وزارة التعليم العالي والبحث العلمي

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التعليم العالي والبحث العلمي

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

جامعة قاصدي مرباح - ورقلة UNIVERSITE KASDI MERBAH OUARGLA

Faculté des Sciences de la Nature et de la Vie Département des Sciences Agronomiques

THESE Présentée pour l'obtention du diplôme de

> **DOCTORAT ès SCIENCES** Spécialité : Sciences Agronomiques

Par : Khaled CHAÏCH

<u>Thème</u>

Diversité des associations Rhizobium-Légumineuses de quelques espèces spontanées du Sahara septentrional

Soutenue Publiquement le : 10 / 05 / 2018

Devant le Jury Composé de :

Président	M ^{me} BISSATI Samia	Professeur	Université KM Ouargla
Rapporteur	M ^R BEKKI Abdelkader	Professeur	Université d'Oran
Examinateur	M ^R KEMASSI Abdellah	M. C. A	Université de Ghardaïa
Examinateur	M ^R CHELOUFI Hamid	Professeur	Université KM Ouargla
Examinateur	M ^R HACENE Hocine	Professeur	USTHB Alger
Examinateur	M ^{me} OULDEL HADJ-KHELIL Amina	Professeur	Université KM Ouargla
Invité	M ^R DE LAUDIE Philippe	Professeur	LSTM-Montpellier- France

Année universitaire: 2017/2018

Intitulé de thèse: Diversité des associations symbiotiques rhizobium-légumineuses de quelques espèces spontanées du Sahara septentrional

Résumé :

Il est admis que le milieu saharien est hostile à toute forme de vie et qu'il contient d'importantes ressources floristiques et microbiennes. Nous nous sommes proposé dans la présente thèse d'établir la première étude concernant la diversité des associations symbiotiques rhizobium-légumineuses dans le Nord-est du Sahara Algérien. Hormis l'aridité prononcée, les analyses physico-chimiques des sols prélevés au niveau de la rhizosphère (10 à 20 cm) font ressortir qu'ils se caractérisent par une texture grossière (>> 95 % sableuse à sablonneuse). Se sont des sols filtrants et squelettiques. Les teneurs maximales enregistrées en éléments nutritifs majeurs (N et P) avoisinent, respectivement, 0,3 % et 0,75 %. Ils se distinguent, aussi, par leur alcalinité (pH de 8,4 à 8,8) ainsi qu'un très faible taux de MO (<< 0,17 %).Les fabacées se caractérisent généralement par leur capacité d'établir une symbiose fixatrice d'azote avec des bactéries du sol appelées "Rhizobia". La présente étude concerne quatre (04) espèces de fabacées herbacées et arbustives qui se développent spontanément dans ce milieu contraignant. Il s'agit d'Astragalus gombo Bunge, Astragalus mareoticus Del., Genista saharae Coss. & Durieu et *Retama retam* Webb. L'utilisation de la méthode de piégeage a mis en évidence la présence des BNL dans les couches superficielles du sol (10 à 20 cm). En effet, après 7 semaines de culture des plants testées sous conditions contrôlées, des nodosités sont apparues sur leurs racines de chacune des 04 espèces. Les résultats obtenus font ressortir que les BNL indigènes sont bien capables d'établir une relation de symbiose fixatrice d'azote qui aboutit à la formation des nodules sur les racines des 04 espèces étudiées (A. gombo, A. mareoticus, G. saharae et R. retam).

Les méthodes usuelles ont été utilisées pour l'isolement des 'BNL''. Un total de 106 isolats a été obtenu à partir des nodosités prélevées sur les racines de plants à savoir : cinquante-sept (57) de *G. saharaea*, vingt-deux (22) d'A. gombo, quinze (15) de *R. retam* et douze (12) à partir d'A. mareoticus. Les isolements bactériens sont à croissance rapides. ils apparaissent après 24 à 48 heures de culture à 28°C dans le milieu YMA. Les colonies obtenues sont rondes présentant une morphologie comparable à celle des rhizobia connus. Ils se distinguent, parfois, par leur forte mucosité.

Les isolats associés à l'espèce G. saharae ont fait l'objet de caractérisation phénotypique et phylogénétique. Pour déterminer la position systématique des isolats, nous avons inclus toutes des séquences nucléotidiques des souches types de BNL validées au niveau des bases de données http://www.bacterion.net/ et http://www.straininfo.net/. Un premier criblage de l'ensemble de la collection sur la base du séquençage du gène de ménage atpD de 500 pb a permis d'affilier les 57 souches à 08 groupes dans 03 genres : Ensifer, Neorhizobium et Mesorhizobium. De façon singulière nous avons trouvé qu'au Sahara d'Algérie l'espèce G. saharae est associée à des bactéries affiliées au genre Mesorhizobium. L'originalité de ces groupes a été suivie par le séquençage du gène de ménage recA pour être ensuite confirmée par le gène d'ARNr 16S. La majorité (81%) des souches obtenues appartenaient au genre Ensifer (Sinorhizobium), représenté principalement par l'espèce Ensifer meliloti LMG6133^T. Le genre *Neorhizobium* vient en seconde position (17%) avec 3 différentes espèces: *N*. alkalisoli CCBAU01393^T, N. galegae LMG6214^T et N. huautlense LMG18254^T suivi par le genre *Mesorhizobium* (1,75%) qui est représenté par l'espèce *M. camelthorni* CCNWXJ404^T. Le test de nodulation in-vitro en conditions contrôlées a confirmé leur infectivité et leur efficience vis-à-vis de leur plante hôte (G. saharae). La quasi majorité (80%) des souches isolées ont toléré jusqu'à 4% (w / v) de NaCl et résistent jusqu'à 45°C.

Cette étude est le premier rapport sur la caractérisation des microsymbiotes de *G. saharae* dans le Sahara d'Algérie.

Mots clés : Sahara d'Algérie, Fabacées spontanées, Diversité des rhizobias, *A. gombo*, *A. mareoticus*, *G. saharae*, *R.retam*, recA, atpD, gènes, ARNr 16S.

Title of Thesis:

Diversity of symbiotic rhizobium-legume associations of some spontaneous species of northern Sahara

Abstract:

It is recognized that the Saharan environment is hostile to all life forms yet contains important floristic and microbial resources. We propose in this thesis to establish the first study concerning the diversity of symbiotic associations between Rhizobium species and leguminous plants in the North-East of the Algerian Sahara. Besides the marked aridity, the physico-chemical analyses of soils taken from the rhizosphere (10 to 20 cm) showed that they are characterized by a coarse texture (>> 95 % sandy). They are filtering and skeletal soils. The maximum levels recorded for major nutrients (N and P) are approximately 0.3% and 0.75% respectively. They are also distinguished by their alkalinity (pH 8.4 to 8.8) and a very low organic matter (<< 0.17%). The Fabaceae are generally characterized by their ability to form nitrogen-fixing symbioses with soil bacteria called "Rhizobia". The present study concerns four (04) species of herbaceous and shrub Fabaceae that develop spontaneously in this constraining environment. These are Astragalus gombo Bunge, A. mareoticus Del., Genista saharae Coss. & Durieu and Retama retam Webb. The use of the trapping method revealed the presence of bacteria nodulating legumes (BNL) in the upper layers of the soil (10 to 20 cm). Indeed, after 7 weeks of culture of the four species of plants tested under controlled conditions, nodules appeared on their roots. The results showed that native BNLs are well able to establish a nitrogen-fixing symbiosis relationship that results in the formation of nodules on the roots of the four species studied (A. gombo, A. mareoticus, G. saharae and R. retam).

The usual methods have been used for the isolation of "BNL". A total of 106 isolates were obtained from the nodules taken from plant roots, namely : fifty seven (57) from G. saharaea, twenty two (22) from A. gombo, fifteen (15) from R. retam and twelve (12) from A. mareoticus. The bacterial isolates appear after 48 to 72 h of incubation at 28 °C on YMA medium. The colonies obtained are round with a morphology similar to that of known *Rhizobia*. They are distinguished, sometimes, by their strong mucus. Isolates associated with G. saharae have been phenotypically and phylogenetically characterized. To determine the systematic position of the isolates, we have included all the nucleotide sequences of the standard BNL type strains validated at the database http://www.bacterion.net/ and http://www.straininfo.net/. A first screening of the entire collection based on the sequencing of the 500 bp *atpD* housekeeping gene allowed us to assign the 57 strains to 8 groups in 3 genera: *Ensifer*, *Neorhizobium* and *Mesorhizobium*. We found that in the Algerian Sahara, the species G. saharae is strongly associated with bacteria in the genus Mesorhizobium. The phylogeny of these groups was confirmed by sequencing of the recA housekeeping gene and the 16S rRNA gene. The majority (81%) of the strains obtained belonged to the genus Ensifer (Sinorhizobium), mainly represented by the species Ensifer meliloti LMG6133^T. The genus Neorhizobium comes in second place (17%) with 3 different species: N. alkalisoli CCBAU01393^T, N. galegae LMG6214^T and N. huautlense LMG18254^T followed by the genus Mesorhizobium (1.75%) which is represented by M. camelthorni $CCNWXJ404^{T}$.

The in vitro nodulation test under controlled conditions confirmed their infectivity and efficiency to their host plant(*G. saharae*). Most isolated strains (80%) have tolerated up to 4% (w / v) NaCl and resist up to 45 °C.

This study is the first report on the characterization of G. saharae microsymbiotes in the Algerian Sahara.

Keywords: Algerian Sahara, spontaneous Fabaceae, Diversity of rhizobias, *A. gombo*, *A. mareoticus*, *G. saharae*, *R. retam*, recA, atpD, genes, 16S rRNA.

عنوان الرسالة: تنوع ارتباطات الريزوبيوم والبقوليات التكافلية لبعض الأنواع العفوية في الصحراء الشمالية

ملخص:

من المسلم بأن البيئة الصحراوية معادية لجميع أشكال الحياة وتحتوي على موارد زهرية ومكروبيه هامة. اقترحنا في هذه الرسالة تقديم أول دراسة عن تنوع الجمعيات التكافلية بين الريزوبيوم والبقوليات في شمال شرق الصحراء الجزائرية. بغض النظر عن الجفاف الواضح، فإن التحاليل الفيزيائية الكيميائية للتربة المأخوذة من الريزوسفير (10 إلى 20 سم) تظهر أن هده التربة تتميز بملمس خشن (>95٪ رملية). فهي تربة ترشيحية و هيكلية. وتبلغ المستويات القصوى المسجلة من المغذيات الرئيسية (N و P) حوالي 0.3% خشن (>95٪ رملية). فهي تربة ترشيحية و هيكلية. وتبلغ المستويات القصوى المسجلة من المغذيات الرئيسية (N و P) حوالي 0.3% خشن (>95٪ رملية). فهي تربة ترشيحية و هيكلية. وتبلغ المستويات القصوى المسجلة من المغذيات الرئيسية (N و P) حوالي 0.3% و 0.7% و ماي التوالي. كما أنها تتميز بقاعدتها القلوية (H = 8.8-8.4) و نسبة MO منخفضة جدا (</17%). فصيلة البقوليات و 0.7% على التوالي. كما أنها تتميز بقاعدتها القلوية (H = 8.8-8.4) و نسبة MO منخفضة جدا (</17%). فصيلة البقوليات تتميز عموما بقدرتها على التوالي. كما أنها تتميز بقاعدتها القلوية (H = 8.8-8.4) و نسبة MO منخفضة جدا (</17%). فصيلة البقوليات من موار بقدر يعوما بقدرتها على التوالي. كما أنها تتميز بقاعدتها القلوية (H = 8.8-8.4) و نسبة MO منخفضة جدا (</17%). فصيلة البقوليات تتميز عموما بقدرتها على التعايش، بتثبيت النيتروجين، مع بكتيريا التربة المسماة "ريزوبيا ". تتناول الدراسة الحالية أربعة أنواع من هموا بقدرتها على التعايش، بتثبيت النيتروجين، مع بكتيريا التربة المسماة "ريزوبيا ". تتناول الدراسة الحالية أربعة أنواع من مواليات العشبية والشجرية التي يتطور بشكل تلقائي في هذه البيئة المقيدة و هي .A

في الطبقات السطحية من التربة (10 إلى 20 سم). في الواقع، بعد 7 أسابيع من BNL ان استخدام طريقة المحاصرة كشف عن وجود زرع النباتات المختبرة تحت ظروف خاضعة للرقابة، ظهرت العقيدات على جذور كل من الأنواع الأربعة. أظهرت النتائج المتحصل الأصلية هي قادرة على إقامة علاقة تكافلية بتثبيت النيتروجين التي تؤدي إلى تشكيل عقيدات على جذور الأنواع BNL عليها أن G.

". تم الحصول على مجموع 106 عزلة من العقيدات المأخوذة من جذور النباتات مقسمة BNLباستخدام الأساليب المعتادة لعزل A. gombo واثني عشر (12) retam.R واثني عشر (12) من A. gombo، وعشرين (22) G. saharae كالتالي: سبعة وخمسون (57 . المستعمرات التي تم YMA. ظهرت عزلات بكتيرية بعد 48 إلى 72 ساعة من الزرع عند 28 درجة مئوية في وسط rhizobia. المعروفة حيث تتميز أحيانا بمخاط قوي.rhizobiaالحصول عليها دائرية مع مورفولوجية مماثلة

مظهريا و وراثيا لتحديد الموقع النتظيمي للعز لات. حيث قمنا بإدراج جميع تسلسل النوكليوتيدات لسلالات Gدرست العز لات المتعلقة المصادق عليها على مستوى قاعدة البيانات net.straininfo.www//:http/ و net.bacterion.www//:http/.من خلال BNL من atpD استطعنا تصنيف 57 سلالة في 08 مجموعة و 03 pb الغربلة الأولية للمجموعة بأكملها على أساس تسلسل للجينات dtpD. أنواع هي eorhizobium ، Ensifer و Neorhizobium و ensifer.

ARN 16S لتؤكد لاحقا بواسطة الجينات recAتحققنا من أصالة هذه المجموعات عن طريق تسلسل الجينات

للمثلة أساسا بالنوع Ensifer meliloti غالبية (81٪) السلالات التي تم الحصول عليها تنتمي إلى جنس MG6133^T Ensifer eneliloti الممثلة أساسا بالنوع Neorhizobium : بثلاثة 3 أنواع مختلفة . Neorhizobium و N. alkalisoli CCBAU01393^T, LMG6214^T N. galegae و في الأخير جنس LMG18254^T N. huautlense (1.7٪) الذي يمثله CCNWXJ404^T. الذي الأخير جنس M. .CCNWXJ404^T.

أثبت اختبار التعقيم في المختبر، تحت ظروف خاضعة للرقابية قدرتهم على إصابة نبتتهم المضيفة. وقد تميزت معظم السلالات (ك / ح) ومقاومة تصل إلى 45 درجة مئوية. 8٪) بتحمل تركيز كلورد الصوديوم يصل إلى 4٪0(المعزولة في الصحراء الجزائريةG. Saharae هذه الدراسة تعتبر أول تقرير عن توصيف المتكافلات الدقيقة لنبتة

الجينات العفوية الصحراء الجزائرية ، الكلمات الدالة: BNL , A gombo, A. mareoticus, G. saharae, R.retam, recA, atpD, · . 16S ARN

REMERCIEMENTS

Avant d'être un manuscrit et un exposé de 45 minutes, une thèse, c'est un long parcours de travail, d'expériences, de terrain, de réflexion, d'écriture, le tout passant par toutes les phases possibles en ce qui concerne le moral, l'enthousiasme et la détermination. Indéniablement, la thèse est loin d'être un travail solitaire. Il me faut donc aujourd'hui revenir sur ces années et sur les personnes qui m'ont aidée et accompagnée dans le travail ainsi que dans la vraie vie.

Je tiens, avant tout, à exprimer ma vive reconnaissance envers à mon directeur de thèse le Professeur Abdelkader BEKKI, qui par son choix de sujet, m'a permis d'être le pionnier des études sur la diversité des Rhizobias dans le vaste Sahara d'Algérie. Je te remercie de m'avoir fait confiance tout au long de ce travail ainsi que de m'avoir toujours laissé une très grande autonomie tout en étant là pour me conseiller et me soutenir quand il le fallait.

J'adresse mes sincères remerciements aux membres du jury qui ont accepté de juger ce travail malgré leur calendrier chargé. Un grand merci au Professeur M^{me} BISSATI SAMIA .pour avoir accepté de présider ce jury de thèse et pour vos nombreux conseils et encouragements. Je tiens également à exprimer mes remerciements, pour avoir accepté de faire partie de ce jury, aux Professeurs M^{ME} OULD EL HADJ-KHELIL Amina, M^R CHELLOUFI Hamid, M^R HACENE Hocine et au Docteur M^R KEMASSI Abdallah. Mes remerciements vont également à l'endroit du Professeur DE LAUDIE Philippe pour avoir accepté d'être examinateur invité de ce travail et pour son soutien et ses encouragements.

Merci à J.C. Cleyet Marel pour cet embryon de collaboration, par mail, d'abord, puis de façon plus directe en me permettant ''d'accéder à la paillasse'' au sein du LSTM de Montpellier; travailler dans une ambiance familiale offerte par l'ensemble du personnel pendant mon séjour de 18 mois (oct.2011-Mars2013) et, surtout, de découvrir cet immense plaisir de côtoyer des sommités scientifiques.

Je remercie Michel Lebrun qui m'a permis de réaliser une grande partie de mes travaux de thèse dans son laboratoire. Je le remercie pour son enthousiasme, ses conseils et pour son excellent accueil au cours de mes séjours à Montpellier. Merci à Brigitte Brunel pour ses discussions enrichissantes et sa participation dans la relecture et la rédaction du manuscrit de mon 1^{er} article. Une profonde gratitude et un vif remercîment vont particulièrement envers Philippe De Lajudie. Je le remercie pour sa relecture enrichissante de l'aspect moléculaire, pour ses nombreux conseils sur la rédaction du manuscrit de l'article. J'aimerai également lui dire à quel point j'ai apprécié sa grande disponibilité dans la relecture des documents que je lui avais adressés. Enfin, j'ai été extrêmement sensible à ses qualités.

Merci à Robin Duponois, Prin Yves Moulin Lionel, Neyra Marc, à Marc, à la défunte Giselle, à Fabienne, à Agnieska, à Jean François, à Antoine et à tous les membres du LSTM qui ont tous répondu présents lors de mes exposés au labo et ont su, par leurs remarques et leurs conseils, faire avancer ma réflexion. A Lucette pour sa précieuse collaboration, A Nathalie pour sa disponibilité au quotidien, à Christine pour sa générosité, à Odile pour son amitié, à Delphine Joël et Pierre pour leur sympathie constante, aux filles doctorantes de l'époque, Marie M., Caroline, Roba et Soussou pour la bonne entente.

Je dois évoquer aussi l'aide précieuse de mon cher ami Ahmed Dahmane pour sa collaboration à titre personnel dans la réalisation de la partie terrain (prospections et prélèvements d'échantillons) à travers les grands espaces sahariens. Une pensée particulière à tous les éleveurs nomades concernant les innombrables appuis services rendus sécurité, savoir ancestral ainsi que leur générosité et sympathie.

Mes vifs remerciements vont aussi à tous mes amis et collègues enseignants, qui, avec cette question récurrente, « tu n'as pas encore soutenu ta thèse ? », m'ont permis de ne jamais dévier de mon objectif final.

Pour leur affection maintes fois renouvelée, je ne cesserais de répéter Merci à ma femme, à ma fille ainée Rabab et à mes grands : Abdeljalil, Mohamed et Raouf.

Merci enfin, à mon défunt père qui vénérait la science et auquel je dédie, particulièrement à sa mémoire, ce modeste travail. Merci pour m'avoir motivé dés mon jeune âge de suivre mon petit bout de chemin, de persévérer dans ce que je rêvais de faire. Merci pour ses regards fiers à chacune des étapes de ma vie qui demeuraient toujours présents.

Une pensée vive à la mémoire de ma chère maman qui vient de nous quitter, qu'Allah, le tout puissant, l'accueille dans ses vastes paradis.

Il est probable que j'oublie quelques personnes, et j'espère qu'elles ne m'en tiendront pas rigueur. Si elles me connaissent bien, elles sauront que c'est involontaire.

TABLE DES MATIERES

RESUME SYMMARY RESUME LANGUE NATIONALE. REMERCIEMENTS. SOMMAIRE. LISTE DES ABBREVIATIONS. LISTE DES FIGURES. LISTE DES FIGURES. PUBLICATIONS ET COMMUNICATIONS INTERNATIONALES.	i iii vi vii x vii vii xii
INTRODUCTION GENERALE	1
Chapitre I. Synthèse bibliographique	
 I. Aperçu général sur quelques caractéristiques du milieu d'étude: le Sahara d'Algérie 1.1. Les déserts du monde 1. 2. Les subdivisions du Sahara 1. 3. Les espaces géomorphologiques du Sahara 1.4. Cadre bioclimatique 1.5. Les sols sahariens 1.6. Flore spontanée 	5 5 6 7 7 8 9
 II. La fixation biologique de l'azote 2.1. Diversité des micro-organismes fixateurs d'azote 2.1.1. Les fixateurs libres 2.1.2. Les fixateurs symbiotiques 2.2. Intérêt agronomique et écologique de la fixation biologique 	10 10 11 12 12
 III. L'association Rhizobium Légumineuse 3.1. Les légumineuses: Importance et diversité 3.2. Légumineuses sahariennes 3.2.1. Tribu des <i>Galegeae</i> 3.2.2. Tribu des <i>Genistae</i> 3.3. Les Rhizobia 3.4. Etablissement de l'association symbiotique Rhizobum-Légumineuse 3.4.1. La pré-infection 3.4.2. L'infection 3.4.3. Organogenèse du nodule 3.4.4. Types de nodules 3.5. Spécificité d'association Rhizobium-Légumineuse 3.6. Effets des facteurs abiotiques sur la symbiose <i>Rhizobium</i>-légumineuse 	14 14 16 16 17 18 22 22 22 24 24 24 25 27
 VI. Taxonomie bactérienne et techniques d'identification 4.1. La Taxonomie bactérienne 4.2. La taxonomie polyphasique bactérienne 4.3. L'analyse de séquence multi locus ou MLSA 	28 28 28 31
Chapitre II. Matériels et méthodes 2.1. Prospection et échantillonnage 2.2. Position, bioclimat et description des sites de prélèvement 2.3. Analyses physicochimiques des sols rhizosphériques prélevés 2.3.1. Echantillonnage et prélèvements des sols	32 32 34 34

vi

	24
2.3.2. Methodes	34
2.3.3. Analyses statistiques	36
2.4. Recolte de graines	36
2.5. Piegeage des bacteries symbiotiques	31
2.6. Isolement des bacteries symbiotiques	38
2.7. Etude de la diversité génétique des souches associées à la legumineuse Saharienne	39
spontanee G.sanarae.	20
2.7.1. Extraction d'ADN	39
2.7.2. Amplification des gènes de ménage (rec. A. et et mD)	40
2.7.2.1. Amplification des genes de menage (recA et alpD)	40
2.7.2.2. Amplification du gene de l'ARINE 105	40
2.7.2.5. Amplification du gene nodA	41
2.7.3. Analyse phylogenetique	42
2.7.2.2. Détermination des groupes	42
2.7.3.2. Determination des groupes	42
2./.3.3. Blast et soumission des sequences nucleotidiques des souches	42
representatives à la base de données INCBI.	10
2.7.5.4. Angliement des sequences ADN des souches isolees avec la totalle des	42
2.7.4. Construction d'arbras phylogénétiques	12
2.7.4. Construction d'arbres phylogenetiques	42
2.8. La Testa de nodulation et de fivetion	44
2.8.1. Tests de flodulation et de fixation 2.8.2. Désistence aux températures et telérence au sel	44
2.8.2. Resistance aux temperatures et tolerance au sei	43
Chapitre III. Résultats et discussions	47
1. Qualité physico-chimique des sols	47
2. Identification et géo-localisation des fabacées spontanées dans les différents espaces	50
géomorphologiques du Sahara septentrional Est du Sahara d'Algérie	50
3. Mise en évidence de la présence des BNL dans les couches superficielles des sols au niveau	52
des écosystèmes naturels du Sahara d'Algérie.	
3.1 Résultats des piégeages	52
3.2. Isolement des BNL indigènes	55
4. Etude de la diversité génétique des souches de BNL indigènes associées à la légumineuse	56
spontanée G.saharae	
4.1. Amplification PCR et Blasts des séquences	56
4.2. Numéros d'accession Genbank des souches représentatives des BNL associées à G.	56
saharae dans les régions sahariennes D'Algerie.	50
4.3. Analyses phylogénétiques des souches associées la légumineuse spontanée G.saharae	61
4.3.1. Analyses phylogénétiques des séquences du gène <i>atpD</i>	61
4.3.2. Analyses phylogénétiques des séquences du gène recA	63
4.3.3. Analyse phylogénétique des gènes <i>recA</i> et <i>atpD</i> concaténés	63
4.3.4. Phylogénie fondée sur les gènes ARNr 16S	65
4.4. Position taxonomique des souches associées la légumineuse spontanée G.saharae	65
5. Caractérisation phénotypique	69
5.1. Caractéristiques symbiotiques des microsymbiotes de G.saharae	69
5.1.1. Infectivité des souches	69
5.1.2. Efficience des souches	71
5.2. Résistance à la température et tolérance au sel	72
5.2.1. Résistance des souches aux températures	72
5.2.2. Tolérance des souches aux sels (NaCl)	73
5.3. Conclusion	74
CONCLUSION GENERALE ET PERSPECTIVES	75
REFERENCES BIBLIOGRAPHIQUES	79

ANNEXES

LISTE DES ABREVIATIONS

AABNF :	Association Africaine pour la Fixation Biologique de l'azote
ADN :	Acide DésoxyriboNucléique (DNA, Deoxyribonucleic acid)
ARN:	Acide RiboNucléique (RNA, Ribonucleic acid)
ARNr:	Acide riboNucléique ribosomal (rRNA, ribosomal Ribonucleic acid)
A.gombo	A.gombo
A. maureoticus	Astragalus .maureoticus
atpD	synthase beta subunit
BNL	Bactéries nodulant les légumineuses
Blast:	Basic Local Alignment Search Tool
bp (pb):	base pair (paire de base)
DO :	Densité Optique (Optical density)
EC:	Electrical conductivity (conductivité électrique)
EDTA	Acide Ethylène Diamine Tétraacétique
EPS:	Exopolysaccharide
G.saharae	Genista saharae
GTR:	General Time Reversible
HBA	Hassi ben abdallah
Kb :	Kilobase ou Kilo-paire de bases
LPS:	Lipopolysaccharide
LSTM:	Laboratoire des Symbioses Tropicales et Méditerranéennes
mg	milli-gramme
Mg	Magnesium
ml	milli-litree
MLSA	MultiLocus Sequences Analysis
N :	Nord
N_2 :	diazote
Na :	Sodium
NaCl :	Chlorure de sodium
NCBI:	National Center for Biotechnology Information
ND :	Non Détecté
O NM	Office National de Meterologie
Р	Phosphore
PCR :	Polymerase Chain Reaction
pH:	potentiel d'Hydrogène
OSP :	Quantité Suffisante Pour
recA	recombinase A
R.retam	Retama retam
rpm:	rotations par minute
-p	micron
UKMO :	Université Kasdi Merbah Quargla
ul	Micro litre
UV ·	Ultra Violet
YM ·	Yeast Mannitol
YMA·	Veast Mannitol Agar
I 171/ 1.	rouse returning of a four

LISTE DES FIGURES

Figure 1. Les zones arides et sous-types du monde.	05
Figure 2. Les grandes subdivisions phytogéographiques du Sahara.	06
Figure 3. Analyse climatique selon les diagrammes de Bagnouls and Gaussen dans différents sites	
couvrant le Sahara septentrional d'Algérie.	08
Figure 4. Arbre des grands groupes phylogénétiques des eubactéries basé sur les séquences d'ADNr	11
105. Figure 5. Phylogénie des <i>Leguminosae</i> d'anrès l'analyse des séguences du gène chloronlastique rhel	15
Figure 6. Description sommaire de 02 fabacées spontanées annuelles A <i>aombo et A margoticus</i> (Tribu:	15
Galegeae)	16
Figure 7 Description sommaire de 02 fabacées spontanées vivaces G Saharae et R Retam (Tribu:	10
Genistene)	17
Figure 8. Le dialogue moléculaire rhizobium-légumineuse.	22
Figure 9. Schéma global du processus d'infection jusqu'à la formation du nodule fonctionnel chez	
Medicago.	23
Figure 10. Représentation schématique de la structure des nodules de Légumineuses.	25
Figure 11. Absence de corrélation entre les phylogénies moléculaires des rhizobia et des légumineuses.	26
Figure 12. Niveau de résolution taxonomique des différentes techniques.	29
Figure 13. Carte de localisation des sites étudiés.	33
Figure 14. Photo prélèvement sol au niveau des rhizosphères des espèces de fabacées retenue	35
Figure 15. Photos des gousses et graines des espèces de fabacées spontanées prélevées dans le Sahara	
septentrional.	36
Figure 16. Photo des piégeages des souches de BNL associées aux 04 espèces de fabacées spontanées	
étudiées.	38
Figure 17. Nodosités présentes sur les racines (A) A.gombo, (B) A. maureoticus, (C) G.saharae et (D)	
R. raetam obtenus après piégeage des sols prélevés dans les différents sites.	39
Figure 18. Texture de couches superficielles de sols (10 à 20 cm) prélevés dans différents espaces	47
géomorphologiques des sites échantillonnés à travers le Sahara septentrional.	
Figure 19. Analyse en composantes principales des sols en fonction de leurs caractéristiques physico-	48
chimiques.	
Figure 20. Photos de jeunes plants de fabacées spontanées nodulées par piégeage des souches de BNL	52
présentes dans les couches superficielles des sols du Sahara septentrional d'Algérie.	
Figure 21. Résultats de nodulation obtenues sous conditions contrôlées par piègeages des BNL	54
associees a 04 especes fabacees spontanees dans le sahara septentrional est d'Algerie.	- 7
Figure 22. Aspect macroscopique des BNL sanariennes après 72 neures de culture sur YMA a 28°C	51
Figure 25. Arbre phylogenetique Maximum-Inkelihood base sur les sequences du gene <i>arpD</i>	02 64
Figure 24. Arbre phylogenetique Maximum-likelihood basé sur les séquences du gene <i>recA</i>	04
ménage, <i>atpD at racA</i> concatenés	66
Figure 26. Arbre phylogénétique Neighbour-joining phylogenetic base sur les gènes ARNr 168	68
Figure 27. Infectivité des souches BNL associées aux racines de <i>G saharae</i>	69
Figure 28. Taille et forme des nodosités observées sur les racines de plants de <i>G_saharae</i> obtenues par	-
piégeage sous conditions contrôlées.	71
Figure 29. Efficience des souches	71

LISTE DES TABLEAUX

Tableau 1. Familles végétales prédominantes au Sahara d'Algérie	09
Tableau 2. Liste des genres et des espèces de rhizobia actuellement connues	19
Tableau 3. Localisation et nature géomorphologique des espèces de fabacées spontanées étudiées.	34
Tableau 4. Dispositif expérimental de piégeage des BNL présentes dans les rhizosphères de quatre fabacées spontanées dans le Sahara d'Algérie.	37
Tableau 5. Différentes amorces utilisées pour l'amplification des gènes recA, atpD, de l'ARNr 16S et du nodA des souches de BNL associées à la fabacée spontanée <i>G.saharae</i> .	42
Tableau 6. Numéros d'accessions Genbank des séquences des gènes ARNr16S, atpD et recA des souches témoins utilisées pour déterminer la position taxonomique des souches de BNL associées à <i>G.saharae</i>	43
Tableau 7. Propriétés physico-chimiques des sols au niveau des espaces naturels du Sahara septentrional d'Algérie.	49
Tableau 8. Identification et géo-localisation de quatre espèces de fabacées spontanées dans le Sahara septentrional Est d'Algerie.	50
Tableau 9. Résultats de nodulation issues des piégeages des BNL des sols du Sahara septentrional est d'Algérie.	53
Tableau 10. Liste totale des isolats associés à <i>Genista saharae</i> et positions phylogénétiques des souches représentatives	57
Tableau 11. Numéros d'accession Genbank des différents génotypes des souches de BNL associées à <i>G. saharae</i> dans les régions sahariennes D'Algerie	60
Tableau 12. Paramètres symbiotiques (Nodulation et fixation biologique d'azote) de la légumineuse spontanée <i>Genista saharae</i> inoculée par les souches représentatives et la souche type de référence <i>E. garamanticus</i> .	70
Tableau 13. Resistance aux températures et tolérance à la salinité (NaCl) des isolats et souches référence de BNL associées à là fabacée spontanée <i>Genista saharae</i> .	73

X

COMMUNICATIONS ET PUBLICATIONS INTERNATIONALES

Article publié

Chaïch K., Bekki A., Bouras N., Holtz M. D., Soussou S. Mauré L., Brunel B., de Lajudie P., Cleyet-Marel J.C. Rhizobial diversity associated with the spontaneous legume *Genista saharae* in the northeastern Algerian Sahara. Symbiosis (2017) 71: 111. https://doi.org/10.1007/s13199-016-0414-y

Liste des communications à des congrès scientifiques internationaux

Chaïch K., Bekki A. Promising microbial genetic resources. Poster présenté au 13 ^{éme} Congress of the African Association Biological Nitrogen Fixation, December 15th-18th 2008 Hammamet, Tunisia

Chaïch K. Bekki A. Association BNL-légumineuses spontanées dans le Sahara algérien: Ressources génétiques microbiennes prometteuses. Poster présenté au Séminaire International de la protection et de la préservation des écosystèmes sahariens tenu du 13au 15 Decembre 2009 Ouargla-Algérie.

Chaïch K., Bekki A, Brunel B., de Lajudie P., J.C. Cleyet-Marel. Diversité des Rhizobiums Associés aux Légumineuses spontanées du Sahara septentrional est d'Algérie. Communication orale présentée au Séminaire International d'Ecologie Microbienne tenu du 29 - 30 Octobre 2013 Bejaïa- Algerie.

Chaïch K., Bekki A., Brunel B., de Lajudie P., J.C. Cleyet-Marel. Piégeage, isolement et étude de la diversité moléculaire des Rhizobiums présentes dans la rhizosphère d'une fabacée spontanée *G. saharae* (Cosson et Durieux) du Sahara septentrional est d'Algérie. Communication orale présentée au16ème Congrès " Bio fertilisation des sols et développement durable en Afrique " 2 au 7 novembre 2014, Rabat- Maroc.

Chaïch K., Bekki A., Brunel B., de Lajudie P., J.C. Cleyet-Marel. Piégeage, isolement et étude de la diversité moléculaire des Rhizobiums présentes dans la rhizosphère d'une fabacée spontanée *G. saharae* (Cosson et Durieux) du Sahara septentrional est d'Algérie. Poster présenté au 2nd Adam Kondorosi symposium Frontiers in Legume Biology ; tenu du 11-12 / 2014 au CNRS – Ile de France Sud -Gif sur Yvette- France.

Chaïch K., Cleyet-Marel J.C., Brunel B., de Lajudie P., Bekki A. Diversité des BNL associées à la légumineuse spontanée *Genista saharae* dans le Sahara septentrional est d'Algérie. Communication orale présentée à l'international Forum Biotechnology Applications of Bio – Input, «MICROBIAL INOCULA IN THE SERVICE OF THE ENVIRONNEMENT ». Tenu du12-13 /05/ 2015, ORAN-Algeria.

INTRODUCTION GENERALE

Introduction générale

Le Sahara s'étend de l'océan Atlantique au golfe persique. L'aridité constitue l'élément central de la spécificité saharienne (Troin *et al*, 2006). Hormis les régions du cercle polaire et les hauts sommets enneigés, nul autre milieu ne semble aussi hostile à toute forme de vie (LEMIRE et al, 2003).

Le Sahara d'Algérie couvre plus de 2 millions de kilomètres carrés. La zone bioclimatique hyper-aride couvre 89,5% de la surface et les régions arides et semi-arides 4,78% et 4,12%, respectivement (Nedjraoui 2001 ; Kouzmine, 2007). La couverture pédologique est d'une grande hétérogénéité présentant, souvent, des croûtes calcaires ou gypseuses, pour la plupart, sujets à l'érosion éolienne. La fraction minérale est constituée presque totalement de sable avec une fraction organique très faible (<1%) engendrant des sols squelettiques très peu fertiles avec un pouvoir de rétention en eau très faible avoisinant 8% en volume (Daoud et Halitim,1994 ; Dutil, 1971 ; Halitim, 1988 ; Chaïch et al, 2017). Malgré les conditions édaphoclimatiques sévères, ces régions présentent une richesse floristique avec des plantes très adaptées à ce milieu hostile (Le Houérou 1990, 1997; Ozenda 1991; Quezel 1978).

Au sein de cette flore, la famille des légumineuses (Fabaceae) méritent une attention particulière. Une diversité d'espèces de cette famille se développent spontanément dans le Sahara d'Algérie (Bouallala, 2013 ; Chehma, 2006 ; Lograda *et al* 2010 ; Maire, 1987 ; Ozenda, 1991; Quezel *et al* 1978). Ces espèces appartiennent à divers genres et sont connues par leur capacité d'adaptation aux conditions défavorables du milieu. A titre d'exemple, le genre *Astragalus* représenté par une quinzaine d'espèces au Sahara d'Algérie, est réputé pour contenir des espèces qui colonisent des habitats où prédominent les conditions de stress en développant des adaptations particulières (Abdel-Samad, F., 2015). Suite à une prospection réalisée à travers les différents espaces géomorphologiques du Sahara septentrional Est, Chaïch (2008) avait dressé une liste exhaustive contenant 11 espèces spontanées appartenant à 07 différents genres.

Les espèces appartenant à la famille des fabacées se caractérisent, généralement, par leur capacité d'établir une symbiose fixatrice d'azote avec des bactéries telluriques appelées ''Rhizobia''. L'association Rizobium-légumineuses se traduit par la formation des nodules, dans lesquels, se réalise la transformation de l'azote atmosphérique (N) gazeux, en azote combiné (NH_4^+) assimilable par les organismes vivants. Les fabacées sont une partie essentielle du cycle de l'azote terrestre (Sprent 2001). Les espèces spontanées appartenant à la famille des fabacées jouissent d'un rôle clé pour la durabilité de l'écosystème naturel saharien (Brockwell, 2005). La fixation biologique constitue la voie principale pour l'introduction de l'azote dans les régions désertiques. Les symbioses Rhizobium-légumineuses

1

représentent le processus majeur de cette fixation et confère aux plantes des potentialités d'adaptation à mieux se développer sur des sols pauvres des régions arides (Abdel-Ghaffar 1989; Date, 2000; Wullstein 1989). Elle constitue une base solide pour augmenter le rendement global dans ces régions (Zahran, 1999)

En ce début du 21ème siècle, du fait de l'épuisement annoncé des ressources fossiles et le réchauffement de la planète, il apparaît primordial de trouver des alternatives à l'utilisation d'engrais chimiques. A ce titre, l'utilisation de la symbiose rhizobienne à des fins agronomiques et écologiques semble une opportunité prometteuse (Graham et Vance, 2003 ; Peoples *et al.*, 2009). Un des enjeux scientifique à court terme consiste à identifier des couples symbiotiques efficaces, adaptés à des conditions agronomiques ou écologiques précises. (Bonaldi, 2010).

La capacité des espèces de fabacées spontanées à s'établir sur le milieu saharien semble, étroitement liée, à leurs aptitudes à s'associer en symbiose avec les souches de rhizobia indigènes. Paradoxalement, l'étude des capacités de nodulation des espèces de fabacées spontanées du Sahara d'Algérie semble négligée. En, les recherches publiées se limitent aux études menées sur les rhizobias associées aux acacias autochtones et introduites dans le Sahara (Amrani, 2010; Boukhatem et al., 2012). Ainsi, une actualisation du recensement des légumineuses spontanées à travers les régions sahariennes s'impose en 1^{er} lieu. Ceci, doit, nécessairement, passer par l'identification et la détermination des conditions écologiques des espèces de fabacées qui se développent spontanément dans le Sahara. L'étude de la diversité phénotypique, symbiotique et taxonomique de leur symbiote bactérien (rhizobias) qui représente l'élément clef.

C'est dans ce contexte que s'intègre notre travail *qui* concerne 04 espèces de fabacées herbacées et arbustives : Il s'agit d'*Astragalus gombo* Bunge, *Astragalus mareoticus* Del., *Genista saharae* Coss. & Durieu et *Retama retam* Webb. Elles sont connues pour leur efficacité dans la fixation des dunes, la préservation des sols contre la désertification, l'alimentation des dromadaires, des Vertus médicinales ainsi que des propriétés phyto-chimiques importantes en industrie pharmaceutiques (Chehma et al, 2010 ; Conforti *et al.* 2004 ; Lograda T. *et al* 2010 ; Meriane et al, 2012 ; Mekkiou et *al*, 2005).

Pour ce qui est des BNL associées à ces légumineuses, les questionnements de base qui ont fait l'objet initial de ce modeste travail ont été les suivantes:

Les BNL sahariennes sont elles présentes dans les couches superficielles de sables?

➢ Si oui, peut-on les mettre en évidence facilement et les cultiver sur les milieux traditionnellement utilisés en microbiologie ?

Quelle est la position systématique des souches isolées à partir de ces milieux?

Les bactéries isolées et cultivées, sont elles infective et effectives et si oui, sont-elles spécifiques et efficaces quant à leur capacité à fixer l'azote?

Depuis une quinzaines d'années, nombreuses etudes ont été menées sur les BNL associées à divers genres et especes de fabacees spontanées de regions arides similaires (Sahara tunisien). Parmi elles, le genre *Astragalus* ainsi que des espèces arbustives, *G. saharae* et *R. retam*, communes avec le Sahara d'Algérie. Ces études font ressortir, généralement, une adaptation aux conditions défavorables dans ces régions arides. Les souches BNL isolées, dans leurs majorité, sont efficientes, résistent aux températures jusqu'à 40°C et tolèrent jusqu'à 4 % de NaCl. les souches isolées, presentent aussi, une tres grande biodiversité. Elles sont affiliees à plusieurs genres des rhizobias Ensifer, Rhizobium, Bradyrhizobium, Mesorhizobium et Phyllobacterium. (Zakhia et al., 2004, 2006; Mnasri B.et al., 2009; Rejili et al. 2012, 2013; Mahdhi M. et al., 2006, 2007,200 et 2016).

En plus du test de nodulation et des critères phénotypiques, la classification des bactéries n'est plus basée sur le seul gène d'ARNr 16S qui a montré ses limites à différencier les espèces proches (Valverde A. et al, 2006; Ramírez-Bahena MH et al; 2008). A cet effet, plusieurs gènes de ménage ont été proposés dans plusieurs groupes de bactéries (Maiden MCJ , 2006). Chez les rhizobia, les deux premiers gènes analysés étaient recA et atpD (Gaunt MW et al., 2001). Actuellement, la technique dite Multi-Locus Sequence Analysis (MLSA) consiste en l'utilisation de plusieurs gènes de ménage « (housekeeping genes» pour une évaluation phylogénétique plus robuste des rhizobias (Martens et al. 2007, 2008; Maynaud et al. 2012; Merabet et al 2010).

Du fait du potentiel agronomique et environnementale de la symbiose Rhizobias indigenes et Légumineuses spontanées dans les régions sahariennes, l'objectif principal de ce travail de thèse a donc consisté à aborder la compréhension de la mise en place de cette interaction.

Dans le 1^{er} chapitre, la synthèse bibliographique s'articule en trois volets. En premier lieu, un aperçu général sur les spécificités du milieu Saharien, Un deuxième volet a été consacré à la fixation biologique de l'azote et son importance suivi par l'étant actuel des connaissances sur l'association Rhizobium-Légumineuse et la diversité de ses partenaire. Le 3^{éme} volet résume, quant à lui, la taxonomie bactérienne en donnant un accent particulier aux techniques utilisées pour l'identification des Rhizobias.

Au cours de cette thèse, nous avons procédé à

i. L'identification et la géo localisation des 04 espèces de fabacées (*A. gombo*, *A. mareoticus*, *G.saharae* et *R. retam*) qui se développent spontanément à travers les différents espaces géomorphologiques du Sahara septentrional Est d'Algérie;

ii. La caractérisation physico-chimique des sols rhizospheriques des fabacées à travers les différents espaces géomorphologiques du Sahara septentrional Est ;

3

iii. La mise en évidence des souches BNL présentes dans les couches superficielles des sols capables d'établir une relation symbiotique fixatrice d'Azote avec les espèces de fabacées spontanées sahariennes ;

iv. l'isolement des 'BNL''.à partir des nodosités prélevées sur les racines des 04 espèces de fabacées (A. gombo, A. mareoticus, G.saharae et R. retam);

v. La détermination de la position taxonomique et l'étude de la diversité génétique et phénotypique des souches de BNL indigènes associées à la légumineuse spontanée saharienne *G.saharae*.

CHAPITRE I

Synthese bibliographique

I. Aperçu général sur quelques caractéristiques du milieu d'étude: le Sahara d'Algérie

1.1. Les déserts du monde

Il est généralement admis, dans la littérature, que la typologie des déserts se compose de cinq grands ensembles, les déserts subtropicaux, littoraux, d'abris, continentaux et froids. Les espaces désertiques s'étendent sur environ 6.5% de la superficie du globe (**Figure** 1), soit un cinquième des surfaces émergées représentant environ 33 millions de km² (Demangeot, 1994). Le Sahara, qui occupe 10% de la superficie du continent africain, est le plus grand désert chaud du monde (Rognon, 1989), il s'étend de l'océan Atlantique au golfe persique. Le Sahara algérien est l'une des régions les plus sèches et les plus chaudes dans le monde Il couvre plus de 2 millions de kilomètres carrés. La zone bioclimatique hyper-aride couvre 89,5% de la surface et les régions arides et semi-arides 4,78% et 4,12%, respectivement (Nedjraoui 2001). Hormis les régions du cercle polaire et les hauts sommets enneigés, nul autre milieu ne semble aussi hostile à toute forme de vie (Lemire et al, 2003).

Figure 1. Les zones arides et sous-types du monde. Préparé en utilisant les données spatiales du PNUE-WCMC (2007). <u>http://www.fao.org/sustainable-forest-management/toolbox/modules/dryland-forests-agrosilvopastoral-systems/basic-knowledge/fr/</u>

1. 2. Les subdivisions du Sahara

Selon Quezel et Santa (1962), la **Figure** 2 Ci-dessous dresse les grandes subdivisions phytogéographiques du Sahara en mettant un accent sur la haute montagne saharienne (H.MS.). Pour Lehouerou (1990), le Sahara est subdivisée en 3 zones principales

- Le Sahara méridional à pluies d'été avec une majorité de plantes et d'animaux à origine ou affinité tropicale ;
- Le Sahara septentrional à pluies d'hiver ou les plantes et les animaux méditerranéens représentent les 2/3 des effectifs à la fois en nb d'individus et en nb d'espèces ;
- Le Sahara central apparait comme une zone de transition ou les 2 autres se fondent en un quasi-vide biologique avec des pluviosités annuelles extrêmement basses (inferieurs à 20-25 mm) la flore et la faune sont extrêmement pauvres dans ces conditions (Monod, 1958).

Figure 2. Les grandes subdivisions phytogéographiques du Sahara (Source Quezel et Santa , 1962).

1. 3. Les espaces géomorphologiques du Sahara

Sur le plan géomorphologique, le Sahara possède plusieurs paysages caractéristiques. Les oueds descendant des reliefs se perdent souvent dans des dépressions, se noient dans les ergs ou terminent leur course en mer. On peut aussi distinguer des plateaux sur lesquels s'érigent des reliefs (Ould Baba Sy M., 2005).

➢ Les Reg

Les regs forment des surfaces planes de graviers ou de débris de roches, où se mêlent sable, limon et argile. Les regs sont généralement nus dans le Sahara Central, où ils constituent le milieu le plus pauvre, pouvant être considéré comme abiotique sur de vastes étendues (Ozenda, 1991).

Les Hamada

Les hamadas sont des plateaux rocheux plus ou moins élevés.

> Les Erg

Les ergs sont des massifs dunaires stables. Ils sont constitués par le sable que le vent arrache aux regs et aux hamadas. Paradoxalement, l'eau y abonde en profondeur, assurant la cohésion des grains de sable et la stabilité des lignes générales du relief.

> Les dépressions

• Les daya : Petites dépressions circulaires, résultant de la dissolution locale des dalles calcaires ou siliceuses qui constituent les Hamadas (Ozenda, 1991).

• Les Sebkha et Chott : Lorsque les eaux s'évaporent sous l'effet de la chaleur, des plaques de sels divers se déposent en surface formant suivant l'origine de leurs eaux (phréatiques ou superficielles) les chotts et les sebkhas (Monod, 1992).

• Les lits d'Oued: C'est l'espace qui peut être occupé par des eaux d'un cours d'eau. Ses matériaux peuvent avoir comme origine soit des roches en place, soit des matériaux transportés par le cours (Derruau, 1967).

1.4. Cadre bioclimatique

L'aridité constitue l'élément central de la spécificité saharienne (Troin et *al.*, 2006). Elle se définit comme étant le résultat de la combinaison d'une faiblesse des précipitations et de l'intensité des phénomènes d'évaporation liés aux fortes températures (Lacoste, 2003). Et au-delà, l'aridité se concrétise également par une distribution très irrégulière des précipitations dans le temps et dans l'espace. Ces dernières sont « notablement inférieures à l'évaporation potentielle annuelle » et ainsi, en zone aride, « il pourrait s'évaporer dix à vingt fois plus d'eau qu'il n'en tombe chaque année » (Ould Baba S. M., 2005). Selon Bagnouls and Gaussen (1957), un mois est dit biologiquement sec si, "le total mensuel des précipitations exprimées en millimètres est égal ou inférieur au double de la

température moyenne, exprimée en degrés centigrades"; cette formule (P inférieur ou égal 2T) permet de construire des « diagrammes ombrothermiques » traduisant la durée de la saison sèche d'après les intersections des deux courbes.

Dans une étude récente. (Baradai L, 2014), l'analyse climatique effectuée pour 07 localités couvrant le Sahara septentrional (Figure 3), fait ressortir des périodes sèches prolongées pendant toute l'année.

Source (Bradaï, 2014)

Figure 3. Analyse climatique selon les diagrammes de Bagnouls and Gaussen (1957) dans différents sites couvrant le Sahara septentrional d'Algerie. (1 Guerrara, 2 Hassi El Fehal, 3 Nomrate, 4 Oued Mya, 5 Oued N'ssa, 6 Oued Righ, 7 El Golea).

1.5. Les sols sahariens

Selon Dutil (1971), au Sahara, la couverture pédologique présente une grande hétérogénéité (sols minéraux bruts, sols peu évolués, sols halomorphes et sols hydromorphes). La fraction minérale est constituée dans sa quasi-totalité de sable. Ils présentent souvent des croûtes calcaires ou gypseuses et sont, pour la plupart, sujets à l'érosion éolienne (Halitim, 1988). La fraction organique est très faible (inférieure à 1%) et ne permet pas une bonne agrégation. Ses sols squelettiques sont très peu fertiles car leur rétention en eau est très faible, environ 8% en volume d'eau disponible, plus d'autres facteurs comme les vents qui interviennent dans ce phénomène (Daoud et Halitim, 1994).

1.6. Flore spontanée

Malgré l'hostilité des conditions édapho-climatiques des différents milieux naturels sahariens, les études floristiques effectuées dans ces milieux ont révélé une richesse floristique appréciable (Le Houérou 1990, 1997, 2001; Ozenda 1991; Quezel 1978). Selon le contexte écologique, la flore spécifique à ces milieux développent des stratégies adaptatives se résumant à ce qui suit :

Espèces éphémères : réduction de la longueur du cycle et persistance sous forme de graines ou même bulbes;

Espèces vivaces (permanentes) : morphologiques (surface de transpiration, épaisseur de cuticule,..) et système racinaire très important.

