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NOTATIONS

Here below, we will define some notation that will be involved and used within
development of this thesis. Some others, will be defined at the mean time of its
usage.

» R™ denotes the Euclidean space of ordered N-tuplies of real numbers.

» () bounded and open subset of R™.

» 0N} the boundary of (.

» D(Q) the space of infinitely smooth functions with a compact support in (.
» V' real Hilbert space with scalar product (-,-) and associated norm |- ||.
» V' the dual space of V.

» — strong convergence.

» — weak convergence.

» * weak star convergence.

» 1) the obstacle.



INTRODUCTION

Variational inequality theory has been fastly developed since 1967 introduced
by Lions and Stampacchia [17] who successfully treated a coercive variational in-
equality. After the fundamental work of Lions and Stampacchia, the theory of
variational inequalities was studied by many researchers (e.g. Brezis ([6], [5]),
Browder ([7], [8]), Kinderlehrer [14], Duvaut and Lions ([11]) and others) and be-

came an important subject in non-linear analysis.

It plays an important role in mechanics, partial differential equations, control
theory, game theory, optimizations and so on.

In this thesis, our subject of concern is the existence and uniqueness of the
solution of the evolutionary variational inequalities of the first kind.

This work is organized as follows:
In the first chapter, we will recall essential tools for our study.
In the second chapter, we will study the existence, uniqueness and approxima-
tion of the solutions of elliptic variational inequalities of the first kind.
In the third chapter, we will study the existence, uniqueness of the solutions
of evolutionary variational inequalities of the first kind using penalty and elliptic

regularization methods.



CHAPTER 1

PRELIMINARIES

This chapter recalls some basic notions and the main mathematical results of the
functional analysis which will be used throughout this work. Most of the results are

stated without proofs, as they are standard and can be found in many references.

1.1 FUNCTIONAL SPACES

Let © be a regular bounded open subset of R"”. We denote by D (€2) the set of

indefinitely differentiable functions with compact support in .

1.1.1 Lebesgue spaces

Definition 1.1 Let (Q,;) be a measure space, the space L'(Q, 1), or simply L'(Q)

consists of all measurable functions on ) that satisfy

Julls =l = [ u(o)] d < o
Q
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Definition 1.2 Let p € R with 1 < p < oo, we set
LP={u:Q =R, u is measurable and |u(z)]” € L'(Q)},

with

ST

el = llul, = [ / u(x)”du]

Q

Definition 1.3 We set

L°°z{u:Q—>R,

u 18 measurable and there is a constant C’}

such that |u(z)| < C a.e on
with

[ull e = [Jullo = ess sup |u(z)].
e

Definition 1.4 Let p € R with 1 < p < oo, we set
LP (0, 7;X)=<u:[0,T] - X, u is measurable and u(t)]|% dt < oo

with
T

el o orixy = lu(®)| dt

Definition 1.5 We set
L>(0,T;X)={u:[0,T] = X, w is measurable and 3C > 0||u(t)||y < C a.e. in t}.

with

[ull ooy = E{C >0, [lu@)|[x <C ae. in t}.




1.1. FUNCTIONAL SPACES CHAPTER 1.

Theorem 1.6 (Basic properties of Lebesgue spaces)

(i) L?(Q) is a vector space and |- ||, is @ norm for any p, 1 <p < cc.

(i) The spaces L* (£2) are Banach spaces (complete normed spaces).

(iii) The space L*(Q)) becomes a Hilbert spaces with the inner product

SIS

(u,0) = [ w(x)v(@)dr, |ullpz = [ull, = (u,u)z.
Q
(iv) LP(Q) is reflexive for any p, 1 < p < .
(v) LP(QY) is separable for any p, 1 <p < oc.
Proof. See [4]. =

1.1.2 Sobolev spaces

Definition 1.7 Let u € L'(Q) and « € N. The function u is said to have a weak

derivative D°u, if there exists a function v € L' (Q)) such that:

uD*o = (=1 [ wp,  peD(Q).
Q Q
Where we use the standard multi-index notation o = (aq, g, ..., a,) with

a; > 0 an integer,

olely
Or{r0xs? ... Qwon

n
la] = Zai and D% =
i=1

We denote D%u = wv.
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Definition 1.8 Let p be a real number with 1 < p < co. The Sobolev space W™P (Q) is
defined to be:

WmP(Q) ={ue LP(Q) | D*ue L?(Q), |af<m}.

The space W™P (Q)) equipped with the norm
ullyms = D 1Dl
0<a|<m

Definition 1.9 In the special case where p = 2, we define the Hilbert-Sobolev
space H"(Q) = W™2(Q)

for keN HY(Q)={ueL’(Q) | D*ueL*(), |af <k}.

The space H" () is equipped with the inner product

(U, v) g = Z D*uD%vdx,
o<k
0

and the norm

lallge = > ID%ull,.

0<|ar|<m

Definition 1.10 We set

Hy (Q)={ue H (Q), up,,=0}.
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1.2 GENERAL THEOREMS AND DEFINITIONS

Theorem 1.11 (Rellich-Kondrachov) Let () C R™ be a Lipschitz domain,

m €N and 1< p < oo. Then, the following mappings are compact embeddings:

1 1
(1) Wmm(Q)%Lq(Q)y 1§qu*7 _:__@7 Zf m<c_l7
p p d p
.. . d
(i) WmP(Q) — L1(9Q), qge[l,00), if m=—,
b

(i) W (Q) <> €0 (Q), if m > g
Proof. See [1]. =

Theorem 1.12 (Riesz representation theorem) Let V be a Hilbert space, for

all f € V', there exists a unique element f € V such that

f)=(f0)  WweV.

In addition, we have

I, = |7,
Proof. See [4]. =

Theorem 1.13 (Projection Theorem) Suppose that V' is a Hilbert space
and K C V be a closed convex subset of V. Then for any x € V there exists a
unique y € K such that

—y|| = inf ||z — 2| .
lz = yll = inf [la — 2|

Moreover, x is characterized by the property
reK and (v —y,z—y) <0 VzekK.
The above element vy is called the projection of x onto K and is denoted by

y = Pxx.

