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الإهداء

وعملي، علمي في وجادا مثابرا أكون أن أجل من سعيا اللذين وأبي أمي إلى
والآخرة... الدنيا في العلى الدرجات أنال أن على وحرصا

غيره عقل بعلمه أضاء من كل إلى
سائليه حيرة الصحيح بالجواب هدى أو

العلماء تواضع بسماحته فأظهر
العارفين سماحة وبرحابته
والتعلم العلم محبي إلى

المتواضع. العمل هذا أهدي
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وعرفان شكر

إليه أصبوا ما لي حقق أن على أشكره والمتفضل، المنعم فهو واشكره، تعالى اللهّٰ أحمد واجتهاد، وجهد بحث رحلة بعد
ياضيات. الر في الماستر درجة استكمال في

أعرف وجعلني الرسالة، هذا على بالإشراف تفضل الذي السايح بن اللهّٰ عبد المشرف: الأستاذ إلى والتقدير بالشكر وأتقدم
الباحث. مسؤولية وأحسني البحث، حقيقة

الأساتذة وأيضا أبدا، طالبا يرد لا أنه الطلبة كل يعرفونه و أعرفه الذي باحيو الأمين محمد الأستاذ أنسى أن لي يحق ولا
المتميز. جهدهم على والإمتنان الشكر يل جز منا فلهم الدراسي، تكويني في جهدهم قصارى بذلوا الذين

فهم الرسالة، هذه مناقشة بقبول علي لتفضلهم المناقشة، لجنة في الموقرين أساتذتي إلى اليوم هذا في يل الجز بشكري وأتقدم
فيها. القصور مواطن عن والإبانة معوجها، وتقويم خللها لسد أهل

خيرا. الجميع يثيب أن الـكريم اللهّٰ سائلا
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Introduction

The theory of variational inequalities plays an important role in the study of both the
qualitative and numerical analysis of nonlinear boundary value problems arising in me-
chanics, physics, and engineering science.
The study of variational inequalities goes back to the work of Lions and Stampacchia
[7, 8] in the sixties.

This subject has developed in several directions using new and powerful methods that
have led to the solutions of basic and fundamental problems thought to be inaccessi-
ble previously. Some of these developments have made mutually enriching contacts with
other areas of mathematical and engineering sciences including elasticity, transportation
and economics equilibrium, nonlinear programming, operations research.

In 1988 M. Noor is introduced and studied a new class of variational inequalities, which
is called general nonlinear variational inequality GVI, and he gave an iterative algorithm
for solving this class of variational inequalities, see [13].
GVI means general variational inequalities. It has been shown that general variational
inequalities provides a unified, simple, and natural framework to study a wide class of
problems, which this study has utilised to conduct our issues.

This memory consists of three chapters:
First chapter: We inserted definitions of the notions and terms that has been used in
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the chapter two and three.
Second chapter: We conducted a study the existence and the uniqueness of the solution
of variational inequality of the second kind.
Third chapter: we did a study the existence and the uniqueness of GVI. Then, we move
to build an Algorithm that depends on the projection theorem. Finally, we proposed a
model for GVI.
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Chapter 1

Preliminaries

In this chapter we discuss some mathematical concepts that we should know them for use
in our theme.

1.1 Reminders

Definition 1 Let X be a linear space. A subset K ⊂ X is said to be convex if it has the

property

x, y ∈ K =⇒ λx+ (1− λ)y ∈ K ∀λ ∈ [0, 1]

Definition 2 Let K be any set in Hilbert space H. The set K is said to be g-convex, if

there exists a function g : H → H such that

g(u) + t(g(v)− g(u)) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

Remark 3 Note that every convex set is g-convex, but the converse is not true.

2



1.1. REMINDERS CHAPTER 1.

Definition 4 The function ϕ : X → (−∞,∞] is convexe if:

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y) (1.1)

for all x, y ∈ X and λ ∈ [0, 1].

The function ϕ is strictly convex if the inequality is strict for x 6= y and λ ∈ (0, 1).

Remark 5 We note that if ϕ, φ : X → (−∞,∞] are convex and α ≥ 0, then the functions

ϕ+ φ, αϕ and sup{ϕ, φ} are also convex.

Definition 6 The function F : K → H is said to be g-convex, if

F (g(u) + t(g(v)− g(u))) ≤ (1− t)F (g(u)) + tF (g(v)), ∀u, v ∈ K.

Clearly every convex function is g-convex, but the converse is not true.

Lemma 1 Let F : K → H be a differentiable g-convex function. Then u ∈ K is the

minimum of a g-convex function F on K if and only if u ∈ K satisfies the inequality

(F ′(g(v)), g(v)− g(u)), ∀g(v) ∈ K. (1.2)

where F ′ is the Frechet differential of F at g(u).

Proof. Let u ∈ K be a minimum of the g-convex function F on K. Then

F (g(u)) ≤ F (g(v)), for all g(v) ∈ K. (1.3)

SinceK is a g-convex set, then for all u, v ∈ K, t ∈ [0, 1], g(vt) = g(u)+t(g(v)−g(u)) ∈ K.
Setting g(v) = g(vt) in (1.3), we have

F (g(u)) ≤ F (g(v) + t(g(v)− g(u)))

≤ F (g(u)) + t(F (g(v)− g(u))).

