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Abstract

In this work, we study the a priori error estimates of the unilateral contact between two elastic
membranes. first,we analysis of the continuous problem(the well-posedness of the solu-
tion),then we study the reduced discrete problem and its a priori analysis ,finally we study the
full discrete problem and its a priori analysis .
Keywords: unilateral contact ,a priori analysis , elastic membranes ,discrete problem.

1. Modelization

From the fundamental laws of elasticity ,we write a model for the contact between two mem-
branes. The contact is taken into account according to the following principles:
(i) The two membranes cannot interpenetrate . (ii) Where they are in contact , owing to
Newton’s action-reaction law , each membrane has an action on the other
An elastic membrane is characterized by its displacement u with respect to its natural con-
figuration which is a two dimensional domain ω. The equilibrium position of the membrane ,
under the action of a vertical force F minimizes the potential energy functional:

J : v −→ J(v) =
1

2

∫
ω
µ(x)|∇v(x)|2dx−

∫
ω
F(x)v(x)dx (1.1)

The minimization problem reads that’s;

Find u ∈ H1
0(ω) such that ∀v ∈ H1

0(ω); J(u) > J(v) (1.2)

or equivalent : {
−div(µ∇u) = F in ω,

u = 0 on ∂ω
(1.3)

More details can be found in[1], Chapter I, Section 1.2, for instante. Let us now consider two
elastic membranes: The first is fixed on ∂ω at the height g.Where g is a nonnegative functin,
and the second one is fixed at zero. the correspending system of equation reads with obvious
notation, {

−div(µ1∇u1) = F1 in w,

u = g on ∂ω

{
−div(µ2∇u2) = F2 in w,

u = 0 on ∂ω
(1.4)

We are interested in the case where the membranes interact. Therefore, if λ represents the
action of the second membrane on the first one , we have F1 = f1 + λ , F2 = f2 + λ.
where the fi are external forces. It’s follows from the definition of λ that : λ ≥ 0 in ω.
Moreover, clearly the two membranes cannot interpenetate. This yields the conditions
u1 − u2 ≥ 0 in ω. Finally, we note that, where the membranes are not in contact . i; e.,
where u1− u2 > 0 , the interaction λ vanishes. This leads to the equation (u1− u2)λ = 0 in ω.
We are interested in the analysis of this system.

2. Analysis of the continuous problem

Let ω be a bounded open set in R2 with a Lipschitz-continuous boundary, we consider the
following system: 

−µ1∆u1 − λ = f1 in ω,
−µ2∆u2 + λ = f2 in ω,

u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in ω,

u1 = g, u2 = 0 on ∂ω.

(2.1)

we consider the following full scales of Sobolev spaces :
Hs

+(ω) = {v ∈ Hs(ω); v = g on ∂ω}; ∀s ≥ 0. . and . . Λ = {χ ∈ L2(ω);χ ≥ 0 a.e in ω}.
So we introduce the following variational problem,for any data (f1, f2) ∈ H−1(ω) × H−1(ω)

and g ∈ H
1
2
+(∂ω): Find (u1, u2, λ) ∈ H1

g(ω)×H1
0(ω)× Λ such that

∀(v1, v2) ∈ H1
0(w)×H1

0(w),∑2
i=1 µi

∫
ω∇ui(x).∇vi(x)dx−

∫
ω λ(x)(v1 − v2)(x)dx =

∑2
i=1〈fi, vi〉

∀χ ∈ Λ,
∫
ω(χ− λ)(x)(u1 − u2)(x)dx ≥ 0

(2.2)

Proposition 2.1 : Problems (2.1) and (2.2) are equivalent
We introduce the new not empty ( g ≥ 0 =⇒ g ∈ Kg) convex set :

Kg = {(v1, v2) ∈ H1
g(ω)×H1

0(ω); v1 − v2 ≥ 0 a.e. in ω}. (2.3)

We then consider the reduced problem : find (u1, u2) ∈ Kg such that

∀(v1, v2) ∈ Kg,
2∑
i=1

µi

∫
ω
∇ui(x).∇(vi − ui)(x)dx ≥

2∑
i=1

〈fi, vi − ui〉. (2.4)

Lemma 2.2 : For any solution (u1, u2, λ) of ( 2.2) ,the pair (u1, u2) is solution of problem ( 2.4).

Proposition 2.3 : for any data (f1, f2) ∈ H−1(ω))2 and g ∈ H
1
2
+(∂ω), the problem ( 2.4 ) has

a unique solution. For proving this,we take v− = min{v, 0} in H1(ω) and using the Lions-
Stampacchia theorem.

Theorem 2.4 : for any data (f1, f2) ∈ H−1(ω))2 and g ∈ H
1
2
+(∂ω),the problem (2.2) has a

unique solution (u1, u2, λ) ∈ H1
g(ω)×H1

0(ω)× Λ.

