize in

Table 4.15 and Figure 4.23.

To follow the official test protocol of CASIA Face Anti-Spoofing, we computed the EERs

for the seven scenarios including different qualities and media. In this section, we will analyze

the effects of image qualities and spoofing media on the system performance. Furthermore, we

observed that the proposed approach improves the results. The results of our approach using

different descriptors are given in Figure 4.23 and Table 4.15.

From the Figure 4.23 (a), we observe that LPQ descriptor combined with FD+ML gives

the best results for the different images qualities (low, normal and high), also with spoof media

(warped photo, cut photo and video attacks) (See Figure 4.23 (b)). This can be explained by the

fact that LPQ works well even in the presence of noise of motion on both real and fake faces

compared to LBP and BSIF.

We see from the Table 4.15 that our proposed approach gives better results in all scenario
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Figure 4.23: Effect of Quality and Spoofing Media on the Performance on the CASIA-FASD. (a) Quality
and (b) Spoofing Media

Table 4.15: Comparison between the proposed approach and the state-of-the-the-art methods on differ-
ent scenario on CASIA Face Anti-Spoofing database

Scenarios
Methods Low Normal High Warped Cut Video Overall
IQA [47] 31.70 22.20 05.60 26.10 18.30 34.40 32.40
DoG baseline [71] 13.00 13.00 26.00 16.00 06.00 24.00 17.00
visual codebooks [58] 10.00 17.78 13.33 07.78 22.22 08.89 14.07
LBP-overlapping+fisher [92] 07.20 08.80 14.40 12.00 10.00 14.70 13.10
CDD [43] 01.50 05.00 02.80 06.40 04.70 00.30 11.80
ML-LPQ fisher [90] 12.49 08.96 05.22 13.62 09.66 10.10 11.39
LBP-TOP [57] 10.00 12.00 13.00 06.00 12.00 10.00 10.00
Kernel Fusion [56] 00.70 08.70 13.00 01.40 10.10 04.30 07.20
YCbCr+HSV-LBP [46] 07.80 10.10 06.40 07.50 05.40 08.10 06.20
FD-ML-LBP-FS (ours) [88] 05.94 11.02 07.52 08.08 04.45 13.55 10.29
FD-ML-BSIF-FS (ours) [88] 07.93 11.85 12.42 05.85 03.11 15.84 09.96
FD-ML-LPQ-FS (ours) [88] 05.44 08.62 01.62 04.71 01.93 08.56 04.62
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compared to CASIA baseline [71] whom create the database. Also, we got the best results in

High quality and Cut photos in comparison with the state-of-the-art in the same database. In the

case of High quality, our approach can detect effectively the spoof attack because the FD in the

case of real faces keeps more information that others qualities (See Figure 4.5). Unlike [57],

our approach FD+ML can distinguish easily the cut and real photo because the eye region in

the cut photo appears well when using FD. This proves the effectiveness of our approach in

face anti-spoofing CASIA database. In the following, we will compare our overall results with

the state-of-the-art on three challenge databases: REPLAY-ATTACK, MSU-MFS and CASIA

FAS.

We present another experiment about the effectiveness of extracting the texture images using

ML representation (8levels). We see in Table 4.16 that dividing the whole image on ML im-

proves the robustness of the three descriptors compared to using the whole image. We observe

also that the use of ML gives better results on CASIA-FAS, MSU-MFS and Replay-Attack

databases. When using ML representation, the EER on CASIA-FASD and MSU-MFSD has

been reduced from 23.15% to 17.46% and from 23.22% to 14.90%, respectively. The HTER on

the Replay-Attack Database also has been reduced from 15.12% to 12.25%.

We conduct Also an experiment about the effect of the FD on the performance of the ML

approach. Table 4.16 shows that applying the ML approaches on the FD improves the per-

formance on the three databases. When using Frame Difference+Multi Level+Local Phase

Quantization (FD+ML+LPQ), the performance improvement on CASIA-FAS, MSU-MFS and

Replay-Attack databases are 68.55%, 67.78% and 53.06% respectively (see Table 4.16).