Dividing the above inequality by t and taking t→ 0, we have

〈F ′(g(u)), g(v)− g(u)〉 ≥ 0,

3



1.1. REMINDERS CHAPTER 1.

which is the required result (1.2).
Conversely, let u ∈ K, g(u ∈ K) satisfy the inequality (1.2).Since F is a g-convex function,
for all u, v ∈ K, t ∈ [0, 1], g(u) + t(g(v)− g(u)) ∈ K, and

F (g(u) + t(g(v)− g(u))) ≤ (1− t)F (g(u)) + tF (g(v)),

which implies that

F (g(v))− Fg((u)) ≥ F (g(u) + t(g(v)− g(u)))− F (g(u))

t
.

Letting t→ 0, we have

F (g(v))− Fg((u)) ≥ 〈F ′(g(u)), g(v)− g(u)〉 ≥ 0, using (1.2) ,

which implies that
F (g(u)) ≤ F (g(v)), for all g(v) ∈ K

showing that u ∈ K is the minimum of F on K in H.

Remark 7 Lemma 1 implies that the g-convex programming problem can be studied via

the general variational inequality (3.1) with Au = F ′(g(u)).

Definition 8 (Lower and upper semi-continuity) The function ϕ : X → (−∞,∞] is said

to be lower semi-countinuous (l.s.c) at u ∈ X if

ϕ(u) ≤ lim
n→+∞

inf ϕ(un)

for each sequence {un} ⊂ X converging to u in X.

It is upper semi-continuous (u.s.c) at u ∈ X if

ϕ(u) ≥ lim
n→+∞

supϕ(un)

The function ϕ is l.s.c (u.s.c) if it is l.s.c (u.s.c) at every point u ∈ X.

Definition 9 Let H be a reaal Hilbert space, ∀u, v ∈ H, the operator A : H → H is said

to be:

4



1.1. REMINDERS CHAPTER 1.

1. g-monotone, if

(Au− Av, g(u)− g(v)) ≥ 0.

2. g-pseudomonotone, if

(Au, g(v)− g(u)) ≥ 0 =⇒ (Av, g(v)− g(u)) ≥ 0.

3. g-strongly monotone, if there exist a constant α > 0 such that

(Au− Av, g(u)− g(v)) ≥ α‖g(u)− g(v)‖2.

4. g-cocoercive or g-inverse strongly monotone, if there exists β > 0 such that

(Au− Av, g(u)− g(v)) ≥ β‖Au− Av‖2, ∀u, v ∈ H.

5. L-Lipschitz continuous, if there exists a positive real number L such that

‖Au− Av‖ ≤ L‖u− v‖.

If 0 < L < 1, then it is a contraction with constant L.

6. hemicontinuous, if the mapping t ∈ [0, 1] =⇒ (A(u+ t(v− u)), v− u) is continuous.

Remark 10 We remark that if z = u, then g-partially relaxed strongly monotonicity is

equivalent to monotonicity. It is well known that cocoercivity implies partially relaxed

strongly monotonicity, but the converse is not true.

This shows that the partially relaxed strongly monotonicity is a weaker condition than

cocoercivity.

Definition 11 Let K be a nonempty closed convex subset of a real Hilbert space H.

1. A mapping S : K → K is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ K.

5



1.2. THE RIESZ REPRESENTATION THEOREM CHAPTER 1.

2. A mapping S : K → K is called k-strict pseudo contractive mapping, if there exists

a constant 0 ≤ k < 1 such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + k‖(I − S)x− (I − S)y‖2, ∀x, y ∈ K.

Observe that if S is a k-strictly pseudocontractive mapping, then T = I − S is an

α-inverse strongly monotone operator with α =
1− k

2
.

Theorem 12 (Banach’s Fixed Point Theorem) [4] Let (V, ‖.‖V ) be a Banach space,

and let K be a nonempty closed subset of V . Suppose that the operator A : K −→ K is a

contraction, i.e. there exists a constant c ∈ [0, 1) such that

‖A(u)− A(v)‖V ≤ c‖u− v‖V .

Then A has a unique fixed point.

Theorem 13 (Brouwer’s Fixed Point Theorem) Let K be a nonempty, convex, com-

pact subset of a finite dimensional normed linear space V . If the operator T : K → K is

continuous, then T has a fixed point, i.e. there exists u ∈ K such that T (u) = u.

Theorem 14 (Schauder’s Fixed Point Theorem) [4] Let V be a Banach space, and

let K ⊂ V be a nonempty, convex, compact subset. If the operator T : K → K is

continuous, then T has a fixed point.

1.2 The Riesz Representation Theorem

Theorem 15 [5] Let H be a Hilbert space and let l ∈ H ′ (dual of H). Then there is a

unique u ∈ H such that

l(v) = (u, v), ∀v ∈ H

Moreover

‖l‖H′ = ‖u‖H

6



1.3. THE PROJECTION THEOREM CHAPTER 1.

Theorem 16 Let H be a real Hilbert space with its inner product noted (.).

Let K be a nonempty closed convex subset of H.

If a(u, v) is a bilinear form which is

continuous on H ×H: ∃c > 0 ∀u, v ∈ H, | a(u, v) |≤ c‖u‖‖v‖,

coercivity on H : ∃α > 0 ∀u ∈ H a(u, u) ≥ α‖u‖2,

If L(.) is a linear continuous form on H.

