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Abstract: 

This research aims to demonstrating the effectiveness of quantum algorithms in the 

treatment of some of the most difficult problems for classical algorithms. As an 

example of known problem, we have the factorization of number composed by tow 

prime factors. There are several algorithms that solve this problem, but it takes 

more steps, while by the quantum Shor‘s algorithm it can be solved in a few steps 

and so less time. 

As an illustration of how quantum computing is capable and expected, we have 

included two examples of the Simon algorithm and the Deutch-Jozsa algorithm. 

Key Words: 

Q-bit, Algorithm, Quantum gate, Hadamerd, QFT, Shor‘s Algorithm. 

 

Cette recherche vise à démontrer l'efficacité des algorithmes quantiques dans le 

traitement de certains des problèmes les plus difficiles pour les algorithmes 

classiques. A titre d'exemple de problèmes connus, nous avons une factorisation du 

nombre en deux facteurs premiers. Il existe plusieurs algorithmes qui résolvent ce 

problème, mais par l'algorithme quantique Shor peut être résolu en quelques étapes 

et moins de temps. 

Pour illustrer comment l'informatique quantique est capable de résoudre les 

problèmes nous avons inclus deux exemples : l'algorithme de Simon et l'algorithme 

de Deutch-Jozsa. 

Les mots clé : 

Q-bit, algorithme, porte quantique, Hadamerd, QFT, algorithme de Shor. 

 

َهذف بحثنا هذا إنً إظهار مذي فعانُت و نجاعت انخىارسمُاث  انكمىمُت فٍ معانجت بعض انمشاكم انعسُزة 

باننسبت نهخىارسمُاث انكلاسُكُت، و أخذنا كمثال عهً انمشاكم انمعزوفت، مشكم ححهُم عذد إنً جذاء عىامم 

ها حأخذ وقخا و خطىاث أكثز، بُنما أونُت، صحُح أنه حىجذ عذة خىارسمُاث حقىو بحم هذا انمشكم، إلا أن

 انكمىمُت َمكن حهها فٍ خطىاث معذودة. Shorبىاسطت خىارسمُت 

وكخىضُح نمذي انقذرة انهخٍ َخُحها انحاسىب انكمىمٍ والافاق انمنخظز ححقُقها منه، أدرجنا مثانُن 

 .Deutch-Jozsaو خىارسمُت  Simonخىارسمُت 

 انكهماث انمفخاحُت:

 خىارسمُت، بىاباث كمىمُت، هادامار، ححىَم فىرٌ انكمىمٍ، خىارسمُت شىر.كُىبُج، 
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Introduction: 

The world's biggest jump in computing since the first computer with air valves and 

light bulbs was to detect integrated circuits on silicon chips, through the transistor 

revolution. 

All this progress has been an important role in physics, and researchers around the 

world are still exploiting the development and progress of applications of modern 

physics in various fields, and the field of computing. the field of computing can not 

take advantage of this progress, and the idea of exploiting quantum phenomena to 

build what is now known as the "quantum computer" originated with Richard 

Feynman and David Dutch… 

Under the law of a provider under which the number of transistors multiplies in a 

microprocessor, it is logical for the world to set up quantum computers. 

Quantum computers have the ability to perform multiple calculations at the same 

time, with fewer steps, allowing us to accelerate many difficult applications, in 

quantum computing, basic computing rules change, so quantum phenomena are 

exploited for the construction of algorithms and quantum gates, the bit in classic 

can be 0 or 1, the qubit is 0 and 1 in the same time. 

When we store information in classical circuit, we must read it again, this we‘ll be 

different with qubit, because you need to measure a qubit to determinate it state. 

The Q-C used the quantum parallelism, and entanglement and Superposition 

phenomenon. 

But the realization of a quantum computer is how to save coherence propriety of 

qubit, because it‘s very Sensitive to the outer center, researcher‘s try with different    

method‘s, as example 

- Ion traps. 

- Optical traps. 

- Quantum dots. 

- Semiconductor impurities.
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1. The Classical Algorithme : 

 Algorithme : 

It‘s a collection of  logical steps to solve an problem in Mathematics ―Algorithm‖ means: 

 

Graph -1- : Schematic illustration of the algorithm‘s structure 

And The Name Algorithm originated from to the musulm scientist ―ABOU DJAFARE 

MOUHAMED IBN MOUSSSA ALKHAWARZMI‖, that who invented in the ninth century 

AD  

Digital Logic: 

All the machines (here we talked about the digital machines), are based at a simple 

principle, it‘s a representation of the information with two numbers {0 and 1}, in which 

every machine consists of a set of electronic circuits. 

Each circuit provides a well-defined logical function (addition, comparison ….). 
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Example: 

    : 0.1 0.1
m p

f    (1.1) 

 

Example: Algorithm for Finding the roots of a quadratic equation 

1) Start 

2) Read the coefficient a,b,c 

3) Calculate 2 4z b ac   

4) If  0z  display a message roots are imaginary go to ---- Else proceed to next step  

5) If 0z   display a message roots are real and  unequal and go to---Else proceed to next step---- 

6) Display a message roots are real and un equal and go to--- 

7) Calculate 1 2
2

b
r r

a


    , and go to step--- 

8)  Calculate r1 and r2 and go to step--- 

 

2 24 4
1 , 2

2 2

b b ac b b ac
r r

a a

     
   

9) Display roots r1 and r2 

10) Stop 

 

2. Booléen Algèbre : 

A. Abstract : 

To design and realize electronic circuits we must have a mathematical model of the 

function realized by this circuit, this model must take into consideration the binary system. 

The mathematical model used is that of‖ Boolean Algebra ―. 

George Boole is an English mathematician (1815-1864), he has done works whose 

functions (expressions) are constituted by variables that can take the values 'YES' or 'NO'. 

These works have been used to study systems that have two states mutually exclusive: 

The system can only be in two states E1 and E2 such that E1 is the opposite of E2. 
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The system can not be in state E1 and E2 at the same time, these works are well adapted to 

the binary system (0 and 1). 