Table 4.17 illustrates the effect of features selection on the classification performances. We

observe from this Table that using FS method with the FD+ML+LPQ method improves the

performance on CASIA-FAS, MSU-MFS and Replay-Attack databases with 15.84 %, 47.91 %

and 16.52 % respectively.

4.8.2 Comparison with the state-of-the-art

Tables 4.15 and 4.18 present the comparison of our approach with the state-of-the-art in

face anti-spoofing. In Table 4.15, we compared only the results of CASIA-FASD with different
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Table 4.16: Effect of the ML on the performance of CASIA, Replay-Attack and MSU databases

Method CASIA (EER%) MSU (EER%) Replay (HTER%)
BSIF 31.30 30.33 23.00
ML-BSIF 18.02 21.85 20.25
FD-ML-BSIF 10.02 08.07 11.66
LBP 24.78 22.12 12.00
ML-LBP 14,27 20.04 09.62
FD-ML-LBP 11,37 07.15 09.70
LPQ 23.15 23.22 15.12
ML-LPQ 17.46 14.90 12.25
FD-ML-LPQ 05.49 04.80 05.75

Table 4.17: Effect of the features selection on the performance of CASIA, Replay-Attack and MSU
databases

Method CASIA (EER%) MSU (EER%) Replay (HTER%)
FD+ML-LBP 11,37 07.15 09.70
FD+ML-BSIF 10.02 08.07 11.66
FD+ML-LPQ 05.49 04.80 05.75
FD-ML-LBP-FS 10.29 06.61 08.70
FD-ML-BSIF-FS 09.96 06.14 10.41
FD-ML-LPQ-FS 04.62 02.50 04.80
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Table 4.18: Comparison between the proposed countermeasure and the state-of-the-art methods on the
three benchmark datasets

Method CASIA MSU Replay-Attack
EER% EER% EER% HTER%

IQA [47] 32.40 - - 15.20
DMD [59] 21.75 - 05.30 03.75
LBP [41] 18.21 - 13.90 13.87
DoG baseline [71] 17.00 - - -
Spectral cubes [58] 14.07 - - 02.75
LBP-overl+fisher [92] 13.10 - - -
IDA [44] 12.90 08.58 - 07.41
CDD [43] 11.80 - - -
ML-LPQ fisher [90] 11.39 - - -
LBP-TOP [57] 10.00 - 07.90 07.60
CNN [96] 07.40 - 06.10 02.10
Motion+LBP [61] - - 04.50 05.11
Color-LBP [46] 06.20 - 00.40 02.90
Bottleneck Feature Fusion + NN [97] 05.83 - 00.83 00.00
FD-ML-LPQ-FS (proposed) [88] 04.62 02.50 05.62 04.80

scenarios, which are: Low, Normal, High, Warped, Cut, Video and Overall test. As we see, our

approach gives the best result on the High, Cut and Overall scenarios. In Table 4.18, we observe

that our proposed approach Frame Difference+Multi Level+Local Phase Quantization+Fisher-

Score (FD+ML+LPQ+FS) gives good results compared with the state-of-the-art on CASIA-

FAS and MSU-MFS databases. The EER on CASIA, MSU and REPLAY databases respectively

is: 04.62%, 02.50% and 5.62% (See DET curve Figure 4.24). In the case of Replay-Attack

database, our method shows interesting results compared to the other methods.

4.8.3 Cross-Database Analysis

To gain insight into the generalization capabilities of our proposed method, we conducted a

cross-database evaluation. To be clear, cross-database is a technique when we trained and tuned

on one database and test on another database. There are different techniques on analysis, where

training and testing occur in distinct databases. In our work, we follow cross-database used in

these papers [58, 60, 96, 98]. In these experiments, the countermeasure was trained and tuned

with one database each time (CASIA-FAS, MSU MFS or Replay-Attack) and then tested on the
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Figure 4.24: DET curve of the proposed approach on REPLAY, CASIA and MSU databases.

other databases. The results are reported in Table 4.19.

