On the unilateral contact between two membranes

NAIMI ABDELOUAHAB

Departement of mathematics

University Kasdi Merbah Ouargla 30000, Algeria

naimimath@gmail.com

Abstract

In this work, we study the a priori error estimates of the unilateral contact between two elastic membranes. first,we analysis of the continuous problem(the well-posedness of the solution), then we study the reduced discrete problem and its a priori analysis, finally we study the full discrete problem and its a priori analysis .
Keywords: unilateral contact ,a priori analysis, elastic membranes ,discrete problem.

1. Modelization

From the fundamental laws of elasticity , we write a model for the contact between two membranes. The contact is taken into account according to the following principles:
(i) The two membranes cannot interpenetrate . (ii) Where they are in contact, owing to Newton's action-reaction law, each membrane has an action on the other
An elastic membrane is characterized by its displacement u with respect to its natural configuration which is a two dimensional domain ω. The equilibrium position of the membrane, under the action of a vertical force \mathcal{F} minimizes the potential energy functional:

$$
\begin{equation*}
J: v \longrightarrow J(v)=\frac{1}{2} \int_{\omega} \mu(x)|\nabla v(x)|^{2} d x-\int_{\omega} \mathcal{F}(x) v(x) d x \tag{1.1}
\end{equation*}
$$

The minimization problem reads that's;

$$
\begin{equation*}
\text { Find } u \in H_{0}^{1}(\omega) \text { such that } \forall v \in H_{0}^{1}(\omega) ; J(u) \geqslant J(v) \tag{1.2}
\end{equation*}
$$

or equivalent :

$$
\left\{\begin{array}{lr}
-\operatorname{div}(\mu \nabla u)=\mathcal{F} & \text { in } \omega, \tag{1.3}\\
u=0 & \text { on } \partial \omega
\end{array}\right.
$$

More details can be found in[1], Chapter I, Section 1.2, for instante. Let us now consider two elastic membranes: The first is fixed on $\partial \omega$ at the height g. Where g is a nonnegative functin, and the second one is fixed at zero. the correspending system of equation reads with obvious notation,

$$
\left\{\begin{array} { l l }
{ - \operatorname { d i v } (\mu _ { 1 } \nabla u _ { 1 }) = \mathcal { F } _ { 1 } } & { \text { in } w , } \tag{1.4}\\
{ u = g } & { \text { on } \partial \omega }
\end{array} \quad \left\{\begin{array}{ll}
-\operatorname{div}\left(\mu_{2} \nabla u_{2}\right)=\mathcal{F}_{2} & \text { in } w \\
u=0 & \text { on } \partial \omega
\end{array}\right.\right.
$$

We are interested in the case where the membranes interact. Therefore, if λ represents the action of the second membrane on the first one, we have $\mathcal{F}_{1}=f_{1}+\lambda, \quad \mathcal{F}_{2}=f_{2}+\lambda$. where the f_{i} are external forces. It's follows from the definition of λ that : $\lambda \geq 0$ in ω. Moreover, clearly the two membranes cannot interpenetate. This yields the conditions $u_{1}-u_{2} \geq 0$ in ω. Finally, we note that, where the membranes are not in contact . $i ; e$., $u_{1}-u_{2} \geq 0$ in ω. Finall, we note that, where the membranes are not in contact . i;e.,
where $u_{1}-u_{2}>0$, the interaction λ vanishes. This leads to the equation $\left(u_{1}-u_{2}\right) \lambda=0$ in ω. We are interested in the analysis of this system.

2. Analysis of the continuous problem

Let ω be a bounded open set in \mathbb{R}^{2} with a Lipschitz-continuous boundary, we consider the following system:
$\begin{cases}-\mu_{1} \Delta u_{1}-\lambda=f_{1} & \text { in } \omega, \\ -\mu_{2} \Delta u_{2}+\lambda=f_{2} & \text { in } \omega, \\ u_{1}-u_{2} \geq 0, \lambda \geq 0,\left(u_{1}-u_{2}\right) \lambda=0 & \text { in } \omega, \\ u_{1}=g, u_{2}=0 & \text { on } \partial \omega .\end{cases}$
we consider the following full scales of Sobolev spaces:
$H_{+}^{s}(\omega)=\left\{v \in H^{s}(\omega) ; v=g\right.$ on $\left.\partial \omega\right\} ; \forall s \geq 0$. and. . $\Lambda=\left\{\chi \in L^{2}(\omega) ; \chi \geq 0\right.$ a.e in $\left.\omega\right\}$.
So we introduce the following variational problem,for any data $\left(f_{1}, f_{2}\right) \in H^{-1}(\omega) \times H^{-1}(\omega)$ and $g \in H_{+}^{\frac{1}{2}}(\partial \omega)$: Find $\left(u_{1}, u_{2}, \lambda\right) \in H_{g}^{1}(\omega) \times H_{0}^{1}(\omega) \times \Lambda$ such that