Du point de vue composition systématique, les graminées, les légumineuses et les composées sont partout les familles prédominantes au Sahara (Tableau 1) représentant plus du tiers (35 à 40 pour

cent) d'après Ozenda (1983). Cependant, il faut prendre en considération le changement de nomenclature des familles végétales concernées (les composées en Astéracées, les Légumineuses en Fabacées et les Graminées en en Poacees. **Tableau 1.** Familles végétales prédominantes au Sahara

	Sahara septentrional	Sahara central	Sahara méridional
Poacees au total	11,5	17,6	20,8
Poacees - Panicoïdées	3,4	4,1	5,7
Poacees - Pooïdées	8,1	13,5	15,1
Légumineuses au total	11,5	7,9	12,6
Mimosées + Cesalpinae	1,7	1,2	2,9
Indigofora et Tephrosia	0	0,2	4
Autres Légumineuses	9,8	6,4	5,7
Astéracées au total	13,8	11,2	7,9
Cynarocephale + Liguli-flores	5,6	4,5	2,9
Autres Astéracées (Radiées)	8,2	6,7	5,0
Ensemble des trois familles	37,7	38	41,3

d'Algérie

(Source: Ozenda, 1983)

II. La fixation biologique de l'azote

L'azote atmosphérique, constituant majeur de l'air (79%) représentant la principale réserve naturelle d'azote pour la biosphère. Cependant, il se retrouve principalement sous sa forme moléculaire diatomique N₂, un gaz relativement inerte, peu réactif et non assimilable par la plupart des êtres vivants excepté certains procaryotes appelés diazotrophes en sont capables. La réduction de N₂ en présence de catalyseur par le procédé de HaberBosch, représente un coût très élevé du fait qu'elle nécessite des températures et des pressions très élevées. La fixation biologique de l'azote représente aujourd'hui à l'échelle mondiale un apport environ 1,5 fois supérieur à celui des engrais. Elle est estimée à environ 195 millions de tonne d'azote par an (Smil, 2002) et constitue la voie d'entrée majeure de l'azote dans la majorité des écosystèmes (Galloway *et al.*, 2004).

La fixation biologique de l'azote est le fait de certains micro-organismes qui possèdent un complexe enzymatique appelé nitrogénase, qui catalyse la réduction de l'azote atmosphérique N_2 en ammoniac (NH₃). Le bilan de la réaction de fixation biologique de l'azote, est comme suit :

$N_2 + 8H^+ + 8e^- + 16ATP \longrightarrow 2NH_3 + H_2 + 16ADP + 16P_i$

Ce complexe enzymatique permet à ces microorganismes procaryotes de réduire l'azote moléculaire en une forme d'azote assimilable par les plantes (ammoniac) via un processus dit ''fixation biologique de l'azote '' permettant aux végétaux de satisfaire leurs besoins en composés azotés (protéines, acides nucléiques...).

2.1. Diversité des micro-organismes fixateurs d'azote

Plus de 200 espèces bactériennes fixatrices d'azote ont été recensées. Elles appartiennent à 10 grands groupes phylogénétiques (Annexe 1): les Archaebactéries, les bactéries vertes sulfureuses, les Campylobacter, les Cyanobactéries, les Firmibactéries, les Héliobactéries, les Protéobactéries, et les Thallobactéries (Young 1991a; Young, 1992; Lechene *et al.* 2007) et Gama proteobactéries. En fonction de leur relation avec les plantes, les bactéries fixatrices d'azote sont classiquement, réparties en deux groupes : les diazotrophes libres et les diazotrophes symbiotiques.

Figure 4. Arbre des grands groupes phylogénétiques des eubactéries basé sur les séquences d'ADNr 16S (d'après Young, 1992). Les groupes fixateurs d'azote sont indiquées par N.

2.1.1. Les fixateurs libres

L'estimation du taux de fixation d'azote par les bactéries du sol est de l'ordre d'environ de 1 kg par hectare (Elmerich, 1993). Ils englobent Les fixateurs libres rhizosphériques comme des espèces du genre Pseudomonas (Beauchamp et al. 2006), Azotobacter (Beauchamp et al. 2006), Beijerinckia (Baldani and Baldani 2005), des cyanobactéries : Nostoc punctiforme, Nostoc calcicola, Anabaena variabilis, Gloeocapsa sp., phanocapsa sp. etc. (Surendra Singh 2006; Prasanna and Nayak 2007), des bactéries aquatiques photosynthétiques Rhodobacter (Masepohl et al. 2005), Rhodospirillum (Selao et al. 2008). Selon Benyamina (2012), les fixateurs libres comprennent des genres très divers : des bactéries aérobies chimioorganotrophes (Azotobacter, Azospirillum, Acetobacter, diazotrophicus), des bactéries anaérobies strictes (Clostridium) ou des aérobies facultatives (Klebsiella, Bacillus, Pseudomonas), des bactéries phototrophes à photosynthèse anoxygènique (Rhodobacter, *Rhodospirillum*) et des cyanobactéries (Synechococcus). Certains fixateurs libres dont Azospirillum, Azotobacter paspali, Alcaligenes et Campilobacter ont été décrits comme formant de véritables associations avec les racines des plantes (Elmerich et al., 1993).

2.1.2. Les fixateurs symbiotiques

Ces symbioses constituent les systèmes fixateurs les plus efficaces réalisant un couplage entre la fixation d'azote et la photosynthèse. Dans ces associations fixatrices d'azote, le microorganisme induit l'apparition de structures différenciées, appelées nodules, chez le partenaire végétal, et lui fournit une grande partie de l'azote nécessaire à sa croissance. C'est le cas d'Actinomycètes du genre *Frankia* (bactéries Gram positif, filamenteuses et sporulantes) capables de former des interactions symbiotiques en nodulant des plantes ligneuses appartenant à 23 genres d'angiospermes regroupés dans 8 familles *Betulaceae*, *Myricaceae*, *Casuarinaceae*, *Elaeagnaceae*, *Rhamnacaceae*, *Rosacea*, *Coriariaceae* et *Datiscaceae* (Provorov *et al.*, 2002 ; Normand *et al.*, 2007). C'est le cas aussi des systèmes associant des plantes de la famille des Fabacées et certaines bactéries Gram négatif, communément et collectivement appelées les ''rhizobia'' ou Bactéries Nodulant les Légumineuses (BNL) ainsi que plusieurs espèces de *Parasponia*, de la famille des *Ulmaceae*, qui peuvent également développer des nodules fixateurs d'azote avec certaines bactéries (Trinick et Hadobas, 1989 ; Young et Johnston, 1989 ; Davey et *al.* 1993). Selon Unkovich et *al.* (2008), la fixation symbiotique constitue le plus important processus biologique de dimension planétaire.

2.2. Intérêt agronomique et écologique de la fixation biologique de l'azote atmosphérique.

Cet intérêt réside principalement sur le processus de la fixation biologique de l'azote (N) qui est un élément essentiel pour toute forme de vie. Malgré que l'atmosphère terrestre soit composé de 80 % d'azote environ, il se présente sous forme gazeuse ou moléculaire (N_2) non assimilable par les plantes, tout en constituant, avec le manque d'eau et de phosphate, une des principales limitations à la croissance des plantes (Cleland and Harpole, 2010). Il est admis que suite au lessivage des sols ainsi que le processus constant de nitrification /dénitrification, les formes assimilables de l'azote doivent être constamment renouvelées. Ce renouvellement se fait naturellement (cycle d'azote) à travers la minéralisation de matières organiques ou l'action de microorganismes fixateurs d'azote moléculaire et de manière artificielle par l'épandage de fertilisants azotés (Dixon and Wheeler, 1986). Selon Vance (2001), le recours à l'ajout d'engrais azoté, dans le monde, a quasiment décuplé entre 1960 et 2000 atteignant 88 million t/an et les projections prévoient l'usage de 120 million t/an en 2040. Cependant, il est estimé qu'environ 50% de l'azote épandu, toutes cultures confondues, n'est pas absorbé mais lessivé, causant de graves problèmes environnementaux tel que l'eutrophisation des milieux aquatiques (Vance, 2001). Par ailleurs, la production et l'épandage de ces engrais consomment de grandes quantités d'énergies fossiles aggravant leur impact écologique (Graham and Vance, 2003). A l'opposé, le renouvellement des formes assimilables de l'azote peut être assuré par les bactéries diazotrophes du sol qui réduisent biologiquement l'azote moléculaire. La famille des Légumineuses ou fabacées est connue pour son importance considérable dans l'agriculture,

12

l'économie ainsi que les balances alimentaires de nombreuses populations humaines (http://www.ildis.org/Leguminosae/). De très nombreuses espèces de cette famille sont connues pour leur capacité d'établir une symbiose fixatrice d'azote avec des bactéries du sol appelées "Rhizobia". Cette association se traduit par la formation des nodules au niveau des racines et/ou des tiges (Sesbania rostrata) dans lesquels, se réalise la transformation de l'azote atmosphérique (N) gazeuxen azote combiné (NH_4^+) assimilable. Elles constituent une partie essentielle du cycle de l'azote terrestre et sont utilisées pour soutenir le fonctionnement de l'écosystème (Sprent, 2001). Cette interaction est la plus efficace en terme de fixation biologique de l'azote, puisqu'elle produit annuellement environ 200 millions tonnes d'azote (Graham et Vance, 2003 ; Peoples et al., 2009). En absence de fertilisation des sols, la fixation biologique de l'azote est pratiquement la seule source permettant de maintenir la fertilité du sol, par une rotation des plantes cultivées (fixatrices d'azote et non fixatrices d'azote) en utilisant des légumineuses telles que le trèfle ou la luzerne qui sont souvent désignées sous le nom d'« engrais verts » qui, par conséquent, permettent ainsi de réduisent les amendements avec des engrais azotés. Au delà de cet aspect agronomique, certaines espèces de plantes non cultivées et d'arbres de la famille des légumineuses sont aussi d'un grand intérêt dans les écosystèmes naturels en permettant la colonisation de milieux pauvres en azote grâce à cette capacité symbiotique. On estime que 5 millions de tonnes d'azote sont fixées par les légumineuses dans les écosystèmes naturels (Graham and Vance, 2003). De nombreuses légumineuses forment des associations symbiotiques avec des champignons mycorhiziens arbusculaires et des champignons ectomycorhiziens, ce qui pourrait les aider à absorber des composés inorganiques d'azote et de phosphore du sol (Sprent, 2001).Dans les stratégies de revegetalisation, les associations symbiotiques des légumineuses ligneuses avec les rhizobiums et les champignons mycorhiziens, sont utilisés pour récupérer les écosystèmes désertifiées qui améliorent l'acquisition et aide les plantes en éléments nutritifs pour s'établir et faire face à des situations de stress faible en nutriments et déficitaires en eau (Brunel B. et al, 2007 ; Herrera M.A. et al; 1992).

III. L'association Rhizobium Légumineuse

L'association symbiotique entre les légumineuses et les rhizobia est très diverse et implique de nombreuses espèces, aussi bien chez le partenaire végétal que chez le partenaire bactérien.

3.1. Les légumineuses: Importance et diversité

La famille Légumineuse (*Fabaceae* ou *leguminosae*) est largement répandue dans le monde entier (Rundel, 1989); Elle est constituée de 727 genres et 19 325 espèces (G. Lewis et al, 2005) représentant la troisième plus grande famille des Angiospermes (plantes à fleurs) après les *Orchidaceae* et *Asteraceae*. Systématiquement, elle fait partie de l'ordre Fabales conjointement avec les *Quillajaceae, Polygalaceae* et *Surianaceae* (APGIII, 2009 ; http://www.tolweb.org/angiosperms). Des études récentes ont prouvé l'origine monophylétique de la famille des légumineuses (Doyle J. J., 2003; Wojciechowski M. F., 2003 ; Wojciechowski, et al, 2004). Le fruit (gousse) est le caractère déterminant qui donne à la famille des légumineuses son nom, bien que les membres de cette famille soient divers dans leurs fruits en raison des différents mécanismes de dispersion des graines (Doyle J. J., 1994). Elle est classée en trois sous-familles en se basant, principalement, sur les différences morphologiques de leurs fleurs (Allen et Allen, 1981) : *Caesalpinioideae*, *Mimosoideae* et Papilionoideae (Sprent, 1995).

➤ La sous famille des Césalpiniacées contient environ 150 genres et 2250 espèces au sein de 4 tribus. Principalement des arbres ou arbustes retrouvés en régions tropicales d'afrique. Actuellement seul 23 % des espèces testées sont connues pour être nodulées par les rhizobia. Ces espèces se retrouvent dans les tribus des *Caesalpinieae* et *Cassieae*. Les tribus *Cercideae*, *Detareae* et *Amhertieae* sont très peu nodulées (de Faria*et al.*, 1989);

La sous famille des Mimosacées, contenant également 4 tribus, sont composées surtout d'arbres et d'arbustes présents dans les régions subtropicales d'Afrique, d'Amerique, d'Asie et d'Australie. Cette sous-famille possède à l'heure actuelle 62 genres et environ 3270 espèces, dont la majorité (90 %) sont nodulées parmi les 10 % testées (de Faria *et al.*, 1989);

La sous-famille Papilionidae (Faboidae) est la plus grande des trois sous-familles contenant 28 tribus. Les espèces de cette sous-famille sont présentes dans le monde entier avec 476 genres et 13 860 espèces (Wojciechowskiet al., 2004) dont 97 % parmi les espèces testées (21 % du total) sont nodulées par les rhizobia. Les plantes de cette sous-famille sont principalement des herbes mais comprennent aussi des arbres et des arbustes (Al-Taweil et al., 2009; de Faria *et al.,* 1989; Rachie et Silvestre, 1977).

Figure 5. Phylogénie des *Leguminosae* d'après l'analyse des séquences du gène chloroplastique *rbcl* (Doyle et *al.* 1998). Les trois sous-familles *Papilionoideae*, *Caesalpinioideae* et *Mimosoideae* sont représentées par les barres verticales de couleur. Les tribus et genres encadrés ne forment pas de nodules. Les deux tribus et trois genres contenant les légumineuses sahariennes étudiées sont encadrées en vert.

3.2. Légumineuses sahariennes

Eu égard aux conditions edaphoclimatiques défavorables du Sahara, les fabacées requièrent une importance particulière en relation avec leurs capacité d'établir l'association avec les rhizobia permettant la fixation biologique de l'azote atmosphérique. Cette capacité leur confère des potentialités d'adaptation à mieux se développer sur des sols pauvres et dégradés (Date, 2000). Les associations symbiotiques constituent de puissants facteurs d'adaptation des plantes aux conditions environnementales défavorables (Zahran 1999). Elles servent comme fourrage au dromadaire (Chehma et al, 2010; Meriane et al 2012) en plus de leur rôle connu dans la fertilité en azote des sols. Parmi les espèces répertoriées dans le Sahara Algérien, Deux (02) très importantes tribus de la sous famille de papilionidés (Figure 5) sont omniprésentes dans les régions sahariennes.

¹http://sahara-nature.com/flore

² <u>http://www.tela-botanica.org/actu/</u>

3.2.1. Tribu des Galegeae

Représentée par le genre "*Astragalus*" qui est le plus grand et le plus diversifié de tous les angiospermes. Il contient plus de 2 500 espèces distribuées dans les régions arides et tempérées de l'hémisphère Nord et de l'Amérique du Sud (Podlech, 2008).dont une quinzaine au Sahara central et septentrional (Ozenda, 1958). Les espèces du genre *Astragalus* colonisent souvent des habitats variés où prédominent les conditions de stress en développant des adaptations particulières (Abdel-Samad, F., 2015). Deux espèces spontanées de ce genre ont été retenues dans cette étude.

A) A. gombo Bunge Fleur grande de 25 mm, gousse à parois épaisses ligneuse très dure, ornée de très grosses nervures et terminée en bec robuste et long endémique et assez commun dans tout le Sahara (Ozenda P., 1983)

B)A. mareoticus Del.

Fleur petite inferieur à 10 mm, gousse à bec court. Stigmates non barbu, gousse presque glabre à poils courts, fleurs bleuâtres; feuilles longues de 6-8 paires de folioles. Commun au Sahara septentrional rare central au (Ozenda P., 1983)

Figure 6. Description sommaire de 02 fabacées spontanées annuelles A) A. gombo, B) A.mareoticus.

3.2.2. Tribu des Genistae

La tribu des *Genisteae* (Adans.) Benth., est essentiellement méditerranéenne (Polhill, 1976). Elle possède une grande importance écologique, non seulement pour la grande diversité des espèces, mais aussi par la colonisation des forêts dégradées et les zones déboisées et de dominer de nombreuses communautés végétales (López González, 2001). Deux espèces spontanées vivaces (permanentes) jouent un rôle clé dans la fixation des dunes et la préservation de l'écosystème saharien appartenant à Deux genres (*Retama* et Genista) de cette tribu (Figure 7).

C) G. saharae Coss. & Durieu

Arbuste de 1 à 2 m, longs rameaux ; feuilles unifoliées, étroites, très caduques ; fleurs espacées le long des rameaux ; gousses longues pendantes à parois parcheminées. Les ramules florifères sont alternes, très nombreux formant des grappes lâches préconisé dans les désordres digestifs. Commun au Sahara septentrional sud oranais, Mzab, Touggourt ; manque au Sahara central. **Endémique** (Ozenda P., 1983 ; Maire R., 1987 ; Lograda T., 2010).

D) R.retam Webb

Arbrisseau à longs rameaux jonciformes, soyeux, souvent rougeâtres; feuilles inferieures trifoliées, les autres simples ; toutes très caduques ; fleurs blanches grandes (8-10 mm) en petites grappes latérale pauciflores de 5 à 10 fleurs le long des rameaux. Gousses ovoïdes termines en bec . rameaux fortement sillonnés. Dunes et lit de oueds ; Sahara septentrional atteint au sud le tademaït et la Hamada deTingher (Ozenda P., 1983 ; Quezel et Santa, 1962).

Figure 7. Description sommaire de 02 fabacées vivaces (Tribu: *Genisteae* C) *G.Saharae*, D) *R. Retama*.

Les racines de *R. raetam* sont profondes et peuvent atteindre vingt mètres de longueur pour toucher en permanence les couches humides du sol (Haase *et al.*, 1996). Cette espèce joue un rôle considérable dans la stabilisation des sables dunaires mobiles. En outre, Maghrani *et al.* (2003), a démontré que des extraits de *R. raetam* ont une activité hypoglycémique chez des rats diabétiques. De plus un effet antioxydant signifiant a été évalué chez *R. retam* (Conforti *et al.* 2004). L'espèce *G.saharae*, quant à elle, et en plus de la fixation des dunes, la préservation de l'écosystème ainsi que l'un nouveau isoflavones a été identifie sur cette espèce (Chehma A. et al., 2010 ; Meriane D. et al, 2012 ; Mekkiou et *al.*, 2005).

3.3. Rhizobia

Le terme « rhizobia » est un terme générique donné aux bactéries du sol qui sont capables d'induire des nodules sur les racines ou les tiges des Légumineuses hôtes, y compris la non légumineuse Parasponia (Trinick MJet al. 1988) et d'y fixer l'azote atmosphérique en symbiose (Moulin et al., 2001; Sawada et al., 2003). Ce sont des endosymbiontes non-obligatoires sont des bactéries aérobies, Gram négatives, mobiles, non sporulantes taxonomiquement diversifiés, les arbres phylogénétiques montrent ces espèces symbiotiques, sont liés de manière taxonomique à des parents proches non symbiotiques. La nodulation des légumineuses par des espèces bactériennes était, dans un passé récent, limitée à un nombre d'espèces bactériennes appartenant aux alphaprotéobactéries dans les genres Rhizobium (Frank, 1889), Azorhizobium (Dreyfus et al., 1988), Allorhizobium (de Lajudie et Al., 1998), Mesorhizobium (Jarvis et al., 1997), Ensifer (syn. Sinorhizobium) (de Lajudie et al., 1994) et Bradyrhizobium (Jordan, 1982). Actuellement avec les explorations continues de légumineuses dans de nouvelles régions biogéographiques et avec le développement d'outils taxonomiques modernes, de nouvelles espèces de rhizobium ont également été décrites dans d'autres genres de la classe α-protéobactéries (Vandamme et al., 1996). Ainsi, des espèces bactériennes fixant de l'azote atmosphérique ont été incluses dans les genres Devasia (Rivas et al., 2002), Methylobacterium (Sy et al., 2001), Ochrobactrum (Trujillo et al., 2005). Phyllobacterium (Valverde et al., 2005) et Shinella (Lin et al., 2008). Les deux autres genres de rhizobia connus appartiennent à la classe des β-Protéobactéries et il s'agit de Burkholderia et Cupriavidus (Moulin et al., 2001; Chen et al., 2001). La découverte de nouvelles espèces ainsi que des remaniements dans les anciens genres de rhizobias sont en evolution permanente. Maynaud et al. (2012) a identifié une nouvelle espèce Aminobacter anthyllidis nodulant la légumineuse Anthyllis vulneraria, Microvirga lupini et Microvirga lotononidis, nodulant Lupinus texensis et Microvirga zambiensis est un symbion de Listia angolensis (Ardley et al., 2012). Mousavi et al., (2014) ont prouvé que quelques espèces forment un clade distinct au sein du genre Rhizobium mettant en evidence un nouveau genre appelé Neorhizobium. Le Tableau ci-dessous résume l'ensemble des espèces de rhizobia connues et validées actuellement.

Genre/Espèce	Plante hôte	Référence
Aminobacter (01 espèce)		(Maynaud <i>et al.</i> , 2012)
A. anthyllidis	Anthyllis vulneraria	(Maynaud <i>et al.</i> , 2012)
Azorhizobium (02 espèces)		(Dreyfus et al., 1988)
A. caulinodans	Sesbania rostrata	(Dreyfus et al., 1988)
A. doebereinerae	Sesbania virgata	(Maria de Souza Moreira et al., 2006)
Bradyrhizobium (10 espèces)		(Jordan, 1982)
B. canariense	Genisteae et Loteae	(Vinuesa et al., 2005)
B. daqingense	Glycine max	(Wang <i>et al.</i> , 2013)
B. denetrificans	Aeschynomene, Glycine	(Van-Berkum & Eardly, 2002)
B. elkanii	Glycine max	(Kuykendall et al., 1992)
B. iriomotense	Glycine max	(Islam <i>et al.</i> , 2008)
B. japonicum	Pachyrhizus erosus	(Jordan, 1982)
B. jicamae	Glycine max	(Ramírez-Bahena et al., 2009)
B. liaoningense	Pachyrhizus erosus	(Xu et al., 1995)
B. pachyrhizi	<i>Lespedeza</i> spp.	(Ramirez-Bahena et al., 2009)
B. yuanmingense	Lespedeza spp.	(Yao <i>et al.</i> , 2002)
Burkholderia (07 espèces)		(Gillis <i>et al.</i> , 1995)
B. caribensis	Mimosa pudica	(Achouak <i>et al.</i> , 1999: Chen <i>et al.</i> , 2003)
B. cepacia	Alvsicarpus glumaceus	(Vandamme <i>et al.</i> , 2002)
B. mimosarum	Mimosa spp.	(Chen <i>et al.</i> , 2006)
B. nodosa	Mimosa bimucronata, M. scabrella	(Chen <i>et al.</i> , 2007)
B. phymatum	Machaerium lunatum	(Vandamme <i>et al.</i> , 2002)
B sabiae	Mimosa caesalpiniifolia	(Chen et al. 2008)
B. tuberum	Aspalathus carnosa	(Vandamme $et al., 2002$)
Cuprigvidus (01 espèce)		(Makkar & Casida 1987)
C taiwanensis	Mimosa pudica	(Chen <i>et al.</i> 2001: Vandamme & Coenve2004)
D_{evosia} (01 espèce)	inimosa platea	(Nakagawa <i>et al.</i> 1996)
D neptuniae	Nentunia natans	(Rivas $et al = 2003$)
Ensifer (10 espèces)	Reptanta hatans	(Chen <i>et al.</i> 1988)
Ensiger (10 especes)	Acadia spp	(Toledo at al 2003)
E. americanam E. arboris	Acacia Prosonis	(Nick et al. 1000e: Young 2003)
E. urbons E. fradii	Chycine max	(Nick $et ut., 1999a, 100 \text{mg}, 2003)$ (Scholla & Elkan, 1984: Young, 2003)
E. freuit E. kostiense	Acacia Prosonis	(Nick et al. 1900)
E. kummanowiga	India of and spp	(Woi et al., 1999)
E. Kummerowide	Madiagao spp.	(Wei et al., 2002) (Pome et al., 1006)
E. medicue E. meliloti	Medicago Molilotus	(Rome et $ul., 1990)$ (de Leindie et $ul., 1004$; Young, 2002)
E. metitoli E. anhali	Medicugo, Metholus	(de Lajudie <i>et al.</i> , 1994, Toulig, 2003) (de Lajudie <i>et al.</i> , 1004; Young 2002)
E. saneti	Acacia, Sesbania	(de Lajudie <i>et al.</i> , 1994; Foung 2003) (de Lajudie <i>et al.</i> , 1004; Young 2002)
E. terangae	Acacia, Sesbania	(de Lajudie <i>et al.</i> , 1994; Young 2003) (Chara $(-l - 1000; Name 2002)$
E. xinjiangense	Glycine max	(Chen <i>et al.</i> , 1988; Young 2003)
Mesorhizobium (30 espèces)		(Jarvis <i>et al.</i> , 1997)
M. abyssinicae	Acacia abyssinica	(Degetu <i>et al.</i> , 2013)
M. albiziae	Albizia kalkora	Wang <i>et al.</i> , 2007
M. alhagi	Alhagi sparsifolia	(Chen <i>et al.</i> , 2010)
M. amorphae	Amorpha fruticosa	(Wang <i>et al.</i> , 1999)
M. camelthorni	Alhagi sparsifolia	(Chen <i>et al.</i> , 2011)
M. caraganae	<i>Caragana</i> spp.	(Guan <i>et al.</i> , 2008)
M. chacoense	Prosopis alba	(Velázquez et al., 2001)
M. ciceri	Cicer arietinum	(Nour et al., 1994; Jarvis et al., 1997)

Tableau 2. Liste des genres et des espèces de rhizobia actuellement connues

M. gobiense	Robinia pseudoacacia	(Han, Han, et al., 2008)
M. hawassense		(Degefu et al., 2013)
M. huakuii	Astragalus sinicus, Acacia spp.	(Chen et al., 1991; Jarvis et al., 1997)
M. loti	Lotus corniculatus	(Jarvis <i>et al.</i> , 1997)
M. mediterraneum	Cicer arietinum, Glycine max	(Nour et al., 1995; Jarvis et al., 1997)
M. metallidurans	Anthyllis vulneraria	(Vidal <i>et al.</i> , 2009a)
M. muleiense	Cicer arietinum	(Zhang <i>et al.</i> , 2012)
M. opportunistum	Biserrula pelecinus	(Nandasena et al., 2009)
M. plurifarium	Acacia, Prosopis	(de Lajudie et al., 1998)
M. qingshengii	Astragalus sinicus	(Zheng et al., 2013)
M. robiniae	Robinia pseudoacacia	(Zhou <i>et al.</i> , 2010)
M. sangaii	Astragalus luteolus, A. ernestii	(Zhou <i>et al.</i> , 2013)
M. septentrionale	Astragalus adsurgens	(Gao <i>et al.</i> , 2004)
M. shangrilense	Caragana spp.	(Lu <i>et al.</i> , 2009)
M. shonense		(Degetu <i>et al.</i> , 2013)
M. sılamurunense	Astragalus spp.	(Zhao <i>et al.</i> , 2012)
M. tamadayense	Anagyris latifolia, Lotus berthelotii	(Ramirez-Bahena <i>et al.</i> , 2012)
M. tarimense	Astragalus adsurgens	(Han <i>et al.</i> , 2008)
M. temperatum	Astragalus aasurgens	(Gao et al., 2004) (Chach & Dev. 2006)
M. thiogangeticum	Chumphing ngllidiflong	(Ghosh & Roy, 2006) (Chon et al. 1005; Jomie et al. 1007)
M. transnanense	Giycyrrniza pallalfiora	(Chen <i>et al.</i> , 1995; Jarvis <i>et al.</i> , 1997)
Meinylobacierium (01 espèce)	Crotalaria	(Sy et al., 2001)
Microwing (04 combace)	Croiaiana	(Andless et al. 2004
Microvirga (04 especes)	Listia angolansis	(Ardley et al. 2012)
M. totononius M. lupini	Listia ungotensis	(Ardley et al. 2012)
M. tupini M. vianae	Lupinus iezensis Viana unquiculata	(Ardiey et al. 2012) (Radi et al. 2013)
M. vignae M. zambiensis	Luninus tevensis Listia angolensis	(Ardley et al. 2013) (Ardley et al. 2012)
Ochrobactrum (03 espèces)	Empirius renerisis, Eisitä ungorensis	(Holmes et al. 1988)
O ciceri	Cicer arietinum	(Imran et al 2010)
O. cvtisi	Cytisus scoparius	(Zurdo-Piñeiro <i>et al.</i> , 2007 $)$
O. lupine	Lupinus albus	(Truijllo et al., 2005)
Phyllobacterium (04 espèces)		(Valverde <i>et al.</i> , 2005)
P. leguminum	Astragalus algerianus	(Mantelin <i>et al.</i> , 2006)
P. loti	Lotus corniculatus	(Sánchez et al., 2014)
P. ifriqiyense	Lathyrus numidicus	(Mantelin et al., 2006)
P. trifolii	Trifolium, Lupinus	(Valverde et al., 2005)
Rhizobium (36 espèces)		(Frank, 1889)
R. alamii	Medicago ruthenica	(Berge et al., 2009)
R. alkalisoli	Caragana intermedia	(Lu <i>et al.</i> , 2009)
R. azibense	Phaseolus vulgaris	(Mnasri et al., 2014)
R. calliandrae	Calliandra grandiflora	(Rincón-Rosales et al., 2013)
R. etli	Phaseolus vulgaris	(Segovia <i>et al.</i> , 1993)
R. fabae	Vicia faba	(Tian et al., 2008)
R. freirei	Phaseolus vulgaris	(Dall'Agnol et al., 2013)
R. galegae	Galegae orientalis, G. officinalis	(Lindstrom, 1989)
R. gallicum	Phaseolus vulgaris	(Amarger et al., 1997)
R. grahamii	Dalea leporina	(López-López et al., 2012)

R. hainanense	Desmodium sinuatum	(Chen et al., 1997)
R. herbae		(Ren et al., 2011)
R. jaguaris	Calliandra grandiflora	(Rincón-Rosales et al., 2013)
R. laguerreae	Vicia faba	(Saïdi et al., 2014)
R. leguminosarum	Vicea, Trifolium, Phaseolus	(Frank, 1889; Jordan, 1984)
R. loessense	Astragalus, Lespedeza	(Wei et al., 2003)
R. lusitanum	Phaseolus vulgaris	(Valverde et al., 2006)
R. mayense	Calliandra grandiflora	(Rincón-Rosales et al., 2013)
R. mediterraneum	cicer arietinum	(Nour <i>et al.</i> , 1995)
R. mesoamericanum	Dalea leporina	(López-López et al., 2012)
R. mesosinicum	Albizia, Kummerowia, Dalbergia	(Lin et al., 2009)
R. miluonense	Lespedeza	(Gu et al., 2008)
R. mongolense	Medicago ruthenica	(van Berkum et al., 1998)
R. multihospitium	Robinia pseudoacacia	(Han, Wang, et al., 2008)
R. paranaense	Phaseolus vulgaris	(Dall'Agnol et al., 2014)
R. phaseoli	Phaseolus vulgaris	(Ramírez-Bahena et al., 2008)
R. pisi	Pisum sativum	(Ramírez-Bahena et al., 2008)
R. sphaerophysae	Sphaerophysa salsula	(Xu et al., 2011)
R. sullae	Hedysarum coronarium	(Squartini et al., 2002)
R. taibaishanense	Kummerowia striata	(Yao <i>et al.</i> , 2012)
R. tibeticum	Trigonella archiducis-nicolai	(Hou <i>et al.</i> , 2009)
R. tropici	P. vulgaris, Leucaena	(Martínez-Romero et al., 1991)
R. tubonense	Oxytropis glabra	(Zhang et al., 2011)
R. undicola	Neptunia natans	(de Lajudie et al., 1998)
R. vallis	Phaseolus vulgaris	(Wang <i>et al.</i> , 2011)
R. vignae	Vigna radiata	(Ren et al., 2011)
Shinella (01 espèce)		(An, 2006)
S. kummerowiae	Kummerowia stipulacea	(Lin et al., 2008)

Source (DIOUF F., 2015)

3.4. Etablissement de l'association symbiotique Rhizobum-Légumineuse

La mise en place de la symbiose fixatrice d'azote entre les rhizobia et leurs plantes-hôtes requiert un certain nombre de mécanismes (Figure 8), au cours desquels les bactéries doivent mener en parallèle deux processus : l'infection des racines de la plante hôte et l'induction d'une organogenèse, qui conduit à la différentiation d'un nouvel organe, le nodule (Dénarié et al, 1992).

Figure 8 : Le dialogue moléculaire rhizobium-légumineuse

3.4.1. La pré-infection

L'attachement des bactéries aux poils absorbants des racines de la plante hôte représente consiste en la première étape du processus d'infection (Daz zo *et al.*, 1984). Plusieurs molécules bactériennes peuvent intervenir dans ce mécanisme d'attachement parmi lesquelles les lectines (Laus *et al.*, 2006), la rhicadhésine (<u>rhi</u>zobium <u>ca</u>lcium-<u>de</u>pendent <u>s</u>urface prote<u>in</u>) (Smit *et al.*, 1992) et les polysaccharides (Laus *et al.*, 2006 ; Marketon *et al.*, 2003).

3.4.2. L'infection

Les rhizobia ont la capacité de pénétrer à l'intérieur des Légumineuses selon deux distincts modesd'infection (Sprent & Raven, 1992 ; Sprent, 1993).

✓ Par voie intracellulaire : La voie la plus connue est celle de la pénétration des cellules végétales par les poils absorbants dans ce cas, l'infection se produit par l'intermédiaire d'un cordon d'infection qui achemine les bactéries du chevelu racinaire vers le cortex et les distribue aux cellules, qui deviennent les cellules infectées du nodule fixateur d'azote (**Figure** 9);

✓ Par voie intercellulaire ou « crack-entry ». Dans ce cas, l'infection se fait, généralement, au niveau de passages libérés par l'émergence des racines latérales ou adventives, par des blessures occasionnées par des éléments extérieurs ou parfois directement à travers la lamelle moyenne entre deux cellules du rhizoderme (Pawlowski &Bisseling, 1996). Les rhizobia progressent ensuite vers le primordium nodulaire de manière intercellulaire ou deviennent intracellulaires en formant des cordons d'infection.
(4) Des divisions successives mènent à la formation d'un primordium nodulaire.

(3) En même temps, des cellules corticales en face du site d'infection sont activées, se dédifferencient et se divisent.

(2) La reconnaissance des facteurs Nod permet "l'attachement" des rhizobia aux poils absorbants de la

racine marquant ainsi le début de l'infection par la formation de structures tubulaires ou cordon

d'infection guidant les rhizobia à l'intérieur des tissus de la plante.

(1) Les deux premiers événements sont amorcés par un dialogue moléculaire entre les deux partenaires symbiotiques dans la rhizosphère autour du chevelu racinaire. Les flavonoides exsudés par la racine sont détectés par les rhizobia et mènent à la synthèse d'un signal réciproque bactérien nommé le facteur Nod. (5) Les cordons d'infection avancent vers le primordium.

(6) Quand ils atteignent les cellules du primordium, les rhizobia sont libérés dans le cytoplasme des cellules hôte. Les cellules les plus distales du primordium, non

> envahies, forment un méristème tandis que les cellules infectées arrêtent de se diviser et débutent un processus de différenciation en cellules fixatrices d'azote.

(7) Les rhizobia récemment libérés dans le cytoplasme des cellules végétales subissent

une profonde transformation pour devenir une forme mature fixatrice d'azote, le bactéroïde.

(8) L'activité du méristème est persistante et le processus d'infection continu. Par conséquence, le nodule formé est composé de différentes zones différentes : la zone I correspondant au méristème, la zone II correspondant à la zone de différentiation et l'infection, La zone III composée de cellules hôtes remplies de bactéroïdes fixateurs d'azote (9) et une zone IV ou zone de sénescence.

8

Figure 9. Schéma global du processus d'infection jusqu'à la formation du nodule fonctionnel Chez *Medicago*. (Bonaldi, 2010).

3.4.3. Organogenèse du nodule

L'organogenèse nodulaire se met en place parallèlement à la progression d'infection (Figure 9). Le primordium nodulaire, lieu de libération des bactéries, se différencie en nodule mature (Brewin, 1991 ; Trevaskis et *al.*, 2002). Les bactéries sont libérées du cordon dans le cytoplasme des cellules végétales par un processus d'endocytose par lequel elles sont internalisées dans un compartiment constituant le symbiosome entouré d'une membrane péribactérodienne d'origine végétale (Brewin, 2004 ; Gage, 2004). Cette membrane assure la séparation des bactéries de la cellule hôte et contrôle l'échange de signaux et de nutriments entre les deux partenaires (Udvardi et Day, 1997). Une fois dans le symbiosome, les cellules bactériennes subissent de profonds changements physiologiques et morphologiques, se différenciant en bactéroïdes, formes fixatrices d'azote adaptées aux nouvelles conditions environnementales présentes dans le nodule (Mergaert et *al.*, 2006).

3.4.4. Types de nodules

Le type de nodule dépend de la plante hôte et non de son symbionte, l'infection de la plante par les rhizobia induit la dédifférenciation et la division des cellules du cortex (Foucher & Kondorosi, 2000).

➤ Les nodules de type indéterminé (Medicago truncatula, Pisum sativum) sont formés à partir du cortex interne ce qui permet une croissance en épaisseur par hypertrophie des cellules corticales et par des divisions de cellules contenant déjà des rhizobia. Dans le cas des espèces à nodules de type indéterminé, la zone méristématique est persistante ce qui se traduit par une forme allongée (Figure 10 A).

➢ Les nodules de type déterminé (Lotus japonicus, Glycine max, Phaseolus vulgaris) sont formés à partir du cortex externe. La persistance du méristème chez les espèces à nodules de type déterminé est très éphémère et la croissance en longueur du nodule est limitée. Ce processus de formation se traduit par une forme sphérique (Figure 10B). Dans le cas des espèces à nodules de type indéterminé, la zone méristématique est persistante ce qui se traduit par une forme allongée (Figure 10A).

Figure 10. Représentation schématique de la structure des nodules de Légumineuses. Nodule de type indéterminé présentant une zone méristématique (I), une zone de préfixation (II), une zone de fixation (III) et une zone de sénescence (IV) (A). Nodule de type déterminé (B). D'après Pawlowski et Bisseling (1996). (http://www.isv.cnrs-gif.fr/ak/theme_symbios.html)

3.5. Spécificité d'association Rhizobium-Légumineuse

La spécificité d'hôte est l'une des caractéristiques majeures de la symbiose rhizobiumlégumineuse (Young & Johnston, 1989). Chaque espèce (plante ou bactérie) possède un spectre d'hôte bien défini dont l'amplitude est variable. Certaines souches bactériennes présentent des associations spécifiques, c'est le cas des souches *Azorhizobium caulinodans*, *Rhizobium leguminosarum* biovar *trifolii* et *Rhizobium galegae* qui ne nodulent qu'une seule espèce respectivement *Sesbania rostrata* (Boivin *et al.*, 1997), *Trifolium* spp. (Hirsch *et al.*, 2001) et *Galega* sp. (Lindstrom, 1989). D'autres sont modérément spécifiques comme *Sinorhizobium meliloti* qui s'associe avec les espèces des genres *Medicago*, *Melilotus* et *Trigonella* (Krishnan & Pueppke, 1991). Enfin, certains rhizobia présentent un large spectre d'hôte et sont capables de noduler un très grand nombre de légumineuses. C'est le cas des souches *Sinorhizobium fredii* NGR234 et *Sinorhizobium fredii* USDA257 qui peuvent noduler respectivement près de 120 et plus de 77 genres de légumineuses (Pueppke & Broughton, 1999; Saldaña *et al.*, 2003). Selon Doyle (1998), il n'y a pas de corrélation directe entre la position taxonomique des rhizobia et leurs propriétés symbiotiques comme l'illustre clairement la Figure 11 ci dessous.

Figure 11. Absence de corrélation entre les phylogénies moléculaires des rhizobia et des légumineuses (Doyle, 1998). A gauche, arbre phylogénétique de représentants des rhizobia basé sur l'ARNr 16S. Les rectangles indiquent les genres non-symbiotiques, dont les représentants sont donnés entre parenthèses. A droite, un arbre phylogénétique d'espèces représentantes de légumineuses basées sur les séquences du gène rcbL. Les flèches connectent les rhizobia et leurs hôtes. Le spectre d'hôte de NGR234 est juste représenté par sa capacité à noduler Parasponia.

3.6. Effets des facteurs abiotiques sur la symbiose Rhizobium-légumineuse

Les principaux facteurs environnementaux limitant la relation symbiotique *Rhizobium*légumineuse sont la sécheresse, la salinité, les hautes températures, les pH acides extrêmes (Zahran, 1999 ; Serraj et *al.*, 1999 ; Abdelmoumene et *al.*, 1999). La température et le stress hydrique affectent la fixation symbiotique de l'azote à différents niveaux, tels que la formation et la croissance nodulaire, la différenciation des bactéroïdes, le métabolisme du carbone et de l'azote, l'activité de la nitrogénase ainsi que la perméabilité nodulaire à l'oxygène (Zahran et Sprent 1986 ; Zahran , 1999 ; Sadowsky, 2005). Le manque d'eau affecte la diversité des rhizobiums et induit une diminution significative dans le nombre et le rendement des nodules (Mnasri *et al.*, 2007 ; BenRomdhane et *al.*, 2009). L'eau, et sa disponibilité, est l'un des facteurs environnementaux les plus vitaux pour affecter la croissance et la survie des microorganismes (Potts, 1994). De nombreux auteurs ont travaillé sur l'adaptation des rhizobiums aux conditions de sécheresse, et ont montré qu'il existe une variabilité de leur tolérance face au stress (Athar et Johnson, 1997 ; Rehman et Nautiyal, 2002 ; BenRomdhane et *al*, 2009). Concernant les contraintes abiotiques, le pH du sol, la température et la salinité ont souvent été montrés comme les principaux facteurs abiotiques dans la détermination de la diversité des rhizobiums (Moschetti et *al.*, 2005 ; Alexandre et Oliveira, 2013).

Dans les travaux de Zahran (1999), il a aussi, montré que la compétence saprophytique et la fixation de l'azote pouvaient être affectées si les souches n'étaient pas adaptées aux différents facteurs de stress environnementaux. La plage de température optimale de croissance de la plupart des rhizobiums est de 28 à 31°C ; beaucoup sont incapables de croître à 37°C. La capacité d'adaptation des bactéries face aux contraintes environnementales, est due à la grande plasticité de leur patrimoine génétique, et de transferts génétiques entre bactéries (Radnedge et *al.,* 2002 ; Batista et *al.,* 2007). Elboutahiri et *al.* (2010) ont trouvé une grande différence phénotypique et génotypique entre des isolats d'*Ensifer meliloti* échantillonnés en zones arides et semi-arides du Maroc. Selon Chaïch (2017), les souches *Ensifer meliloti* présentes dans les couches superficielles des sols du Sahara d'Algérie peuvent résister à des températures et tolérer des concentrations de NaCl allant, respectivement, jusqu'à 45°C et 4 %.

IV. Taxonomie bactérienne et techniques d'identification

La taxonomie se définit comme l'étude des relations qui existent entre les organismes, elle englobe la classification, la nomenclature et l'identification. Cela revient, respectivement, à classer en arrangeant les organismes dans des groupes sur la base de similarités (classification), à donner des noms aux groupes trouvés (nomenclature) et enfin à identifier des organismes inconnus pour déterminer s'ils appartiennent aux groupes déjà définis (Vandamme et al., 1996). Comparativement aux animaux et aux plantes qui sont riches en détails morphologiques pouvant constituer la base de leur classification, les bactéries ont des caractéristiques morphologiques simples qui ne peuvent pas être utilisées pour les classer (Woese 1987).

4.1. La Taxonomie bactérienne

Depuis environ une trentaine d'années, les taxonomistes bactériens reconnaissent la nécessité de ne plus baser le système de classification des bactéries sur des similarités de fonction (diazotrophes, phototrophes, nodulation) et d'adopter une approche nécessitant la convergence du maximum de données (phénotypiques, génotypiques, phylogénétiques) pour déterminer les groupes taxonomiques ou taxons bactériens. Cette approche, appelée taxonomie polyphasique a considérablement modifié la perception que les taxonomistes bactériens avaient des relations entre divers groupes de micro-organismes (Olsen et al. 1994).

Progressivement il a été reconnu que la classification bactérienne devait également refléter le plus fidèlement possible les relations naturelles entre les bactéries. En effet, ces organismes présentent entre eux des relations de parenté ou de phylogénie. Ces relations phylogénétiques entre les bactéries ont été difficiles à appréhender, mais les progrès de la biologie moléculaire ont permis d'estimer l'évolution bactérienne à l'aide de molécules qualifiées « d'horloges moléculaires universelles ». Il s'agit de molécules présentes partout, avec la même fonction, très conservées et qui accumulent les mutations (variations de séquences) au cours du temps, permettant d'établir la phylogénie entre des organismes éloignés. En 1987, Woese a montré que les ARN ribosomiques remplissaient ces conditions. Ces molécules, en particulier l'ARNr 16S, se sont vite imposées comme étant de bons chronomètres moléculaires : les gènes ribosomaux ont en effet l'avantage de contenir des séquences de différents niveaux de conservation entre organismes, allant de séquences très conservées à des séquences très variables.

4.2. La taxonomie polyphasique bactérienne

De nombreuses techniques (**Figure** 12) basées sur l'approche moléculaire présentant différents niveaux d'expression et de discrimination ont été développées (Vandamme et al. 1996).

TECHNIQUES ET RESOLUTION TAXONOMIQUE

La taxonomie de type polyphasique a été proposée par Colwell (1970) est utilisée pour désigner des taxa à tous les niveaux (Murray et al. 1990). Elle intègre toutes les informations génotypiques, phénotypiques et phylo-génétiques recueillies sur la cellule bactérienne. L'information génotypique est fournie par les acides nucléiques (ADN et ARN) présents dans les cellules, tandis que l'information phénotypique est donnée par les protéines et leurs fonctions, par différents marqueurs chimio- taxonomiques et plusieurs autres caractères exprimés. Il n'existe pas de vrai standard pour délimiter précisément l'espèce, le genre ou la famille. Ainsi, la définition de l'espèce

bactérienne qui a prévalu ces dernières années est poly phasique. Wayne et al. (1987) puis Vandamme et al. (1996) ont cependant tenté d'en donner les contours en précisant que l'espèce bactérienne est un ensemble d'isolats issus d'une population ancêtre commune soumise à diversification génétique, générant ainsi des clones présentant différents degrés de recombinaison (selon l'espèce), caractérisés par un certain niveau d'homogénéité phénotypique, une valeur d'hybridation ADN-ADN significative et plus de 97 % d'homologie de séquence au niveau de leurs ADNr 16S. Ainsi, il est recommandé de considérer un nombre suffisant de souches susceptibles de constituer une espèce pour en étudier la diversité par une ou deux méthodes de typage (niveau infraspécifique). Puis, de ce groupe présentant un degré d'homogénéité jugé suffisant, on choisit des représentants pour en étudier la place phylogénétique (séquence de l'ADNr 16S) parmi les espèces apparentées, ainsi que l'homogénéité génotypique intra-groupe et évaluer le degré de similarité génomique avec les espèces voisines phylogénétiquement par la technique d'hybridations ADN-ADN total.

Dans la pratique, la taxinomie des procaryotes a été révolutionnée dans les années 1970, lorsque l'utilisation du gène 16S rRNA a été initiée pour des analyses phylogénétiques par Carl Woese (Oren 2009). L'utilisation du gène 16S rRNA dans les années 1990 a entraîné une augmentation significative du nombre de descriptions annuelles de nouvelles espèces (Tamames & Rosselló-Móra 2012). Le nombre de séquences d'ARNr 16S disponibles dans les dépôts publics (NCBI) est passé d'environ 10 000 en 2000 à 250 000 et de 3 000 000 en 2004 et 2012 respectivement. Cependant, plus de 99% des séquences disponibles appartiennent à l'ADN environnemental d'organismes non cultivés (Tamames & Rosselló-Móra 2012). Actuellement, il est nécessaire de signaler une séquence presque complète du gène de l'ARNr 16S pour la description de nouveaux taxons bactériens.

Les similitudes de 97% et 95% des séquences du gène 16S rRNA ont été définies comme les limites pour les souches appartenant à la même espèce et genre, respectivement. Le gène ARNr 16S pourrait être séquencé facilement et il ya des millions de séquences d'espèces bactériennes disponibles pour être comparés. Il faut noter cependant qu'il existe des pièges à l'utilisation du gène 16S rRNA pour la classification taxonomique et, qu'à eux seuls, ils ne doivent pas suffire à la description de nouveaux taxons (Stackebrandt et Goebel, 1994; Tindall et al, 2010).

30

4.3. L'analyse de séquence multi locus ou MLSA

Sachant que la classification des bactéries basée sur le gène d'ARNr 16S a des limites à différencier les espèces proches (Valverde A. et al, 2006; Ramírez-Bahena MH et al; 2008) car elle permet la description d'espèces de rhizobium non nodulantes. Dans ce but plusieurs gènes métaboliques (housekeeping) ont été proposés dans plusieurs groupes de bactéries (Maiden MCJ, 2006). Chez les rhizobia, les deux premiers gènes analysés étaient recA et atpD (Gaunt MW et al., 2001) et actuellement ils ont été séquencés dans beaucoup d'espèces rhizobiales montrant leur utilité dans La différenciation des espèces dont les gènes 16S ARNr sont pratiquement identiques (Valverde A. et al, 2006; Ramírez-Bahena MH et al; 2008). Par la suite, de nouveaux schémas d'identification et d'analyse phylogénétique des bactéries MLSA (Multilocus séquence analysis) et MLST (Multilocus sequence typing) basés sur l'analyse de plusieurs gènes d'entretien ont été appliqués à des analyses phylogénétiques de groupes concrets de rhizobia comme Ensifer (Martens M et al., 2007et 2008; van Berkum P et al., 2006) et Bradyrhizobium (Vinuesa P et al., 2008; Rivas R et al., 2009). Ces études indiquent que le séquençage des gènes de ménage sont plus efficaces que l'hybridation ADN-ADN pour l'évaluation de la parenté génétique entre les espèces Ensifer et appuient la suggestion par 'exemple Ensifer xinjiangensisis et de Ensifer fredii (Martens M et al., 2008). Le comité ad hoc pour la réévaluation de la définition des espèces a suggéré que les espèces devraient être identifiables par des méthodes facilement disponibles (phénotypiques et génomiques) et qu'une approche prometteuse à cet égard est la détermination d'un minimum de gènes d'entretien (Stackebrandt E. et al., 2002) et de Zeigler (2003) ont suggéré qu'une analyse de moins de cinq gènes d'entretien adéquats pourrait être suffisante pour une classification fiable. Pour cette raison, dans les dernières descriptions de nouvelles espèces de rhizobia, l'analyse d'au moins deux gènes de ménage a été incluse couramment pour connaître les espèces apparentées les plus proches avant d'effectuer des expériences d'hybridation ADN-ADN.