Under these conditions, then there exists a unique u of K such that

∀v ∈ K a(u, v − u) ≥ L(v − u)

In addition, if a is symetric, then u is the unique element of K that minimizes the func-

tional J : H −→ R defined by J(v) =
1

2
a(v, v)− L(v) for all v of K:

∃!u ∈ K J(v) = min
v∈K

J(u)

Proof. See [1]

1.3 The Projection Theorem

Theorem 17 Let K ⊂ H be a nonempty closed convex. Then for each u ∈ H, there is a

unique element u0 = PKu ∈ K such that

‖u− u0‖ = min
v∈K
‖u− v‖

Proof. See [5]
The operator PK : H → K is called the projection operator onto K. The element

u0 = PKu is called the projection of u on K, and is characterized by the property

(u− u0, u0 − v) ≥ 0, ∀v ∈ K. (1.4)

7



1.4. HARTMAN-STAMPACCHIA’S THEOREM CHAPTER 1.

We know that PK is a nonexpansive, monotone and satisfies

(u− v, PKu− PKv) ≥ ‖PKu− PKv‖2, ∀u, v ∈ H.

‖PKu− u0‖2 ≤ ‖u− u0‖2 − ‖u− PKu‖2.

In the context of the variational inequality problem, this implies that

u ∈ V I(K,A) (3.5) ⇐⇒ u = PK(u− λAu), ∀λ > 0.

1.4 Hartman-Stampacchia’s Theorem

Theorem 18 Let K be a nonempty compact convex subset of a finite dimensional space

V . If we suppose that A : K → V is a continuous mapping and ϕ : K → (−∞,+∞] is a

proper l.s.c convex function, then there exists at least one u ∈ K such that

(Au, v − u) + ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ K.

Proof. See [4]

Lemma 2 [5] Suppose that j : K → R is proper convex and l.s.c and a(., .)H ×H → R

is continuous. in addition, that the form a is positive. Then, the variational inequality

(2.3) is equivalent to
Find u ∈ K

a(v, v − u) + j(v) + j(u) ≥ (f, v − u) ∀v ∈ K
(1.5)

Theorem 19 (Eberlein–Smulyan Theorem) Let V be a reflexive Banach space. Then

any bounded sequence in V contains a weakly convergent subsequence.

Proof. See [4]

Corollary 20 Any nonempty, bounded, and weakly closed subset in a reflexive Banach

space is weakly compact.

8



Chapter 2

Variational Inequalities

2.1 Variational Inequalities of the first kind

Let an operator A : H −→ H, a subset K ⊂ H and an element f ∈ H, we consider the
problem of finding an element u such that

(Au, v − u) ≥ (f, v − u) ∀v ∈ K. (2.1)

An inequality of the form (2.1) is called an elliptic variational inequality of the first kind.

Theorem 21 Let H be a Hilbert space and let K ⊂ H be a nonempty closed convex

9



2.1. VARIATIONAL INEQUALITIES OF THE FIRST KIND CHAPTER 2.

subset. Assume that A : K −→ H is a strongly monotone Lipschitz continuous operator.

Then, for each f ∈ H the variational inequality (2.1) has a unique solution.

Proof. Let f ∈ H and let ρ > 0 be given. We consider the operator Sρ : K −→ K

defined by
Sρu = PK(u− ρ(Au− f)) ∀u ∈ K,

where PK denotes the projection operator on K. Using PK is nonexpansive, it follows
that

‖Sρu− Sρv‖ ≤ ‖(u− v)− ρ(Au− Av)‖ ∀u, v ∈ K.

Hence
‖Sρu− Sρv‖2 ≤ ‖(u− v)− ρ(Au− Av)‖2

≤ ‖u− v‖2 + ρ2‖Au− Av‖2 − 2ρ(u− v,Au− Av)

Using A is Lipshitz continuous with constant M and strongly monotone with constant m

≤ ‖u− v‖2 + ρ2M2‖u− v‖2 − 2ρm‖u− v‖2

Then, we obtain that

‖Sρu− Sρv‖ ≤ k(ρ)‖(u− v)‖ ∀u, v ∈ K.

where k(ρ) = (1 − 2ρm + ρ2M2)
1
2 and m, M are the constants of strongly monotone

and Lipschitz continuous, respectively. Also, with a convenient choice of ρ we may assume
that k(ρ) ∈ [0, 1). It follows now from Theorem 12 that there exists an element u such
that

Sρu = PK(u− ρ(Au− f)) = u. (2.2)

We now combine (2.2) to see that

u ∈ K, (u, v − u) ≥ (u− ρ(Au− f), v − u) v ∈ K.

Since ρ > 0 we conclude that u satisfies (2.1), which proves the existence part of the
theorem.

Next, we consider two solutions u and v of (2.1). It follows that u ∈ K, v ∈ K and,
moreover,

10



2.2. VARIATIONAL INEQUALITIES OF THE SECOND KIND CHAPTER 2.

(Au, v − u) ≥ (f, v − u), (Av, u− v) ≥ (f, u− v).

We add these inequalities to see that

(Au− Av, v − u) ≤ 0,

then we use assumption A is strongly monotone with m to obtain u = v, which proves
the uniqueness part.

2.2 Variational Inequalities of the second kind

This section contains existence and uniqueness results for the solutions of variational
inequalities.

Definition 22 We consider the following variational inequality of the second kind
Find u ∈ K

a(u, v − u) + j(v) + j(u) ≥ (f, v − u) ∀v ∈ K
(2.3)

Where a(., .) : H × H −→ R bilinear continuous form, j : H −→ R a function, and

f ∈ H ′.

Theorem 23 Let K be a nonempty closed convex subset of a Hilbert space H.

If j : H −→ R is proper convex and lower semi continuous and a(., .)H × H −→ R is

coercive, then there exists a unique solution u ∈ K of the variational inequality (2.3).

Proof.

