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General Introduction
The human is capable to see, to recognize, to infer the depth of the real world due to
his vision system; that is basically composed of two eyes and the brain. The eyes take
two images for the scene simultaneously then a complex and very fast processing is made
to these images inside the brain in order to reproduce the real world. People have tried
to understand this phenomenon from the early years, so first they thought to produce
a camera that plays the role of the eye in order to capture the scene. The invention of
digital computers in the late of 60th helped a lot the researchers for saving digital images
and performing numerical calculations [1]. However, the problem of reproducing the real
world from images is not simple and it requires doing hard calculations and implement-
ing complex algorithms on images [2]. Researchers have been investigating methods to
acquire three dimensions (3D) information from objects and scenes for many years.

In most of image processing algorithms, feature detection techniques are used for com-
puting abstractions of image information and making local decisions at every image part
whether there is an image feature of a given type at that part or not. The resulting
features will be subsets of the image domain, often in the form of isolated points, con-
tinuous curves or connected regions, in which; type of features depends on the problem
or the type of application [3]. Features are used as a starting point for many computer
vision algorithms, since features are used as the starting point and main primitives for
subsequent algorithms such as image registration, the overall algorithm will often only be
as good as its used feature detector.

Image registration is the process of aligning two or more images, so that objects rep-
resenting the same structures are eroded. Several branches of science have benefited from
the applications of registration, to refine certain objectives. Among these applications,
which appear, we find mainly the mosaic of images and object tracking. An Image Mosaic
is a synthetic composition generated from a sequence of images and it can be obtained by
understanding geometric relationships between images. The geometric relations are the
coordinate systems that relate the different image coordinate systems [4]. Constructing
image mosaics is an active area of research in the field of computer vision, and image
processing. Since many years, image mosaics were used for various applications, and the
most traditional application was and still until now; the construction of large aerial and
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General Introduction

satellite photographs from collections of overlapped images [5]. Today, there exist more
recent modern applications for image mosaicing including; scene stabilization, change de-
tection, video compression, increasing the field of view and resolution of a camera.

Object tracking algorithms are designed to locate (and keep a steady watch on) a
moving object (or many moving objects) over time in a video stream, object tracking is
an important component of many computer vision systems, and it is widely used in video
surveillance, robotics, 3D image reconstruction, medical imaging, and human computer
interface.

The performance of the mentioned algorithms depends mainly on features detection
and matching, because robust features detector and robust method for features matching
ensure robust geometric image registrations. Registering images is based mainly on ex-
tracting the overlapping region between them, for large overlapping; correlation measures
can be used to find coordinates of that common region, but for small overlapping; features
description needs to be performed. In our work; we are going to implement these two
image registration methods; and make comparison between them, then, we will choose
the best one for implementing image mosaicing and objecting tracking algorithms on Lab-
VIEW platform.

Our work is organized in four chapters as follows; in Chapter I, we start with a state
of the art about types of features. The second chapter presents a review of the methods
used for points based features detection. In the third chapter, we present the techniques
specific to the mosaic of images and object tracking. In the fourth chapter, we will present
the design of our algorithms, and describe the different steps and techniques used for their
implementation.

University of Kasdi Merbah-Ouargla 2
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I.1 Introduction
In the human vision system, the brain processes images (the scene) derived from the

eyes. Similarly, the robot vision system when the computer (robot or machine) processes
images which are captured from camera or optical system in general. Nowadays, most of
automated industrial are using vision system for many purposes like:
• Manufacturing to check size, quality and present... of the products.
• Telescope images used in astronomy and satellites data analysing.
• Pattern recognition and Biometrics (way to recognize people).
• Robotic and machine learning.
Therefore, computer vision is rewarding and rich topic for research and study, and

feature extraction from the images is one of the important of those researches because
features are including in all images; also features extraction is a step or path we must to
pass through it in most of studies and applications related to computer vision and image
processing [6, 7, 8].
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Chapter I. State of the Art of Image Features Extraction

I.2 Image sources
There are many sources of images such as X-ray, gamma-ray, infra-red and ultraviolet

imaging. For example, the chosen images in Figure I.1; we can easily recognize the face
based on the image such as in Figure I.1a, whereas, our brains able to discriminate and
identify that is a face, according to the face’s shapes (like shape of the eyes, the nose,
the mouth...). But images (b) (c) and (d) in Figure I.1 are unusual and it is difficult to
recognize them. Actually Figure I.1b is an ultrasound image of the carotid artery, taken
as a cross section through it. The top region of the image is near the skin; the bottom is
inside the neck. And Figure I.1c shows a remote sensing image, this imaging technique is
often used for analysing the content texture. The perceived texture is different between
the road junction and the different types of foliage. Finally, we see in Figure I.1d a
magnetic resonance image (MRI) of a human body. The chest is at the top of the image,
and the lungs and blood vessels are the dark areas, the internal organs and the fat appear
gray.

(a) (b) (c) (d)

Figure I.1: Real images from different sources [6].