En plus des gènes de ménage (gènes noyau), certains gènes "auxiliaires" ou "accessoires" impliqués dans la symbiose des légumineuses sont couramment inclus dans la description des espèces de rhizobia et dans certaines analyses MLST (Silva C et al., 2005; Vinuesa P et al., 2005). Les gènes symbiotiques des rhizobiums sont codifiés dans les plasmides et dans les îles symbiotiques (Barnett MJ et al., 2001 ; Crossman LC et al, 2008 ; Lee KB et al., 2008) . Les gènes de nodulation, quant à eux, sont utiles pour définir des symbiovars au sein d'espèces rhizobia (Villegas MC et al, 2006 ; Mnasri B et al, 2007).

31

CHAPITRE II MATERIELS ET METHODES

II. Matériels et méthodes

Toutes les manipulations nécessaires à la réalisation de ce travail de thèse ont été effectuées au niveau du Laboratoire de Symbiose Tropicale et Méditerranéenne (LSTM) sise à Montpellier France. Concernant, les analyses des paramètres physicochimiques des sols, ils sont réalisés, en grande partie, par le Laboratoire LCA (EAP2120162), CELESTA, Blanquefort - France.

2.1. Prospection et échantillonnage

Sur un rayons de 400 km dans le Sahara septentrional, les sites de prélèvements (Figure 13) s'étendent de la région naturelle ''Chebkas'' (wilaya de Ghardaïa daïra de metlili) à la région de l'Erg oriental (wilaya de Ouargla daïra de Taibet) à l'Est. L'élément principal définissant les choix de nos stations est la présence de Fabacées spontanées à travers les différents espaces géomorphologiques qui constituent la principale variation du vaste milieu saharien à savoir les Ergs, les Regs, les lits d'oueds et les sebkhas (glacis). Nous avons retenu, dans cette étude, 01 Sebkha (Debbiche), 01 Reg (reg de Zelfana), 04 Erg (HBA, khbina, Belghit et el morr) 04 stations de lits d'Oueds de la région de chebkas (Echfar, Noumerat, Guemgouma Chaab sbaa ed Oum sedaïra). Soit au total 11 sites. A l'intérieur des sites, l'échantillonnage adopté est de type subjectif traduit par le prélèvement de 1kg de sols, à une profondeur de 10 à 20 cm (figure 12), au niveau de la rhizosphère d'une espèce de fabacée spontanée bien verte (synonyme d'une bonne nutrition azotée).

2.2. Position, bioclimat et description des sites de prélèvement

Ces stations font partie de l'étage bioclimatique hyper-aride (Lloyd, 1986 ; Midleton et Thomas, 1997). Elle se caractérise par des étés chauds et secs qui durent 9 mois et demi et des hivers rigoureux. Juin, juillet et août sont les mois les plus chauds avec des valeurs de températures max moyennes allant de 39 à 43 °C. La saison froide (décembre- janvier- février), les valeurs moyennes enregistrées sont de 18 à 20 °C Le degré hygrométrique de l'air (humidité relative) oscille, généralement, entre 20 % à 30 % en été et 50 % ou 60 % en hiver. Comparativement entre les localités de nos sites de prélèvements, concernant les quantités moyennes des précipitations, on note une différence dans les valeurs moyennes des précipitations annuelles allant d'un max de 85 mm dans la région de Ghardaïa (Sites 1, 2, 3, 8,9, et 10) à 56mm (sites 5.6 et 7) dans la région de Taïbet, alors qu'elles sont les plus basses relativement dans la région de Ouargla (sites n 4 et 11) d'environ 35 mm. Les valeurs comprenant différents natures géomorphologiques et positions géo référées des sites sont consignées dans le tableau 4 dessous.

N.B. Données climatiques (ONM 2014) résumées sont jointes (Annexe 2).

Figure 13. Carte de localisation des sites étudiés.

2.3. Analyses physicochimiques des sols rhizosphériques

2.3.1. Echantillonage et prelevements des sols

L'échantillonnage était subjectif obéissant, principalement à la présence d'une espèce de fabacée bien verte synonyme d'une bonne nutrition azotée de la plante. Les prélèvements des échantillonné de sol ont été effectués au niveau des rhizosphères des 04 espèces de fabacées spontanées (*A.gombo, A. maureoticus, G.saharae* et *R. retam*) à une profondeur de variant de 10 à 20 cm (Figure 12 et tableau 4). **Tableau 4.** Localisation et nature géomorphologique des espèces de fabacées spontanées étudiées.

Région naturelle et	Espèces	Caractéristiques des sites de localisation des espèces de fabacées						
administrative	Fabacées	n°	Lieu dit	Nature géomorphologique	Observations			
	A.gombo G.saharae R.retam	1 Chaab Sbaa L		Lit d'oued	Toutes les espèces se trouvent sur les formations dunaires aux rives du L.O.			
CHERKAS	R.retam	2 Oum Sedaïra I		Lit d'oued	formations dunaires aux rives du L.O			
Communes Metlili et Zelfana –wilaya Ghardaïa	R.retam	3	Echfar	Lit d'oued	formations dunaires aux rives du L.O			
	A. maureoticus	9 Guemgouma		Lit d'oued	Centre LO			
	A.gombo A. maureoticus	8	Noumerat	Lit d'oued	Centre LO Rives L.O			
	R.retam	10	Reg zelfana	Reg	Plein Reg			
DEPRESSIONS	R.retam	4	Debbiche	Sebkha	formations dunaires aux rives de Sebkha			
HBA wilaya Ouargla	A.gombo, R.retam	.gombo, 11 Hassi Ben .retam Abdallah		Erg	Erg			
ERG ORIENTAL	A.gombo, G.saharae	5	El morr	Erg	Erg			
Commune Taïbet Daïra Taïbet wilaya Quargla	G.saharae	6	Khbina	Er g	Erg			
Taibet whaya Ouargia	G.saharae	7	Belghit	Erg	Erg			

2.3.2. Methodes

Les échantillons de sol prélevés ont fait l'objet d'une caractérisation physico-chimique selon les méthodes d'analyses usuelles, sommairement, décrites ci-dessous

> Granulométrie

La méthode utilisée est basée sur la loi de STOCKES. Différents traitements chimiques préalables servent à obtenir une bonne dispersion des particules élémentaires. Un premier traitement assure la destruction de la matière organique par l'eau oxygénée, un deuxième assure la destruction du calcaire par HCl, ensuite une longue agitation dans l'eau suffit en présence d'un sel dispersant (hexaméta-phosphate de sodium). Après une sédimentation libre sous l'action de la gravité, les particules tombent avec des vitesses constantes, d'autant plus grandes qu'elles sont plus grosses. Ainsi la fraction fine est prélevée par la pipette de ROBINSON et les sables par tamisages successifs.

≻ Le pH

Mesuré avec un pH mètre à électrode en verre, avec un rapport sol / eau (1/2.5) (AFES, 2008).

Figure 14. Exemple prélèvement sol au niveau de la rhizosphère de l'espèce A.gombo dans un lit d'Oued.

Conductivité électrique

La C.E (20°C) du sol a été mesurée par un conductimètre d'une suspension d'un rapport : sol /eau de 1/5 (Aubert, 1978).

Calcaire total

Le calcaire total est dosé par la méthode gazométrique en utilisant le calcimètre de Bernard.

Bilan ionique

Le bilan ionique est effectué sur des extraits aqueux : terre /solution eau 1/5. Il consiste à analyser les anions SO_4^{--} , Cl^- , HCO_3^{--} et CO_3^{--} et les cations Ca^{++} , Mg^{++} , Na^+ , K^+ (Aubert, 1978).

Dosage des anions solubles

• Sulfates (SO₄²⁻)

Les sulfates ont été déterminés par la méthode gravimétrique qui se base sur la précipitation des sulfates par BaCL₂ dans un milieu acide

• Chlorures (Cl⁻)

Les anions Chlorures sont determinés par la methode argento-métrique de Mohr qui consiste à précipiter les ions Cl⁻ sous forme d'AgCl en présence d'AgNO_{3-.}

Dosage des cations solubles

- Na⁺ et K⁺: dosés au spectrophotomètre à flamme.
- Mg⁺⁺ : dosé au spectrophotomètre d'adsorption atomique.

> Phosphore

Le phosphore du sol est mis en solution en utilisant une solution d'acides nitrique sulfurique et perchlorique. Le dosage des ions P en solution s'effectué par spectrophotométrie (Longueur d'onde : 825 nm) d'un complexe phosphomolybdique selon la méthode Murphy-riley (Carter, 1993).

> Dosage du carbone organique et détermination de la matière organique

Le dosage du carbone organique a été effectuée par la méthode Anne (1945), dont le principe consiste à oxyder la matière par un oxydant puisant (le bichromate de potassium) à chaud et en présence d'acide sulfurique, l'excès de bichromates est dosé par une solution titrée de sel de Mohr (sulfate ferreux), en présence d'indicateur coloré (diphénylamine). La teneur en matière organique est obtenue par la formule : $MO = Carbone (\%) \times 1.72$.

> Azote total

Le dosage de l'azote total a été effectué par la méthode Kjeldhal (AFES, 2008)

2.3.3. Analyses statistiques

Les valeurs des résultats physico-chimiques obtenus ont été soumises à 2 analyses de discrimination, respectivement, analyse de classification hiérarchique (cah) et analyse en composantes principales pour déterminer l'importance et les groupes des paramètres physico-chimiques des différents sols à l'aide du logiciel XLSTAT version 2017.

2.4. Récolte de graines

La récolte des graines des 04 espèces de fabacées spontanées retenues s'est étalée sur dans la période Mai-Juin-Juillet des années allant de 2009-2012 à travers les sites échantillonnés. Les noms scientifiques et photos sont résumés ci-dessous (Figure 14).

Figure 15. Photos des gousses et graines des espèces de fabacées spontanées prélevées dans le Sahara septentrional.

2.5. Piégeage des bactéries symbiotiques

Les graines des espèces de fabacées spontanées (*A.gombo*, *A. maureoticus*, *G.saharae* et *R. retam*) collectées ainsi que les sols échantillonnés été à partir des mêmes sites sahariens (Tableau 4) ont été utilisés pour le piégeage des bactéries symbiotiques. Le nombre de 20 répétions a été effectué pour chaque traitement. Les graines des 04 espèces ont été stérilisées en surface avec de l'hypochlorite de calcium (3%) pendant 5 min, rincées à l'eau distillée (5 fois) et scarifiées mécaniquement à l'aide d'un fer à souder. Les semences stériles ont été transférées sur des boîtes de Pétri stériles contenant de l'eau gélosée (10% d'agar-agar) et laissées 48 heures à 4°C puis 48 heures à 21°C pour germination.

 Tableau 4. Dispositif expérimental de piégeage des BNL présentes dans les rhizosphères de quatre fabacées spontanées dans le Sahara d'Algérie

Sites		Traitments	Origine du sol utilisé			
Lieu dit	N°	milieu-espèce	Rhizosphère de l'espèce	Profondeur		
	1	S1- R.retam				
Chaab Sbaa	1	S1-A.gombo	R.retam	15 cm		
	1	S1-G.saharae	_			
Oum Sedaïra	2	S2-R.retam	R.retam	15 cm		
Echfar	3	S3-R.retam	R.retam	15 cm		
Debbiche	4	S4-R. retam	R.retam	20 cm		
El morr	5	S5-A.gombo		20		
	5	S5-G.saharae	G.sanarae	20 cm		
Khbina	6	S6-A.gombo		20		
	6 S6-G.saharae		- G.sanarae	20 cm		
Belghit	7	S7-A.gombo				
	7	S7-G.saharae	- G.saharae	20 cm		
Noumerat	8	S8-A.maureoticus	A h	15		
	8	S8-A.gombo	A.gombo	15 cm		
Guemgouma	9	S9-A.maureoticus				
	9	S9-A.gombo	- A.maureoticus	10 cm		
Reg Zelfana	10	S10-R.retam	R.retam	10 cm		
Hassi Ben Abdallah	11	S11-A.gombo		1.5		
	11	S11-R.retam	A.gombo	15 cm		

Les plantules ont ensuite été transférés dans des tubes Gibson (Figure 15) contenant attapulgite calcinée stérile (Oil Dri US Special, Damolin, Denmark; <u>http://www.damolin.dk</u>), 40 ml de solution minérale nutritive sans azote (Bertrand et al., 2001) et 2-3 centimètres de sol échantillonné placés audessus des granules d'attapulgite. Les plantes ont été cultivées sous une lumière continue (20 W/m²) à 28°C. Après 7 semaines d'incubation à 21 ° C, les plantes ont été récoltées et les racines observées.

Figure 16. Photo des piégeages des souches de BNL associées aux 04 espèces de fabacées spontanées étudiées

2.6. Isolement des bactéries symbiotiques

Les nodosités prélevées sur chaque pied des 04 espèces *A.gombo*, *A. maureoticus*, *G.saharae* et *R. retam* (Figure 17) ont été soit directement utilisés pour l'isolement ou conservés secs dans des tubes contenant du gel de silice ou du CaCl2 (Date, 1982) surmonté de coton cardé. Pour ces dernières, elles sont réhydratées dans de l'eau distillée stérile (pendant une demi-heure) dans des tubes Eppendorf. Apres élimination de l'eau, elles ont été désinfectées en surface dans une solution d'hypochlorite de calcium (3%) pendant 3 min. Après 5 rinçages de 1 min chacun dans de l'eau distillée stérile, chaque nodosité a été broyée stérilement à l'aide d'un pilon dans un tube Eppendorf de 1,5 ml contenant 50 μ l d'eau distillée stérile. Le milieu YEM agar utilisé pour l'isolement des souches est celui de Vincent (1970) modifié ci- dessous :

Yeast extract	0,4g/l
Solution minéralede Bergensen 10M	100ml
Mannitol	10g
Agar agar	15g
Ajuster à 1L, Ph : 6,8	
Solution minérale de Bergensen (concentré	e 10 fois)
Kcl	1g
Fecl3 (liquide)	0,2 ml
Cacl2,2H2O	0,53 g
Na2HPO4 ,12 H2O	4,5g
MgSO4 ,7 H2O	1g

Une boite de Pétri contenant ce milieu été ensemencée avec chaque broyat de nodosité avec le pilon utilisé pour le broyage. Les boîtes de Pétri ensemencées ont été placées à 28°C sous conditions d'aérobiose. Après apparition des colonies sur boite de pétri, chaque colonie bactérienne représentant un phénotype particulier a été repiquée en partant à chaque fois d'une colonie isolée. Afin d'obtenir une culture pure. Chaque isolat a subi au moins 2 cycles de purification sur boite de Pétri avant d'être cultivé en milieu liquide (15 ml d'YEM). Exception faite pour une seule souche récalcitrante (Gs663), après 1 à 2 jours de croissance à 28°C, la culture liquide additionnée de 50 % glycerol (v/v) a été utilisée pour la mise en collection à -80 °C et pour l'extraction d'ADN.

Figure 17. Nodosités présentes sur les racines (A) *A.gombo*, (B) *A. maureoticus*, (C) *G.saharae* et (D) *R. retam* obtenus après piégeage des sols prélevés dans les différents sites.

2.7. Etude de la diversité génétique des souches associées à la légumineuse Saharienne spontanée *G.saharae*.

Parmi les 4 espèces étudiées (*A.gombo*, *A. maureoticus*, *G.saharae* et *R. retam*), Le choix a porté sur les isolats associées légumineuse saharienne spontanées *G. Saharae* concernant diversité moléculaire. Ainsi, l'approche M.L.S.A. a été adoptée afin de déterminer la position systématique des souches de B.N.L. associées à cette fabacée spontanée saharienne. Ainsi, un total de 57 souches isolées à partir des nodosités racinaires obtenues ont fait l'objet d'analyse phylogénétiques.

2.7.1. Extraction d'ADN

Le protocole standard au phénol-chloroforme (Chen et Kuo, 1993) a été utilisé pour l'extraction de l'ADN génomique. Cette méthode est proposée pour les bactéries Gram négatif (cas des Rhizobias) et adaptée, notamment, à celles qui produisent des exo polysaccharides. Une culture en milieu YEM liquide âgée de 24 h (15 ml) est centrifugée pendant 10 min à 12 000 rpm (rotations par minute) à température ambiante. Le culot cellulaire est transféré dans un tube Eppendorf après avoir été repris dans 1 ml d'eau milliQ stérile. Une deuxième centrifugation (10 min à 14 000 rpm) permet de récupérer le culot bactérien. Ensuite, 400 µl de tampon de lyse (40 mM Tris Acetate pH 8, 20 mM Acetate de Sodium, 1 mM EDTA, 10 % SDS) est ajouté au culot et le tout est homogénéisé par aspiration et refoulement pendant 3 min dans le même tube Eppendorf. 133 ul de NaCl 5M sont ajoutés afin de précipiter les protéines et le tout est vortexé. Après incubation de 15 min dans de la glace, le tube est centrifugé 10 min à 14 000 rpm à 4°C. Le surnageant (environ 250 µl) est transféré dans un tube Eppendorf de 2 ml puis sous une hotte chimique, un volume équivalent (250 µl) de chloroforme est ajouté. Le tube est retourné une cinquantaine de fois jusqu'à apparition d'une solution "laiteuse". Le tube est ensuite centrifugé 5 min à 14 000 rpm à température ambiante. Toujours sous hotte chimique, le surnageant est transféré dans un nouveau tube Eppendorf de 1,5 ml, sans toucher la phase laiteuse intermédiaire.

L'ADN est ensuite précipité par l'ajout d'un volume d'isopropanol (environ 200 µl) et le tube est centrifugé 30 min à 14 000 rpm à température ambiante. Le culot d'ADN est ensuite lavé avec de l'éthanol à 70 % (100 µl) puis de nouveau centrifugé 5 min à 14 000 rpm à température ambiante. Le culot est ensuite séché 10 min au Speedvac (UniVAPO 100H, UniEquip, Martinsried, Germany) et est repris dans 100 µl de Tris EDTA+RNase (1X, 5 µg.ml-1) (SGMA, EC 3.1.27.5). Le tube est ensuite laissé pendant une nuit à 4°C. Le lendemain, l'ADN est quantifié par spectrophotométrie ''NanoDropR ND-1000 Spectrophotometer''. Des dilutions ont été réalisés, en cas de nécessité, pour obtenir une concentration de 50 ng.ml-1 puis conservé à -20°C pour son utilisation ultérieure.

2.7.2. Amplification de l'ADN et séquençage

2.7.2.1. Amplification des gènes de ménage (recA et *atp*D)

Les fragments d'ADN issus de 57 isolats associées à *G.saharae* ont été amplifiées pour les gènes *rec*A et *atp*D à l'aide d'un couple d'amorces spécifiques, respectivement, Gaunt *et al.* (2001) et Martens *et al.* (2008) dont les informations nécessaires sont consignées dans le tableau 5 ci dessous. Le control négatif (eau milliQ) et control positif (ADN de la souche ORS 1400^{T}) ont été inclus dans cette expérimentation. Le mélange réactionnel est de 25 µl. Chaque réaction comprenait 2 µl de dNTPs (10 mM de chaque dNTP), 0,1 µl de Taq ADN polymerase (Promega, M 8 3 0 B), 01 µl de chaque amorce (front et reverse), 05 µl de tampon 5X green (Promega, M791A) fourni avec l'enzyme, 15,9 µ 1 d'eau distillée et 50 ng d'ADN génomique matrice.

Les réactions d'amplification (Polymerase Chain Reaction, PCR) ont été réalisées dans un thermocycleur « Thermo Electron's Px2 » avec le protocole suivant : dénaturation initiale de 5 min à 96 °C, suivie de 35 cycles de dénaturation (30s à 96°C), d'hybridation (30s à 57°C) et d'extension (à 72°C pendant 30s pour le gène *rec*A et 2 min pour le gène *atp*D), puis une extension finale (7 min à 72°C). Les produits PCR (fragments d'ADN amplifiés) ont été visualisés par électrophorèse dans un gel d'agarose 1% contenant 1 µg.ml⁻¹ de bromure d'éthidium dans du tampon TAE 1X (40 mM de Tris-acétate, 01mM EDTA, pH 8), puis photographiés sous UV. L'évaluation de la taille de la séquence d'ADN amplifiée a été assurée grâce au marqueur de poids moléculaire connu (Smart Ladder, Eurogentec, MW170002). Les séquences ont par la suite été purifiées à l'aide du kit ''GFX TM PCR DNA and Gel Band Purification'' et séquencés par la société Genoscreen (Lille, France) sur des séquenceurs Applied Biosystems ABI3730.

2.7.2.2. Amplification du gène de l'ARNr 16S

Seuls les représentants de groupes issus de l'analyse des séquences partielles des gènes recA et atpD, ont fait l'objet d'amplification et de séquençage du gène de l'ARN ribosomal 16S. Le mélange réactionnel pour la PCR est identique à celui utilisé pour les gènes recA et atpD sauf, bien entendu, pour les amorces utilisées qui sont celles proposées par Wawrik et al. (2005) décrits dans le tableau 5 ci dessous. Avec un cycle identique à celui appliqué pour l'amplification du gène atpD, concernant l'amplification, purification visualisation et séquençage sont les mêmes décrits ci-dessus pour les gènes de ménage (recA et atpD).

2.7.2.3. Amplification du gène nodA

Plusieurs amorces du gène nodA ont été testées dans l'amplification de l'ADN génomique d'une vingtaine de souches de *G. saharae* (Tableau 5) selon deux types de programmes de cycles PCR à savoir:

✓ Classique : Dénaturation initiale de 5 min à 95 °C, suivie de 35 cycles de dénaturation (30 s à 94°C), d'hybridation (30 s à 59°C) et d'extension (1 min à 72°C), puis une extension finale (3 min à 72°C).

✓ Touch-Down : dénaturation initiale de 5 min à 94 °C, suivie de 20 cycles de dénaturation (30 s à 94 °C), d'hybridation (30 s à une température initiale égale à 60°C qui décroit de 0,5°C chaque cycle) et d'extension (à 72°C pendant 42 s), puis 22 cycles de dénaturation (30 s à 94 °C), d'hybridation (30 s à 50 °C) et d'extension (à 72°C pendant 42 s), puis une extension finale (7 min à 72°C).

Tableau 5. Différentes amorces utilisées pour l'amplification des gènes recA, atpD, de l'ARNr 16S et du nodA des souches de BNL associées à la fabacée spontanée *G.sahare*.

Gène	Nom de l'amorce	Séquence de l'amorce	Longueur Séquence amplifiée (bp)	Références
recA	recA(63)f	ATCGAGCGGTCGTTCGGCAAGGG	≈ 500	Gaunt et <i>al.</i> ,
	recA(504)r	TTGCGCAGCGCCTGGCTCAT		2001
er fra D	atpD352F	GGCCGCATCATSAACGTCATC	~ 500	Martens et al.,
atp D	atpD871R	AGAGCCGACACTTCMGARCC	~ 300	2008
ARNr	27f	GAGAGTTTGATCCTGGCTCA		Wawrik et al.,
16S	1525r	AAGGAGGTGATCCAGCC	≈ 1500	2005
	NodAfbrad	GTYCAGTGGAGSSTKCGCTGGG		Eurogentec
nodA	NodArbrad	TCACARCTCKGGCCCGTTCCG	~800	Compagnie
nouA	Nodboxuniv2	ATCNAAACAAWNRATTTTAC	~800	France
	NodAint3.f	AGCCACATGGGCGTGTTGCG		
	NodAint5.r	CCGACCGAGTGAGCGATGCC		

2.7.3. Analyse phylogénétique

2.7.3.1. Correction et alignements des séquences

Les séquences nucléotidiques ont été vérifiées et corrigées manuellement à l'aide de Finch TV (v.1.4), puis alignées à l'aide du logiciel ClustalX (v.1.81) (Thompson et al., 1997), les alignements étant recorrigés manuellement à l'aide de GeneDoc (v.2.7) (Nicholas et Nicholas, 1997).

2.7.3.2. Détermination des groupes

Dans le but de grouper ensemble les souches identiques, les séquences corrigées et alignées ont été comparées à l'aide du logiciel Mothur v.1.4.0 (Schloss et al., 2009). A l'issue de ce travail, une souche représentative par groupe de séquences identiques a été retenue pour l'analyse phylogénétique.

2.7.3.3. Blast et soumission des séquences nucléotidiques des souches représentatives à la base de données NCBI.

Chacune des séquences représentatives de l'ensemble des gènes (atpD, recA et ARNr 16S) a été ''blastée'' au (<u>http://www.ncbi.nlm.nih.gov/genbank/</u>) accompagnée d'une soumission pour validation des souches représentatives associées à la légumineuse spontanée *G.saharae*.

2.7.3.4. Alignement des séquences ADN des souches isolées avec la totalité des souches témoins validées.

Afin de déterminer la position systématique exacte des souches étudiées, nous avons inclus, dans l'alignement, toutes des séquences nucléotidiques des souches types de BNL validées au niveau des bases de données <u>http://www.bacterion.net/</u> et <u>http://www.straininfo.net/</u>. Le Tableau 6 résume les numéros d'accession Genbank pour les gènes étudiés au niveau de la base de données NCBI.

Tableau 6. Numéros accessions Genbank des séquences des gènes ARNr16S, atpD et recA des souches témoins utilisées pour déterminer la position taxonomique des souches de BNL associées à *G.saharae*.

Espèces	Souche témoin	recA	atpD	ARNr16S
E.americanum	LMG22684 ^T	AM946572	AM418742	-
E.arboris	LMG14919 ^T	AM182130	AM418767	AM181744
E.fredii	LMG6217 ^T	AM182145	AM418761	X67231
E.garamanticus	ORS1400T	AM946573	AM946546	AY500255
E.kostiense	LMG19227 ^T	AM182142	AM418771	AM181748
E.kummerowiae	CCBAU71714 ^T	DQ411945	GU994044	AF364067
E.medicae	LMG19920 ^T	AM182135	AM418754	L39882
E.meliloti	LMG6133 ^T	AM182133	AM418760	X67222
E.nimidicus	ORS1407 ^T	AM946576	AM946551	AY500254
E.saheli	LMG7837 ^T	AM182138	AM418756	X68390
E.terangae	LMG7834 ^T	AM182153	AM418764	X68388
E.xinjiangense	CCBAU110 ^T	DQ411944	-	-
E.xinjiangense	LMG17930 ^T	-	AM418745	AM181732
M.alhagi	CCNWXJ122 ^T	FJ481878	JN202305	EU169578
M.australicum	LMG24608 ^T	JN202310	JN202306	AM181745
M.camelthorni	CCNWXJ404 ^T	GU220798	JN202304	EU169581
M.caraganae	CCBAU11299 ^T	EU249394	EU249379	EF149003
M.ciceri	USDA3383 ^T	AJ294367	AJ294395	DQ444456
M.gobiense	CCBAU83330 ^T	EF549481	EF549409	EF035064
M.huakuii	CCBAU2609 ^T	EU249391	AJ294394	-
M.loti	LMG6125 ^T	EU039875	AM946552	X67229
M.silamurunense	CCBAU01550 ^T	EU518358	EU518358	-
M.tarimense	CCBAU83306 ^T	EF549482	EF549410	-
M.temperatum	HAMBI2583 ^T	DQ444305	DQ345071	AF508208
B.japonicum	LMG6138 ^T	182158	AM418753	X66024
R.borbori	DN316 ^T	GQ289385	-	EF125187
R.cellulosilyticum	LMG23642 ^T	AM286427	AM286426	DQ855276
R.endophyticum	CCGE2052 ^T	HM142767	-	EU867317
R.fabae	CCBAU33202 ^T	EF579941	-	DQ835306
N. galegae	LMG6214 ^T	AM182127	AM418779	X67226
R.hainanense	CCBAU57015 ^T	HM047132	GU726293	U71078
R.herbae	CCBAU83011 ^T	GU565549	GU565542	-
R.indigoferae	CCBAU71042 ^T	EF027965	-	AF364068
R.leguminosarum	USDA 2370 ^T	AJ294376	-	U29386

R.lusitanum	P1-7 ^T	DQ431674	DQ431671	AY738130
R.mesosinicum	CCBAU25010 ^T	EU120732	EU120726	DQ100063
R.miluonense	CCBAU41251 ^T	HM047131	-	EF061096
R.mongolense	USDA1844 ^T	AY907358	AY907372	U89822
R.multihospitium	CCBAU83401 ^T	EF490029	EF490019	EF035074
R.phaseoli	ATCC14482 ^T	EF113136	-	EF141340
R.pisi	DSM30132 ^T	DQ431676	EF113149	AY509899
R.sullae	IS123 ^T	FJ816279	DQ345069	Y10170
R.tibeticum	DSM21102 ^T	HQ394255	-	EU256404
R.tropici	CIAT899 ^T	EU488815	-	U89832
R.tubonense	CCBAU85046 ^T	EU288696	EU288670	EU256434
R.yanglingense	SH22623 ^T	AY907359	AY907373	AF003375
N.alkalisoli	CCBAU01393 ^T	EU672490	EU672461	EU074168
N. huautlense	LMG 18254 ^T	AM182128	AY688589	AF025852
N.vignae	CCBAU05176 ^T	GU128902	GU128888	GU128881
A.rubi	HAMBI1812 ^T	KF206814	-	AM181759
A.rhizogenes	HAMBI1816 ^T	KF206819	-	AB680381
A.tumefaciens	CIP104325 ^T	HQ735080	-	FR828335
A.vitis	HAMBI1817 ^T	KF206820	-	-
Al.undicola	ORS992 ^T	HE610313	-	-
R.vallis	CCBAU65647 ^T	GU211770	-	FJ839677

2.7.4. Construction d'arbres phylogénétiques

Les phylogénies ont été construites à l'aide du logiciel Mega 5 (Tamura *et al.*, 2011) avec les méthodes suivantes :

✓ Pour les gènes *recA* et *atpD* : méthode du maximum de vraisemblance avec le modèle d'évolution GTR qui évalue le meilleur arbre en terme de probabilité, en tenant compte d'un modèle d'évolution moléculaire sous-jacent à nos données;

✓ Pour l'ADN ribosomal 16S : méthode de Neighbour-Joining selon le modèle Kimura à deux paramètres;

✓ Une phylogénie bayésienne a, également, été produite à partir du concaténât des alignements des différents gènes de ménage (recA et atpD).

Pour l'estimation de la robustesse des nœuds il a été choisie l'analyse par rééchantillonnage bootstrap a 1000 réplications pour tous les arbres construits.

2.8. Caractérisation phénotypique

2.8.1. Tests de nodulation et de fixation

Dans le but d'étudier les capacités symbiotiques (infectivité et effectivité), les représentants des nouveaux isolats ainsi que la souche de référence *Ensifer garamanticus* ORS1400^T ont été testés pour la nodulation sur leur plante hôte G. Saharae. Les Graines, auparavant scarifiées et stérilisées, ont été placées sur des boîtes de Pétri contenant 10% de gélose. Les boîtes scellées au parafilm ont par la suite été maintenus à 4°C pendant 48 heures, avant leur transfert dans une chambre de croissance (dans l'obscurité, température 22 ° C le jour et 15 ° C la nuit). Une semaine après le semis, les plants ont été transplantés dans des tubes en verre remplis d'attapulgite calcinée stérile (Oil Dri US Special, Damolin, Danemark) supplémenté avec une solution nutritive 40 ml minérale sans aucune source d'azote (Bertrand et al. 2000). Chaque tube a été inoculé avec une suspension rhizobienne de 01 ml (environ 10⁹ cellules / ml) en phase exponentielle de croissance. Les plants non inoculés ont été inclus pour servir de témoins. Dix répétitions de plantes ont été préparées pour chaque traitement. Toutes les plantes ont été cultivées dans une chambre de croissance sous une photopériode de 14 h jour / 10 h de nuit. La température était de 22 ° C (jour) et 15 ° C (nuit). Les plantes ont été récoltées 42 jours après l'inoculation. Au bout de 6 semaines après inoculation, la nodulation (nombre de nodosités/plant, poids de matière sèche nodulaire), le poids de la matière sèche ainsi que la hauteur des plants ont été évaluée.

Les valeurs des différents paramètres symbiotiques obtenus ont été soumises à une analyse de variance et les moyennes classées en groupes homogènes par le test de Student-Newman-Keuls (5%) à l'aide du logiciel XLSTAT version 2012.

2.8.2. Résistance aux températures et tolérance au sel

La capacité de croissance des souches de *G.saharae* en condition de salinité (NaCl) et aux hautes températures a été étudiée sur des microplaques de 96 puits. Pour ce faire, les représentants des souches, la souche de référence d' *E garamanticus* ORS 1400^T ainsi que les souches témoins *E. meliloti* ORS 665 ^T et *R. etli* CFN42 ^T ont été inclus dans l'expérimentation. Trois répliques ont été réalisées pour chaque essai. Pour chaque expérience, toutes les souches ont été pré-cultivées dans un milieu YEM liquide pendant 24 heures sous agitation. Avant inocubation, chaque culture a été ajustée à une densité optique (OD600nm) égale à 0,5.

> Tolérance à la salinité 150 μ l de milieu YEM contenant les concentrations de NaCl correspondantes (0, 1, 2, 3 et 4%) ont été répartis dans les puits de la microplaque avant d'ajouter 10 μ l d'inoculum pour chaque souche bactérienne. Les cultures bactériennes ont été, par la suite, placées à 28° C avec agitation orbitale (150 rpm) et la croissance a été suivie par des relevés de DO600nm

 \triangleright Résistance aux températures élevées. Les 150 µl ont été repartis sur les puits de la microplaque avant de leur rajouter 10 µl d'inoculum (ajusté à 0.5 D) pour chaque souche bactérienne. Les microplaques ont été ensuite mises en incubation à 28, 40, 42 et 45 ° C sur un agitateur orbital (150 rpm) et la croissance a été suivie par des relevés de DO600nm.

La croissance bactérienne pour les 2 expérimentations a été surveillée en enregistrant la densité optique (600 nm) à l'aide d'un spectrophotomètre TECAN infinite M200.

CHAPITRE III

RESULTATS ET DISCUSSIONS

III. Résultats et discussions

Dans ce chapitre, nous résumerons les principaux résultats obtenus qui caractérisent les trois partenaires de l'association Rhizobium-fabacées spontanées (rhizosphère- macro symbiote et micro symbiote) dans le milieu saharien connu par son aridité prononcée.

1. Qualité physico-chimique des sols

Les résultats des analyses physico-chimiques des différents échantillons de sols des rhizosphères prélevés à une profondeur de 10 à 20 cm, sont résumés dans le tableau 6. L'analyse granulométrique n'a révélé que de très légères différences de texture, la figure 18 élucide bien que la totalité des sols échantillonnés sont de texture grossière (Sablonneuse à sableuse), les plus grandes valeurs enregistrées pour l'argile et le limon sont respectivement de 4, 6 et 5,2 % dans le site HBA. Ces résultats indiquent que la texture des sols dans les écosystèmes naturels Sahariens est légère se traduisant par une faible rétention d'eau.

Figure 18.Texture de couches superficielles de sols (10 à 20 cm) prélevés dans différents espaces géomorphologiques des sites échantillonnés à travers le Sahara septentrional.

Les valeurs de la conductivité électrique mesurées sont comprises entre 0,09 et 0,13 mS/cm et classés non salés selon l'échelle agronomique. Seule la valeur (2.7 mS/cm) qui le qualifie « sol faiblement salée » selon Servant (1975) est enregistrée au niveau du site Debbiche expliqué par la proximité d'une zone de rejet (Sebkhet Sefioune). Les pH sont alcalins et varient entre 8,05 à Debbiche (N° 4) et 9.05 Guemgouma (N° 9). Selon CALLOT et *al.*, (1982) cette gamme de pH ne constitue pas un obstacle pour la solubilité de l'azote, du potassium, du calcium, du sodium, du chlore et du magnésium. Les valeurs enregistrées pour le calcaire total varient entre 0,7 % (site Chaab Sbaa) à 7,7 % (Hassi Ben Abdallah) qui sont très en deçà de 15 % et donc classés «hypo-calcaire » selon le référenciel pédologique (AFES, 1995). Concernant la matière organique, la majorité des sites étudiés

presentent des valeurs inferieures à 1 % signifiant, principalement, une faible production de biomasse. Ces analyses, ont permis, egalement, de déterminer le niveau de fertilité de chaque sol. Les sols des sites naturels étudiés à travers le Sahara septentrional présentent des teneurs très faibles, notamment en azote et en phosphore. Les valeurs maximales obtenues pour ces éléments fertilisants majeurs sont respectivement, 7,5 ppm (Noumerat) et 3 ppm (Chaab Sbaa) mettant en évidence la pauvreté de ces sols. En general, ces resultats viennent, encore une fois, confirmer ceux déjà obtenus pour les sols du milieu saharien (Daoud et Halitim, 1994 ; Dutil, 1971 ; Halitim, 1988).

Pour une discrimination des sols, une analyse en composantes principales (ACP) a été effectuée sur tous les paramètres physico-chimiques mesurés (Figure 19). Le premier axe, F1 (65.50 % de la variation totale) a séparé Chaab Sbaa et Debbiche des autres sites, basés principalement sur le pH, Mg²⁺, Na⁺, Ca²⁺, SO₄²⁻ et Cl⁻ tandis que l'axe F2 (26,16% de la variation totale) a été principalement expliqué, notamment par la teneur en phosphore ensuite celle de l'azote et la matière organique séparant les 09 sites restant des autres. Les analyses statistiques AHC et ACP (Annexe 3) ont permis de décrire et représenter les ressemblances entre les différents sites d'expérimentations par rapport à l'ensemble des variables mesurées.

Figure 19. Analyse en composantes principales des sols en fonction de leurs caractéristiques physicochimiques.

Dieux dits	Chaab sbaa $(N^{\circ} 1)$	Oum .sedaïra	Echfar $(N^{\circ} 3)$	Debbiche	El Morr	Khbina	Belghit	Noumerat	Guemgouma	Reg Zelfana	HBA
Caractéristiques		(1 2)	(1 3)	(11 4)	(1 3)	(1 0)	(1 7)	(1 0)	(11 3)	(1 10)	(1 11)
Localisation géoréférée	N32°17'8.77 E3°24'25.33"	N32°17'8.77 E3°24'25.33"	N32°17'8.77 E3°24'25.33"	N32°22'19,83" E5°27'24,45"	N33°5'57.57" E 6°25'3.55"	N33°5'57.57" E 6°25'3.55"	N33°5'57.57" E 6°25'3.55"	N32°19'9.68" E 3°49'0.82"	N32°22'39.78" E 3°31'26.45"	N32°20'5.60" E4°16'38.41"	N31°56'12.35" E 5°25'13.78"
Sable grossier (%)	95,8	56,9	61,1	35,5	55,9	57,2	76,9	54,3	47,6	59,1	60,1
Sable fin (%)	2,9	40,6	35,0	59,0	41,9	40,4	21,9	44,2	48,6	36,5	29,5
Argile (%)	0,05	1,5	2,2	2,8	0,15	0,02	0,11	2,3	2,9	1,8	4,6
Limon (%)	0,06	1,0	1,7	0,7	0,06	0,23	0,03	1,3	0,9	1,3	5,7
pН	8,78	8.87	8,96	8,06	8,85	8,98	8,92	8,83	9,05	9,02	8,62
E.C. _{e1/5} (25°C, mS/cm)*	0,09	0,1	0,1	2,72	0,09	0,08	0,08	0,12	0,09	0,08	0,13
Taux de Calcaire (%)	0,7	2,4	2,5	3,2	4,2	3,1	6,7	4,2	4,6	0.05	7,7
Matière organique (%)	0,2	1,4	1	0,2	0,2	1	0,9	0,7	0,7	0,4	1,7
Azote total (ppm)	6,9	3,14	3,5	7	6	5	7	7,5	3,3	3,2	3,7
Rapport C/N	N.S.	6,7	5,5	N.S.	N.S.	12	7.1	N.S.	N.S	N.S.	13
Phosphore P (ppm)	3,0	2,2	0,8	1,9	1,6	0,8	0,8	2,1	0,8	0,8	0,8
Potassium K (ppm)	56,9	45,1	26,3	57,3	0,1	0,1	0,1	5,7	0,1	0,1	12,3
Magnésium Mg (ppm)	42,7	26,5	17,9	97	17,4	14,8	14,2	29,9	19,3	17,8	126,1
Sodium Na (ppm)	8,4	3,2	3,9	345,3	6,7	7,2	6,1	2,2	3,4	2,7	264,1
Calcium Ca (ppm)	65,9	80,3	69,4	7743,9	169,5	128,9	159,4	184,7	134,5	127,3	260.5
Sulfates SO ₄ ²⁻ (ppm)	20,8	13,8	6,5	8421,2	18,1	20,3	27,4	19,9	11,2	9,9	286,9
Chlorures Cl ⁻ (ppm)	25,9	6,6	12,1	859,7	14,2	8,7	8,4	6,9	7,2	10,9	271,2

Tableau 7. Propriétés physico-chimiques des sols au niveau des espaces naturels du Sahara septentrional d'Algérie

*Conductivité électrique 1/5 volume mesurée à 25°C en mS/cm)

2. Identification et localisation géo-référées des fabacées spontanées dans les différents espaces géomorphologiques du Sahara septentrional Est du Sahara d'Algérie

Au cours de plusieurs campagnes successives entre 2009 et 2012 ; les prospections ont été réalisées sur un rayon de 400 km environ à travers 11 sites au niveau du Sahara septentrional Est d'Algérie. Ces prospections ont été soldées par l'identification et la localisation géo référée de 04 différentes espèces de fabacées spontanées. Il s'agit d'*Astragalus gombo* Bunge, *d'Astragalus mareoticus* Del., de *Genista saharae* Coss. & Durieu et de *Retama retam* Webb (tableau 7). Nous avons également prélevé des échantillons de sols et des gousses au cours de ces campagnes.

Espaces Coordonées A.gombo G.saharae A.maureoticus R.retam Lieu dit géographiques géomorphologiques N 31°56'12.35" Erg ++_ _ HBA E 5°25'13.78" N 33°5'57.57" El morr Erg ++_ E 6°25'3.55" N 33°8'56.54" Belghit Erg +E 6°33'48.85" N 33°5'57.11" Khbina Erg -+-E 6°25'6.53" N32°19'9.68" Noumerat Lit d'Oued +E3°49'0.82" N 32°22'39.78" Guemgouma Lit d'Oued +_ _ E 3°31'26.45" N32°17'8.77 Chaab Sbaa Lit d'Oued* +++_ E3°24'25.33" N32°21'0.16" Oum Sedaïra Lit d'Oued* -_ _ +E2°57'8.14'' N32°25'9.68" Lit d'Oued* Echfar _ _ _ +E2°45'37.46" N32°22'19,83" Debbiche Sebkha* +_ E5°27'24,45" N 32°20'5.60" Reg zelfana Reg +E 4°16'38.41"

Tableau 8. Identification et géo-localisation de quatre espèces de fabacées spontanées dans le

 Sahara septentrional Est d'Algerie

De l'analyse des résultats consignés dans le tableau 4, il en ressort que la diversité spécifique au sein de cette même famille varie en fonction de l'espace géomorphologique. En effet, le nombre d'espèces rencontrées est beaucoup plus important au niveau des lits d'Oued (wilaya de Ghardaïa). La totalité des espèces étudiées est rencontrée au niveau de cet espace géomorphologique à travers les 05 sites qui le composent.

Le lieu dit « Chaab Sbaa », dans le *même espace géomorphologique (Lit d'Oued)* abrite à lui seul, les ³/₄ des espèces rencontrées dans ce travail *à savoir : A. gombo, G.saharae* et *R. retam.* On note aussi que l'espèce A. *mareoticus* n'est rencontrée que dans cet espace géomorphologique au niveau des sites de Noumerat et Guemgouma.

Ces résultats traduisent la logique de la richesse floristique reconnue pour cet espace géomorphologique (comparativement riche en eau et élément fertilisants). A l'inverse d'*A. maréoticus*,

l'espèce A. gombo est la plus rencontrée dans les 3/5 des espaces géomorphologiques prospectées dans ce travail (tableau7). Il convient aussi de noter que les espèces spasmophiles (*G.saharae* et *R. retam*) sont rencontrées au niveau des Nebkas (petites et moyennes dunes de sable) longeant les lits d'Oued avec une prépondérance de l'espèce *R. retam au niveau des formations dunaire longeant les dépressions (lit d'oued ou sebkhas), respectivement Ghardaäia et Ouargla (coté ouest su Sahara septentrional-Est). La présence de l'espèce <i>G.saharae*, quant à elle, est beaucoup plus notoire au niveau de l'Erg oriental (El Morr, Belghit et Khbina) dans le coté Est.

En tant que famille végétale, ces légumineuses spontanées, bien vertes, sont omniprésentes à travers tous les sites étudiés. Il s'agit d'écosystèmes naturels sans aucune source d'azote apparente. En effet, par le biais de la fixation biologique semble la seule voie possible. L'exception est faite pour le site Debbiche qui se retrouve dans un niveau bas avec possibilité d'alimentation, par lessivage horizontal d'azote. Les espèces, semblent en notre sens, la principale voie d'introduction de cet élément. Ainsi ; ce fait met en évidence leur rôle dans l'amélioration de la fertilité azotée des sols pauvres en cet élément.

Par ailleurs, elles jouent, ce rôle clé dans l'alimentation azotée dans le temps et dans l'espace. Il s'agit d'espèces bien adaptées aux conditions défavorables selon les 2 principales stratégies adaptatives reconnues mises en place. D'une part, les 02 **espèces éphémères** (réduction de la longueur du cycle et/ou persistance sous forme de graines ou même bulbes) sont représentées par *A. gombo, et A. maureoticus*. D' autre part, les 02 **espèces permanentes** (surface de transpiration réduite et système racinaire très important) qui caractérisent les 02 espèces psasmophiles *G.saharae* et *R. retam* appartiennent, respectivement, aux genres *Genista* et *Retama*. D'une manière générale, les résultats obtenus confirment ceux déjà décrits (partie bibliographique) et mettent en évidence une diversité spécifique des fabacées spontanées à l'origine de la préservation et l'amélioration de la fertilité en azote des écosystèmes naturels Sahariens.

3. Mise en évidence de la présence des BNL dans les couches superficielles des sols au niveau des écosystèmes naturels du Sahara d'Algérie.

3.1 Résultats des piégeages

Apres sept (07) semaines de culture sous conditions contrôlées, un total, 249 nodosités ont été observées sur les racines primaires et secondaires des jeunes plants testés. Les nodosités obtenues étaient en majorité de forme ovoïde, parfois allongé ou multilobée avec des surfaces lisses. ils présentent, généralement, une couleur rouge-brun témoignant la présence de la leghenmglobine qui suggère que les souches BNL étaient effectives en plus de leurs infectivité (Figure 20).

A) A. gombo

Figure 20. Photos de jeunes plants de fabacées spontanées nodulées par piégeage des souches de BNL présentes dans les couches superficielles des sols du Sahara septentrional d'Algérie.

Les résultats sur la nodulation des 04 fabacées sont consignés dans le tableau 9. Ce dernier, montre que les espèces d'*A.gombo*, d'*A. maureoticus*, de *G.saharae* et de *R. retam* sont nodulées dans des sols utilisés de 09 sites sur les 11 étudiés soit environ 82 %. Ce tableau montre aussi que *R. retam n'est pas nodulée dans les sols de* '' Debiche'' et ''reg zelfana''. De l'analyse des résultats de nodulation obtenus (tableau 9), il convient de noter, par espèce, les observations qui suivent :

> Astragalus gombo

Pour cette espèce, les 62 nodosités sont obtenues sur 4 différents sites (*figure21 A*) couvrant le Sahara septentrional est de son ouest (Metlili) à son est au niveau de la région naturelle 'Erg orientale''. Ce résultat indique une répartition large des BNL compatibles avec cette espèce. Ce résultat peut signifier aussi que ces BNL sont omniprésentes sur une distance de 400 km dans les couches superficielles de sol.

Tableau 9. Résultats de nodulation issues des piégeages des BNL des sols du Sahara septentrional est d'Algérie.

Espèces	Lieu dit	Site	Nb. nodules	Observations
	Chaab Sbaa	01	6	Rive lit oued
A. gombo	HBA	11	15	Erg
	El morr	7	23	Erg
	Noumerat	08	18	Lit de Oued
A maureoticus	Noumerat	08	17	Lit de Oued
11. maareoncus	Guemgouma	09	34	Lit de Oued
	Chaab Sbaa	01	1	Rive lit oued
G. saharae	El morr	05	36	Erg
	Khbina	06	38	Erg
	Belghit	07	24	Erg
	Chaab Sbaa	01	21	Rive lit oued
Derectore	Oum Sedaïra	02	5	Rive lit oued
K. retam	Echfar	03	32	Rive lit oued
	Reg zelfana	10	0	Reg
	Debbiche	04	0	Rive de Sebkha

> Astragalus mareoticus

Les 51 nodosités sont obtenues sur deux sites (*Figure 21 B*) au niveau du centre de lit d'Oued dans son même sol natif (Oued Metlili) et, par conséquent, elle fait penser à une certaine spécificité des souches de BNL compatibles. Cette supposition tient en compte le fait que cette espece est endémique dans cette région.

➢ Gensita saharae

Cette espece détient le plus grand nombre de nodosités avec un totale de 99 (Figure21 C). Cependant, une (01) seule nodosité obtenue dans la rive du lit d'oued, les 98 autres sont toutes obtenues sur 03 différents sites dans la même région Erg oriental.

Retama retam

Les 58 nodosités sont toutes obtenues sur 3 sites (*Figure21 D*) au niveau du même lit d'oued de la zone naturelle appelée ''chebka du mzab''. Ces sites sont sur la partie ouest du Sahara septentrional. Pour ce qui est des 02 sites '' Debiche'' et ''reg zelfana'' qui appartiennent respectivement aux espaces géomorphologiques ''Sebkha ''et ''Regs'' aucun nodule n'a été observé sur l'espèce *R.raetam*.

Chapitre III . Résultats et discussions

Figure 21. Résultats de nodulation obtenues sous conditions contrôlées par piégeages des BNL associées à 04 espèces fabacées spontanées *dans le sahara septentrional est d'Algérie*

En conclusion, les piégeages réalisés ont permis de mettre en évidence la présence des souches de BNL dans les couches superficielles des sols du Sahara Septentrional Est d'Algérie. Cette présence est traduite par l'obtention des nodosités sur les racines des jeunes plants bien verts testés Elle indique, en 1^{er} lieu, que les souches ont cette capacité de mener la phase saprophytique et s'adaptent aux conditions ecologiques du milieu saharien. Ensuite elle signifie l'infectivité et l'efficience de ces souches indigènes. Ce qui signifie qu'au niveau des rhizospheres de 04 espèces de fabacées étudiées (*A.gombo, A. maureoticus, G.saharae* et *R.raetam*) *les BNL ont cette capacité et specificité d*'etablir

une association symbiotique fixatrice d'azote. Notons aussi que les 04 espèces de fabacées étudiées ont été nodulées, principalement, à partir des sols, collectés au niveau des 02 espaces géomorphologiques ''Erg ''et ''Lit d'Oued'

3.2. Isolement des BNL indigènes

Les isolements bactériens ont été effectuées à partir des nodosités racinaires des 04 espèces étudiées (*A.gombo, A. maureoticus, G.saharae* et *R.raetam*). Les colonies dans leur majorité absolue sont apparues après 24 à 48 heures de culture à 28°C dans le milieu YMA. Les colonies obtenues sont rondes présentant une morphologie comparable à celle des rhizobia connus. Les souches se distinguent, parfois, par leur forte mucosité. Une collection de 106 isolats a été constituée à partir des nodosités prélevées sur les racines des jeunes plants à savoir :

- Cinquante sept (57) de G. saharaea ;
- Vingt deux (22) d'A.gombo (Figure 22);
- Quinze (15) de R.raetam ;
- Douze (12) à partir d'A. mareoticus.