7
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Proof. See [4]. =

Proposition 1.14 Let K C V be a non empty closed convex set. Then Pk isa
contraction, i.e.,

||PK$1 — PKQZQH < ||£E1 — 332” Vai, z9 € V.
Proof. See [4]. =

Theorem 1.15 (Banach fixed-point theorem) Let (V,|-||) be a Banach space,
and let K be a nonempty closed subset of V. Suppose that the operator

T : K — K isa contraction, i.e. there exists a constant C € [0,1) such that
|Tu—To|, <Cllu—vl,, Vu, vekK.
Then T has a unique fixed point, Tu = wu.

Proof. See [2]. =

Lemma 1 (Gronwall Lemma) Let y and g be non negative integrable functions

and C a non negative constant. If

then

y (t) < Cexp g(s)ds for t>0.

Proof. See [15] =m

Definition 1.16 Let X be a normed linear space and let X' denote its dual.
Let u,, ue X.

(i) We say that u, converges strongly or converges in norm to u and
we write u, — u if

lim ||u —uy,|| =0.
—00

8
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(i1) We say that wu, converges weakly to u and we write v, — u if
Ve X', lim (up, 1) = (u, ) .
n—oo

Definition 1.17 Let X be a normed linear space and let X' denote its dual. A

sequence u, C X' is said to converge weakly* to u € X' if
(Up,v) = (u,v) as n—>o0, YvelX.
In this case, u is called the weak* limit of w, and we write u, —u in X'

Theorem 1.18 (Eberlein-Smulyan) If X is a reflexive Banach space and the
sequence {u,} C X is bounded

lunllx < €
then we can find a subsequence {u,,} C X and an element u € X such that:
Upp — U mn X.

Furthermore, it can be proved that if the limit u is independent of the subsequence

extracted, then the whole sequence {u,} converges weakly to u.

Proof. See [4]. =

Theorem 1.19 (Boundedness of weakly converging sequences) Suppose

1<p<oo and u, — u in L* () (uniu in L®(Q) if p:oo).Then

(1) w, is bounded in L* (Q2).

1) lull ooy < nh_{go inf [[un| Lo g
Proof. See [12]. =

Theorem 1.20 (First Green’s formula) For all v € H*(Q) and v e H' (Q)

ou

Vu(z) - Vu(z)dr = o

(s)v(s)ds — Au(z)v(z)dz.

o0
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Proposition 1.21 (Cauchy-Schwarz inequality.) Let (H,(-,-)) be an inner prod-
uct space. Define ||.|| = (-,-)2. Then, for every u,v € H

[ (w, )| < Jul] [[v]]-
Proof. See [4]. =

Definition 1.22 Let (V,(-,-)) be a n-dimensional euclidean vector space
and T :V — V a linear operator. We will call the adjoint of T, the linear opera-

tor T*:V —V such that:
(Tu,w) = (u, T*w) , Yo, w e V.

Definition 1.23 Let V' be a reflexive Banach space. We call a linear operator

T:V — V' monotone if for all v and v in V
(Tu —Tv,u —v) >0

Definition 1.24 A bilinear form a:V xV — R is said to be

(i) continuous if there is a constant C such that
la(u,0)| < Clully vl Yu, veV,
(i) V-elliptic if there is a constant o > 0 such that

a(v,v) > a |} Yv e V.

10



CHAPTER 2

ELLIPTIC VARIATIONAL
INEQUALITIES

In this chapter, we shall restrict our attention to the study of the existence,
uniqueness and approximation of the solutions of elliptic variational inequalities

of the first kind.

2.1 ELLIPTIC VARIATIONAL INEQUALITY OF THE FIRST KIND

Notation 2.1
» a(-,-):V xV =R isa bilinear, continuous and V-elliptic mapping on V x V.
» L(-):V+— R isacontinuous, linear functional on V.

» K is a closed, convex, non-empty subset of V.

Definition 2.2 We call elliptic variational inequality of the first kind Any
inequality defined by:

{ Find v € K such that (2.1)

a(u,v —u) > L(v —u) Yo € K.

11
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2.2 EXISTENCE AND UNIQUENESS RESULTS

Theorem 2.3 (LIONS-STAMPACCHIA) If a(-,-):VxV~—R is
a bilinear, continuous and ccercive form on a Hilbert space V, L(-) : V — R isa
continuous, linear functional on V and K is a closed, convex, non-empty subset

of V then the problem (2.1) has one and only one solution.

Proof.
©® Uniqueness:

Let u; and u, be solutions of (2.1). We have then:

a(up,v —wuy) > L(v —uy) Y € K, (2.2)

a(ug,v — ug) > L(v — uy) Vo e K. (2.3)

Choosing v = uy in (2.2) and v = u; in (2.3) and adding the corresponding
inequalities, we obtain:

a(u; —ug,uy — ug) <0, (2.4)
by using the V-ellipticity of a(-,-), we get:

allug — usly, <0.
Which implies
U1 = Ug.
0 Existence:
we will reduce the problem (2.1) to a fixed point problem . By the Riesz
representation theorem for Hilbert spaces there exist A:V —V and f €V such
that:
(Au,v) = a(u,v) Yu,v €V,
L(v) = (f,v) Yo e V.

Then the problem (2.1) is equivalent to finding u € V' such that:

{(u—[u—p(Au—f)],v—u)SO Vv e K

ue K, p > 0. (2.5)

12



2.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 2.

This is equivalent to finding u such that:
u = Pg(u— p(Au — f)) Vp > 0.

Consider the map 7': V — V defined by T'(u) = Px(u — p(Au — f)).

Let uq,us € V, then since Py is a contraction we have:
|7 (ur) = T(u2) |* < [Jug — ua||* + p* | A(ur — up)||* = 2pex lug — us|*.
Hence we have

1T (ur) = Tuz)|* < (1= 2pa+ p? [ AlIP) [lur — wol |

2x

1A]*
we have a unique solution for the fixed point problem which implies the existence

Thus T is a strict contraction mapping if 0 < p < By taking p in this range

of a solution for (2.1). =

Remark 2.4 If K =V then the problem (2.1) reduce to the classical variational

equation
{ Find v eV such that

a(u,v) =L (v) Yo e V.