We denote a bit (0.1) 

Boolean algebra is a different kind of algebra or rather can be said a new kind of algebra 

which was invented by world famous mathematician George Boole in the year of 1854. He 

published it in his book ―An Investigation of the Laws of Thought‖. Later using this 

technique Claude Shannon introduced a new type of algebras which is termed as Switching 

Algebras. In digital electronics there are several methods of simplifying the design of logic 

circuits. This algebra is one of these methods. According to George Boole symbols can be 

used to represent the structure of logical thoughts. This type of algebra deals with the rules 

or laws, which are known as laws of Boolean algebra by which the logical operations are 

carried out. 

There are also few theorems of Boolean algebra, that are needed to be noticed carefully 

because these make calculation fastest and easier. Boolean logic deals with only two 

variables, 1 and 0 by which all the mathematical operations are to be performed. 

There only three basis binary operations, AND, OR and NOT by which all simple as well 

as complex binary mathematical operations are to be done. There are many rules in 

Boolean algebra by which those mathematical operations are done. In Boolean algebra, 

English Capital Letter like A, B, C etc, represents the variables and the value of each 

variable can be either 1 or 0, nothing else. In Boolean algebra an expression given can also 

be converted into a logic diagram using different logic gates like AND gate, OR gate and 

NOT gate, NOR gates, NAND gates, XOR gates, XNOR gates etc. 

Some basic logical Boolean operations, AND Operation OR Operation Not Operation 

Some basic laws for Boolean Algebra. 

B. Axioms for a Boolean Algebra: 

1. Cumulative Law for Boolean algebra: 

. . . . . . . . . . . .

A B C A C B B A C B C A C A B C B Q

A B C A C B B A C B C A C A B C B A

                

    
 (1.2) 
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According to Cumulative Law, the order of OR operations and AND 

operations conducted on the variables makes no differences. 

2. Associative Laws for Boolean algebra: 

    

   

   . . . .

A B C A B C

A B C A B C

    


  (1.3) 

This law is for several variables, where the OR operation of the variables result is same 

though the grouping of the variables. This law is quite same in case of AND operators. 

3. Distributive Laws for Boolean algebra: 

  . . .A B C A B A C     (1.4) 

This law is composed of two operators, AND and OR. 

C. Some basic laws for Boolean algebra 

 0 1,1 0,  if A=1 then 0,  and if A=0, then 1.A A      

A.0=0 where A can be either 0 or 1. 

A . 1 = A where A can be either 0 or 1. 

A . A = A where A can be either 0 or 1. 

A . Ā = 0 where A can be either 0 or 1. 

A+0 = A where A can be either 0 or 1. 

A+1=1whereA can be either 0 or 1. 

A+Ā=1 

A+A=A 

A + B = B + A where A and B can be either 0 or 1. 

A . B = B. A where A and B can be either 0 or 1. 

The laws of Boolean algebra are also true for more than two variables like. 

 

 

 

https://www.electrical4u.com/or-operation-logical-or-operation/
https://www.electrical4u.com/and-operation-logical-and-operation/
https://www.electrical4u.com/and-operation-logical-and-operation/
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3. Bit :  

Definition: We denote bit as a measurement unit of information, it is used in information 

computing and digital communication, while 1 bit consisted for 0 and 1, also it can represent by 

true or false value. 

Confusion often arises because the words bit and binary digit are used interchangeably. But, 

within information theory, a bit and a binary digit are fundamentally different types of entities. A 

binary digit is a number that can adopt one of two possible values (0 or 1), whereas a bit is the 

maximum amount of information that can be conveyed by a binary digit. By analogy, a binary 

digit is like a container, whereas information is the amount of matter in the container
  1

. 

Physical representation:  

 in classical machines we manipulated the bit as an electrical current, where.  

0: means their is no electric signal. 

1: existence of electric signal. 

Between 1950 and 1960, the representation of a bit developed by magnetic polarisation of certain 

area of a ferromagnetic film. The bit is a base of all computing process. 

4. Classical Operations (Bitwise Operations) : 

Name  Graphic symbol Algebraic Function 

AND 

 

 

F A B

or

F AB

 



 

OR 

 

F A B    
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NOT 

 '

F A

or

F A





  

NAND 

 

 F AB   

NOR  

 

 F A B    

Table -1- Logical Gates and their graphics representation 

Where x  is the complement of x  .  

5. Postulats of Quantum Mechanics : 

I. Postulate 1: A quantum bit: 

- Postulate 1: Associated to any isolated physical system is a complex vector space 

with inner product (that is, a Hilbert space) known as the state space of the 

system. The system is completely described by its state vector, which is a unit 

vector in the system’s state space. 

II. Postulate 2: Evolution of quantum systems: 

The evolution of a closed quantum system is described by a unitary transformation. 

That is, the state    of the system at time t1 is related to the state '   of the 

system at time t2 by a unitary operator U which depends only on the times t1 and t2.

 2  

 ' U    (1.6) 

Example: 

let us take the Pauli matrices as an evolution operator and apply it on a single qubit: 

1. 0 1    . 



  CHAPTER 1 

 

 8  

 
0 1

1 0
xU X

 
    

 
 

 
0 1

' 0 1 0 1
1 0

U


     


   
        

   
 

2. 0 1    . 

1 0

0 1
zU Z

 
    

 
 

 
1 0

' 0 1 0 1
0 1

U     
 

     
 

 

3. 0 1    . 

4

1 0

0 i
U T

e 

 
   

 
 

  4

4

1 0
' 0 1 0 1

0

i

i
U e

e




     

 
     

 
 

III. Measurement: 

- All the developments that occur within the isolated quantum system, is a unitary 

evolution, but once the measurement on the sentence of the universe is a non-unitary 

transformation, and to describe this development we offer the third postulate of the 

quantum mechanics. 