As shown above, there are different sources of images specially in medical studies. But
computer vision techniques are used to analyse any form of data, not just the images from
cameras [6, 9] .In our case, we consider these images comprise a set of points or picture
elements (usually concatenated to pixels) stored as an array of numbers in a computer. Or
we can say, those are digital images represented by a two-dimensional matrix of numerical
values f (x, y) where: x and y are spatial coordinates and the amplitude f at any pair
of coordinates (x, y) is called the intensity or gray level. And our work, focused on the
automatic extraction (or description) of the features from images, features such as shape,
texture, colour, etc. are used to describe the content of the image.

I.3 Features extraction
Feature extraction is a special form of dimensionality reduction. The main goal of

feature extraction is to obtain the most relevant information from the original data and
represent that information in a lower dimensionality space. When the input data to
an algorithm is too large to be processed and it is suspected to be redundant (much
data, but not much information) then the input data will be transformed into a reduced
representation set of features (also named features vector) [8].

University of Kasdi Merbah-Ouargla 4
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I.4 Classification of features
Types of features depend on the type of system in which they are going to be im-

plemented. In pattern recognition the types used most often can be divided into colour,
shape, and texture features. Yet in robotic vision the types are divided into regions, lines
and points. In [10] they classify the various features currently employed as follows:

¶ General features: Application independent features such as colour, texture, and
shape. According to the abstraction level, they can be further divided into:

• Pixel-level features: Features calculated at each pixel, e.g. colour, location.
• Local features: Features calculated over the results of subdivision of the image

band on image segmentation or edge detection.
• Global features: Features calculated over the entire image or just regular sub-

area of an image.

· Domain-specific features: Application dependent features such as human faces,
fingerprints, and conceptual features. These features are often a synthesis of low-
level features for a specific domain.

I.4.1 General features
I.4.1.1 Colour Features

Figure I.2: The RGB and HSV colours spaces.

University of Kasdi Merbah-Ouargla 5
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Colour is very important feature in colour images. Colour features represent subject
to a particular colour space or model, there are many colour spaces used in colour imag-
ing such as red, green, blue (RGB), hue, saturation, value (HSV) and luminance and
chrominance (Y, Cb, Cr). When the colour space is specified; colour features can be
extracted from images or regions. The extraction of colour features could be done by
using many techniques (colour descriptors), including colour histogram, colour coherence
vector (CCV) and colour moment (CM) [10, 11, 12].

In [13], Z. Zheng et al developed a robust and accurate algorithm to extract eye
features from colour images, he could detect the centre of the pupil in H channel of HSV
colour space as shown in Figure I.3a; Then they estimated and refined the radius of
eyeball. After that they detected the eye corner by using a proposed filter which is Gabor
eye-corner, a sample of results shown in Figure I.3b

(a) Original image and corresponding H channel image.

(b) Part of experimental results.

Figure I.3: Eye features extraction on colour image [13].

I.4.1.2 Texture Features

Texture is one of the very useful characterizations of images. In fact, human visual
systems use texture for interpretation and recognition. Usually the colour is a pixel
property (could be one point) while texture can only be measured from a group of pixels.
A large number of techniques have been proposed to extract texture features; such as
Fourier power spectra and multi-resolution filtering techniques such as Gabor and wavelet
transform, all of these techniques characterize texture by the statistical distribution of
the image intensity. In [10] Gabor functions analysis was used in order to extract iris
image features which consists of convolution of the image with complex Gabor filters,
the detected features were used as personal identities for recognition purpose as shown in
Figure I.4;

University of Kasdi Merbah-Ouargla 6
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Figure I.4: Typical iris recognition stages[10].

I.4.1.3 Shape Features

Shape is known as an important visual feature and it is one of the primitive features
for image content description, whose purpose is to encode simple geometrical forms such
as straight lines in different directions. Shape feature extraction techniques can be divided
into two main categories: region based and contour-based methods [10, 11, 12]. These
types of features will be discussed in more details in the next section.

I.4.2 Domain-specific features (Robotic Vision Domain):
I.4.2.1 Regions (or Surfaces)

They can be projections of closed areas, water tanks, lakes, buildings or shades. They
are often represented by their gravity centres, which are invariant to rotation, dilation and
to deviation, and stable under a random noise and variation of gray level. Those regions
are detected by means of some segmentation methods [14] ; therefore the precision of
the segmentation can influence the result of detected features. Recently, researchers are
interested in the selection of regions invariant to scaling. For example, Alhichri and Kamel
proposed the idea of virtual circles, by using the distance transformation [15].

I.4.2.2 Lines (or Curves)

They can be representations of general segments of lines, contours of objects, borders
of regions, roads or rivers. For their detection, standard methods of edges detection like
Canny detector, or a detector based on Laplacienne of Gaussian, are used. The lines
are often represented by pairs of points of extremities, or by their points of medium
[16][17]. In [18], they presented a method to localization and navigation the state of the

University of Kasdi Merbah-Ouargla 7



Chapter I. State of the Art of Image Features Extraction

robot on the football field by using line-based features. The results of the work shown
in Figure I.5. The top-figure shows an image taken from the robot’s front camera. The
purple line denotes the detected field boundary, red (green) lines show field lines (not)
used for localization. Detected corners are marked as "X" or "T". Bottom left: egocentric
view with everything used for localization. Bottom right: resulting localization using the
particle filter.