• Uniqueness:

Let u1 and u2 be two solution of (2.3) then we have

a(u1, v − u1) + j(v)− j(u1) ≥ (f, v − u1) ∀v ∈ K (2.4)

11



2.2. VARIATIONAL INEQUALITIES OF THE SECOND KIND CHAPTER 2.

a(u2, v − u2) + j(v)− j(u2) ≥ (f, v − u2) ∀v ∈ K (2.5)

Putting u2 for v in (2.4) and u1 for v in (2.5) and adding we get:

a(u1, u2 − u1) + a(u2, u1 − u2) ≥ (f, u2 − u1) + (f, u1 − u2)

α‖u1 − u2‖2 ≤ a(u1 − u2, u1 − u2) ≤ 0

=⇒ u1 = u2.

• Existence:

We defined the auxiliary problem for u fixed in K and ρ > 0{
Find w ∈ K
(w, v − w) + ρj(v)− ρj(w) ≥ −ρ(a(u, v − w)− (f, v − w)) + (u, v − w) ∀v ∈ K

(2.6)
The problem (2.6) has a unique solution if and only if w = PK(u − ρ(Au − f)),
where a(u, v) = (Au, v).
For each ρ we defined the map Tρ : u 7−→ w, where w is the unique solution (2.6).
We shall that Tρ has a fixed point.
It is enough to show that Tρ is uniformly strict contraction mapping i.e
‖Tρ(u1)− Tρ(u2)‖ ≤ C‖u1 − u2‖ ∀u1, u2 ∈ H, c < 1

‖w1 − w2‖ ≤ C‖u1 − u2‖ such that wi = Tρ(u1) , i = 1, 2

Then:

(w1, v−w1) + ρj(v)− ρj(w1) ≥ −ρa(u1, v−w1) + ρ(f, v−w1) + (u1, v−w1) (2.7)

(w2, v−w2) + ρj(v)− ρj(w2) ≥ −ρa(u2, v−w2) + ρ(f, v−w2) + (u2, v−w2) (2.8)

We take v = w2 and v = w1 respectively in (2.7) and (2.8) we obtain

−‖w1 − w2‖2 ≥ ρa(u1 − u2, w1 − w2)− (u1 − u2, w1 − w2)

=⇒ ‖w1 − w2‖2 ≤ −ρa(u1 − u2, w1 − w2) + (u1 − u2, w1 − w2) ≤

≤ (−ρA(u1 − u2) + (u1 − u2), w1 − w2) ≤ ((−ρA+ I)(u1 − u2), w1 − w2) ≤

≤ ‖−ρA+ I‖.‖u1 − u2‖‖w1 − w2‖

=⇒ ‖w1 − w2‖ ≤ ‖−ρA+ I‖.‖u1 − u2‖

12



2.2. VARIATIONAL INEQUALITIES OF THE SECOND KIND CHAPTER 2.

Then ∃ρ > 0 such that ‖I − ρA‖ < 1

‖(I − ρA)v‖2 = (v − ρAv, v − ρAv) = (v, v)− 2ρ(Av, v) + ρ2(Av,Av)

≤ ‖v‖2 − 2ρ(Av, v) + ρ2‖Av‖2

We use the coercivity (Av, v) ≥ α‖v‖2 =⇒ −2ρ(Av, v) ≤ −2ρα‖v‖2

then ‖(I − ρA)v‖2 ≤ ‖v‖2 − 2ρα‖v‖2 + ρ2‖A‖2.‖v‖2

≤ (1− 2ρα + ρ‖A‖2)‖v‖2

if ρ ∈
]
0,

2α

‖A‖2

[
=⇒ 1− 2αρ+ ρ2‖A‖2 < 1

=⇒ ‖I − ρA‖ < 1.
This proves that is Tρ uniformly a strict contracting mapping and hence has a unique
fixed point u, by Banach fixed point theorem 12.
Hence (2.3) has a unique solution.

Variational Inequalities with Operators

Definition 24 Let H be a Hilbert space with its inner product (., .), and let K ⊂ H be a

nonempty closed convex subset.

We call variational inequality of the second kind on the form:
Find u ∈ K such that

(Au, v − u) + ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ K
(2.9)

where A : K → H an operator and ϕ : K → R a function.

13



2.2. VARIATIONAL INEQUALITIES OF THE SECOND KIND CHAPTER 2.

Theorem 25 Let H be a Hilbert space, and let K ⊂ H be a nonempty closed convex

subset. We suppose a function ϕ : K → R is l.s.c convex, and a strongly monotone

Libschitz continuous operator A : K → H. Then the variational inequality (2.9) has a

unique solution.

Lemma 3 Assume that ϕ : K → R l.s.c convex function, where K ba a nonempty closed

convex subset of H. Then there exists an unique element u such that

(u, v − u) + ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ K

Proof. See [6]

Definition 26 [6] Let H be a Hilbert space, K ⊂ H be a nonempty closed convex subset

and ϕ : K → R is convex l.s.c function. Then, for any f ∈ H, the solution u of the

variational inequality:

(u, v − u) + ϕ(v)− ϕ(u) ≥ (f, v − u), ∀v ∈ K

is called the proximal element of f with respect to ϕ and it’s usually denoted proxϕ(f) = u.

Proof of theorem 25. Let ρ > 0 be a parameter to be chosen later. Since
ρϕ : K → R is again a convex lower semicontinuous function, we can define an operator
Sρ : K → K by

Sρ(v) = proxρϕ(−ρAv + v) ∀v ∈ K

Moreover, using proxϕ is nonexpansive we find that

‖Sρu− Sρv‖ ≤ ‖(u− v)− ρ(Au− Av)‖ ∀u, v ∈ K.

and using the m-strongly monotone and M-Lipschitz continuous of A

‖Sρu− Sρv‖2 = ‖(u− v)− ρ(Au− Av)‖2 ∀u, v ∈ K.

