

Figure 1: Elan du Puits RAA-1 (Réservoir Trias Série Inférieure)

Figure 2: Courbes de perméabilité relative eau-huile

Figure 3: Réseau-huile champ RAMA-RAA

Figure 4: EPF RAMA

Figure 5 : Profils de production d'huile – Champ RAA

RAMA Débit huile (m3/h)			Ecart	Débit gaz	Observation
11-mars	12-mars	13-mars		(m3/h)	
8,1	16,5	40,7	24,2	4224	
69,6	63,0	52,4	-10,5	4344	
67,9	66,8	73,9	7,1	7400	
38,7	32,8	16,7	-16,2	4925	
46,1	44,8	45,9	1,2	5223	

Tableau 1 : Production de l'EPF de RAMA-RAA

Bibliographie

[1]Boyun GUO William C Ali Ghalam BOR, 2007 Petroleum Production Engineering Edition: Elsevier Science & Technology Books, ISBN: 0750682701

[2]D. Perrin, M. Caron, G. Gaillot : (1995). La production fond, Editions Technic,

[3]EXPRO PTI(company) :2016,Technical proposal sonatrach early production oil processing system for RAA & RAMA Block Algeria ;

[4]H. Dale Beggs, 2003, Production Optimization Using Nodal Analysis Edition: OGCI et Petroskills, ISBN: 0-930972-14-7

[5]Ken Arnold AMEC Paragon Maurice, 2008, Surface Production Operations Design of Oil Handling Systems and Facilities Edition: Elsevier, ISBN: 978-0-7506-7853-7

[6]L. Mailhe Cours de production tome 13 : Collecte-Traitement-Stockage Edition: technip ISBN : 2.7108-0239-2

[7]SCHLUMBERGER, (2006).PIPESIM Fundamentals, Training and Exercise Guide,

[8]SONATRACH, 2016, Plan de developpement du champ d'huile de RAHLET AL AOUDA(RAA) ;

[9] SONATRACH, 2016 departement de geologie

I.1.SITUATION GEOGRAPHIQUE

Le gisement de Rahlet El Aouda a été découvert en 2010, il se trouve, à 65Km au Nord-est de gisement de Rhourde Chegga, et à 10km et 28km à l'Est des gisements de BirSbâa (BRS) et de Mouia Ouled Messaoud (MOM). Il est situé dans le périmètre de Touggourt Est (blocs : 415a/ 424b) dans le bassin d'Amguid Hassi Messaoud.

Figure I.1 : Situation du champ RAMA-RAA [9]

I.2. ASPECT GEOLOGIQUE

I.2.1.Cadre géologique

La région d'étude se trouve dans un environnement pétrolier très favorable compte tenu de sa position contiguë au gisement de Hassi Messaoud lui conférant ainsi un intérêt tout particulier ajouter à cela les découvertes d'huile obtenues dans les gisements de HBHJ ; MOM ; BRS. Le réservoir Trias (Série Inférieure) est le principal réservoir du périmètre de RAA, il a été découvert en 2010 par le premier puits RAA-1 dont la profondeur finale est de 4240m. Le réservoir Grès d'Ouargla a été découvert en 2014 par le puits RAA-2 dont la profondeur finale

est de 4223m, Il reste un objectif secondaire pour d'éventuelles investigations et développement. Le réservoir Quartzites de Hamra constitue un objectif secondaire.

I.2.2.Cadre structural

La structure de RAA a été découverte par les puits RAA-1, RAA-2 et RAMA-1. Elle est formée d'un ensemble de blocs bordé essentiellement par des failles de direction NE–SO et N-S auxquelles s'ajoutent des failles secondaires de direction Est-Ouest.

Le puits RAA-2 est positionné sur un axe structural haut tandis que les puits RAA-1 et RAMA-1 sont situés sur le flanc des structures.

La structure actuelle du gisement de Rahlet El Ouada (RAA) est formée par un ensemble de structure de surface moyenne. L'une se trouve dans la zone du puits RAA-2. La seconde structure se trouve à l'ouest du puits RAA-2.

Les flancs sont limités par des grands accidents qui font partie du système très complexe de la dorsale Amguid-Hassi Messaoud

Figure I.2: Elan du Puits RAA-1 (Réservoir Trias Série Inférieure) [9]

I.3. SYSTEME PETROLIER

Piège : Sa structure est définie comme étant un piège de type structural mixte.

🗢 Réservoirs :

- **Trias** (Série inférieure) : Ce sont des grés gris blancs à gris clair, rarement gris sombre moyens à grossiers silico-argileux moyennement consolidés.
- Ordovicien (Quartzites de Hamra) : Ce sont des grés quartzitiques à quartzites blanches à beige clair, massives, compact et durs, présence de tigillites ; présence de fissures sub-verticales à subhorizontales semi ouvertes à fermées.
- Couvertures : La couverture régionale est assurée par les argiles du Trias argileux inférieur qui constituent une couverture pour le réservoir Triasique (Série Inférieure) et l'Ordovicien (Grés d'Ouargla+Quartzites de Hamra).

I.4. PROPRIETES PETROPHYSIQUES ET RESERVES EN PLACE

Le périmètre de Rahlet El Aouda est caractérisé par de bonnes propriétés pétrophysiques. Les cutoff pris en considération sont définis comme suit :

- Une Porosité effective de 5%
- Une Saturation en eau (Sw) de 50%
- Un volume d'argile de 45%.

Les volumes d'huile en place du gisement de Rahlet El Aouda (RAA), sont résumés dans le tableau suivant :

Réservoir	Prouvés (10 ⁶ Sm ³)	Probables (10 ⁶ Sm ³)	Volume en 2P (10 ⁶ Sm ³)	Possibles (10 ⁶ Sm ³)	Volume en 3P (10 ⁶ Sm ³)
Trias SI	7.94	20.55	28.49	49.53	78.02
Grés de Ouargla	10.97	5	15.97	-	-
Total	18.91	25.55	44.46	28.43	

Tableau I.1 : Volumes d'huile en place du gisement de Rahlet El Aouda

I.5. CONTACTS DES FLUIDES

L'évaluation pétro physique pour trois puits au niveau du réservoir Triasique Sérié inférieure a

permis de mettre en évidence les différents contacts par compartiment.

Le tableau suivant résume les contacts utilisés lors de cette évaluation :

Tableau I.2 : Contacts des fluides

Puits de référence	OWC (m)
RAA1	-3842.5
RAA2	-3812
RAMA1	-3876

[9]

II.1. GENERALITES SUR LE RESEAU DE COLLECTE

L'effluent brut recueilli en surface doit être transporté et expédié vers les centres de traitement par un réseau de conduites munies par des accessoires de ces conduites, l'ensemble de ces conduites et ses accessoires est appelé réseau de collecte.

Les lignes de collecte transportent presque toujours un effluent poly phasique où les lois d'écoulement sont complexes et les pertes de charge sont importantes.

Les conduites sont classées comme suit :

a)-Selon leur destination :

- Conduites d'huile.
- Conduites de gaz.
- Conduites d'eau.

b)-Selon leur pression de service :

- à basse pression : 0-6 bars.
- à pression moyenne : 6-16 bars.
- à haute pression : > 16 bars.

c)- Selon le caractère du mouvement hydraulique :

- Conduites forcées (la section est remplie complètement).
- Conduites gravitaires (la section est remplie partiellement)

II.2. ECOULEMENT MULTIPHASIQUE

On appelle un écoulement multiphasique tout déplacement d'un effluent dans lequel plusieurs phases sont en présence, c'est le cas des écoulements des fluides pétroliers du fond du puits aux installations de séparation sur champ. Les phases qui existent dans ce type d'écoulement sont le gaz, l'huile ou le condensât, l'eau de gisement ainsi que des solides (sables et argiles ...). Dans notre étude, l'écoulement multiphasique est assimilé à un écoulement diphasique, se composant d'une phase gazeuse et d'une phase liquide. [1]

II.2.1. Types d'écoulement

- a)-Ecoulement avec bulle (bubble flow)
- b)-Ecoulement avec bouchant (plug flow)
- c)-Ecoulement stratifié (stratified flow)
- d)-Ecoulement avec vagues (wavy flow)

Chapitre II : Généralité sur le réseau de collecte et l'EPF

- e)-Ecoulement avec vagues moutonnantes (slug flow)
- f)-Ecoulement annulaire (annular flow)
- g)-Ecoulement brouillard (spray flow)

Figure II.1 : Types d'écoulement horizontal

II.2.2. Variation de la pression le long d'une conduite

L'analyse physique des phénomènes conduit à écrire que pour un écoulement diphasique la variation de pression le long de la conduite est comme pour un écoulement monophasique égal à la somme de trois termes :

$$\left(\frac{dP}{dl}\right)_{\text{totale}} = \left(\frac{dP}{dl}\right)_{accélération} + \left(\frac{dP}{dl}\right)_{élévation} + \left(\frac{dP}{dl}\right)_{friction}$$

L'équation spécifique pour un écoulement monophasique représenté par trois termes est écrite comme suite :

$$\left(\frac{dP}{dl}\right)_{totale} = \frac{g}{g_c}\rho\sin\theta + \frac{f\rho V^2}{2g_c D} + \frac{\rho V.dV}{g_c dl}$$

Pour un écoulement multiphasique ou diphasique, l'équation est comme suite :

$$\left(\frac{dP}{dl}\right)_{totale} = \frac{g}{g_c}\rho_m \sin\theta + \frac{f_m \rho_m V_m^2}{2g_c D} + \frac{\rho_m V_m dV_m}{g_c dl}$$

Où :

- $\rho_{m\,:}$ la densité du mélange.
- V_m : la vitesse du mélange.
- D : diamètre du pipe.
- g_{c} : facteur de conversion.
- $f_m\colon$ facteur de frottement du mélange. Il est

fonction de R_e , ϵ , D.