Proposition 2.5 If a(-,-) is symmetric then the variational inequality (2.1) is

equivalent to the following minimization problem:

Find u € K such that
(2.6)
J(u) < J(v) Vv e K,
with
1
T (v) = Ja(0,) ~ L(v)
Proof.

0 (2.6) — (2.1):

If v € K is a solution of the minimization problem (2.6), then we have:

J(u) < J(v),

13



2.3. APPROXIMATION OF THE VARIATIONAL INEQUALITY CHAPTER 2.

hence

%a(u, u) — L(u) < Sa(v,v) — L(v),

N | —

weput v=(1—t)u+tv Vte|0,1],then:

%a(m u) — L(u) < =a((1 — t)u+tv, (1 — t)u+ tv) — L((1 — t)u + tv),

N | —

< - [(1 = t)%a(u,u) + t?a(v,v) + 2t(1 — t)a(u,v)] — (1 — t)L(u) — tL(v),

N | —

which implies
t2
§a(u —v,u—v) + ta(u,v —u) > tL(v — u).

Therefore, dividing the above inequality by ¢ and passing to the limit

with ¢t — 0 we obtain

a(u,v —u) > L(v —u) Vv e K.

0 (2.1) — (2.6):
If u satisfies (2.1), then:

for every v € K. Therefore
J()—J(u) >0 Yv e K,

which shows that u is a solution of the minimization problem (2.6). =

2.3 APPROXIMATION OF THE VARIATIONAL INEQUALITY

2.3.1 Approximationof V and K

Let {V}}n>0 be afamily of finite dimensional closed subspaces of V', and {K},}-0 A
family of closed non-empty convex subsets of V' with K, C Vj, Vh, such that {K}},

satisfies the following two conditions:

14
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1) WYwekK, Ju,=rwe K, suchthat v, - v in V,

(i) Vo, € K, if v, — v then v € K.

2.3.2 Approximation of (2.1)

The problem (2.1) is approximated by:

Find u, € Ky, such that
(2.7)

a(uh, Vp, — uh) > L(Uh — Uh) Y, € K.

Theorem 2.6 (2.7) has a unique solution.

Proof. In Theorem 2.3, taking V' tobe V;, and K tobe K}, we have the result. =m

2.4 CONVERGENCE RESULTS

Theorem 2.7 With the above assumptions on K and {K,},, we have
lim [y — ] = 0,
with wuy, the solution of (2.7) and wu the solution of (2.1).

Proof. For proving this kind of convergence result, we usually divide the proof
into three parts. First we obtain a priori estimates for {u,},, then the weak con-
vergence of {u;};,, and finally with the help of the weak convergence, we will prove

strong convergence.

O A priori estimates for u;:

We will now show that there exist two constants C; and C, independent of ~ such
that
lunlly < Cullunll +C2 VA (2.8)

15
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Since wu; is the solution of (2.7), we have

a(uh,vh — Uh> > L(Uh — uh) Y, € Kh,

a(up, up) < alup,vy) — L(vy, — up,).
By continuity of a(-,-) and L(-), we get
a(up, up) < [|A[ lunll loall + 1A (loall + lunl),  Vow € K.
Using the V-ellipticity of a(-,-), we get
o lunl® < NA lunll lloall + ILT (Qlonll + llunl), Von € K. (2.9)

By condition (i) on K, we have r,up — vy strongly in V and hence |uv] is

uniformly bounded by a constant m. Hence (2.9) can be written as

unll* < =[(m ALl + 1ZI) lfunll + (| LIl m] = Ch [|un]| + Ca,

Q| r

— lunl* < Cu llunll + Co.

1

where C; = —(m|A|| + ||L]) and C; = THLH. Without loss of generality we
(6] (6]

assume C, > 1, then (2.8) implies

|unl| <C  Vh.

® Weak convergence of {u}:

The relation (2.8) implies that wu;, is uniformly bounded. Hence we can extract a
subsequence, also denoted by {u;} such that u, convergesto u weaklyin V.
By condition (ii) on {K},},, we have u € K. We will prove that @ is a solution of

(2.1). We have
aup, up) < alup,vy) — L(vy, — up), Yo, € Ky, (2.10)
We have also v, = r,v. Then (2.10) becomes

a(up, up) < a(up, rpv) — L(rpv — uy). (2.11)

16



2.4. CONVERGENCE RESULTS CHAPTER 2.

Since r,v converges strongly to v and u;, converges to u weakly as h — 0, taking

the limit in (2.11), we obtain
Ilzii% inf a(up, up) < a(u,v) — L(v—1u), Yo € K. (2.12)
Also we have
0 < a(up — a,up —u) < alup, up) — alup, ) — a(w, uy) + a(u, u),

1.e,
a(up, @) + a(t, up) — a(a, ) < aluy, up).
By taking the limit, we obtain
a(u,u) < Ilzli% inf a(up, up). (2.13)
From (2.12) and (2.13), we obtain
a(u,u) < }lg% inf a(up, up) < a(u,v) — L(v —u), Vv € K.

Therefore we have

a(u,v—u) > L(v — ), Ywe K, u€K. (2.14)
Hence u is a solution of (2.1). By Theorem 2.3, the solution of (2.1) is unique and

hence u = u is the unique solution.

® Strong convergence:

By V-ellipticity of a(-,- ), we have
0 < aljup —ul]” < alup —u, up — u) = alup, up) — alun, w) — alu, up) + a(u,u), (2.15)

where wu; is the solution of (2.2) and wu is the solution of (2.1). Since u; is the

solution of (2.2) and r,v € K} for any v € K, from (2.2) we obtain

a(up,up) < alup, rpv) — L(rpv — up), Vv € K. (2.16)

17



2.4. CONVERGENCE RESULTS CHAPTER 2.

Since }Lirr(l) up, = u weaklyin V and ;lLiD% rpv = v strongly in V' (by condition (i)),
— —

we obtain (2.16) from (2.15), and after taking the limit, Vv € K, we have
0 < alim inf ||uy, — u|® < a lim sup |Jup, — u)® < a(u, v — u) — L(v — u). (2.17)
h—0 h—0
Taking v = u in (2.17) we obtain

lim |lup, — ul| = 0.
h—0

18



CHAPTER 3

EVOLUTIONARY VARIATIONAL
INEQUALITIES

In this chapter we will consider a class of evolutionary variational inequalities.
We will indicate sufficient conditions in order to have the existence, uniqueness
and regularity results of the solution. The existence of the solution is obtained by
using a penalty method. Finally, we will study the estimation of the penalization

error.