= ‖u− v‖2 − 2ρ(Au− Av, u− v) + ρ2‖Au− Av‖2

≤ (1− 2ρm+ ρ2M2)‖u− v‖2 ∀u, v ∈ K

14



2.2. VARIATIONAL INEQUALITIES OF THE SECOND KIND CHAPTER 2.

we know that M ≥ m. it is easy to see that if 0 < ρ < 2m
M2 then

0 ≤ 1− 2ρm+ ρ2M2 < 1.

Therefore, with this choice of ρ, it follows that

‖Sρu− Sρv‖ ≤ k(ρ)‖(u− v)‖

where k(ρ) =
√

(1− 2ρm+ ρ2M2) ∈ [0, 1[. Next, we use the Banach fixed point argument
to see that there exists u ∈ K such that

Sρu = proxρϕ(−ρAu+ u) = u.

Then, by Definition of the proximal operator we obtain

(u, v − u) + ρϕ(v)− ρϕ(u) ≥ (−ρAu+ u, v − u) ∀v ∈ K,

Since ρ > 0, we deduce from the above inequality that u is a solution of the variational
inequality (2.9), which proves the existence part of the theorem.
To show the uniqueness, assume there are two solutions u1, u2 ∈ K of the variational
inequality (2.9). Then,

(Au1, v − u1) + ϕ(v)− ϕ(u1) ≥ 0 ∀v ∈ K,

(Au2, v − u2) + ϕ(v)− ϕ(u2) ≥ 0 ∀v ∈ K,

Taking v = u2 in the first inequality, v = u1 in the second one and adding the resulting
inequalities, we find that

(Au1 − Au2, u1 − u2) ≤ 0.

We combine this inequality with A is m-strongly monotone to obtain u1 = u2, which
proves the uniqueness part of Theorem 25.
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2.3 Variational inequalities in Banach space

• dim < ∞

Theorem 27 (Hartman–Stampacchia’s Theorem) Let (V, ‖.‖) be a Banach space,

and let K be a nonempty compact convex subset of a finite dimensional space V . If we

suppose that A : K → V is a continuous mapping and ϕ : K → (−∞,+∞] is a proper

l.s.c convex function, then there exists at least one u ∈ K such that

(Au, v − u) + ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ K. (2.10)

Proof. We consider the proper l.s.c.convex function ϕ : K → (−∞,+∞] defined by

ϕ(v) =

{
j(v) if v ∈ K,
+∞ otherwise.

(2.11)

Let the operator T : K → K be defined by T (w) = Proxϕ(w −Aw + f), ∀w ∈ K, where
Proxϕ is the proximity operator with respect to ϕ. We first remark that, from the defi-
nition (2.11) of ϕ and the definition of the proximity operator, it follows that T (w) ∈ K,
∀w ∈ K. Then, by Definition 26, it follows that the inequality (2.10) is equivalent to
u = T (u).

The operators A and Proxϕ are continuous, hence T is itself on the compact convex
set K. Hence, from Schauder fixed point Theorem 14 or from Brouwer Theorem 13, it
follows that there exists at least one element u ∈ K such that u = T (u) which completes
the proof.

• Case K bounded

Theorem 28 Suppose that j : K → R is proper convex and l.s.c and a(., .)H×H → R is

continuous. In addition, we assume that the form a is positive and that the closed convex

set K is bounded. Then, the set of all solutions of the variational inequality (2.3) is a

nonempty, convex, and weakly compact subset of K.

16
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Proof. From Lemma 2, the set of all solutions of (2.3) is χ = ∩v∈KS(v) where

S(v) = {u ∈ K; a(v, v − u) + j(v)− j(u) ≥ (f, v − u)}.

The set χ being closed convex, it is weakly closed (i.e., it contains the limits of all weakly
convergent sequences {vn}n ⊂ χ) in V . On the other hand, as the set K is bounded and
weakly closed in V , by Corollary 20, it follows that it is weakly compact. Therefore, we
will prove that χ 6= ∅ by proving that the family {S(v)}v∈K has the finite intersection
property, i.e. any finite subcollectionKQ ⊂ K has nonempty intersection. Let {v1, . . . , vq}
be a finite part of K and KQ = K ∩ Q where Q is the finite dimensional space spanned
by the family {v1, . . . , vq}. Then, from Hartman-Stampacchia Theorem 27, it follows that
there exists a solution u ∈ KQ ⊂ K of the inequality

a(u, v − u) + j(v)− j(u) ≥ (f, v − u) ∀v ∈ KQ,

i.e., there exists u ∈ S(v), ∀v ∈ KQ, hence ∩v∈KQ
S(v) 6= ∅.

Proposition 29 Under the hypotheses of Theorem 28, if the set K is compact, then the

set of all solutions of the variational inequality (2.3) forms a nonempty compact convex

subset of K.

Proof. The set χ of all solutions of (2.3) is closed and convex.
In order to prove that it is nonempty, let T : K → K be the continuous operator defined
by T (w) = Proxj(w−Aw+ f), ∀w ∈ K, where the functional ϕ is defined by (2.11), and
A ∈ L(V, V ) is the operator associated with the bilinear continuous form a(., ), i.e.