- g : Accélération de la gravité (9,81 m/s²).
- θ : Pente de la conduite.

Dans le tableau suivant, on a présenté le pourcentage de chaque terme dans les pertes de charges totales dans un système de production (tubing).

Composante	Puits à huile	Puits à gaz
Elévation	70% - 90%	20% - 50%
Friction	10% - 30%	30% - 50%
Accélération	0% - 10%	0% - 10%

 Tableau II.1 : Pourcentage de chaque terme de pertes de charge

-Le terme d'accélération qui correspond à la variation de l'énergie cinétique de la masse fluide, est d'une façon générale négligeable dans les écoulements monophasique pétroliers. Il est basé sur le changement de la vitesse entre différentes positions dans le pipe, ce terme est proche de zéro.

$$\left(\frac{dP}{dl}\right)_{accélération} = \frac{\rho_m V_m dV_m}{g_c dl}$$

-Le terme d'élévation ou gravité est indépendant du débit de fluide et dépend seulement des dénivellations de la conduite. Il est égal au poids de la colonne de fluide. Ce terme est très souvent négligeable devant le terme de perte de charge pour un écoulement permanent de gaz.

$$\left(\frac{dP}{dl}\right)_{elevation} = \frac{g}{g_c} \rho_m \sin\theta$$

-Le terme de friction due aux forces de frottements.

$$\left(\frac{dP}{dl}\right)_{friction} = \frac{f_m \rho_m V_m^2}{2g_c.D}$$

II.2.3.Liquid hold-up

Dans une ligne de collecte caractérisée par des points bas avec des dénivelés importants, le problème de Liquide Hold-up peut se manifeste. Si on a des vitesses faibles du fluide circulant, sa partie lourde (l'eau) a tendance de stagner dans ces points bas, ce qui réduit la section de passage de la conduite et par conséquence, les pertes de charges augmentent dans la conduite. **[1]**

Figure II.2 : Liquide hold up

II.2.4. Régimes d'écoulement à travers la duse

La duse permet de contrôler le débit de production en ajustant la pression de tête voulue, tout en considérant les contraintes Réservoir - Puits- Réseau.

a)-Régime critique

Ce régime est obtenu lorsque le rapport de la pression en amant (P_{pipe}) de la duse sur la pression en aval ($P_{téte}$) est inférieur au point critique. A Hassi Messaoud, on utilise l'équation suivante :

$$Q = \frac{\phi^{1,8}}{1000.K} P_t$$

Avec **Q** : débit d'huile (m^3/hr) .

- \emptyset : diamètre de la duse (mm).
- **Pt** : pression de tête (bar).
- K : constante déterminée lors du dernier jaugeage.

b)-Régime transitoire

C'est la zone où le point critique n'est pas bien déterminé. Il apparaît dans l'intervalle

$$0,5 < \frac{P_P}{P_t} < 0,75$$

c)-Régime non critique

Lorsque l'écoulement à travers la duse est non critique, la pression de tête augmente et le débit de production diminue avec l'augmentation de la pression de pipe, et inversement. Donc toute variation de la pression avale duse (Pp.), fait varier la pression amont (Pt.).

$$Q = \frac{F(x)\phi^{1,8}}{1000.K}P_{1}$$

Avec F(x): fonction du rapport Pp/Pt.

$$F(x) = 2,667 * \frac{P_P}{P_t * \sqrt{1 - \left(\frac{P_P}{P_t}\right)}} \dots (Pp/Pt > 0.75)$$

Figure II.3 : Régimes d'écoulement à travers la duse

II.3.GENERALITES SUR L'EPF

L'EPF est une installation complète de production de pétrole, de gaz et de l'eau produite. La gamme de taille est généralement comprise entre 5000 et 6000 barils par EPF.

Les EPFs sont très important pour les compagnes pétrolières en raison de la nécessité d'obtenir un champ ou une partie d'un champ sur la ligne de production dans un minimum de temps.

Les domaines d'application des EPFs sont nombreux à savoirs:

- peuvent être utilisés pour les petites réserves qui seraient financièrement risquées ou non rentables pour produire avec une installation de production permanente
- ↓ pour les puits à faible pression de tête.
- ils fournissent également des données de production en temps réel permet aux clients d'évaluer la performance des réservoirs avant d'installer des installations permanents.

Un EPF est constitué essentiellement d'une unité de séparation, unité de stockage, une unité de pompage et possible d'une unité de compression et une unité de stabilisation (comme dans ce projet).

II.3.1. La séparation

C'est une opération qui consiste à séparer l'effluent de certain constituant pour rendre l'huile commercialisable selon les spécifications internationales

Tout au long du cheminement la pression et la température baissent simultanément. Si la température diminue le dégazage diminue également ; si la pression baisse la libération des gaz augmente. La Chute de pression et augmentation de température ont même effet.

La séparation des diverses phases constituant un effluent de puits déterminé se réalise dans un type groupe d'appareil appelé séparateurs. Selon le type d'effluent à traiter (gazeux ou liquide), il existe différent types de séparateurs.

a)-Séparateur horizontal

Ils sont très utilisés pour les puits à GOR élevé car ils ont une très bonne surface d'échange.

Ces séparateurs sont en général d'un diamètre plus petit que les séparateurs verticaux pour une même quantité de gaz et présentent une interface plus large entre gaz et liquide.

L'huile gazée arrive à une extrémité et est projetée sur un déflecteur brisant l'émulsion. Par différence de densité, l'huile tombe au fond du cylindre, le gaz s'accumulant dans la partie supérieur. Le gaz traverse un certain nombre de chicanes qui retiennent les gouttelettes d'huile,

puis à travers un dernier tamis dit « extracteur de brouillard» ; avant de partir par une sortie supérieure. L'huile est soutirée à la partie inférieure.

Figure II.4 : Vue éclaté d'un séparateur tri phasique

b)-Séparateur vertical

Ces séparateurs sont constitués par un cylindre vertical terminé par fonds bouchés.

L'arrivée de l'effluant s'effectué, en général tangentiellement à une circonférence et à peu près mi-hauteur du séparateur. L'effluent se sépare par gravité, l'huile descend en hélice le long de paroi et le gaz montant à la partie supérieur en passant à travers un tamis extracteur de gouttelettes et évacué à la partie supérieure en passant à travers une vanne automatique de contrôle de pression. L'huile est évacuée à la partie inférieure à travers une vanne automatique d'huile commandée par un flotteur.

Figure II.5 : Vue détaillée d'un séparateur vertical

II.3.2. La distillation

On va introduire quelques paramètres généraux qui régissent l'ensemble de la conduite d'une colonne tels que la Volatilité d'un corps, le Bilan Matière (Material Balance), le Bilan Thermique (Heat Balance) de la colonne.

-La volatilité

La **Volatilité** est une des propriétés particulières des fluides qui permet d'appliquer le procédé de Distillation. Le corps est dit d'autant plus volatil qu'il se vaporise à température plus basse. La température de vaporisation ne dépend que de la pression, autrement dit il y a une température de vaporisation pour chaque pression

-Transfert de chaleur et transfert de la matière

En fonctionnement 'normal', toute la matière qui entre dans la tour en ressort. C'est une application directe du principe de conservation bien connu : 'rien ne se perd, rien ne se crée, tout se transforme'.L'énergie apportée dans la colonne est également soumise au principe de conservation. L'énergie est apportée dans la colonne sous forme de chaleur. Par conséquent, le bilan de l'énergie correspond au bilan thermique et la chaleur entrant dans une colonne doit correspondre à la chaleur extraite de celle-ci.