Corollary 2.5 : for any data(f1, f2) ∈ L2(ω))2 and g ∈ H
1
2
+(∂ω) ,the solution (u1, u2, λ) of prob-

lem (2.2) satisfies

‖u1‖H1(ω) + ‖u2‖H1(ω) + ‖λ‖L2(ω) ≥ c(‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖
H

1
2
+(∂ω)

) (2.5)

3. A priori analysis of the problem

3.1 The reduced discrete problem and its a priori analysis
we that w is a polygonal.Let Th be a regular family triangulations of w. We will use the discrete
spaces given as:

Xh = {vh ∈ H1(w); ∀K ∈ Th, vh|K ∈ P1}
. X0h = Xh×H1

0(w) and Xgh = Xh×H1
g(w) then Kgh = {(v1− v2=) ∈ Xgh; (v1− v2) ≥ 0 in w}.

by the Galerkin method we have the reduced discrete problem which is has a unique solution
(u1h, u2h) ∈ Kgh such that :

∀(v1h, v2h) ∈ Kgh ,
2∑
i=1

µi

∫
ω
∇uih(x).∇(vih − uih)(x)dx ≥

2∑
i=1

〈fi, vih − uih〉. (3.1)

Theorem 3.1 assume that w is convex , that (f1, f2) ∈ (L2(w))2 and g ∈ H
3
2
+(w) then we obtain

the a priori error estimats between the solution of (u1, u2) of problem (2.4) and (u1h, u2h) of
problem (3.1) :

‖u1 − u2‖H1(w) + ‖u1h − u2h‖H1(w) ≤ Ch

(
‖f1‖L2(w) + ‖f2‖L2(w) + ‖g‖

H
3
2(∂w)

)
. (3.2)

3.2 construction of the discrete action by local postprocessing
Let Vh denote the set of elements of Th wich not belong to ∂w. we define the Lagrange func-
tions associated with a ∈ Vh by ϕa ∈ X0h satisfis ϕa(a) = 1 and ∀a′ ∈ Vh, a′ 6= a, ϕa(a′) = 0.
We denote Th = {Kh ∈ Th, a ∈ kh}; ha = maxK∈Th{diamK};
where Ma= supp(ϕa),
and the nonnegative functions χa ∈ L2(w) with asupport in a neighbourhood of a, and define
Yh space spanned with this functions if χa linearly independant so that : dimYh = dimX0h.
the next convex set

Λh = {ρh =
∑
a∈Vh

ρaχa; ρa ≥ 0} ⊂ Λ.

we introduce a duality pairing between Yh and Xh by
∀ρh =

∑
a∈Vh ρaχa ∈ Yh and ∀vh ∈ X0h,

〈ρh, vh〉h =
∑
a∈Vh

ρavh(a)
∑
K∈Th

∫
K
ϕa(x)dx.

with the same notation we have the previous definition;

〈ρh, ϕa〉h = ρa
∑
K∈Th

∫
K
ϕa(x)dx.

then we can define the functions λ1h and λ2h in Yh, where v1h, v2h ∈ X0h.{
〈λ1h, v1h〉h = µi

∫
w∇u1h(x).∇v1h(x)dx− 〈f1, v1h〉

〈λ2h, v2h〉h = −µ2
∫
w∇u2h(x).∇v2h(x)dx + 〈f2, v2h〉

(3.3)

Proposition 3.2 the functions λ1h and λ2h are coincide.
In view of the last proposition, we now write a discrete problem of the problem (2.2) by the
Galerkin methode. It reads :find (u1h, u2h, λh) ∈ Xgh × X0h × Λh such that
Proposition 3.3

∀(v1h, v2h) ∈ X0h × X0h;∑2
i=1 µi

∫
w∇uih(x).∇vih(x)dx− 〈λ1h, v1h − v2h〉h =

∑2
i=1〈fi, vih〉

∀χ ∈ Λh; 〈λ1h − λ2h, u1h− u2h〉h ≥ 0

(3.4)

.
Lemma 3.4 : For any solution (u1h, u2h, λh) of ( 3.3), the pair (u1h, u2h) is solution of problem
( 3.1), and the conversely.

Theorem 3.5 ∀(f1, f2) ∈ (L2(w))2 and g ∈ Hs+1
2

+ (∂w), s ≥ 0, the problem (3.3) has a unique
solution (u1h, u2h, λh) ∈ Xgh × X0h × Λh.
Theorem 3.6 we have the following a priori error estimate of action

‖λ− λh‖H−1(ω) ≤ Ch

(
‖f1‖L2(ω) + ‖f2‖L2(ω) + ‖g‖

H
3
2(∂ω)

)

4. Conclusion

we propose a standard finite element discrization of the variational formulation constructed
by the Galerkin method with Lagrange finite elements. We prove that the discrete problem
has a unique sulution and derive optimal a priori error estimates. The discretization of the full
problem relies on the reduced discrete problem but is more complex.

5. Perspective

We hope to study the a priori error estimates of the unilateral contact between two plates ,
together with some numerical experiments.
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