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Abstract

In this work, we study the a priori error estimates of the unilateral contact between two elastic
membranes. first,we analysis of the continuous problem(the well-posedness of the solu-
tion),then we study the reduced discrete problem and its a priori analysis ,finally we study the
full discrete problem and its a priori analysis .
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1. Modelization

From the fundamental laws of elasticity ,we write a model for the contact between two mem-
branes. The contact is taken into account according to the following principles:

(i) The two membranes cannot interpenetrate . (i) Where they are in contact , owing to
Newton’s action-reaction law , each membrane has an action on the other

An elastic membrane is characterized by its displacement « with respect to its natural con-
figuration which is a two dimensional domain w. The equilibrium position of the membrane ,
under the action of a vertical force F minimizes the potential energy functional:

Jiv— Jv) = %/ ()| Vo(z)de — / F(z)v(x)dx (1.1)
The minimization problem reads that's;
Find w € HY(w) such that Yv € H(w); J(u) > J(v) (1.2)
or equivalent :
{ﬂm(,,,W) =F inw, 1.9)
u=0 on 0w

More details can be found in[1], Chapter |, Section 1.2, for instante. Let us now consider two
elastic membranes: The first is fixed on dw at the height g.Where g is a nonnegative functin,
and the second one is fixed at zero. the correspending system of equation reads with obvious
notation,

{7({1‘17(}11Vu1) =F inw, {7diz,'(;L2Vug) =F, inw, (1.4)

u=g on dw u=0 on dw

We are interested in the case where the membranes interact. Therefore, if A represents the
action of the second membrane on the firstone , we have 7| = fi + A, Fo= fo+ A
where the f; are external forces. It’s follows from the definition of A that : A > 0 in w.
Moreover, clearly the two membranes cannot interpenetate. This yields the conditions
u; —us > 0in w. Finally, we note that, where the membranes are not in contact . i;e.,
where u; — us > 0, the interaction \ vanishes. This leads to the equation (u; — us)A = 0in w.
We are interested in the analysis of this system.

2. Analysis of the continuous problem

Let w be a bounded open set in R? with a Lipschitz-continuous boundary, we consider the
following system:

—mAup — A= fi inw,

—pAus + A = fo mw @1
up—up >0, >0, (uyp—ux)A=0 inw,

up =g, up=>0 on Ow.

we consider the following full scales of Sobolev spaces :

Hi(w)={ve H*w)iv=g on dw};Vs>0..and.. A={x € LX(w)x >0 aein w}

So we introduce the following variational problem,for any data (fi, f2) € H™'(w) x H }(w)
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and g € H3(0w): Find (uy,up, \) € Hy(w) x Hj(w) x A such that

Y(vy,v) € H [,(
Zz 1 f Vu (x V!/,(I dx — f M) (v — vo)(z)da = Zfﬂ(f,',v,,j) (2.2)
Vx e A [,(x—=N@)(u —ug)(x)dr >0

Proposition 2.1 : Problems (2.1) and (2.2) are equivalent

We introduce the new not empty (g > 0 = g € k) convex set :

Kq—{blb))GH()XH()L1712>(](1€ inw}. (2.3)
We then consider the reduced problem : find (u1,us) € Ky such that

2 2
Y(vy,v9) € )C!,<ZMZ/VuZ(x).V(1, —u;)() Z fivvi —ui) (2.4)
i=1 © i=1

Lemma 2.2 : For any solution (u, us, \) of ( 2.2) ,the pair (u;, u;) is solution of problem ( 2.4).

Proposition 2.3 : for any data (f1, f2) € H '(w))? and g € H1 2 (dw), the problem (2.4 ) has
a unique solution. For proving this,we take v— = min{v,0} in H'(w) and using the Lions-
Stampacchia theorem.
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Theorem 2.4 : for any data (f1, f2) € H '(w))? and g € H? (0w),the problem (2.2) has a
unique solution (uy, u, \) € Hl (w) x H}(w) x A.