Figure II.6 : Schéma de principe de bilan thermique

II.3.2.1. Equipements auxiliaires

a).Rebouilleur

Dans une colonne de rebouilleur, la charge préchauffée pénétrant la colonne est mise en contact avec les vapeurs s'élevant du fond de la colonne. Les vapeurs s'élevant du fond de la colonne sont générées dans le rebouilleur. Ces vapeurs extraient les composants plus légers du liquide sur

Chapitre II : Généralité sur le réseau de collecte et l'EPF

chaque plateau. Au fond de la colonne, seules demeurent les fractions plus lourdes. Le rebouilleur correspond souvent à une unité distincte placée à côté de la colonne. Il s'agit d'un échangeur thermique fournissant de la chaleur au fond de la colonne.

Figure II.7 : Composition d'un rebouilleur

b).Condenseur

Un procédé de condensation correspond au processus inverse d'un procédé de rebouillage. Les condenseurs sont utilisés pour le refroidissement d'une vapeur.

Le condensat (vapeurs condensées) transite du condenseur vers un accumulateur, une partie du condensat est éliminé sous forme de produit et une autre partie est ré-pompée dans la colonne sous forme de reflux. Le reflux pénètre la colonne par la tête de colonne.

Figure II.8 : Composition d'un condenseur

c).Echangeur

L'échangeur est un dispositif permettant de transférer de l'énergie thermique entre deux fluides, habituellement séparés par une paroi solide. Des différents types existent :

-*Echangeur à plaque* : Il est constitué d'un ensemble de plaques métalliques embouties à travers des quelles s'effectue le transfert de chaleur entre deux fluides.

-*Echangeur tubulaire* : Un des fluides circule dans un faisceau de tubes monté sur deux plaques tubulaires. Ce faisceau est logé dans une calandre munie de tubulures d'entrées et de sortie pour le fluide circulant à l'extérieur des tubes du faisceau. Ce fluide suit un trajet imposé entre les chicanes.

Figure II.9 : Principe de l'échangeur tubulaire

II.3.3. Le pompage

Les pompes, en tant qu'appareils permettant de véhiculer les liquides, sont les pièces maîtresses qui donnent la vie aux unités de traitement ou de fabrication. L'énergie fournie au liquide est transformée en une augmentation de pression du liquide pour lui permettre de vaincre la résistance au refoulement de la pompe.

On peut diviser Les pompes en deux catégories principales

Les pompes centrifuges : Le mouvement du liquide résulte de l'accroissement d'énergie qui lui est communiqué par la force centrifuge.

Figure II.10 : Pompe centrifuge

Les pompes volumétriques : L'écoulement résulte de la variation d'une capacité occupée par le liquide.

Figure II.11 : Pompe volumétrique

II.3.4. La compression

Les compresseurs sont des équipements mécaniques permettant d'élever la pression d'un gaz.

Les applications des compresseurs sont très diversifiées.

La compression des gaz a un objectif de base, la livraison d'un gaz sous une pression supérieure à la pression existant à l'origine.

- ✤ pour transporter et distribuer un gaz, comme dans les pipelines de gaz naturel
- pour créer des conditions plus favorables à certaines réactions chimiques

Chapitre II : Généralité sur le réseau de collecte et l'EPF

On peut diviser les compresseurs en quatre catégories principales :

- **4** Alternatif (volumétrique)
- **k** Rotatif (volumétrique)
- **4** Centrifuge
- Axial-flow

Pour effectuer la sélection d'un compresseur il est nécessaire de disposer les données suivantes :

- 1. caractéristiques du gaz
- 2. condition d'admission et pression de refoulement
- 3. type d'entraînement
- 4. condition de fonctionnement du système d'entraînement [6]

Figure II.12 : Exemple d'un compresseur

III.1. INTRODUCTION

L'optimisation de la production consiste a étudié la chaine de production à partir du réservoir jusqu'aux bacs de stockage. A l'aide du logiciel **PIPESIM**, nous modéliserons d'abord l'ensemble des puits. La modélisation comporte plusieurs aspects:

- Le modèle réservoir.
- ✤ Les données PVT.
- ✤ La complétion.
- ∽ Le choix de la corrélation de l'écoulement vertical.

III.2. MODELE RESERVOIR

Pour tracer la courbe de l'IPR on utilise soit:

L'équation de l'écoulement monophasique (DARCY) pour Pb < Pwf:

$$Q_0 = IP (P_r - Pwf)$$

- ↓ L'équation d'écoulement diphasique (VOGEL) pour Pr <Pb.
- L'équation d'écoulement combiné DARCY et VOGEL pour: Pwf<Pb <Pr.

Pour qu'on puisse tracer les courbes IPR de nos puits, nous devons utiliser les données des tests qui ont été effectués sur eux. Puis on sélectionne les débits d'huile Qo tel que Qo<Qo max et on détermine les pressions de fond dynamique Pwf, correspondantes, ensuite on porte les points obtenus sur le graphe Pwf=f(Qo) [2]

III.3. LES DONNEES DES ESSAIS DES PUITS

Les mesures de pression et de température dont on dispose étaient réalisées au niveau des sièges. Donc les valeurs de pression et de température du fond statique et dynamique doivent être corrigées, nous procédons comme suit:

Pf (Perfos)=Pf (gauge) + [(DP/Dh) *(côteperfos-côte gauge)] [4]

Puits	Côte (m)		Pressio	n mesurée (l	Pression corrigée (kg/cm2)		
T unto	Mid perf M		Pt	Pfd	Pg	Pfd	Pg
RAA1	3969.5	3672	51.15	275.52	557.96	294.54	578.41
RAA2	3924	3845	40.94	272.47	547.38	276.8	551.98
RAMA1	4008.5	3982	178.3	415	571.8	416.43	573.53
NRAA1	3871	3836	47.22	288.94	563.23	291.27	565.72
ERAA1	3940	3870	223.97	467.71	576.17	471.94	580.7

Tableau III.1 : Données des essais des puits[8]

III.4. LES DONNEES PVT

Le modèle utilisé est le modèle Black Oil, les données nécessaires pour créer ce modèle sont résumées dans le tableau suivant :

Puits	RAA1	RAA2	RAMA1	NRAA1	ERAA1
Pb (kg/cm2)	161	156.5	254	137.6	207.2
Во	1.509	1.49	1.873	1.478	1.771
Rs (sm3/sm3)	139	137.1	274.5	126.4	240
Bob	1.56	1.577	1.977	1.57	1.913
μob (Cp)	0.28	0.42	0.17	0.31	0.18
μgb (Cp)	0.0179	0.0184	0.0251	0.0174	0.0205
Z	0.861	0.834	0.866	0.867	0.835
ΑΡΙ	41.08	41.44	40.98	41.17	40.79
SGg	1.073	1.093	0.941	1.137	1.01

Tableau III.2 : Données PVT [8]

III.5. CHOIX DE LA CORRELATION DE L'ECOULEMENT VERTICAL

De nombreuses corrélations ont été établies sur les écoulements tri-phasique dans le tubing, dont certaines sont générales et d'autres sont limitées à un domaine d'application réduit. Parmi les corrélations utilisées:

- > La corrélation de Beggsand Brill original(**BBO**)
- La corrélation de Hagedorn and Brown(**HB**)
- La corrélation d'Orkiszewski (ORK)
- La corrélation OLGAS 2-phase/OLGAS 3-phase

Pour tous les puits on a la même corrélation utilisée ; c'est la corrélation OLGAS.

III.6.REPRODUCTION DES PERFORMANCES ACTUELLES DES PUITS

En utilisant l'analyse nodale, nous allons étudier la performance actuelle des puits. On fait le calage des puits, en injectant les données relevées lors des derniers jaugeages.

Puits	RAA1	RAA2	RAMA1	NRAA1	ERAA1
Diam. Duse (mm)	12.7	12.7	12.7	12.7	12.7
Débit huile (sm3/J)	123.36	127.92	39.12	264	577.44
GOR (sm3/sm3)	113.92	103.09	131.78	88.3	128.44
Pt (kg/cm2)	36	36.7	39.65	55	161.14
Débit eau (sm3/J)	0	0	0	0	0

Tableau III.3 : Données des derniers jaugeages[8]

III.7. EXEMPLE DE CALCUL

On a introduit les données du puits **ERAA1** dans le logiciel PIPESIM. Et utilisé l'équation de DARCY. On a exécuté le modèle en utilisant l'option « Performing a pressure/Température profil », puis déterminé un débit de **486 sm3/j** pour les pressions suivantes : Pt=214 kg/cm2, Pf=471 kg/cm2, Pg=580 kg/cm2. On sélectionne l'opération « Nodal analysis », en fixant la pression de pipe « Out let pressure », Pp=23 kg/cm2, puis exécute le modèle. et fait le calage des puits, en injectant les données relevées lors du dernier jaugeage. On obtient un débit de **578 sm3/j** pour une pression du fond égale à **400 barg**.