Figure I.5: Localization using line and corner features[18].

I.4.2.3 Points

Points are ideal for image registration because their coordinates can be used directly to
determine the parameters of the transformation function, and also due to their invariance
to the image geometry and their facilities to detect by a human observer. This type of
primitives are the most desired features in computer vision, because they can be easily
visible and can be detected using simple detectors [19][20].

The proposed technique in [21] was for airborne enabling unmanned aerial vehicles
to construct a reliable map of an unknown environment and localise themselves within
this map without any user intervention, building of this map is based on detecting distin-
guished points-based features on all captured images using SIFT detector.

University of Kasdi Merbah-Ouargla 8
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Figure I.6: The trajectories of the two UAVs in the X and Y axes[21].

I.5 Conclusion
From this chapter we can conclude that digital images are used in many domains

(surveillance, traffic, military, biometry and robotics etc.) from different imaging sources,
that makes image processing rich topic and reward for study.

The digital images contain a lot of information, such as textures, colours, and points...,
those later are one of the most important features are used in robot vision. Feature re-
trieval techniques help to make the processing faster and more reliable.

In the next chapter, we will see many techniques and algorithms which allowed us to
extract the corners point features, and we are going to see the propriety of those extraction
techniques.

University of Kasdi Merbah-Ouargla 9
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II.1 Introduction
The concept of features has been widely used in order to solve many problems in com-

puter vision domain such as image registration, and visual tracking. The main advantage
of features detection is selecting special parts in the image and doing the desired analysis
on them. The most desired features are points, because their coordinates can be directly
used to determine the parameters of a transformation function that registers the images
. In some images it may not be possible to detect point features; however, lines or re-
gions may be detected. In such situations points are derived from the lines and regions.
For example, both intersections of corresponding line pairs produce corresponding points.
In this chapter we will present a review of the methods used for points based features
detection.

II.2 Points-based features detectors (State of the Art)
Many types of detectors were developed to extract features from an image, Harris

corner detector [22] which was proposed in 1988 is the most used detector. It is based
on the eigenvalues of the second moment of the intensity matrix. But the Harris corners
are not invariants to large scale change. In [19] Goshtasby tried to detect interest points
in the image, each with its own characteristic scale by introducing the concept of the
automatic scale choice. In [14], for creating robust detectors and which are invariant to
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the change in scale; Harris-Laplace and Hessian-Laplace detectors were invented. They
used the measure of Harris (adapted scale) or the determinant of the Hessian matrix
to choose the place, while the Laplacian is used to choose the scale. Depending on the
Difference of Gaussians (DoG), other type of features detector called SIFT was proposed
by Lowe as discussed in [23]. From the review of the existing features extractor, H. Bays
developed a new type of key point’s detector called SURF for improving the speed and
the precision of detection [16, 24].

II.3 Classical detectors
II.3.1 FAST detector

The Features from Accelerated Segment Test (FAST) corner detector was developed
by Rosten and Drummond in 2006; it has a simple and fast corner detection algorithm to
find local invariant points. It finds corners in the image by comparing pixel-gradients in a
neighbourhood of pixels. FAST algorithm defines corner point as: (In the neighbourhoods
of a pixel, there are enough pixels in different region and their gray values are greater
than or less than the central pixel’s [25]).The Corner Response Function to judge whether
a pixel is a corner point is defined as CRF as follows:

N =
∑

x∈circle(p) |I (x)− I (p)| ≺ ε (II.1)

Where:
• p: means the central pixel;
• I(p): means the gray value of pixel p;
• I(x): means gray value of the neighbourhood;
• ε: is a given threshold value.
If N is greater than a given threshold, this pixel point is considered as a corner

point. However, some pseudo corner points can appear with this algorithm. To extract

Figure II.1: Visualization of the FAST corner detection feature [26].
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Fast corners, a grey scaled image is sufficient and allows much faster extraction than a
coloured one. In order to detect an existing corner, the grey scale of the pixels lying on
the discrete circle is compared with the centre pixel p. If a certain consecutive number
of differences lie above or below a certain threshold t, the considered pixel is marked as
corner. The chosen threshold serves as parameter for controlling the total numbers of
extracted corners in a given image [26, 27].

FAST detects sometimes more than one corner in a certain neighbourhood. In order
to reduce the number of found corners only the corner with the highest cornerness is kept.
This is as well called non-maximal suppression [28]. Optimizing the calculation cost can
be done by examining the pixels 1, 9, 5 and 13 because a feature can only exist when three
of them are beyond the threshold. Due to low cost of comparing a small amount of pixels,
the FAST feature is much faster than the SUSAN or the Harris feature. The amount of
potential frames per second depends on the threshold. The higher the threshold, the less
feature get detected and the higher the speed of detection.