3.1 THE CLASSIC PROBLEM

Let Q2 be a bounded open subset of R", n > 1. We shall put :

Q=0x]0,7[ , ¥ =00x]0,T[ , 0<T <+oco, V=H(Q), H=L2(Q).

19



3.1. THE CLASSIC PROBLEM

CHAPTER 3.

We consider the functions a;; (z,t), a; (z,t), a,(x,t), i,7=1,...

Clij, Clj, (4 € LOO(Q), CZZ‘]‘ = a]’i

n

22]615]2a2|52|704>0inQ, VfZER

=1
j=1

We also take
fipel?(0,T; H).

We are looking for a function w« : Q2x]0,4+00[— R such that :

—— 4+ A{t)u—f<0 in Q,

the operator A is given by

At u Zax <a” (1) a”) Zaj (1) —i—ao(x t)u.

]71

,n which satisfy:

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Remark 3.1 The problem (P.C) is backward in time (with initial values at T). We

could equally well consider initial data at 0 as long as we take % instead of o

ou

20



3.2. STRONG VARIATIONAL INEQUALITY CHAPTER 3.

3.2 STRONG VARIATIONAL INEQUALITY

We introduce:

K={v|veV, v(x)<v(zt) ae in Q}, (3.8)
K= {v | ve L*(0,T;V), % € L*(0,T;V"), wv(xt)<¢(x,t) ae. in Q}.
(3.9)
We shall always assume that:
K #10, (3.10)
K #0. (3.11)

We define a continuous bilinear form on V' by:

altu,v) = Z/ai]’(%t) % g; dx+2/aj(x,t) %vdw%—Z/aJx,t)uvdx. @
j O j
0 0 Q

(3.12)

We say that u is a’strong solution’ of the evolutionary V.I associated with (P.C),
if
uek, u(z,T)=1u(zx) ze€Q,
ou .
— (E’U_u(w) +a(tut),v—u(t) > (f({t),v—u(t)) ae int, Vv € K.
(3.13)

Proposition 3.2 Assume that u is a solution of the problem (P.C), then u satisfies

the problem (3.13).

Proof. Let v € K a test function, then:

V_w§07

m(A(t)u,U) = a(t;u,v)
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multiply (3.3) by (v — ¢) and integrate over (2, we get:

(_% + At)u — f) (v —1)dx > 0. (3.14)

Q

Furthermore, by integrate (3.5) over (2 we obtain:

ou
(-5 +A@u=7) w-v)as=o. (3.15)

Q

by subtracting (3.15) from (3.14), we get:

(_%4_,4() f) (v —u)dz >0,

(3.16)
— /—Uu dx + At)u(v—u) — f(v—u)dx>0.

On the other hand, we have:

At)u(v—u)d / Zaxz i~ )(v—u)dx—i— Zajg—;(v—u)dx

Q Q

+ a,u (v —u)dz,
0

using Green’s formula (Theorem 1.20) we get :

At)u(v—u) Z/ aij 8$ 8x (v—u)dr — Z ai; gu(v—u)ds
j i

Q 00
+ Z/aj(‘) u) dxr + a,u (v —u) dx,
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3.2. STRONG VARIATIONAL INEQUALITY CHAPTER 3.

since v|pg =0 and ulsggo =0 then:

At)u(v—u) Z/ a;j 8:6 (‘31: (v —u) dx—l—Z/a]ax (v—wu)dz
] (2
0

+ aou (v — u) dx.

Hence, we get (3.12).
Therefore, (3.16) implies:

_ (%’v_u) +a(tiu,v—u)—(f,v—u) >0, D VoekK. 3.17)

Proposition 3.3 When it is possible to obtain a strong solution which also satisfies
ue L*(0,T; H*(Q)), (3.18)

then u satisfies (P.C).

Proof.
We have from (3.13):

(ZZL v—u(t)) + a(tu(t),v—u(t) > (f@t),v—u(t)) ae int, Vv € K,

— (—%,v—u(to + (A)u,v —u(t)) > (f(t),v—u(t)) ae int, VYv e K,

— (—% + A(t)u f,v—u> >0 ae int, VYv €E K. (3.19)

M(. .) is the inner product in L? ().
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Taking v = u — 1, we then deduce

(—g—z + A(t)u — f,u—@b—u) >0,

S Ty

and hence that
—— + A(t)u — f<0. (3.20)

Alsoif we put v = ¢ in (3.19) which is permissibleif ¢) € L? (0, T; H) and (3.18) holds,

we deduce that:

<—% + A(t)u — f,¢—u) > 0. (3.21)
Since —g—? + Aty — f<0 and ¢y —u>0 D then
(—% + Ay — f,zb—u) <0. (3.22)
Hence from (3.20) and (3.22) we obtain
(_% + A(tyu — f,u_¢> =0 ae, (3.23)

and thus (P.C). m

3.3 EXISTENCE AND UNIQUENESS RESULTS OF THE STRONG
SOLUTION

Theorem 3.4 (See [3]) Suppose that we have (3.1), (3.2), (3.11) and a;;j
L>*(Q) hold with :
v Per(rH @), vz0 o5 Moo omr G20
GeV. a<u). 3.25)

Dbecause u € K
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Then the strong problem (3.13) admits a unique solution such that:
ue L>®(0,T;V). (3.26)

Proof.
O uniqueness:
Let w;, uy, be tow solutions of (3.13). We have then

B (aalt—u m) taltu (), v —w () = (f(),v—m(t) VoeV, (327

B (aéit—u m) tatun(t),v—w ()= (F(B),v-uw®) YveV. (3.28)