Figure III.1 : IPR et TPC du puits ERAA1 après calage du modèle

Après le calage du modèle, on a fait des différentes sensibilités sur le diamètre de la duse, le GOR, la et la Pt .Ces sensibilités donnent des courbes in flow avec des courbes out flow.

Figure III.3 : Sensibilité sur le GOR

Chapitre III : Modélisation des puits

On remarque que le débit d'huile augmente considérablement avec l'augmentation du diamètre de la duse et diminue avec l'augmentation de GOR donc le puits ERAA1 est très sensible à la variation du diamètre de la duse et GOR.

Les intersections de l'in flow et l'out flow dans le graphe **Fig.III.4** donnent les points de fonctionnement pour chaque pression de tête. La série de ces points nous permet d'obtenir la courbe de tendance que l'on assimile mathématiquement à une équation polynomiale de degré 2 avec un coefficient R^2 proche de 1.

On remarque que le puits ERRA1 est très sensible au changement de la pression de tête.

Figure III.5 : Courbe de tendance pour Qh=f(Pt) du puits ERAA1

IV.1. INTRODUCTION

Après l'optimisation des puits, on va modéliser le système de production, en reliant les modèles des puits déjà créés précédemment on va faire une étude d'optimisation afin d'avoir le moins de perte de charges possibles tout en maximisant le débit et cela dans le but d'avoir une marge pour prolonger le plateau de production.

IV.2. STRUCTURE DE RESEAU

On utilise le module NETWORK dans le PIPESIM pour modéliser le réseau. Ce dernier est constitué de 5 puits :

- 3 puits (RAA2 et NRAA1 et ERAA1) reliés au manifold RAA_M1.
- 2 puits (RAA1 et RAMA1) reliés au manifold RAA_M2.

Figure IV.1 : Structure du réseau dans le PIPESIM

Chapitre IV : Modélisation et optimisation du réseau

Pipe	Longueur (m)	D intérieur (in)	Epaisseur (mm)	Rugosité (mm)	Elévation (m)
NRAA1-M1	17205.13	8	7.04	0.0018	2.95
ERAA1-M1	9496.67	6	10.97	0.0018	0.67
RAA2-M1	875.02	4	4.78	0.0018	1.21
RAA1-M2	6766.31	4	4.78	0.0018	-1.52
RAMA1-M2	16124.53	6	5.56	0.0018	-4.58
M1-M2	11905	8	8.74	0.0018	-1.15
M2-EPF	23194	14	9.52	0.0018	16.87

Tableau IV.1: Données des liaisons puits-manifold/manifold –manifold /manifold-EPF

IV.3. CHOIX DE LA CORRELATION

Le logiciel **PIPESIM** propose plusieurs correlations pour le calcul des pertes de charges dans les conduits horizontales , comme déjà fait pour les écoulements verticaux.

Parmis les correlations figurant dans PIPESIM on site :

- Lockhart-Martinelli
- Beggs and Brill revised
- Dukler Aga and Flanagan
- OLGAS

Mais seulement la corrélation OLGAS qui donne des bon résultats pour le réseau RAMA-RAA.

[7]

IV.4. SIMULATION DU RESEAU

La simulation permet d'analyser le comportement d'un système avant de l'implémenter et d'optimiser son fonctionnement en testant différentes solutions et différentes conditions opératoires.

Deux scénarios principaux sont envisagés :

- ← EPF au niveau de BRS (Cas de base).
- ← EPF au niveau du champ RAMA-RAA (100 m du manifold RAA_M2).

IV.4.1.Cas de base

Analyse des pertes de charge Le modele étant calé, on calcule les pertes de charges dans chaque branche. Il existe des pertes de charge additionnelles (restrictions) dans tous les branches. Les résultats sont représentés sur l'histogramme.

> Analyse de la vitesse du fluide

Le modèle du réseau montre que les branches actuelles de pipeline ne sont pas très appropriées.

Basé sur l'intervalle recommandé de la vitesse moyenne du fluide (1 m / sec <MFV <4,0 m / sec), pour éviter la corrosion et la décantation du sable ou du solide pour les faibles vitesses, et pour prévenir l'érosion pour les vitesses élevées. les analyses de la vitesse montrent que :

- Les pipelines ERAA1-M1 et M1-M2 fonctionnent dans l'intervalle recommandé.
- Les pipelines RAA1-M2 et RAA2-M1 ne fonctionnent pas dans l'intervalle recommandé de vitesse de fluide mais ils sont proches donc on peut les accepter.
- Les autres pipelines fonctionnent à des vitesses inférieures à la limite recommandée, ce qui signifie que ces pipelines sont surdimensionnés, cela est dû au faible GOR dans le flux.

Pipe	Diamètre (in)	Vm (m/s)	Remarque	Action requise	Nouv Vm (m/s)
NRAA1-M1	8	0.33	Surdimensionné	Remplacé par 4"	1.37
ERAA1-M1	6	1.37	Acceptable	///////////////////////////////////////	///////////////////////////////////////
RAA2-M1	4	0.72	Acceptable	///////////////////////////////////////	///////////////////////////////////////
RAA1-M2	4	0.82	Acceptable	///////////////////////////////////////	///////////////////////////////////////
RAMA1-M2	6	0.09	Surdimensionné	Remplacé par 4"	0.2
M1-M2	8	1.65	Acceptable	///////////////////////////////////////	///////////////////////////////////////
M2-EPF	14	0.63	Surdimensionné	Remplacé par 10"	1.64

Tableau IV.2 : résultats de sensibilitée envers les diamètres des pipes

Chapitre IV : Modélisation et optimisation du réseau

- Sensibilité sur la pression de séparation
- Dans le cas de base le débit d'huile Qh=1178 sm3/j.
- Si on fait des sensibilités sur la pression de séparation, on enregistre une augmentation de débit d'huile en fonction de la diminution de la pression de séparation.

Tableau IV.3 : Résultats de la simulation du cas de base par PIPESIM

Puits	Qh (sm3/d)	Pt (barg)	Pp (barg)	P manifold	DP hydraulique
RAMA1	41.07	39	38.5	28.55	9.95
RAA1	138.28	37.18	33.44	28.55	4.89
RAA2	133.02	37.24	34.97	32.81	2.16
NRAA1	288.45	57.55	46.8	32.81	13.99
ERAA1	577.44	159.83	39.34	32.81	6.53
			470.06 40.00	o.//	

Figure IV.3 : Evaluation du débit d'huile en fonction de la pression de séparation

Simulation transitoire du système

Après l'analyse de la simulation steady state du système, on procède à convertir le modèle PIPESIM à un modèle OLGA comme montre la figure **Fig.IV.4**.

la simulation transitoire confirme qu'on a des pertes de charges additionnelles dans tous les branches. On remarque aussi des pertes de charge sévères dans les duses de RAMA1 et ERAA1.

Sur la base de l'instabilité de la production de l'EPF présentée dans le graphe **Fig.IV.5**.On fait le run du modèle pour une période de 17 jours (400 heures) et pour 48 heures après la période de remplissage (32 heures). Les résultats sont présentés dans les **Fig.IV.6** et**Fig.IV.7**.

Figure IV.5 : Production de l'EPF (10/11-27/11/2016) [8]

Figure IV.6 : Simulation de la production de l'EPF dans 400 heures

Figure IV.7 : Simulation de la production de l'EPF en huile dans 48 heures

Chapitre IV : Modélisation et optimisation du réseau

On remarque des fluctuations au niveau de l'EPF (GBRS) avec des bouchons d'un volume moyen **72.9 sm3/h.** Le débit total d'huile peut diminue jusqu'à **7 sm3/h** et des fois **0 sm3/h** pendant 2 à 3 heures. Comme montre la figure **Fig.IV.8**, l'EPF reçoit aussi des bouchons du gaz varie de **31000 sm3/j** à **200000 sm3/j** (1291 sm3/h à 8333 sm3/h).

Figure IV.8 : Débit de gaz dans l'EPF pendant 48 heures

Comme on passe aux manifolds on estime une contre-pression (Back pressure) entre 01 et 1.5 barg au niveau de RAA-M2 à cause des accumulations dans le pipeline 14'' (M2-EPF).

Figure IV.9 : Contre-pression de la ligne 14" sur les manifolds

Après la simulation du cas de base et l'analyse des problèmes on passe à la simulation de production avec deux scénarios :

- ∽ Remplacement du pipeline 14'' M2-EPF par 10''.
- Nettoyage globale du réseau, raclage des pipelines et clean out des duses par l'eau douce.

a).Remplacement du pipeline 14" M2-EPF par 10"

On remarque que la période de remplissage diminue au 17 heures et la production sera stabilisée après 12 heures à 45 sm3/h avec une stabilisation du débit de gaz.

Ainsi, il n'y aura pas une augmentation significative de la pression au niveau des manifolds.