We see from Table 4.19, when the model is trained and tuned on CASIA database, then

evaluated on the other databases, that the average of performance in terms of HTER for the

train, development and test sets on the Replay-Attack database is 51.74% and on MSU database,

the average of performance for the train and test sets is 50.76%. When the model is trained and

tuned on MSU database and evaluated on the other databases, the average of performance in

term of HTER for the train, development and test sets on the Replay-Attack database is 47.33%

and on CASIA database, the average performance for train and test sets is 48.64%. Finally,

when the model is trained and tuned on Replay-Attack database then evaluated on the other

databases, the average of performance in term of HTER for train and test sets are 42.82% and

36.50% on CASIA and on MSU databases respectively. As we observe in Table 4.19, the models

trained on Replay-Attack and MSU MFSD Databases give better results than the model trained

on CASIA-FASD. The reason why CASIA-FASD is not good as train set compared to other

databases on face anti-spoofing because it has different qualities and attacks. In Table 4.20,
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Table 4.19: The performance of the cross-database evaluation in terms of HTER(%) on the CASIA-FAS,
MSU-MFS and REPLAY-ATTACK

Test on: CASIA MSU Replay-Attack
Train on: Train Test Train Test Train Dev Test
CASIA - - 51.11 50.41 53.16 51.83 50.25
MSU 47.29 50.00 - - 46.16 47.83 48.00
Replay-Attack 43.05 42.59 35.00 38.00 - - -

Table 4.20: The results of the cross-database experiment on the CASIA-FAS, REPLAY-ATTACK and
MSU-MFS database compared with related studies

Method Train: Test: HTER %

Motion [98]
CASIA Replay 50.20
Replay CASIA 47.90

LBP [98]
CASIA Replay 45.90
Replay CASIA 57.60

LBP-TOP [98]
CASIA Replay 49.70
Replay CASIA 60.60

Motion-Mag [60]
CASIA Replay 50.10
Replay CASIA 47.00

Spectral cubes [58]
CASIA Replay 34.40
Replay CASIA 50.00

CNN [96]
CASIA Replay 48.50
Replay CASIA 45.50

Proposed [88]

CASIA
Replay 50.25
MSU 50.41

Replay
CASIA 42.59
MSU 38.00

MSU
CASIA 50.00
Replay 48.00

we present the results of our proposed approach compared to the state-of-the-art techniques on

cross-database. We observe in Table 4.20, that when we use ML and FD, the performance is

affected on face anti-spoofing methods, especially on cross-database compared with the state-

of-the-art.
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4.9 Conclusion

In this chapter, we presented our approach of face anti-spoofing on 2D image and video.

The proposed approach based on face alignment, frame-difference, features extraction, face

representation, features selection gives us a good framework on face anti-spoofing. We applied

then, our methods on different data modalities. Quantitative comparison (in the context of bio-

metrics spoof) of the proposed framework and the state-of-the-art of NUAA, CASIA, REPLAY

ATTACK, MSU and OULU-NPU databases is provided, which can guide the deployment of ex-

isting algorithms and the development of new face recognition methods toward more practical

systems.
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5.1 Conclusions

Although face recognition has been investigated extensively, it still suffers from variations

due to various factors in real-world scenarios. Each day, sensing technologies advance and

the acquisition devices become more accurate and less expensive. 3D face recognition evades

illumination and poses problems, however, there are still challenges such as spoofing attacks or

disguise variations which affect the performances of both 2D and 3D face recognition.

In this thesis, we have investigated spoofing attacks and disguise variations in face recog-

nition and proposed countermeasure techniques for the protection of face recognition systems

against these challenges. In the first part of the thesis, we have explored the topic of spoofing

in face recognition. Spoofing is a very new topic for researchers in face biometrics domain.