II.3.2 Harris detector
The Harris corner detector was proposed by Harris C and Stephens MJ in 1988, this

detector was an improvement on Moravec’s Corner Detector. It is based on the local
auto correlation function of a signal, which measures the local changes of the signal with
patches shifted by a small amount in different directions [20]. The corners image features
are discrete, reliable and meaningful, therefore; they were involved in several computer
vision application since a long time. The basic idea of this detector is the necessity of
easily recognizing the point by looking at intensity values within a small window and by
shifting the window in any direction, we should have a large change in appearance [29].To
determine the nature of a point (i.e, if point is considered as an interest point), Harris
proposed computing the average change of intensity in the image and shifting a small
local window in the image by a small amount (by one pixel) in any direction [20], point
nature can be determined as follows:

(a) (b) (c)

Figure II.2: Nature of a point with Harris algorithm; (a)Region,(b)Edge,(c)Corner [20].

In Harris detection algorithm, for a point to be considered as corner, all shifts (in at
least one of the opposite directions) should produce a significant intensity change.
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II.3.2.1 Stages of Harris corner detector

¶ Applying corner operator:

For each pixel in the image, the corner operator is applied to obtain a cornerness
measure for this pixel. The cornerness measure is simply a number indicating the degree
to which the corner operator believes this pixel is a corner. Interest point corner detection
algorithms differ on how the corner operator makes this measurement, but all algorithms
consider only pixels within a small window centred on the pixel a measurement is being
made for. The output of this step is a cornerness map [30, 31]. Since for each pixel in the
input image the corner operator is applied to obtain a cornerness measure, the cornerness
map has the same dimensions as the image.

Figure II.3: Applying corner operator.

· Threshold cornerness map:

Interest point corner detectors define corners as local maximum in the cornerness
map. However, at this point the cornerness map will contain many local maxima that
have a relatively small cornerness measure and are not true corners. To avoid reporting
these points as corners, the cornerness map is typically threshold [32]. All values in the
cornerness map below the threshold are set to zero. Choosing the threshold is application
dependent and often requires trial and error experimentation.

The threshold must be set high enough to remove local maxima that are not true
corners, but low enough to retain local maxima at true corners. In practice there is rarely
a threshold value that will remove all false corners and retain all true corners so a trade-off
must be made based on the requirements of the application.
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Figure II.4: Finding points with large corners response (R > threshold).

¸ Non-maximal Suppression:

The threshold cornerness map contains only non-zero values around the local maxima
that need to be marked as corner points. To locate the local maxima, non-maximal
suppression is applied. For each point in the threshold cornerness map, non-maximal
suppression sets the cornerness measure for this point to zero if its cornerness measure
is not larger than the cornerness measure of all points within a certain distance. After
non-maximal suppression is applied, the corners are simply the non-zero points remaining
in the cornerness map [31, 32].

Figure II.5: Taking only the points of local maxima of R.

Properties and limitations:

h Rotationally invariant.

h Partially invariant to affine intensity change.

h Sensitivity to noises.

h Non-invariant to large image scale.

II.4 Modern detectors
II.4.1 SIFT detector/descriptor

Scale Invariant Feature Transformation detector/descriptor (SIFT) was proposed by
Lowe in 2004 [33]. Firstly, this detector uses a scale- space extrema to efficiently detect
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the location of those stable key points in the scale and space. Then, an orientation
histogram based on the gradient in different directions is formed around the key point
and the dominant orientation is used to represent the key point orientations. Finally, a
gradient histogram is created as a very distinctive descriptor of that key point. Thus,
each key point is represented by the scale and orientation.

II.4.1.1 SIFT detector

The key point is selected based on the Difference of Gaussian by detecting locations
that are invariant to scale change of the image, this can be accomplished by searching
for stable features across all possible scales, using a continuous function of scale known
as scale space. To detect the key points, scale octave is generated and the local extrema
is detected by comparing the centre pixel with the neighbours in space. The DoG image
can be computed from the difference of the two nearby scales separated by a constant
factor k [21]:

D (x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I (x,y) = L(x,y,kσ)−L(x,y,σ) (II.2)

Where ∗ is the convolution operation in x and y, and L(x,y,δ) =G(x,y,δ)∗I (x,y) defines
the scale space representation of an image, with:

G(x,y,σ) = 1
2πσ2 e

−(x2+y2)/2σ2
(II.3)

Figure II.6: SIFT detector generation.

II.4.1.2 SIFT descriptor

To describe the key points, SIFT makes use of the local gradient values and orientations
of pixels around the key point. A key point describer is created by first computing the
gradient magnitude and orientation at each image sample point in a region around the key-
point location [34]. SIFT descriptor is a classic approach, also the "original" inspiration
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for most of the descriptors proposed later. Up to date, it still outperforms most of the
descriptors in the field. The drawback is that it is mathematically complicated and
computationally heavy.

Figure II.7: SIFT descriptor generation.

Properties of SIFT [21]:

h It detects suitable number of invariant and distinctive features.

h Extracted features face robustly with significant image changes (large image trans-
lation and rotation, scale change and photometric changes).