Donc le remplacement du pipeline 14" avec un autre 10" stabilise la production.

Figure IV.12 : Stabilisation de la pression des manifolds

Le remplacement du pipeline 14" avec un autre 10" fait stabiliser et ne pas augmenter la production de l'EPF (GBRS) c.-à-d. une stabilisation sans gain en production.

b)-Nettoyage du réseau, raclage des pipelines et clean out des duses par l'eau douce.

Le débit moyen au niveau de l'EPF (GBRS) est 1386.42 sm3/j (57.7 sm3/h) avec une légère fluctuation. Le débit moyen du gaz est 186684 sm3/j.

On remarque une augmentation considérable de la production des puits après le nettoyage des pipelines et des duses tout en maintenant les diamètres actuels de ces derniers (12.7 mm). Le gain peut atteindre 29 % par rapport au cas actuel.

Duite	Qh (sm3/j)				
Puils	Cas de base (actuel)	C/O des lignes et duses	Gail(%)		
RAA1	127.601	137.13	7.5		
RAMA1	36.383	38.62	6.2		
ERAA1	530.85	807.54	52.1		
NRAA1	258.29	278.94	8.0		
RAA2	130.591	136.65	4.6		
Total	1083.71	1398.9	29.1		

Tableau IV.4 : Gain en production après le nettoyage

Figure IV.13 : Débit total d'huile dans le séparateur

IV.4.2. EPF au niveau du champ RAMA-RAA

Pour cette proposition on fait la simulation du système avec une sensibilité sur la pression de séparation : **28 bars** (Pression actuelle du manifold RAA-M2) ,**24 bar**, **20 bars** et **16 bars** et **11 bars**. Toutes les simulations par **PIPESIM** confirment qu'on a une augmentation de la production en huile au niveau des bacs avec la diminution de la pression de séparation.

Sur les tableaux en dessous on a présenté le gain pour les différents paliers de Psép.

Duite	Pression de séparation= 28barg					
Puits	Qh (sm3/j)	Pt (barg)	Pp (barg)	P manifold (barg)		
RAMA1	43.59	31.68	30.85	28		
RAA1	162.74	35.76	30.19	28		
RAA2	147.81	35.7	32.73	32.6		
NRAA1	375.23	56.76	36.82	32.6		
ERAA1	577.44	159.83	35.4	32.6		
Qh=1306.84 sm3/j						

Tableau IV.5 : Résultats de la séparation par 28barg

Tableau IV.6 : Résultats de la séparation par 24barg

Puits	Pression de séparation= 24barg			
	Qh (sm3/j)	Pt (barg)	Pp (barg)	P manifold (barg)
RAMA1	44.7	27.77	26.78	24
RAA1	166.59	32.86	26.35	24
RAA2	151.96	32.47	28.98	28.85
NRAA1	380.80	54.75	32.96	28.85
ERAA1	577.44	159.83	32.01	28.85
Qh=1321.51 sm3/j				

Chapitre IV : Modélisation et optimisation du réseau

Puits	Pression de séparation= 20barg			
	Qh (sm3/j)	Pt (barg)	Pp (barg)	P manifold (barg)
RAMA1	45.9	23.91	22.69	20
RAA1	170.38	30.22	22.57	20
RAA2	156.13	29.49	25.36	25.21
NRAA1	386.06	52.9	29.07	25.21
ERAA1	577.44	159.83	28.79	25.21
Qh=1335 sm3/j				

Tableau IV.7 : Résultats de la séparation par 20barg

Tableau IV.8 : Résultats de la séparation par 16barg

Puits	Pression de séparation= 16barg			
	Qh (sm3/j)	Pt (barg)	Pp (barg)	P manifold (barg)
RAMA1	47.20	20.11	18.56	16
RAA1	173.83	28	19.07	16
RAA2	160.03	26.94	22.08	21.87
NRAA1	388.99	51.89	25.71	21.87
ERAA1	577.44	159.83	25.95	21.87
Qh=1347.38 sm3/j				

Tableau IV.9 : Résultats de la séparation par 11barg

Duite	Pression de séparation= 11 barg				
Puits	Qh (sm3/j)	Pt (barg)	Pp (barg)	P manifold (barg)	
RAMA1	49.01	15.59	13.35	11	
RAA1	177.45	25.85	15.16	11	
RAA2	164.46	24.32	18.42	18	
NRAA1	388.99	51.89	21.92	18	
ERAA1	577.42 150.83 22.98		18		
	Qh=1357.13 sm3/j				

Chapitre IV : Modélisation et optimisation du réseau

	Tableau TV.IU	. Resultats de	la separation	par obarg
	Pression de séparation= 6 barg			
Puits	Qh (sm3/j)	Pt (barg)	Pp (barg)	P manifold (barg)
RAMA1	51.02	11.6	8.06	6
RAA1	179.74	24.57	11.86	6
RAA2	167.66	22.6	15.75	15.46
NRAA1	388.99	51.89	19.1	15.46
ERAA1	577.44	159.83	20.87	15.46
Qh=1364.72 sm3/j				

Tableau IV.10 : Résultats de la séparation par 6barg

On remarque que le débit d'huile des puits NRAA1 et ERAA1 reste constant quel que soit la pression après la duse (pression pipe) et également la pression de tête reste constante.

Encore le débit et la pression des autres trois puits (RAA1, RAA2, RAMA1) change légèrement avec la variation de la pression de séparation et donc de la pression aval duse. Pour cela on procède à vérifier le régime de production pour chaque puits (régime critique, transitoire ou non critique).

Le tableau ce dessous confirme les résultats :

Puits	Pp/Pt	Régime
RAMA1	0.9	non critique
RAA1	0.65	transitoire
RAA2	0.8	non critique
NRAA1	0.47	critique
ERAA1	0.15	critique

Tableau IV.11 : Régimes d'écoulement à travers la duse

Alors les puits NRAA1 et ERAA1 produisent dans un régime critique c.-à-d. tout ce qui passe dans le réseau de collecte n'a aucune influence sur la production des puits.

Alors que les puits RAA1, RAA2 et RAMA1 produisent avec un régime non critique. Malgré ça il n'y a pas une influence considérable sur la production de l'EPF à cause de ses faibles pressions de tête par rapport à celles des puits ERAA1 et NRAA1.

La comparaison entre le cas de base et le cas d'une installation de l'EPF au niveau de RAMA_RAA, on enregistre un gain important.

Les résultats sont résumés dans le tableau suivant :

Pression de séparation (barg)	Qh (sm3/j)	Gain (sm3/j)
28	1306.84	128.84
24	1321.51	143.51
20	1335.00	157
16	1347.38	169.38
11	1357.13	178.87
6	1364.72	186.47

 Tableau IV.12 : Le gain en fonction de la pression de séparation

La production de l'EPF varie légèrement avec la pression de séparation puisque :

- ∽ Les puits de bons potentiels produisent avec un régime critique.
- ← Le GOR de production n'est pas important (GOR=133 sm3/sm3).

Les résultats sont plus clairs sur le graphe suivant :

Figure IV.15 : La production de l'EPF avec le gain par rapport au cas de base

V.1. INTRODUCTION

Les simulateurs de procédés utilisés classiquement dans l'industrie, peuvent être considérés comme des modèles de connaissance. Ils sont basés sur la résolution de bilans de masse et d'énergie, des équations d'équilibres thermodynamiques, ... et sont à même de fournir l'information de base pour la conception. Ils sont principalement utilisés pour la conception de nouveaux procédés (dimensionnement d'appareil, analyse du fonctionnement pour différentes conditions opératoires, optimisation), pour l'optimisation de procédés existants et l'évaluation de changements effectués sur les conditions opératoires. Avant même de parler de modèles d'opération de transformation de la matière, il faut des modèles pour prédire les propriétés physiques de la matière. C'est pourquoi ces simulateurs disposent tous d'une base de données thermodynamiques contenant les propriétés des corps purs (masse molaire, température d'ébullition sous conditions normales, paramètres des lois de tension de vapeur, ...). Cette base de données est enrichie d'un ensemble de modèles thermodynamiques permettant d'estimer les propriétés des mélanges. Tout simulateur industriel de procédés chimiques est organisé autour des modules suivants :

- Une base de données des corps purs et un ensemble de méthodes pour estimer les propriétés des mélanges appelés aussi modèles thermodynamiques.
- Un schéma de procédé permettant de décrire les liaisons entre les différentes opérations unitaires constituant l'unité.
- Des modules de calcul des différentes opérations unitaires contenant les équations relatives à leur fonctionnement : réacteur chimique, colonne de distillation, colonne de séparation, échangeurs de chaleur, pertes de charges, etc.