Choosing v = wuy in (3.27) and v = w; in (3.28) and adding the corresponding

inequalities, we obtain:

0
<§(Ul_UQ)’ul_u2) _a(t;ul_u27ul _UQ) 207

we put w = u; — uy then:
- (%—?,w) +a(t;w,w) < 0. (3.29)
However, from (3.1) there exists A such that
a(t;v,v) + M |ol% > alvlli, a>0, YoeV, (3.30)

then the equation (3.29) gives
1d

2 2 2
— 5wl + ol < Al

T T
— Lz | el as< [ afll ds
2ds H v - "=

t t t

which implies

1
Sl @ —w D+ | afwlids <A | fw]ds,
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from which we deduce, since w (1) = uy (T') — up (T') = 0, that:

T T
1 2 2 2
Sl @l + [ allwllyds <A [ lwlly ds,
t t
and therefore in particular, that:
T
o ()15 < 2X [ [lwllf ds, (3.31)

t

using gronwall lemma (Lemma 1) we obtain
lw (D)l <0,

from which it follows that w = 0, so that u; = us.
OExistence:
To prove the existence of the solution we will use the penalty method that will be

developed in the next section. m

3.4 THE PENALTY METHOD

The idea of penalization consists of approximating (3.13) which is a constrained
problem by an unconstrained problem, which expresses the fact that "u belongs
to K7, is replaced by a penalisation term. The limit of the approximate solution
converges to the solution of (3.13).

Specifically, we introduce a penalisation operator 5 which has the following
properties:
BV —=V' (B is Lipschitz continuous,

Ker(8) = K, (3.32)

£ is monotone.
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3.4.1 The penalized problem

For £ > 0 we consider the equation

( Ou,

ot

AW + Zplu) = 1.

u. € I2(0,T;V), (3.33)

\ U’E (T> = 'l_L,
which is the penalised equation associated with (3.13). In variational form (3.33) is

written:

— <%,U) + a (t; ue,v) + é(ﬁ(ue),v) =(f,v) Yo eV, (3.34)

such that the bilinear form: «(¢;-,-) and the set K are defined in section 3.2.
We set:
6(“&) = Ue _PKUE = ([_PK)u57

with: Py is the projection onto K (theorem 1.13).
For any function v we set: v =v" —v~, v = max(v,0) and v~ = max(—v,0) and
get
Pru=u—(u—1)",
and therefore
B (ue) = (ue =),
then (3.34) implies:

- %v +a(t;ue,v) +
at’ ) ey

We start by proving the followings:

1
(- 9) o) =(f0) VeV, (3.35)
Lemma 2 Suppose that V' is a Hilbert space, The operator [ defined by

B (u) = u — Pgu, with : Pk is the projection onto K CV,

then [ verifies:
(B(u) = B(v),u —v) >0 (monotony).
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Proof. We have from the Theorem 1.13:
(v— Pgv,w— Pgv) <0 VYweK,
then

(U — PKU,PKU — wl) >0 Yw, € K, (3.36)

(u — PKU, PKU — U)Q) > 0 va € K. (337)

Choosing w; = Pgu in (3.36) and wy; = Pgv in (3.37) and adding the correspond-

ing inequalities, we obtain:
(B(u) — B(v), Pxu — Prv) > 0. (3.38)

On the other hand, we have:

(B( >
—  (B(u) = B(v), (u — Pgu) — (v — Pgv)) >0, (3.39)
(B(u) — B(v),u —v) > (B(u) — B(v), Pxu — Pgv).
Hence

(B(u) = B(v),u—v) >0 Yu,v € V.

Theorem 3.5 (See [3]) Suppose that (3.10) holds along with (3.2), u € H. There

then exists a unique u. such that

ou,

. € L*(0,T;V),
ue € L*( ) 5

€ L*(0,T;V"), (3.40)

and u, satisfies (3.34).
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Proof.

O Uniqueness:

The uniqueness is an immediate consequence of the monotonicity of the operator g,

ifin fact u. and u. are two possible solutions, we obtain from (3.34):

N <%”U) + a(t;umv) + é(ﬁ<u5)7v) = (fav> Yo eV, (3.41)

_ <%,U) +a(t;u,v) + %(5(”5)77]) = (f,v) Yv eV, (3.42)

choosing v = u. — 4. in (3.41) and v = 4. — u. in (3.42) and adding the
corresponding inequalities, we obtain:
0 _ _ _ ~ 1 _ _
- a (us - us) ) (us - us) + a<t;u€ — Ug, Ue — us) + g (ﬁ(us) - ﬁ(l%),lbe - us) = 07
we put w = u, — 4. then:

— (%—l;,w) +a(t;w,w) + é (B(ue) — B(te), ue — ) =0,

so that, since (f(u.) — B(u.),u. — u:) > 0 we have:

- (8w ) +a(t;w,w) <0 (3.43)

E,w < U
However, from (3.30) we have:

1d 2 2 2
— 5wl + ol < Al

T

T T
— LdE | alwlds< | Al ds
2ds H v - H =

t t

t

which implies

1
Sl @ —w D+ | afwlids <A | fw]ds,
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from which we deduce, since w (T') = u. (T) — u. (T) = 0, that:

T T
1 2 2 2
Sl @l + [ allwllyds <A [ lwlly ds,
t t
and therefore, in particular, that:
T
o ()15 < 2X [ [lwllf ds, (3.44)
t
using gronwall lemma we obtain
lw ()7 <0,

from which it follows that w = 0, so that . = ..
OExistence:
To prove the existence of the solution we will use the elliptic regularization method

that will be developed in the next section. m

3.5 THE ELLIPTIC REGULARISATION METHOD

The concept of this method, is regularizing the evolutionary equation (or inequal-

ity) by an elliptic equation (or inequality) already solved. Then we pass to the limit.