II.4.2 SURF detector/descriptor:
SURF (Speed-Up Robust Features) is an image detector/descriptor which is widely

used in the computer vision community, SURF was first developed by Herbert Bay in 2006
[23, 24]. It was designed to accelerate the detection of features that have good invariance
properties. In an interesting way, the authors of SURF experimentally demonstrated
that their new sensor exceeds the SIFT detector and many others in terms of speed and
accuracy [21]. The approach for detecting points of interest using the SURF algorithm
is based on the approximation of the Hessian matrix by using the image integral. This
technique will reduce the computing time in a big way. The SURF algorithm consists of
three main steps [36]:

1. Integral image generation.
2. Interest point localization.
3. Interest point description.

II.4.2.1 Integral image generation

The integral image I∑ (p) at a location p = (x,y) represents the sum of all pixels in
the input image I of a formed rectangular region:

I∑ (p) =
x∑
i=0

y∑
j=0

I(x,y) (II.4)
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Integral image I∑ (p) in P = (x,y) represents the sum of all the pixels on the left and
top of P . This integral is used in both the subsequent interest point detection and
description to obtain higher efficiency. Once integral image is computed, it takes only 3
additions/subtractions to get the sum of the pixels intensities over an upright rectangular
region (∑ = I∑ (D)−I∑ (C)−I∑ (B)−I∑ (A)). Another benefit is that the calculation
time is independent of the box size [35, 37].

Figure II.8: Functionality of integral image.

Using integral images, it takes only four operations to calculate the area of a rectan-
gular region of any size.

II.4.2.2 Interest point localization.

SURF detector locates features based on the Hessian matrix, which is defined as:

H(P,s) =
Lxx(P,s) Lxy(P,s)
Lxy(P,s) Lyy(P,s)

 (II.5)

Where Lxx(P,s) denotes the convolution of Gaussian second- order derivative in x direc-
tion with input image in point P at scale s, and similarly for Lxy(P,s) and Lyy(P,s). Using
the integral image simple box filters are used to approximate the second-order Gaussian
partial derivation and yielding less computation cost (see Figure II.9).

Figure II.9: Approximations of Gaussian 2nd order partial derivatives by box filters [27].

The left half shows Gaussian second order partial derivative in x-and xy-direction; the
approximation for them - box filters, are presented in the right half, respectively. The
grey regions are equal to 0.
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The problem thus reduces from calculating Gaussian second-order derivative responses
to the box filter responses. Denoting the blob responses by Dxx, Dyy and Dxy, then the
determinant of the original Hessian matrix in SURF is approximated as follows [27]:

det(Happrox) =DxxDyy− (0.9Dxy)2 (II.6)

Where 0.9 is used to balance the Hessian determinant. In order to achieve scale
invariance, SURF applies box filters of different sizes on the original image to search and
compare interest points. Box filters of different sizes construct the scale space, which
is divided into octaves. The local maxima of box filter responses larger than a pre-
defined threshold in image and scale space are selected as interest point candidates. Non-
maximum suppression in a 3 x 3 neighbourhood is applied to screen out “false” candidates
with position correction elements above 0.5 and localize interest points [37].

II.4.2.3 Interest point description.

SURF builds a descriptor around the neighbourhood of each interest point. First, a
square region of 20s-by-20s centred on the interest point is constructed along the dominant
direction. In order to keep it simple, the dominant directions of interest points are set to be
upright. The region is then divided into 4 x4 smaller sub-regions with each window size 5s-
by-5s (sampling step s). For each of these sub-regions, Haar wavelet responses (filter size
2s) are computed at 5 x 5 regularly distributed sample points. These responses are then
weighted by a Gaussian function (δ = 3.3s) centred at the interest point [38, 39]. dx and
dy are used to denote weighted Haar wavelet response in horizontal direction and vertical
direction. Each sub-region generates a 4-D vector V = (∑dx,

∑
dy,

∑ |dx| ,∑ |dy|) . All
sub-regions are then concatenated into a vector, resulting in a 64-dimensional descriptor
vector.

Properties of SURF detector [23]

h Invariant for the change of scale, orientation changes.

h Invariant for geometric and photometric transformations.

h A high repeatability.

h Faster compared to other algorithms (e.g. SIFT, Harris- Laplace, etc.).

II.5 Binary Descriptors
Over the last years several new fast detectors and descriptors (BRIEF, ORB, FREAK)

have been proposed and successfully applied to the robot navigation tasks and also in
computer vision systems [39].

As clarified in the previous section, SIFT and SURF are both efficient, particularly
the last mentioned, and give a great execution in detecting key point and extricating
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descriptors for each one. In any case, they are based on gradient histograms where
every single pixel need to be analysed, which costs computational time. In spite of the
utilise of fundamentally images adopted by SURF, a few applications request speedier
performances.

Binary descriptors provide the ability to encode all the information regarding the
surrounding of a feature point as binary strings. Most recent binary descriptors consist
of a sampling pattern, an orientation compensation method and a sampling pairs system.
The pattern, which is distinctive for the chosen descriptor, is overlapped with the area
around the detected key point and centred on it. Such sampling pattern is ideally a set of
concentric circles. A number of pairs of points is chosen on the pattern, and the intensity
value of each point in the pair is compared with its matched one. If the first result is
larger then the second, the value “1” is written in the string, “0” otherwise. When all the
pairs have been analysed, the information describing the area around the key point will
be encoded in a string of "0" and "1". The orientation compensation is a mechanism where
the orientation of the interesting area is calculated relatively to some intrinsic feature of
the area itself. The chosen pairs are rotated to that same angle, before evaluating the
intensity, to make sure that the binary descriptor will result rotation invariant. In the next
sections two binary descriptors, which have been evaluated for this thesis purpose, are
described to give a brief overview of their function. Despite being relatively new, BRISK
and FREAK binary descriptors far surpass the industry standards as they perform much
better than the predecessor (sift and surf) in this field [40].