Therefore studies on this topic are limited. It has been shown that face recognition systems

are vulnerable to photograph and video attacks. This is why countermeasure techniques are

necessary to mitigate the impact of spoofing on face recognition. In Chapter 4, we proposed a

countermeasure technique, which is based on texture and contrast analysis, for the detecting of

spoof attacks.

The goal of this thesis is to go beyond traditional research in biometric and to investigate a

novel approach in face anti-spoofing measures to develop a more robust biometric system. To

validate these approach, this thesis will address face spoofing detection with 2D images and

videos databases.

It was shown that the static and dynamic characteristic differences between genuine faces

and fake ones, such as shading, specular reflections, quality and motion patterns, can be ex-

ploited for generic face anti-spoofing using texture feature descriptors, such as LBP, LPQ, and

BSIF. The proposed approaches have been successfully applied using three descriptors based

on FD and face representation getting best-performing algorithms. Our approach is also based

on face alignment applied before features extraction and Fisher-Score used to select and re-

duce features. These aspects improve clearly the results of our system. The performance of

the proposed texture based countermeasures is very encouraging when following the intra-test

protocols of the publicly available databases, i.e. when the operating conditions are known.
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5.2 Perspectives and future work

The research community has just begun to focus on the problem of spoofing attacks and

the current publicly available databases have been a very important kick-off for finding out

best practices for spoof detection. The impressive results on the existing benchmark data-sets

indicate that more challenging configurations are needed before the research on non-intrusive

face anti-spoofing can reach the next level.

In the future, more work should be carried out for designing and collecting new databases

with more representative and diverse development set but still with unseen scenarios in the test

set simulating the unknown attacks that will be faced in real operational conditions. In addition

to variations in the collected data, well-defined test protocols with clear training, development

and test sets are needed for an unbiased comparison between various approaches across different

databases. Also, we will test our proposed methods using different color image representations

instead of the grayscale images. We will use other descriptors, such as Scale Invariant Feature

Transform (SIFT) and Speeded-Up Robust Features (SURF), to test the effectiveness of our

framework in face anti-spoofing detection. Moreover, we envision the improvement of the face

alignment process on 3D face, to investigate on 3D Mask Face Anti-spoofing.
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102



A
Code of Project

Listing A.1: faces_alignement.m

1 function [face, IMG_rotate]=faces_alignement(IMG,eyes,cof1,cof2,

cof3)

2 % IMG --> input image (face)

3 % eyes --> cordinate of eyes (x,y)

4 % cof1,cof2,cof3 --> ktop, kside and kbootom

5 pos = [eyes(1,1) eyes(2,1); eyes(1,2) eyes(2,2)]; %[Leyex Reyex;

Leyey Reyey];

6 [m ,n, ~]=size(IMG);

7 tg_a=diff(pos(2,:))/diff(pos(1,:));clear pos;

8 angle=tg_a*(180/pi);

103



A. Code of Project 104

9 tg_a = -angle * (pi/180);

10 IMG_rotate = imrotate(IMG, angle);

11 [m1 ,n1 ,~]=size(IMG_rotate);

12 axe_x=[eyes(1,1) eyes(2,1)];

13 axe_y=[eyes(1,2) eyes(2,2)];

14 Rx=axe_x(:);Ry=axe_y(:);clear axe_x axe_y

15 % figure(2),imshow(IMG);

16 % hold on;

17 % plot(eyes(1,1), eyes(1,2),'g*','LineWidth',2);

18 %pause;

19 Ex = (n1-n)/2;

20 Ey = (m1-m)/2;

21 Cx=n/2;Cy=m/2;

22 New_lan_x= (Cx+(Rx-Cx)*cos(tg_a)-(Ry-Cy)*sin(tg_a))+Ex;

23 New_lan_y= (Cy+(Rx-Cx)*sin(tg_a)+(Ry-Cy)*cos(tg_a))+Ey;

24 % figure(12),imshow(IMG_rotate);