Figure 22. Aspect macroscopique des BNL sahariennes après 72 heures de culture sur YMA à 28°C.

D'autre part, en plus de leur infectivité et effectivité les souches de BNL indigenes presentes au niveau de la rhizosphere des especes étudiées presentent des specificités, quant à leur affiliation, comparées aux resultats documentées pour d'autres regions. En effet, *toutes les souches(105) isolées* sont à croissance rapide (après 48 heures) suggérant l'hypothèse qu'elles appartiennent aux genres *Ensifer, Rhizobium* et *Mesorhizobium*. Ce qui les différencie de souches à croissance lente du genre Bradyrhizobium (Jordan 1982). Les especes de la tribu des genistae (*Retama* et *Genista*) sont connues pour etre associées aux Bradyrhizobiums en europe (Fernando et Jésus, 1998; Kalita et Malek, 2004; Rivas et al, 2009) et meme au nord d'Algerie (Boulila, 2009) Ce phénomène a été, aussi, observé pour les souches associées à *A*.saligna et d'autres acacias dans le sud de l'Algérie (Amrani, 2010).Selon ce dernier, les Bradyrhizobia étaient beaucoup plus osmo sensibles que les souches de S. meliloti et *R. gallicum*, indiquant une adaptation plus souple aux conditions arides et semi-arides. Il a été, aussi, rapporté par Khbaya et al. (1998) au Maroc, Wolde-Meskeletal. (2004) en Éthiopie ou Diouf et al. (2007) et Falletal. (2008) au Sénégal.

Ce résultat vient confirmer cette hypothese et ceux obtenus dans les régions sahariennes pour les BNL associées aux 02 espèces *G. saharaea et R.raetam* (Mahdhi M. et al, 2006 et 2008 ; Mnasri B. et al. 2009 ; Chaïch K.et al., 2017).

4. Etude de la diversité génétique des souches de BNL indigènes associées à la légumineuse spontanée *G.saharae*.

4.1. Amplification PCR et Blasts des séquences

L'amplification PCR de l'ADN des isolats nodulaires de *G. saharae* a été positive avec les amorces et les programmes décris dans le chapitre Matériel et Méthodes (chapitre 5, partie 5.7.3) pour les gènes *rec*A, *atp*D et ARNr 16S. Concernant le gène *nod*A, plusieurs tentatives utilisant différentes amorces et différentes conditions (deux types de cycle) mais aucune d'elles n'a permis d'amplifier l'ADN des souches étudiées.

Apres les différents traitements des produits PCR (visualisation par électrophorèse, purification et corrections), l'ensemble des séquences nucléotidiques obtenues des isolats nodulaires de *G. saharae* se résument comme suit :

- Cinquante sept (57) séquences nucléotidiques d'une longueur d'environ 500 pb pour chacun des gènes de ménages (*atpD* et *recA*) issus des génomes de la totalité des souches isolées ;
- Trente cinq (35) séquences nucléotidiques ARN 16S d'environ 1500 pb de longueur issues de 35 isolats sélectionnés parmi les clusters définis à partir des phylogénies *atpD* et *recA*.

Pour élucider la position taxonomique des souches associées aux racines de *G. saharae*, les sequences alignée étaient, dans un 1^{er} temps, comparées à toutes les souches types des espèces de BNL reconnues et validées au niveau des bases de données <u>http://www.bacterion.net/</u> et <u>http://www.straininfo.net/</u>. Les résultats obtenues suite au ''Blast'' de l'ensemble des séquences nucléotidiques au niveau de la base de données NCBI (<u>http://blast.ncbi.nlm.nih.gov/</u>). Le tableau 10 ci-dessous résume les résultats pour l'ensemble des souches et fait ressortir, principalement que les souches isolées des nodosités racinaires de *G. saharae* sont affiliées, principalement à trois genres : *Ensifer* (précédemment *Sinorhizobium*), *Neorhizobium* (précédemment *Rhizobium*) et *Mezorhizobium*.

4.2. Numéros d'accession Genbank des souches représentatives des BNL associées à *G. saharae* dans les régions sahariennes D'Algerie.

Sur la base des séquences partielles des marqueurs génétiques utilisés dans cette étude (*atpD*, *recA* et ARN 16S), différentes souches représentatives ont été déterminées par le logiciel Mothur. Les résultats de leur Blast au niveau de base de données NCBI sont présentés dans l'annexe 4. Chaque souche représentative représente un génotype qui peut être une seule ou un ensemble se souches identiques.
Espèces types en relation (% similarité de séquence) Genres Gene Isolats de Genista saharae nombre Haute (nombre de souches) marqueur Souches types similarité d'isolat 05 100 % *E. meliloti* LMG6133^T (AM418760) atpD 40 99 % Gs111^{ac}. Gs651.Gs652. Gs653. Gs654.Gs655.Gs656. 01 96 % Gs657.Gs658.Gs659.Gs510.Gs6511. Gs6513. Gs6515^a. 99 % *E. meliloti* LMG 6133 (AM182133) 45 Gs6516.Gs6517. Gs6518. Gs6519. Gs6520ª Gs6521. recA Ensifer 01 98 % Gs6522^{abc}. Gs6523. Gs661. Gs662.Gs667.Gs668^b. (Sinorhizobium) Gs6615. Gs6616. Gs6620.Gs6624.Gs671. Gs672.Gs673. 14 100 % (46) Gs676. Gs677. Gs6712.Gs6713. Gs6714. Gs6715. 99.9 % 04 *E. meliloti* LMG6133^T (X67222) ARNr16S Gs6716. Gs6717. Gs6718 .Gs6720. Gs6721.Gs6723^b. 06 99.6 % Gs6724 *N. huautlense* LMG 18254^T (AM418782) 06 98 % *N. galegae* LMG6214^T (AM418779) 99 % 03 atpD *N. alkalisoli* CCBAU01393^T (EU672461) 97 % 01 03 99 % Gs6514^{abc}. Gs666^{abc}. Gs6617^b.Gs6621. Gs6619.Gs6622. *N. hu*autlense LMG18254^T (AM182128) 01 97 % Gs6623^b. Gs674. Gs675^{abc}. Gs6710 Neorhizobium recA 95 % 01 (10)*N. galegae* LMG6214^T (AM182127) 03 91 % *N. alkalisoli* CCBAU01393^T (EU672490) 01 95 % *N. huautlense* $SO2^{T}$ (AF025852) 06 100 % ARNr16S 01 99.9% *N. galegae LMG6214^T* (NR118990) 03 99 % 01 97 % atpD *M. camelthorni* CCNWXJ404^T (JN202304) Mesorhizobium Gs663^{abc} *M. camelthorni* CCNWXJ404^T (GU220798) 01 98 % recA (01)ARNr16S 01 99.9% *M. camelthorni* CNWXJ404^T (EU169581)

Tableau 10. Liste totale des isolats associés à Genista saharae et positions phylogénétiques des souches représentatives.

Representative *atpD* Representative *recA* Representative ARNr16S Le tableau 11 ci-dessous résume les résultats des différents génotypes obtenus et présente leur N° d'accession au niveau de cette base de données (<u>http://blast.ncbi.nlm.nih.gov/</u>). L'analyse du tableau fait ressortir le nombre de génotypes obtenus avec le logiciel Mothur pour les 03 gènes étudiés. Les 56 souches issues des sites 5, 6 et 7, respectivement, el Morr, Khbina et Belghit se trouvant toutes dans l'erg oriental. La seule séquence Gs111 provenant de ''Chaab Sbaa'' ne se différencie pas génotypiquement. En effet elle constitue, à chaque fois, l'un des groupes contenant 05, 37 et 14 séquences des gènes, respectivement, pour les gènes atpD, recA et ARN16S.

Marqueurs génétiques	Nombre souches	Dénomination des souches	NumeroAccession GenBank (NCBI)		
	29	Gs6520, Gs653, Gs655, Gs657-59, Gs510-11, Gs513, Gs661-62, Gs668, Gs671-72, Gs6516-19, Gs6521, Gs652 Gs6616, Gs6620, Gs6624, Gs6715-17, Gs6721 Gs6722, Gs6724	23, KU041601		
	05	Gs111, Gs654, Gs6712-14	KU041599		
atpD	01	Gs6515	KU041600.		
	11	Gs6522, Gs651-52, Gs656, Gs667, Gs673, Gs676-77, Gs6615, Gs6718,Gs6720	KU041602		
	06	Gs666, Gs674, Gs6617, Gs6622-23, Gs6710	KU041603		
	03	Gs6619, Gs6621, Gs675	KU041604		
	01	Gs6514	KU041605;		
	01	Gs663	KU041606.		
	37	Gs111 , Gs6520, Gs510, Gs651-56, Gs658, Gs662, Gs667 Gs673, Gs676-77, Gs6511, Gs6513, Gs6515-19, Gs6521- 22, Gs6615-16, Gs6620, Gs6624, Gs6712-14, Gs6716, Gs6718, Gs6720-22, Gs6724	, • KU041607		
	01	Gs6723	KU041608;		
recA	08	Gs668, Gs657, Gs659 Gs661, Gs671-72, Gs717, Gs6715	KU041609		
	04	Gs666, Gs6622, Gs674, Gs6710	KU041610		
	01	Gs6617	KU041611		
	01	Gs6623	KU041612		
	03	Gs6619, Gs6621, Gs675	KU041613		
	01	Gs6514	KU041614;		
	01	Gs663	KU041615.		
	14	Gs111 , Gs652-54, Gs658, Gs6515-16, Gs6518, Gs6520, Gs6616, Gs6620, Gs6712-14	KR002728		
	06	Gs6522 Gs652, Gs656 Gs676, Gs677, Gs6615	KR002731		
ARNr16S	04	Gs668, Gs659, Gs661, Gs717	KR002732;		
	06	Gs666, Gs6617, Gs6622-23, Gs674, Gs6710;	KR002736		
	03	Gs675, Gs6619 et Gs6621	KR002734;		
	01	Gs6514	KR002735;		
	01	Gs663	KR002737		

Tableau 11. Numéros d'accession Genbank des différents génotypes des souches de BNL associées à *G*. *saharae* dans les régions sahariennes D'Algerie

4.3. Analyses phylogénétiques des souches associées la légumineuse spontanée G.saharae

Les arbres phylogénétiques sont construits en insérant les souches représentatives (tableau 11) ainsi que toutes les souches types décrites dans le tableau 6 au ''chapitre Matériel et méthodes''. La longueur des séquences alignées utilisées pour les analyses phylogénétiques ont été de 387, 341 et 1298 pb, respectivement, pour les gènes *atpD*, *recA* et ARNr 16S,

4.3.1. Analyses phylogénétiques des séquences du gène atpD

L'arbre phylogénétique (Figure 23) a été construit à partir des 08 génotypes de séquences partielles du gène atpD (tableau 11) obtenues avec le logiciel Mothur et représentant les 57 souches bactériennes isolées à partir de G.saharae. Comparées à l'ensemble des souches types utilisées (tableau 6), l'arbre forme 03 clades distincts représentant les trois principaux genres Ensifer, Mesorhizobium et Neorhizobium. Le genre Ensifer est prédominant avec 46 souches constitué lui-même de 04 groupes dont l'un d'eux contient 05 séquences du gène atpD (Gs111, Gs654, Gs6712, Gs6713, Gs6714) identiques à celle de la souche type *Ensifer meliloti* LMG 6033^T avec un pourcentage de similarité de 100 % (Tableau 10). Les 3 autres groupes d'Ensifer (Tableau 11) sont constitués chacun de 11et 29 séquences qui présentent, respectivement, une différence de 6 et de 03 nucléotides avec un pourcentage de similarité de 99%. Vient enfin le dernier groupe avec une seule séquence Gs6515 presentant un pourcentage de similarité faible (96 %) et une différence de 12 nucléotides. Les dix séquences du clade *Neorhizobium* se différencient en trois groupes. Le 1^{er} groupe formé de 6 séquences nucléotidiques d'atpD des souches (Gs666, Gs6622, Gs6617, Gs6623, Gs6710, Gs674) qui sont toutes proches de la souche type N.huautlense LMG18254^T. Le 2^{éme} groupe des Neorhizobium est constitué de 3 séquences (Gs675, Gs6621, Gs6619) proches de la souche type *N. galegae* LMG6214^T avec une différence de 7 nucléotides et une seule séquence d'atpD (Gs6514) proches de la souche type *N. alkalisoli* CCBAU01393^T avec une différence de 12 nucléotides et un pourcentage de similarité faible (97 %). Le genre Mezorhizobium est représenté par seule séquence Gs663 reste plus proche de la souche une type M.camelthorniCCNWXJ404T avec une différence de 13 nucléotides et un pourcentage de similarité de 98 %. La souche type *M.alhagi* CCNWXJ122^T qui parait proche de la Gs663 présente une différence de 16 nucléotides.

Figure 23. Arbre phylogénétique Maximum-likelihood base sur les sequences du gene *atpD* montrant la relation entre les souches associées à *Genista saharae* (en gras) et les souches types. La signifiance de chaque branche est indiquée par une valeur bootstrap (\geq 50%) calculée pour 1000 répliquas. Les nombre entre parenthèses représentent les numeros d'accessions GenBank des souches types et le nombre de souches pour chaque genospecie définie dans la présente étude. La barre d'échelle représente le nombre de substitutions de nucléotides par 100 nucléotides.

4.3.2. Analyses phylogénétiques des séquences du gène recA

L'arbre phylogénétique construit sur la base des séquences du gène *recA* (Figure 24) confirme les 03 clades obtenus dans l'arbre phylogenetique des sequences atpD. Ils sont formés par les mêmes genres *Neorhizobium, Ensifer* et *Mesorhizobium.* Le clade des *Ensifer* est resté toujours celui qui contient le même plus grand nombre de 46 souches.

Les 3 groupes formés au sein de ce clade sont tous proches de la souche type E. meliloti LMG6133^T avec un pourcentage de similarité élevé variant de 98 à 99%. Les deux premiers groupes constitués de 37souches (KU041607, tableau 11) et 08 souches (Gs668, Gs657, Gs659 Gs661, Gs671-72, Gs717, Gs6715), ces 2 groupes se différencient, respectivement, de 3 et de 6 nucléotides de la souche type E. meliloti LMG6133^{T.}. La souche Gs6723 constituant le 3^{éme} groupe se différencie de 7 nucléotides de la même souche type. Concernant les souches appartenant au genre Neorhizobium, les mêmes clusters sont observés à proximité des souches types. Néanmoins une différenciation observée pour les deux souches (Gs6617 et Gs6623) sont regroupés près *Neorhizobium huautlense* LMG18254^T avec des valeurs de similarité plus faibles que dans l'arbore phylogénétique du gène atpD (95 et 97%) ainsi que des différences de 6 et 15 nucléotides respectivement. Toujours semblable à l'arbre phylogénétique du gène atpD, les trois souches (Gs675, Gs6619 et Gs6623) restent étroitement liées à N.galegae LMG6214^T mais avec une similarité plus faible (91%) et avec une différence de 27 nucléotides. La souche Gs6514 constituant le 3^{éme} groupe reste toujours liée à la souche type Neorhizobium alkalisoli CCBAU01393^T avec un plus faible pourcentage de similarité (95%).et une différence de 17 nucléotides. Fidèlement à l'arbre phylogénétique du gène atpD, l'unique souche Mesorhizobium (Gs663) reste liée à la souche type *M.camelthorni* CCNWXJ404^T avec 91 % de similarité et 7 nucléotides de différence.

4.3.3. Analyse phylogénétique des gènes recA et atpD concaténés

Pour augmenter la taille des séquences et utiliser le maximum de l'information, l'arbre phylogénétique a été construit avec la concaténation des séquences partielles des 2 gènes de ménage (*atpD* et *recA*.) La longueur des séquences alignées utilisées pour les analyses phylogénétiques était de 684 pb. Ces séquences sont constituées des souches associées à *G sahrae* et les espèces références. Le positionnement phylogénétique des souches sur l'arbre généré à partir de l'analyse combinée (Figure 28) est, en général, en accord avec ceux des arbres de gènes individuels (Figures 23 et 24). Ainsi, l'analyse des gènes concaténés fait ressortir le meme regroupement avec des gènes de ménage individuels, mais les groupes étaient plus robustes (soutenue par de fortes valeurs bootstrap). Ils confirment, en 1^{er} lieu, les trois groupes distincts séparant clairement les trois genres (*Neorhizobium, ensifer* et *Mesorhizobium*). *huautlense* LMG18254^T. Le 2^{éme} sous groupe constitué d' une seule souche avec une forte valeur bootstrap (97%) étroitement liée à *Neorhizobium alkalisoli* CCBAU01393T. les 03 autres souches des *Neorhizobium*

Figure 24. Arbre phylogénétique Maximum-likelihood base sur les séquences du gene *recA* montrant la relation entre les souches associées à *Genista saharae* (en gras) et les souches types. La signifiance de chaque branche est indiquée par une valeur bootstrap (\geq 50%) calculée pour 1000 répliquas. Les nombre entre parenthèses représentent les numeros d'accessions GenBank des souches types et le nombre de souches pour chaque genospecie définie dans la présente étude. La barre d'échelle représente le nombre de substitutions de nucléotides par 100 nucléotides.

Le groupe I concerne le genre *Neorhizobium* (91% bootstrap) qui présente, à son tour, trois sous-groupes bien séparés. En tête avec le maximum (100% bootstrap) se compose de six souches étroitement liées à *Neorhizobium* forment le 3^{éme}, toujours, avec une plus forte valeur bootstrap (87%) près de *N. galegae* LMG6214^T. Le genre *Ensifer* (99% bootstrap) a formé le groupe II. Ce groupe comprend six sous groupes aux 02 souches de référence *E. meliloti* LMG6133^T et *E. kummerowiae* CCBAU71714^T. le 3^{éme} groupe forme le Cluster III (100% bootstrap) representant le *genre Mezorhizobium*. *Il se compose* de la souche unique de Gs663liée aux espèces de référence tres proches *M. camelthorni* et *M. Alhagi* CCNWXJ122^{T.}

4.3.4. Phylogénie fondée sur les gènes ARNr 16S

L'arbre phylogénétique basé sur 16S ARNr séquences de gènes de 35 souches associées à *G. saharae* ainsi la totalité des séquences de référence est présenté à la figure 26. Il consolide, encore une fois, les trois clades formés par les 3 différents genres obtenus *Neorhizobium, Ensifer* et *Mesorhizobium*. En effet, les 03groupes distincts formés sont en accord avec ceux trouvés dans les représentations phylogénétiques *recA* et *atpD* (Figures 23 et 24). Le premier groupe constitué 24 souches qui appartiennent au genre *Ensifer* près d'E. *Meliloti* LMG6133^T avec une grande similitude des valeurs de (99,6), (99,8) et 100% (tableau 10). Le deuxième groupe comprend les dix souches *Neorhizobium* associées à *G. saharae* avec 7 souches proches de *N. huautlense* SO2^T enregistrant des valeurs élevées de similarité (99,6 -100%) et 3 souches étroitement liées à *N. galegae LMG6214^T* avec 99 % de similarité (tableau 10). Le troisième groupe comprend l'isolat unique (Gs663) affilié au genre *Mesorhizobium* et étroitement liés à *M. Camelthorni* CNWXJ404^T avec la haute similarité de 99,9% (tableau 10).

4.4. Position taxonomique des souches associées la légumineuse spontanée G.saharae

Les analyses phylogenetiques des souches a permis de mettre en évidence une grande diversité genetique des 57 souches de BNL associées à *G*. saharae et a apporté une précision majeure sur la position taxonomique des souches qui jusque là restait méconnue. Les arbres phylogénétiques construits avec differents marqueurs genetiques (gènes de ménage atpD et recA; gene ribosomiques de l'ARN 16S) ont été tous congruents et avec robustesse. Ainsi, la caractérisation moléculaire de 57 souches a permis leur affiliation à trois groupes phylogénétiques distincts: *Neorhizobium, Sinorhizobium* et *Mesorhizobium*. Dans leur majorité (plus de 80%), 46 souches appartiennent à *Ensifer* (anciennement *Sinorhizobium) et et ont été identifiées à E. meliloti* LMG6133^T. Le groupe défini comme *E. meliloti* a souvent été considéré comme une espèce de Rhizobium avec une gamme d'hôtes limitée aux espèces des genres *Medicago, Melilotus* et *Trigonella* (Szeto et al, 1984). Par la suite, un biovar de *E. meliloti* a été identifié avec une nodulation efficace de *Phaseolus vulgaris* a été isolé en Tunisie (Mnasri et al, 2007). Cela confirme aussi le resultat de Mahdhi (2007) qui l'a isolé des nodules de *G.sahrae* dans le sahara tunisien.

Figure 25. Arbre phylogenetique Maximum-likelihood basé sur les séquences partielles des gènes de ménage *atpD et recA* concatenés. L'analyse faite sur 684 bp montre la relation entre les souches associées à *Genista saharae* et les souches types. La signifiance de chaque branche est indiquée par une valeur bootstrap (\geq 50%) calculée pour 1000 subsets. Le nombre entre parenthèses représente le nombre de souches dans chaque genospecies définie dans la présente étude. La barre d'échelle représente le nombre de substitutions de nucléotides par 100 nucléotides.

Par ailleurs, ce resultat confirme la reputation du genre *Ensifer* de contenir beaucoup d'especes bien adaptés aux conditions defavorables et identifiées dans les deserts chauds d'Asie (Gehlot et al, 2012, 2013; Tak et al., 2016) ; d'afrique (Sakrouhi et al., 2016) et d'amerique (Le Quéré et al, 2017).

Le 2^{éme} grand genre associé a G.sahrae dans le sahara septentrional Estd'algerie est celui des Neorhizobium. En effet, .10 souches du total appartiennent à ce genre récemment, phylogénétiquement classé et nommé, par Mousavi et al. (2014). Les dix souches de ce genre ont été identifiées trois differentes especes: N. Galegae LMG6214^T, N. huautlense LMG18254^T et N. alkalisoli CCBAU01393^T. A l'origine *N. galegae* (ex *R. galegae*) a été isolée à partir des légumineuses *Galega orientalis* et *Galega* officinalis dans le Caucase (Lindstrom 1989), et plus tard en Italie et en Bulgarie (Radeva et al, 2001). L'existence de biovar de cette espèce dans la région méditerranéenne a été déjà rapportée sur divers légumineuses (Zakhia et al.2004) en Tunisie et au nord d'Algérie, sur Medicago sp (Sebbane N. et al, 2006). Ainsi, nos résultats élargissent la répartition de cette espèce incluant le Sahara d'Algerie et confirme que cette espèce peut inclure plusieurs biovars conduisant à plus d'associations avec les légumineuses. Pour les 2 autres especes de ce genre (N. alkalisoli et N. huautlense); elles sont reputéespour leur adaptations aux conditions defavorables similaires et isolées, respectivement, à partir des nodosités de l'espece Caragana intermedia à Mongolia en Chine (Yang Li Lu et al, 2009) et de Sesbania herbacea Mexico (Wang et al, 1998). Une seule souche appartient au genre Mesorhizobium, identifiée à *M* camelthorni CCNWXJ404^Tisolée des nodosités de l'espece Alhagi sparsifolia dans les zones arides de C hine (Chen et al, 2011).

Figure 26. Arbre phylogénétique Neighbour-joining phylogenetic base sur les gènes ARNr 16S. L'analyse faite sur 1298 bp montre la relation entre les souches associées à *Genista saharae* et les souches types. La signifiance de chaque branche est indiquée par une valeur bootstrap (\geq 50%) calculée pour 1000 subsets. Le nombre entre parenthèses représente le nombre de souches dans chaque genospecies définie dans la présente étude. La barre d'échelle représente le nombre de substitutions de nucléotides par 100 nucléotides.

5. Caractérisation phénotypique

Les souches isolées ont également été testées pour leur efficacité en symbiose (infectivité et effectivité) avec les plantes, leurs résistances aux températures élevées ainsi que leurs tolérances au NaCl comme caractérisation phénotypique.

5.1. Caractéristiques symbiotiques des microsymbiotes de G.saharae

Les souches représentatives isolées à partir des nodules associées aux racines de *G. Saharae* ainsi que la souche de référence *Ensifer garamanticus* ORS1400^T ont fait l'objet d'étude de leur infectivité et effectivité sur leur plante hôte (*G. Saharae*). Un test de nodulation a été réalisé en tube Gibson (Vincent, 1970) comme décrit dans la partie Matériel et Méthodes. Les résultats de l'analyse de variance des paramètres de nodulation (nombre de nodosités, poids sec de nodosités) et du poids de matières sèches de plants de *G. Saharae* sont présentés dans le tableau 9

5.1.1. Infectivité des souches

Après 6 semaines d'inoculation et indépendamment de leur position phylogénétique, toutes les souches testées ont été capables d'initier la formation de nodosités sur les racines de *G. saharae* (tableau 9). Le genre *Ensifer* a été classé en tète avec un effet très significatif (P <0,0001) concernant le nombre de nodosités par plante (Figure 30A). Le nombre le plus élevé de la moyenne des nodules (11,8 ± 0,75) a été obtenu par la souche Gs6615 (Figure 31A) qui se distingue des autres groupes au niveau de l'arbre phylogénétique atpD. La souche de référence *Ensifer garamanticus* ORS1400^T vient en 2^{éme} position constituant un groupe avec d'autres souches du genre Ensifer (Gs6718, Gs6516) et de *Neorhizobium* (Gs6514, Gs675). L'unique souche Gs663 appartenant au genre *Mezorhizobium* est classée en 3^{éme} position formant un autre groupe avec des souches d'*Ensifer* Gs6522, Gs6713, Gs616 (Figure30). La souche témoin non inoculée n'a donné aucun nodule confirmant l'infectivité des souches testées.

Figure 30. Infectivité des souches BNL associées aux racines de G.saharae

Tableau 12. Paramètres symbiotiques (Nodulation et fixation biologique d'azote) de la légumineuse spontanée *Genista saharae* inoculée par les souches représentatives et la souche type de référence *E. garamanticus*.

Souches représentatives,	Nombre Nodule*	PSN	PSPA	PSPR	PMST	Hauteur plant
-	(par plant)	(mg/plant)	(mg/plant)	(mg/plant)	(mg/plant)	(cm/plant)
de référence / témoins	1 1 <i>i</i>					· · ·
Gs111 ^E	4.8±1.60	0.34 ± 0.04	2.96±0.76	2.09±1.12	5.35 ± 1.98	16.48±1.90
Gs656 ^E	7.2±2.71	0.57±0.19	4.94±1.00	3.62±1.12	9.12 ±2.40	22.92±1.46
Gs659 ^E	3.6±2.04	0.34 ± 0.08	3.22±0.99	2.42±0.67	5.76 ± 1.88	16.18±2.36
Gs6514 ^N	8.2 ± 2.48	0.51±0.15	3.51±1.51	2.05±0.69	6.08 ± 2.61	18.16±4.9
Gs6515 ^E	11.8±0.75	0.69±0.09	3.06±0.83	1.91±0.43	5.66 ± 1.35	16.26±2.87
Gs6516 ^E	10.8±2.79	0.25±0.06	3.98±0.75	1.88 ± 0.38	6.11 ±1.21	22.48±3.47
Gs6522 ^E	8±1.90	0.22±0.12	1.61 ± 1.01	1.05 ± 0.43	3.79 ± 1.56	11.28±5.26
Gs663 ^M	7.4±2.25	0.27±0.05	3.18±0.32	1.68 ± 0.66	4.24 ± 1.65	15.38±0.31
Gs661 ^E	2.2±0.75	0.27 ± 0.08	2.79±1.03	1.25±0.31	4.31 ±1.35	17.46±4.26
Gs666 ^N	5±1.26	0.35±0.50	3.33±1.32	1.81±0.93	5.38 ± 2.49	17.4±3.13
Gs6620 ^E	4.2±2.14	0.36±0.14	4.27±0.96	1.92 ± 0.54	6.72 ± 1.49	21.26±3.23
Gs675 ^N	6.4 ± 0.8	0.71±0.31	4.27±0.99	2.25±0.61	7.23 ± 1.79	22.1±0.29
Gs6713 ^E	5.8±2.79	0.28 ± 0.08	2.78 ± 0.42	2.01±0.21	5.07 ± 0.67	15.6±2.78
Gs6716 ^E	4.2±0.40	0.50±0.16	4.03±1.39	1.74 ± 0.74	6.27 ± 2.45	19.2±2.55
Gs6718 ^E	9.2±1.60	0.54±0.15	3.21±0.54	1.65 ± 0.38	5.41 ±0.99	18.4±3.53
Gs6719 ^E	2.6±0.49	0.45±0.09	4.04±0.81	2.31±0.37	6.80 ± 0.97	19.2±6.29
Gs6720 ^E	4.6±0.49	0.59±0.17	3.48±1.28	1.50 ± 0.56	5.58 ± 1.92	17.56±5.69
Gs6722 ^E	4.6±0.80	0.24±0.05	2.15±0.69	1.61±0.77	4.33 ± 1.20	12.74 ± 2.81
<i>E. garamanticus</i> ORS1400 ^T	7.2±1.47	0.38±0.12	4.33±1.88	2.93±0.62	7.56 ± 2.98	19.9±4.64
Temoin (-)	00	00	1.21±0.37	0.72±0.45	1.93 ±0.87	7.94±1.94

PSN: Poids Sec Nodule, PSPA: Poids Sec Partie Aérienne, PSPR: Poids Sec Partie Racinaire, PMST: Poids Matière sèche totale.

* Moyenne du nombre nodules par plant.

^E: Genus *Ensifer*; ^N: Genus *Neorhizobium*; ^M: Genus *Mesorhizobium*

Concernant la biomasse sèche des nodosités (Figure30B) la valeur la plus élevée $(0.71\pm0.31 \text{ mg/} \text{plant})$ a été celle obtenue avec la souche Gs675 appartenant au genre *Neorhizobium* qui a produit moins de nodules par plant (6,4±0,8) mais de grosses nodosités unilobées et plurilobée (Figure 31 B) Ce paramètre symbiotique fait ressortir, lui aussi, des groupes de souches distincts (Figure30B).

Figure 31. Taille et forme des nodosités observées sur les racines de plants de *G.saharae* obtenues par piégeage sous conditions contrôlées.

5.1.2. Efficience des souches

La hauteur et le poids sec des parties aériennes (PSPA) sont des indicateurs reconnus de la croissance du végétal (Albrecht*et al.*, 1981 ; Kirda *et al.*, 1989). L'analyse des résultats du poids sec (Figure 32A) et de la hauteur (Figure 32B) des parties aériennes des plants de *G.saharae* a montré un effet très hautement significatif (P<0.0001) pour ces deux importants paramètres symbiotiques. L'analyse des résultats (ANOVA Annexe 5) de la biomasse des plantes (PSPA) classe les souches en en 4 groupes [Gs656 ;] [Gs6516, Gs6620, ORS1400^{T,} Gs675, Gs6716, Gs6719 ;] [Gs111, Gs659, Gs6514, Gs6515, Gs661, Gs6666, Gs6713, Gs6718, Gs6720] et [Gs6522, Gs663, Gs6722]

Figure 32. Efficience des souches

Les résultats obtenus (tableau 9) indiquent bien que la souche Gs656 *Ensifer* a été la plus efficiente avec $4,94 \pm 1,00 \text{ mg}$ (PSPA), $22,92 \pm 1,46 \text{ cm}$ de hauteur des plants ainsi que la biomasse totale (9,12 mg). Les valeurs de la biomasse, relativement très faible, obtenue pour les plantes témoins négatifs indiquent l'absence de la fixation biologique de l'azote atmosphérique comparativement aux autres qui ont été inoculées et développé des nodosités siège de l'alimentation de la plante en cet élément majeur.

L'inoculation avec la totalité des souches a significativement augmenté le poids de la matière sèche ainsi que l'hauteur des plants inoculés comparés aux plants témoins non inoculés (Annexe 6). Les différentes valeurs des résultats de la biomasse totale des plants testés (tableau 9) expliquent et mettent en évidence clairement l'efficience des souches associées à *G. sahare* dans la fixation de l'azote atmosphérique. En résumé; les résultats obtenus pour tous les paramètres symbiotiques rassemblés (Annexe 6) démontrent l'infectivité et l'efficience des souches indigènes associés à *G. saharae* d'une part, et la diversité dans leur potentiel symbiotique d'autre part. Cette diversité est élucidée par la composition en

5.2. Résistance à la température et tolérance au sel

Les souches de BNL associées à *G.saharae* ont été testées pour leur croissance à différentes températures et concentrations de NaCl (Tableau 13).

5.2.1. Résistance des souches aux temperatures

groupes de ces souches suite à l'analyse statistique ANOVA.

Les résultats obtenus montrent que, 20 souches parmi les 22 souches testés, soit 91%, continuent à croitre jusqu'à 40°C, 11 souches (50%) jusqu'à à 42°C et 04 souches (18%) jusqu'à 45°C. L'analyse des résultats obtenus fait en ressortir ; principalement la seule souche affiliée à *E. meliloti* provenant de ''Chaab Sbaa'' dans la région de la ''Chebka du Mzab'' n'a pas résisté à la température 40°C, tout comme, la souche Gs6623 affiliée *N. huautlense* issue de la station Khbina de la région naturelle ''Erg Oriental'', éloignées géographiquement (environ 400km). Cependant, nous avons observé qu'au sein du même site d'échantillonnage (Khbina), les 2 souches Gs666 et Gs6622 affiliées au même groupe de cette espèce (*N. huautlense*) continuent à croitre 40°C. Par ailleurs, l'unique souche *Mesorhizobium* (Gs663), la souche Gs675 affiliée *N. galegae* ainsi que 09 autres souches affiliées à *E. meliloti* provenant du même ou différents sites d'échantillonnage continuent à croitre 42°C. Cependant seules 04 souches ont pu résister à la température 45°C sont toutes affiliées à *E. meliloti*.

D'une manière générale, nous avons remarqué qu'au sein du même site, les souches semblent présenter des profils de résistance à hautes températures différentes. Sachant que les moyennes des températures max atteintes dans les deux régions ne dépassent 43°C (Annexe 2).Ces résultats associés semblent montrer que cette résistance n'est pas liée à l'origine écologique.

Souches *	Croissance à									
	40 °C	42 °C	45 °C	1% NaCl	2% NaCl	3% NaCl	4% NaCl			
Gs111 ^E .	-	-	-	+	+	+	+			
Gs656 ^E	+	-	-	+	+	+	+			
Gs659 ^E	+	-	-	+	+	+	+			
Gs661 ^E	+	-	-	+	+	+	+			
Gs663 ^M	+	+	-	+	+	+	+			
Gs666 ^N	+	-	-	+	+	+	+			
Gs668 ^E	+	+	-	+	+	+	+			
Gs671 ^E	+	+	-	+	+	+	+			
Gs675 ^N	+	+	-	+	-	-	-			
Gs676 ^E	+	+	-	+	+	+	+			
Gs6515 ^E	+	+	ND	+	+	+	-			
Gs6516 ^E	+	+	+	+	+	+	+			
Gs6521 ^E	+	+	+	+	+	+	-			
Gs6518 ^E	+	+	ND	+	+	+	+			
Gs6522 ^E	+	+	+	+	+	+	+			
Gs6622 ^N	+	-	-	+	+	+	+			
Gs6623 ^N	-	-	-	+	+	+	+			
Gs6712 ^E	+	-	-	+	+	+	+			
Gs6713 ^E	+	+	+	+	+	+	+			
Gs6717 ^E	+	-	-	+	+	+	+			
Gs6720 ^E	+	-	-	+	+	+	+			
Gs6721 ^E	+	-	-	-	-	-	-			
E. garamanticus ORS1400 ^T	+	+	-	+	+	+	-			
<i>E. meliloti</i> LMG6133 ^T (ORS665 ^T)	+	+	ND	+	-	-	-			
<i>Rhizobium etli</i> CFN42 ^T (USDA9032)	-	-	-	+	-	-	-			

 Tableau 13. Resistance aux températures et tolérance à la salinité (NaCl) des isolats et souches

 référence de BNL associées à là fabacée spontanée *Genista saharae*.

^a+: positif; -: négatif; ND: non déterminé.

^E: Genus *Ensifer*; ^N: Genus *Neorhizobium*; ^M: Genus *Mesorhizobium*

5.2.2. Tolérance des souches aux sels (NaCl)

De même, concernant la tolérance au NaCl, les résultats obtenus ne semblent pas liée à l'origine écologique des souches. Les conductivités électriques enregistrées au niveau des 04 sites concernés varient entre 0.8 et 0.9 mS/m et, par consequent les dits sites sont classés non salés. Cependant, les résultats obtenus indiquen que la majorité des souches testées tolèrent jusqu'a 4% de NaCl. Par ailleurs, la souche Gs 6721 *Ensifer* semble très sensible (aucune tolérance) suivie de la souche Gs675 *Neorhizobium*

*q*ui ne se développe plus à 2% de NaCl. Il est à observer, qu'issues du même site d'échantillonnage (Belghit), les autres souches testées ont toléré jusqu'à 4% de NaCl. Néanmoins, sachant que cette tolérance varie en fonction de l'espèce hôte aussi (Surange et al., 1997), nos résultats sont confirmés; dans leur ensemble par ceux obtenus sur la meme espece (*G.saharae*) par Mahdhi et al., (2007) dans les régions sahariennes de la Tunisie. Les souches de type *Ensifer meliloti* LMG6133^Tet *Rhizobium etli* CFN42^T, utilisées comme témoins négatifs, confirment autant nos résultats respectivement, pour la tolérance au Na Cl et l'ultra sensibilité aux températures élevées.

5.3. Conclusion

Les résultats obtenus pour la caractérisation phénotypique font ressortir, principalement, ce qui suit :

• Les souches présentes dans les sols du Sahara septentrional Est d'Algérie, s'adaptent à ce milieu et présentent des potentialités phénotypiques différentes;

• Les souches les plus performantes appartiennent au genre *Ensifer* (les plus efficientes, plus résistantes aux hautes températures et plus tolérantes au NaCl);

• Les resultats obtenus confortent, une fois de plus, les potentialités d'adaptation des especes du genre Ensifer aux milieux desertiques sur les trois continents (Le Quéré et al, 2017)

Par ailleurs, ce fait d'être nodulée par différents souches et espèces constitue un avantage pour la plante. En effet, elle pourra toujours être nodulée et fixer l'azote avec une souche de rhizobia même si les caractéristiques édaphoclimatiques du milieu subissent des changements (variation de la température ou de la salinité).

CONCLUSION GENERALE ET PERSPECTIVES

Conclusion générale

Le Sahara d'Algérie, couvre environ les 4/5 des superficies du territoire national dont l'aridité constitue l'élément central de sa spécificité. Cette aridité conjuguée à la texture légère ainsi que les carences en nutriments de ses sols, limite la production végétale, et parfois même la survie des plantes.

Les résultats obtenus au cours des travaux de cette thèse, viennent confirmer les conditions édapho-climatiques hostiles au développement des plantes dans milieu naturel saharien. De l'analyse physico-chimique des sols rhizosphériques, il en ressort principalement, que ces derniers présentent les caractéristiques suivantes:

✓ Granulométrie: une texture grossière (Sablonneuse à sableuse), les taux d'argile et de limon ne dépassent pas respectivement 4,6 et 5,2 %, traduisant une faible rétention en eau;

✓ pH alcalin, compris entre 8 et 9;

✓ Teneurs très faibles en éléments fertilisants: les valeurs maximales obtenues pour les éléments majeurs, azote et phosphore, sont respectivement, 7,5 ppm et 3 ppm, mettant en évidence la pauvreté de ces sols;

✓ Les taux en matière organique sont, généralement, inferieurs à 1 %. Ces faibles taux indiquent principalement, la faible production en biomasse de ces sols.

En dépit des conditions marginales qui prévalent dans ce milieu, il existe une végétation, constituée de plantes spontanées adaptées, présentant des intérêts multiples. Parmi les espèces de cette flore adaptée, celles de la famille des Fabacées, tant herbacées qu'arbustives qui sont omniprésentes dans le Sahara septentrional Est d'Algérie. Au cours de ce travail, les prospections ont été réalisées su un rayon de 400 km, à travers différents espaces géomorphologiques. Cette prospection s'est soldée par la localisation géo-référée et l'identification précise de 04 taxons de cette famille. Il s'agit d'*Astragalus gombo* (Bunge), *Astragalus mareoticus* (Del.), *Genista saharae* (Coss. & Durieu) et *Rretama retam* (Webb).

En plus d'être adaptées à ce milieu contraignant, la présence de ces espèces « bien vertes » est synonyme d'une bonne nutrition azotée. Les valeurs insignifiantes en cet élément, enregistrées au niveau rhizosphérique, indiquent bien son origine atmosphérique par le biais de la fixation biologique. La fixation biologique constitue, indéniablement, la voie principale pour l'introduction de l'azote dans ces écosystèmes naturels.

Cette affirmation passe, évidemment, par la mise en évidence des bactéries diazotrophes, capables d'établir la relation symbiotique fixatrice d'azote, assignée à cette étude en répondant aux questionnements problématiques initiaux par chronologie.

75

La technique de piégeage des rhizobias, utilisée à partir des sols rhizosphériques, réalisée sous conditions contrôlées pour les 4 espèces étudiées, ont permis de mettre en évidence la présence des souches de BNL dans les couches superficielles des sols du Sahara Septentrional Est d'Algérie. Elle s'est traduite par la formation des nodules (siège de la fixation biologique) au niveau des racines des 4 espèces étudiées. Ce résultat indique en 1^{er} lieu que les souches piégées cette capacité de mener la phase saprophytique dans les conditions écologiques sévères du milieu saharien. Il indique, ensuite, l'infectivité et l'effectivité des souches de BNL indigènes. Ce résultat signifie également que les BNL présentes au niveau des rhizosphères des 04 espèces étudiées (*A.gombo, A. maureoticus, G.saharae* et *R.raetam*) possèdent cette capacité et spécificité d'établir une association symbiotique fixatrice d'azote.

Les méthodes usuelles connues pour l'isolement des 'BNL', en général, ont été utilisées. Elles ont permis l'obtention d'isolats à partir des nodosités prélevées sur les racines de toutes les espèces étudiées

Les souches de BNL indigènes présentes au niveau des rhizosphères des légumineuses étudiées, se distinguent, aussi, par leur croissance rapide, suggérant leur affiliation aux principaux genres *Ensuifer*, *Rhizobium* ou *Mesorhizobium*.

Une collection de 106 isolats a été constituée, dans ce travail, à savoir: douze (12) à partir d'A. *mareoticus*, vingt-deux (22) d'A. *gombo*, quinze (15) de *R. retam* et cinquante-sept (57) de *G. saharae*.

L'approche génétique MLSA utilisée dans notre étude a permis de mettre en évidence une grande diversité génétique des souches de BNL, associées à *G*.saharae. Elle a permis une précision majeure sur la position taxonomique des souches, qui, jusque là demeurait méconnue. D'après la phylogénie des marqueurs ribosomiques de l'ARN 16S et des gènes de ménage *atpD* et *recA*. Cette étude est la première décrivant la diversité génétique des bactéries endophytes, isolées à partir des nodules de *G*.saharae, arbuste se développant spontanément dans les conditions écologiques extrêmes des régions sahariennes d'Algérie. La caractérisation moléculaire de 57 souches a permis leur affiliation à trois groupes phylogénétiques distincts *Neorhizobium, Sinorhizobium* et *Mesorhizobium*. Dans leur majorité (plus de 80%), 46 souches appartiennent à *Ensifer* (anciennement *Sinorhizobium*) et ont été identifiées à *E. meliloti* LMG6133^T. Le genre *Neorhizobium* représente (plus de 15%) avec 10 souches identifiées à 03 espèces différentes. Les dix souches de ce genre ont été identifiées trois différentes espèces, à savoir *N. Galegae* LMG6214^T, *N. huautlense* LMG18254^T et *N. alkalisoli* CCBAU01393^T. Une seule souche appartient au genre *Mesorhizobium*, identifiée à *M. camelthorni* CCNWXJ404^T.

Ainsi, la présente étude a permis d'élargir la gamme d'hôtes de ces 5 espèces de référence, mettant en évidence la richesse des sols de la région du Sahara septentrional Est d'Algérie en espèces de *rhizobia*. Cette diversité se manifeste surtout lorsque nous trouvons plusieurs espèces différentes qui nodulent la même plante. Les souches identifiées ont fait ressortir, également, la diversité phénotypique.

En plus, de l'infectivité et l'efficience des souches indigènes associés à *G.saharae*; font ressortir, une diversité dans leur potentiel symbiotique. Les souches appartenant au genre *Ensifer* se révèlent les plus performantes. Ce travail montre, aussi, que les BNL indigènes du Sahara sont bien adaptés et résistent aux températures élevées (jusqu'à 45°C) et tolèrent différentes concentrations de NaCl (jusqu'à 4%). Cette diversité génétique et phénotypique permet à la fabacée *saharienne de s'* adapter à plusieurs conditions édaphoclimatiques (temps et espace).

Par ailleurs, ce travail constitue une contribution de base dans l'étude des associations symbiotiques rhizobium dans les milieux extrêmes. Les légumineuses spontanées aux vertus écologiques, économiques et sociales, ouvrent la voie à de nouvelles applications tout à fait intéressantes. Les domaines de biotechnologie, d'agronomie et de géni écologie sont les plus proches, mais la liste des thématiques est loin d'être exhaustive

Dans le domaine de recherche scientifique, et à partir de la collection constituée de BNL Sahariennes, ce travail doit être poursuivi par :

✓ Essai des souches de BNL identifiées sur d'autres espèces de légumineuses pour étudier leur gamme d'hôtes;

✓ Caractérisation génétique et détermination de la position taxonomique des BNL associées aux trois autres espèces (*A. gombo*, *A. mareoticus*, et *R.retam*);

✓ L'évaluation des potentiels de fixation des souches *in situ* et *in vitro*;

✓ Rechercher d'autres couples BNL-légumineuses ce qui doit passer par l'exploration et le recensement des légumineuses spontanées, notamment celles endémiques aux régions sahariens.

Pour une vision plus globale en matière de développement des régions sahariennes, l'objet principal des recherches doit viser l'exploitation des ressources génétiques tant microbiennes que phyto-génétiques Dans ce milieu contraignant, l'exploitation des associations rhizobiums légumineuses spontanées représente la base du développement intégré eu égard à leurs potentialités notoires en termes de fertilité en azote.

Ainsi, ce modeste travail constitue la base d'une thématique qui consiste à exploiter las associations symbiotique plantes micro-organismes tres intéressante pour le milieu saharien. Cette étude doit, nécessairement, poursuivie par:

 \checkmark La recherche concernant les possibilités d'exploitation des résultats obtenus au cours de ce travail. L'utilisation des associations symbiotiques des espèces identifiées et adaptées, dans le reboisement des espaces sahariens semble un axe de recherche prometteur. L'étude des possibilités d'utilisation de *G.saharae* et *R.retam* dans la protection en tant que brise vent semble très intéressante.

✓ Recensement et sélection des espèces fabacées spontanées ou introduites intéressantes;

77

✓ La sélection de souches BNL indigènes compétitives et efficientes pour la bio fertilisation;

✓ Explorer les possibilités d'augmenter le rendement de la phytomasse des légumineuses spontanées en général, et celles consommées par le dromadaire en élevage semi intensif en particulier;

Ceci dit les perspectives sont innombrables; et les thématiques qui en découlent dans le grand contexte du développement durable sont multiples.

REFERENCES

BIBLIOGRAPHIQUES

Abdel-Samad, F. (2015). Caractérisation écogéographique et génétique du genre Astragalus du Liban: approches de conservation biogéographique. Thèse PhD. Univ.Aix-Marseille, France. 210 pages.

Allen, O.N., Allen, E.K. (1981). The Leguminosae, a Source Book of Characteristics, Uses and Nodulation. 1st Edn., Wisconsin, University of Wisconsin Press.

Al-Taweil H.I., Osman M.B., Hamid A.A., Yussof W.M.W. (2009). Development of microbialinoculants and the impact of soil application onrice seedlings growth. Am. J. Agric. Biol. Sci. 4:79-82.

Amrani S., Noureddine NE, Bhatnagar T., Argandoña M., Nieto JJ, Vargas C. (2010). Phenotypic and genotypic characterization of rhizobia associated with *Acacia saligna* (Labill.) Wendl. in nurseries from Algeria. Systematic and Applied Microbiology. (33) 44–51.

Anne P. (1945). Le dosage rapide du carbone organique des sols. Ann. agron, 2 (1), 161-172.

APGIII (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society*, 161(2):105–121.

Ardley J. K., Parker M. A., De Meyer S. E., Trengove R. D., O'Hara G. W., Reeve W. G., Yates, R. J., Dilworth, M. J., Willems, A., Howieson, J. G. (2012). *Microvirga lupini* sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are Alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int. J. Syst. Evol. Microbiol. 62 (11): 2579-2588.

Aubert G. (1978). Méthodes d'analyse des sols .Edit: C.R.D.P., Marseille, 191 p.

Bagnouls F, Gaussen H (1957). Les climats biologiques et leur classification. Ann Geophys. (66)193–220

Baldani, J. and V. Baldani (2005). "History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience." An Acad Bras Cienc. **77**(3): 549

Barnett MJ, Fisher RF, Jones T, et al.(2001). Nucleotide sequence and predicted functions of the entire Sinorhizobium melilotipSymA megaplasmid. Proc Natl Acad Sci U S A. (98) 9883–8.

Benhizia Y., Benhizia H., Benguedouar A., Muresu R., Giacomini A., Squartini A. (2004). Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst. Appl. Microbiol. (27) 462–468.

Benyamina S.M. (2012).Rôle des rédoxines chez *Sinorhizobium meliloti* à l'état libre et lors de son interaction symbiotique avec *Medicago truncatula*. Thèse de Doctorat ; univ. Montpellier 2, France. 192 p

Boivin C, Ndoye I, Molouba F, de Lajudie P, Dupuy N & Dreyfus B. (1997). Stem nodulation in legumes: diversity, mechanisms, and unusual characteristics. *CRC Crit Rev Plant Sci* 16: 1–30.

Bonaldi K. (2010). Caractérisation de la symbiose Nod-indépendante entre les Bradyrhizobium photosynthétiques et les légumineuses tropicales du genre Aeschynomene. Thèse de Doctorat; univ. Montpellier 2, France. 242p

Bouallala M. (2013). Etude floristique et nutritive spatio-temporelles des parcours camelins du Sahara occidental Algerien. Cas des regions de Bechar et Tindouf. Thèse de Doctorat; univ. Kasdi-Merbah Ouargla, Algerie.193 p

Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A.(2012). Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiology Ecology. 80: 534–557.

Boulila F, Depret G, Boulila A, Belhadi D, Benallaoua S, Laguerre G. (2009). Retama species growing in different ecological–climatic areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the *Bradyrhizobium* genus. Systematic and Applied Microbiology. (32) 245–255.

Bradai L. Bissati S.Chenchouni, H and Amrani K. (2014). Effects of climate on the productivity of desert truffles beneath hyper-arid conditions. Int J Biometeorol DOI 10.1007/s00484-014-0891-8

Brewin NJ. (1991). Development of the legume root nodule. Ann. Rev. Cell. Biol. 7: 191–226.

Brewin NJ. (2004). Plant cell wall remodeling in the *Rhizobium*-legume symbiosis. Critical Reviews in Plant Sciences. (23) 293–316.

Brockwell J, Searle SD, Jeavons AC, Waayers M. (2005). Nitrogen fixation in Acacias: an untapped resource for sustainable plantations, farm forestry and land reclamation. Australian Centre for International Agricultural Research, Canberra

Brunel B., Domergue O., Maure L, Brahic P, Galiana A., Josa R., De Lajudie P., El-Hajj S., Cleyet-Marel J.C. (2007). Potentialité des associations symbiotiques plantes-micro-organismes pour réhabiliter des sites fortement dégradés en milieu méditerranéen. Agricultures 16: 324-329

Carter M.R. (1993). Soil sampling and methods of analysis . Can. Soc. Soil sci. Ottawa. Ontario.CANADA. Lewis Publieshers. 507 - 511.

