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Abstract

This work deals with the famous Regularity Lemma due to E. Szemerédi; our main aim is to
give a comprehensive proof of the latter and to discuss some of its applications.

1. Introduction

Szemerédi’s regularity lemma is a masterpiece in graph theory. Szemerédi proved a weak
version of it in his proof of a conjecture of Erdos aand Turan about the density and arithmetic
progressions of natural numbers (1975). Later, in 1978 Szemerédi proved his regularity lemma.
This results arises in the proof of many deep results in graph theory and number theory. The
precise statement of the lemma is given in Section 3. Informally, the lemma says that every
graph can be partitioned into almost equal pieces all behaving in a uniform way. In the last
section we discuss the conjecture of Erdos and Turan which was behind the discovery of the
regularity lemma.

2. Basic facts on graphs

Definition 2.1 A graph G is a pair (V,E) where V is a set and E is a family of subsets of V
all containing two elements.

Let G = (V,E) be a graph. The elements of V will be called the vertices of G; we denote it
V (G) if we need to keep trace of G. The elements of E will be termed the edges of G (we
may write also E = E(G)).
If x, y ∈ E(G), then it is more convenient to write xy ∈ E; and we say simply that xy is an
edge of G. Note that xy and yx represent the same edge.

Let x, y ∈ V (G); we say that x and y are adjacent if xy in an edge of G. The set of the vertices
of G adjacent to x will be denoted δ(x), and called the neighborhood of x; hence

δ(x) = {y ∈ V (G) |xy ∈ E(G)}.

The cardinality of δ(x) will be called the degree of x and will be denoted d(x); so d(x) = |δ(x)|.

The graph G is finite if V (G) is finite. It follows in this case that G has at most
(|V |

2

)
edges.

If G is finite, then d(x) is finite for every vertex x of G. More generally, if d(x) is finite for every
vertix x of G, we say that G is a locally finite graph.

In this work we consider only finite graphs.

The following are some basic nice results on graphs.

Proposition 2.2 let G = (V,E) be a graph; then
∑
x∈V d(x) = 2|E|.

Proposition 2.3 For every graph G, there exist two vertices x and y having the same degree.

For X, Y ⊆ V , we define

E(X, Y ) = {xy ∈ E |x ∈ X and y ∈ Y }.

Definition 2.4 Let G = (V,E) be a graph, and X, Y ⊆ V . The density of the X − Y edges is
the number d(X, Y ) defined by

d(X, Y ) =
|E(X, Y )

|X||Y |
.

Let ε > 0 be a real number. We say that the pair (X, Y ) is ε-uniform if the following condition
holds:
For every X ′ ⊆ X and every Y ′ ⊆ Y satisfying |X ′| > ε|X| and |Y ′| > ε|Y |, we have

|d(X, Y )− d(X ′, Y ′)| < ε.

3. Statement of the main result.

Theorem 3.1 (Szemerédi’s Regularity Lemma) For every positive integer m, and every

0 ≤ ε ≤ 1

2
, there exists an integer M (depending on m and ε) such that every graph of

order at least m has an ε-uniform partition (Ci)0≤i≤k, with m ≤ k ≤M .

A sketch of the proof.

(a) For each pair (X, Y ) of disjoint such that of V , we define the index of regularity %(X, Y ) by

%(X, Y ) = |X||Y |d(X, Y )2.

For a partition P = (Ci) of V , we define

%(P) =
∑
X 6=Y

%(X, Y ).

As |E(x, y)| 6 |X × Y | = |X||Y |, we have d(X, Y ) 6 1 for all (X, Y ); thus

%(P) 6
∑
x,y∈p

|X||Y | 6 n2

2
. (3.1)

We assume below that our partitions have components of the same cardinality except one
of them (the exceptional component).

(c) We a call a refinement of the partition P of V every partition Q of V such that P ⊆ Q, that
is to say every component of P lies in Q. One can show that %(Q) > %(ρ) whenever Q is a
refinement of P.

The heart of the proof is to show that if P is not ε-uniform, then there exists a refinement Q
whose index is much bigger. More precisely:

(c) Assume P = {C0, ..., Ck} is not ε-uniform, and that |C0| ≤ (ε − 2−k)n; then there exists a
refinement Q = {D0, .., Dl} of V such that

|D0| < |C0| +
n

2k

and
%(Q)− %(P) ≥ 1− ε

1 + ε
ε5n2

(d) In the last step, we could start with any partition P = {C0, ..., Ck}, where |C0| 6 K .
We iterate the step (c);if in every step we find a pofinement which is not ε-uniform
Then %(Q) could be made arbitrary large; this contradicts the inequality 3.1.

4. Applications of Szemerédi’s Regularity Lemma

Szemerédi’s regularity lemma is a basic tool in graph theory, and also plays an important role
in additive combinatorics, most notably in proving Szemerédi’s theorem on arithmetic pro-
gressions (a conjecture of P. Erdös and P. Turán). A noteworthy is that the regularity lemma
proved important in the proof of the Green-Tao theorem on arithmetic progressions in prime
numbers (T. Tao earned the Fields medal for the latter work (together with other results)).
A conjecture of P. Erdös and P. Turán.
Let A ⊆ N. The upper density of A is defined by

σ(A) = lim sup
n

an
n
,

where an = |A ∩ {1, 2, ..., n}|.
Recall that for a sequence (xn) in R, lim supn xn is defined as follows:
first we define the sequence x̄n = supk>n xk; by definition

lim x̄n = lim sup
n

xn.

Conjecture. Let A ⊆ N such that σ(A) > 0; then A contains arithmetic progressions of
arbitrary large length.

Zsemerédi confirmed the latter conjecture by proving:

Theorem 4.1 For every integer k > 2, and ε > 0, there exists an integer n0 such that: for
n ≥ n0, if A ⊆ {1, 2, ..., n} and |A| > εn, then A contains an arithmetic progression of length
k.

The regularity lemma is used in the proof of the last theorem in a substantial way (actually a
much weaker version of the regularity lemma is used).
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