- “Postulate 3: Quantum measurements are described by a collection {Mm} of 

measurement operators. These are operators acting on the state space of the system 

being measured. The index m refers to the measurement outcomes that may occur in 

the experiment. If the state of the quantum system is    immediately before the 

measurement, then the probability that result m occurs is given by”: 

  †

m mp m M M 
                                                     (1.7) 

The measurement operator satisfy the 

condition: 

(1.8) 

†

m m

m

M M  
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IV. Postulate 4: Multi-qubit systems: 

Postulate 4: ”The state space of a composite physical system is the tensor product 

of the state spaces of the component physical systems. Moreover, if we have 

systems numbered 1 through n  , and system number i   is prepared in the state, i   then 

the joint state of the total system is 1 2 ... n        ” 3  

6. Two Quantum State (up, down): 

When we deal with systems in quantum level, as example Stern-Gerlach experiment   

Is give a proof that all particle has just two possible state, which described by a 

superposition of two state. 

Mathematically this stat written as next: 

         (1.9) 

In measurement can to have tow value: positive value with probability 
2

  , or negative 

value with 
2

 . 

7. Quantum Bit (qubit): 

After first we should note: ―Classical bit is 0 or 1, but the qu-bit is a superposition of 0 

and 1‖  

 

 Figure 1: Stern-Gerlach Experiment. 
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- we use the Dirac notation ( bra Ket  ), and the superposition state of a physics system, 

Specifically systems who have tow possible state like polarisation system,  Systems with 

spin … 

A state of those system can have represented by the state 0 1     , where 

,  £  and since we require this to be a normalized state, we require that  

2 2
1     (1.5) 

this Bit can be representing as a vector where: 

1 0
0 ,  and 1

0 1

   
    
   

 

1 0
0 1

0 1


     



     
          

     
 

Also we can represent two qubits as follows 

 

00

01

00 01 10 11

10

11

00 01 10 11




   





 
 
    
 
 
 

 (1.10) 

where ab  is the basis vector representing a state where the first qubit is in the state a   

and the second qubit in the state b and so on . 

Each basis state represents a vector in Bloch sphere (Bloch sphere, a geometrical 

representation of a two-level quantum system.), such that the coefficient of the 0   ket is 

real an non-negative. Using this and the normalization constraint, it is useful to not use α 

and β, but instead to use:

   cos   and =e sin , where 0    and 0    2
2 2

i            , you can see that when 

we use this notation, it give us a possibility to represent all basis vector (single qubit ) in a 

sphere that called Bloch Sphere. 4  
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In classical computation, the smallest unit of DATA is the bit, element of tow element set 

 0,1  , in quantum computation the smallest unit of DATA is a quantum bit, or qubit, 

defined as a ray in Hilbert Spaces or Bloch Sphere.  5  
 

 

8. n-qubit (Quantum Registre) : 

Suppose a system of n-qubit, the state of This system described by the tonsorial product 

of the component of the system as follows: 

 1 2 ... n         (1.11) 

 
 

2

0,1
n

x

x

x 


  £   (1.12) 

With the condition of normalization of this system written as: 

 
 

2

1,0

1
n

x

x




   (1.13) 

This formula called a quantum register described by: 

 
2 1

0

n

i

i

p i




   (1.14) 

 

 

Figure2 : Bloch Sphere TLS 



  CHAPTER 1 

 

 12  

9. Summary: 
 

The difficulties stand in front of the researchers is how to building a quantum computer is 

that conserve a coherence propriety. 

It can build a qubit from different methods, as example: 

- Trapped ion. 

- Entangled Photons. 

- Quantum Dots. 

- Nuclei of atoms. 

- Superconductor. 
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1. Notation: 

Symbol of the circuit Name of circuit Operation 

 
Not= X gate 

this operation applied for one 

qubit:
 

 




  

 
Hadamerd 

1 11

1 12
H

 
  

 
  

 

controlled-Not 

1 0 0 0

0 1 0 0
, , ( ) , ( )

0 0 0 1

0 0 1 0

a f x a a f x

 
 
   
 
 
 

  

 

Measurement Project on to 0  or 1   

   
Tonsorial Product 

1 0

1 1 0 0 1 1
,

0 0 0 1 0 0

0 0

0 0

1 0 0 0 0 0
,

0 1 1 1 1 0

0 1

   
   

                              
   
   

   
   

                              
   
   

  

   

Tonsorial 

summation 
 

 

swap 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 
 
 
 
 
 

  

https://en.wikipedia.org/wiki/File:Qcircuit_NOT.svg
https://en.wikipedia.org/wiki/File:Hadamard_gate.svg
https://en.wikipedia.org/wiki/File:CNOT_gate.svg
https://en.wikipedia.org/wiki/File:Qcircuit_measure-arrow.svg
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Pauli-X 
0 1

1 0

 
 
 

  

 

Pauli-Y 
0

0

i

i

 
 
 

  

 

Pauli-Z 
1 0

0 1

 
 

 
  

 

π/8 4

1 0

0 ie 

 
 
 

  

 

Phase 
1 0

0 i

 
 
 

  

 

Controlled-Z 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 

 

  

 

Controlled-Phase 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i
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Toffoli 

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

Fredkin 

(Controlled-Swap) 

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

Qubit Wire carrying a single qubit 

 

Classical Bit  Wire carrying a classical bit 

 

n qubit Wire carrying n qubit 

Table 2 : the notation used in the quantum computing. 

2. Quantum gates :  6
 

The quantum gates are the operation that can be applied for a qubit, this quantum gates are the 

operator satisfied the next condition: Unitary and Hermitian 

Can we say that this operation, simply is the Pauli matrix: 
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a. Gate for one qubit: we have four gate con applied on a single qubit, are the Pauli 

matrix: 

a) Not Gate:  

 
0 1

1 0
NOT X

 
   

 
  (2.1) 

 

 

 

 

 

 

 

 

 

1 0 1 0
0 1

0 1 0 1
X

    
      
    

 , and 
0 0 1 1

1 0
1 1 0 0

X
    

      
    

 

0 1 0 1 0 1 0 0 1 0

1 0 1 0 0 0 0 1 0 1
XX

       
          

       
  

b) Z Gate: 

 
1 0

0 1

 
 

 
  (2.2) 

Example: application of the Z-Gate for a qubit in the state 0  and 1  . 

 

Figure 3: Showing the X-gate protocol 
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1 0 1 1
0 0

0 1 0 0

1 0 0 0
1 1

0 1 1 1

Z

Z

    
      

    

    
       

     

 

c) T Gate: 

 
4

1 0

0 ie 

 
 
 

  (2.3) 

Example: application of the T-Gate for a qubit in the state 0  and 1  . 