Chaïch K., Bekki A. Promising microbial genetic resources. Poster présenté au 13 ^{éme} Congress of the African Association Biological Nitrogen Fixation, December 15th-18th 2008 Hammamet, Tunisia

Chaïch K., Bekki, A., Bouras N., Holtz M. D., Soussou S. Mauré L., Brunel B., de Lajudie P., Cleyet-Marel J.C. (2017). Rhizobial diversity associated with the spontaneous legume Genista saharae in the northeastern Algerian Sahara.symbiosis. 71: 111–120 doi:10.1007/s13199-016-0414-y

Chehma A. (2006). Catalogue des plantes spontanées du Sahara septentrional algérien. Laboratoire de protection des écosystèmes en zones arides et semi-arides (Université Kasdi-Merbah Ouargla). Edi. Dar El Houda Ain Melila.

Chehma A. (2008). Phytomasse et valeur nutritive des principales plantes vivaces du sahara septentrional Algérien. Laboratoire de protection des écosystèmes en zones arides et semi-arides (Université Kasdi-Merbah Ouargla). Edi. Dar El Houda Ain Melila.

Chehma A, Faye B, Bastianelli D (2010). Valeurs nutritionnelles des plantes vivaces des Parcours sahariens algériens pour dromadaires. Fourrages. (204):63–268

Chen WP, Kuo TT (1993). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. (21):2260.

Chen W.M., Laevens S., Lee T.M., Coenye T., de Vos P., Mergeay M., Vandamme P. (2001). *Ralstonia taiwanensis* sp. nov., isolated from root nodules of *Mimosa* species and spu- tum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. (51) 1729–1735.

Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH (2011) *Mesorhizobium camelthorni* sp. nov., isolated from *Alhagi sparsifolia*. Int J Syst Evol Microbiol. (61):574–579.

Cleland E.E. and Harpole W.S. (2010). Nitrogen enrichment and plant communities. Ann N Y Acad Sci. (1195) 46-61.

Colwell, R.R. (1970). Polyphasic taxonomy of the genus *Vibrio*: nu- merical taxonomy of *Vibrio cholerae*, *Vibrio parahaemolyticus*, and related *Vibrio* species. J. Bacteriol. 104 : 410–433.

Conforti F., Statti G., Tundis R., Loizzo M.R., Bonesi M., Menichini F., Houghton P.J. (2004). Antioxidant and cytotoxic activities of *Retama raetam* subsp. Gussonei. Phytother Res 18,585–587.

Crossman LC, Castillo-Ramírez S, McAnnula C, et al (2008). A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria. PLoS ONE.;2–3:e2567.

Daoud Y. et Halitim A. (1994). Irrigation et salinisation au Sahara Algérien. Sécheresse; 5 (3): 151-160.

Dazzo F. B., Truchet G.L., *et al.* (1984). "Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis." <u>Appl Environ Microbiol</u> 48(6): 1140-50.

De Faria S.M., Lewis G.P., Sprent J.I. Sutherland, J.M. (1989). Occurrence of nodulation in the Leguminosae. *New* Phytol. (111) 607–619.

De Lajudie P., Laurent-Fulele E., Willerns A., Torck U., Coopman R., Collins M. D., Kersters K., Dreyfus B., Gillis M. (1998). *Allorhizobium undicola* gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate *Neptunia natans* in Senegal. Int. J. Syst. Bacteriol. (48) 1277-1290.

de Lajudie P., Willems A., Pot B., Dewettinck D., Maestrojuan G., Neyra M., Collins M. D., Dreyfus B., Kersters K., Gillis M.(1994). Polyphasic taxonomy of rhizobia: emendation of the genus *Sinorhizobium* and description of *Sinorhizobium meliloti* comb. nov., *Sinorhizobium saheli* sp. nov., and *Sinorhizobium teranga* sp. nov. Int. J. Syst. Bacteriol. 44: 715-733.

Demangeot J. (1994). Les milieux « naturels » du globe. *Paris, Masson (Coll. « Géographie »), 5^e édition, 313 p. (ISBN 2-225-84503-4).*

Dénarié J, Debelle F, Rosenberg C. (1992). Signalling and host range variation in nodulation. Annu. *Rev. Microbiol.* 46:497–531.

Diouf D. Samba R, D.Mbaye, A.T.Ba, Lesueur, Dreyfus B., DeLajudie P., Neyra M. (2007). Genetic diversity of Acacia seyal Del. Rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites, Microb. Ecol. (54) 553–566.

Dixon R.O.D. and Wheeler C.T. (1986). Nitrogen Fixation in Plants. (New York: Chapman et Hall Press).

Doyle J. J. and Luckow M. A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. *Plant Physiology*, 131(3):900–910.

Doyle J. J. (1994). Phylogeny of the legume family: an approach to understanding the origins of nodulation. Annu Rev Ecol Syst. (25) 325-49.

Doyle J.J. (1998). Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria." Trends Plant Sciences 3 p: 473-78.

Dreyfus B., Garcia J. L., Gillis M. (1988). Characterization of *Azorhizobium caulinodans* gen. nov. sp. nov., a stemnodulating nitrogen-fixing bacterium isolated from *Sesbania rostrata*. Int. J. Syst. Bacteriol. 38: 89-98.

Dutil P. (1971). Contribution à l'étude des sols et des paléosols sahariens. Thèse de Doct. Univ. De Strasbourg, 346 p.

Elmerich C. (1993). Fixation biologique de l'azote. Ann. Inst. pasteur/Actualités. (4) 133-153

Fatou DIOUF (2015). Etude de l'adaptation des souches de *Mesorhizobium* d'*Acacia seyal* Del. et d'*Acacia senegal* (L.) Willd. à la salinité : Diversité génétique, génomique et variabilité des mécanismes de réponse au stress salin. Thèse doctorat, Univ.Cheikh Anta Diop, Dakar.225 : 10-12.

Fall D., Diouf D., Ourarhi M., Faye A., Abdelmounen H., Neyra M., S.N.Sylla, M. Missbah El Idrissi, (2008). Phenotypic and genotypic characteristics of Acacia senegal (L.) Willd.root-nodulating bacteria isolated from soils in the dryland part of Senegal, Lett. Appl. Microbiol. (4) 785–97.

Frank B. (1889). Ueber die Pilzsymbiose der Leguminosen. Ber Deut Bot Ges 7: 332-346.

Fernando GA, Jesus M (1998). Biodiversity of rhizobia nodulating *Genista monspessulana* and *Genista linifolia* in Spain. New Zealand J Agric Res 41:585–594. doi: 10.1080/00288233.1998.9513342

Galloway J, Dentener F, Capone D, et al. (2004). Nitrogen Cycles: Past, Present and Future. Biogeochem Nitrogen Cycle 153.

Gage DJ. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews. 68: 280–300.

Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP (2001). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol.; 51:2037–48.

Graham P.H. and VanceC.P. (2003). Legumes: importance and constraints to greater use. Plant Physiol (131) 872-877.

Haase P., Pugnaire F.I., Fernández E.M., Puigdefábregas J., Clark S.C., Incoll L.D. (1996). Investigation of rooting depth in the semi-arid shrub Retama sphaerocarpa (L.) Boiss. by labelling of ground water with a chemical tracer. Journal of Hydrology. (177) 23–31.

Halitim A., (1988). Sols des régions arides d'Algérie. O.P.U., Alger, 384 p.

Herrera M.A. et al. (1992). Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems. *Appl Environ Microbiol*; 59 : 129-33.

Hirsch A (1992). Developmental biology of legume nodulation. new phytol 122: 211–237.

Jarvis B. D. W., van Berkum P., Chen W. X., Nour M., Fernandez M. P., Cleyet-Marel J. C., Gillis M.(1997). Transfer of *Rhizobium loti, Rhizobium huakuii, Rhizobium mediterraneum,* and *Rhizobium* to *Mesorhizobium* gen. nov. *Rhizobiumciceri, tianshanense.* Int. J. Syst. Bacteriol. 47: 895-898.

Jordan, D.C (1982). Transfer of *Rhizobium japonicum* Buchanan 1980 to *Bradyrhizobium* gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32:136-139.

Kalita M, Malek W (2004). Phenotypic and genomic characteristics of Rhizobia isolated from *Genista tinctoria* root nodules. Syst Appl Microbiol 27:707–715.

Khbaya B., Neyra M., Normand P., Zerhari K., Filali-Maltouf A. (1998). Genetic diversity and phylogeny of r hizobia that nodulate Acacia spp. inMorocco assessed by analysis of rRNA genes, Appl. Environ. Microbiol. (64) 4912–4917.

Krishnan HB & Pueppke SG (1991). Sequence and analysis of the nodABC region of Rhizobium fredii USDA257, a nitrogen-fixing symbiont of soybean and other legumes. *Mol Plant Microbe Interact* 4: 512–520.

Lafay B, Bullier E, Burdon JJ. (2006). Bradyrhizobia isolated from root nodules of *Parasponia (Ulmaceae)* do not constitute a separate coherent lineage. *Int. J. System. Evol. Microbiol.* (56)1013–1018.

Laus M. C., T. J. Logman *et al.* (2006). "A novel polar surface polysaccharide from *Rhizobium leguminosarum* binds host plant lectin." <u>Mol Microbiol</u> 59(6): 1704-13.

Lechene, C. P., Luyten Y, McMahon G. and Distel D. L. (2007). "Quantitative Imaging of Nitrogen Fixation by Individual Bacteria Within Animal Cells." Science 317(5844): 1563

Le Houérou HN (1990). Définition et limites bioclimatiques du Sahara. Sécheresse 1:246–259

Le Houérou HN (1997). Biodiversité végétale et diversité génétique en Afrique. Sécheresse 2:117-122

Le Houérou HN (2001). Biogeography of the arid steppe land north of the Sahara. Journ. of Arid Environ. (48)03-128.

Lee KB, de Backer P, Aono T, et al (2008). The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics;9:271.

Le Quéré et al. (2017). Genomic characterization of *Ensifer aridi*, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts. *BMC Genomics*. DOI 10.1186/s12864-016-3447-y Lemire M., Meurgues G. et Petter F. (2003). Désert saharien. Muséum de l'histoire naturelle.

Lewis G., Schrire B., Mackinder B. and M. Lock, (2005). Legumes of the world. Royal Botanic Gardens, Kew.

Lin D.X., Wang E.T., Tang H., Han T.X., He Y.R., Guan S.H., ChenW.X. (2008). *Shinella kummerowiae* sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume *Kummerowia stipulacea*. Int. J. Syst. Evol. Microbiol. (58)1409-1413.

Lindstrom K (1989). *Rhizobium galegae*, a New Species of Legume Root Nodule Bacteria. Int J Syst Bacteriol (39) 365–367.

Lindström K, Murwira M, Willems A, Altier N. (2010). The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Research in Microbiology. 161: 453–463.

Lloyd J. W. & MILES J. C. (1986). Examination of the mechanisms controlling groundwater gradients in arid regional sedimentary basins, Water Ressources Association. (22) 471-478.

Lograda T. (2010). Etude Caryologique et Phytochimique de Six Espèces Endémiques du genre Genista L. en Algérie. Thèse de Doctorat; univ. Ferhat Abbas, Setif, Algerie. 150p

Lopez Gonzalez G. (2001). Los árboles y arbustos de la Península Ibérica e Islas Baleares. Ed. Mundi Prensa, Madrid, Spain.

Maghrani M., Lemhadri A., Zeggwagh, N.A., El Amraoui A., Haloui M., Jouad, H., Eddouks M. (2004). Effect of *Retama raetam* on lipid metabolism in normal and recent-onset diabetic rats. Journal of Ethnopharmacology 90, 323–329

Mahdhi M., MARS M. (2006). Genotypic diversity of rhizobia isolated from *Retama raetam* in arid regions of Tunisia. Annals of Microbiology, 56 (4) 305-311

Mahdhi M, Nzoué A, Gueye F, Merabet C, de Lajudie P, Mars M (2007) Phenotypic and genotypic diversity of *Genista saharae* microsymbionts from the infra-arid region of Tunisia. Lett Appl Microbiol 45:604–609.

MahdhiM., Nzoue A., de LajudieP., MarsM. (2008). Characterization of root-nodulating bacteria on Retama raetam in arid Tunisian soils. *Progress in Natural Science*, 18(1), pp.43–50.

Maiden MCJ (2006). Multilocus sequence typing of Bacteria. Annu Rev Microbiol.;60:561–88.

Maire R. (1987). La flore de l'Afrique du Nord. Les Légumineuses. Lechevalier Ed., Paris, XVI: 123-193.

Marketon M. M., Glenn S. A., et al. (2003). "Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti." J Bacteriol 185(1): 325-31.

Martens M, Dawyndt P, Coopman R, Gillis M, de Vos P, Willems A. (2008). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol.;58: 200–14.

Masepohl, B., T. Drepper and W. Klipp (2005). Nitrogen Fixation in the Photosynthetic Purple Bacterium Rhodobacter capsulatus. Genetics and Regulation of Nitrogen Fixation in Free

Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, et al. (2012). Molecular and phenotypic characterization of strains nodulating *Anthyllis vulneraria* in mine tailings, and proposal of *Aminobacter anthyllidis* sp. nov., the first definition of *Aminobacter* as legume-nodulating bacteria. Syst Appl Microbiol. (35):65–72.

Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, et al. (2010). Multilocus Sequence analysis of root nodule isolates from *Lotus arabicus* (Senegal), *Lotus creticus*, *Argyrolobium uniflorum* and *Medicago sativa* (Tunisia) and description of *Ensifer numidicus* sp. nov. and *Ensifer garamanticus* sp. nov. Int J Syst Evol Microbiol. (60):664–674

Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E. (2006). Eukaryotic control on bacterial cell cycle and differentiation in the *Rhizobium*-legume symbiosis. Proceedings of the National Academy of Sciences of the United States of America. 103: 5230–5235.

Meriane D, Kaabache M. (2012). Ecology, Biology and Biometry of an Endemic Fabaceae: *Genista Saharae* Cosson and Durieu. J Life Sci 6:501

Mideleton N. & ThmasD. (1997). World atlas of desertification. United Nation environment program. 2nd edit., Arnold editor; New York.

Miller KJ & Wood JM (1996). Osmo adaptation by rhizosphere bacteria. Annu Rev Microbiol 50: 101–136.

Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R. (2007). Salt tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol. (187) 79–85.

Mnasri, B., Badri, Y., Saïdi, S., de Lajudie, P., Mhamdi, R. (2009). Symbiotic diversity of *Ensifer* meliloti strains recovered from various legume species in Tunisia. Systematic and Applied Microbiol., 32(8): 583–592.

Moulin L., Munive A., Dreyfus B., Boivin-Masson C. (2001). Nodulation of legumes by members of the b subclass of Proteobacteria. Nature, 411 : 948–950.

Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al (2014). Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol . (37) 208–15.

Murray R.G.E., Brenner D.J., Colwell R.R., De Vos P., Goodfellow M., Grimont P.A.D., Pfennig N., Stackebrandt E., et Zavarzin G.A. (1990). Report of the ad hoc committee on ap proaches to taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40 : 213–215.

Nedjraoui D (2001). Country Pasture/Forage Resource Profiles: Algeria

Ngom A., Nakagawa Y., Sawada H., Tsukahara J., Wakabayashi S., Uchiumi T., Nuntagij A., Kotepong S., Suzuki A., Higashi S., et Abe M. (2004). A novel symbiotic nitrogen-fixing member of the *Ochrobactrum* clade isolated from root nodules of *Acacia mangium*. J. Gen. Appl. Microbiol. 50(1): 17–27.

Nicholas KB, Nicholas HB (1997). GeneDoc: a tool for editing and annotating multiple sequence alignments. Pittsburgh. PA: Pittsburgh Supercomputing Center

Normand P., Fernandez M.P. (2007). Evolution and diversity of *Frankia*. In: Pawlowski K., editor. Actinorhizal symbioses. Springer Verlag; London.

Nzoue A. (2008). Diversité génétique et fonctionnelle des souches de *Bradyrhizobium* impliquées dans les cultures mixtes niébé-soja-arachide/céréales (maïs) en Côte d'Ivoire : approche méthodologique par analyse multi-locus (MLSA) ; étude des effets PGPR sur le maïs. Thèse doct. Univ. Montpellier II, France. 192 p

Olsen G.J., Woese C.R., et Overbeek R. (1994). The winds of (evo- lutionary) changes : breathing new life into microbiology. J. Bacteriol. 176 : 1–6.

Ozenda P. (1983). Flore du Sahara 2e édition Ed. CNRS, Paris, 622 p.

Ozenda P. (1991). Flore de Sahara. 3^{eme} édition mise à jour et augmentée, Ed C.N.R.S., Paris, 662 p.

Ozenda P. (1958). Flore du Sahara septentrional et central. Centre National de Recherche Scientifique, Maroc. 298 pages.

Pawlowski K, Bisseling T. (1996). Rhizobial and actinorhizal symbioses: what are the Shared features? Plant Cell. (8) 1899-1913.

Peoples M., Brockwell B. J. et al. (2009). "The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems." <u>Symbiosis</u> 48: 1-17

Podlech, D. (2008). The genus Astragalus L. (Fabaceae) in Europe with exclusion of the former Soviet Union.

Polhil R. M. (1976). Genisteae (Adans.) Bentham and related tribes (Leguminosae)., Bot. Syst., 1: 143-368.

Provorov, N. A., A. Y. Borisov, *et al.* (2002). "Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza." J Theor Biol 214(2): 215-32.

Pueppke SG & Broughton WJ (1999). *Rhizobium* sp. Strain NGR234 and *R. fredii* USDA257 Share Exceptionally Broad, Nested Host Ranges. *Mol Plant-Microbe Interact* 12: 293–318.

Quezel P. (1978). Analyses of the floraMediterranean and Saharan Africa. Ann. Mo. Bot. Gard. 56:479-534

Quezel P. et Santa C., (1962). Nouvelle flore de l'Algérie et des régions désertiques méridionales. CNRS., paris, 2 vol.

Radeva, G., Jurgens, G., Niemi, M., Nick, G., Suominen, L.and Lindstrom, K. (2001). Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Syst Appl Microbiol. (24):192–205.

Ramírez-Bahena MH, García-Fraile P, Peix A, et al. (2008). Revision of the taxonomic status of the species *R. leguminosarum* (Frank 1879) Frank 1889AL, *R. phaseoli* Dangeard 1926AL and *R.trifolii* Dangeard 1926AL. *R. trifolii* is a later synonym of *R. leguminosarum*. Reclassification of the strain *R leguminosarum* DSM 30132 (=NCIMB 11478) as *R.pisi* sp. nov. Int J Syst Evol Microbiol. (58) 2484–90.

Rejili M, Mahdhi M, Fterich A, Dhaoui S, Guefrachi I, Abdeddayem R, et al. (2012). Symbiotic nitrogen fixation of wild legumes in Tunisia: Soil fertility dynamics, field nodulation and nodules effectiveness. Agri Ecosys Env (157)60–69.

Rejii M., Mahdhi M., Domínguez-Núñez J.A. et Mars M. (2013). The phenotypic, phylogenetic and symbiotic characterization of rhi-zobia nodulating *Lotus* sp. in Tunisian arid soils. *Ann. Microbiol.* 64: 355–362.

Rivas R, Martens M, de Lajudie P, Willems A (2009). Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol.;32:101–10.

Rognon P. (1989). Biographie d'un désert, Paris, Plon, 347p.

Rundel, P.W. (1989). Ecological success inrelation to plant form and function in the woody legumes. In: Stirton C.H., Zamcchi J.L. Advances in Legume Biology. Monographs in Systematic Botany, Missouri Botanical Garden. (29) 377-398.

Saldaña G, Martinez-Alcántara V, Vinardell JM, Bellogín R, Ruíz-Sainz JE & Balatti PA (2003). Genetic diversity of fast-growing rhizobia that nodulate soybean (Glycine max L. Merr). *Arch Microb*.(180) 45 52.

Sawada H, Kuykendall LD & Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. *J Gen Appl Microbiol* 49: 155–179.

Sebbane N., Sahnoune M., Zakhia F., Willems A., Benallaoua S., De Lajudie P. (2006). Phenotypical and genotypical characteristics of root-nodulating bacteria isolated from annual Medicago spp. in Soummam Valley (Algeria). Letters in Applied Microbiology. (42): 235-241.

Sharma SR, Rao NK, Gokhale TS, Ismail S (2013). Isolation and characterization of salt-tolerant rhizobia native to the desert soils of United Arab Emirates. Emir J Food Agric 25:102–108.

Selao, T. T., S. Nordlund and A. Noren (2008). "Comparative Proteomic Studies in Rhodospirillum rubrum Grown under Different Nitrogen Conditions." J Proteome Res.

Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E (2005). Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol. (14):4033–50.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. (2009). Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Env Microbiol. (75):7537–7541.

Smit P., J. Raedts et al. (2005). "NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription." <u>Science</u> 308(5729): 1789-91.

Sprent J, Raven PH. (1992). Evolution of nitrogen-fixing symbiosis. in Biological nitrogen fixation. London: Chapman and Hall.

Sprent J. (1993). Evolution since Knoxville: were nitrogen-fixing organisms wise to inhabit land plants? In New horizons in nitrogen fixation, R. Palacios, Mora, J., and Newton, W.E., Editors. Kluwer: Dordrecht.

Sprent J.I., (1995). Legume trees and shrubs in the tropics N2 fixation in perspective. Soil Biol. Biochem. (27) 401–407.

Sprent J.I., (2001). Nodulation in Legumes. Royal Botanic Gardens, Kew, UK

Stackebrandt E, Frederiksen W, Garrity GM, et al. (2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol.; 52:1043–7.

Sy A., Giraud E., Jourand P., Garcia N., Willems A., De Lajudie P., Prin Y., Neyra M., Gillis M., Boivin-Masson C., Dreyfus B.(2001). Methylotrophic *Methylobacterium* bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183:214-220.

Smil V. (2002). Biofixation and nitrogene in the biosphere and in global food production. *Dep Geogr Univ Manitoba, Wimipeg, MB, R3T 2N2 Canada.*

Surange S, Wollum AG, Nikhil Kumar, Nautiyal CS (1997). Characterisation of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43:891–894

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–27339.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. (25):4876–4882.

Trevaskis B, Colebatch G, Desbrosses G, Wandrey M, Wienkoop S, Saalbach G, Udvardi M. (2002). Differentiation of plant cells during symbiotic nitrogen fixation. Comparative and Functional Genomics. (3) 151–157.

Trinick MJ, Hadobas PA. (1988). Biology of the Parasponia - Bradyrhizobium symbiosis. Plant and Soil (110) 177-185.

Trujillo M. E., Willems A., Abril A., Planchuelo A. M., Rivas R., Ludena D., Mateos P. F., Martinez-Molina E., Velazquez E. (2005). Nodulation of *Lupinus albus* by strains of *Ochrobactrum lupini* sp. nov. Appl. Environ. Microb. 71: 1318-1327.

Udvardi MK, Day DA. (1997). Metabolite Transport across Symbiotic Membranes of Legume Nodules. Annual Review of Plant Physiology and Plant Molecular Biology. 48: 493–523.

Unkovich M., Herridge D., Peoples M., Cadisch G., Boddey B., Giller K., Alves B., Chalk P., (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Camberra, Australia, 258p

Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E. (2006). Rhizobium lusitanum sp. nov a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol.; 56:2631–7.

Valverde A., Velazquez, E., Fernandez-Santos, F., Vizcaino, N., Rivas, R., Mateos, P. F., Martinez-Molina, E., Igual, J. M., Willems, A. (2005). *Phyllobacterium trifolii* sp. nov., nodulating *Trifolium* and *Lupinus* in Spanish soils. Int. J. Syst. Evol. Microbiol. 55:1985–1989.

Van Berkum P, Elia P, Eardly BD (2006). Multilocus sequence typing as an approach for population analysis of Medicago-nodulating rhizobia. J Bacteriol. (188):5570–7.

Vance C.P. (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127, 390-397.

Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. (1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60(2) 407–438.

Villegas MC, Rome S, Mauré L, et al (2006). Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst Appl Microbiol.; 29:526–38.

Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B, et al (2008). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl Environ Microbiol.;74:6987–96.

Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martínez-Romero E (2005). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol.;28: 702–16.

Wawrik B, Kerkhof L, Zylstra GJ, Kukor JJ (2005). Identification of unique type II polyketide synthase genes in soil. Appl. Env. Microbiol. (71):2232–2238

Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore, W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P., Truper H.G. (1987). Re- port of the Ad Hoc committee on reconciliation of approaches to bacterial systemat. Int. J. Syst. Bacteriol. 37(4): 463–464.

Woese C.R. (1991). Prokaryote systematics: the evolution of a sci- ence. The prokaryotes. *Sous la direction de* : A. Balows, H.G. Trüper, M. Dworkin, W. Harder et K.H. Schleifer. Vol. 1. Springer, New York. pp. 3–18.

Woese C.R. (1987). Bacterial evolution. Microbiol. Rev. 51(2): 221–271.

Woese C.R.and Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. (74) 5088–5090.

Wojciechowski M. F. (2003). Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective, volume 10, pages 5–35. Royal Botanic Gardens, Kew.

Wojciechowski M. F., Lavin M., Sanderson M. J. (2004). A phylogeny of legumes (Legumenosae) based on analyses of the plastid *matK* gene resolves many well-supported subclades within the family. *American Journal of Botany*, 91(11):1846–1862.

Wolde-Meskel E., Terefework Z., Lindstrom K., Frosteg A.°(2004). Metabolic and genetic diversity of rhizobia isolated from field standing native and exotic woody legumes in SouthernEthiopia,Syst.Appl.Microbiol.(27) 603–611.

Young JP & Johnston AW (1989). The evolution of specificity in the legume-rhizobium symbiosis. Trends Ecol Evol. (4) 341–349.

Young JPW. (1992). Phylogenetic classification of nitrogen fixing-organisms. Biological Nitrogen Fixation. eds. G Stacey, RH Burris, and HJ Evans. Chapman & Hall: New York. 43-86.

Young JPW, Downer HL, Eardly BD. (1991). Phylogeny of the phototropic *Rhizobium* strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. *J. Bacteriol.* (173):2271–2277.

Zahran HH (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. (63) 968–89

Zahran HH (2001). Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of biotechnology. (91) 143-158

Zakhia F.&de Lajudie P. (2001). Taxonomy of Rhizobia. Mini-review. Agronomie, (21) 569–576.

Zakhia F., Jeder H., Domergue O., Willems A., Cleyet-Marel J.C., Gillis M., Dreyfus B., de Lajudie P. (2004). Characterisa- tion of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst. Appl. Microbiol. 27(3): 380–395.

Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P. (2006). Diverse Bacteria Associated with Root Nodules of Spontaneous Legumes in Tunisia and First Report for *nifH* - like Gene within the Genera *Microbacterium* and Starkeya. Microbial Ecology. (5) 375–393.

Zeigler DR (2003). Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol. (53)1893–900.

ANNEXES

Phylum	Exemple	Association
Bactéries vertes sulfureuses	Chlorobium limicola	
Firmibactéries (Gram+)	Bacillus polymixa	
	Clostridium pasteurianum	
Thallobactéries (Gram+)	Frankia	Symbiote plantes actinorhiziennes
Cyanobactéries	Anabaena azollae	Symbiote de la fougère Azolla
	Nostoc	Symbiote de la fougère <i>Cycas</i>
α Protéobactéries	Acetobacter diazotrophicus	Endophyte canne à sucre
	Azospirillum brasilense	Associé aux racines de Graminées
	Azorhizobium caulinodans	Symbiote de Sesbania rostrata
	Bradyrhizobium japonicum	Symbiote du soja
	Rhizobium leguminosarum	Symbiote du pois
	Sinorhizobium meliloti	Symbiote de la luzerne
	Mesorhizobium loti	Symbiote de lotus
	Methylobacterium nodulans	Symbiote de crotalaires
	Blastobacter denitrificans	Symbiote d'aschynomène
	Phyllobacterium trifolii	Symbiote de Trifolium pratense
	Devosia neptuniae	Symbiote de Neptunia natans
	Rhodobacter capsulatus	Bactérie photosynthétique
β Protéobactéries	Burkholderia caribensis	Symbiote d'aspalatus
	Wautersia taiwanensis	Symbiote de mimosa
	Herbaspirillum lusitanum	Symbiote de Phaselus vulgaris
	Azoarcus spp	Endophyte de l'herbe de Kallar
	Herbaspirillum seropedicae	Endophyte de la canne à sucre
	Burkholderia vietnamensis	Rhizosphère du riz
γ Protéobactéries	Azotobacter vinelandii	
	Klebsiella pneumoniae	
	Pseudomonas stutzeri	
		Endophyte du riz
δ Protéobactéries	Desulfovibrio gigas	
Archaebactéries	Methanobacterium ivanovii	
	Methanococcus thermolithotrophicus	

Source : Moulin (2002).

1

E	Oued	
---	------	--

	remperatars min	n moyenne										
	1	2	3	4	5	6	7	8	9	10	11	12
2005	26,1	44,3	115,7	146,2	199,8	241,2	280,9	262,5	225,5	181,3	110,2	48,1
2006	34,6	69,2	113,9	161,1	206,7	234,1	272,1	259,8	204,9	171,9	100,7	76,1
2007	49,5	83,5	97,5	145,1	190,4	243,5	246,4	266,5	239,3	171,1	78,5	48,0
2008	54,7	60,8	104,8	152,4	198,7	227,7	280,2	265,2	238,6	183,4	97,5	53,4
2009	71,6	64,4	99,3	125,3	179,9	237,4	273,3	270,3	219,6	154,0	95,3	78,8
2010	72,7	87,8	117,7	155,4	176,9	239,3	272,9	268,2	224,2	160,0	102,2	62,7
2011	45,2	55,9	95,7	152,3	179,8	227,4	269,7	263,4	245,3	154,6	101,2	53,4
2012	33,2	29,7	94,8	141,0	186,4	253,9	279,9	275,1	221,8	180,1	119,5	42,1
2013	56,9	49.5	109.0	144.6	183.1	219.7	263.1	258.1	233.0	199.9	100.9	65.2
2014	63.0	82.5	101.0	150.6	196.6	228.8	262.6	270.1	251.0	176.0	128.6	56.5
	Températurs ma	xi movenne	en 1/10 °C						,	· · · · ·	,	,
	1	2	3	4	5	6	7	8	9	10	11	12
2005	159.42	176.14	246.32	287.70	355.32	384.23	433.71	408.26	347.73	303.26	240.27	165.55
2006	151.97	192.11	250.71	200.47	255.25	200.77	411.07	404.42	221.20	220.04	227.22	179.10
2000	101,87	217.20	239,71	264.20	228.26	390,77	200.71	404,42	265 22	320,94	237,23	172.55
2007	194,64	217,29	231,74	204,50	241 59	400,10	399,71	411,10	265 52	200,42	224,77	1/3,33
2008	176,23	200,45	246,32	303,77	341,58	3/3,13	434,19	415,19	305,55	288,42	212,80	164,19
2009	108,52	187,43	228,77	258,55	328,94	389,00	430,06	415,10	333,87	290,10	238,47	211,39
2010	189,84	225,25	239,61	294,20	315,81	388,03	421,23	418,20	348,50	289,05	231,27	191,00
2011	190,61	195,04	220,06	291,57	318,03	307,10	422,32	409,00	3/7,47	282,81	254,80	190,29
2012	1/5,10	100,41	255,08	265,40	333,33	411,27	432,77	421,29	262.50	242.00	231,60	167,64
2015	187,19	189,80	237,03	291,77	332,00	372,15	415,05	300,40	305,30	343,00	227,95	109,90
2014	183,87	215,43	228,48	301,37	335,23	3/3,8/	417,10	421,90	385,13	322,84	253,67	183,00
	Pluie en 1/10) mm			_		_			10		
0005		2	3	4	5	6	7	8	9	10		12
2005	0	17,01	36,01	4,01	0	42,01	0,02	11	194	0,01	23	30,01
2006	536	23,01	52.01	03	9,01	5,02	0,02	245	110,01	28	39,01	15/
2007	0	3,03	52,01	244,03	0,01	0.01	0.02	21,01	24,03	30,04	0	189,01
2008	1052.01	0,03	0,02	72.02	0,02	0,01	0,02	0,01	12,03	10/,03	1,02	115,02
2009	1053,01	7,02	407,02	/3,03	66,01	0,01	0,01	0,01	316,03	7,01	0	1
2010	139,01	24,02	4,02	91,02	16,01	49,02	0	0	20,01	81	56,02	6
2011	5,01	13,02	88,03	94,03	25,02	0,01	18	0,02	5,02	47,02	0,03	0
2012	31,03	0,02	18,03	113,02	0	0	0,01	2	44,02	20,02	1,02	0
2013	33,02	2,02	59	345,01	6	0,01	0,01	13,02	0	4,01	109,01	83,02
2014	58,01	0	89	0,01	0,03	8	0	0	20	0,03	/4,01	2,04
	Insolation to	otal en 1/10	heur									
	1	2	3	4	5	6	7	8	9	10	11	12
2005	2476,0	2359,0	2326,0	2784,0	3295,0	3240,0	3210,0	3392,0	2667,0	2690,0	2396,0	2039,0
2006	2143,0	2308,0	3153,0	2744,0	2792,0	3345,0	3566,0	3301,0	2788,0	2838,0	2492,0	2088,0
2007	2512,0	2330,0	2865,0	2311,0	3253,0	3237,0	3699,0	3110,0	2631,0	2549,0	2651,0	2048,0
2008	2629,0	2293,0	2556,0	2409,0	2234,0	3652,0	3517,0	3375,0	2444,0	1965,0	2397,0	2236,0
2009	1926,0	2562,0	2671,0	3034,0	3481,0	3285,0	3557,0	3209,0	2647,0	3002,0	2553,0	2390,0
2010	2460,0	2059,0	2288,0	2832,0	3025,0	3227,0	3720,0	3454,0	2502,0	2514,0	2384,0	2258,0
2011	2435.0	2425.0	2579.0	3051.0	3044.0	3700.0	3648.0	3497.0	2170.0	2543.0	2245.0	2367.0
2012	2358.0	2706.0	2222.0	2828.0	3362.0	3470.0	3651.0	3454.0	2909.0	2508.0	2322.0	2509.0
2012	2306.0	2421.0	2473.0	2628,0	3167.0	3442.0	3665.0	3200.0	2648.0	2700.0	2520.0	1802.0
2013	2300,0	2421,0	2473,0	2028,0	2217.0	2200.0	2019.0	2214.0	2040,0	2709,0	2052.0	2271.0
2014	2551,0	2204,0	2414,0	3092,0	5217,0	5509,0	5218,0	5214,0	2309,0	2747,0	2032,0	2271,0
	Vent en m/s				~	-	-	0	0	10		10
2005	1		2	4	5		/	8	y y		1.1	
2005	1	2	3	4	2.7	0	4.7	26	27	10	11	12
	1 2,1	2 3,5	3 4,1	4 4,4	3,7	3,9	4,5	3,6	2,7	2,2	11 2,2	2,0
2006	1 2,1 2,2	2 3,5 2,7	3 4,1 3,7	4 4,4 3,0	3,7 3,0	3,9 2,8	4,5 2,9	3,6 2,7	2,7 2,0	2,2 1,5	11 2,2 1,3	2,0 1,8
2006 2007	1 2,1 2,2 1,1	2 3,5 2,7 2,6	3 4,1 3,7 3,6	4 4,4 3,0 5,0	3,7 3,0 3,3	3,9 2,8 4,1	4,5 2,9 3,1	3,6 2,7 3,0	2,7 2,0 3,4	2,2 1,5 2,8	11 2,2 1,3 1,3	2,0 1,8 1,6
2006 2007 2008	1 2,1 2,2 1,1 1,5	2 3,5 2,7 2,6 1,4	3 4,1 3,7 3,6 3,0	4 4,4 3,0 5,0 3,3	3,7 3,0 3,3 4,0	3,9 2,8 4,1 3,8	4,5 2,9 3,1 2,9	3,6 2,7 3,0 2,7	2,7 2,0 3,4 2,8	2,2 1,5 2,8 3,0	11 2,2 1,3 1,3 1,8	12 2,0 1,8 1,6 1,7
2006 2007 2008 2009	1 2,1 2,2 1,1 1,5 3,0	2 3,5 2,7 2,6 1,4 2,8	3 4,1 3,7 3,6 3,0 3,1	4 4,4 3,0 5,0 3,3 3,3	3,7 3,0 3,3 4,0 3,3	3,9 2,8 4,1 3,8 2,5	4,5 2,9 3,1 2,9 2,2	3,6 2,7 3,0 2,7 2,9	2,7 2,0 3,4 2,8 2,5	2,2 1,5 2,8 3,0 1,3	11 2,2 1,3 1,3 1,8 1,7	$ \begin{array}{r} 12 \\ 2,0 \\ 1,8 \\ 1,6 \\ 1,7 \\ 2,6 \\ \end{array} $
2006 2007 2008 2009 2010	1 2,1 2,2 1,1 1,5 3,0 2,7	2 3,5 2,7 2,6 1,4 2,8 2,9	3 4,1 3,7 3,6 3,0 3,1 2,6 $ $	4 4,4 3,0 5,0 3,3 3,3 2,9	3,7 3,0 3,3 4,0 3,3 3,4	3,9 2,8 4,1 3,8 2,5 3,3	4,5 2,9 3,1 2,9 2,2 2,3	3,6 2,7 3,0 2,7 2,9 3,1	2,7 2,0 3,4 2,8 2,5	$ \begin{array}{r} 10 \\ 2,2 \\ 1,5 \\ 2,8 \\ 3,0 \\ 1,3 \\ \end{array} $	11 2,2 1,3 1,3 1,8 1,7	$ \begin{array}{r} 12 \\ 2,0 \\ 1,8 \\ 1,6 \\ 1,7 \\ 2,6 \\ 2,0 \\ \end{array} $
2006 2007 2008 2009 2010 2011	$ \begin{array}{r} 1 \\ 2,1 \\ 2,2 \\ 1,1 \\ 1,5 \\ 3,0 \\ 2,7 \\ 1.2 \\ \end{array} $	2 3,5 2,7 2,6 1,4 2,8 2,9 2.6	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1	3,7 3,0 3,3 4,0 3,3 3,4 3,4 3,1	3,9 2,8 4,1 3,8 2,5 3,3 2.7	4,5 2,9 3,1 2,9 2,2 2,3 3,0	3,6 2,7 3,0 2,7 2,9 3,1 1.9	2,7 2,0 3,4 2,8 2,5 2.0	2,2 1,5 2,8 3,0 1,3	11 2,2 1,3 1,3 1,3 1,8 1,7 1.7	$ \begin{array}{r} 12 \\ 2,0 \\ 1,8 \\ 1,6 \\ 1,7 \\ 2,6 \\ 2,0 \\ 0.9 \\ \end{array} $
2006 2007 2008 2009 2010 2011 2012	$ \begin{array}{r} 1 \\ 2,1 \\ 2,2 \\ 1,1 \\ 1,5 \\ 3,0 \\ 2,7 \\ 1,2 \\ 1.9 \\ \end{array} $	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1	$ \begin{array}{r} 3 \\ 4,1 \\ 3,7 \\ 3,6 \\ 3,0 \\ 3,1 \\ 2,6 \\ 3,3 \\ 1.9 \\ 1.9 \end{array} $	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4	3,7 3,0 3,3 4,0 3,3 3,4 3,4 3,1 3,4	$ \begin{array}{r} 3,9 \\ 2,8 \\ 4,1 \\ 3,8 \\ 2,5 \\ 3,3 \\ 2,7 \\ \end{array} $	4,5 2,9 3,1 2,9 2,2 2,3 3,0	$ \begin{array}{r} 3,6 \\ 2,7 \\ 3,0 \\ 2,7 \\ 2,9 \\ 3,1 \\ 1,9 \\ \end{array} $	2,7 2,0 3,4 2,8 2,5 2,0 1.4	$ \begin{array}{r} 10 \\ 2,2 \\ 1,5 \\ 2,8 \\ 3,0 \\ 1,3 \\ \hline 1,5 \\ 1.0 \\ \hline 1.0 \end{array} $	$ \begin{array}{r} 11 \\ 2,2 \\ 1,3 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,7 \\ 1.7 \\ 1.2 \\ 1.2 $	$ \begin{array}{c} 12 \\ 2,0 \\ 1,8 \\ 1,6 \\ 1,7 \\ 2,6 \\ 2,0 \\ 0,9 \\ 1,1 \\ \end{array} $
2006 2007 2008 2009 2010 2011 2012 2013	$ \begin{array}{r} 1 \\ 2,1 \\ 2,2 \\ 1,1 \\ 1,5 \\ 3,0 \\ 2,7 \\ 1,2 \\ 1,9 \\ 2,4 \\ \end{array} $	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5	$ \begin{array}{r} 3 \\ 4,1 \\ 3,7 \\ 3,6 \\ 3,0 \\ 3,1 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,2 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 2,6 \\ 3,3 \\ 1,9 \\ 3,3 \\ 1,9 \\ 3,5 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 1,9 \\ 3,5 \\ 3,5 \\ 1,9 \\ 3,5 \\ 3,$	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0	$ \begin{array}{r} 3,6 \\ 2,7 \\ 3,0 \\ 2,7 \\ 2,9 \\ 3,1 \\ 1,9 \\ \hline \end{array} $	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,0	$ \begin{array}{r} 10 \\ 2,2 \\ 1,5 \\ 2,8 \\ 3,0 \\ 1,3 \\ 1,5 \\ 1,0 \\ 1,0 \\ \hline $	$ \begin{array}{r} 11 \\ 2,2 \\ 1,3 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,7 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1,3 \\ 1,3 \\ 1,5 \\ 1$	$ \begin{array}{r} 12 \\ 2,0 \\ 1,8 \\ 1,6 \\ 1,7 \\ 2,6 \\ 2,0 \\ 0,9 \\ 1,1 \\ 1.0 \\ \end{array} $
2006 2007 2008 2009 2010 2011 2012 2013 2014	$ \begin{array}{r} 1 \\ 2,1 \\ 2,2 \\ 1,1 \\ 1,5 \\ 3,0 \\ 2,7 \\ 1,2 \\ 1,9 \\ 2,4 \\ 0.4 \\ \end{array} $	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 2,6 3,3 4,1 4,	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2	$ \begin{array}{r} 3,7\\ 3,0\\ 3,3\\ 4,0\\ 3,3\\ 3,4\\ 3,1\\ 3,4\\ 3,1\\ 3,1\\ \end{array} $	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5	$ \begin{array}{r} 3,6 \\ 2,7 \\ 3,0 \\ 2,7 \\ 2,9 \\ 3,1 \\ 1,9 \\ \hline 2,0 \\ \end{array} $	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9	2,2 1,5 2,8 3,0 1,3 1,5 1,0	$ \begin{array}{r} 11 \\ 2,2 \\ 1,3 \\ 1,3 \\ 1,3 \\ 1,7 \\ 1,7 \\ 1,7 \\ 1,2 \\ 1,3 \\ 1$	$ \begin{array}{c} 12 \\ 2,0 \\ 1,8 \\ 1,6 \\ 1,7 \\ 2,6 \\ 2,0 \\ 0,9 \\ 1,1 \\ 1,0 \\ 0,0 \\ \end{array} $
2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2	$ \begin{array}{r} 3,7\\ 3,0\\ 3,3\\ 4,0\\ 3,3\\ 3,4\\ 3,1\\ 3,4\\ 3,1\\ \end{array} $	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9	2,2 1,5 2,8 3,0 1,3 1,5 1,0	$ \begin{array}{c} 11 \\ 2,2 \\ 1,3 \\ 1,3 \\ 1,8 \\ 1,7 \\ \hline 1,7 \\ 1,2 \\ 1,3 \\ \end{array} $	$ \begin{array}{c} 12\\ 2,0\\ 1,8\\ 1,6\\ 1,7\\ 2,6\\ 2,0\\ 0,9\\ 1,1\\ 1,0\\ 0,0\\ \end{array} $
2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C	$ \begin{array}{r} 4 \\ 4,4 \\ 3,0 \\ 5,0 \\ 3,3 \\ 3,3 \\ 2,9 \\ 3,1 \\ 3,4 \\ 3,2 \\ \end{array} $	$ \begin{array}{r} 3,7\\ 3,0\\ 3,3\\ 4,0\\ 3,3\\ 3,4\\ 3,1\\ 3,4\\ 3,1\\ \end{array} $	3.9 2.8 4.1 3.8 2.5 3.3 2.7 4.1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9	2,2 1,5 2,8 3,0 1,3 1,5 1,0	11 2,2 1,3 1,3 1,3 1,8 1,7 1,7 1,2 1,3	$ \begin{array}{r} 12 \\ 2,0 \\ 1,8 \\ 1,6 \\ 1,7 \\ 2,6 \\ 2,0 \\ 0,9 \\ 1,1 \\ 1,0 \\ 0,0 \\ 12 \end{array} $
2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 80,4	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107 5	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5	$ \begin{array}{c} 3,9\\ 2,8\\ 4,1\\ 3,8\\ 2,5\\ 3,3\\ 2,7\\ 4,1\\ \hline \\ 6\\ 312,9\\ \end{array} $	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355 4	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 8 3225	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 225 7	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 10 228.0	11 2,2 1,3 1,3 1,8 1,7 1,7 1,2 1,3 11 17 7	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0
2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 225,0	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 214,2	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 242,4	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 8 332,5 220,5	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 2,67	2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 242,2	11 2,2 1,3 1,3 1,8 1,7 1,2 1,3 1,17 1,2 1,3	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 122 (
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2	4 4,4 3,0 5,0 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 280,9	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 225,5	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 7 355,4 342,4 342,4	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 8 332,5 329,5 229,0	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 267,1 267,2	2,2 1,5 2,8 3,0 1,3 1,5 1,0 10 238,9 243,3 222,1	$ \begin{array}{c} 11 \\ 2,2 \\ 1,3 \\ 1,3 \\ 1,8 \\ 1,7 \\ 1,7 \\ 1,7 \\ 1,7 \\ 1,2 \\ 1,3 \\ 11 \\ 171,7 \\ 162,5 \\ 147,6 \\ $	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 126
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 8 332,5 332,5 332,5 338,0	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 267,1 300,8	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 10 238,9 243,3 232,1	11 2,2 1,3 1,3 1,8 1,7 1,2 1,3 1,17 1,2 1,3 1,17 1,25 147,17 162,5 147,9	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 2,1 3,5 0,7 107,6 122,4 147,5 128,2	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2 269,6	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 8 332,5 332,5 332,5 338,0 340,2	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 267,1 300,8 299,9	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2	11 2,2 1,3 1,3 1,8 1,7 1,2 1,3 1,17 1,2 1,3 1,17 1,2 1,3	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 noyenne en 2 107,6 122,4 147,5 128,2 124,7	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0	4 4,4 3,0 5,0 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2 269,6 256,7	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 329,5 338,0 340,2 343,9	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3	11 2,2 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,17 1,20 1,3 1,10 1,17 1,20 1,10 171,7 162,5 147,9 152,0 161,8 <th>12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9</th>	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 noyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2 269,6 256,7 248,8	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 329,5 338,0 340,2 343,9 345,3	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7	2.2 1.5 2.8 3.0 1.3 1.5 1.0 238.9 243.3 232.1 231.2 219.3 224,8	11 2,2 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1,17 1,2 1,3 1,52,0 161,8 166,4	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2	3 3 9 2,8 4,1 3,8 2,5 3,3 2,7 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 8 332,5 329,5 338,0 340,2 343,9 345,3 339,4	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8	11 2,2 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1,17 1,20 1,3 1,1 171,7 162,5 147,9 152,0 161,8 166,4 167,0	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 11,1 1,0 0,0 123,6 106,0 123,6 105,0 138,9 123,7 117,8
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4	3 9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 337,7 337,7	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 332,5 329,5 338,0 340,2 343,9 345,3 339,4 349,3	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6	10 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 231,2 219,3 224,8 217,8 245,3	11 2,2 1,3 1,8 1,7 1,2 1,3 1 177 1,2 1,3 1 177,7 162,5 147,9 152,0 161,8 167,0 184,1	12 2,0 1,8 1,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3
2006 2007 2008 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9	4 4,4 3,0 5,0 3,3 2,9 3,1 3,4 3,2 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 254,2 265,4 265,4 260,1	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 301,6 337,7 295,9	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 355,4 342,4 355,4 342,4 358,7 358,7 358,7 358,7 358,7 358,6 349,6 362,9 340,0	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 332,5 332,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 294,6	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 231,2 219,3 247,8 245,3 245,3 267 2	11 2,2 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1,1 171,7 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2006 2006 2006 2006 2000 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 noyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 164,7 164,7 164,7 164,7 164,7 18,7 18,7 18,7 18,9 164,7 164,7 17,7 18,7 18,7 18,9 164,7 164,7 17,7 18,7 18,7 18,9 164,7 16	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,4 260,1 268,7	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 337,7 295,9 303,9	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 332,5 332,5 332,5 332,5 332,5 338,0 340,2 343,9 345,3 339,4 345,3 339,4 345,3 339,4 345,3 344,6	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 296,8 315,6	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1	11 2,2 1,3 1,3 1,8 1,7 1,2 1,3 1,17 1,2 1,3 1,17 1,2 1,3 1,17 1,2 1,3 1,17 1,2,2 1,3 1,17 1,2,2 1,3 1,17 1,2,2 1,3 1,17 1,2,2 1,3 1,17 1,2,2 1,3 1,17 1,2,2 1,3 1,1,3 1,1,3 1,1,3 1,1,3 1,2,1 1,2,2 1,3,3 1,4,9 1,5,2,0 1,6,4 1,6,4 1,6,4 1,6,4 1,4,4 <tr td=""></tr>	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12,0 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 5
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité a	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 P %	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,4 260,1 268,7	3,9 3,9 2,8 4,1 3,3 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 337,7 295,9 303,9	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 332,5 332,5 332,5 332,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 3344,6	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 296,8 315,6	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1	11 2,2 1,3 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1 171,7 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n %	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3	4 4,4 3,0 5,0 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,4 265,4 268,7	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 337,7 295,9 303,9	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 2,0 332,5 332,5 332,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 339,4 344,6	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 296,8 315,6	10 2.2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1	11 2,2 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1 171,7 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6	12 2,0 1,8 1,6 2,0 0,9 1,1 1,0 0,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n %	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45.2	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 224,5 216,0 222,8 228,2	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,4 265,4 266,7 248,8	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 337,7 295,9 303,9 6 22,5	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0 7 7	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 329,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 344,6 8 8	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 296,8 315,6	10 2.2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1	11 2,2 1,3 1,3 1,7 1,7 1,2 1,3 1 171,7 162,5 147,9 152,0 161,8 166,4 162,4 186,6	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 (2,2)	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 49,9 5 5 5 5 5 5 5 5 5 5 5 5 5	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45,2 45,2 162,6 170,6 170,6 189,9 164,7 10,6 10,7	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 117	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,4 265,4 266,1 268,7	3 9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 355,4 342,4 326,3 355,4 342,4 326,3 353,6 349,4 349,6 362,9 340,0 340,0 77,4 27,4 21,5	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 332,5 3329,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 339,4 349,3 325,3 344,6	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,6 299,9 274,1 286,7 309,6 294,6 294,6 294,6 294,6 294,6 294,6 294,6 294,6 294,6 294,6 295,8 315,6	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1	11 2,2 1,3 1,8 1,7 1,2 1,3 1 177 1,2 1,3 1 177 1,2 1,3 1 177,7 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6 11 55,9 50,2	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 68,8 (2,7)	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 7 7 7 7 7 7 7 7 7 7 7 7 7	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45,2 43,9 164,7 164	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,4 260,1 268,7 5 35,0 34,9 265,2	6 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 355,4 342,4 326,3 358,7 353,6 349,4 358,7 353,6 349,4 349,6 362,9 340,0 340,0 7 7 27,4 31,9 27,2	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 332,5 332,5 3329,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 339,4 349,3 325,3 344,6 8 8 35,2 40,6 22,6 22,6 22,6 22,7 2,9 3,1 1,9 2,0 2,7 2,9 3,1 1,9 2,0 2,0 2,7 2,9 3,1 1,9 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 296,8 315,6	10 238,9 243,3 238,9 243,3 232,1 219,3 224,8 217,8 245,3 267,2 246,1 10 60,9 47,4	11 2,2 1,3 1,8 1,7 1,2 1,3 1 17 1,2 1,3 1 1,7 1,2 1,3 1 17,7 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6 11 55,9 58,1 42,7	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5 12 71,2 72,7 72,7
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 68,8 63,4	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45,2 43,9 42,4	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 216,0 222,8 228,2 4 37,0 41,7 52,8	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 260,1 268,7 5 35,0 34,9 36,0	3,9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,5 301,6 337,7 295,9 303,9 6 33,5 29,2 28,4	4,5 2,9 3,1 2,9 2,1 3,0 2,2 2,3 3,0 2,5 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0 340,0 340,0 30,9	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 8 332,5 332,5 332,5 332,5 332,5 332,5 332,5 332,5 338,0 340,2 343,9 345,3 339,4 345,3 339,4 345,3 339,4 345,3 332,5 334,6 8 8 35,2 40,6 33,1	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 300,8 294,6 294,6 294,6 294,6 294,6 50,7 42,0	10 28,9 243,3 238,9 243,3 231,2 219,3 245,3 267,2 246,1 10 60,9 47,4 50,9	11 2,2 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,3 1,1 1,2,5 1,47,9 152,0 161,8 166,4 166,4 184,1 1,2,4 184,6 11 55,9 58,1 49,7	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5 12 71,2 72,7 58,7
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 68,8 63,4 64,5	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7 51,4	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 1/10 °C	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7 52,8 30,9	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 266,1 268,7 268,7 268,7 35,0 34,9 36,0 32,3	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 326,0 301,5 314,3 37,6 301,6 337,7 295,9 303,9 6 33,5 29,2 28,4 33,0	4,5 2,9 3,1 2,9 2,1 3,0 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0 7 27,4 31,9 30,9 26,2	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 332,5 332,5 332,5 332,5 332,5 332,5 332,5 332,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 344,6 8 8 35,2 40,6 33,1 34,9	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 294,6 294,6 315,6 9 49,6 50,7 42,0 43,1	10 238,9 243,3 232,1 231,2 217,8 244,3 231,2 217,8 246,1 10 60,9 47,4 50,9 62,7	11 2,2 1,3 1,3 1,8 1,7 1,2 1,3 1,17 1,2 1,3 1,7 1,2 1,3 1,17 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6 11 55,9 58,1 49,7 62,5	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5 12 71,2 72,7 58,7 69,9
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 68,8 63,4 64,5 71,9	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7 51,4 54,8	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45,2 43,9 42,4 40,0 52,0	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7 52,8 30,9 47,1	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 3,4 3,1 280,9 266,2 269,6 256,7 248,8 254,2 265,4 266,1 268,7 5 35,0 34,9 36,0 32,3 39,2	3,9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 337,7 295,9 303,9 6 33,5 29,2 28,4 33,0 32,0	4,5 2,9 3,1 2,9 2,1 3,0 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0 7 27,4 31,9 30,9 26,2 28,2	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 2,0 332,5 332,5 332,5 332,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 344,6 8 35,2 40,6 33,1 34,9 31,2	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 296,8 315,6 9 49,6 50,7 42,0 43,1 56,6	10 2.2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1 10 60,9 47,4 50,9 62,7 52,6	11 2,2 1,3 1,3 1,8 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1,7 1,2 1,3 11 171,7 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6 11 55,9 58,1 49,7 62,5 54,5	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5 12 71,2 72,7 58,7 69,9 57,4
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2010 2011 2012 2013 2014 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 68,8 63,4 64,5 71,9 60,6	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7 51,4 54,8 47,4	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45,2 43,9 42,4 40,0 52,0 41,2	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7 52,8 30,9 47,1 46,8	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,2 35,0 34,9 36,0 32,3 39,2 36,3 39,2 36,3	3 9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,1 3,0 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0 7 27,4 31,9 26,2 28,2 29,3	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 2,0 332,5 329,5 338,0 340,2 343,9 345,3 339,4 349,3 325,3 344,6 8 35,2 40,6 33,1 34,9 31,2 31,7	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 296,8 315,6 9 49,6 50,7 42,0 43,1 56,6 44,8	10 2.2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1 10 60,9 47,4 50,9 62,7 52,6 48,6	11 2,2 1,3 1,3 1,7 1,7 1,2 1,3 1,7 1,2 1,3 1 171,7 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6 11 55,9 58,1 49,7 62,5 54,5 52,8	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5 12 71,7 58,7 69,9 57,4 48,8
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 68,8 63,4 64,5 71,9 60,6 59,5	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7 51,4 54,8 47,4 50,9	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45,2 43,9 42,4 40,0 52,0 41,2 53,2	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7 52,8 30,9 47,1 46,8 40,3	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 5 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 266,1 268,7 5 35,0 34,9 36,0 32,3 39,2 36,3 38,4	3 9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 7 355,4 342,4 326,3 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0 7 7 27,4 31,9 26,2 27,4 31,9 26,2 28,2 29,3 29,8	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 332,5 329,5 338,0 340,2 343,9 345,3 339,4 345,3 339,4 349,3 325,3 344,6 8 8 35,2 40,6 33,1 34,9 31,2 31,7 30,2	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 294,6 294,6 296,8 315,6 9 49,6 50,7 42,0 43,1 56,6 544,8 38,8	10 2.2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 231,2 219,3 224,8 217,8 245,3 267,2 246,1 10 60,9 47,4 50,9 62,7 52,6 48,6 57,1	11 2,2 1,3 1,3 1,7 1,2 1,3 1,7 1,2 1,3 1 177 1,2 1,3 1 177 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6 11 55,9 58,1 49,7 62,5 54,5 52,8 58,8	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,7 117,8 112,3 114,5 115,5 12 71,2 72,7 58,7 69,9 57,4 48,8 64,4
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	1 2,1 2,2 1,1 1,5 3,0 2,7 1,2 1,9 2,4 0,4 Températurs n 1 89,4 90,5 115,4 112,7 116,8 127,5 115,3 103,0 118,1 121,8 Humidité e 1 61,9 68,8 63,4 64,5 71,9 60,6 59,5 58,2	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 moyenne en 2 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7 51,4 54,8 47,4 50,9 49,8 8 109,8 109,8 109,8 100,2	$\begin{array}{c} 3\\ 4,1\\ 3,7\\ 3,6\\ 3,0\\ 3,1\\ 2,6\\ 3,3\\ 1,9\\ 2,6\\ 1,9\\ 2,6\\ 1,9\\ 2,6\\ 1,9\\ 2,6\\ 1,9\\ 2,6\\ 1,9\\ 2,6\\ 1,9\\ 1,9\\ 2,6\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9\\ 1,9$	4 4,4 3,0 5,0 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7 52,8 30,9 47,1 46,8 40,3 37,7	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,4 265,4 265,4 265,4 266,1 268,7 35,0 34,9 36,0 32,3 39,2 36,3 39,2 36,3 38,4 33,1	3 9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 355,4 342,4 326,3 355,4 342,4 326,3 353,6 349,4 349,6 362,9 340,0 340,0 7 7 27,4 31,9 30,9 26,2 28,2 29,8 29,8 29,8 29,8 29,6	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 2,0 332,5 32,5	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 294,6 294,6 294,6 50,7 42,0 43,1 56,6 44,8 338,8 36,0	10 23,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 232,1 219,3 224,8 217,8 245,3 267,2 246,1 10 60,9 47,4 50,9 62,7 52,6 48,6 57,1 46,9	11 2,2 1,3 1,3 1,7 1,7 1,7 1,7 1,2 1,3 1 177 1,2 1,3 1 177 162,5 147,9 152,0 161,8 166,4 167,0 184,1 162,4 186,6 11 55,9 58,1 49,7 62,5 54,5 52,8 58,8 58,5	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,6 106,9 105,0 138,9 112,3 114,5 115,5 12 71,2 72,7 58,7 69,9 57,4 48,8 64,4 57,7
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2010 2010 2010 2010 2010 2011 2012 2003	$\begin{array}{c} 1 \\ 2,1 \\ 2,2 \\ 1,1 \\ 1,5 \\ 3,0 \\ 2,7 \\ 1,2 \\ 1,9 \\ 2,4 \\ 0,4 \\ \hline \textbf{Températurs 1} \\ 1 \\ 89,4 \\ 90,5 \\ 115,4 \\ 112,7 \\ 116,8 \\ 127,5 \\ 115,3 \\ 103,0 \\ 118,1 \\ 121,8 \\ \hline \textbf{Humidité e} \\ 1 \\ 61,9 \\ 68,8 \\ 63,4 \\ 64,5 \\ 71,9 \\ 60,6 \\ 59,5 \\ 58,2 \\ 57,5 \\ \end{array}$	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 3,5 3,5 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7 51,4 54,8 47,4 50,9 49,8 44,1 10,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,7 12,6 14,6,7 n % 12,6 14,7 51,7 51,4 54,8 47,4 50,9 49,9 49,8 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 44,1 50,9 50,	$\begin{array}{c} 3\\ 4,1\\ 3,7\\ 3,6\\ 3,0\\ 3,1\\ 2,6\\ 3,3\\ 1,9\\ 2,6\\ \hline \\ 1/10 \ ^{\circ}C\\ \hline \\ 3\\ 178,8\\ 185,2\\ 163,8\\ 174,9\\ 162,0\\ \hline \\ 188,2\\ 161,3\\ 167,2\\ 189,9\\ 164,7\\ \hline \\ 164,7\\ \hline \\ 189,9\\ 164,7\\ \hline \\ 3\\ 45,2\\ 43,9\\ 42,4\\ 40,0\\ 52,0\\ \hline \\ 41,2\\ 53,2\\ 46,0\\ 39,0\\ \hline \\ 9\\ 0\\ 0\\ 9\\ 0\\ 0\\ 0\\ 9\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	4 4,4 3,0 5,0 3,3 3,3 2,9 3,1 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7 52,8 30,9 47,1 46,8 40,3 37,7 37,9	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 265,3 36,0 32,3 38,4 33,3 38,4 33,3 38,4 33,3 38,4 33,3 33,1 36,0 33,3 36,0 33,3 36,0 33,3 36,0 33,3 36,0 33,3 36,0 33,3 36,0 32,3 36,0 33,1 36,0 33,1 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0	3,9 3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 326,0 301,5 314,3 326,0 301,6 337,7 295,9 303,9 6 33,5 29,2 28,4 33,0 32,0 30,1 33,9 26,7 35,1	4,5 2,9 3,1 2,9 2,2 2,3 3,0 2,5 2,5 3,0 2,5 3,0 3,0 2,5 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 2,0 332,5 333,5 332,5 333,5 332,5 333,5 332,5 333,5 33,5 33,	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 309,6 294,6 294,6 294,6 294,6 309,6 294,6 315,6 9 49,6 50,7 42,0 43,1 56,6 44,8 38,8 36,0 45,6	10 238,9 243,1 238,9 243,3 231,2 219,3 245,3 267,2 246,1 10 60,9 47,4 50,9 62,7 52,6 48,6 57,1 46,9 47,3	$\begin{array}{c} 11\\ 2,2\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,7\\ 1,2\\ 1,3\\ 1,7\\ 1,2\\ 1,3\\ 1,3\\ 1,7\\ 1,2\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,3$	12 2,0 1,8 1,6 1,7 2,6 2,0 0,9 1,1 1,0 0,09 1,1 1,0 0,0 12 101,0 123,6 106,9 105,0 138,9 123,6 114,5 115,5 12 71,2 72,7 58,7 69,9 57,4 48,8 64,4 57,7 73,9
2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2005 2006 2007 2008 2009 2010 2011 2012 2008 2009 2010 2011 2012 2013 2014	$\begin{array}{c} 1 \\ 2,1 \\ 2,2 \\ 1,1 \\ 1,5 \\ 3,0 \\ 2,7 \\ 1,2 \\ 1,9 \\ 2,4 \\ 0,4 \\ \hline \textbf{Températurs 1} \\ 1 \\ 89,4 \\ 90,5 \\ 115,4 \\ 112,7 \\ 116,8 \\ 127,5 \\ 115,3 \\ 103,0 \\ 118,1 \\ 121,8 \\ \hline \textbf{Humidité e} \\ 1 \\ 61,9 \\ 68,8 \\ 63,4 \\ 64,5 \\ 71,9 \\ 60,6 \\ 59,5 \\ 58,2 \\ 57,5 \\ 62,7 \\ \end{array}$	2 3,5 2,7 2,6 1,4 2,8 2,9 2,6 2,1 3,5 107,6 122,4 147,5 128,2 124,7 155,6 126,8 100,2 122,6 146,7 n % 2 49,9 66,1 51,7 51,4 54,8 47,4 50,9 49,8 44,1 53,0 153,0 155,	3 4,1 3,7 3,6 3,0 3,1 2,6 3,3 1,9 2,6 1/10 °C 3 178,8 185,2 163,8 174,9 162,0 188,2 161,3 167,2 189,9 164,7 3 45,2 43,9 42,4 40,0 52,0 41,2 53,2 46,0 39,9 52,2 2	4 4,4 3,0 5,0 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,4 3,2 4 216,1 235,0 202,4 230,3 192,6 225,2 224,5 216,0 222,8 228,2 4 37,0 41,7 52,8 30,9 47,1 46,8 40,3 37,7 37,9 40,4	3,7 3,0 3,3 4,0 3,3 3,4 3,1 3,4 3,1 3,4 3,1 3,4 3,1 278,0 280,9 266,2 269,6 256,7 248,8 254,2 265,4 266,1 266,7 248,8 254,2 265,4 260,1 268,7 35,0 34,9 36,0 32,3 39,2 36,3 38,4 33,1 36,4 24,8	3,9 2,8 4,1 3,8 2,5 3,3 2,7 4,1 6 313,8 314,3 326,0 301,5 314,3 317,6 301,6 337,7 295,9 303,9 6 33,5 29,2 28,4 33,0 32,0 30,1 33,9 26,7 35,1 27,6	4,5 2,9 3,1 2,9 2,3 3,0 2,5 7 355,4 342,4 326,3 355,4 342,4 326,3 358,7 353,6 349,4 349,6 362,9 340,0 340,0 7 27,4 31,9 30,9 26,2 29,3 29,8 26,6 32,3 32,5	3,6 2,7 3,0 2,7 2,9 3,1 1,9 2,0 2,0 332,5	2,7 2,0 3,4 2,8 2,5 2,0 1,4 2,9 285,7 267,1 300,8 299,9 274,1 286,7 300,8 299,9 274,1 286,7 300,8 299,9 274,1 286,7 300,8 294,6 315,6 44,8 38,8 36,0 44,8 $37,\epsilon$	10 2,2 1,5 2,8 3,0 1,3 1,5 1,0 238,9 243,3 231,2 219,3 245,3 267,2 246,1 10 60,9 47,4 50,9 62,7 52,6 48,6 57,1 46,9 47,3 41,5	$\begin{array}{c} 11\\ 2,2\\ 1,3\\ 1,3\\ 1,8\\ 1,7\\ \hline \\ 1,7\\ 1,2\\ 1,3\\ \hline \\ 1,3\\ \hline \\ 1,3\\ \hline \\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,3\\ 1,$	$\begin{array}{c} 12\\ 2,0\\ 1,8\\ 1,6\\ 2,0\\ 1,7\\ 2,6\\ 2,0\\ 0,9\\ 1,1\\ 1,0\\ 0,0\\ \hline \\ 12\\ 101,0\\ 123,6\\ 106,9\\ 105,0\\ 123,7\\ 105,0\\ 138,9\\ 123,7\\ 117,8\\ 112,3\\ 114,5\\ 115,5\\ \hline \\ 12\\ 71,2\\ 72,7\\ 58,7\\ 69,9\\ 57,4\\ 48,8\\ 64,4\\ 57,7\\ 73,9\\ 57,4\\ 64,4\\ 57,7\\ 73,9\\ 67,6\\ 67$