(Au, v) = a(u, v) ∀u, v ∈ V (2.12)

Hence, by Schauder fixed point Theorem 14, it follows that there exists u ∈ K such that
u = T (u), that is

((u− Au+ f)− u, v − u) ≤ j(v)− j(u) ∀v ∈ K.

and thus, the set of the solutions of (2.3) is nonempty. Moreover, as χ is closed in the
compact set K, it follows that χ is compact.
Next, if we refer to the variational inequality of the first kind (2.1), then we have to
consider the continuous operator T : K → K defined by T (v) = PK(v−Av+f) where PK :

17
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V → K is the projection operator on the nonempty closed convex subset K. Therefore,
by taking into account the characterization of the projection given by 1.4, fromu u = T (u)

it follows
(u− (u− Au+ f), v − u) ≥ 0 ∀v ∈ K.

In fact, it is enough to remark that the projection operator is a particular case of the
proximity operator, namely PK = ProxIK , IK being the indicator function of K.

• Case K unbounded

However, the most interesting cases involve unbounded sets K. Existence results are
obtained by requiring that the form a is coercive on V (or, V-elliptic), that is, there exists
a positive constant α such that:

a(u, u) ≥ α‖u‖2 ∀u ∈ V.

18



Chapter 3

Generalized variational

inequalities

3.1 Existence and uniqueness

Let H be a real Hilbert space with its dual H ′, whose inner product and norm are
denoted by (.,.) and ‖.‖ respectively. Let K be closed convex set in H and A, g H → H
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3.1. EXISTENCE AND UNIQUENESS CHAPTER 3.

be a nonlinear operators. We now consider the problem{
Find u ∈ H, g(u) ∈ K such that
(Au, g(v)− g(u)) ≥ 0, for all g(v) ∈ K

(3.1)

which is known as the general nonlinear variational inequality problem.

Example[15]
We consider the third-order obstacle boundary value problem of finding u such that

−u′′′ ≥ f(x) on Ω = [0, 1]

u ≥ ψ(x) on Ω = [0, 1]

[−u′′′ − f(x)][u− ψ(x)] = 0 on Ω = [0, 1]

u(0) = 0, u′(0) = 0, u′(1) = 0.

(3.2)

where f(x) is a continuous function and ψ(x) is the obstacle function. We study the
problem (3.2) in the framework of variational inequality approach. To do so, we first
define the set K as

K = {u : u ∈ H2
0 (Ω) : u ≥ ψ(x) on Ω},

which is a closed convex set in H2
0 (Ω), where H2

0 (Ω) is a Sobolev (Hilbert) space. One
can easily show that the energy functional associated with the problem (3.2) is

I[v] = −
∫ 1

0

(d3v
dx3

)(dv
dx

)
dx− 2

∫ 1

0

f(x)
(dv
dx

)
dx, ∀dv

dx
∈ K

=

∫ 1

0

(d2v
dx2

)2
dx− 2

∫ 1

0

f(x)
(dv
dx

)
dx

= (Av, g(v))− 2(f, g(v)) (3.3)

where

(Au, g(v)) =

∫ 1

0

(d2u
dx2

)(d2v
dx2

)
dx (3.4)

(f, g(v)) =

∫ 1

0

f(x)
(dv
dx

)
dx

and g = d
dx

is the linear operator.
It is clear that the operator A defined by (3.4) is linear, g-symmetric i.e (Au, g(v)) =

(Ag(v), u) and g-positive i.e (Ag(v), g(v)) ≥ 0. Using the technique of Noor [11], one can
easily show that the minimum u ∈ H of the functional I[v] defined by (3.9) associated
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with the problem (3.2) on the closed convex-valued set K can be characterized by the
inequality of the type

(Au, g(v)− g(u)) ≥ (f, g(v)− g(u)), ∀g(v) ∈ K,

which is exactly the general variational inequality (3.1).
Special Cases:

1. For g(u) = u ∈ K, then the problem (3.1) is equivalent to finding u ∈ K such that

(Au, v − u) ≥ 0, for all v ∈ K (3.5)

This problem is originally due to Stampacchia [8] see also Lions and Stampacchia
[7].

2. If K∗ = {u ∈ H, (u, v) ≥ 0 for all v ∈ K} is a polar cone of the convex cone K in
H, then problem (3.1) is equivalent to finding u ∈ H, such that

g(u) ∈ K, Au ∈ K∗, < g(u), Au >= 0, (3.6)

which is known as the general nonlinear complementarity problem. Note the
symmetry role played by the mapping A and g, since K = K∗ = Rn

+.

3. If K = H, then problem (3.1) is equivalent to finding u ∈ H such that

(Au, g(u)) = 0; (3.7)

Problem (3.7) is known as the weak formulation of boundary value problems.

Remark 30 If NK(u) = {w ∈ H : (w, v − u) ≤ 0 for all v ∈ K} is a normal cone to

the convex set K at u, then the general variational inequality (3.1) is equivalent to finding

u ∈ H, g(u) ∈ K such that

−Au ∈ NK(g(u)),

which are known as the generalized nonlinear equations.
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The auxiliary problem

For a given u ∈ H, g(u) ∈ K, consider the problem of fonding a unique w ∈ H, g(w) ∈ K
such that

(ρAu+ g(w)− g(u), g(v)− g(w)) ≥ 0 for all g(v) ∈ K, (3.8)

where ρ > 0 is a constant.
Note that if w = u, then w is clearly a solution of the general variational inequality (3.1).