4

4

4

1 0 1
0 0

0 0

1 0 0
1 1

0 1

i

i

i

T
e

T e
e







  
   
  

  
   
  

  

d) S Gate: 

 
1 0

0 i

 
 
 

  (2.4) 

Example: application of the S-Gate for a qubit in the state 0  and 1  . 

1 0 1
0 0

0 0

1 0 0
1 1

0 1

S
i

S i
i

  
   
  

  
   
  

 

e) Y Gate: 

 
0

0

i

i

 
 
 

  (2.5) 

Example: application of the Y-Gate for a qubit in the state 0  and 1  . 

0 1
0 0

0 0

0 0
1 1

0 1

i
S i

i

i
S i

i
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f) Hadamerd Gate:  

 
1 11

1 12
H

 
  

 
  (2.6) 

Example: application of the Y-Gate for a qubit in the state 0  and 1  . 

 
1

0 0 1
2

H    ;   
1

1 0 1
2

H     

but: 

 

 

     

1 1 1
0 1 0 1

2 2 2

1 1 1 1 1
0 1 0 1 0 1 0 1 0

22 2 2 2

H H H
 

   
 

   
           

   

 

 

     

1 1 1
0 1 0 1

2 2 2

1 1 1 1 1
0 1 0 1 0 1 0 1 1

22 2 2 2

H H H
 

   
 

   
           

   

  

b. Gate for tow qubit: 

The operation available for tow qubit is the C-NOT gate. 

 

 

 

 

 

We can defined C-NOT gate with tow different methods, as matrix or with analytical 

formula. 

 

Figure 4: The C-NOT gate notion 
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1 0 0 0

0 1 0 0
, , ,

0 0 0 1

0 0 1 0

C NOT a b a a b

 
 
    
 
 
 

  (2.7) 

All the qubit in the base n=2 written in terms of: 00 , 10 , 01 , 11  basis vectors. 

Applications: 

  

 

 

 

 

 

 

 

c. Gate for n qubit: 

The operation available for n qubit is the generalization of C-NOT. 

 
 0,1

1
( )

2 n

f
n

x

U x f x


    (2.8) 

And also the ‗QFT‘ Quantum Fourier Transformation
   7 8

 :
jj    

 

21

0

1
ijkq

q

j

k

e k
q








    (2.9) 

The Quantum Fourier Transformation are the generalization of HADAMER gate, we‘ll 

talk about it in a special clause. 

 

 

Figure 5: How the Controlled-Not gate work.  
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3. Entanglement : 

a. Physical meaning: 

is a physical phenomenon which occurs when pairs or groups of particles are generated or 

interact in ways such that the quantum state of each particle cannot be described 

independently of the state of the other(s), even when the particles are separated by a large 

distance—instead, a quantum state must be described for the system as a whole.
   4 5

  

Here we can ask what can be done by entanglement? save this question until the 

Teleportation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose that the source of photon create photons in the state:  
1

1 1 0 0
2

A B A B      

So when Bob measured and found her photon in the state 1B  , the photon of Alice take 

the state 1A , simultaneously when Bob find her photon in the state 0B  , the state of 

 

Figure 6: The Entanglement Phenomena with photons. 
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Alice photon turned to 0A , in more generally in the case of EPR pair, described by: 

2
     , 1

i

i i i iA B


       

when the measure detected one of them, we get an information about the other 

instantaneously. 

Mathematical Formalism: 

At first consider a state system of two Q-bit, described by the next formula: 

 
 

1
10 01

2
  

  (2.10) 

When a measurement effect on a system and we find the first Q-bit in the state 1 , 

instantaneously we can said that the second Q-bit is at the state 0 , with a probability 
1

2
, 

as well as that when we find the first qubit in the state 0 we found the second qubit in 

the state 1   . 

So more generally the state of n qubit described as next: 

 
1 2

0

...i i

i

p   


   
  (2.11) 

Where: 

iP  : is the probability to found the system in the state i  , this probability can counted by the 

formula: 

 i i iP     (2.12) 
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4. Téléportation : 7  
 

a. Physical meaning: 

Teleportation process by which quantum information can be transmitted from one 

location to another, the help of classical communication and previously shared quantum 

entanglement between the sending and receiving location.  

 

b. Teleportation protocol:  

The setup for the teleportation experiment is as follows: we start with a spin in an 

unknown state        which we are trying to teleport. This spin begins in lab A. we 

also start with an entangled state «single state" with state 1 1
, ,

2 2
      

This state consists of two spins the first of which is in lab A and the second is in lab B. 

The states of all spins can be written as  , , , , , , , ,
2 2 2 2

   
                

So we start with three spins: 

1- Spin1 Is the unknown spin that we are trying to teleport and is located in lab A  

2- Spin2 is the first spin of the entangled pair and is located in lab A  

3- Spin 3 is the second spin of the entangled pair and is located in lab B    

Teleportation is accomplished by the following steps: 

Step1: apply the C-X operation to spin 1 and 2. 

Step2: apply the Hadamerd. 

Step3: Measure spin 2 in the z basis. 

Step4: Measure spin 1 in the x basis. 

Step5: Lab A calls lab B and informs them of the outcome of the two measurements.  

Step6: In lab B they do the following:  

- If  the measurement outcomes were    for spin 2 and    for spin1: do nothing  

- If  the measurement outcomes were     for spin 2 and    for spin 1: apply the Z 

gate to spin3  
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- If  the measurement outcomes were     for spin 2 and     for spin 1: apply the X gate to 

spin3  

- If  the measurement outcomes were     for spin 2 and      for spin 1: apply the Z gate to 

spin 3 and then apply the X gate to spin 3.  

 

The state of our register is 00 0     , let us consider that 0 1a b    and 

the state  00

1
00 11

2
    . 

So: 

    0 00

1
0 00 11 1 00 11

2
a b             (2.13) 

Respect that: first and second qubit into Alice hand, and the last qubit are in Bob‘s hand. 