1
Corollary 2.5 : for any data(fi, f>) € L*(w))? and g € HZ(0w) ,the solution (uy, us, \) of prob-
lem (2.2) satisfies

el 1oy + Nuzll ey + 1M 22wy = ellfill L2 + I2ll ey + gl y ) (2.5)
( ) H2(0w)

3. A priori analysis of the problem

3.1 The reduced discrete problem and its a priori analysis
we that w is a polygonal.Let 7;, be a regular family triangulations of w. We will use the discrete
spaces given as:
= {op € H'(w); VK € Ty, vl € P1}
. Xop = X, x Hi(w) and th =X, x H} g(w) then Kyp, = {(v; —vo-) € Xohi (v) —v2) > 0inw}.
by the Galerkln method we have the reduced discrete problem which is has a unique solution
(uyp, ugp) € Ky, such that :
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V(v1h, vap) € Ky -Z#z/ Vuip(@).V(vip — wip)(x)de = Z Vil = Wip)- (3.1)

i=1 w

Theorem 3.1 assume that w is convex, that (f, f>) € ( 2(w))? and g € Hi(u:) then we obtain
the a priori error estimats between the solution of (u,us) of problem (2.4) and (uyj, uoy,) of
problem (3.1) :

o =l + o = bl < € (Wil el + I 3, ) (32

3.2 construction of the discrete action by local postprocessing
Let V;, denote the set of elements of 7;, wich not belong to dw. we define the Lagrange func-
tions associated with a € V), by ¢, € Xy, satisfis pq(a) = 1 and Va' € Vy,d’ # a, pa(a’) = 0.
We denote 7j, = {K), € Ty, a € ky}; hg = maxgeg; {diamK};
where Aq= supp(pa),
and the nonnegative functions y, € L?(w) with asupport in a neighbourhood of a, and define
Y, space spanned with this functions if x, linearly independant so that : dimY}, = dimXgy,.
the next convex set

Ay ={pn = Z PaXaipa > 0} C A.
acV,
we introduce a duality pairing between Y, and X, by
Yo = Laey, Paxa € Yp, and Yoy, € Xy,

(on- o) =Y pavyla)

agVy KeT,

Y [ el

K
with the same notation we have the previous definition;
(o) =pa Y
KeT,
then we can define the functions \;;, and Xy, in Y}, where v, v, € Xop,.
s vidn = #i [y Vurp(@)-Vory(z)de — (fr,v1) (33)
Qo van)n = —#2 f,, Vugn(x).Vugp(@)dz + (fo. vap)

Proposition 3.2 the functions \;, and )., are coincide.

In view of the last proposition, we now write a discrete problem of the problem (2.2) by the
Galerkin methode. It reads :find (uyp, ugp, Ap) € Xy, x Xop, x Ay, such that

Proposition 3.3

alr)d.

V(v1h, van) € Xop X Xop:

STt fry Vi () Vg (@)dz = (A, 01 — vap)
VX €Ay (A — A-2/11“”% = ugp)p =0

=71 (firvin) (3.4)

Lemma 3.4 : For any solution (uyy,, uap,, Ap,) of ( 3.3), the pair (uy,, usy,) is solution of problem
( 3.1), and the conversely.

gL
Theorem 3.5 V(fy, fo) € (L2(w))* and g € H} *(dw), s > 0
solution (uyp,, ugp, Ap) € Xgp, x Xop X Ay,
Theorem 3.6 we have the following a priori error estimate of action

, the problem (3.3) has a unique

3=l < €0 (Il + 120 + Dol )

4. Conclusion

we propose a standard finite element discrization of the variational formulation constructed
by the Galerkin method with Lagrange finite elements. We prove that the discrete problem
has a unique sulution and derive optimal a priori error estimates. The discretization of the full
problem relies on the reduced discrete problem but is more complex.

‘ 5. Perspective |

We hope to study the a priori error estimates of the unilateral contact between two plates ,
together with some numerical experiments.
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