25 % hold on;

26 % plot(New_lan_x,New_lan_y,'-','LineWidth',2);

27 % plot(New_lan_x,New_lan_y,'g+','LineWidth',2);

28 right_eyex = New_lan_x(1,1);left_eyex = New_lan_x(2,1);

29 right_eyey = New_lan_y(1,1);left_eyey = New_lan_y(2,1);

30 %pause

31 %figure(3),imshow(IMG_rotate);

32 %hold on;

33 %plot(right_eyex,right_eyey,'r+','LineWidth',2);

34 %plot(left_eyex,left_eyey,'g+','LineWidth',2);

35 x=[ right_eyex left_eyex ];y=[right_eyey left_eyey ];

36 pos = [x(1,2) x(1,1); y(1,2) y(1,1)];

37 A=abs(diff(pos(1,:)));

38 xxx=[x(1,1)-(A/cof1) x(1,2)-(A/cof1) x(1,1)+(A/cof1) x(1,2)+(A/

cof1)];
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39 yyy=[y(1,1)-(A/cof2) y(1,2)-(A/cof2) y(1,1)+(A*cof3) y(1,2)+(A*

cof3)];

40 maxx = max(xxx); maxy = max(yyy); minx = min(xxx); miny = min(yyy)

;

41 face = imcrop(IMG_rotate,[minx miny maxx-minx maxy-miny]);%clear

IMG_rotate;

Listing A.2: Multi_block.m

1 function HIST = Multi_block(img,num_blk,mapp);

2 % img --> input image

3 % num_blk --> number of blocks

4 % mapp --> number of features

5 [m,n] = size(img);

6 HIST = [];

7 H = floor(m/num_blk);

8 W = floor(n/num_blk);

9 HL = mod(m,H);

10 WL = mod(n,W);

11 for mm = 1:H:m-HL

12 for nn = 1:W:n-WL

13 X = img(mm:mm+H-1,nn:nn+W-1,:);

14 h = hist(X(:),1:mapp);

15 HIST = [HIST reshape(h,1,[])];

16 end

17 end

Listing A.3: Multi_level.m

1 clear;close all;fclose all ;clc;

2 %% Toolbox
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3 addpath(genpath('toolbox\'));

4 %%

5 load NUAA_DB; % information of the database

6 data_NUM = length(data);

7 DIR = 'F:\\NUAA\\NUAA_DB_Stasm\\'; % path of the database

8 IMG_Type = 'jpg'; % type of the images

9 discriptors={'LBP','LPQ','BSIF'};

10 shape={'block','level'}; % type of descriptors

11 tic

12 for sh = 1:2

13 for num_blocks =1:8

14 for F =1:size(discriptors,2)

15 filename=sprintf('%s_params',discriptors{F});

16 load(filename)

17 for jj = 1:size(params,2)

18 tic

19 type = sprintf('%s_%s_%d_%d_%d_%d_u2',discriptors{

F},shape{sh},num_blocks,params(jj).a,params(jj)

.b,params(jj).c);

20 name = sprintf('Features\\%s\\%s',discriptors{F},

type);

21 opFolder = fullfile(cd, name);

22 if ~exist(opFolder, 'dir')

23 mkdir(opFolder);

24 end

25 for i=1:data_NUM

26 disp(i)

27 imgname = sprintf(strcat(DIR, '\\',num2str(

data(i).name)...