1 2A A B , 
1 2 2 1 2 2    

0

1
0 00 11 1 00 11

2

A A B A B A A B A B

a b
    

       
    

      

 

Figure 7: The teleportation scenario between Alice and Bob. 
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next we apply a C-NOT gate onto Alice qubit A1 A2, the state of the whole system 

becomes: 0 1   

1 2 2 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

    

1

    

    

1
0 00 11 1 00 11

2

0 00 0 11 1 00 1 11
2 2

0 00 0 11 1 10 1 01
2 2

A A B A B A A B A B

A A B A A B A A B A A B

A A B A A B A A B A A B

a b

a b
C NOT

a b


    

       
    

   
        

   

   
      

   

  

After this step, applies the Hadamerd on A1 qubit, the Hadamerd rule as next: 

 

 

 

1
0 0 1

2

1
1 0 1

2

H

H

 

 

  

So the last formula becomes: 

1 1 2 1 1 2 1 1 2 1 1 2    

2

1 1 1 1
0 1 00 0 1 01 0 1 10 0 1 01

2 2 2 2 2 2

A A A B A A A B A A A B A A A Ba b


          
                 

          
 

1 1 2 1 1 2 1 1 2 1 1 2

1 1 2 1 1 2 1 1 2 1 1 2

    

2

    

1 1 1 1
0 1 00 0 1 01 0 1 10 0 1 01

2 2 2 2

1 1
0 1 00 0 1 01 0 1 10 0 1 01

2 2

A A A B A A A B A A A B A A A B

A A A B A A A B A A A B A A A B

a a b b

a a b b


          

                 
          

        
               

        

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2        1 1
0 00 1 00 0 01 1 01 0 10 1 10 0 01 1 01

2 2

A A B A A B A A B A A B A A B A A B A A B A A B

a a a a b b b b

  
  
   

 
        

 

 

   Now reorder this result and obtain: 

       0

1
00 0 1 01 1 0 10 0 1 11 1 0

2
a b a b a b a b             (2.14) 

From the last step we remark that the stat of the qubit A1 transmitted to a qubit B in Bob‘s 

hand.                                                                                                                                                                                                                                                                                                                              
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5. Non-Cloning Theorem : 

a. Physical meaning: 

The Engineers in Classical machines make circuit which can do a copy of a bit, but in 

quantum machines this operation is unavailable, because when you try to build a copy 

you will mangle the origin, or you need to create a special printer for any qubit (this 

operation is impossible for realization), the third option is an operator non unitary. 

From the above we conclude that there is no quantum process able to create a copy from 

the original qubit. 

b. Mathematical Formalism:  7  
 

The quantum circuit for copying a qubit is simulated as: 

 

 

 

 

 

 

The previous operation described as: 

 1 1 1fU        (2.13) 

This operator should satisfy the next properties: 

† 1f fU U 
 . 

Independent from the controlled bit. 

Now evaluate the dot product:  1 1 1fU       so 

†

1 1

1 1 1 1 1 1

f fU U   

       

  

 
             (2.14) 

The last formulation, can conclude that does not exist any operator Unitary and 

independent from the controlled bit can do the cloning, because: 

 

 

Figure 8: operation process to create a copy  
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- either: the operator fU are non unitary. 

- or the operator fU depended the controlled bit. 

In the two cases the information transferred by this qubit it can non cloning, this is the 

meaning of the non-cloning theorem. 

6. Simon’s Problem : 8  
 

 

 

 

 

 

 

 

 

 

 

 

a. Proposition of the problem: 

Let the function f, where    : 0,1 0,1
n n

f   which is guaranteed to satisfy    f x f y  

, if and only if  x y s  , Simon‘s problem is then, by querying 

 f x to determine whether the function belongs to 0 0n ns s   , Actually sometimes 

Simon‘s problem is stated as the problem of being 

given a function which satisfies the promise and then to identify s. We will continue with 

the tradition of blurring 

the distinction between these two problems and call both of the Simon‘s problem.  9
. 

b. Solving Simon’s problem Step’s with quantum algorithm: 

Give a function for n qubit string. 

 

 

 

 

Figure 9 : Simon’s Algorithm circuit’s. 
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Step 1: 

Create a Q-register of 2n qubit, in the state . 0 x y   , respectively x  for the first 

register and y  for the second register, in our case the first and  second register are 0n  

so: 

 
0 0 0n n     (2.15) 

Step 2:  

Applies the Hadamerd gate into the first register, the outcome of all the string after the 

first Hadamerd is: 

 
 

1 0

0,1

1
0  where m=2n

2 m

n n

n
x

H x  



    (2.16)  

Step 3: 

Input the last outcomes (2.16) into fU  operation: 

  
 , 0,1

m

f

x y

U x x y f x y


     (2.17) 

So when we apply the fB onto 1  we obtain: 

 
 

 
 

2 1

0,1 0,1

1 1
0

2 2m m

n

f f

x x

U U x x f x  

 

      (2.18) 

Step 4: 

Apply the Hadamerd for the second time on (2.18), we get: 

Remarque: 

  
 

.

0,1

1
1

2 n

x yn

n
y

H x y



    

 

 
 

   
  

3 2

0,1

.

0.10.1

1

2

1
1

2

n

n

n n

n
x

x y

n
yx

H H x f x

y f x

  





 

 



 
 (2.19)  
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Step 5: 

In this step we measure the outcomes of the first register, now we calculate the 

probability: 

      
2

.

1
,  if s 01

0 1 2
2

0,  if s=0

x y n

n
x

P y f x




   



   (2.20) 

7. Deutsch-Jozsa Problem :  

 

 

 

 

 

 

a. Position of the problem: 

Deutsch-Jozsa problem is another example that shows the efficiency of quantum 

algorithm. 

This algorithm answers questions of the type that is likely to answer yes or no, the 

question is a vector of N-bit in which 2nN  , the answer come  0,1 , so we know that: 

      
1

: 0,1 0,1
n

f x    (2.21) 

b. Solving Deutsch-Jozsa problem Step’s with quantum algorithm: 

Step 1: 

Create a quantum register, and split it into two parts, a first register in a state  n   , 

the second register contain just one qubit in the state 1 . 