Avec ce type de logiciel, les ingénieurs peuvent à partir de la donnée des corps purs présents dans le procédé et du schéma de procédé, développer un modèle du processus reposant sur la mise en commun des équations décrivant les différentes opérations unitaires, les réactions chimiques, les propriétés des substances et des mélanges. **[5]**

V.2. PRESENTATION DU LOGICIEL ASPEN HYSYS

Le logiciel de simulation Aspen HYSYS est un environnement de procédé de simulation conçu pour servir les techniciens et les ingénieurs de pétrole, du gaz et du raffinage. Il est développé par Hyprotech (canada) .Il permet le traitement des problèmes simples, tels que les séparations et les problèmes plus complexes tel que la distillation atmosphérique du pétrole brut et les transformations chimiques.

A l'aide de l'environnement d'Aspen HYSYS, on peut effectuer les tâches suivantes :

- La résolution des bilans de matière et d'énergie ;
- Création de l'état d'équilibre rigoureux et les modèle dynamiques pour la conception des installations ;
- L'optimisation du procédé et le dimensionnement des équipements ;
- La gestion et planification économique, analyse, amélioration et planification des projets;
- La manœuvre des variables et la topologie de procédé d'opération unitaire. [5]

V.3. DESIGN DE L'EPF

En utilisant le logiciel HYSYS et en basant sur trois options de production du champ RAMA, on va proposer 3 designs pour l'EPF qui est installé à 100 m du manifold RAA-M2.

- 4 design 1 : Production d'huile non stabilisé et torchage de gaz.
- **4** design 2 : Production d'huile non stabilisé et compression du gaz.
- **4** design 3 : Production d'huile stabilisé et compression du gaz.

V.3.1.Données de base

Les propriétés des hydrocarbures sont basées sur la composition du gaz et de l'huile prise de l'étude PVT (Black oïl) qui se réfère à l'échantillonnage de DST2 du puits RAA2 le 13/06/2014.

Tableau V.1 : La composition du brut

Mol %
2.715
0.923
22.861
13.918
8.948
1.116
4.618
0.016
1.261
2.764
3.442
37.418

V.3.2. Spécifications de l'huile à exporter

L'huile exportée vers HEH doit être stabilisé conformément aux exigences du client :

- Densité= 0,7949 0,8082
- ∽ Salinité <40 mg/l.
- ∽ BSW< 0.5 %.

V.3.3. Description du processus

design 1

Dans cette option la charge suit le chemin suivant :

- Le brut arrivant du manifold RAA-M2 est reçu dans un séparateur HP (V-100) avec une pression de séparation 11 bar.
- L'eau est déchargée vers un bourbier.
- L'huile est envoyée vers un séparateur BP (V-101) pour flasher les composants légers avec une pression de 5 bars.
- Deux pompes sont fournies pour transférer l'huile séparée à travers des pipes 10",12" ou 2*8" (selon le stock) vers HEH, pour ensuite être expédiée vers CINA.
- Le gaz de deux séparateur HP et BP se met sur torche.

Chapitre V : Design de l'EPF

Figure V.2 : Design de l'EPF avec le design 1.

➤ design 2

Comme le design précédent mais avec l'addition d'un compresseur du gaz.

- Le gaz des séparateur HP et BP est transféré vers BRS à travers une ligne 10".
- Un scrubber V-102 est ajouté pour séparer le liquide entrainé avec le gaz avant l'envoyer vers la compresseur.
- A certaines conditions le gaz soit saturé, la condensation de l'eau et de l'huile se faite.
 Pour éliminer tous les liquides restants, un séparateur horizontal 3 phase V-103 est ajouté pour éliminer l'eau et l'huile du gaz.
- L'huile séparée est pompée vers RDC à travers des pipes 10".

N.B : Les conditions de la charge le long de processus sont mentionnées dans l'Annexe.

Figure V.3 : Diagramme du chemin de la production du champ RAMA (design 2)

Figure V.4 : Design de l'EPF avec le design 2.

design 3

Dans cette option on introduit un système de stabilisation :

- L'huile non stabilisée de séparateur HP (V-100) est préchauffée à l'aide d'un échangeur de chaleur (E-103) avant entrer dans le séparateur BP (V-101).
- L'huile qui sort du séparateur BP passe par une fusion électrostatique dans un coalescer (V-104) pour réduire le BSW (Basic sédiment and water) et éliminer les sels.
- Pour que le travail du coalescer soit efficace il faut injecter l'eau dans le système. Le mélange approprié de l'eau et l'huile est assuré par une vanne de control (MIX-105) ;
- L'huile qui sort du coalescer passe par la colonne de stabilisation T-100. L'huile entre dans deux différents étages de la colonne ;
- La colonne de stabilisation est chauffé par un réchauffeur externe (External direct firedheater).
- L'huile stabilisée de la colonne est refroidie à travers les échangeurs E-102 et E-103 respectivement ;
- Plus loin la température de la charge va encore diminuer en passant par un refroidisseur A-C 100 avant être stocké dans les bacs ;
- Après l'huile stabilisée conformément aux exigences du client est expédiée en utilisant les pompes à travers 8" en se piquant sur 12" reliant BRS à HEH au point le plus proche.
- Comme l'option 2 le gaz de séparateurs HP et BP est compressé et envoyé vers le centre de BRS.
- L'eau sera soit traitée sur site ou transféré vers un bourbier.

Figure V.5 : Diagramme du chemin de la production du champ RAMA (design3)

Figure V.6 : Design de l'EPF avec le design 3

V.4. APPROCHE TECHNO-ECONOMIQUE

V.4.1. Introduction

La résolution d'un problème technique industriel doit tenir compte d'un grand nombre de contraintes de natures différentes : technique, financières, juridiques, humaines...etc.

Dans tous les cas, elle doit prendre en compte les couts de la solution proposée et son délai de réalisation.

Le rôle de l'ingénieur est d'apporter une réponse chiffrée à tout problème qui lui est posé.

Compte tenu de la complexité du problème technique industriel, son art consistera à :

- Poser les bonnes questions pour mieux les préciser.
- Choisir la méthode de résolution conduisant dans le respect des règles de l'art à la solution de moindre cout et de meilleurs délais.

Bien que les considérations économiques ne suffisent pas pour justifier des décisions dans des projets réels, l'analyse économique peut être utilisée pour assister le processus de prise de

décisions rationnelles, et de savoir si l'option technique sera rentable pour l'entreprise ou non, afin d'attribuer le nécessaire budget pour le nouveau projet.

V.4.2. Cout d'investissement du projet

Le prix de location d'une installation de l'EPF avec toutes options (Séparation, stabilisation, pompage, compression) est estimé à **21000 \$/j**. Ce montant comprend à la fois tous les coûts nécessaires pour réaliser ce projet.

En se basant sur l'option 3 et sur le gain en production calculé dans le chapitre 3, on fait une sensibilité sur le gain au prix du brut.

Ga	ain en production		Prix du brut	Revenu journalier	Gain
m3/h	m3/j	bbl/j	(\$)	(\$/j)	(\$/j)
7.76	186.47	1172.76	55	64501.8	43501.8
7.76	186.47	1172.76	50	58638	37638
7.76	186.47	1172.76	45	52774.2	31774.2
7.76	186.47	1172.76	40	46910.4	25910.4
7.76	186.47	1172.76	35	41046.6	20046.6

TableauV.2 : Sensibilité sur le revenu journalier et le gain au prix du brut

Figure V.7 : Sensibilité sur le gain au prix du brut

D'après les résultats présentés la figure, on constate que la diminution du prix du brut affecte directement le gain :

- Le gain sera entre 37638 et 43501.8\$/j pour le cas le plus probable estimé (prix actuel du pétrole brut).
- 4 Ce gain est prévue à environ 20046.6 \$/j pour le cas pessimiste estimé.

En général, le gain est important, ce qui est normal en ce qui concerne le prix de location (21000 \$/j) et le gain de production. [3]

Conclusion

Dans le cadre du développement du champ d'huile de RAA), une étude préliminaire a été réalisée pour collecter l'huile brute provenant des puits, notre étude consiste à améliorer la production dans le but d'avoir une marge pour prolonger le plateau de production.

A la base de l'analyse des pipelines du réseau de collecte, les points suivants ont été trouvés:

- Des pertes de charge additionnelles dans toutes les branches et spécialement dans les pipelines : RAMA1-M2, NRAA1-M1, M1-M2 et M2-EPF, peuvent être liées aux dépôts.
- Les pipelines M2-EPF, RAMA1-M2, NRAA1-M1 sont surdimensionnés ce qui provoque la corrosion et les dépôts.
- La dénivellation des pipelines fait apparaître le problème de hold up en cas de production de l'eau de dessalage ce qui freinent la production.

A la base de l'analyse de la production de l'EPF (BRS) et avec la confirmation de la simulation transitoire par le logiciel OLGA on trouve que la production d'huile se fait avec des bouchons du volume moyen entre 7 sm3/h à 76 sm3/h des fois 0 sm3/h.