	Températurs min	ni moyenne (en 1/10 °C									
	1	2	3	4	5	6	7	8	9	10	11	12
2005	33.5	47.1	117.5	144 7	207.4	246.6	293.2	273.8	223 3	183.5	112.2	567
2000	33,5	-17,1	117,5	171,7	207,1	210,0	275,2	275,0	223,5	103,5	112,2	50,7
2006	41,4	69,0	115,5	171,4	207,4	230,9	267,6	265,0	210,2	182,3	116,2	77,7
2007	65,6	96,1	100,9	136,4	193,4	246,5	265,4	269,9	237,5	185,8	96,6	60,2
2008	59.6	75.6	115.6	158.5	193.6	232.6	293.7	281.7	234.1	173.3	92.6	59.6
	53,0	10,0	100.0	100,0	100.0	202,0	2007.6	201,0	20 1,1	1,0,0	>2,0	07.5
2009	66,6	69,7	109,0	125,4	183,0	248,1	287,6	281,8	212,2	166,9	114,3	97,7
2010	81,9	107,9	120,3	163,4	180,5	244,5	284,1	283,1	229,4	166,1	114,5	86,2
2011	65.5	66.0	100.5	158.7	186.7	233.3	285.7	274.2	250.3	158.0	111.9	73.9
2012	55.1	44.0	102.0	145.1	201.1	272.2	200.0	202.2	226.5	102.9	125.6	69.5
2012	55,1	44,0	103,8	145,1	201,1	272,2	299,0	283,3	226,5	192,8	125,6	08,5
2013	72,4	68,4	124,6	151,6	186,2	232,6	279,7	257,2	233,0	203,3	114,0	64,1
2014	72,4	90,7	105,1	158,9	205,8	231,3	289,5	290,0	256,5	184,5	122,0	68,7
	Températurs ma	xi moyenne e	n 1/10 °C				_			10		
2005	149.52	2	3	4	5	6	421.42	8	9	10	11	12
2005	148,52	159,80	238,37	281,79	344,85	3/5,00	431,43	405,45	345,40	292,87	224,00	160,23
2000	132,45	208.21	216.87	257.27	326.06	394.83	400,94	400,00	365.87	296.74	219.67	163.87
2007	174.26	188.00	234.87	291,80	326,55	367.17	424.90	412.03	355.87	266.61	190.73	154.90
2009	154.23	177.46	224.00	248.43	319.97	383.03	423.00	404.58	321.87	287.39	232.77	210.26
2010	190,29	221,36	249,90	286,97	305,00	382,07	416,61	410,00	345,70	281,52	224,47	196,00
2011	185,39	179,82	201,90	277,23	304,03	354,30	414,68	402,61	378,60	261,10	214,33	176,77
2012	161,13	148,52	218,13	273,67	336,03	408,33	429,52	412,13	356,40	308,00	233,40	183,10
2013	182,03	184,07	250,19	277,43	324,97	367,90	411,68	385,03	356,13	335,39	215,97	151,32
2014	180,19 Decision 1/10	205,18	214,42	291,97	332,35	370,00	421,42	421,94	380,67	310,23	234,03	168,03
	riule en 1/10		2	1	5	6	7	0	0	10	11	12
2005	20	2 50	0	4	3	0 16	17	0 41	741	35.01	20	12
2005	416	0	5	79.01	9.01	0.02	92.01	41	140.02	50	20	128.01
2000	2	12	8	149	48	0,02	0	215	98	0	0	83
2008	14	74	3,01	0	3	20	0	14,01	547	294,02	64	74
2009	670	17	97	55,01	0	38	27	12	429	0	0	1
2010	73	1,02	14	0,01	46,01	75	98	0,02	22	80,01	0	0
2011	32	0	570,01	199	17,01	133	12	1	451	132	0	1
2012	97	10,03	63	72	2	19	2,01	6,01	75	3,01	43,02	5
2013	40	124	23,01	29	4,01	19.01	10.02	27	20.03	24	149	10
2014	Insolution f	otal en 1/10 h	 eur	0	140,01	19,01	10,01	5	29,03	1	43,02	19
	1	2	3	4	5	6	7	8	9	10	11	12
2005	2611,0	2394,0	2128,0	2865,0	3000,0	2889,0	2926,0	3005,0	2718,0	2611,0	2425,0	2369,0
2006	2111,0	2309,0	3208,0	2928,0	2714,0	3142,0	3564,0	3331,0	2746,0	2968,0	2606,0	2108,0
2007	2704,0	2267,0	3023,0	2749,0	3467,0	3519,0	3735,0	3153,0	2588,0	2549,0	2905,0	2471,0
2008	2840,0	2432,0	2802,0	2997,0	2891,0	3708,0	3341,0	3102,0	2450,0	2174,0	2798,0	2277,0
2009	1953,0	2679,0	2752,0	3361,0	3618,0	3229,0	3494,0	3396,0	2612,0	3263,0	2/33,0	2545,0
2010	2502.0	2513.0	2522.0	3005.0	3405.0	3511.0	3569.0	3452.0	2640,0	2008,0	2638.0	2582.0
2012	2506.0	2661.0	2666.0	2889.0	3517.0	3279.0	3518.0	3300.0	2795.0	2576.0	2355.0	2750.0
2013	2679,0	2610,0	2734,0	2904,0	3453,0	3544,0	3293,0	3347,0	2867,0	2899,0	2499,0	1965,0
2014	2502,0	2447,0	2659,0	3294,0	3325,0	3402,0	3063,0	3207,0	2471,0	2937,0	2233,0	2459,0
	Vent en m/s	-	-		_		_	-	-			
2005	26	2	3	4	5 2.1	6	2.0	8	2.2	10	11	12
2005	2,0	3,0	4,4	4,2	43	3,4 4.0	3,0	3.2	3,2	2.2	2,0	3,3 4 2
2007	2,0	4,0	5,3	5,4	3,8	4,1	3,0	3,4	3,6	3,8	2,4	3,2
2008	2,5	2,3	4,4	5,2	4,9	4,4	3,7	2,8	3,6	3,7	3,4	3,3
2009	4,6	3,1	3,8	4,2	4,3	3,6	2,7	2,9	2,6	2,1	2,3	3,0
2010	3,0	2,9	3,1	3,5	3,7	4,1	2,3	2,4	2,9	3,0	3,2	2,8
2011	2,2	4,1	4,1	3,8	3,9	3,5	3,4	2,7	3,2	2,3	3,1	3,1
2012	3.5	5.3	4.5	5.0	4.7	5.2	4.1	3.7	4.0	2,4	4.0	3.5
2014	3,8	4,3	5,3	3,8	4,7	4,7	4,1	3,4	4,2	3,4	3,5	3,9
	Tompérature	moverne	1/10.00	I	1	1	1			1]	L
	1 emperaturs	moyenne en	1/10 .C									
	1	2	3	4	5	6	7	8	9	10	11	12
2005	89,7	104,9	181,5	218,6	283,0	316,6	369,1	340,4	284,3	236,9	170,1	108,9
2006	86.5	121 0	188 5	738.2	283 6	3167	3/15 1	330.2	268 7	2477	170.1	117.1
2000	120 5	152.4	159.8	197.6	263,0	324.9	338.0	335.7	300.6	239.2	156.4	109.4
2008	114,5	131,2	177,0	229,6	264.6	303.8	363.2	348.8	295.1	216.9	141.2	104.9
2009	107,3	123,1	165,2	187,9	254,1	318,8	358,5	344,4	265,8	225,5	170,5	150,2
2010	133,1	163,8	185,6	225,3	243,5	316,3	351,1	347,6	286,3	222,0	167,3	138,0
2011	121,8	123,1	150,2	218,3	247,8	295,1	352,0	340,0	312,8	207,5	159,1	120,0
2012	104,8	94,3	159,9	209,0	269,6	342,7	367,5	348,6	288,8	246,9	175,1	122,6
2013	123,9	123,9	184,8	215,3	255,3	301,1	346,8	320,6	292,1	266,2	162,7	103,9
2014	Humiditá a	143,9 n %	130,2	220,3	200,2	300,8	555,0	555,5	514,1	244,3	1/4,0	113,0
		1 /0	3	4	5	6	7	8	9	10	11	12
2005	54.0	44.6	34.9	29.1	24.4	28.6	19.7	29.7	41.4	54.0	47.4	56.0
2006	64,8	52,8	35,2	32,9	31,3	20,0	23,2	28,1	40,1	35,5	45,4	64,2
2007	54,2	43,5	35,6	45,4	27,2	20,7	21,6	26,9	33,4	36,5	40,5	48,9
2008	50,8	43,6	33,3	21,6	27,0	26,5	18,7	22,8	34,5	60,1	55,9	61,4
2009	66,2	47,8	44,3	36,3	27,6	23,7	21,3	22,9	49,2	41,4	41,3	44,8
2010	48,0	39,7	32,1	35,5	30,4	24,3	24,3	26,8	37,8	41,0	45,2	41,0
2011	48,4	43,6	52,9	42,5	36,4	34,8	24,3	26,3	32,7	59,4	54,6	59,5
2012	52,5	47,0	43,6	36,3	27,5	23,4	20,4	23,7	32,6	38,8	58,5 46.2	54,7
2015	48.9	38.2	30,5	22.4	24.1	21,1	16.8	18.2	26.4	28.3	40,5	50.9
				, .	· ····	,/		· · · · ·				

Touggourt

	Températurs mir	ni moyenne (en 1/10 °C									
	1	2	3	4	5	6	7	8	9	10	11	12
2005	20,3	37,5	113,8	139,9	198,7	241,4	280,5	259,2	221,0	175,4	103,1	41,4
2006	32,5	65,8	105,1	163,2	211,2	241,3	270,9	263,0	204,1	175,7	95,7	71,5
2007	44,8	82,8	93,5	142,6	189,4	246,7	252,3	267,4	238,4	174,9	78,0	43,7
2008	52,0	62,5	100,7	149,7	199,8	231,6	279,8	267,6	236,2	178,5	94,1	53,8
2009	08,8	67,4	100,4	123,5	182,7	237,3	273,2	208,0	215,2	152,2	91,6	72,5
2010	66,6	83,5 52.0	06.0	156,0	174,8	244,1	271,2	269,0	221,5	157,2	95,4	61,8 54.9
2011	37.4	30.2	90,9	149,2	193.7	266.2	274,1	200,4	243,7	173.5	118.2	39.9
2013	51,3	52,3	119,4	152,0	183,5	227,4	269,6	250,0	229,7	191,7	101,3	56,5
2014	61,4	77,1	96,6	149,3	200,8	233,7	270,4	269,7	250,0	169,0	118,4	49,1
	Températures ma	xi moyenne	en 1/10 °C		I			1	1		1	
2005	154.91	2	3	4	5	<u>6</u> 292.17	7	8	<u>9</u> 247.80	10	227.10	160.26
2005	154,81	1/2,11	244,29	283,27	355 39	391.87	434,42	405,55	347,80	303,90	236.27	169,26
2000	188.10	213,96	232,77	263.17	338.10	404.70	399.42	410.26	368.60	301.39	221.30	172.03
2008	178,74	198,45	247,00	305,00	340,61	373,53	433,06	413,23	363,83	285,94	211,63	168,42
2009	165,39	184,96	231,94	259,33	327,29	386,03	428,42	413,48	332,87	286,61	231,97	208,87
2010	191,48	231,25	261,29	294,90	314,32	389,03	420,39	418,23	349,90	289,81	234,37	193,32
2011	189,48	191,25	220,68	296,47	316,45	366,57	422,16	408,61	379,77	281,32	231,40	186,65
2012	1/1,81	104,05	255,87	286,27	335.87	414,07	435,00	420,52	365,40	340.84	249,67	166.13
2013	190,20	218,29	205,77	302,87	338,03	378,23	423,10	426,26	387,53	323,52	251,00	183,77
	Pluie en 1/1) mm		· · · · ·								
	1	2	3	4	5	6	7	8	9	10	11	12
2005	0	41	8,01	2	0,01	33	0	62	61	32	17,01	1
2006	387	3.01	0 Q	32	11	4	2	22	145	9.02	27	66 115
2007	54	14	0	0	- 11	30	5.01	1	50	298	34	61
2009	901	3	252	105	57	1	0	0	231	4	0	5
2010	98	11	3	121	21	0,01	0,01	0	24	0	0	0
2011	0	8	83	45	42,01	2	0,01	17,01	4	6,02	0,01	6
2012	35,01	0,01	0,01	73,01	0	0	0	0	34	26,01	14	0
2013	9,01	0.01	50	155,01	6.01	3.01	0,01	76	61.01	2,02	75.01	184,01
2011	Insolation to	$\frac{0,01}{1}$	heur	Ū	0,01	5,01	0	0	01,01	,,01	75,01	17,02
	1	2	3	4	5	6	7	8	9	10	11	12
2005	2527	2366	2288	2832	3251	3130	3302	3225	2722	2721	2350	2395
2006	2281	2236	3060	2739	2817	3443	3702	3322	2747	2852	2530	2204
2000	2597	2095	2846	2347	3399	3290	3761	3124	2668	2612	2753	2337
2008	2713	2394	2660	2803	2834	3722	3528	3371	2544	2054	2677	2289
2009	2054	2532	2661	3208	3585	3441	3617	3467	2673	3136	2642	2516
2010	2668	2075	2246	2436	3206	2603	3590	3512	2736	2658	2645	2455
2011	2028	2446	2035	2954	3524	3191	3685	3502	2738	2629	2400	2470
2012	2565	2601	2605	2812	3329	3253	3622	3411	2839	2803	2588	1976
2014	2384	2394	2616	3150	3289	3307	3260	3382	2644	2920	2202	2506
	Vent en m/s											
	1	2	3	4	5	6	7	8	9	10	11	12
2005	2,3	3,3	4,3	4,0	3,7	3,4	3,4	3,5	3,1	2,5	2,4	2,3
2006	2,3	2,9	3,7	3,3	3,6	3,5	2,9	2,9	2,6	2,6	1,5	2,2
2007	1,1	2,5	3,/	4,1	3,0	3,5	3,0	3,9	3,3	3,3	1,7	2,0
2000	3,2	3,1	4,4	4,2	4,1	2,8	2,4	3,0	2,7	1,9	2,3	3,5
2010	3,5	4,2	3,5	3,0	3,4	3,8	2,4	2,4	2,0	2,3	3,1	2,2
2011	1,5	2,6	3,4	3,7	3,3	2,4	3,5	2,9	2,6	1,8	2,5	1,8
2012	2,3	2,8	2,4	3,9	3,8	3,1	2,9	2,3	2,5	1,8	2,3	1,7
2015	2,0	3.2	4.0	3.0	3.5	3.8	3.1	2,0	2.7	3.1	2,1	1,9
	Températurs 1	noyenne en	1/10 °C	-,-	-,-	-,-	-,-	_,5		-,-	· · ·	<u>, </u>
	1	2	3	4	5	6	7	8	9	10	11	12
2005	82,6	102,1	177,6	215,2	279,1	314,7	358,0	334,4	284,7	237,1	167,9	101,2
2006	87,3	121,9	183,0	238,5	285,1	319,9	343,9	335,4	268,0	242,6	160,8	120,1
2007	109.6	128.0	174.5	230.1	272.9	304.8	358.5	341.8	299.2	230,3	144,4	105,4
2009	112,4	124,9	164,8	192,4	256,5	314,5	352,4	343,0	272,2	216,6	155,6	136,4
2010	122,7	157,6	187,7	225,0	247,8	320,5	347,2	343,6	284,1	221,0	162,0	121,8
2011	111,1	119,0	159,4	222,1	253,4	300,0	349,1	337,3	309,8	212,8	162,1	113,9
2012	100,5	96,4	165,7	214,7	268,9	342,1 300.7	362,6	346,3 321.9	290,6	242,4	182,1	107,9
2013	113,9	142.8	161.2	227.9	270.2	305.5	346.8	344.8	314.5	266.6	156,4	100,0
<u> </u>	Humidité e	n %					,.	,	,	,.	•	
	1	2	3	4	5	6	7	8	9	10	11	12
2005	1	50	47		20	26	, 20	26	10	55	52	12
2005	69 67	59 57	47	39	32	36	29	36	46	55 47	53	65 72
2000	65	53	45	56	32	23	31	33	40	47	51	63
2008	64	53	44	31	35	40	30	37	46	64	67	72
2009	76	52	55	45	38	32	33	32	54	49	53	57
2010	62	48	44	46	38	28	29	34	47	49	55	56
2011	63	60	58	50	48	41	30	32	39	57	58	66
2012	60	53	45	42	37	29	24	26	34	43	53	55
2013	52	50	40	38	36	31	29	37	41	40	55	70
2014	65	56	57	42	39	35	32	36	41	42		
			1				1	1	1		1	1

Annexes 2. Données climatiques des régions étudiées fournies par l'ONM

	T		1/10.00	Ouargla								
	1 emperaturs mir	n moyenne	en 1/10 °C	4	5	6	7	8	9	10	11	12
2005	30,1	48,0	123,2	150,5	214,2	258,3	298,2	279,4	236,3	187,3	115,4	54,0
2006	40,0	70,7	117,3	176,0	225,1	247,7	283,3	279,1	217,8	177,4	105,7	69,9
2007	47,9	92,0	101,0	149,1	198,0	255,1	264,9	276,0	256,3	183,8	92,1	48,0
2008	54,9 67.8	61,5 72.2	108,8	157,1	210,6	239,3	290,4	279,6	246,0	186,8	97,9	54,2
2009	65,6	96,3	128,7	170,5	186,7	253,4	283,9	281,5	227,9	161,8	97,4	66,1
2011	48,3	55,6	97,0	148,4	186,3	231,5	277,3	262,7	251,0	150,5	101,9	51,9
2012	35,5	33,8	88,2	144,6	196,5	273,9	286,2	269,6	216,9	181,6	118,7	36,9
2013	49,2 62.4	53,1 823	119,1	154,3	202.0	234,2	278,4 284.7	261,5	232,3	194,9	100,5	62,6 59.0
2014	Températurs max	xi movenne	en 1/10 °C	151,1	202,0	230,0	204,7	217,5	250,0	10),/	121,0	57,0
	1	2	3	4	5	6	7	8	9	10	11	12
2005	161,29	183,36	258,42	298,43	364,94	393,03	450,35	421,55	364,80	322,52	246,20	171,55
2006	156,42	197,50	276,90	326,63	366,81	401,83	424,61	428,32	352,03	328,13	249,73	188,23
2007	199,58	213.00	243,33	319.33	359.84	390.67	448.94	433.00	391,30	320,77	238,83	186.03
2009	177,84	203,18	247,35	275,17	343,84	409,37	445,90	429,61	360,67	307,81	254,77	229,42
2010	215,65	253,64	280,61	312,63	336,03	413,07	438,52	435,97	368,83	307,10	248,97	213,26
2011	205,03	205,18	238,77	307,37	337,10	382,97	439,90	422,87	403,27	290,77	242,73	196,58
2012	202.39	212.32	244,65	303,70	354,87	431,83	448,39	431,45	382,13	358 23	262,70	199,48
2013	194,00	212,32	237,94	314,03	352,48	397,07	445,61	441,48	406,23	329,26	257,40	190,06
	Pluie en 1/10) mm										
2005	1	2	3	4	5	6	7	8	9 32	10 20.01	11	1.01
2005	94.02	0,01	0,01	12,01	0	0,01	0	0,02	30,01	59,01	0	8.02
2007	0	0,01	0,01	35,02	3	0	0	29	0	3,01	0,01	61
2008	57	0,01	12	0	0,02	4	0	0,01	142	241,01	2	6
2009	541,01	15	106,02	8	0	25	0	0	63,01	1,01	0	0
2010	0	0,02	111	17,01	0	0	0	0,01	1	50	0,01	0
2012	162,01	55	10,01	35	0	0	13	3	46	0,02	0	0
2013	36	0	2	63,02	0	0	0	24	0,01	0	46,01	245,02
2014	0 Insolution to	0 atal en 1/10	4 hour	0	141	20	0	0	0	20,02	68	58
	1	2	3	4	5	6	7	8	9	10	11	12
2005	2526,0	2473,0	2215,0	2932,0	3075,0	2488,0	3131,0	3319,0	2514,0	2584,0	2307,0	2102,0
2006	2223,0	2259,0	3073,0	2605,0	2544,0	2823,0	3428,0	3154,0	2722,0	2826,0	2621,0	2127,0
2007	2609,0	21/3,0	2870,0	1985,0 3006.0	2247,0	2701,0	3069.0	3167,0	2686,0	2679,0	2750,0	2119,0 1920.0
2009	1961,0	2538,0	2674,0	3211,0	3381,0	2705,0	3365,0	3436,0	2568,0	3129,0	2751,0	2549,0
2010	2488,0	1978,0	2193,0	2628,0	3114,0	2186,0	3131,0	3521,0	2737,0	2592,0	2574,0	2476,0
2011	2612,0	2571,0	2655,0	3062,0	3328,0	2445,0	3197,0	3577,0	2701,0	2651,0	2591,0	2298,0
2012	2490,0	2675.0	2773.0	2682.0	3281,0	2261.0	3159.0	3492,0	2833,0	2685.0	2302,0	2050.0
2014	2467,0	2444,0	2525,0	3095,0	3169,0	2253,0	2985,0	3208,0	2595,0	2883,0	2242,0	2498,0
	Vent en m/s	2	2	1	5	6	7	0	0	10	11	12
2005	2.8	3.9	<u> </u>	<u>4</u> 51	5 44	48	37	8 37	9 44	33	2.8	2.4
2005	2,8	3,5	3,8	4,4	4,9	5,1	4,3	4,2	4,1	2,8	2,5	3,0
2007	1,5	3,3	4,3	5,1	4,4	5,1	4,3	4,8	5,0	4,3	2,5	2,9
2008	2,7	3,2	4,2	4,9	5,1	5,5	3,8	3,2	4,4	4,1	3,2	2,6
2009	2.9	3,0	4.1	4.7	4,1	5,9	3.7	4.0	3.9	3.0	3.2	2,0
2011	2,3	3,7	4,8	4,9	4,7	4,8	4,3	4,0	4,4	2,9	3,3	2,5
2012	3,5	4,0	3,3	4,8	4,9	3,7	3,3	3,7	3,3	3,4	3,1	1,8
2013	3,0	4,0	4,0	5,2 3.6	4,3	4,6 5.0	3,7	3,9	4,3	-9999 0	2,6	3,3
	Températurs 1	moyenne en	1/10 °C			5,0	-1,0	5,0	5,7	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,0	2,1
	1	2	3	4	5	6	7	8	9	10	11	12
2005	92,0	112,7	191,0	228,3	295,9	331,6	379,2	353,8	301,8	253,3	179,4	108,5
2006	95,6	131,9	198,2	253,1	300,0	332,9	359,0	356,8	287,1	251,4	173,4	124,2
2007	11/,5	139,0	1/5,5	218,5	219,5	342,5	340,0	350.9	314.2	252,1	101,0	109,2
2008	119,0	136.0	174.0	243,2	270.0	336.6	371.2	355 5	289.4	241,5	167.2	148.8
2010	136,6	174,9	205,2	245,0	266.2	338,5	366.5	362,9	300,4	232,4	169,3	135,4
2011	122,1	130,4	171,3	236,3	269,6	316,6	366,5	352,2	329,7	222,6	170,2	119,3
2012	106,7	105,4	171,2	232,3	283,8	358,6	374,9	356,4	307,0	259,9	191,3	114,0
2013	124,1	133,3	204,7	235,2	277,5	320,6	363,1	336,8	309,8	273,3	163,8	112,4
2014	123,5	152,1	169,9	237,5	281,5	322,1	369,4	361,8	331,6	246,1	179,8	111,7
	Humidité e	n %	3		5	6	7	8	9	10	11	12
2005	62.0	49.9	42.1	35.6	28.0	30.4	23.3	30.4	44.0	52.3	52.9	65.1
2006	64,4	55,2	41,6	32,2	31,3	21,8	25,5	30,1	40,9	44,3	52,4	64,8
2007	60,8	48,6	42,0	47,7	34,8	25,9	29,2	30,3	35,9	42,4	49,9	58,4
2008	65,0	54,6	44,8 50.6	33,0	33,3	34,9	26,9	32,0	39,7	59,2	62,2	61,4
2009	53.3	47.8	39.7	43,7	37.2	32.2	30.0	29,1 32.7	46.0	47.2	54.2	47.9
2011	59,6	50,8	50,4	39,7	37,1	34,8	28,5	30,4	32,4	55,7	57,7	69,1
2012	64,6	57,7	51,3	39,5	30,8	27,4	24,1	25,2	30,0	37,0	52,4	57,4
2013	55,7	47,6	47,2	37,1	21,2	18,3	16,2	21,9	27,0	27,3	43,9	71,8
2014	30,1	37,3	51,5	<i>2</i> 3,4	<i>43</i> ,0	17,3	11,0	10,5	∠1,4	+1,J	54,0	05,0
Annexes 3. Classification Hiérarchique Ascendante (CAH) et Analyse ACP des paramètres physico-chimiques des sols

XLSTAT 2009.1.02 - Analyse en Composantes Principales (ACP) - le 06/03/2017 à 16:04:16

Tableau observations/variables : Classeur = Classeur1 / Feuille = Feuil1 / Plage = Feuil1!D5:L16 / 11 lignes et 9 colonnes Libellés des observations : Classeur = Classeur1 / Feuille = Feuil1 / Plage = Feuil1!C5:C16 / 11 lignes et 1 colonne Type d'ACP : Pearson (n)

Type de biplot : Biplot de corrélation / Coefficient = Automatique Statistiques descriptives :

	Observat	Obs. avec données	Obs. sans données		Maxi	Moye	Ecart-
Variable	ions	manquantes	manquantes	Minimum	mum	nne	type
МО	11	0	11	0,200	1,700	0,764	0,501
NT	11	0	11	3,140	7,500	5,113	1,796
Р	11	0	11	0,800	3,000	1,418	0,783
						18,55	
K	11	0	11	0,100	57,300	5	23,756
						28,50	
Mg	11	0	11	14,200	97,000	9	24,250
					345,30	41,20	102,43
Na	11	0	11	2,200	0	0	2
					7743,9	829,4	2293,9
Ca	11	0	11	65,900	00	82	52
					8421,2	805,0	2527,2
SO4 2-	11	0	11	6,500	00	91	87
					859,70	111,9	260,02
Cl-	11	0	11	6,600	0	82	3

Matrice de corrélation (Pearson (n)) :

Variables MO NT P K Mg Na Ca	2-	Cl-
MO I		
NT -0,516 1		
P -0,383 0,502 1		
K -0,154 0,175 0,713 1		
Mg -0,466 0,456 0,509 0,731 1		
Na -0,271 0,312 0,163 0,530 0,910 1		
Ca -0,366 0,352 0,195 0,528 0,933 0,987 1		
SO4 20,355 0,343 0,197 0,539 0,934 0,990 1,000	1	
Cl0,190 0,271 0,133 0,516 0,875 0,991 0,959	0,963	1

Les valeurs en gras sont différentes de 0 à un niveau de signification alpha=0,05

Test de sphéricité de Bartlett :

Khi ² (Valeur observée)	-Inf
Khi ² (Valeur critique)	50,998
DDL	36
p-value	
alpha	0,05

Interprétation du test :

H0 : Il n'y a pas de corrélation significativement différente de 0 entre les variables.

Ha : Au moins l'une des corrélations entre les variables est significativement différente de 0.

Etant donné que la p-value calculée est inférieure au niveau de signification alpha=0,05, on doit rejeter l'hypothèse nulle H0, et retenir l'hypothèse alternative Ha.

Le risque de rejeter l'hypothèse nulle H0 alors qu'elle est vraie est inférieur à 0,01%.

Annexes 3. Classification Hiérarchique Ascendante (CAH) et Analyse ACP des paramètres physico-chimiques des sols

XLSTAT 2017.02.43358 - Classification Ascendante Hiérarchique (CAH) - Début : 12-04-2017 à 22:00:28 / Fin : 12-04-2017 à 22:00:30 / Microsoft Excel 12.06765

Tableau observations/variables : Classeur = ACP 2 Khaled 2017.xlsm / Feuille = Feuil1 / Plage = Feuil1!\$D\$5:\$M\$16 / 11 lignes et 10 colonnes

Variable

pH MO NT P

Κ

Mg

Na

Ca

SO4 2-

Cl-

Regrouper les lignes

Statistiques descriptives :

Dissimilarité : Dissimilarité de Pearson
Méthode d'agrégation : Lien moyen
Centrer : Non
Réduire : Non

Décomposition de la variance pour la classification optimale :

	Absolu	Pourcentage
Intra-classe	654.827	0.01%
Inter-classes	11728004.971	99.99%
Totale	11728659.798	100.00%

Barycentres des classes :

Observations	Obs. avec données manquantes	Obs. sans données manquantes	Minimum	Maximum	Moyenne	Ecart-type
11	0	11	8.060	9.050	8.813	0.278
11	0	11	0.200	1.700	0.764	0.501
11	0	11	3.140	7.500	5.113	1.796
11	0	11	0.800	3.000	1.418	0.783
11	0	11	0.100	57.300	18.555	23.756
11	0	11	14.200	97.000	28.509	24.250
11	0	11	2.200	345.300	41.200	102.432
11	0	11	65.900	7743.900	829.482	2293.952
11	0	11	6.500	8421.200	805.091	2527.287
11	0	11	6.600	859.700	111.982	260.023
	Statistiques	des noeuds :				
	Noeud	Niveau	Poids	Objets	Fils gauche	Fils droit
	21	0.224	11	11	19	20
	20	0.097	9	9	16	18
	19	0.096	2	2	4	11
	18	0.051	3	3	1	17
	17	0.014	2	2	2	3
	16	0.003	6	6	13	15
	15	0.002	4	4	8	14
	14	0.001	3	3	5	12
	13	0.000	2	2	6	7
	12	0.000	2	2	9	10

Classe	pH	МО	NT	Р	K	Mg	Na	Ca	SO4 2-	Cl-
1	8.870	0.867	4.513	2.000	42.767	29.033	5.167	71.867	13.700	14.867
2	8.060	0.200	7.000	1.900	57.300	97.000	345.300	7743.900	8421.200	859.700
3	8.942	0.650	5.333	1.150	1.033	18.900	4.717	150.717	17.800	9.383
4	8.620	1.700	3.700	0.800	12.300	16.100	64.100	260.500	286.900	271.200

Distances entre les barycentres des classes :

Annexes 3. Classification	Hiérarchique Ascendan	te (CAH) et Analyse	ACP des paramètres	s physico-chimiques des	s sols
---------------------------	-----------------------	---------------------	--------------------	-------------------------	--------

	1	2	3	4						
1	0	11418.425	90.057	424.852						
2	11418.425	0	11363.180	11072.583						
3	90.057	11363.180	0	395.829						
4	424.852	11072.583	395.829	0						
Objets centra	ux :									
Classe	pH	МО	NT	Р	К	Mg	Na	Ca	SO4 2-	Cl-
1 (Obs2)	8.870	1.400	3.140	2.200	45.100	26.500	3.200	80.300	13.800	6.600
2 (Obs4)	8.060	0.200	7.000	1.900	57.300	97.000	345.300	7743.900	8421.200	859.700
3 (Obs7)	8.920	0.900	7.000	0.800	0.100	14.200	6.100	159.400	27.400	8.400
4 (Obs11)	8.620	1.700	3.700	0.800	12.300	16.100	64.100	260.500	286.900	271.200
Distances entr	e les objets centrau	ıx :	1		L		_ I			
	1 (Obs2)	2 (Obs4)	3 (Obs7)	4 (Obs11)		Dendrogramme			Dendrogra	mme
	, , , , , , , , , , , , , , , , , , ,		<u> </u>	, , , , , , , , , , , , , , , , , , ,	0.25			0.25		
1 (Obs2)	0	11413.373	92.988	426.572						
2 (Obs4)	11413.373	0	11350.349	11072.583						
3 (Obs7)	92.988	11350.349	0	387.496	0.2 -			0.2 -		
4 (Obs11)	426.572	11072.583	387.496	0						
Résultats par cl	lasse :				2 0.15			, iti 0.15 –		
Classe	1	2	3	4	lilari			mila		
Objets	3	1	6	1	ssin					
Somme des poids	3	1	6	1	0.1 -					
Variance intra-classe	617.033	0.000	669.944	0.000				0.05		
Distance minimale au barycentre	12.546	0.000	14.013	0.000	0.05 -			0.05 -		
Distance moyenne au barycentre	19.614	0.000	22.546	0.000				0		[
Distance maximale au barycentre	24.736	0.000	36.334	0.000	0	<u> </u>	5	Obs4	Obs11 Obs6 Obs7 Obs8	Obs5 Obs9 Obs10 Obs1
	Obs1	Obs4	Obs5	Obs11	L		I_			
	Obs2		Obs6							
	Obs3		Obs7							
			Obs8							
			Obs9							
			Obs10		1					

Job title: Sinorhizobium meliloti strain Gs6723 recombination protein A (recA) gene

Select for downloading or		Description	Max score	eldent Accession			
	viewing reports						
	Select seq emb AM182133.1	Sinorhizobium meliloti partial recA gene for recombinase A, strain LMG 6133	804	804	97%	0.0	98% <u>AM182133.1</u>
	Select seq emb AJ294382.1	Sinorhizobium meliloti partial recA gene, strain USDA 1002	804	804	97%	0.0	98% <u>AJ294382.1</u>
	Select seq gb DQ411945.1	Sinorhizobium kummerowiae strain CCBAU 71714 RecA gene, partial cds	795	795	93%	0.0	99% <u>DQ411945.1</u>
	Select seq emb AM182130.1	Sinorhizobium arboris partial recA gene for recombinase A, strain LMG 14919	682	682	97%	0.0	93% <u>AM182130.1</u>
	Select seq gb DQ411946.1	Sinorhizobium arboris strain HAMBI 1552 RecA gene, partial cds	651	651	93%	0.0	93% <u>DQ411946.1</u>

Sequences producing significant alignments

Job title: Sinorhizobium meliloti strain Gs6520 recombination protein A (recA) gene

Sequences producing significant alignments

Select for downloading or viewing	Description	Max 7	Fotal scor	reQuery cover	E valu	eldent Accession
reports		<u>score</u>				
Select seq emb AM182133.1	Sinorhizobium meliloti partial recA gene for recombinase A, strain LMG 6133	832	832	99%	0.0	99% <u>AM182133.1</u>
Select seq emb AJ294382.1	Sinorhizobium meliloti partial recA gene, strain USDA 1002	832	832	99%	0.0	99% <u>AJ294382.1</u>
Select seq gb DQ411945.1	Sinorhizobium kummerowiae strain CCBAU 71714 RecA gene, partial cds	811	811	95%	0.0	99% <u>DQ411945.1</u>
Select seq emb AM182130.1	Sinorhizobium arboris partial recA gene for recombinase A, strain LMG 14919	699	699	99%	0.0	94% <u>AM182130.1</u>

Job title: Sinorhizobium meliloti strain Gs668 recombination protein A (recA) gene Sequences producing significant alignments

Sele	ct for downloading or viewing reports	Description	<u>Max score'</u>	<u> Total score</u>	Query cover	rE valu	eldent Accession
	Select seq emb AM182133.1	Sinorhizobium meliloti partial recA gene for recombinase A, strain LMG 6133	839	839	99%	0.0	99% <u>AM182133.1</u>
	Select seq emb AJ294382.1	Sinorhizobium meliloti partial recA gene, strain USDA 1002	839	839	99%	0.0	99% <u>AJ294382.1</u>
	Select seq gb DQ411945.1	Sinorhizobium kummerowiae strain CCBAU 71714 RecA gene, partial cds	798	798	95%	0.0	99% <u>DQ411945.1</u>
	Select seq emb AM182130.1	Sinorhizobium arboris partial recA gene for recombinase A, strain LMG 14919	706	706	99%	0.0	94% <u>AM182130.1</u>
	Select seq gb DQ411946.1	Sinorhizobium arboris strain HAMBI 1552 RecA gene, partial cds	665	665	95%	0.0	93% <u>DQ411946.1</u>