The whole string state described by: 

 

Figure 10 : Deutsch-Jozsa quantum algorithm. 
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 0 00...0 1    (2.22) 

Step 2: 

Apply n-qubit Hadamerd and get: 

  
2

1 0
1

0

1
0 1

2

n

n

n
x

H x 




     (2.23) 

Step 3: 

Input the (2.23) outcomes onto fU  oracle, this operation affects as: 

  :f x y x y f x   (2.24) 

The result of this step is: 

     
2 1

2
1

0

1
1

2

n

n
x

x f x f x





     (2.25) 

We should consider that:  

0

,

1

x f x or




  



  so the formula (2.25) becomes: 

  
   

2 1

2
1

0

1
1 0 1

2

n

f x

n
x

x





     (2.26) 

Step 4: 

Apply the second Hadamerd  

 

 
   

 
 

 

 
 
 

2 1

3

0

2 1 2 1
.

0 0

2 1
.

0
0

1 1
1 0 1

22

1
1 1

2

1
1 1

2

n

n n

n

f x

n
x

f x x y

n
x y

f x x y

n
x
y

x

y

y






 

 






  

  

  



 



  (2.27) 
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0 0 1 1. ... n nx y x y x y x y      

Step 5: 

Measure the final state: 

If the probability equal 1 to finding 0 n , the we have a constructing Interference, which 

means a constant function. 

If the probability is 0, so we have a destructive interference, which means a balanced 

function. 

 

 

 

 

 

 

8. Summary: 

Quantum algorithms can speed up many difficult processes on classical algorithms, and as 

an example we have previously seen algorithms of Simon‘s, and Deutch-Jozsa. 

The quantum algorithm is more exponentially speed up and take a few step then the 

classical algorithm. 

 



 

 

 

 

 

 

 

 

Chapter Ш: 

1. Shor‘s algorithm. 
2. Position of the problem. 

3. QFT, DFT and Their relation to factorization. 

4. Application in Quantum Computing (Shor algorithm step). 

5.  Summary. 
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1. Shore algorithme : 
a. Proposition of the problem: 

One of the famous common problems in mathematics, is how to factorize number N into 

tow prime numbers. 

   , p,qN p q  ¥   (3.1) 

This operation is a basis for all the cryptography in informatics world, to affect this 

operation we need to find a period of this number or this function. 

Suppose a periodic number or a periodic function, Shor‘s algorithm for factoring a large 

integer is a quantum method for computing the period of the functions written as: 

    , moda a

x nf x N x N    (3.2) 

That method is exponentially more efficient than any classical method, Shor‘s Algorithm 

just tells us that once we now the period ―r‖, we can obtain the factor of ―N‖ from the 

GCD (Greatest Common Divisor) of the next formula. 

 2 1,
r

x N
 

 
 

 and  2 1,
r

x N
 

 
 

   (3.3) 

In our case n, is the period depended Respectively a number P and function f, assuming 

there is no analytic technique to determinate the period of f, Classically we‘ll computing 

at least  / 2N  value of  the possible value of the function. 

 

b. QFT, DFT and Their relation to factorization:
  1

  

Fourier transformation is a utility which extracts the period of a function, we well 

exploiting this property to build Shor‘s algorithm. 

Classically FT, for example: 

Given  0,1jx   calculate the 
2

2

1

0

1

2

ijk

k j

j

y x e




    

So 
0 1

1 1
,

2 2
y y


  . 
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Now define the Discrete Fourier Transformation, abbreviation DFT: 

 
2

1

0

1 ijk
N

N

k j

j

y x e
N






    (3.4) 

We can apply the DFT for a quantum state   ,which called QFT, and define it as next: 

 
2

1

0
0

1 ijk
N

N

j

k
j

QFT x e K
N









    (3.5) 

c. Application in Quantum Computing (Shor’s algorithm step): 

In quantum computing this operation take just 4 steps: 

Step 1: create a single quantum memory register that we partition into two parts called 

Rigester1 and Register 2. 

                   
Re 1

Re 2

gister a

gister b





  that we can denote it as flows: ,a b . 

And apply Quantum Fourier Transformation gate for all controlled bit. 

Step 2: input all qubit in the oracle fO  (controlled and target bits). 

Step 3: apply the second QFT. 

Step 4: measure the output from the second QFT. 

 

 

 

 

Figure 11 : Quantum Shor factorisation circuit. 
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d. Application: 

 

 

 

 

 

 

 

 

 

We‘ll explain the mathematical steps of Shor‘s algorithm: 

Step 1: 

We input N  qubit, and apply the QFT for first l  qubit, the other qubit arrive to fU  without any 

transformation which means: 

 
2 1

0

1
0 0

2

l

l

L
a

QFT a




     (3.3) 

We should be careful because the QFT in the term (3.3) Available just for the qubit 0 . 

Step 2: 

All the qubit in register 1 and register 2 a cross to fU , in this step we deal with the second 

register: 

  
2 1 2 1

0 0

1 1
0

2 2

l l

a

f
L L

a a

QFT a U a x N
 

 

      (3.4) 

Expend the last sum, we found: 

 

Figure 12: the step of Shor algorithm  
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0 2 ... 1

1 1 2 1 ... 1

2 ... n

r r r N

r r r x N

n r n r n r n x N







    

       

       

M
  

It is clear that the last sum can be written as:  

  

2
1

1

0 0

l

r r
j

s j

jr s x N




 

   (3.5) 

Step 3: 

In this step we apply the second QFT for the first register in the term (3.5), so we obtain the next 

result: 

 
 

21 .

0

21 .