- Le remplacement du pipeline 14" M2-EPF par 10" stabilise la production sans gain en production et sans contre-pression sur les puits.
- Le nettoyage globale du réseau de collecte et des duses nous permet d'obtenir un gain en production peut atteint 29% (13 sm3/h).

La mise en place d'un EPF à RAMA_RAA aboutit à un gain en production estimé à 186.47 sm3/j.

La production de l'EPF RAMA-RAA varie légèrement avec la pression de séparation puisque :

- Si on fait la séparation sur le champ RAMA on passe au régime critique.
- Le GOR de production n'est pas important (GOR=133 sm3/sm3).

L'installation d'un système de stabilisation nous permis d'obtenir une huile conforme aux exigences du client et envoyer la production directement à HEH sans passer par RDC et CINA.

La séparation en deux étages avec les pressions 11 et 5 bar avant faire la stabilisation est la variante dominante pour obtenir un huile avec les spécifications demandées (TVR= 0.650 kg/cm^2 à 38° C, D=0.7920, salinité <40 mg/l).

Dédicace

Je dédie ce modeste travail: A ceux qui m'ont donné la vie, l'espoir et l'amour, à ceux Qui m'ont encouragé le long de mes études : Ma très chère mère et mon très cher père, Que le dieu me les protège et me les garde; A mes frères; A toute ma famille; A toute ma famille; A tous mes amis ; A tous mes collègues de la faculté Des hydrocarbures ; A tous les personnes qui m'ont aidé de proche Ou de loin pour réaliser ce travail.

144 5 1 - EV

Amir DJOUAMBI Moustapha BOUROUILA Randa MALLEM

Introduction général

Le champ de Hassi Messaoud est l'un des champs pétroliers les plus géants dans le monde. Dans la perspective de l'augmentation de la production globale du champ, Sonatrach a entamé l'exploitation des champs périphériques tell que le champ de RAMA-RAA (Rahlat Al Aouda)

Le champ de RAMA-RAA est situé dans le périmètre de recherche et d'exploitation de Touggourt EST dans le bassin d'Amguid Hassi Messaoud. Actuellement il comprend 5 puits producteurs. L'exploitation du gisement pose de nombreux problèmes en raison d'éloignement des puits par rapport aux installations de traitement.

L'huile brute du champ RAA est acheminée vers le nouveau EPF (early production facilities) qui est installé à côté de l'usine existante du groupement BRS

Notre étude consiste à améliorer la production par l'installation d'un nouveau EPF au niveau du champ RAMA-RAA avec la compression du gaz et la stabilisation du l'huile et donc l'envoyer directement à HEH afin d'avoir le moins de perte de charges possibles tout en maximisant le débit et cela dans le but d'avoir une marge pour prolonger le plateau de production.

Le présent travail est structuré en cinq chapitres, suivi d'une conclusion. Le premier chapitre donne un aperçu sur la géologie et les caractéristiques des fluides de la zone. Le réseau de collecte et l'EPF ont été discutés dans le deuxième chapitre. Le troisième chapitre a été consacré à la modélisation des puits. On fait la Simulation du système puits-réseau avec différents scénarios dans le quatrième chapitre, enfin on a discuté le design de l'EPF avec différents scénarios et l'évaluation économique du projet dans le cinquième chapitre.

Liste des abréviations

D A A . D	-111
KAA: K	
BKS:	Bir Sbaa
GBRS:	groupement Bir Sbâa
MOM:	Mouia Ouled Messaoud.
HBHJ:	hassi belhadje.
SI:	Trias.
API:	Américain Pétroleum Institute.
Bo:	Facteur Volumétrique du fluide de réservoir.
Bob:	Facteur volumétrique du gaz.
BBO:	Beggs and Brill Original.
BBR:	Beggs and Brill Revised.
HB :	Hagedorn and Brown.
ORK:	Orkiszewski.
D:	Diamètre du pipe.
Dm:	densité du mélange.
EPF:	Early Production Facilities.
FM:	Facteur de frottement du mélange.
GOR:	Gaz Oil Ration
HMD:	Hassi Messaoud.
IPR:	Inflow Performance Relationship.
VLP:	Vertical lift performance curve (Out Flow)
IP:	Indice de Productivité.
K :	Constante déterminé lors du dernier jaugeage.
Pp:	Pression de pipe
Pt:	Pression de tête
P mfd :	Pression de manifold
Pfd :	Pression de fond dynamique.
Pr:	Pression de réservoir.
Pb :	Pression de bulle.
Pwf:	pression de fond du puits
Psép :	Pression de séparation.
0:	Débit d'huile.
Rs :	GOR de dissolution.
T :	Température.
μ:	Viscosité.
µob :	Viscosité d'oil a la pression de bulle.
µgb :	Viscosité de gas a la pression de bulle.
Vm :	Vitesse du mélange.
Z :	compressibilité de gaz.
Ø:	Diamètre de la Duse.
DST :	drill stem test (test au cours de forage).
TVR :	Teneur vapeur ration.
BSW :	basic sediment and water.
HP :	High pressure.
Hb :	base pressure.
CINA :	centre industriel naili abdelhalim
HEH :	Haoud El Hamra.

RDC : Rhoude Chegga.

Liste des Figures

Figure I.1 : Situation du champ RAMA-RAA	2
Figure I.2 : Elan du Puits RAA-1 (Réservoir Trias Série Inférieure)	3
Figure II.1 : Types d'écoulement horizontal	7
Figure II.2 : Liquide hold up	9
Figure II.3 : Régimes d'écoulement à travers la duse	10
Figure II.4 : Vue éclaté d'un séparateur tri phasique	12
Figure II.5 : Vue détaillée d'un séparateur vertical	12
Figure II.6 : Schéma de principe de bilan thermique	13
Figure II.7 : Composition d'un rebouilleur	14
Figure II.8 : Composition d'un condenseur	14
Figure II.9 : Principe de l'échangeur tubulaire	15
Figure II.10 : Pompe centrifuge	16
Figure II.11 : Pompe volumétrique	16
Figure II.12 : Exemple d'un compresseur	17
Figure III.1 : IPR et VPL du puits ERAA1 après calage du modèle	20
Figure III.2 : Sensibilité sur le diamètre de la duse	21
Figure III.3 : Sensibilité sur le GOR	21
Figure III.4 : Sensibilité sur la pression de la tête	22
Figure III.5 : Courbe de tendance pour Qh=f(Pt) du puits ERAA1	22
Figure IV.1 : Structure du réseau dans le PIPESIM	23
Figure IV.2 : Perte de charge dans le réseau	25
Figure IV.3 : Evaluation du débit d'huile en fonction de la pression de séparation	26
Figure IV.4 : Structure du réseau dans OLGA	26
Figure IV.5 : Production de l'EPF (10/11-27/11/2016)	27
Figure IV.6 : Simulation de la production de l'EPF dans 400 heures	27
Figure IV.7 : Simulation de la production de l'EPF en huile dans 48 heures	27
Figure IV.8 : Débit de gaz dans l'EPF pendant 48 heures	28
Figure IV.9 : Contre-pression de la ligne 14" sur les manifolds	28
Figure IV.10 : Production d'huile avec 10" M2-EPF	29
Figure IV.11 : Débit du gaz avec 10'' M2-EPF	29
Figure IV.12 : Stabilisation de la pression des manifolds	29
Figure IV.13 : Débit total d'huile dans le séparateur	30
Figure IV.14 : Débit du gaz dans le séparateur	30

Liste des Figures

Figure IV.15 : La production de l'EPF avec le gain par rapport au cas de base	
Figure V.1 : Diagramme du chemin de la production du champ RAMA (design 1)	
Figure V.2 : Design de l'EPF avec le design 1	
Figure V.3 : Diagramme du chemin de la production du champ RAMA (design 2)	
Figure V.4 : Design de l'EPF avec le design 2	
Figure V.5 : Diagramme du chemin de la production du champ RAMA (design3)	40
Figure V.6 : Design de l'EPF avec le design 3	41
Figure V.7 : Sensibilité sur le gain au prix du brut	42