$$
\left\{\begin{array}{l}
\forall\left(v_{1}, v_{2}\right) \in H_{0}^{1}(w) \times H_{0}^{1}(w), \tag{2.2}\\
\sum_{i=1}^{2} \mu_{i} \int_{\omega} \nabla u_{i}(x) . \nabla v_{i}(x) d x-\int_{\omega} \lambda(x)\left(v_{1}-v_{2}\right)(x) d x=\sum_{i=1}^{2}\left\langle f_{i}, v_{i}\right\rangle \\
\forall \chi \in \Lambda, \quad \int_{\omega}(\chi-\lambda)(x)\left(u_{1}-u_{2}\right)(x) d x \geq 0
\end{array}\right.
$$

Proposition 2.1 : Problems (2.1) and (2.2) are equivalent
We introduce the new not empty $\left(g \geq 0 \Longrightarrow g \in \mathcal{K}_{g}\right)$ convex set :

$$
\begin{equation*}
\mathcal{K}_{g}=\left\{\left(v_{1}, v_{2}\right) \in H_{g}^{1}(\omega) \times H_{0}^{1}(\omega) ; v_{1}-v_{2} \geq 0 \text { a.e. in } \omega\right\} . \tag{2.3}
\end{equation*}
$$

We then consider the reduced problem : find $\left(u_{1}, u_{2}\right) \in \mathcal{K}_{g}$ such that

$$
\begin{equation*}
\forall\left(v_{1}, v_{2}\right) \in \mathcal{K}_{g}, \sum_{i=1}^{2} \mu_{i} \int_{\omega} \nabla u_{i}(x) \cdot \nabla\left(v_{i}-u_{i}\right)(x) d x \geq \sum_{i=1}^{2}\left\langle f_{i}, v_{i}-u_{i}\right\rangle . \tag{2.4}
\end{equation*}
$$

Lemma 2.2: For any solution $\left(u_{1}, u_{2}, \lambda\right)$ of (2.2), the pair $\left(u_{1}, u_{2}\right)$ is solution of problem (2.4).
Proposition 2.3 : for any data $\left.\left(f_{1}, f_{2}\right) \in H^{-1}(\omega)\right)^{2}$ and $g \in H_{+}^{\frac{1}{2}}(\partial \omega)$, the problem (2.4) has a unique solution. For proving this, we take $v_{-}=\min \{v, 0\}$ in $H^{1}(\omega)$ and using the LionsStampacchia theorem.
Theorem 2.4: for any data $\left.\left(f_{1}, f_{2}\right) \in H^{-1}(\omega)\right)^{2}$ and $g \in H_{+}^{\frac{1}{2}}(\partial \omega)$,the problem (2.2) has a unique solution $\left(u_{1}, u_{2}, \lambda\right) \in H_{g}^{1}(\omega) \times H_{0}^{1}(\omega) \times \Lambda$.
Corollary 2.5 : for any data $\left.\left(f_{1}, f_{2}\right) \in L^{2}(\omega)\right)^{2}$ and $g \in H_{+}^{\frac{1}{2}}(\partial \omega)$, the solution $\left(u_{1}, u_{2}, \lambda\right)$ of problem (2.2) satisfies

$$
\begin{equation*}
\left\|u_{1}\right\|_{H^{1}(\omega)}+\left\|u_{2}\right\|_{H^{1}(\omega)}+\|\lambda\|_{L^{2}(\omega)} \geq c\left(\left\|f_{1}\right\|_{L^{2}(\omega)}+\left\|f_{2}\right\|_{L^{2}(\omega)}+\|g\|_{H_{+}^{\frac{1}{2}}(\partial \omega)}\right) \tag{2.5}
\end{equation*}
$$