0

1

1

iq x y
q

y

iq jr s y
q

y

x QFT e y
q

jr s QFT e y
q









 



 

  





    2lq    (3.6) 

Total result is: 

 
1

,

0

1
exp

q
j s

y

i
y y

qq





 
 
 

   (3.7) 

Where:  , 2j s jr s   , :  is the period r ,and the qubit after the second QFT described by: 

 

       

     

2 1

0

2

2

1

2

1
{ 0 1 1 2 ... 1

2

1 2 ... }

l

a

L
a

L

a x N

N x N x N r N

r x N r x N r x N 
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,

2
1

1 2 1

0 0 0

1
e

2

l

l j si
r r y

sq

l
s j y

y x N


 

  

   (3.8) 

Step 4: 

At last step we affect a measure on the second register: 

  
,

2
1

2 1

0 0

1
e

2

l

l j si
r y

sq

l
y j

y x N




 

   (3.9) 

We well try to calculate this sum, writ it as: 

 
2 2

1 12 2 22 1 2 1

0 0 0 0

2 2
1 12 2 22 1 2 1

0 0 0 0

1 1
e e e

2 2

1 1
e e e

2 2

l l

l l

l l

l l

i jr s jr s
r ry i y i y

q q q

l l
y j y j

s jr s
r ri y i y i y

jq q q

l l
y j y j

y y

y Q y

  

  

 
 

   

 
 

   



 
 

   
 
 

 

   

  (3.10) 

 We deal with it as a geometric series:

2 2 2
1 1 1

2

0 0

1
e

1

l l l

i
r r rry j

qj

j j

Q
Q

Q


   

 
 

 


 


    (A) 

The rest from the formula (3.10) call it (B), 

22 1

0

1
e

2

l s
i y

q

l
y

y





  (B) 

 

 
 

 
 

  
  

2 2

2 2

2

2

2 2
2 . .

122 1

. .
0 0

2

1 11 1
(3.10) e

2 2 1 1

1
1

          
2 1

l l
l i i

q q
l

i i
q q

l
i y

q

i y

q

s y r y
s

ri y
jq

l l s y r y
y j

r s

l r s

e e
Q y y

e e

e

y

e

 

 





 


 





   
 

  
  

 







  g

  (3.11) 

 

the probability is the square of the factor  of y , so: 
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2

2

2
2

1
1

2 1

l
i y

q

i y

q

r s

l r s

e

P y

e















  (3.12) 

we use the propriety of the complex number: Z ZZ   , the outcome is: 

  
 sin

sin
2l

y
P y

r
y






 
 
 

  (3.13) 

This result has two possible cases: 

First case: 
2l

r r
n

q
  ¥  so   0P y   , 1 2ln r   , if 

2 2
1

l ly k
n r

r k y


       

Second case: 
2l

r r
n

q
  ¥ , so 

2l

r k

y
  in this case the period r  can‘t determinant exactly. 

Our original problem is how to factor a number N to p and q: 

 

2

2

, 1

, 1

r

r

gcd N x p

gcd N x q

  
 

  
 

  (3.14) 

 

 

e. summary 

Shor‘s algorithm is most powerful tool, but it also sometimes fails to determine the period. 
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X. Conclusion: 
 

Quantum algorithms can open up promising horizons in computing, and as we have 

seen earlier, that latter have properties that enable them to work on many 

operations at one time, and with fewer steps than their performance on classical 

algorithms. 

But there are still some obstacles to achieving these algorithms, including 

maintaining how saving coherence of qubit. 

As we see before the quantum Shor‘s algorithm some times fail, but it is also more 

efficient and so fast. 

In our study we use a Q-Kit program to simulate the quantum circuit‘s. 

 

XI. Recommendation: 
 

Through the study we have some recommendations represented as follows: 

1. Optimizing the Q-kit program, in order to make it easier to create composite 

circuits, if we try to create Grover circuits, it is difficult to create them all at 

once with the program. 

2. Add the ability to manipulate and modify the qubit. 

3. Propose the subject of Shor‘s Algorithm at the future for estimate this 

algorithm. 

4. Shor‘s algorithm also need an other sub algorithm to calculate the: 

2

2

, 1

, 1

r

r

gsd N x p

gsd N x q

  
 

  
 

 

5. Follow this work with other practical studies about Q-bit creation.  
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How To Make A Qubit 
1
: 

As discussed in Part 1 of this series, quantum information processing may offer elegant 

solutions to a number of important problems in computation. Actually building a 

quantum computer, however, is not so easy. 

Part 1 used an isolated hydrogen molecule as a model two-qubit system. Molecular 

orbitals are simple to explain and readily monitored by well-established techniques. A 

viable qubit technology, however, will need a number of other characteristics as well. 

Some system requirements include: 

The quantum state of interest must be stable. That is, it must be possible to preserve it 

long enough to actually do the calculation. 

The qubit technology being used must be scalable. It must be possible to create large 

numbers of identical qubits, and to propagate information between them. In particular, 

qubits must be able to interact over distances while preserving their superposition of 

quantum states. 

A set of operations must be available that manipulate the quantum state without 

collapsing it to a single measurement. 

It must be possible to define the initial state of the qubits at the beginning of the 

computation, and measure the result at the end. 

All of these requirements are challenging, and they contradict each other in a number of 

ways. In particular, the requirements of stability and scalability are in conflict: it is harder 

to maintain the stability of larger systems. 

To make a qubit stable, it is important to isolate it from outside influences that can 

disrupt the quantum state. Thermal vibrations are particularly pernicious, and for this 

reason many proposed designs operate at cryogenic temperatures. Other designs depend 

on the rigid lattice of the surrounding material for stability. An important figure of merit 

is the ―coherence time,‖ the length of time a prepared quantum state can be maintained 

before outside influences degrade it. 

                                                           
1
 http://semiengineering.com/how-to-make-a-qubit/ 
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For example, one structure that has attracted a lot of interest is the nitrogen-vacancy 

center in diamond. In diamond, as in silicon, each atom is bound to its four nearest 

neighbors. If a carbon atom is replaced with a nitrogen atom, the nitrogen-carbon bonds 

are a little weaker than the surrounding carbon-carbon bonds. Remove another carbon 

atom, creating a vacancy, and the result is a nitrogen-vacancy pair (N-V) with an extra 

electron, trapped in an otherwise rigid carbon lattice. 

The physics of the nitrogen-vacancy center are beyond the scope of this article — a 

comprehensive review can be found here — for our purposes, it‘s enough to observe that 

the center has complex optical and electrical behavior. Appropriate wavelengths of light 

can be used to initialize and to measure the spin of the associated electron. 