II.5.1 BRISK descriptor
Taking as input a set of key points, the BRISK descriptor creates a binary string by

concatenating the results of intensity comparisons, as previously mentioned. In contrast
with other binary descriptors, BRISK adopts a custom sampling pattern where points lie
on scaled concentric rings (Figure II.10).

Figure II.10: BRISK sampling pattern[41].
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When the points are analysed, a small area around them, which radius is equal to the
red circles shown in the pattern above, is taken and smoothed with Gaussian. The BRISK
algorithm defines the pairs in two subsets: short-distance-pairs, adopted to compute the
intensity comparison necessary to assemble the descriptor, and long-distance-pairs, used
to determine orientation (Figure II.10). Short-distance-pairs consist of sampling points
which distance is below a certain threshold ∆max. The distance of long-distance-pairs
sampling points is above a certain threshold ∆min, different from the previous one. The
two thresholds are set as ∆max < ∆min such as no short-distance-pair is also a long-
distance-pair.

Figure II.11: Short distance pairs on the left and long distance pairs on the right.

The local gradients between long distance pairs are computed and the entire set is
summed to estimate the feature orientation. Rotation invariance is obtained by rotating
the short distance pairs at the same angle as the key point orientation [41]. For each pair
the Gaussian smoothed intensity of one sampling point is compared with the other of the
pair . As said before, if the intensity is larger in the first point “1” is written as result, "0"
otherwise. All this comparing will finally result in the binary descriptor. Given a sample
number of 60, the two subsets of distance pairing will count a total of 870 long and 512
short distance pairs. The descriptor will result 512 bits long.

The algorithm for the extraction of the BRISK descriptor is the following [40]:

1. A concentric sampling pattern is created.
2. A set of long range pairs and a set of short range pairs are created.
3. The global orientation is estimated using the set of long range pairs.
4. The sampling pattern is rotated in the direction of the computed orientation.
5. In order to avoid noise, the sampling pattern defines Gaussians centred at each

point, so that the differences of the pairs are in fact differences of Gaussians.
6. The descriptor is constructed using a deterministic set of 512 short range pairs.
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II.5.2 FREAK descriptor
Similarly to BRISK; FREAK also makes use of a hand-crafted sampling pattern. In

their work Alahi et al [42]. suggest the use of a pattern similar to the human retinal
sampling grid as shown in Figure II.12 where the density of receptive areas is higher in
the centre.

Figure II.12: Receptive fields distribution over the retina in a human eye[42].

To mimic this behaviour, a pattern where the points density drops exponentially with
the distance from the centre has been designed. Differently from BRISK the circles -
receptive fields - overlap while their size grows exponentially instead of gradually. Each
sample point needs to be smoothed to make it less sensitive to noise. The rings shown
in Figure II.13 represent the standard deviation of the Gaussian kernel applied to the
corresponding sampling point [42].

Figure II.13: FREAK sampling pattern [42].

The overlapping introduce redundancy which adds more discriminative power to the
algorithm allowing to reduce the number of receptive fields. The same redundancy exists
in the receptive field of the retina, according to Tokutake et al [43]. Computing the
difference between pairs of key points areas and their respective Gaussian kernel, the
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descriptor is built as a string of one-bit DoG. The matched pairs are selected differently
from BRISK, which uses their spatial distance. In the used approach the best pairs are
learned from training data, a coarse-to-fine [44, 45] (see Figure II.14).

Figure II.14: FREAK’s sampling pairs resulting from Coarse-to-fine analysis [42].

The first analysed pairs mostly compute feature points situated in the outer rings of
the pattern. The inner ring is regularly left for the latest pairs. This is done similarly to
the human eye, where the peripheral vision is used to estimate the location of an object
of interest while the verification is achieved with the fovea area receptive fields.

The FREAK orientation method, which compensates rotation changes, is similar to
the BRISK one. Only 45 pairs are selected, with symmetric receptive fields with respect
to the centre. The higher number of receptive fields in the inner circle grants more errors
handling than BRISK. This brings to a discretization of the space of orientation driving
to a load of 5 times less memory[42].

II.6 Conclusion
Different techniques were developed for detecting image features, for classical meth-

ods, features can be detected using simple algorithms, with no features description. For
modern methods, features can be detected and described using complex algorithms, how-
ever, for binary methods, features of the previous methods may be described with easy
operations.

The following chapter will use features detection as the starting step in two important
image processing applications, which are image mosaicing and object tracking.
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III.1 Introduction
In image processing, there are many applications which require high resolution single

image with large view of a scene to achieve some required analysis. For example, in
biological and medical applications, it is often necessary to analyse a complete scene
section at high resolution which has large dimensions (a large number of pixels). However,
in some cases the high resolution single image cannot be viewed even if using cameras with
tens of millions of active pixels. The most common approach is to acquire several images
of parts of the scene at high magnification and assemble them into a composite single
image which preserves the high resolution. This process of assembling the composite
image from a number of images is known as ’image mosaicing’. The basic idea of this
technique is to find a suitable planar transformation which allows warping images into a
single and common reference frame [46].