3. A priori analysis of the problem

3.1 The reduced discrete problem and its a priori analysis

we that w is a polygonal.Let \mathcal{T}_{h} be a regular family triangulations of w. We will use the discrete spaces given as:

$$
\mathbb{X}_{h}=\left\{v_{h} \in H^{1}(w) ; \forall K \in \mathcal{T}_{h},\left.v_{h}\right|_{K} \in \mathcal{P}_{1}\right\}
$$

$. \mathbb{X}_{0 h}=\mathbb{X}_{h} \times H_{0}^{1}(w)$ and $\mathbb{X}_{g h}=\mathbb{X}_{h} \times H_{g}^{1}(w)$ then $\mathbb{K}_{g h}=\left\{\left(v_{1}-v_{2=}\right) \in \mathbb{X}_{g h} ;\left(v_{1}-v_{2}\right) \geq 0\right.$ in $\left.w\right\}$. by the Galerkin method we have the reduced discrete problem which is has a unique solution $\left(u_{1 h}, u_{2 h}\right) \in \mathcal{K}_{g h}$ such that

$$
\begin{equation*}
\forall\left(v_{1 h}, v_{2 h}\right) \in \mathcal{K}_{g h}, \sum_{i=1}^{2} \mu_{i} \int_{\omega} \nabla u_{i h}(x) . \nabla\left(v_{i h}-u_{i h}\right)(x) d x \geq \sum_{i=1}^{2}\left\langle f_{i}, v_{i h}-u_{i h}\right\rangle . \tag{3.1}
\end{equation*}
$$

Theorem 3.1 assume that w is convex, that $\left(f_{1}, f_{2}\right) \in\left(L^{2}(w)\right)^{2}$ and $g \in H_{+}^{\frac{3}{2}}(w)$ then we obtain the a priori error estimats between the solution of $\left(u_{1}, u_{2}\right)$ of problem (2.4) and ($u_{1 h}, u_{2 h}$) of problem (3.1) :

$$
\begin{equation*}
\left\|u_{1}-u_{2}\right\|_{H^{1}(w)}+\left\|u_{1 h}-u 2 h\right\|_{H^{1}(w)} \leq C h\left(\left\|f_{1}\right\|_{L^{2}(w)}+\left\|f_{2}\right\|_{L^{2}(w)}+\|g\|_{H^{\frac{3}{2}}(\partial w)}\right) . \tag{3.2}
\end{equation*}
$$

3.2 construction of the discrete action by local postprocessing

Let \mathcal{V}_{h} denote the set of elements of \mathcal{T}_{h} wich not belong to ∂w. we define the Lagrange functions associated with $a \in \mathcal{V}_{h}$ by $\varphi_{a} \in \mathbb{X}_{0 h}$ satisfis $\varphi_{a}(a)=1$ and $\forall a^{\prime} \in \mathcal{V}_{h}, a^{\prime} \neq a, \varphi_{a}\left(a^{\prime}\right)=0$. We denote $\mathcal{T}_{h}=\left\{K_{h} \in \mathcal{T}_{h}, a \in k_{h}\right\} ; h_{a}=\max _{K \in \mathcal{T}_{h}}\{\operatorname{diamK}\} ;$
where $\triangle_{a}=\operatorname{supp}\left(\varphi_{a}\right)$,
and the nonnegative functions $\chi_{a} \in L^{2}(w)$ with asupport in a neighbourhood of a, and define \mathbb{Y}_{h} space spanned with this functions if χ_{a} linearly independant so that : $\operatorname{dim} \mathbb{Y}_{h}=\operatorname{dim} \mathbb{X}_{0 h}$. the next convex set

$$
\Lambda_{h}=\left\{\rho_{h}=\sum_{a \in \mathcal{V}_{h}} \rho_{a} \chi_{a} ; \rho_{a} \geq 0\right\} \subset \Lambda
$$

we introduce a duality pairing between \mathbb{Y}_{h} and \mathbb{X}_{h} by $\forall \rho_{h}=\sum_{a \in \mathcal{V}_{h}} \rho_{a} \chi_{a} \in \mathbb{Y}_{h}$ and $\forall v_{h} \in \mathbb{X}_{0 h}$,

$$
\left\langle\rho_{h}, v_{h}\right\rangle_{h}=\sum_{a \in \mathcal{V}_{h}} \rho_{a} v_{h}(a) \sum_{K \in \mathcal{T}_{h}} \int_{K} \varphi_{a}(x) d x .
$$

with the same notation we have the previous definition;

$$
\left\langle\rho_{h}, \varphi_{a}\right\rangle_{h}=\rho_{a} \sum_{K \in \mathcal{T}_{h}} \int_{K} \varphi_{a}(x) d x
$$

then we can define the functions $\lambda_{1 h}$ and $\lambda_{2 h}$ in \mathbb{Y}_{h}, where $v_{1 h}, v_{2 h} \in \mathbb{X}_{0 h}$.