Annexes 4. Résultats des 'Blast' des souches associées à *G.saharae* au niveau de la base de données NCBI Job title: Neorhizobium huautlense strain Gs666 recombination protein A (recA) gene Sequences producing significant alignments:

Se	lect for downloading or view reports	ing Description	<u>Max</u> score	<u>Total</u> <u>score</u>	<u>Query</u> <u>cover</u>	<u>E value</u> <u>Ident</u> Accessi on
	Select seq emb AM182128.1	Rhizobium huautlense partial recA gene for recombinase A, strain LMG 18254	850	850	97%	0.0 99% <u>AM182128.1</u>
	Select seq gb GQ227357.1	Rhizobium kunmingense strain LXD30 RecA (recA) gene, partial cds	617	617	99%	3e-174 90% <u>GQ227357.1</u>
	Select seq gb EU672490.1	Rhizobium alkalisoli recombinase protein A (recA) gene, partial cds	617	617	87%	3e-174 93% EU672490.1
	Select seq gb KX938341.1	Rhizobium sp. CRZM18R strain CRMZ18R recombinase A (recA) gene, partial cds	595	595	99%	2e-167 90% KX938341.1

Job title: Neorhizobium huautlense strain Gs6617 protein A (recA) gene

Sequences producing significant alignments

Select for downloading or viewi reports		ng Description	<u>Max</u> score	<u>Total</u> score	<u>Query</u> <u>cover</u>	<u>E value</u> <u>Ident</u> Accession
	Select seq emb AM182128.1	Rhizobium huautlense partial recA gene for recombinase A, strain LMG 18254	739	739	97%	0.0 95% <u>AM182128.1</u>
	Select seq emb AM182133.1	Sinorhizobium meliloti partial recA gene for recombinase A, strain LMG 6133	573	573	99%	8e-161 88% <u>AM182133.1</u>
	Select seq emb AJ294382.1	Sinorhizobium meliloti partial recA gene, strain USDA 1002	573	573	99%	8e-161 88% <u>AJ294382</u>
	Select seq gb KX938339.1	Arthrobacter viscosus strain LMG 16473 recombinase A (recA) gene, partial cds	568	568	99%	4e-159 88% <u>KX938339.</u>

Job title: Neorhizobium huautlense strain Gs6623 recombination protein A (recA) gene

Selec	t for downloading or viewing	Description	<u>Max</u>	<u>Total</u>	Query	F voluo	Idont	Accession
reports		Description	<u>score</u>	<u>score</u>	<u>cover</u>	<u>L value</u>	Iuein	Accession
	Select seq emb AM182128.1	Rhizobium huautlense partial recA gene for recombinase A, strain LMG 18254	706	706	98%	0.0	97%	AM182128.1
\Box	Select seq gb AY907358.1	Rhizobium mongolense strain USDA1844 RecA (recA) gene, partial cds	514	514	100%	4e-143	88%	<u>AY907358.1</u>
	Select seq gb EU672490.1	Rhizobium alkalisoli recombinase protein A (recA) gene, partial cds	510	510	87%	5e-142	91%	EU672490.1
	Select seq gb GQ227357.1	Rhizobium kunmingense strain LXD30 RecA (recA) gene, partial cds	505	505	99%	2e-140	88%	<u>GQ227357.1</u>

Job title: Neorhizobium sp. strain Gs675 recombination protein A (recA) gene Sequences producing significant alignments

Select for downloading or viewing reports	Description	<u>Max</u> score	<u>Total</u> score	<u>Query</u> <u>E</u> cover value <u>Ident</u> Accession
Select seq emb HG938353.1	Neorhizobium galegae, complete genome	632	632	97% 1e-178 91% <u>HG938353.1</u>
Select seq gb GQ227357.1	Rhizobium kunmingense strain LXD30 RecA (recA) gene, partial cds	627	627	97% 5e-177 91% <u>GQ227357.1</u>
Select seq emb AM182127.1	Rhizobium galegae partial recA gene for recombinase A, strain LMG 6214	621	621	96% 3e-175 91% <u>AM182127.1</u>
Select seq gb/KX938339.1	Arthrobacter viscosus strain LMG 16473 recombinase A (recA) gene, partial cds	616	616	99% 1e-173 90% <u>KX938339.1</u>

Job title: Neorhizobium alkalisoli strain Gs6514 recombination protein A (recA) gene

Sequences producing significant alignments

Sel	ect for downloading or viewing reports	Description	<u>Max</u> score	<u>Total</u> score	<u>Query</u> <u>cover</u>	<u>E value</u>	<u>Ident</u>	Accession
	Select seq gb EU672490.1	Rhizobium alkalisoli recombinase protein A (recA) gene, partial cds	664	664	87%	0.0	95%	<u>EU672490.1</u>
	Select seqemb AM182128.1	Rhizobium huautlense partial recA gene for recombinase A, strain LMG 18254	664	664	97%	0.0	92%	<u>AM182128.1</u>
	Select seq gb KX938341.1	Rhizobium sp. CRZM18R strain CRMZ18R recombinase A (recA) gene, partial cds	625	625	98%	2e-176	91%	<u>KX938341.1</u>
	Select seq gb GQ227357.1	Rhizobium kunmingense strain LXD30 RecA (recA) gene, partial cds	614	614	99%	4e-173	90%	<u>GQ227357.1</u>

Job title: Seq9 Mezorhizobium camelthorni strain Gs663 protein A (recA) gene

Se	lect for downloading or viewing reports	ng Description	<u>Max</u> score	<u>Total</u> score	Query cover	<u>E</u> value	<u>Ident</u>	Accession
	Select seq gb GU220798.1	Mesorhizobium camelthorni strain CCNWXJ 40-4 recombinase A (recA) gene, partial cds	782	782	94%	0.0	98%	<u>GU220798.1</u>
	Select seq gb FJ481878.1	Mesorhizobium sp. CCNWXJ12-2 recombinase A-like (recA) gene, partial sequence	774	774	97%	0.0	97%	<u>FJ481878.1</u>
	Select seq gb KM192345.1	Mesorhizobium jarvisii ATCC 33669 recombination protein A (recA) gene, partial cds	697	697	99%	0.0	93%	<u>KM192345.1</u>
	Select seq gb KU216611.1	Mesorhizobium camelthorni strain HAMBI 3020 recombinase A (recA) gene, partial cds	676	676	82%	0.0	98%	<u>KU216611.1</u>

Select for downloading or viewing reports	Description	<u>Max</u> score	<u>Total</u> score	<u>Query</u> cover	<u>E</u> value	<u>Ident</u>	Accession
Select seq emb AM418760.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain LMG 6133	876	876	91%	0.0	100%	AM418760.1
Select seq gb GU994044.1	Sinorhizobium kummerowiae strain CCBAU 71714 AtpD (atpD) gene, partial cds	856	856	91%	0.0	99%	<u>GU994044.1</u>
Select seq emb AJ294400.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain USDA 1002	793	793	85%	0.0	99%	<u>AJ294400.1</u>
Select seg gb/CP023067.1	Ensifer sojae CCBAU 05684, complete genome	712	712	100%	0.0	91%	<u>CP023067.1</u>

Job title: Sinorhizobium meliloti strain Gs111 ATP synthase beta subunit (atpD) gene Sequences producing significant alignments:

Job title: Sinorhizobium meliloti strain Gs6515 ATP synthase beta subunit (atpD) gene

Sequences producing significant alignments

Select for downloading or viewing reports	Description	<u>Max</u> score	<u>Total</u> score	<u>Query</u> cover	<u>E</u> value	Ident	Accession
Select sea gb/GU994044 1	Sinorhizobium kummerowiae strain CCBAU 71714 AtpD (atpD) gene, partial cds	730	730	100%	0.0	97%	GU994044.1
Select seq emb AM418760.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain LMG 6133	719	719	100%	0.0	96%	AM418760.1
Select seq emb AJ294400.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain USDA 1002	676	676	97%	0.0	95%	<u>AJ294400.1</u>
Select seq emb AM418756.1	Sinorhizobium saheli partial atpD gene for ATP synthase beta subunit, strain LMG 7837	619	619	100%	8e-175	92%	<u>AM418756.</u>

Job title: Sinorhizobium melilotistrainGs6520 synthase beta subunit (atpD) gene

	Select for downloading or viewing reports	Description	<u>Max</u> score	Tota	l scoreQuery o	coverE valu	ieIdent	Accession
Sel	ect seq gb GU994044.1	Sinorhizobium kummerowiae strain CCBAU 71714 AtpD (atpD) gene, partial cds	845	845	90%	0.0	99%	<u>GU994044.1</u>
	Select seq emb AM418760.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain LMG 6133	843	843	90%	0.0	99%	<u>AM418760.1</u>
	Select seq emb AJ294400.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain USDA 1002	760	760	85%	0.0	98%	<u>AJ294400.1</u>
	Select seq gb CP023067.1	Ensifer sojae CCBAU 05684, complete genome	717	717	99%	0.0	92%	<u>CP023067.1</u>

Job title: Sinorhizobium meliloti strain Cs6522 synthase beta subunit (atpD) gene Sequences producing significant alignments

5	Select for downloading or viewing reports	Description	<u>Max</u> score	<u>Total</u> score	<u>Query</u> <u>cover</u>	<u>E</u> value	<u>Ident</u>	Accession
	Select seq gb GU994044.1	Sinorhizobium kummerowiae strain CCBAU 71714 AtpD (atpD) gene, partial cds	848	848	96%	0.0	99%	<u>GU994044.1</u>
	Select seq emb AM418760.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain LMG 6133	828	828	95%	0.0	99%	<u>AM418760.1</u>
	Select seq emb AJ294400.1	Sinorhizobium meliloti partial atpD gene for ATP synthase beta subunit, strain USDA 1002	756	756	90%	0.0	98%	<u>AJ294400.1</u>
	Select seq gb GU994045.1	Ensifer mexicanus strain HAMBI 2910 AtpD (atpD) gene, partial cds	706	706	98%	0.0	94%	<u>GU994045.1</u>

Job title: Neorhizobium huautlense strain Gs666 synthase beta subunit (atpD) gene

Sequences producing significant alignments

S	elect for downloading or viewing reports	Description	<u>Max</u> score	Total score	Query cover	<u>E</u> value	<u>Ident</u>	Accession
	Select seq emb AM418782.1	Rhizobium huautlense partial atpD gene for ATP synthase beta subunit, strain LMG 18254	854	854	90%	0.0	99%	<u>AM418782.1</u>
	Select seq emb HG938353.1	Neorhizobium galegae, complete genome	706	706	99%	0.0	91%	<u>HG938353.1</u>
	Select seq gb EU672461.1	Rhizobium alkalisoli ATP synthase beta subunit (atpD) gene, partial cds	702	702	86%	0.0	95%	<u>EU672461.1</u>
	Select seq gb JF424612.1	Rhizobium grahamii CCGE 502 ATP synthase beta subunit (atpD) gene, partial cds	689	689	99%	0.0	91%	<u>JF424612.1</u>

Job title: Neorhizobium galegae. strain Gs675 synthase beta subunit (atpD) gene

Select for downloading or viewing reports	Description	Max score	Total score	Query cover	<u>E</u> value	<u>Ident</u>	Accession
Select seq emb HG938353.1	Neorhizobium galegae, complete genome	857	857	100%	0.0	98%	<u>HG938353.1</u>
Select seq gb KF206641.1	Rhizobium galegae bv. orientalis str. HAMBI 540 ATP synthase F1 beta subunit (atpD) gene, partial cds	841	841	96%	0.0	99%	<u>KF206641.1</u>
Select seq emb AM418779.1	Rhizobium galegae partial atpD gene for ATP synthase beta subunit, strain LMG 6214	837	837	96%	0.0	99%	<u>AM418779.1</u>
Select seq gb EU672461.1	Rhizobium alkalisoli ATP synthase beta subunit (atpD) gene, partial cds	765	765	94%	0.0	96%	EU672461.1

Job title: Neorhizobium alkalisoli strain Gs6514 synthase beta subunit (atpD) gene

			1 00	0	10		0			· ·
	Select for downloading or		Description		Max	<u>Total</u>	<u>Query</u>	E	Ident	Accessio
	viewing reports		Description		<u>score</u>	<u>score</u>	<u>cover</u>	value	Iucin	'n
	Select seq emb HG938353.	Neorhizobium galegae, complete g	genome		798	798	99%	0.0	€4%	<u>IG938353.1</u>
	Select seq gb EU672461.1	Rhizobium alkalisoli ATP synthas	e beta subunit (atpD) g	ene, partial cds	793	793	88%	0.0	€7%	<u>3U672461.1</u>
	Select seq gb KF206641.1	Rhizobium galegae bv. orientalis s partial cds	<u>tr. HAMBI 540 ATP s</u>	ynthase F1 beta subunit (atpD) gene,	761	761	93%	0.0	€4% <u></u>	<u> </u>
\Box	Select seq gb CP015880.1	Ensifer adhaerens strain Casida A,	complete genome		749	749	99%	0.0	92% <u>(</u>	<u>CP015880.1</u>
	Select seq gb JF424612.1	Rhizobium grahamii CCGE 502 A	TP synthase beta subu	nit (atpD) gene, partial cds	728	728	97%	0.0	92%	<u>JF424612.1</u>
					• /	-				

Sequences producing significant alignments

Job title: Mesorhizobium camelthorni strain Gs663 synthase beta subunit (atpD) gene Sequences producing significant alignments

	Select for downloading o	r Description	Max	<u>Total</u>	Query	E	Ident Accession
_	viewing reports	Description		<u>score</u>	<u>cover</u>	value	Accession
\Box	Select seq gb JN202304.1	Mesorhizobium camelthorni strain CCNWXJ40-4 ATP synthase beta subunit (atpD) gene, partial cds	797	797	88%	0.0	97% JN202304.1
	Select seq gb JN202305.1	Mesorhizobium alhagi strain CCNWXJ12-2 ATP synthase beta subunit (atpD) gene, partial cds	785	785	88%	0.0	97% JN202305.1
	Select seq emb FR869652.1	Aminobacter anthyllidis partial atpD gene for ATP synthase, strain STM 4645	691	691	92%	0.0	92% <u>FR869652.1</u>
	Select seq gb CP000774.1	Parvibaculum lavamentivorans DS-1, complete genome	654	654	99%	0.0	89% <u>CP000774.1</u>

Job title: Sinorhizobium sp. Gs111 16S ribosomal RNA gene

Select for downloading or viewing reports		Description		<u>Total</u>	Query	E	Ident Accession
		Description	<u>score</u>	<u>score</u>	<u>cover</u>	<u>value</u>	Accession
	Select seq ref NR_118988.1	Sinorhizobium meliloti strain LMG 6133 16S ribosomal RNA gene, partial sequence	2617	2617	99%	0.0	100% <u>NR_118988.1</u>
	Select seq ref NR_043399.1	Sinorhizobium meliloti strain IAM 12611 16S ribosomal RNA, partial sequence	2597	2597	100%	0.0	99% <u>NR_043399.1</u>
	Select seq ref NR_114988.1	Sinorhizobium arboris strain LMG 14919 16S ribosomal RNA gene, partial sequence	2590	2590	99%	0.0	99% <u>NR_114988.1</u>
	Select seq ref NR_037001.1	Sinorhizobium arboris strain TTR 38 16S ribosomal RNA gene, partial sequence	2584	2584	99%	0.0	99% <u>NR_037001.1</u>

Job title: Sinorhizobium sp. Gs668 16S ribosomal RNA gene

Select for downloading or viewing reports		Description	Max	<u>Total</u>	Query	E	Ident Accession
		Description		<u>score</u> <u>score</u> <u>cove</u>	<u>cover</u>	<u>value</u>	Accession
\Box	Select seq ref NR_118988.1	Sinorhizobium meliloti strain LMG 6133 16S ribosomal RNA gene, partial sequence	2647	2647	99%	0.0	99% <u>NR 118988.</u>
\Box	Select seq ref NR_043399.1	Sinorhizobium meliloti strain IAM 12611 16S ribosomal RNA, partial sequence	2634	2634	100%	0.0	99% <u>NR_043399.1</u>
	Select seq ref NR_037001.1	Sinorhizobium arboris strain TTR 38 16S ribosomal RNA gene, partial sequence	2614	2614	99%	0.0	99% <u>NR_037001.1</u>
	Select seq ref NR_115249.1	Ensifer numidicus strain ORS 1407 16S ribosomal RNA gene, partial sequence	2612	2612	99%	0.0	99% <u>NR 115249.</u>

Sequences producing significant alignments

Job title: Sinorhizobium sp. Gs6522 16S ribosomal RNA gene

Sequences producing significant alignments

Selec	t for downloading or viewing	Description		Total scoreQuery coverE valueIdent Accession						
reports		Description		Total Score			Accession			
	Select seq ref NR_118988.1	Sinorhizobium meliloti strain LMG 6133 16S ribosomal RNA gene, partial sequence	2623	2623	99%	0.0	99% <u>NR_118988.1</u>			
	Select seq ref NR_114988.1	Sinorhizobium arboris strain LMG 14919 16S ribosomal RNA gene, partial sequence	2606	2606	99%	0.0	99% <u>NR_114988.1</u>			
	Select seq ref NR_037001.1	Sinorhizobium arboris strain TTR 38 16S ribosomal RNA gene, partial sequence	2601	2601	99%	0.0	99% <u>NR_037001.1</u>			
	Select seq ref NR_043399.1	Sinorhizobium meliloti strain IAM 12611 16S ribosomal RNA, partial sequence	2595	2595	100%	0.0	99% <u>NR_043399.</u>			

Job title: Neorhizobium sp. Gs666 16S ribosomal RNA gene

Select for downloading or viewing reports		Description		<u>Total</u>	Query	E	Ident Accession
				<u>score</u>	<u>cover</u>	<u>value</u>	
\checkmark	Select seq ref NR_024863.1	Rhizobium huautlense strain SO2 16S ribosomal RNA gene, partial sequence	2647	2647	99%	0.0	99% <u>NR_024863.1</u>
	Select seq emb HG938353.1	Neorhizobium galegae, complete genome	2608	7825	99%	0.0	99% <u>HG938353.1</u>
	Select seq ref NR_118990.1	Rhizobium galegae strain LMG 6214 16S ribosomal RNA gene, partial sequence	2593	2593	99%	0.0	99% <u>NR_118990.1</u>
	Select seq ref NR_025828.1	Rhizobium galegae strain gal 1261 16S ribosomal RNA gene, partial sequence	2564	2564	99%	0.0	99% <u>NR_025828.1</u>

Select for downloading or viewing	Description		<u>Total</u>	Query	E	Ident Accession			
reports			<u>score</u>	<u>cover</u>	<u>value</u>	<u>Ident</u> Accession			
Select seq emb HG938353.1	Neorhizobium galegae, complete genome	2527	7582	99%	0.0	99% <u>HG938353.1</u>			
Select seq ref NR_024863.1	Rhizobium huautlense strain SO2 16S ribosomal RNA gene, partial sequence	2510	2510	99%	0.0	99% <u>NR_024863.1</u>			
Select seq ref NR_118990.1	Rhizobium galegae strain LMG 6214 16S ribosomal RNA gene, partial sequence	2490	2490	98%	0.0	99% <u>NR_118990.1</u>			
□ Select seq ref NR_025828.1	Rhizobium galegae strain gal 1261 16S ribosomal RNA gene, partial sequence	2490	2490	99%	0.0	99% <u>NR_025828.1</u>			
	Job title: Neorhizobium sp. Gs6514 16S ribosomal RNA								

Job title: KR002734.1 Neorhizobium sp. Gs675 16S ribosomal gene

Sequences producing significant alignments

Sel	ect for downloading or view	ing Description	Max	<u>Total</u>	Query	E	Ident	Accession
reports		Description	<u>score</u>	<u>score</u>	<u>cover</u>	<u>value</u>	Ittent	Accession
	Select seq ref NR_024863.1	Rhizobium huautlense strain SO2 16S ribosomal RNA gene, partial sequence	2531	2531	100%	0.0	99%	<u>NR_024863.1</u>
	Select seq emb HG938353.1	Neorhizobium galegae, complete genome	2503	7509	100%	0.0	99%	<u>HG938353.1</u>
	Select seq ref NR_118990.1	Rhizobium galegae strain LMG 6214 16S ribosomal RNA gene, partial sequence	2475	2475	99%	0.0	99%	<u>NR_118990.1</u>
	Select seq ref NR_025828.1	Rhizobium galegae strain gal 1261 16S ribosomal RNA gene, partial sequence	2468	2468	100%	0.0	99%	<u>NR_025828.1</u>

Job title: Mesorhizobium sp.Gs663 16S ribosomal RNA gene

Sequences producing significant alignments

Select for downloading or viewing reports		g Description	Max Total scoreQuery coverE valueIdent Accession						
	Select seq ref NR_116218.1	Mesorhizobium camelthorni strain CCNWXJ40-4 16S ribosomal RNA gene, partial sequen	<u>ce</u> 2505	2505	96%	0.0	99% <u>NR_116218.1</u>		
	Select seq ref NR_115048.1	Mesorhizobium tamadayense strain Ala-3 16S ribosomal RNA gene, partial sequence	2440	2440	99%	0.0	98% <u>NR_115048.1</u>		
	Select seq ref NR_116217.1	Mesorhizobium alhagi strain CCNWXJ12-2 16S ribosomal RNA gene, partial sequence	2438	2438	94%	0.0	99% <u>NR_116217.1</u>		
\Box	Select seq ref NR_102452.1	Mesorhizobium australicum strain WSM2073 16S ribosomal RNA, partial sequence	2420	2420	99%	0.0	98% <u>NR_102452.1</u>		

Annexes 4. Résultats des 'Blast' des souches associées à G.saharae au niveau de la base de données NCBI

Annexe 5. Diversité phénotypique des paramètres symbiotiques obtenue par traitement ANOVA suite à l'inoculation de *G. saharae* par les souches de BNL présentes dans les couches superficielles de sol du Sahara septentrional d'Algérie Résultats des a) Poids sec partir aérienne b) Poids sec partir racinaire c) Hauteur des plants d) Nombre nodosités e) Poids nodosités F) Biomasse totale.

18

XLSTAT 2009.6.01 - ANOVA - le 25/12/2014 à 12:09:03

$Y \ / \ Quantitatives: Classeur = fichierpranova \ 2.xlsx \ / \ Feuille = Feuil1 \ / \ Plage = Feuil1! \\ \$B\$1: \$F\$101 \ / \ 100 \ lignes \ et \ 5 \ colonnes \ 2.xlsx \ / \ Feuille = Feuil1 \ / \ Plage = Feuil1! \\ \$B\$1: \$F\$101 \ / \ 100 \ lignes \ et \ 5 \ colonnes \ 5 \ colonnes \ 100 \ res \ 100 \ res$

X / Qualitatives : Classeur = fichierpranova 2.xlsx / Feuille = Feuil1 / Plage = Feuil1!\$A\$1:\$A\$101 / 100 lignes et 1 colonne

Contraintes : an=0

Intervalle de confiance (%) : 95

Utiliser les moyennes estimées : Non

Statistiques de	scriptives :						
Variable	Observations	Obs. avec données manquantes	Obs. sans données manquantes	Minimum	Maximum	Moyenne	Ecart-type
Nb	100	0	100	0,000	16,000	5,740	3,350
Poids	100	0	100	0,000	1319,000	395,330	213,477
Hauteur	100	0	100	4,500	28,100	17,530	5,034
PSPA	100	0	100	554,000	7640,000	3302,040	1365,952
PSPR	100	0	100	202,000	5312,000	1937,550	873,967
Variable	Modalités	Effectifs	%				
Souches	Gs111	5	5,000				
	1400t	5	5,000				
	Gs656	5	5,000				
	Gs659	5	5,000				
	Gs6514	5	5,000				
	Gs6515	5	5,000				
	Gs6516	5	5,000				
	Gs6522	5	5,000				
	Gs661	5	5,000				
	Gs663	5	5,000				
	Gs666	5	5,000				
	Gs6620	5	5,000				
	Gs675	5	5,000				
	Gs6713	5	5,000				
	Gs6716	5	5,000				
	Gs6718	5	5,000				
	Gs6719	5	5,000				
	Gs6720	5	5,000				
	Gs6722	5	5,000				
	Tnégatif	5	5,000				

Régression de la variable Poids

Coefficients d'ajustement (Variable Poids) :							
Observations	100,000						
Somme des poids	100,000						
DDL	80,000						
R²	0,639						
R ² ajusté	0,553						
MCE	20367,455						
RMCE	142,715						
MAPE	26,839						
DW	2,230						
Ср	20,000						
AIC	1009,855						
SBC	1061,958						
PC	0,542						

Analyse de la variance (Variable Poids) :

Source	DDL	Somme des carrés	Moyenne des carrés	F	Pr > F
Modèle	19	2882253,710	151697,564	7,448	< 0,0001
Erreur	80	1629396,400	20367,455		
Total corrigé	99	4511650,110			

Calculé contre le modèle Y=Moyenne(Y)

Analyse Type I Sum of Squares (Variable Poids) :

Source	DDL	Somme des carrés	Moyenne des	carrés	F	Pr > F
Souches	19	2882253,710	151697,564		7,448	< 0,0001
Paramètres du modèle (Variable Poi	ds) :					
Source	Valeur	Ecart-type	t	$\Pr > t $	Borne infé	rieure (95%)
Constante	0,000	63,824	0,000	1,000	-127,014	
Souches-Gs111	336,400	90,261	3,727	0,000	156,776	
Souches-1400t	380,000	90,261	4,210	< 0,0001	200,376	
Souches-Gs656	567,400	90,261	6,286	< 0,0001	387,776	
Souches-Gs659	341,000	90,261	3,778	0,000	161,376	
Souches-Gs6514	509,200	90,261	5,641	< 0,0001	329,576	
Souches-Gs6515	686,000	90,261	7,600	< 0,0001	506,376	
Souches-Gs6516	249,400	90,261	2,763	0,007	69,776	
Souches-Gs6522	268,200	90,261	2,971	0,004	88,576	
Souches-Gs663	266,800	90,261	2,956	0,004	87,176	
Souches-Gs661	274,600	90,261	3,042	0,003	94,976	
Souches-Gs666	346,800	90,261	3,842	0,000	167,176	
Souches-Gs6620	355,000	90,261	3,933	0,000	175,376	
Souches-Gs675	711,400	90,261	7,882	< 0,0001	531,776	
Souches-Gs6713	280,800	90,261	3,111	0,003	101,176	
Souches-Gs6716	500,400	90,261	5,544	< 0,0001	320,776	
Souches-Gs6718	544,000	90,261	6,027	< 0,0001	364,376	
Souches-Gs6719	452,200	90,261	5,010	< 0,0001	272,576	
Souches-Gs6720	596,600	90,261	6,610	< 0,0001	416,976	
Souches-Gs6722	240,400	90,261	2,663	0,009	60,776	
Souches-Tnégatif	0,000	0,000				

Equation du modèle (Variable Poids) :

Contraste	Différence	Différence standardisée	Valeur critique	Pr > Diff	Significati f
Gs675 vs Tnégatif	711,400	7,882	1,990	< 0,0001	Oui
Gs675 vs Gs6722	471,000	5,218	1,990	< 0,0001	Oui
Gs675 vs Gs6516	462,000	5,119	1,990	< 0,0001	Oui
Gs675 vs Gs663	444,600	4,926	1,990	< 0,0001	Oui
Gs675 vs Gs6522	443,200	4,910	1,990	< 0,0001	Oui
Gs675 vs Gs661	436,800	4,839	1,990	< 0,0001	Oui
Gs675 vs Gs6713	430,600	4,771	1,990	< 0,0001	Oui
Gs675 vs Gs111	375,000	4,155	1,990	< 0,0001	Oui
Gs675 vs Gs659	370,400	4.103	1,990	< 0,0001	Oui
Gs675 vs Gs666	364,600	4,039	1,990	0,000	Oui
Gs675 vs Gs6620	356,400	3,949	1,990	0,000	Oui
Gs675 vs 1400t	331,400	3,672	1,990	0,000	Oui
Gs675 vs Gs6719	259,200	2,872	1,990	0,005	Oui
Gs675 vs Gs6716	211,000	2,338	1,990	0,022	Oui
Gs675 vs Gs6514	202,200	2,240	1,990	0,028	Oui
Gs675 vs Gs6718	167,400	1,855	1,990	0,067	Non

	144,000	1 505	1 000	0.115	
Gs675 vs Gs656	144,000	1,595	1,990	0,115	Non
Gs675 vs Gs6720	114,800	1,272	1,990	0,207	Non
Gs675 vs Gs6515	25,400	0,281	1,990	0,779	Non
Gs6515 vs Tnégatif	686,000	7,600	1,990	< 0,0001	Oui
Gs6515 vs Gs6722	445,600	4,937	1,990	< 0,0001	Oui
Gs6515 vs Gs6516	436,600	4,837	1,990	< 0,0001	Oui
Gs6515 vs Gs663	419,200	4,644	1,990	< 0,0001	Oui
Gs6515 vs Gs6522	417,800	4,629	1,990	< 0,0001	Oui
Gs6515 vs Gs661	411,400	4,558	1,990	< 0,0001	Oui
Gs6515 vs Gs6713	405,200	4,489	1,990	< 0,0001	Oui
Gs6515 vs Gs111	349,600	3,873	1,990	0,000	Oui
Gs6515 vs Gs659	345,000	3,822	1,990	0,000	Oui
Gs6515 vs Gs666	339,200	3,758	1,990	0,000	Oui
Gs6515 vs Gs6620	331,000	3,667	1,990	0,000	Oui
Gs6515 vs 1400t	306,000	3,390	1,990	0,001	Oui
Gs6515 vs Gs6719	233,800	2,590	1,990	0,011	Oui
Gs6515 vs Gs6716	185,600	2,056	1,990	0,043	Oui
Gs6515 vs Gs6514	176,800	1,959	1,990	0,054	Non
Gs6515 vs Gs6718	142,000	1,573	1,990	0,120	Non
Gs6515 vs Gs656	118,600	1,314	1,990	0,193	Non
Gs6515 vs Gs6720	89,400	0,990	1,990	0,325	Non
Gs6720 vs Tnégatif	596,600	6,610	1,990	< 0,0001	Oui
Gs6720 vs Gs6722	356,200	3,946	1,990	0,000	Oui
Gs6720 vs Gs6516	347,200	3,847	1,990	0,000	Oui
Gs6720 vs Gs663	329,800	3,654	1,990	0,000	Oui
Gs6720 vs Gs6522	328,400	3,638	1,990	0,000	Oui
Gs6720 vs Gs661	322,000	3,567	1,990	0,001	Oui
Gs6720 vs Gs6713	315,800	3,499	1,990	0,001	Oui
Gs6720 vs Gs111	260,200	2,883	1,990	0,005	Oui
Gs6720 vs Gs659	255,600	2,832	1,990	0,006	Oui
Gs6720 vs Gs666	249,800	2,768	1,990	0,007	Oui
Gs6720 vs Gs6620	241,600	2,677	1,990	0,009	Oui
Gs6720 vs 1400t	216,600	2.400	1,990	0.019	Oui
Gs6720 vs Gs6719	144.400	1,600	1,990	0,114	Non
Gs6720 vs Gs6716	96.200	1.066	1.990	0.290	Non
Gs6720 vs Gs6514	87.400	0.968	1.990	0.336	Non
Gs6720 vs Gs6718	52,600	0.583	1,990	0.562	Non
Gs6720 vs Gs656	29 200	0.324	1,990	0.747	Non
Gs656 vs Tnégatif	567 400	6,286	1,990	< 0.0001	Oui
Gs656 vs Gs6722	327,000	3,623	1,990	0.001	Oui
Gs656 vs Gs6516	318,000	3,523	1,990	0.001	Oui
Gs656 vs Gs663	300,600	3,320	1,990	0.001	Oui
Gs656 vs Gs6522	299.200	3 315	1,990	0.001	Oui
Ge656 vs Ge661	292,200	3 244	1,990	0.002	Oui
Ge656 vs Ge6713	286.600	3 175	1,990	0.002	Oui
Ge656 ve Ge111	230,000	2 550	1,990	0.012	Oui
Ge656 vs Ge650	231,000	2,559	1,990	0.014	Oui
G:656 v: G:666	220,+00	2,500	1,990	0.017	Oui
G:656 v: G:6620	212,000	2. 111 2.353	1 990	0.021	Oui
Ge656 ve 1400+	187.400	2,555	1,990	0.041	Oui
Ge656 ve Ge6710	115 200	1 276	1,990	0,041	Nor
Ge656 ve Ge6716	67 000	0.742	1,220	0,200	Non
Co656 vo Co6514	58 200	0,742	1,990	0,400	Nor
USUJO VS USUJ14	30,200	0,045	1,990	0,321	inon

Gs656 vs Gs6718	23,400	0,259	1,990	0,796	Non
Gs6718 vs Tnégatif	544,000	6,027	1,990	< 0,0001	Oui
Gs6718 vs Gs6722	303,600	3,364	1,990	0,001	Oui
Gs6718 vs Gs6516	294,600	3,264	1,990	0,002	Oui
Gs6718 vs Gs663	277,200	3,071	1,990	0,003	Oui
Gs6718 vs Gs6522	275,800	3,056	1,990	0,003	Oui
Gs6718 vs Gs661	269.400	2.985	1,990	0,004	Oui
Gs6718 vs Gs6713	263.200	2.916	1.990	0.005	Oui
Gs6718 vs Gs111	207.600	2,300	1,990	0,024	Oui
Gs6718 vs Gs659	203.000	2.249	1.990	0.027	Oui
Gs6718 vs Gs666	197.200	2.185	1.990	0.032	Oui
Gs6718 vs Gs6620	189.000	2.094	1.990	0.039	Oui
Gs6718 vs 1400t	164.000	1.817	1.990	0.073	Non
Gs6718 vs Gs6719	91 800	1,017	1,990	0.312	Non
Gs6718 vs Gs6716	43 600	0.483	1,990	0.630	Non
Gs6718 vs Gs6514	34 800	0.386	1,990	0,701	Non
Gs6514 vs Trégatif	509 200	5 641	1,990	< 0.0001	Oui
Ge6514 vs Ge6722	268 800	2 978	1,990	0.004	Oui
Ge6514 vs Ge6516	259,800	2,978	1,990	0.005	Oui
Ge6514 vs Ge663	232,300	2,878	1,990	0,005	Oui
Ge6514 vs Ge6522	242,400	2,630	1,990	0,009	Oui
Ge6514 vs Ge661	234,600	2,570	1,990	0,005	Oui
Ge6514 vs Ge6713	234,000	2,555	1,990	0.013	Oui
Ge6514 vs Ge111	172 800	1.014	1,990	0,015	Non
Ge6514 ve Ge650	162 200	1,914	1,990	0,059	Non
Ge6514 vs Ge666	163,200	1,805	1,990	0,000	Non
Ge6514 vs Ge6620	154,200	1,799	1,990	0,070	Non
Ge6514 vs 1400t	134,200	1,708	1,990	0,091	Non
Gs0514 vs 14001	57,000	0.622	1,990	0,150	Non
Ge6514 vs Ge6716	\$ 800	0,032	1,990	0.029	Non
	500,400	5.544	1,990	0,925	
	260,000	2,991	1,990	< 0,0001	Oui
Gs0/10 vs Gs0/22	250,000	2,881	1,990	0,005	Oui
G 56/16 vs G 5516	251,000	2,781	1,990	0,007	Oui
Gs6716 vs Gs663	233,600	2,588	1,990	0,011	Oui
Gs6716 vs Gs6522	232,200	2,573	1,990	0,012	Oui
Gs6/16 vs Gs661	225,800	2,502	1,990	0,014	Oui
Gs6716 vs Gs6713	219,600	2,433	1,990	0,017	Oui
Gs6716 vs Gs111	164,000	1,817	1,990	0,073	Non
Gs6716 vs Gs659	159,400	1,766	1,990	0,081	Non
Gs6716 vs Gs666	153,600	1,702	1,990	0,093	Non
Gs6716 vs Gs6620	145,400	1,611	1,990	0,111	Non
Gs6716 vs 1400t	120,400	1,334	1,990	0,186	Non
Gs6716 vs Gs6719	48,200	0,534	1,990	0,595	Non
Gs6719 vs Tnégatif	452,200	5,010	1,990	< 0,0001	Oui
Gs6719 vs Gs6722	211,800	2,347	1,990	0,021	Oui
Gs6719 vs Gs6516	202,800	2,247	1,990	0,027	Oui
Gs6719 vs Gs663	185,400	2,054	1,990	0,043	Oui
Gs6719 vs Gs6522	184,000	2,039	1,990	0,045	Oui
Gs6719 vs Gs661	177,600	1,968	1,990	0,053	Non
Gs6719 vs Gs6713	171,400	1,899	1,990	0,061	Non
Gs6719 vs Gs111	115,800	1,283	1,990	0,203	Non
Gs6719 vs Gs659	111,200	1,232	1,990	0,222	Non
Gs6719 vs Gs666	105,400	1,168	1,990	0,246	Non

Gs6719 vs Gs6620	97,200	1,077	1,990	0,285	Non
Gs6719 vs 1400t	72,200	0,800	1,990	0,426	Non
1400t vs Tnégatif	380,000	4,210	1,990	< 0,0001	Oui
1400t vs Gs6722	139,600	1,547	1,990	0,126	Non
1400t vs Gs6516	130,600	1,447	1,990	0,152	Non
1400t vs Gs663	113,200	1,254	1,990	0,213	Non
1400t vs Gs6522	111,800	1,239	1,990	0,219	Non
1400t vs Gs661	105,400	1,168	1,990	0,246	Non
1400t vs Gs6713	99,200	1,099	1,990	0,275	Non
1400t vs Gs111	43,600	0,483	1,990	0,630	Non
1400t vs Gs659	39,000	0,432	1,990	0,667	Non
1400t vs Gs666	33,200	0,368	1,990	0,714	Non
1400t vs Gs6620	25,000	0,277	1,990	0,783	Non
Gs6620 vs Tnégatif	355.000	3.933	1.990	0.000	Oui
Gs6620 vs Gs6722	114.600	1.270	1.990	0.208	Non
Gs6620 vs Gs6516	105.600	1.170	1.990	0.245	Non
Gs6620 vs Gs663	88.200	0.977	1.990	0.331	Non
Gs6620 vs Gs6522	86,800	0.962	1,990	0.339	Non
Gs6620 vs Gs661	80 400	0.891	1,990	0.376	Non
Gs6620 vs Gs6713	74 200	0.822	1 990	0.413	Non
Gs6620 vs Gs111	18,600	0.206	1 990	0.837	Non
Gs6620 vs Gs659	14,000	0.155	1,990	0.877	Non
Gs6620 vs Gs666	8 200	0.091	1,990	0.928	Non
Gs666 vs Trégatif	346 800	3 842	1,990	0.000	Oui
Gs666 vs Gs6722	106 400	1 179	1 990	0.242	Non
Gs666 vs Gs6516	97 400	1,079	1,990	0.284	Non
Gs666 vs Gs663	80,000	0.886	1,990	0.378	Non
Gs666 vs Gs6522	78 600	0.871	1,990	0.386	Non
Gs666 vs Gs661	72,200	0.800	1,990	0.426	Non
Gs666 vs Gs6713	66.000	0.731	1.990	0.467	Non
Gs666 vs Gs111	10.400	0.115	1.990	0.909	Non
Gs666 vs Gs659	5.800	0.064	1.990	0.949	Non
Gs659 vs Tnégatif	341.000	3.778	1.990	0.000	Oui
Gs659 vs Gs6722	100.600	1.115	1.990	0.268	Non
Gs659 vs Gs6516	91.600	1.015	1.990	0.313	Non
Gs659 vs Gs663	74 200	0.822	1,990	0.413	Non
Gs659 vs Gs6522	72.800	0.807	1.990	0.422	Non
Gs659 vs Gs661	66.400	0.736	1.990	0.464	Non
Gs659 vs Gs6713	60.200	0.667	1.990	0.500	Non
Gs659 vs Gs111	4.600	0.051	1.990	0.959	Non
Gs111 vs Tnégatif	336.400	3.727	1.990	0.000	Oui
Gs111 vs Gs6722	96.000	1.064	1.990	0.291	Non
Gs111 vs Gs6516	87.000	0.964	1.990	0.338	Non
Gs111 vs Gs663	69.600	0.771	1.990	0.443	Non
Gs111 vs Gs6522	68.200	0.756	1.990	0.452	Non
Gs111 vs Gs661	61.800	0.685	1.990	0.496	Non
Gs111 vs Gs6713	55,600	0,616	1,990	0.539	Non
Gs6713 vs Tnégatif	280,800	3,111	1,990	0,003	Oui
Gs6713 vs Gs6722	40,400	0,448	1,990	0,656	Non
Gs6713 vs Gs6516	31,400	0,348	1,990	0,729	Non
Gs6713 vs Gs663	14,000	0,155	1,990	0,877	Non
Gs6713 vs Gs6522	12,600	0,140	1,990	0,889	Non
Gs6713 vs Gs661	6,200	0,069	1,990	0,945	Non

Gs661 vs Tnégatif	274,600	3,042	1,990	0,003	Oui
Gs661 vs Gs6722	34,200	0,379	1,990	0,706	Non
Gs661 vs Gs6516	25,200	0,279	1,990	0,781	Non
Gs661 vs Gs663	7,800	0,086	1,990	0,931	Non
Gs661 vs Gs6522	6,400	0,071	1,990	0,944	Non
Gs6522 vs Tnégatif	268,200	2,971	1,990	0,004	Oui
Gs6522 vs Gs6722	27,800	0,308	1,990	0,759	Non
Gs6522 vs Gs6516	18,800	0,208	1,990	0,836	Non
Gs6522 vs Gs663	1,400	0,016	1,990	0,988	Non
Gs663 vs Tnégatif	266,800	2,956	1,990	0,004	Oui
Gs663 vs Gs6722	26,400	0,292	1,990	0.770	Non
Gs663 vs Gs6516	17,400	0,193	1,990	0,848	Non
Gs6516 vs Tnégatif	249,400	2,763	1,990	0,007	Oui
Gs6516 vs Gs6722	9,000	0,100	1,990	0,921	Non
Gs6722 vs Tnégatif	240,400	2,663	1,990	0,009	Oui
Régression de la variable PSPA :					

Coefficients d'ajustement (Variable PSPA) :

.

Observations	100,000				
Somme des poids	100,000				
DDL	80,000				
R ²	0,432				
R² ajusté	0,298				
MCE	1310502,950)			
RMCE	1144,772				
MAPE	28,911				
DW	2,397				
Ср	20,000				
AIC	1426,278				
SBC	1478,381				
PC	0,851				
Analyse de la variance	(Variable PSPA) :	:			
Source	DDL	Somme des carrés	Moyenne des carrés	F	Pr > F
Modèle	19	79876373,840	4204019,676	3,208	0,000
Erreur	80	104840236,000	1310502,950		
Total corrigé	99	184716609,840			
Calculé contre le modè	le Y=Moyenne(Y)				
Analyse Type I Sum of	Squares (Variable	e PSPA) :			
Source	DDL	Somme des carrés	Moyenne des carrés	F	Pr > F
Analyse Type III Sum	19 of Squares (Variat	/98/63/3,840 ole PSPA)	4204019,676	3,208	0,000
0	DDI			F	D . P
Source	DDL	Somme des carrés	Moyenne des carrés	F	PL > L
Souches	19	79876373,840	4204019,676	3,208	0,000
Paramètres du modèle	(Variable PSPA) :				
Source	Valeur	Ecart-type	t	$\Pr > t $	Borne inférieure (95%)
Constante	1208,200	511.957	2,360	0,021	189,372
Souches-Gs111	1718,400	724,017	2,373	0,020	277,559
Souches-1400t	3123,400	724,017	4,314	< 0,0001	1682,559
Souches-Gs656	3728,800	724,017	5,150	< 0,0001	2287,959
Souches-Gs659	2014,200	724,017	2,782	0,007	573,359
Souches-Gs6514	2306,400	724,017	3,186	0,002	865,559
Souches-Gs6515	1851,400	724,017	2,557	0,012	410,559

Souches-Gs6516	2771,400	724,017	3,828	0,000	1330,559
Souches-Gs6522	1030,200	724,017	1,423	0,159	-410,641
Souches-Gs663	1087,000	724,017	1,501	0,137	-353,841
Souches-Gs661	1581,400	724,017	2,184	0,032	140,559
Souches-Gs666	2018,200	724,017	2,788	0,007	577,359
Souches-Gs6620	3140,800	724,017	4,338	< 0,0001	1699,959
Souches-Gs675	3064,400	724,017	4,232	< 0,0001	1623,559
Souches-Gs6713	1570,600	724,017	2,169	0,033	129,759
Souches-Gs6716	2817,000	724,017	3,891	0,000	1376,159
Souches-Gs6718	2004,800	724,017	2,769	0,007	563,959
Souches-Gs6719	2829,200	724,017	3,908	0,000	1388,359
Souches-Gs6720	2273,600	724,017	3,140	0,002	832,759
Souches-Gs6722	945,600	724,017	1,306	0,195	-495,241
Souches-Tnégatif	0,000	0,000			

Equation du modèle (Variable PSPA) :

Contraste	Différence	Différence standardisée	Valeur critique	Pr > Diff	Significatif
Gs656 vs Tnégatif	3728,800	5,150	1,990	< 0,0001	Oui
Gs656 vs Gs6722	2783,200	3,844	1,990	0,000	Oui
Gs656 vs Gs6522	2698,600	3,727	1,990	0,000	Oui
Gs656 vs Gs663	2641,800	3,649	1,990	0,000	Oui
Gs656 vs Gs6713	2158,200	2,981	1,990	0,004	Oui
Gs656 vs Gs661	2147,400	2,966	1,990	0,004	Oui
Gs656 vs Gs111	2010,400	2,777	1,990	0,007	Oui
Gs656 vs Gs6515	1877,400	2,593	1,990	0,011	Oui
Gs656 vs Gs6718	1724,000	2,381	1,990	0,020	Oui
Gs656 vs Gs659	1714,600	2,368	1,990	0,020	Oui
Gs656 vs Gs666	1710,600	2,363	1,990	0,021	Oui
Gs656 vs Gs6720	1455,200	2,010	1,990	0,048	Oui
Gs656 vs Gs6514	1422,400	1,965	1,990	0,053	Non
Gs656 vs Gs6516	957,400	1,322	1,990	0,190	Non
Gs656 vs Gs6716	911,800	1,259	1,990	0,212	Non
Gs656 vs Gs6719	899,600	1,243	1,990	0,218	Non
Gs656 vs Gs675	664,400	0,918	1,990	0,362	Non
Gs656 vs 1400t	605,400	0,836	1,990	0,406	Non
Gs656 vs Gs6620	588,000	0,812	1,990	0,419	Non
Gs6620 vs Tnégatif	3140,800	4,338	1,990	< 0,0001	Oui
Gs6620 vs Gs6722	2195,200	3,032	1,990	0,003	Oui
Gs6620 vs Gs6522	2110,600	2,915	1,990	0,005	Oui
Gs6620 vs Gs663	2053,800	2,837	1,990	0,006	Oui
Gs6620 vs Gs6713	1570,200	2,169	1,990	0,033	Oui
Gs6620 vs Gs661	1559,400	2,154	1,990	0,034	Oui
Gs6620 vs Gs111	1422,400	1,965	1,990	0,053	Non
Gs6620 vs Gs6515	1289,400	1,781	1,990	0,079	Non
Gs6620 vs Gs6718	1136,000	1,569	1,990	0,121	Non
Gs6620 vs Gs659	1126,600	1,556	1,990	0,124	Non
Gs6620 vs Gs666	1122,600	1,551	1,990	0,125	Non
Gs6620 vs Gs6720	867,200	1,198	1,990	0,235	Non
Gs6620 vs Gs6514	834,400	1,152	1,990	0,253	Non
Gs6620 vs Gs6516	369,400	0,510	1,990	0,611	Non
Gs6620 vs Gs6716	323,800	0,447	1,990	0,656	Non
Gs6620 vs Gs6719	311,600	0,430	1,990	0,668	Non
Gs6620 vs Gs675	76,400	0,106	1,990	0,916	Non
Gs6620 vs 1400t	17,400	0,024	1,990	0,981	Non

1400t vs Tnégatif	3123,400	4,314	1,990	< 0,0001	Oui
1400t vs Gs6722	2177,800	3,008	1,990	0,004	Oui
1400t vs Gs6522	2093,200	2,891	1,990	0,005	Oui
1400t vs Gs663	2036,400	2,813	1,990	0.006	Oui
1400t vs Gs6713	1552,800	2,145	1,990	0,035	Oui
1400t vs Gs661	1542,000	2,130	1,990	0,036	Oui
1400t vs Gs111	1405,000	1,941	1,990	0,056	Non
1400t vs Gs6515	1272,000	1,757	1,990	0,083	Non
1400t vs Gs6718	1118,600	1,545	1,990	0,126	Non
1400t vs Gs659	1109,200	1,532	1,990	0,129	Non
1400t vs Gs666	1105,200	1,526	1,990	0,131	Non
1400t vs Gs6720	849,800	1,174	1,990	0,244	Non
1400t vs Gs6514	817,000	1,128	1,990	0,263	Non
1400t vs Gs6516	352,000	0,486	1,990	0,628	Non
1400t vs Gs6716	306,400	0,423	1,990	0,673	Non
1400t vs Gs6719	294,200	0,406	1,990	0,686	Non
1400t vs Gs675	59,000	0,081	1,990	0,935	Non
Gs675 vs Tnégatif	3064,400	4,232	1,990	< 0,0001	Oui
Gs675 vs Gs6722	2118,800	2,926	1,990	0,004	Oui
Gs675 vs Gs6522	2034,200	2,810	1,990	0,006	Oui
Gs675 vs Gs663	1977,400	2,731	1,990	0,008	Oui
Gs675 vs Gs6713	1493,800	2,063	1,990	0,042	Oui
Gs675 vs Gs661	1483,000	2,048	1,990	0,044	Oui
Gs675 vs Gs111	1346,000	1,859	1,990	0,067	Non
Gs675 vs Gs6515	1213,000	1,675	1,990	0,098	Non
Gs675 vs Gs6718	1059,600	1,464	1,990	0,147	Non
Gs675 vs Gs659	1050,200	1,451	1,990	0,151	Non
Gs675 vs Gs666	1046,200	1,445	1,990	0,152	Non
Gs675 vs Gs6720	790,800	1,092	1,990	0,278	Non
Gs675 vs Gs6514	758,000	1,047	1,990	0,298	Non
Gs675 vs Gs6516	293,000	0,405	1,990	0,687	Non
Gs675 vs Gs6716	247,400	0,342	1,990	0,733	Non
Gs675 vs Gs6719	235,200	0,325	1,990	0,746	Non
Gs6719 vs Tnégatif	2829,200	3,908	1,990	0,000	Oui
Gs6719 vs Gs6722	1883,600	2,602	1,990	0.011	Oui
Gs6719 vs Gs6522	1799.000	2.485	1.990	0.015	Oui
Gs6719 vs Gs663	1742.200	2.406	1.990	0.018	Oui
Gs6719 vs Gs6713	1258.600	1.738	1.990	0.086	Non
Gs6719 vs Gs661	1247.800	1.723	1,990	0.089	Non
Gs6719 vs Gs111	1110.800	1.534	1.990	0.129	Non
Gs6719 vs Gs6515	977.800	1.351	1.990	0.181	Non
Gs6719 vs Gs6718	824,400	1.139	1.990	0.258	Non
Gs6719 vs Gs659	815,000	1,126	1,990	0.264	Non
Gs6719 vs Gs666	811.000	1,120	1,990	0,266	Non
Gs6719 vs Gs6720	555 600	0.767	1,990	0.445	Non
Gs6719 vs Gs6514	522 800	0,722	1,990	0.472	Non
Gs6719 vs Gs6516	57 800	0.080	1,990	0.937	Non
Gs6719 vs Gs6716	12 200	0.017	1 990	0.987	Non
Ge6716 ve Trágetif	2817.000	3 801	1,220	0,000	
Ge6716 ve Ge6722	1871 /00	2 585	1,990	0.012	Oui
Ge6716 vg Ce6522	1786 200	2,505	1,220	0.016	Oui
Ge6716 ve Ge662	1730.000	2,400	1,220	0.010	Oui
Ge6716 vs Cs6712	1730,000	2,307	1,770	0,019	Nor
US0/10 VS US0/15	1240,400	1,/22	1,770	0,009	INON