Image mosaicing is necessary in several applications such as:
• Construction of extended geographical maps.
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• Tracking of moving objects.
• Creation of panoramas.
• Reconstruction of 3D scene by integrating images acquired from different sides.

III.2 Image mosaic issues
III.2.1 Image registration
III.2.1.1 Geometric Image Registration

Methods of geometric image registration fall into two broad categories [47]:

¶ Direct methods

For large overlapping regions between images and small translations and rotations,
direct methods or feature-less method can be useful. Direct methods compute the trans-
formation between images by maximizing the photometric consistency over the whole
overlapping image regions, these methods can be classified into [48, 49]:

g Frequency domain:

Methods based on the frequency domain are based on phase-correlation in order to
estimate the translations between an image pair. After that, log-polar coordinates were
proposed for rotation and scale transformations models. Those methods are not pre-
ferred for use, because they are computationally expensive, as they require Fast Fourier
Transform (FFT) to be computed over all the involved images.

g Optical flow:

These methods are based on the estimation of the disparity of pixels between image
pairs with assumption that, the photometric properties of image pixels (luminance and
colour) remain constant according to Brightness Constancy Model (BCM).

· Feature based methods

Contrarily to direct methods, feature based methods do not require a high percentage
of overlapping between consecutive images to estimate the transformation model between
them. This class of methods uses a sparse set of corresponding image features (points) to
estimate the image to image mapping.

For given two different views of the same scene which are taken at different times,
from different viewpoints, and/or by different sensors. Feature based method of geometric
image registration is to find the accurate point to point correspondence between those
images by finding for each image point in one view the image point in the second view
which corresponds to the same actual point in the scene [36]. This process is a critical
stage in various image processing applications; in which final information is obtained
starting from combining various data sources [50].
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III.2.1.2 Photometric Image Registration

Photometric image registration refers to the procedure by which global photometric
transformation between images is estimated and compensated. Examples of such trans-
formations are:
- Global illumination changes across the scene.
- Intensity variations due to camera automatic gain control or automatic white balancing
[11].
To solve these problems, In the literature [21], a suitable model of photometric transfor-
mation was proposed, and then; the parameters of this model was identified.

III.2.2 Image Re-projection
After image registration, every point in every image can be transformed to a point

in the global frame. In order to render an image mosaic from the set of all overlapped
images and transformation models (homographies), it is necessary to map points of every
image to points in the rendered image using one of the projections manifold [47, 36]:

III.2.2.1 Planar projection

Since the projective distortion of the back-projected images increases toward the pe-
riphery of the mosaic, the resulted image mosaic will have form similar to the classic
"bowtie". The planar manifold is suitable for both general-scene/rotating- camera and
planar scene/general-motion cases. But with image sequences which sweep a large angle
(> 90 degrees), the projective distortion means that the mosaic image becomes infinite in
size, and the planar manifold cannot be useful any more.

Figure III.1: Mosaic rendering by re-projection onto a planar manifold [36].
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III.2.2.2 Cylindrical projection

In the case where image sequence is obtained from camera rotates about a single axis,
a cylindrical manifold is best suited, in which for a very large angle (possibly a full 360-
degree sweep); the mosaiced image does not suffer from the same projective distortion
seen in the planar manifold projections.

Figure III.2: Mosaic obtained by re-projection onto a calibrated cylindrical manifold [36].

III.2.3 Image Blending
Since the used images that are used will slightly not have perfectly matching pixels

at all regions where they overlap, the image blending calculations are designed to average
and more properly meld all the images together [51]. In addition, this calculation is
aimed at eliminating the boundary line from one image to another; it is often the case
that significant global photometric differences can occur between images in a sequence.
If not corrected, this can give rise to unsightly seams in rendered mosaics.

Common methods of image blending include simple averaging of intensity values,
feathering and temporal median filtering. Better results may be obtained if photometric
registration and correction is performed prior to rendering the mosaic [52].

III.2.3.1 Weighted Image Blending

The first idea of image blending was to simply take the average between intensities
of the two images in the overlapped region [53]. This can give a good performance,
but if the images contain mobile objects, or if the parameters of the transform function
(homography matrix) are not very precise, then, it is more likely to have an undesirable
effect of blurring. The following image in Figure III.3 illustrates this effect:

Therefore, to eliminate this effect, as shown in Figure III.4 we should take into account
the distance between pixels and the edges of the two images.

A continuous blending of intensities can be obtained by taking the weights of the pixels
in the region C for images 1 and 2 inversely proportional to the distances of the pixels to
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Figure III.3: Blurring effect after blending [53].

Figure III.4: Blending based on distance.

nearest boundaries of the two images [53, 54]. The intensity of p will be equal to:

Ip =
IAp dA+ IBp dB

dA+dB
(III.1)

Where:
IAp : Intensity of image 1 at point p.
IBp : Intensity of image 2 at point p.
dB: The distance of pixel p to the nearest pixel to A.
dA: The smallest distance of pixel p to B.