3.5.1 Elliptic regularised equation of (3.33)

In (3.34) we put:

)
%)
j— (3.45)
ot’
V= {v| ve L*(0,T;V), % € L*(0,T;H), v(T)= o} : (3.46)
\
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then we get:

Lu. + A(t)u. + éﬂ(ug) _f (3.47)

since:

L*=—1I,

then the regularization of (3.47) will be:
1
YL Lue, + Lue, + A(ue,) + gﬂ(um) = f. (3.48)

Therefore, for v > 0, we seek u.., a solution of :

([ % . Oue, 1
_ ey _ Z7¢ Z — 3.49
’7 5152 at + A(t)US'y + 65(“’57) f7 ( )
2 Oue, 2
u., € L*(0,TV), € L*(0,T;H), (3.50)
ot
(Per)
uEV(T) = Uy, (3.51)
Ouc.,
c — (3.52)
\ ot (0) 0,

where u, €V, u, —u in H as v— 0.

The problem (P.,) is an elliptic problem (hence, the terminology: (F.,) is called an

ey
“elliptic regularised equation” of (3.47)), and is a simple variant of the stationary

problem treated in [3].

3.5.2 The variational formulation of (F..)

Let us assume that @, = 0, the variational formulation of (F.,) is then as follows:

T T

m | =

) (um,v) + (ﬁ(um),v) dt = (f,v)dt Yve. (3.53)
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Such that the bilinear form :

T
B O, Ov .., '
u, v — P(u,v) = {7 ( T ’E) — ( T ,v> +a (t,um,v)} dt, (3.54)
0
1s coeercive on V:
T T
O, 2 2

D(Uey, Uey) >y o |, dt + o e ||, dt. (3.55)

0 0

We thus have existence and uniqueness for wu., the solution of (3.53), from the

following theorem

Theorem 3.6 Suppose that (3.1), (3.8), (3.10) hold in addition to
a(v,v) > alv|®, Yo e H} (Q), a>0. D
There then exists a unique u € K, the solution of (3.53).

Proof. See[3]. m

3.6 PROOF OF EXISTENCE IN THEOREM 3.5

O A priori estimate:

We will now show that there exist an arbitrary constant C independent of v and ¢ such

that:

Rl ol P (3.56)
Since wu.., is the solution of (3.53), we have:
T T
1
) (uEw U) + B (5(%7),@) dt = (f,u)dt Yvey,
0 0

D|-| = norm in H{ (Q)
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putting v = u., we get:

1
6 (e ) + - / (Bluter), )t / () dt
0 0
T T
1
= O (Ueyy uey) — / (f tey) dt = /g (B(tiey), uey) dt,
0 0
since (B(u.,),ue,) >0 then:
T
& (U, Uery) — / (fouey) dt <0
0
T
== ¢ (U’E'ya uE'y) < / (f, ug,\/) dt,
0
by the V-ellipticity of ¢ (-,-), we get:

5’7

| / S

using Cauchy-Schwarz inequality, we get:

T

7/ u/m /}US’YHV /|f|HHu€7Hth

0

I

€y L2(07T;H)+OKHUEVHLQ(OTV < HfHL2UTH HUE'YHLQ (0,T;V)

I

+a HUEVHQLQ(O,T;V) <C HUE’YHLQ(O,T;V) ’

Y L2(0,13H)
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which implies:

e sy < € et o (3.57)
o < € el o (3.58)
from (3.57), we have:
Jterll o) < €
hence: ,
¥ ’ ur., - <C,
= VA e <€

therefore we get (3.56).

® Weak convergence:

The relation (3.56) implies that u., and u. are uniformly bounded.

0l
Hence according to the theorem 1.18 we can extract a subsequence, also denoted

by u.. such that when ~ — 0:

U, = u. in L*(0,T;V),
Oue., N ou,

ot ot

in L?(0,T;H).

Since the injection from V' — H is compact (theorem 1.11), we thus have:
Uery —> U 0N L*(0,T; H),

and we can immediately proceed to the limit in ~ in (3.53); we therefore obtain
that u. is a solution of

T T

{_ (%,v) Faltunv)+ 2 Bu)|d= | (o) Voev,

€
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from which we deduce :

_(%’O+a(t;ug,v)+§(5(ue)av):(f’”) a.e VveV.

Then the problem (3.33) admits a unique solution.

3.7 PROOF OF EXISTENCE IN THEOREM 3.4

O A priori estimate (I):

We will show that there exist an arbitrary constant C independent of ¢ such that:
1
||Ua||Loo(o,T;v) + % H(Us HL2 0,T;H) <C. (3.59)
Since the constant C' in (3.56) is independent of ¢ (and of ~), we have
e 20,70y < C- (3.60)
Since wu. is the solution of (3.34), we have:
e 1
~(Ge) +eun LG = (1) ey,
we take vy € K and we take the inner product of (3.34) with v = u. — vy we get:

du. !
_ (0_117% —UO) + a (t; ue, us — vo) + c (B(ue), ue = vo) = (f,ue —0),

- - (%aus_vo) +a(t;usaus_UO)_'_%(ﬂ(ue)aus_w"i_w_vo)_<f7us_UO)>

ou, 1 1

= - (EJ% - Uo) + a (t; ue, ue — vo) + z (Blue)sue =) — (fyue — vo) = —Z (B(ue), v — o),
since (¢ —vy) > 0 then:

ou, 1

= (G o) et ) + 2 (30 ) = (e ) 0,

Ou, ou, 1
— (G (G o)~ et ) + 2 e = 9 - (7 - w) 0

Ou, 2 ou,
— — (W,ue) + a (t;ue, us) + — || )+HH < - <E,v0) + a (t;ue,v0) — (f, ue — vo) ,
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integrate over (¢,7) we get:

T T T

d 1
s | el [ atsuwyds + 2 -0 ds

< {— (%ano) + a (s;ue,vo) — (f, ue —vo)| ds,
S

so that

1 1 1 2
—5 (D)5 + 5 lue®) i ds + | asiueuc)ds+ [ =l =), ds

< [— (%;%) + a(s;ue,v0) — (f, us — o) | ds,
S

t

which implies, since u.(7) = u(x):

T T
1 2 1 +112
Do+ [ atsuends s [ o - as
t t
T
1 e
< glalas + [ - (5m) +atsien) - (- )] s

t
Using Cauchy-Schwarz inequality and the V-ellipticity of a (¢;-,-), we obtain:

T

1 2
lue (B[ + B [(ue — )|}, ds < Oy + Co [luc(t)]l
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which implies:

u-(t)|%, < Cy+ Colluc(t)l (3.61)

1
[l = 0)* [ ds < €1+ Cofluct®)ly (3.62)
t

Without loss of generality we assume C; > 1, then (3.61) implies:

Juelly < C,
= [ttel| oo 0,501y < €
hence:

T

w0 |[ds < C.
t

1 +
= NG [ (ue =) HL?(O,T;H) < C.