Remark 31 [11] We note that if the operator g is convex, i.e

g(λu+ (1− λ)v) ≤ λg(u) + (1− λv)g(v) ∀u, v ∈ K and λ ∈ [0, 1[,

then the auxiliary problem (3.8) is equivalent to finding the minimum of the functional

I[w] on the convex set K, where

I[w] =
1

2
(g(w)− g(u), g(w)− g(u)) + (ρAu, g(w)− g(u))

= ‖g(w)− (g(u)− ρAu)‖2. (3.9)

It can be easily shown that the optimal solution of (3.9) is the projection of the point

(g(u)− ρAu) onto the convex set K, that is

g(w(u)) = PK [g(u)− ρAu],

which is the fixed-point characterization of the general variational inequality (3.1),

see Lemma 4.

Lemma 4 The function u ∈ H, g(u) ∈ K is a solution of (3.1) if and only if u ∈ H

satisfies the relation

g(u) = PK [g(u)− ρAu],

where ρ > 0 is a constant and g is onto K.
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Proof. We assume that there exists a solution u∗ ∈ H, g(u∗) ∈ K of (3.1), then

(Au∗, g(v)− g(u∗)) ≥ 0⇐⇒ ρ(Au∗, g(v)− g(u∗)) ≥ 0, for all g(v) ∈ K

⇐⇒ (−ρAu∗, g(u∗)− g(v)) ≥ 0⇐⇒ (g(u∗)− ρAu∗ − g(u∗), g(u∗)− g(v)) ≥ 0

Hence
g(u∗) = PK [g(u∗)− ρAu∗].

From Lemma 4, we conclude that the problem (3.1) can be transformed into a fixed
point problem of solving

u = F (u),

where
F (u) = u− g(u) + PK [g(u)− ρAu]. (3.10)

Theorem 32 [10] Let the operators A, g : H → H be both strongly monotone with con-

stants α > 0, σ > 0 and Lipschitz continuous with constants with β > 0, δ > 0, respec-

tively. If

|ρ− α

β2
| <

√
α2 − β2k(2− k)

β2
, α > β

√
k(2− k), k < 1. (3.11)

where

k = 2(
√

1− 2σ + δ2), (3.12)

then there exists a unique solution u ∈ H, g(u) ∈ K of the general variational inequality

(3.1).

Proof. From Lemma 4, it follows that problems (3.10) and (3.1) are equivalent. Thus
it is enough to show that the map F (u) has a fixed point.
For all u, v ∈ H,

‖F (u)− F (v)‖ = ‖u− v − (g(u)− g(v)) + PK [g(u)− ρAu]− PK [g(v)− ρAv]‖

≤ ‖u− v − (g(u)− g(v))‖+ ‖PK [g(u)− ρAu]− PK [g(v)− ρAv]‖

≤ ‖u− v − (g(u)− g(v))‖+ ‖g(u)− g(v)− ρ(Au− Av)‖

≤ ‖u− v − (g(u)− g(v))‖+ ‖u− v + g(u)− g(v)− (u− v)− ρ(Au− Av)‖

≤ 2‖u− v − (g(u)− g(v))‖+ ‖u− v − ρ(Au− Av)‖ (3.13)
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where we have used the fact that the operator PK is nonexpansive.
Since the operator A is strongly monotone with constant α > 0 and Lipschitz continuous
with constant β > 0, it follows that

‖u− v − ρ(Au− Av)‖2 ≤ ‖u− v‖2 − 2ρ(Au− Av, u− v) + ρ2‖Au− Av‖2

≤ ‖u− v‖2 − 2ρα‖u− v‖2 + ρ2β2‖u− v‖2

≤ (1− 2ρα + ρ2β2)‖u− v‖2. (3.14)

In a similar way, we have

‖u− v − (g(u)− g(v))‖2 = ‖u− v‖2 + ‖g(u)− g(v)‖2 − 2(u− v, g(u)− g(v))

≤ ‖u− v‖2 + δ2‖u− v‖2 − 2σ‖u− v‖2

≤ (1− 2σ + δ2)‖u− v‖2 (3.15)

where σ > 0 and δ > 0 are the strong monotonicity and Lipschitz continuity constants of
the operator g.
From (3.13), (3.14), and (3.18), we have

‖F (u)− F (v)‖ ≤
(

2
√

1− 2σ + δ2 +
√

1− 2αρ+ β2ρ2
)
‖u− v‖

= (k + t(ρ))‖u− v‖, from(3.12) .

= θ‖u− v‖, (3.16)

where
t(ρ) =

√
1− 2αρ+ ρ2β2. (3.17)

and
θ = k + t(ρ). (3.18)

From (3.11), it follows that θ < 1, which implies that the map F (u) has a fixed point, by
the Banach fixed point (theorem12) which is the unique solution of (3.1).

24



3.2. APPROXIMATION SCHEMES FOR SOLVING THE GENERAL
VARIATIONAL INEQUALITY CHAPTER 3.

3.2 Approximation schemes for solving the general vari-

ational inequality

Now using the auxiliary principle technique
For a given u ∈ H, compute the approximate solution {un} by the iterative schemes

(ρAun + g(yn)− g(un), g(v)− g(yn)) ≥ 0, ∀g(v) ∈ K

(ρAyn + g(wn)− g(yn), g(v)− g(wn)) ≥ 0, ∀g(v) ∈ K

(ρAwn + g(un+1)− g(wn), g(v)− g(un+1)) ≥ 0, ∀g(v) ∈ K

where ρ > 0.
Using Lemma 4, then can be written

g(yn) = PK [g(un)− ρAun]

g(wn) = PK [g(yn)− ρAyn]

g(un+1) = PK [g(wn)− ρAwn]

If g is inversible, then

g(un+1) = PK [I − ρAg−1]PK [I − ρAg−1]PK [I − ρAg−1]g(un),

Algorithm 1

yn = (1− γn)un + γn{un − g(un) + PK [g(un)− ρAun]} (3.19)

wn = (1− βn)un + βn{yn − g(yn) + PK [g(yn)− ρAyn]} (3.20)

un+1 = (1− αn)un + αn{wn − g(wn) + PK [g(wn)− ρAwn]} (3.21)

where 0 ≤ αn, βn, γn ≤ 1; for all n ≥ 0 and
∑∞

n=0 αn =∞.