Liste des Tableaux

Tableau I.1 : Volumes d'huile en place du gisement de Rahlet El Aouda4
Tableau I.2 : Contacts des fluides 5
Tableau II.1 : Pourcentage de chaque terme de pertes de charge
Tableau III.1 : Données des essais des puits
Tableau III.2 : Données PVT
Tableau III.3 : Données des derniers jaugeages
Tableau IV.1: Données des liaisons puits-manifold/manifold –manifold /manifold-EPF24
Tableau IV.2 : résultats de sensibilitée envers les diamètres des pipes25
Tableau IV.3 : Résultats de la simulation du cas de base par PIPESIM
Tableau IV.4 : Gain en production après le nettoyage 30
Tableau IV.5 : Résultats de la séparation par 28barg
Tableau IV.6 : Résultats de la séparation par 24barg
Tableau IV.7 : Résultats de la séparation par 20barg
Tableau IV.8 : Résultats de la séparation par 16barg
Tableau IV.9 : Résultats de la séparation par 11barg
Tableau IV.10 : Résultats de la séparation par 6barg
Tableau IV.11 : Régimes d'écoulement à travers la duse 33
Tableau IV.12 : Le gain en fonction de la pression de séparation
Tableau V.1 : La composition du brut
TableauV.2 : Sensibilité sur le revenu journalier et le gain au prix du brut42

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE KASDI MERBAH OUARGLA Faculté des Hydrocarbures, des Energies

Renouvelable, des Sciences de la Terre et

L'Univers

<u>Département de Production des Hydrocarbures</u> <u>Mémoire de fin d'étude</u> En vue de l'obtention du diplôme Master Professionnel Domaine : Sciences et Technologie Filière : Génie Pétrolier Spécialité : Production - Professionnel -

Présenté par : Amir Djouambi – Moustapha Bourouila – Randa Mallem

Thème

Modélisation Et Optimisation Du Système De Production Du Champ RAMA-RAA

Soutenu le 31/05/2017

Devant le jury composé de :

Président Examinateur Rapporteur Md Hafsi FadilaMd Boudjama Souhila – Mr: Anou AhmedMd Belmiloud Fatima Zohra

Université Ouargla Université Ouargla Université Ouargla 2016-2017

RECOMMANDATIONS

Les constats issus de cette étude nous ramènent à recommander ce qui suit :

- Remplacer les pipelines NRAA1-M1 (4''), RAMA1 (6'') et M2-EPF (14'') par 4'', 4'' et 10'' respectivement.
- Procéder au raclage des pipelines et le nettoyage des duses par l'eau douce.
- Produire les puits avec des diamètres optimisés de la duse à cause du contact huile-eau très proche aux perforations pour ne pas produire de l'eau.
- ☞ Fournir un contrôle en temps réel du débit et de la pression pour les puits et les manifolds.
- ← Etudier, en utilisant la simulation transitoire par le logiciel OLGA, les scénarios de :
 - Duser le système avant l'EPF pour stabiliser la production.
 - Simuler le système dans le cas d'injection continu de l'eau dans les puits.
- ← L'installation immédiate d'un EPF dans le champ RAMA-RAA avec :
 - Introduction d'un système de stabilisation de l'huile avec la compression du gaz.
 - La séparation en deux étages avec 11 et 5 bar avant passer sur la stabilisation.
 - L'installation d'une ligne 8" pour l'expédition de l'huile stabilisée conformément aux exigences du client en se piquant sur 12" reliant BRS à HEH au point plus proche.
 - L'envoi du gaz compressé vers le centre de BRS à travers la ligne 14" existé.

Remerciements

Nous remercions tout d'abord Dieu le tout puissant

Qui nous éclaire le bon chemin.

Toute notre gratitude et nos sincères remerciements vont à

Notre encadreur «Belmiloud Fatima Zohra»,

Enseignant au département de production qui a suivi en permanence l'évolution de ce travail.

Nos remerciements vont aussi aux membres du jury pour avoir accepté

D'évaluer ce mémoire.

Nous tenons aussi, à remercier l'ensemble des enseignants

Qui ont assuré notre formation durant le cursus de formation en les hydrocarbures.

Nous tiendrons aussi a remercier tous les personales de la direction EP en particulier «**BELAID BEN DJERAD**»

Nous tenons enfin, à remercier tous ceux qui participé de

Prés ou de loin dans l'élaboration

Illerci 1

De ce travail.

Moustapha Bourouila

Amir djouambi

Randa Mallem

Résumé

استغلال حقل رحلة العودة يطرح عدة مشاكل وذلك بسبب بعد الآبار عن محطة المعالجة و تعتمد در استنا على تحسين الإنتاج بتجهيز الحقل بنظام خاص قصد تسريع الإنتاج. قمنا بنمذجة نظام الإنتاج بدر اسة شاملة تعتمد على اختيار الحل الأمثل للوصول إلى اقل ضياع ممكن في الضغط لزيادة التدفق و هذا بهدف تمديد عمر الإنتاج

قمنا بنمذجة قدرة الأبار ثم قمنا بتصميم نموذج شبكة جمع البترول الخام باستخدام برنامج الكتروني يقوم بمحاكاة تسمح باختيار القطر الملائم لكل أنبوب و الضغط الضروري للحصول على أفضل عملية فصل للمكونات

استعملنا برمجة رقمية اعتمدنا فيها على ثلاث سيناريو هات لإنتاج حقل رحلة العودة قمنا باقتراح ثلاث تصاميم لتركيب نظام الإنتاج الموجود على بعد مئة متر من المجمع الثاني.

The exploitation of RAMA-RAA field faces many problems because of the farness of wells from the installations of treatment.

Our study purpose to improve the production by the installation of EPF production system. We will model the production system; we will create an ideal study to have a minimum of discharge in the same time to maximize the flow in the objective of extend the plateau of production.

We model the wells potential then we model and optimize the collect net by using the PIPESIM software by choosing optimal diameters of pipes and necessary pressure to have a best separation

Using HYSYS software and based on 3 RAA field production options

L'exploitation du champ RAMA-RAA pose de nombreux problèmes en raison d'éloignement des puits par rapport aux installations de traitement.

Notre étude consiste à améliorer la production par l'installation d'un système de production EPF on va modéliser le système de production, on va faire une étude d'optimisation afin d'avoir le moins de perte de charges possibles tout en maximisant le débit et cela dans le but d'avoir une marge pour prolonger le plateau de production.

On a modélisé le potentiel des puits ensuite on a modélisé et optimisé le réseau de collecte en utilisant le logiciel PIPESIM en choisissant les diamètres optimaux des pipes et la pression nécessaire pour avoir une meilleure séparation

En utilisant le logiciel HYSYS et en basant sur trois options de production du champ RAMA, on va proposer 3 designs pour l'EPF qui est installé à 100 m du manifold RAA-M2.

Mots clés : EPF, le réseau de collecte, PIPESIM, design.

Sommaire

LISTE DES FIGURES

LISTE DES TABLEAUX

Introduction général	1
muoducuon general	

Chapitre I : Présentation du champ

I.1.SITUATION GEOGRAPHIQUE	2
I.2. ASPECT GEOLOGIQUE	2
I.2.1.Cadre géologique	2
I.2.2.Cadre structural	3
I.3. SYSTEME PETROLIER	4
I.4. PROPRIETES PETROPHYSIQUES ET RESERVES EN PLACE	4
I.5. CONTACTS DES FLUIDES	5

Chapitre II : Généralité sur le réseau de collecte et l'EPF

II.1. GENERALITES SUR LE RESEAU DE COLLECTE	6
II.2. ECOULEMENT MULTIPHASIQUE	6
II.2.1. Types d'écoulement	6
II.2.2. Variation de la pression le long d'une conduite	7
II.2.3.Liquid hold-up	9
II.2.4. Régimes d'écoulement à travers la duse	9
II.3.GENERALITES SUR L'EPF	11
II.3.1. La séparation	11
II.3.2. La distillation	13
II.3.2.1. Equipements auxiliaires	13
II.3.3. Le pompage	15
II.3.4. La compression	16

Chapitre III : Modélisation des puits

III.1. INTRODUCTION	
III.2. MODELE RESERVOIR	
III.3. LES DONNEES DES ESSAIS DES PUITS	

III.4. LES DONNEES PVT	19
III.5. CHOIX DE LA CORRELATION DE L'ECOULEMENT VERTICAL	19
III.6.REPRODUCTION DES PERFORMANCES ACTUELLES DES PUITS	20
III.7. EXEMPLE DE CALCUL	20

Chapitre IV : Modélisation et Optimisation du réseau

IV.1. INTRODUCTION	23
IV.2. STRUCTURE DE RESEAU	23
IV.3. CHOIX DE LA CORRELATION	24
IV.4. SIMULATION DU RESEAU	24
IV.4.1.Cas de base	24
IV.4.2. EPF au niveau du champ RAMA-RAA	31

Chapitre V : Design de l'EPF

V.1. INTRODUCTION	35
V.2. PRESENTATION DU LOGICIEL ASPEN HYSYS	35
V.3. DESIGN DE L'EPF	
V.3.1.Données de base	
V.3.2. Spécifications de l'huile à exporter	
V.3.3. Description du processus	
V.4. APPROCHE TECHNO-ECONOMIQUE	41
V.4.1. Introduction	41
V.4.2. Cout d'investissement du projet	
Conclusion général	46
Bibliographie	