Therefore we get (3.59).
O A priori estimate (II):

We will show that there exist an arbitrary constant C independent of ¢ such that:
”u/e”LOO(O,T;H) <C. (3.63)

We put:

Lo B daij du v da; Ou
a(t’“’“)Z/ ot o, o DI o, U Z
Q

(A'(t)u,v) =d (t;u,v) if veD(Q).
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8us oY

, Y= —) this is permissible

In (3.34) we replace v by u. —v¢’ (where u. =

since 8—¢ =0 on X. We have:

ot

(u€7 ue - W) +a (t; Ug, ulg - W) + é (ﬂ (u€> ) (us - ¢),) = (f7 u; - w/) )
= () + () 0 ) — e ) 2 (B (), (e = )) = (Fod = 9),

— el s ) 2 (B (), (e = )) = (o = ) = () (e, ).
(3.64)

We put:

8u 81}
o (L;u,v rinciple part of a(t;u,v) Qs T,

by putting:
r(tiu,v) = a(t;u,v) — ao (tu,v),

we rewrite (3.64) in the following form:

2 / / Y /
—||U ||H+a0(t Ue, U s)+r(t Ue, Ug +2 dt || )JrHH:(f,UE—LZJ)—(UE,1/J)—|—(Z(Z':;U€777D>.

(3.65)
However, by virtue of the symmetry of «, (¢;u,v), we have:
1d 1
% (t; Ug, u’g) = §an (t; Ue, us) - Ea; (t§ Ue, us) .
Hence (3.65) gives:
1d 1 2
Nl + S | () + ]l =)l -
3.66
1 /

2 o(t u£7u£) - T(t;uaau/g) + ( ’ a_w/) - (u/gaw/) + a@%“sﬂﬁ/);
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we then deduce, by integrating over (¢,7)) and changing the signs, that

T T
’ 2 1d 1 2
N ds + [ 3 et + 2l - 0] s
t t
T
1
= [ et - e ¢ k=) = ) ) ds
t
(3.67)
which implies
T
’ 2 1 1 + 2
—luc(s)llzr ds + 5 ao (G ue(t), ue(t)) + 2—€||(us—¢) Gl
t
T
1 L 1 / / / / / /
:§a0(tauau) - §ao(t7u€7u6) - T(t7u67u5) + (fvu _@Z)) - (U57¢) + a(t;uevw) ds
t
(3.68)

We note that

|7 (6 ue, )| < Cluelly il

so that, using Cauchy-Schwarz inequality and the V-ellipticity of a(¢;-,-), we
deduce from (3.68) that
Il < Gy + Called (3.69)

Without loss of generality we assume C; > 1, then (3.69) implies (3.63).

® Weak convergence:

It results from (3.59) and (3.63) that we can extract a subsequence, also denoted
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by w. such that when ¢ — 0:
(u. —u in L*(0,T;V),
u. —~u in L®(0,T;V),

ou, ou . 5 '
T 5% " L*(0,T;H),

(ue — )" =0 in L*(0,T;H).

\

Since the injection from V' — H is compact (theorem 1.11), we thus have:
ue —u in L*(0,T;H),

and since (u. —¢)" =0 in L?(0,T;H) we have:

(u—v)" =0,

and therefore

u e .

If v e K, wereplace v in (3.34) by v — u., we have:
Ou, 1 " .
— | v e —i—a(t;ug,v—us)—(f,v—us):g((v—w) — (ue — ) ,v—uE)EO,

from which we deduce by integrating over (s, t):

t t

_U_
ot’

S S

{_ <8u€ Ue) + a(o;uz,v) — (f,v— us)] do > liminf a(o;ue, u.) do,

so that we then deduce (since u. — u)
t t

[— (%,v—u) + a(o;u,v) — (f,v—u)} do > liminf a(o;ue, us) do

s s
t

Vv

a(o;u,u)do,
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hence for any values of s and ¢, we have

t

[— (%,v—u) + a(oyu,v—u) — (f,v—u)|do >0,

which implies:
ou
—(a,v—u> + a(t;u,v—u) — (fbv—u)>0 ae YveK.

Then the problem (3.13) admits a unique solution.

3.8 ESTIMATION OF THE ”PENALIZATION ERROR”

We shall now prove the following results:

Theorem 3.7 (See [3]) The assumptions are those of Theorem 3.4. Suppose also
that

Aty € LA(Q). (3.70)

Then if u (resp. u.) denotes the solution of the V.I obtain in Theorem 3.4 (resp. of

the penalized equation) we have:

|u — USHLQ(O,T;V) + flu - us”Loo(o,T;H) < CVe. (3.71)

Proof. We take the inner product of the both sides of (3.34) with (u. — )", this

gives:

_ (%’ (ue — ¢)+> +a (t; Ue, (Ue — ¢)+) T é (ﬁ(us), (ue — w)Jr) - (f’ (e — w>+) ’

then:

_ <% (ue + ¢ — w>,(u€_¢)+) +oa(tue + ¥ — W, (ue—P)T) + §<(ﬁ<u€)’<u€_w)+)
= (f7 (uE - w)—i-) )
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which implies

(g7 e = 9 a0 ) (e = 0 (0= 0) 4

by integrating over (¢,7'), we obtain:
T

—§H<u€ — Dy + %Hwe - )l + /a(s; (us = )", (ue —4)") ds

t
T T

0
+ é/(ue - ¢)+2d3/(f + a_f - A¢7(Ua_w)+) dS,

t t
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since (u. — )" (T) = 0, then