Remark 33 1. For γn = 0 in (3.19), Algorithm 1 reduces to the Ishikawa iterative

sheme for the generale variational inequality (3.1).
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2. For γn = 0 and βn = 0, Algorithm 1 is called the Mann iterative method for (3.1).

3. For g = I, Algorithm 1 reduces to the following Algorithm for variational inequality

(3.5):

yn = (1− γn)un + γnPK [un − ρAun]

wn = (1− βn)un + βnPK [yn − ρAyn]

un+1 = (1− αn)un + αnPK [wn − ρAwn],

where 0 ≤ αn, βn, γn ≤ 1; for all n ≥ 0 and
∑∞

n=0 αn =∞.

Theorem 34 [10] Let the operators A, g satisfy all the assumptions of Theorem 32. If

the condition 3.11 holds, then the approximate solution {un} obtained from Algorithm 1

converges to the exact solution u of the general variational inequality (3.1) strongly in H,

for 0 ≤ αn, βn, γn ≤ 1; for all n ≥ 0 and
∑∞

n=0 αn =∞.

Proof. From Theorem 32, we see that there exists a unique solution u ∈ H of the general
variational inequality (3.1). Let u ∈ H be the unique solution of (3.1). Then, using
Lemma 4, we have

u = (1− αn)u+ αn{u− g(u) + PK [g(u)− ρAu]} (3.22)

= (1− βn)u+ βn{u− g(u) + PK [g(u)− ρAu]} (3.23)

= (1− γn)u+ γn{u− g(u) + PK [g(u)− ρAu]} (3.24)

From (3.19) and (3.22), we have

‖un+1 − u‖ = ‖(1− αn)(un − u) + αn(wn − u− (g(wn)− g(u)))

+ αn{PK [g(wn)− ρAwn]− PK [g(u)− ρAu]}‖

≤ (1− αn)‖un − u‖+ 2αn‖wn − u− (g(wn)− g(u))‖

+ αn‖wn − u− ρ(Awn − Au)‖

≤ (1− αn)‖un − u‖+ 2αn(k + t(ρ))‖wn − u‖

using (3.12) and (3.14) ,

= (1− αn)‖un − u‖+ αnθ‖wn − u‖, using (3.18).

(3.25)
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In a similar way, from (3.20) and (3.23), we have

‖wn − u‖ ≤
(

1− βn
)
‖un − u‖+ 2βnθ‖yn − u− (g(yn)− g(u))‖

+ βn‖yn − u− ρ(Ayn − Au)‖

≤
(

1− βn
)
‖un − u‖+ βn(k + t(ρ))‖yn − u‖,

using (3.12) and (3.14) ,

≤
(

1− βn
)
‖un − u‖+ βnθ‖yn − u‖ (3.26)

and from (3.21) and (3.24), we obtain

‖yn − u‖ ≤
(

1− γn
)
‖un − u‖+ γnθ‖un − u‖, using (3.18) ,

≤
(

1− (1− θ)γn
)
‖un − u‖

≤ ‖un − u‖. (3.27)
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Conclusion

The aim of this research is to examine the General Variational inequalities in terms of
existence and uniqueness solution, and also classical form that denoted by VI, which has
been discussed in chapter two of this study. The result has revealed that there is an
existence and uniqueness solution under specific conditions. Then, we move to build an
algorithm that depends on the projection method. Finally, we proposed a model for GVI.
GVI means general variational inequalities. It has been shown that general variational
inequalities provides a unified, simple, and natural framework to study a wide class of
problems, which this study has utilised to conduct our issues.

For the perspectives, it would be interesting to find:

1. Weakning the assumtions on α, β, σ, and δ in the main theorem.

2. Extend the study to time dependent problems.

3. Existence of solutions to more general situation as Banach case, quasi-variational
inequalities.
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Abstract 

            The aim of this research is to examine the General Variational inequalities in terms of 

existence and uniqueness solution, and also classical form that denoted by VI, which has 

been discussed in  chapter two of this study. The result has revealed that there is an 

existence and uniqueness solution under specific conditions. Then, we move to build an 

algorithm that depends on the projection method. Finally, we proposed a model for GVI. 

           Key words: Variational inequalities; convergence; fixed point. 

 

L'objectif de cette recherche est d'examiner les inéquations variationel générale en termes 

d'existence et l’unicité de solutions, ainsi que la forme classique décrite par VI, qui a été 

abordée au chapitre deux de cette étude. Le résultat a révélé qu'il existe une solution 

unique dans des conditions spécifiques. Ensuite, nous développons un algorithme qui 

dépend de la méthode de projection. Enfin, nous avons proposé un modèle pour GVI. 

Mots clés : Inequations variationel; convergence; point fixe. 

 

قمنا في هذه الأطروحة بدراسة المسائل التغيراتية العامة، بتقديم شروطا على وجود الحل ووحدانيته، مرورا بالمسائل 

التغيراتية العادية، وبعد ذلك إنتقلنا إلى تكوين خوارزمية تتقارب بقوة نحو الحل الذي يحقق المتراجحة التغيراتية العامة 

GVIعلى ذلك . وفي الأخير قدمنا نموذجا. 
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