Point defects generally are attractive qubit candidates because they tend to behave like 

isolated atoms, and because the semiconductor industry has developed many tools for 

measuring and manipulating them. A few materials, among them diamond and silicon 

carbide, are especially promising. According to chief technical officer Daniel Twitchen, 

Element Six can grow 6‖ diameter diamond wafers, 2 to 3 mm thick, with part-per-

trillion defect control. Diamond is a wide gap semiconductor, allowing a clear transition 

between the excited and ground states of the qubit. Furthermore, 12C, the most naturally 

abundant carbon isotope, has no nuclear spin, minimizing the coupling between the 

electron associated with the N-V center and the surrounding carbon lattice. Even at room 

temperature, researchers have achieved near-millisecond coherence times for N-V 

quantum states. This is probably sufficient for quantum computation; as various error-

correcting methods can refresh the quantum state before it decoherers. 

Natural carbon also contains about 1.1% 13C, which has a nuclear spin of 1/2 due to its 

extra neutron. Researchers will often co-implant nitrogen and 12C in order to minimize 

the effects of these spins. Co-implanting carbon also increases the vacancy density, and 

therefore the yield of N-V centers. 

The N-V center offers an especially attractive combination of electrical and optical 

properties. In order to transmit data between qubits, any quantum computing architecture 

will need a mechanism allowing interactions over distances greater than quantum effects 

alone can support. Light is one such mechanism, and the N-V center offers both spin-
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preserving and spin-polarizing optical transitions. That is, Twitchen explained, light can 

be used to either transmit a qubit state or to initialize such a state. 

All of these characteristics make N-V centers very attractive as a potential qubit 

technology, and have inspired substantial research efforts. As a result, a roadmap leading 

toward diamond-based quantum computers is starting to emerge. Which is not to say that 

all problems are solved. One of the main requirements for a scalable quantum computer 

is the ability to construct an array of identical qubits. One measure of this capability is the 

efficiency with which individual qubits can be produced. Only a small fraction (N) of 

implanted nitrogen atoms actually lead to the creation of an N-V center. The probability 

the two centers will exist in close proximity is thus N2; the probability of three centers is 

N3. While co-implantation of 12C increased yield substantially, researchers still achieved 

only a 4% yield of N-V center pairs. 

Additionally, propagation of light between qubits will require an extensive network of 

waveguides and other photonic structures. Diamond is extremely inert, impervious to 

most etch chemistries and other patterning technologies. Ion milling can be used, but 

tends to graphitize and degrade the surrounding material. Diamond patterning remains an 

open challenge. 

That the interest in N-V center-based qubits persists in the face of these obstacles is one 

measure of how difficult quantum computing implementation is. None of the alternatives 

are any easier. One alternative may be a bit closer to commercial implementation, though. 

The next article in this series will consider superconducting circuit technology, the 

foundation of D-Wave Systems‘ D-Wave Two. 
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FT : Fourier Transformation 

Fourier transformation is a mathematical tool, with the definition of classical 

FT we tern an non-periodic function to another periodic function in terms of 

sin(x) and cos(x) function. 

Definition:  
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This formulation can have written as: 
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The previous formula used when the function are continue, 
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DFT: Discreet Fourier Transformation. 

so if the function defined just for the integer number, x ¥  the definition of 

Fourier Transformation changed, and we call it DFT. 
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Example: 

Given  0,1jx   calculate the 
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So 
0 1

3 1
,

2 2
y y   . 

QFT: Quantum Fourier Transformation. 

Since our state vectors for qubits are just vectors of complex numbers, we 

should not be surprised to learn that the DFT can be applied to them. 

Give a vector state:  
1

0

N

j

j

a j




   

QFT, defined as: 
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Classical calculation for factorization: 

First step is to write a number in term:  ax r N   

X: Divided 

N: divisor 

r: rest of Euclidian division to X on N 

Example: 

Take a number 187. 
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a period are 2r    

applied the next formula:
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Abstract: 

This research aims at demonstrating the effectiveness of quantum algorithms 

in the treatment of some of the most difficult problems for classical 

algorithms. As an example of known problems, we have is a factorization 

the number into two prime factors. There are several algorithms that solve 

this problem, but it takes more steps, while by the quantum Shor algorithm 

can be solved in a few steps and less time. 

As an illustration of how quantum computing is capable and expected, we 

have included two examples of the Simon algorithm and the Deutch-Jozsa 

algorithm. 

Key Words: 

Q-bit, Algorithm, Quantum gate, Hadamerd, QFT, Shor‘s Algorithm. 

 

Cette recherche vise à démontrer l'efficacité des algorithmes quantiques dans 

le traitement de certains des problèmes les plus difficiles pour les 

algorithmes classiques. A titre d'exemple de problèmes connus, nous avons 

une factorisation du nombre en deux facteurs premiers. Il existe plusieurs 

algorithmes qui résolvent ce problème, mais par l'algorithme quantique Shor 

peut être résolu en quelques étapes et moins de temps. 

Pour illustrer comment l'informatique quantique est capable de résoudre les 

problèmes nous avons inclus deux exemples : l'algorithme de Simon et 

l'algorithme de Deutch-Jozsa. 

Les mots clé : 

Q-bit, algorithme, porte quantique, Hadamerd, QFT, algorithme de Shor. 

 

انُت و نجاعت انخىارسمُاث  انكمىمُت فٍ معانجت بعض انمشاكم هذف بحثنا هذا إنً إظهار مذي فعَ

انعسُزة باننسبت نهخىارسمُاث انكلاسُكُت، و أخذنا كمثال عهً انمشاكم انمعزوفت، مشكم ححهُم عذد 

إنً جذاء عىامم أونُت، صحُح أنه حىجذ عذة خىارسمُاث حقىو بحم هذا انمشكم، إلا أنها حأخذ وقخا 

 انكمىمُت َمكن حهها فٍ خطىاث معذودة. Shorا بىاسطت خىارسمُت و خطىاث أكثز، بُنم

وكخىضُح نمذي انقذرة انهخٍ َخُحها انحاسىب انكمىمٍ والافاق انمنخظز ححقُقها منه، أدرجنا مثانُن 

 .Deutch-Jozsaو خىارسمُت  Simonخىارسمُت 
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