Sl =0 @l +o [ o = o @l ds + 2 [ e = 9| ds

t

T
0
</f 2 AwH (e = )™, ds.

we then deduce that N
H(U/e - 1/}) <t)HL2(O,T,V) S C\/ga

(3.72)
H(Ua - )" (t)HLOO(O,T,H) < Cve.
On the other hand since
U—Us =U— U+ —
=Uu-— Q/} - (ue - ¢)
:U—¢—(Us—¢)++(us—¢)_,
putting r. = u — ¢ + (u. — )~ we get:
U— U =71 — (U — @/})Jr ) (3.73)

It follows from (3.72) that, in order to prove (3.71), it is sufficient to show that
HTs“m(o,T,V) < CVe,
(3.74)
||Te||Loo(0,T,H) < Cve.

In (3.13) we choose to define v by v =¢—(u.—v)~ <1,and v =r. in (3.34) then:

B (%w—(%—w)——u) +oa(tiuy = (ue = ¢)" —u) 2 (¥ = (e = ¢)" —u),

_ (%v?‘€> + a(t;ue,re) + % (Bluc),re) = (fre)
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which implies

_ (8u 1“6) + a(tyu,—re) > (f, =),

T
Ou. ' 1 -
~(Grre) a6 = ().
by addition, we get
D tw—u),re) + altiue =)+ - (Blue),re) > 0
8t u Ug ), Te a\l; Ug U, Te - Ug )y Te) = U.

But

so that (3.77) gives

and hence using (3.73):

N (57"5 rs) + a(t;re,re) < — (2 (ue — ¢)+>Ts) + a(t; (u — )" ).

ot ot

We note that r.(T) =u—(T) + (u—(T))” =0 sothat (3.79) gives

%Hm(t)HZ + a/ Ir-(s)IIy ds < ((we = )" (1), (1))

T T

+/((US_¢)+’ZZE)ds + /a<5?(ue—¢)+,re)ds.

t t

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)
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But
T T
or 0
J— + € — J— + R —
(=0 52 Y as| = | [ (cw= 0 grta= ) as
t t
Ce 2(u—@/)) < Ce
- ot L2(0,T;H) 7
and hence (3.80) gives
T T 3
1
§||7"e(t)|\12g + o Ira(s)IIy ds < CVE [llre(8)ll + lr(s)lly | ds| + Ce.

t t

(3.81)
So that (3.74) then follows. m

3.9 WEAK VARIATIONAL INEQUALITY

The existence of a strong solution requires important assumptions, which are not
always verified. We will weaken the problem (3.13).
If u is a solution of (3.34) and v € K (and not only v € K). let us consider the

expression

X = [— (%,v—u) +a(t;u,u—u)—(f,v—u)] dt,

we have

X = {—(g(v—l—u—u),v—u)+a(t;u,v—u)—(f,v—u)}dt,
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SO

T T

X = {— <%,v—u) —i—a(t;u,v—u)—(f,v—u)} di+ [ — (%(U—u),v—u) dt,

0 0

(3.82)
the first integral on the right-hand side of (3.82) is > 0, therefore

which implies

and thus

1
X+ 2 o(T) = ulT) 2y 2 [10(0) = u(O) 32 g = 0.

Replacing «(7) by u, we are therefore led to the above definition of the weak

solution. We say that u is a’weak solution’ of the evolutionary V.I if

(uwel2(0,T;V),

T
v 1 2
— = v—u|+a(t;u,v—u)—(f,v—u) dt+§||v(T)—u||L2(Q)ZO Yv € K.
0

(3.83)

Remark 3.8 This new inequality no longer involves @

ot

3.10 EXISTENCE OF THE WEAK SOLUTION

Theorem 3.9 (See [3]) The problem (3.83) admits a solution.

46
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Proof. In section 3.5, we used elliptic regularization to approximate the solu-
tion u. of the penalized problem. We can use elliptic regularization with regard to
the V.I.

We define K, c K by

Ko = {U | ve L*(0,T;V), % cL?(0,T;H), v(xt)<v(x,t) in Q} , (3.84)
and we adopt the assumption that
Ko # 0.
For v >0 we seek u, a solution of:
U~ S l@o,
T
f [’y (ufy,v’ —u’w) — (u’wv —uv) + a(t;uy,v—u,) — (f,v—uy)} dt >0 Yo € K,
0
(3.85)
where, in (3.85):
w = OY
L N
If we put
T
b(v,u) = [7 (u;, v — u'v) — (u’w v — “w) + a(t;uy,v—uy,) — (f,v— uv)] dt,

0

a bilinear form, we see from (3.55) that b(-,-) is coercive on K, that we can
apply the results of section 3.5.

Furthermore, when v — 0, we have (see section 3.6):

<C. (3.86)

L2(0,T;H) —

/
um

Hua’YHLQ(O,T;V) + \/ﬂ
Without any further assumptions on the coefficients and data, we deduce from (3.86) that
we can extract a sequence, also denoted by u., such that

w, —~w in L*(0,T;V),

duy Ow .
E E in L (07T,H)
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Since the injection from V' — H is compact, we thus have:
w, —w in L*(0,T;H),

and we can immediately proceed to the limit in (3.85); we therefore obtain:

T
[— (u,v—u) + a(t;u,v—u) — (f,o—u)]dt >0 Vo € K, (3.87)
0

and since (3.87) implies (3.83) then w is a weak solution of the evolutionary V.I.
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CONCLUSION

The variational inequalities studied in this work are evolutionary since they in-
volve the time derivative of the solution.

In this research we reached to the main purpose and conclude that this kind of
inequalities has a unique solution and this may be proved by using several methods
similar to penalty, elliptic regularization methods we showed during the develop-
ment of this thesis.

Despite this analysis, the subject of variational inequalities remains open to
wide research and perspective such as:

# Evolutionary variational inequalities of the second kind.
# Hyperbolic variational inequalities.

# Quasi variational inequalities.
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