28 ,'.',IMG_Type));

29 img=imread(imgname);
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30 Features=[];

31 if(strcmp(discriptors{F},'LBP'))

32 mapp = params(jj).b * (params(jj).b -1) +

3;

33 filename=sprintf('mapping_u2_%d',params(jj

).b);

34 load(filename)

35 I=lbp(img,params(jj).c,params(jj).b,

mapping,'i');

36 elseif(strcmp(discriptors{F},'LPQ'))

37 mapp = 256;

38 I = lpq(img,params(jj).a,params(jj).b,

params(jj).c,'im');

39 elseif(strcmp(discriptors{F},'BSIF'))

40 filename=sprintf('texturefilters/

ICAtextureFilters_%dx%d_%dbit',params(

jj).a,params(jj).b,params(jj).c);

41 load(filename, 'ICAtextureFilters');

42 numScl=size(ICAtextureFilters,3);

43 mapp = 2ˆnumScl;

44 I= bsif(img,ICAtextureFilters,'im');

45 end

46 if(strcmp(shape{sh},'block'))

47 Features = [Features Multi_block(I,

num_blocks,mapp)];

48 else

49 Features = [Features Multi_level(I,

num_blocks,mapp)];

50 end

51 name_image = sprintf('%s/%s',name,data(i).name

);
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52 save(sprintf('%s.mat',name_image),'Features','

-v7.3');clear Features;

53 clear Features

54 end

55 fprintf('%s done in %.2f second \n',name, toc);

56 end

57 end

58 end

59 end

Listing A.4: Multi_level.m

1 clear;close all;fclose all ;clc;

2 %% Toolbox

3 addpath(genpath('toolbox\'));

4 %%

5 load NUAA_DB; % information of the database

6 data_NUM = length(data);

7 DIR = 'F:\\NUAA\\NUAA_DB_Stasm\\'; % path of the database

8 IMG_Type = 'jpg'; % type of the images

9 discriptors={'LBP','LPQ','BSIF'};

10 shape={'block','level'}; % type of descriptors

11 tic

12 for sh = 1:2

13 for num_blocks =1:8

14 for F =1:size(discriptors,2)

15 filename=sprintf('%s_params',discriptors{F});

16 load(filename)

17 for jj = 1:size(params,2)

18 tic

19 type = sprintf('%s_%s_%d_%d_%d_%d_u2',discriptors{
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F},shape{sh},num_blocks,params(jj).a,params(jj)

.b,params(jj).c);

20 name = sprintf('Features\\%s\\%s',discriptors{F},

type);

21 opFolder = fullfile(cd, name);

22 if ~exist(opFolder, 'dir')

23 mkdir(opFolder);

24 end

25 for i=1:data_NUM

26 disp(i)

27 imgname = sprintf(strcat(DIR, '\\',num2str(

data(i).name)...

28 ,'.',IMG_Type));

29 img=imread(imgname);

30 Features=[];

31 if(strcmp(discriptors{F},'LBP'))

32 mapp = params(jj).b * (params(jj).b -1) +

3;

33 filename=sprintf('mapping_u2_%d',params(jj

).b);

34 load(filename)

35 I=lbp(img,params(jj).c,params(jj).b,

mapping,'i');

36 elseif(strcmp(discriptors{F},'LPQ'))

37 mapp = 256;

38 I = lpq(img,params(jj).a,params(jj).b,

params(jj).c,'im');

39 elseif(strcmp(discriptors{F},'BSIF'))

40 filename=sprintf('texturefilters/

ICAtextureFilters_%dx%d_%dbit',params(

jj).a,params(jj).b,params(jj).c);
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41 load(filename, 'ICAtextureFilters');

42 numScl=size(ICAtextureFilters,3);

43 mapp = 2ˆnumScl;

44 I= bsif(img,ICAtextureFilters,'im');

45 end

46 if(strcmp(shape{sh},'block'))

47 Features = [Features Multi_block(I,

num_blocks,mapp)];

48 else

49 Features = [Features Multi_level(I,

num_blocks,mapp)];

50 end

51 name_image = sprintf('%s/%s',name,data(i).name

);

52 save(sprintf('%s.mat',name_image),'Features','

-v7.3');clear Features;

53 clear Features

54 end

55 fprintf('%s done in %.2f second \n',name, toc);

56 end

57 end

58 end

59 end
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