Gs6716 vs Gs661	1235,600	1,707	1,990	0,092	Non
Gs6716 vs Gs111	1098,600	1,517	1,990	0,133	Non
Gs6716 vs Gs6515	965,600	1,334	1,990	0,186	Non
Gs6716 vs Gs6718	812,200	1,122	1,990	0,265	Non
Gs6716 vs Gs659	802,800	1,109	1,990	0,271	Non
Gs6716 vs Gs666	798,800	1,103	1,990	0,273	Non
Gs6716 vs Gs6720	543,400	0,751	1,990	0,455	Non
Gs6716 vs Gs6514	510,600	0,705	1,990	0,483	Non
Gs6716 vs Gs6516	45,600	0,063	1,990	0,950	Non
Gs6516 vs Tnégatif	2771,400	3,828	1,990	0,000	Oui
Gs6516 vs Gs6722	1825,800	2,522	1,990	0.013	Oui
Gs6516 vs Gs6522	1741,200	2,405	1,990	0,018	Oui
Gs6516 vs Gs663	1684,400	2,326	1,990	0,023	Oui
Gs6516 vs Gs6713	1200,800	1,659	1,990	0,101	Non
Gs6516 vs Gs661	1190,000	1,644	1,990	0,104	Non
Gs6516 vs Gs111	1053,000	1,454	1,990	0,150	Non
Gs6516 vs Gs6515	920.000	1.271	1.990	0.208	Non
Gs6516 vs Gs6718	766,600	1,059	1,990	0.293	Non
Gs6516 vs Gs659	757.200	1.046	1.990	0.299	Non
Gs6516 vs Gs666	753.200	1.040	1.990	0.301	Non
Gs6516 vs Gs6720	497.800	0.688	1.990	0.494	Non
Gs6516 vs Gs6514	465,000	0.642	1,990	0.523	Non
Gs6514 vs Tnégatif	2306.400	3 186	1,990	0,002	Oui
Gs6514 vs Gs6722	1360 800	1 880	1,990	0.064	Non
Gs6514 vs Gs6522	1276 200	1,000	1,990	0.082	Non
Gs6514 vs Gs663	1210,200	1,703	1,000	0,002	Non
Gs6514 vs Gs6712	725 800	1,004	1,990	0,090	Non
Gs6514 vs Gs6715	755,800	1,010	1,990	0,515	Non
Gs0514 vs Gs001	723,000	1,001	1,990	0,520	Non
Gs6514 vs Gs111	588,000	0,812	1,990	0,419	Non
Gs6514 vs Gs6515	455,000	0,628	1,990	0,532	Non
Gs6514 vs Gs6718	301,600	0,417	1,990	0,678	Non
Gs6514 vs Gs659	292,200	0,404	1,990	0,688	Non
Gs6514 vs Gs666	288,200	0.398	1,990	0,692	Non
Gs6514 vs Gs6720	32,800	0,045	1,990	0,964	Non
Gs6720 vs Tnégatif	2273,600	3,140	1,990	0,002	Oui
Gs6720 vs Gs6722	1328,000	1,834	1,990	0,070	Non
Gs6720 vs Gs6522	1243,400	1,717	1,990	0,090	Non
Gs6720 vs Gs663	1186,600	1,639	1,990	0,105	Non
Gs6720 vs Gs6713	703,000	0,971	1,990	0,334	Non
Gs6720 vs Gs661	692,200	0,956	1,990	0,342	Non
Gs6720 vs Gs111	555,200	0,767	1,990	0,445	Non
Gs6720 vs Gs6515	422,200	0,583	1,990	0,561	Non
Gs6720 vs Gs6718	268,800	0,371	1,990	0,711	Non
Gs6720 vs Gs659	259,400	0,358	1,990	0,721	Non
Gs6720 vs Gs666	255,400	0,353	1,990	0,725	Non
Gs666 vs Tnégatif	2018,200	2,788	1,990	0,007	Oui
Gs666 vs Gs6722	1072,600	1,481	1,990	0,142	Non
Gs666 vs Gs6522	988,000	1,365	1,990	0,176	Non
Gs666 vs Gs663	931,200	1,286	1,990	0,202	Non
Gs666 vs Gs6713	447,600	0,618	1,990	0,538	Non
Gs666 vs Gs661	436,800	0,603	1,990	0,548	Non
Gs666 vs Gs111	299,800	0,414	1,990	0,680	Non
Gs666 vs Gs6515	166,800	0,230	1,990	0,818	Non

Gs666 vs Gs6718	13,400	0,019	1,990	0,985	Non
Gs666 vs Gs659	4,000	0,006	1,990	0,996	Non
Gs659 vs Tnégatif	2014,200	2,782	1,990	0,007	Oui
Gs659 vs Gs6722	1068,600	1,476	1,990	0,144	Non
Gs659 vs Gs6522	984,000	1,359	1,990	0,178	Non
Gs659 vs Gs663	927,200	1,281	1,990	0,204	Non
Gs659 vs Gs6713	443,600	0,613	1,990	0,542	Non
Gs659 vs Gs661	432,800	0,598	1,990	0,552	Non
Gs659 vs Gs111	295,800	0,409	1,990	0,684	Non
Gs659 vs Gs6515	162,800	0,225	1,990	0,823	Non
Gs659 vs Gs6718	9,400	0,013	1,990	0,990	Non
Gs6718 vs Tnégatif	2004,800	2,769	1,990	0,007	Oui
Gs6718 vs Gs6722	1059,200	1,463	1,990	0,147	Non
Gs6718 vs Gs6522	974,600	1,346	1,990	0,182	Non
Gs6718 vs Gs663	917,800	1,268	1,990	0,209	Non
Gs6718 vs Gs6713	434,200	0,600	1,990	0,550	Non
Gs6718 vs Gs661	423,400	0,585	1,990	0,560	Non
Gs6718 vs Gs111	286,400	0,396	1,990	0,693	Non
Gs6718 vs Gs6515	153,400	0,212	1,990	0,833	Non
Gs6515 vs Tnégatif	1851,400	2,557	1,990	0,012	Oui
Gs6515 vs Gs6722	905,800	1,251	1,990	0,215	Non
Gs6515 vs Gs6522	821,200	1,134	1,990	0,260	Non
Gs6515 vs Gs663	764,400	1,056	1,990	0,294	Non
Gs6515 vs Gs6713	280,800	0,388	1,990	0,699	Non
Gs6515 vs Gs661	270,000	0,373	1,990	0.710	Non
Gs6515 vs Gs111	133,000	0,184	1,990	0,855	Non
Gs111 vs Tnégatif	1718,400	2,373	1,990	0,020	Oui
Gs111 vs Gs6722	772,800	1,067	1,990	0,289	Non
Gs111 vs Gs6522	688,200	0,951	1,990	0,345	Non
Gs111 vs Gs663	631,400	0,872	1,990	0,386	Non
Gs111 vs Gs6713	147,800	0,204	1,990	0,839	Non
Gs111 vs Gs661	137,000	0,189	1,990	0,850	Non
Gs661 vs Tnégatif	1581,400	2,184	1,990	0,032	Oui
Gs661 vs Gs6722	635,800	0,878	1,990	0,382	Non
Gs661 vs Gs6522	551,200	0,761	1,990	0,449	Non
Gs661 vs Gs663	494,400	0,683	1,990	0,497	Non
Gs661 vs Gs6713	10,800	0,015	1,990	0,988	Non
Gs6713 vs Tnégatif	1570,600	2,169	1,990	0,033	Oui
Gs6713 vs Gs6722	625,000	0,863	1,990	0,391	Non
Gs6713 vs Gs6522	540,400	0,746	1,990	0,458	Non
Gs6713 vs Gs663	483,600	0,668	1,990	0,506	Non
Gs663 vs Tnégatif	1087,000	1,501	1,990	0,137	Non
Gs663 vs Gs6722	141,400	0,195	1,990	0,846	Non
Gs663 vs Gs6522	56,800	0,078	1,990	0,938	Non
Gs6522 vs Tnégatif	1030,200	1,423	1,990	0,159	Non
Gs6522 vs Gs6722	84,600	0,117	1,990	0,907	Non
Gs6722 vs Tnégatif	945,600	1,306	1,990	0,195	Non

Contraste	Différence	Différence standardisée
Gs656 vs Tnégatif	3728,800	5,150

Valeur critique

3,665

Pr > Diff

0,000

Significatif Oui

Gs656 vs Gs6722	2783,200	3,844	3,636	0,027	Oui
Gs656 vs Gs6522	2698,600	3,727	3,605	0,035	Oui
Gs656 vs Gs663	2641,800	3,649	3,573	0,040	Oui
Gs656 vs Gs6713	2158,200	2,981	3,537	0,201	Non
Gs656 vs Gs661	2147,400	2,966			Non
Gs656 vs Gs111	2010,400	2,777			Non
Gs656 vs Gs6515	1877,400	2,593			Non
Gs656 vs Gs6718	1724,000	2,381			Non
Gs656 vs Gs659	1714,600	2,368			Non
Gs656 vs Gs666	1710,600	2,363			Non
Gs656 vs Gs6720	1455,200	2,010			Non
Gs656 vs Gs6514	1422,400	1,965			Non
Gs656 vs Gs6516	957,400	1,322			Non
Gs656 vs Gs6716	911,800	1,259			Non
Gs656 vs Gs6719	899,600	1,243			Non
Gs656 vs Gs675	664,400	0,918			Non
Gs656 vs 1400t	605,400	0,836			Non
Gs656 vs Gs6620	588,000	0,812			Non
Gs6620 vs Tnégatif	3140,800	4,338	3,636	0,005	Oui
Gs6620 vs Gs6722	2195,200	3,032	3,605	0,211	Non
Gs6620 vs Gs6522	2110,600	2,915			Non
Gs6620 vs Gs663	2053,800	2,837			Non
Gs6620 vs Gs6713	1570,200	2,169			Non
Gs6620 vs Gs661	1559,400	2,154			Non
Gs6620 vs Gs111	1422.400	1.965			Non
Gs6620 vs Gs6515	1289.400	1.781			Non
Gs6620 vs Gs6718	1136.000	1.569			Non
Gs6620 vs Gs659	1126.600	1.556			Non
Gs6620 vs Gs666	1122.600	1.551			Non
Gs6620 vs Gs6720	867.200	1 198			Non
Gs6620 vs Gs6514	834.400	1,152			Non
Gs6620 vs Gs6516	369,400	0.510			Non
Gs6620 vs Gs6716	323,800	0.447			Non
Gs6620 vs Gs6719	311,600	0.430			Non
Gs6620 vs Gs675	76 400	0,106			Non
Gs6620 vs 1400t	17.400	0.024			Non
1400t vs Tnégatif	3123 400	4 314	3 605	0.005	Oui
1400t vs Gs6722	2177 800	3,008	3,005	0,005	Non
1400t vs Gs6522	2003 200	2 801	5,575	0,200	Non
1400t vs Gs6522	2095,200	2,071			Non
1400t vs Gs603	2030,400	2,015			Non
1400t vs Gs6/15	1542,000	2,145			Non
1400t vs Gs601	1342,000	2,150			Non
1400t vs Gs111	1405,000	1,941			Non
1400t vs Gs6515	1272,000	1,757			Non
1400t vs 050/18	1110,000	1,520			Non
1400t vs GS039	1109,200	1,002			non
1400t vs GS000	1105,200	1,320			INON
1400t vs Gs6/20	849,800	1,174			inon
1400t vs GS6514	817,000 252,000	1,128			inon
1400t vs GS0510	352,000	0,422			INON
1400t vs Gs6/16	306,400	0,423			Non
1400t vs GS6/19	294,200	0,400			inon
1400t vs Gs675	59,000	0,081			Non

Ge675 ve Ge6722	2118,800				
03073 V8 030722		2,926	3,537	0,226	Non
Gs675 vs Gs6522	2034,200	2,810			Non
Gs675 vs Gs663	1977,400	2,731			Non
Gs675 vs Gs6713	1493,800	2,063			Non
Gs675 vs Gs661	1483,000	2,048			Non
Gs675 vs Gs111	1346,000	1,859			Non
Gs675 vs Gs6515	1213,000	1,675			Non
Gs675 vs Gs6718	1059,600	1,464			Non
Gs675 vs Gs659	1050,200	1,451			Non
Gs675 vs Gs666	1046,200	1,445			Non
Gs675 vs Gs6720	790,800	1,092			Non
Gs675 vs Gs6514	758,000	1,047			Non
Gs675 vs Gs6516	293,000	0,405			Non
Gs675 vs Gs6716	247,400	0,342			Non
Gs675 vs Gs6719	235,200	0,325			Non
Gs6719 vs Tnégatif	2829,200	3,908	3,537	0,017	Oui
Gs6719 vs Gs6722	1883,600	2,602	3,500	0,385	Non
Gs6719 vs Gs6522	1799,000	2,485			Non
Gs6719 vs Gs663	1742,200	2,406			Non
Gs6719 vs Gs6713	1258,600	1,738			Non
Gs6719 vs Gs661	1247,800	1,723			Non
Gs6719 vs Gs111	1110,800	1,534			Non
Gs6719 vs Gs6515	977,800	1,351			Non
Gs6719 vs Gs6718	824,400	1,139			Non
Gs6719 vs Gs659	815,000	1,126			Non
Gs6719 vs Gs666	811,000	1,120			Non
Gs6719 vs Gs6720	555,600	0,767			Non
Gs6719 vs Gs6514	522,800	0,722			Non
Gs6719 vs Gs6516	57,800	0,080			Non
Gs6716 vs Tnégatif	2817,000	3,891	3,500	0,016	Oui

Rhizobial diversity associated with the spontaneous legume Genista saharae in the northeastern Algerian Sahara

Khaled Chaïch, Abdelkader Bekki, Noureddine Bouras, Michael D. Holtz, Souhir Soussou, Lucette Mauré, Brigitte Brunel, et al.

Symbiosis

ISSN 0334-5114

Symbiosis DOI 10.1007/s13199-016-0414-y

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Rhizobial diversity associated with the spontaneous legume *Genista saharae* in the northeastern Algerian Sahara

Khaled Chaïch¹ · Abdelkader Bekki² · Noureddine Bouras^{3,4} · Michael D. Holtz⁵ · Souhir Soussou⁶ · Lucette Mauré⁶ · Brigitte Brunel⁶ · Philippe de Lajudie⁶ · Jean-Claude Cleyet-Marel⁶

Received: 3 March 2016 / Accepted: 3 May 2016 © Springer Science+Business Media Dordrecht 2016

Abstract Genista saharae is an indigenous shrub legume that spontaneously grows in the northeastern Algerian Sahara. It is known for efficient dune fixation and soil preservation against desertification, due to its drought tolerance and its contribution to sustainable nitrogen resources implemented by biological N_2 -fixation. In this study, the root nodule bacteria of *G. saharae* were investigated using phenotypic and phylogenetic characterization. A total of 57 rhizobial strains were isolated from nodules from several sites in the hyper-arid region of Metlili and Taibet (east Septentrional Sahara). They all nodulate *G. saharae* species but they differed in their symbiotic efficiency and effectiveness. The genetic diversity was

Electronic supplementary material The online version of this article (doi:10.1007/s13199-016-0414-y) contains supplementary material, which is available to authorized users.

Noureddine Bouras Noureddine_bouras@yahoo.fr

- ¹ Laboratoire Génie de l'eau et de l'Environnement en Milieu Saharien, Université Kasdi Merbah Ouargla, BP 511, 30 000 Ouargla, Algeria
- ² Laboratoire de Microbiologie, Faculté des Sciences, Université d'Oran Es-Sénia, Oran, Algeria
- ³ Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, BP 92, 16308 Vieux-Kouba, Alger, Algeria
- ⁴ Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria
- ⁵ Field Crop Development Centre, Alberta Agriculture and Rural Development, 6000 C & E Trail, Lacombe, AB T4L 1 W8, Canada
- ⁶ IRD-INRA, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus International de Baillarguet TA A-82/J, F-34398, Montpellier Cedex 5, France

assessed by sequencing three housekeeping genes (*atpD*, *recA* and 16S rRNA). The majority of isolates (81 %) belonged to the genus *Ensifer* (previously *Sinorhizobium*), represented mainly by the species *Ensifer meliloti*. The next most abundant genera were *Neorhizobium* (17 %) with 3 different species: *N. alkalisoli*, *N. galegae* and *N. huautlense* and *Mesorhizobium* (1.75 %) represented by the species *M. camelthorni*. Most of the isolated strains tolerated up to 4% (w/v) NaCl and grew at 45 °C. This study is the first report on the characterization of *G. saharae* microsymbionts in the Algerian Sahara.

Keywords Rhizobial diversity \cdot Spontaneous legume \cdot Genista saharae \cdot N₂-fixation \cdot Housekeeping genes \cdot Algerian Sahara

1 Introduction

The Algerian Sahara is one of the driest and hottest regions in the world. It covers more than 2 million square kilometers; the hyper-arid bioclimatic zone covers 89.5 % of the surface and the arid and semi-arid parts 4.78 and 4.12 %, respectively (Nedjraoui 2001). In addition, soil properties are a limiting factor for plant growth as they are usually sandy, saline, shallow and poor in nutritive elements. Despite severe edaphoclimatic conditions, these regions exhibit a floristic richness of highly adapted plants (Le Houérou 1990, 1997; Ozenda 1991; Quezel 1978). Among these, plants of the Fabaceae family play a key role for the sustainability of this natural ecosystem (Brockwell et al. 2005). The shrubby species Genista saharae, endemic to the Sahara, is one of these spontaneous legumes perfectly adapted to the adverse Saharan edapho-climatic conditions, efficiently contributing to dune fixation and to dromedary's forage feed (Chehma et al.

2010; Meriane and Kaabache 2012). In general, legumes associate with soil rhizobial bacteria to establish a nitrogenfixing symbiosis. During these specific interactions, rhizobia induce nodule formation on plant roots and/or shoots. Inside the nodule, they fix dinitrogen to the benefit of the plant (Udvardi and Poole 2013). Rhizobial bacteria belong to two subclasses *Alpha-* and *Beta-proteobacteria* that encompass 8 families, more than 15 genera and 120 species (Mousavi et al. 2014; Rivas et al. 2009; http://www.bacterio.net/).

It has long been reported that symbiotic nitrogen fixation efficiency is dependent on the microsymbiont. Mahdhi et al. (2007) reported that G. saharae shrubs in the infra-arid region of Tunisia are associated with several rhizobial species within the genera Ensifer (75 %), Rhizobium (10 %) and Phyllobacterium (15 %). But so far, there is no report on genetic diversity and symbiotic performance of the rhizobia associated with G. saharae in the Algerian Sahara. Recent reports recommended housekeeping gene Multi-Locus Sequence Analysis (MLSA) for more robust phylogenetic assessment of rhizobia (Martens et al. 2007, 2008; Maynaud et al. 2012; Merabet et al. 2010). Among useful genes, recA encodes some of the proteins of the DNA recombination and repair system (Cox 2003; Lloyd and Sharp 1993), and generally bacterial recA gene phylogenies are consistent with the corresponding 16S rRNA gene phylogenies (Gaunt et al. 2001; Ghosh and Roy 2006; Martens et al. 2007). The *atpD* gene is a ubiquitous and conserved gene encoding the beta subunit of membrane ATP synthase, which is essential for energy production (Gaunt et al. 2001).

The main objective of this study is to describe the isolation and characterization of rhizobia from *G. saharae* growing in four sites, within a distance of 400 km inside the hyper arid zone of the Algerian Sahara. Furthermore, the sequence analysis of three housekeeping genes (*atpD*, *recA* and 16S rRNA) was performed to determine their phylogenetic position. The isolated strains were also tested for their symbiotic efficiency with plants, and their temperature and NaCl tolerances.

2 Materials and methods

2.1 Physicochemical characteristics of sampling sites

Soil samples were collected from four sites in the northeastern Algerian Sahara (Table S1) during years 2010 and 2012. Soil was sampled near the root of *G. saharae* at a 10–20 cm depth. Soil samples were analyzed physico-chemically after water extraction 1:5 (w/v) for pH, electrical conductivity, phosphorus, potassium, magnesium, calcium, sodium, and sulfate content, and after mineralization (Kjeldahl) for nitrogen and organic carbon content.

2.2 Bacterial trapping and isolation

Seeds of G. saharae used for both trapping and nodulation tests were collected in bulk from the same Saharan sites where soils were sampled (Table S1). Seeds were surface-sterilized in calcium hydrochloride (3 %) for 5 min, rinsed with sterile distilled water (5 times) and scarified. Sterile seeds were transferred onto sterile water-agar Petri plates and left for 48 h at 4 °C followed by 48 h at 21 °C for germination. Seedlings were then transferred into tubes containing sterile calcined attapulgite (Oil Dri US Special, Damolin, Denmark), 40 mL nitrogen-free mineral nutrient solution (Bertrand et al. 2000), and 2-3 cm of test soil sample on top of the clay granules. Plants were grown under continuous light (20 W/m^2) at 28 °C. After 7 weeks-incubation at 21 °C, plants were harvested and examined for nodules. Nodules present on plant roots were harvested, surface-sterilized with 300 µL of calcium hydrochloride (3 %) for 2 min, rinsed with distilled water (5 times) and then individually crushed in 50 µL of sterile distilled water. The resulting suspension was streaked on Yeast Extract Mannitol (YEM) agar plates (Vincent 1970), and incubated at 28 °C under aerobic conditions. Colonies appeared after variable periods of time and were checked for purity by repeated streaking on YEM agar. All isolated strains were preserved in 50 % glycerol (v/v) at -80 °C.

2.3 DNA purification and gene fragment sequencing

Genomic DNA was extracted and purified according to a standard phenol-chloroform extraction procedure (Chen and Kuo 1993) and stored at -20 °C. Near full-length 16S rRNA gene sequences were amplified by PCR using primer pairs 27f/ 1525r (Wawrik et al. 2005) and the settings: 5 min at 96 °C followed by 35 cycles at 96 °C for 30 s; 57 °C for 30 s, 72 °C for 2 min; and final extension at 72 °C for 7 min. PCR amplifications of two other housekeeping gene fragments were performed using primer pairs 63f/504r for the recA gene (Gaunt et al. 2001) and 352f/871r for the atpD gene (Martens et al. 2008). PCR conditions were similar to the 16S rRNA gene for the *atpD* gene with a slight modification of the final extension step (30 s at 72 °C). All PCR amplifications were performed with Taq polymerase (Invitrogen). Negative control (water milliQ) and positive control (DNA of strain ORS 1400^T) were included in this experiment.

PCR products were run on 1 % agarose gels stained with ethidium bromide. Furthermore, 14 regularly spaced bands from 200 to 10 000 bp (Smart Ladder, Eurogentec) were used as DNA markers for gels. The corresponding DNA bands were purified from gel using Qiagen kit and sent for sequencing to GenoScreen Company (Lille, France).

2.4 Phylogenetic analyses

The nucleotide sequences were aligned using ClustalX 1.83 (Thompson et al. 1997), and alignments were manually optimized using GeneDoc 2.7 (Nicholas and Nicholas 1997). Identical sequences were grouped with Mothur v.1.4.0 software (Schloss et al. 2009) to determine representative ones defined by a unique sequence obtained in our dataset. Phylogenetic trees were inferred by the neighbour-joining (NJ) method using Kimura 2 parameter distances with Mega 5 (Tamura et al. 2011) for 16S rRNA sequences and the maximum likelihood (ML) method using General Time Reversible model (GTR) for *recA* and *atpD* sequences. Bootstrap analyses were performed using 1000 pseudo replications.

2.5 Bacterial phenotypic characterization

2.5.1 Nodulation and fixation tests

Representatives of the new isolates and Ensifer garamanticus reference strain ORS1400^T were tested for nodulation on G. saharae. Seeds, previously scarified and sterilized, were placed on Petri dishes containing 10 % agar and were kept at 4 °C for 48 h, before transfer to a growth chamber (in the dark, temperature 22 °C day and 15 °C night). One week after sowing, seedlings were transplanted in glass tubes filled with sterile calcined attapulgite (Oil Dri US Special, Damolin, Denmark) supplemented with 40 mL mineral nutritive solution with no nitrogen source (Bertrand et al. 2000). Each tube was inoculated with one mL rhizobial suspension (about 10^9 cells/mL) from an early-stationary-phase culture. Uninoculated plants were included as controls. Ten plant replicates were prepared for each treatment. All plants were grown in a growth chamber under a 14 h day/10 h night cycle. The temperature was 22 °C (day) and 15 °C (night). Plants were harvested 42 days after inoculation.

2.5.2 Resistance to temperature and salt tolerance

Newly isolated strains were examined for growth over a range of temperatures (28, 40, 42 and 45 °C) and NaCl concentrations (0, 1, 2, 3 and 4 %); the experiments were repeated at least twice, including three replicates. Pre-cultures of the test strains were grown and kept for a maximum of 16 days before use. A volume of the preculture was adjusted to an optical density (OD) (600 nm) of 0.5; 10 μ L was used to inoculate 150 μ L of liquid YEM placed in 96 well microplates. The microplates were then incubated at 28, 40, 42 and 45 °C on an orbital shaker (150 rpm). Bacterial growth was monitored by recording the OD (600 nm) by using a spectrophotometer (TECAN Infinite M200). Reference strains *E. garamanticus*

ORS 1400^T, *E. meliloti* ORS 665^T and *R. etli* CFN42^T were included. Three replicates were performed for each test.

3 Results

3.1 Samples localization, climatic and soil characteristics

The mean air temperature range was similar at the four sites (3-45 °C), the physical and chemical properties of soil at 10-20 cm depth near *G. saharae* roots were recorded. Table S1 presents the soil characteristics at the four sampling sites. The soil pHs were slightly alkaline and ranged from 8.6 to 8.9; soil textures were sandy (between 55.9 and 95.8 %) coarse sand with very low clay and silt content (0.02 to 0.15 % and 0.06 to 0.23 %, respectively). Soil nutrient levels were very poor, especially macro elements P (3.02 ppm) and total nitrogen (5 to 7 ppm). Organic matter content was very low in all analyzed soil samples (0.02 to 0.1 %).

3.2 Isolation of rhizobia nodulating *G. saharae* from Algerian Saharan soil

Nodules were collected after *G. saharae* plant-trapping from soil samples from geographically distant sites in the hyper-arid zone of Algeria. Three to four nodules were obtained per plant. The nodules were associated with primary and secondary roots and their red-brown color suggested that the isolates were effective at N₂fixation. Their shape was globular, sometimes elongated or multilobe with smooth surfaces. From these *G. saharae* nodules, a total of 57 rhizobial isolates were obtained (isolate list is given in Table 1). Isolate colonies growing on YEM agar medium were 1–3 mm in diameter after 2–3 days of incubation except for isolate Gs663 which grew very slowly (15 days). Five isolates were mucous, resulting in confluent growth, whereas the others were not.

3.3 PCR-amplified *recA*, *atpD* and 16S rRNA gene sequence analysis of *G. saharae* nodule isolates

The sequences obtained from PCR-amplified housekeeping genes (*atpD* and *recA*), of 57 *G. saharae* nodule isolates, were about 500 bp long. The 16S rRNA sequences (about 1500 bp) were amplified from 35 isolates selected from the clusters of isolates defined by *atpD* and *recA* phylogenies. After blasting the sequences against the NCBI database (http://blast.ncbi. nlm.nih.gov/), the result indicated that newly isolated strains belonged to three genera: *Ensifer* (previously *Sinorhizobium*), *Neorhizobium* and *Mesorhizobium* (Table 1). The length of the aligned sequences used for the phylogenetic analyses were

Genus (ben of etimine)	Isolates <i>Genista saharae</i>	Gene marker	Closely relate	ed species (seque	nce similarity %)
(mumber of suams)			Isolate numbers	High similarity	Type strains
Ensifer (previously Sinorhizobium)	Gs111 ^{ac} , Gs651,Gs652, Gs653, Gs654,Gs655,Gs656, Gs657,Gs658,Gs659,Gs510,Gs6511, Gs6513, Gs6515 ^a ,	atpD	05 40	100 % 99 %	E. meliloti LMG 6133^{T} (AM 418760)
(46)	Gs6516.Gs6517. Gs6518. Gs6519. Gs6520 ^a Gs6521. Gs6522 ^{abc} . Gs6523. Gs661. Gs662.Gs667.Gs668 ^b . Gs6615. Gs6614. Gs6670.Gs6671.Gs671.Gs672	recA	01 45 01	96 %	<i>E. meliloti</i> LMG 6133 (AM182133)
	Gs6716. Gs6717. Gs6718. Gs6720. Gs6721. Gs67215. Gs6724. Gs6774. Gs677	16S rRNA	04 10 2	99.9 %	E. meliloti LMG6133 $^{\mathrm{T}}$ (X67222)
Neorhizobium (10)	Gs6514 ^{abc} , Gs666 ^{abc} , Gs6617 ^b ,Gs6621, Gs6619,Gs6622, Gs6623 ^b , Gs674, Gs675 ^{abc} , Gs6710	atpD	06 03	9.0% 98 % 99 %	<i>N. huautlense</i> LMG 18254 ^T (AM418782) <i>N. galegae</i> LMG6214 ^T (AM418779)
			01	97 %	N. alkalisoli CCBAU01393 ^T (EU672461)
		recA	03 01	99 % 97 %	N. huautlense LMG18254 ^T (AM182128)
			01 03	91 % 91 %	<i>N. galegae</i> LMG6214 ^T (AM182127)
			01	95 %	N. alkalisoli CCBAU01393 ^T (EU672490)
		16S rRNA	06 01	100 %	N. huautlense $SO2^{T}$ (AF025852)
			03	99.7 %	N. vignae CCBAU05176 ^T (GU128881)
Mesorhizobium	Gs663 ^{abc}	atpD	01	(% 26	M. camelthorni CCNWXJ404 ^T (JN202304)
(01)		recA	01	98 %	M. camelthorni CCNWXJ404 ^T (GU220798)
		16S rRNA	01	% 6.66	M. camelthorni CNWXJ404 ^T (EU169581)

 Table 1
 List of isolates and the phylogenetic positions of representative Genista saharae isolates

^a Representative *atpD* ^b Representative recA

^c Representative 16S RNA

* Sequences rRNA 16S were performed only on representative strains defined by appD and recA clustering

387 bp, 341 and 1298 bp for the *atpD*, *recA* and 16S rRNA, respectively.

3.3.1 recA and atpD gene phylogenies

The phylogenetic trees based on the recA and atpD gene sequences (Figs. S1 and S2) supported clades for Neorhizobium, Ensifer and Mesorhizobium. Ensifer was most prevalent among the isolates, with 46 isolates forming 3 groups close to E. meliloti LMG6133^T with 98–99 % similarity in the recA tree (Fig. S1). The *atpD* sequence-based phylogeny confirmed these results, there were 3 groups close to E. meliloti LMG6133^T with 99 at 100 % similarity except for isolate Gs6515 with was less closely related with only 96 % similarity in the *atpD* tree (Fig. S2). Ten isolates were *Neorhizobium*, 6 of which group close to Neorhizobium huautlense LMG18254^T (98 % similarity); 3 isolates are closely related to Neorhizobium galegae LMG6214^T (99 % similarity) and one isolate (Gs6514) is close to Neorhizobium alkalisoli (97 % similarity). In the recA phylogenetic tree (Fig. 1) the same clustering was observed near the type strains, but two strains (Gs6617 and Gs6623) grouped near Neorhizobium huautlense LMG18254^T at lower similarity values than in the *atpD* gene tree (95 and 97 %) (Table 1). Three strains (Gs675, Gs6619 and Gs6623) are closely related to N. galegae LMG6214^T at 91 % similarity. Similar to atpDtree, isolate Gs6514 groups near Neorhizobium alkalisoli CCBAU01393^T, but at lower similarity (95 %). The unique Mesorhizobium new strain (Gs663) is the closest neighbour of M. camelthorni type strain with 97 and 98 % similarity for atpD and recA, respectively.

3.3.2 Analysis of concatenated recA and atpD genes

The phylogenetic tree of concatenated partial *atpD* and *recA* genes was constructed. The length of the aligned sequences used for the phylogenetic analyses was 684 bp. The sequences were from G. sahrae isolates and references species. The phylogenetic placement of the isolate on the tree generated from combined analysis (Fig. 1) is, generally, in agreement with that of the individual gene trees (Fig. S1 and S2). Thus, the test isolates within each of the 57 designated genospecies were robustly and distinctly (as supported by high bootstrap values) confirmed three distinct clusters clearly separating three genera (Neorhizobium, Ensifer and Mesorhizobium) obtained with the individual trees. Cluster I was the genus Neorhizobium (bootstrap of 91 %) and had three wellsupported sub-clusters (bootstrap of 100 %) consisting of Neorhizobium huautlense LMG18254^T and six isolates, one isolate near Neorhizobium alkalisoli CCBAU01393^T (bootstrap of 97 %) and three isolates closely related to N. galegae LMG6214^T (bootstrap of 87 %). Genus Ensifer (bootstrap of 99 %) was cluster II and included six isolates

from *G. sahare* that were closely related to the reference strains *E. meliloti* LMG6133^T and *E. kummerowiae* CCBAU71714^T. Cluster III (bootstrap of 100 %) was the *genus Mezorhizobium*. It consisted of theunique isolate Gs663and the reference species *M. camelthorni* and *M. alhagi* CCNWXJ122^T.

3.3.3 16S rRNA gene based phylogeny

The phylogenetic tree based on 16S rRNA gene sequences of 35 G. saharae strains and reference sequences is presented in Fig. 2. It supported clades for Neorhizobium, Ensifer and Mesorhizobium. The isolates group into 3 main clusters, consistent with those found in the recA and atpD phylogenetic representations (fig S1 and S2). The first one belongs to the Ensifer genus (24 isolates) close to *E. meliloti* LMG6133^T forming 3 groups with high similarity values 99.6, 99.8 and 100 % (Table 1). The second cluster includes ten G. saharae derived isolates in the Neorhizobium group with 7 strains close to N. huautlense $SO2^{T}$ with high similarity values (99.6-100 %) and 3 strains closely related to N. vignae CCBAU05176^T with 99.7 % similarity (Table 1). The third cluster encompasses a unique isolate (Gs663) affiliated with Mesorhizobium and closely related to M. camelthorni CNWXJ404^T with the high similarity of 99.9 % (Table 1).

3.4 Infectivity and nitrogen fixation properties

Representative strains recovered from G. saharae were evaluated for their symbiotic potential including the reference strain Ensifer garamanticus ORS1400^T (Zakhia et al. 2004); all nodulate and fix nitrogen on G. saharae (Table S2). Ensifer isolates resulted in significant (P<0.0001) higher nodule numbers per plant. Among them, the isolate Gs6615 shows the highest mean number of nodules (11.8 ± 0.75). Highest nodule dry biomass was obtained with Neorhizobium sp. Gs675 which produced few but large nodules $(7.8 \pm 0.8 \text{ nodules per plant})$. Aerial plant biomass indicated that Ensifer sp. strain Gs656 was the most effective with 4.94 ± 1.00 (nodule dry biomass) and 22.92 ± 1.46 plant height (P<0.0001) and total biomass (9.12 mg). Comparatively low biomass values obtained for negative control plants indicate the N₂-fixation efficiency of Genista isolates.

ANOVA analysis of aerial plant biomass data, used as an indicator of N₂-fixation effectiveness, results in 4 groups with high significance (P<0.0001): [Gs656]; [Gs6516, Gs6620, ORS1400^T, Gs675, Gs6716, Gs6719]; [Gs111, Gs659, Gs6514, Gs6515, Gs661, Gs666, Gs6713, Gs6718, Gs6720] and [Gs6522, Gs663, Gs6722] The composition of the groups

Author's personal copy

0.02

Fig. 1 Maximum-likelihood phylogenetic tree based on concatenated atpD and recA gene sequences, showing the relationships between isolates from *Genista saharae* and reference strains. The analysis was based on 684 bp. the significance of each branch is indicated by a

bootstrap value (above 50 %) calculated for 1000 subsets. The scale bar represents the number of nucleotide substitutions per 100 nucleotides. Number in parenthesis represents the number of strains in each genospecies defined in the present study

Author's personal copy

Rhizobial diversity associated with the spontaneous legume

0.01

Fig. 2 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, showing the relationships between isolates from *Genista saharae* and reference strains. The analysis was based on 1267 bp. Genbank accession numbers are given beside the strain numbers and the significance of each branch is indicated by a bootstrap value (above 50 %) calculated for 1000 subsets. The scale bar represents the number of nucleotide substitutions per 100 nucleotides. New *Genista saharae* nodule isolates are shown in bold. The accession numbers for this gene

shows phenotypic diversity of nodulation attributes between *Genista* isolates.

3.5 Resistance to temperature and salt tolerance

Genista saharae rhizobial isolates were tested for growth at different temperatures and NaCl concentrations

in GenBank are: strain Gs111 representative to Gs652-54, Gs658, Gs6515-16, Gs6518, Gs6520, Gs6616, Gs6620, Gs6712-14(KR002728); strain Gs6522 representative to Gs652, Gs656 Gs676, Gs677, Gs6615(KR002731); strain Gs668 representative to Gs659, Gs661, Gs717 (KR002732); strain Gs666 representative to Gs6617, Gs6622-23, Gs674, Gs6710 (KR002736); strain Gs675 representative to Gs6619, Gs6621(KR002734); Gs6514 (KR002735); Gs663 (KR002737)

(Table 2). Of 22 isolates tested, two grew up to 40 °C, 11 up to 42 °C and 4 up to 45 °C. All strains tolerated 1 % NaCl for growth, except for *Ensifer* sp. isolate Gs6721. *Neorhizobium* sp. isolate Gs675 did not grow at 2 % NaCl. The other isolates were salt tolerant up to 4 % NaCl, except two *Ensifer* strains (Gs6515 and Gs6521). The type strains *Ensifer meliloti* LMG6133^T and

Author's personal copy

K. Chaïch et al.

Table 2 Growth conditions (temperature and salinity) among isolates from Genista saharae and reference strains

Isolates	Growth at/with ^a						
	40 °C	42 °C	45 °C	1 % NaCl	2 % NaCl	3 % NaCl	4 % NaCl
Gs111	_	_	_	+	+	+	+
Gs656	+	-	-	+	+	+	+
Gs659	+	-	-	+	+	+	+
Gs661	+	-	-	+	+	+	+
Gs663	+	+	-	+	+	+	+
Gs666	+	-	-	+	+	+	+
Gs668	+	+	-	+	+	+	+
Gs671	+	+	-	+	+	+	+
Gs675	+	+	-	+	-	-	-
Gs676	+	+	-	+	+	+	+
Gs6515	+	+	ND	+	+	+	-
Gs6516	+	+	+	+	+	+	+
Gs6521	+	+	+	+	+	+	-
Gs6518	+	+	ND	+	+	+	+
Gs6522	+	+	+	+	+	+	+
Gs6622	+	-	-	+	+	+	+
Gs6623	-	-	-	+	+	+	+
Gs6712	+	-	-	+	+	+	+
Gs6713	+	+	+	+	+	+	+
Gs6717	+	-	-	+	+	+	+
Gs6720	+	-	-	+	+	+	+
Gs6721	+	-	-	_	-	_	-
E. garamanticus ORS1400 ^T	+	+	-	+	+	+	-
<i>E. meliloti</i> LMG6133 ^T (ORS665 ^T)	+	+	ND	+	_	_	-
<i>Rhizobium etli</i> CFN42 ^T (USDA9032)	-	-	-	+	-	-	-

^a+: positive; -: negative; ND not determined

Rhizobium etli CFN42^T showed lower salt tolerance than most isolates, and the *R. etli* strain was susceptible to high temperatures.

4 Discussion

The present study brings information on under-documented legume-rhizobia interactions in the natural environment of the Algerian Sahara, which is characterized by high thermal amplitudes and low rainfall. Soil data revealed a light texture and very low levels of nutritients, confirming severe ecological conditions for living organisms. However, we recovered 57 isolates able to nodulate and fix atmospheric nitrogen with *G. saharae*, a legume involved in dune fixation and contributing to ecological equilibrium in the Saharan ecosystem. This data is evidence of the presence of nodulate leguminous plants adapted to natural extremes in the upper soil strata. The characterization of the isolates based on *recA*, *atpD* and 16S rRNA gene sequence analyses supported their affiliation to three

phylogenetic groups (*Neorhizobium*, *Sinorhizobium* and *Mesorhizobium*). In their majority (more than 80 %) these isolates belong to *Ensifer* (previously *Sinorhizobium*) close to type strain *E. meliloti* LMG6133^T, 10 isolates grouped in *Neorhizobium* in the vicinity of *N. galegae* LMG6214^T and *N. alkalisoli* CCBAU01393^T. Only one isolate belonged to the *Mesorhizobium*, branch near *M. camelthorni* CCNWXJ404^T. In previous reports, *Bradyrhizobia* related strains were found to be the only bacteria in the root nodules of *Genista* species growing in Europe (Fernando and Jesus 1998; Kalita and Malek 2004; Rivas et al. 2009). Only one study (Mahdhi et al. 2007) found that *Genista saharae* from the infra-arid region of Tunisia were nodulated by *Ensifer* and *Rhizobium*.

This study is the first report describing the genetic diversity of nodule-endophytic bacteria isolated from *G. saharae* shrubs growing in the extreme ecological conditions which are prevalent in Saharan regions of Algeria. This might indicate that the 57 isolates identified as originating from *G. saharae* in the present study enlarged the host range of 5 reference species (*E. meliloti* LMG6133^T, *N. galegae* Rhizobial diversity associated with the spontaneous legume

LMG6214^T. N. huautlense LMG18254^T and N. alkalisoli CCBAU01393^T and *M. camelthorni* CCNWXJ404^T). The group defined as E. meliloti has often been considered a rhizobial species with a host range limited to species in the genera Medicago, Melilotus and Trigonella (Szeto et al. 1984). However, a novel biovar of E. meliloti effectively nodulating Phaseolus vulgaris has been isolated in Tunisia (Mnasri et al. 2007). Species in the Neorhizobium genus have recently been phylogenetically classified and named by Mousavi et al. (2014) which reported that several Neorhizobium species (N. galegae, N. huautlense, N. vignae and N. alkalisoli) isolated from diverse shrub species found in infra-arid regions of Tunisia (Zakhia et al. 2004). The genus Mesorhizobium, represented by one strain in this study, nodulates the roots of the legume Alhagi sparsifolia in arid zones of China (Chen et al. 2011).

Phenotypically, the root nodules formed by all the isolates were morphologically similar but they differed in their symbiotic efficiency and effectiveness. The strains also show phenotypic diversity in symbiotic attributes. This work shows that indigenous Saharan rhizobia are well adapted to tolerate high temperatures (up 45 °C) and salinity (up 4 %). Temperature adaptation and salt tolerance by root-nodule bacteria have been documented and confirmed by many studies performed in similar regions (Amrani et al. 2010; Berrada et al. 2012; Karanja and Wood 1988; Rejili et al. 2012; Sharma et al. 2013; Zahran 1999).

This genetic and phenotypic diversity permits *G. saharae* shrubs to adapt to several edapho-climatic conditions (time and space). Three isolates with low sequence similarity to the known species of *N. galegae* are likely novel species in this genus. Consequently this study must be following by DNA-DNA hybridization with corresponding type strains to determine with precision the species identity and testing of all strains for their ability to grow in extreme conditions. Moreover, testing these isolates on other leguminous species is required to study their host range.

Acknowledgments We would like to gratefully acknowledge Prof. Ahmed Boutarfaya and Prof. Samia Bissati, (both from the University of Kasdi Merbah-Ouargla) for their support and encouragement.

Compliance with ethical standards

Funding statement This work was supported by the Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (MESRS) of Algeria. The funder had no role in study design, data collection and analyses, preparation of the manuscript or decision to publish.

Conflict of interest The authors declare that there are no personal, financial or any other conflicts of interest to declare.

Ethical statement This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

References

- Amrani S, Noureddine NE, Bhatnagar T, Argandoña M, Nieto JJ, Vargas C (2010) Phenotypic and genotypic characterization of rhizobia associated with *Acacia saligna* (Labill.) Wendl. in nurseries from Algeria. Syst Appl Microbiol 33:44–51. doi:10.1016/j.syapm.2009. 09.003
- Berrada H, Nouioui I, Iraqui Houssaini M, El Ghachtouli N, Gtari M, Fikri Benbrahim K (2012) Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Fez, Morocco. Afr J Microbiol Res 6:5314– 5324. doi:10.5897/AJMR11.1505
- Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of the ionic transport system in *Brassica napus* by a plant growth-promoting rhizobacterium (*Achromobacter* sp.). Can J Microbiol 46:229–236. doi:10.1139/ cjm-46-3-229
- Brockwell J, Searle SD, Jeavons AC, Waayers M (2005) Nitrogen fixation in Acacias: an untapped resource for sustainable plantations, farm forestry and land reclamation. Australian Centre for International Agricultural Research, Canberra
- Chehma A, Faye B, Bastianelli D (2010) Valeurs nutritionnelles des plantes vivaces des Parcours sahariens algériens pour dromadaires. Fourrages 204:263–268
- Chen WP, Kuo TT (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21: 2260. doi:10.1093/nar/21.9.2260
- Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 61:574–579. doi:10.1099/ijs. 0.022947-0
- Cox MM (2003) The bacterial *RecA* protein as a motor protein. Annu Rev Microbiol 57:551–577. doi:10.1146/annurev.micro.57.030502. 09095
- Fernando GA, Jesus M (1998) Biodiversity of rhizobia nodulating Genista monspessulana and Genista linifolia in Spain. N Z J Agric Res 41:585–594. doi:10.1080/00288233.1998.9513342
- Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilps SA, Young JP (2001) Phylogenies of *atpD* and *recA* support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048. doi:10.1099/00207713-51-6-2037
- Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91– 97. doi:10.1099/ijs.0.63967-0
- Kalita M, Malek W (2004) Phenotypic and genomic characteristics of Rhizobia isolated from *Genista tinctoria* root nodules. Syst Appl Microbiol 27:707–715
- Karanja NK, Wood M (1988) Selecting *Rhizobium phaseoli* strains for use with beans (*Phaseolus vulgaris* L.) in Kenya: infectiveness and tolerance of acidity and aluminium. Plant Soil 112:7–13. doi:10. 1007/BF02181746
- Le Houérou HN (1990) Définition et limites bioclimatiques du Sahara. Sécheresse 1:246–259
- Le Houérou HN (1997) Biodiversité végétale et diversité génétique en Afrique. Sécheresse 2:117–122
- Lloyd AT, Sharp PM (1993) Evolution of the *recA* gene and the molecular phylogeny of bacteria. J Mol Evol 37:399–407. doi:10.1007/BF00178869
- Mahdhi M, Nzoué A, Gueye F, Merabet C, de Lajudie P, Mars M (2007) Phenotypic and genotypic diversity of *Genista saharae* microsymbionts from the infra-arid region of Tunisia. Lett Appl Microbiol 45:604–609. doi:10.1111/j.1472-765X.2007.02233.x
- Martens M, Delaere M, Coopman R, De Vos P, Gillis G, Willems A (2007) Multilocus sequence analysis of *Ensifer* and related taxa. Int J Syst Evol Microbiol 57:489–503. doi:10.1099/ijs.0.64344-0
- Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus *Ensifer* (including former *Sinorhizobium*). Int J Syst Evol Microbiol 58:200–214. doi:10.1099/ijs.0.65392-0
- Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L et al (2012) Molecular and phenotypic characterization of strains nodulating *Anthyllis vulneraria* in mine tailings, and proposal of *Aminobacter anthyllidis* sp. nov., the first definition of *Aminobacter* as legume-nodulating bacteria. Syst Appl Microbiol 35:65–72. doi:10.1016/j.syapm.2011.11.002
- Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C et al (2010) Multilocus Sequence analysis of root nodule isolates from *Lotus arabicus* (Senegal), *Lotus creticus*, *Argyrolobium uniflorum* and *Medicago sativa* (Tunisia) and description of *Ensifer numidicus* sp. nov. and *Ensifer garamanticus* sp. nov. Int J Syst Evol Microbiol 60:664–674. doi:10.1099/ijs.0.012088-0
- Meriane D, Kaabache M (2012) Ecology, biology and biometry of an endemic fabaceae: *genista saharae* cosson and durieu. J Life Sci 6:501
- Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007) Salttolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N₂-fixation with *Phaseolus vulgaris* constitute a novel biovar (bv. *mediterranense*) of *Sinorhizobium meliloti*. Arch Microbiol 187:79–85. doi:10.1007/s00203-006-0173-x
- Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al (2014) Phylogeny of the *Rhizobium–Allorhizobium–Agrobacterium* clade supports the delineation of *Neorhizobium* gen. nov. Syst Appl Microbiol 37:208–15. doi:10.1016/j.syapm.2013.12.007

Nedjraoui D (2001) Country Pasture/Forage Resource Profiles: Algeria

- Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Pittsburgh Supercomputing Center, Pittsburgh
- OZENDA P (1991) Flore du Sahara, 3^{ème} édition complétée, Paris, Centre national de la recherche scientifique (CNRS)
- Quezel P (1978) Analyses of the flora Mediterranean and Saharan Africa. Ann Mo Bot Gard 56:479–534

- Rejili M, Mahdhi M, Fterich A, Dhaoui S, Guefrachi I, Abdeddayem R et al (2012) Symbiotic nitrogen fixation of wild legumes in Tunisia: soil fertility dynamics, field nodulation and nodules effectiveness. Agric Ecosyst Environ 157:60–69. doi:10.1016/j.agee.2012.01.015
- Rivas R, García-Fraile P, Velázquez E (2009) Taxonomy of bacteria nodulating legumes. Microbiol Insights 2:51–69
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09
- Sharma SR, Rao NK, Gokhale TS, Ismail S (2013) Isolation and characterization of salt-tolerant rhizobia native to the desert soils of United Arab Emirates. Emir J Food Agric 25:102–108. doi:10.9755/ejfa. v25i2.7590
- Szeto WW, Zimmerman JL, Ausubel SV, FMA (1984) Rhizobium meliloti symbiotic regulatory gene. Cell 36:1035–43. doi:10.1078/ 0723202042369965
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–27339. doi:10.1093/molbev/msr121
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876
- Udvardi M, Poole PS (2013) Transport and metabolism in legumerhizobia symbioses. Annu Rev Plant Biol 64:781–785. doi:10. 1146/annurev-arplant-050312-120235
- Vincent JM (1970) A manual for practical study of root nodule bacteria. IBP Handbook 15. Blackwell Sci. Publ. Oxford
- Wawrik B, Kerkhof L, Zylstra GJ, Kukor JJ (2005) Identification of unique type II polyketide synthase genes in soil. Appl Environ Microbiol 71:2232–2238. doi:10.1128/AEM.71.5.2232-2238.2005
- Zahran HH (1999) *Rhizobium*-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–89
- Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel JC, Gillis M et al (2004) Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27: 380–395. doi:10.1078/0723-2020-00273