$$
\left\{\begin{array}{l}
\left\langle\lambda_{1 h}, v_{1 h}\right\rangle_{h}=\mu_{i} \int_{w} \nabla u_{1 h}(x) \cdot \nabla v_{1 h}(x) d x-\left\langle f_{1}, v_{1 h}\right\rangle \tag{3.3}\\
\left\langle\lambda_{2 h}, v_{2 h}\right\rangle_{h}=-\mu_{2} \int_{v,} \nabla u_{2 h}(x) . \nabla v_{2 h}(x) d x+\left\langle f_{2}, v_{2 h}\right\rangle
\end{array}\right.
$$

Proposition 3.2 the functions $\lambda_{1 h}$ and $\lambda_{2 h}$ are coincide.
In view of the last proposition, we now write a discrete problem of the problem (2.2) by the Galerkin methode. It reads :find $\left(u_{1 h}, u_{2 h}, \lambda_{h}\right) \in \mathbb{X}_{g h} \times \mathbb{X}_{0 h} \times \Lambda_{h}$ such that Proposition 3.3

$$
\left\{\begin{array}{l}
\forall\left(v_{1 h}, v_{2 h}\right) \in \mathbb{X}_{0 h} \times \mathbb{X}_{0 h} ; \\
\sum_{i=1}^{2} \mu_{i} \int_{w} \nabla u_{i h}(x) . \nabla v_{i h}(x) d x-\left\langle\lambda_{1 h}, v_{1 h}-v_{2 h}\right\rangle_{h}=\sum_{i=1}^{2}\left\langle f_{i}, v_{i h}\right\rangle \\
\forall \chi \in \Lambda_{h} ; \quad\left\langle\lambda_{1 h}-\lambda_{2 h}, u 1 h-u_{2 h}\right\rangle_{h} \geq 0
\end{array}\right.
$$

Lemma 3.4 : For any solution $\left(u_{1 h}, u_{2 h}, \lambda_{h}\right)$ of (3.3), the pair $\left(u_{1 h}, u_{2 h}\right)$ is solution of problem (3.1), and the conversely.

Theorem $3.5 \forall\left(f_{1}, f_{2}\right) \in\left(L^{2}(w)\right)^{2}$ and $g \in H_{+}^{s+\frac{1}{2}}(\partial w), s \geq 0$, the problem (3.3) has a unique solution $\left(u_{1 h}, u_{2 h}, \lambda_{h}\right) \in \mathbb{X}_{g h} \times \mathbb{X}_{0 h} \times \Lambda_{h}$.
Theorem 3.6 we have the following a priori error estimate of action

$$
\left\|\lambda-\lambda_{h}\right\|_{H^{-1}(\omega)} \leq C h\left(\left\|f_{1}\right\|_{L^{2}(\omega)}+\left\|f_{2}\right\|_{L^{2}(\omega)}+\|g\|_{H^{\frac{3}{2}}(\partial \omega)}\right)
$$

4. Conclusion

we propose a standard finite element discrization of the variational formulation constructed by the Galerkin method with Lagrange finite elements. We prove that the discrete problem has a unique sulution and derive optimal a priori error estimates. The discretization of the full problem relies on the reduced discrete problem but is more complex.

5. Perspective

We hope to study the a priori error estimates of the unilateral contact between two plates together with some numerical experiments.

References

[1] P.G Ciarlet, The Finite Element Methode for Elliptic Problems. North Hollond, Amesterdam, New York, Oxford (1978).
[2] F.Ben Belgacem, C. Bernadi, A. Blouza, M. Vohralík. A finite element discritization of the contact between two membranes. Math. Model. Nat. phenom.(2009),pp.21-43. DOI: 10.1051/mmnp/20094102.
[3] H.Brezis, G.Stampacchia. Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. France, 96 (1968), 153-180.