III.3 Features extraction
In both of discussed applications in this report (mosaicing and object tracking), feature

extraction is the first stage to achieve the mosaic or the tracking. Here, those features must
be points. So, we can extract them through the corners detectors which we mentioned in
the previews chapter.

We chose the classical based detectors (FAST/Harris) to obtain the mosaiced image or
to tracking the template object. Because those classical detectors are easier to implement
on FPGA than the modern detectors.
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III.3.1 Properties of good features
In an image, the detected features should satisfy some characteristics in order to be

good features [29]:
—Repeatability: Given two images of the same object or scene, taken under different

viewing conditions, a high percentage of the features detected on the scene part visible in
both images should be found in both images.

— Accuracy: The detected features should be accurately located, both in image
location, as with respect to scale and possibly shape.

— Locality: Features should be local, so as to reduce the probability of occlusion
and to allow simple model approximations of the geometric and photometric deforma-
tions between two images taken under different viewing conditions (e.g., based on a local
planarity assumption).

— Quantity: The number of detected features should be sufficiently large, such that
a reasonable number of features are detected even on small objects. However, the optimal
number of features depends on the application. Ideally, the number of detected features
should be adaptable over a large range by a simple and intuitive threshold. The density of
features should reflect the information content of the image to provide a compact image
representation.

— Efficiency: Preferably, the detection of features in a new image should allow for
time-critical applications.

— Invariant to geometric transformations: Which means scaling, rotation and
translation transformations.

— Invariant to photometric transformations: If the image is viewed in differ-
ent light conditions, the same features must be detected.

For image mosaicing, repeatability is an important condition in the matching process
(association), because the matching should be performed between the repeated features
in the two overlapped images, and if one feature is not found in one of the two images,
a false association error may occur; which will lead to deformed image transformation
model, thus a deformed image mosaic can be obtained.

III.4 Features matching (Association)
The matching is to find for each point of an image, its correspondent in the other

image knowing that the image points are projections of the real 3D points of the same
scene. Several matching methods were proposed in the literatures [36]:
• Methods based on correlation comparison criteria.
• Methods based on a comparison between the features descriptors.
• Methods based on tracking points of interest.
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III.4.1 Correlation based features matching
Once the feature points of the two images are detected separately by any type of

feature detectors, correlation-based matching algorithm is certainly easier to implement
and debug as compared to feature-based matching algorithms. This matching algorithm
requires a measure of similarity (Table III.1) in order to find the point correspondences
between the two overlapped images. For each pixel key-point in one image, there are a lot
of possible candidates in the other image to be examined in order to determine the best
correspondence pixel key-point [55]. The problem associated with these window-based
matching algorithms is that the size of the correlation windows must be carefully chosen.
If the correlation windows are too small, the intensity variation in the windows will not
be distinctive enough, and many false matches may result.

Table III.1: The most known correlation criteria [31].

Similarity Mea-
sure

Formula

Sum of Absolute
Differences (SAD)

∑
(i,j)∈W

|I1(i, j)− I2(x+ i,y+ j)|

Zero-mean Sum of
Absolute Differ-
ences (ZSAD)

∑
(i,j)∈W

∣∣∣I1(i, j)− Ī1(i, j)− I2(x+ i,y+ j) + Ī2(x+ i,y+ j)
∣∣∣

Locally scaled Sum
of Absolute Differ-
ences (LSAD)

∑
(i,j)∈W

∣∣∣∣∣I1(i, j)− Ī1(i, j)
Ī2(x+ i,y+ j)

I2(x+ i,y+ j)
∣∣∣∣∣

Sum of Squared
Differences (SSD)

∑
(i,j)∈W

(I1(i, j)− I2(x+ i,y+ j))2

Zero-mean Sum
of Squared Differ-
ences (ZSSD)

∑
(i,j)∈W

(
I1(i, j)− Ī1(i, j)− I2(x+ i,y+ j) + Ī2(x+ i,y+ j)

)2

Locally scaled Sum
of Squared Differ-
ences (LSSD)

∑
(i,j)∈W

(
I1(i, j)− Ī1(i, j)

Ī2(x+ i,y+ j)
I2(x+ i,y+ j)

)2

Normalized Cross
Correlation (NCC)

∑
(i,j)∈W

 ∑
(i,j)∈W I1(i, j) · I2(x+ i,y+ j)∑

(i,j)∈W I1
2(i, j) ·∑(i,j)∈W I2

2(x+ i,y+ j)


Zero-mean Normal-
ized Cross Correla-
tion (ZNCC)

∑
(i,j)∈W

(
I1(i, j)− Ī1(i, j)

)
·
(
I2(x+ i,y+ j)− Ī2(x+ i,y+ j)

)
2
√∑

(i,j)∈W
(
I1(i, j)− Ī1(i, j)

)2
.
∑

(i,j)∈W
(
I2(x+ i,y+ j)− Ī2(x+ i,y+ j)

)2
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Sum of Absolute Differences (SAD) is one of the simplest of the measures which
is calculated by subtracting pixels within a square neighbourhood between the reference
image I1 and the target image I2 followed by the aggregation of absolute differences within
the square window; If the left and right images exactly match, the resultant will be zero
[30]. In Sum of Squared Differences (SSD), the differences are squared and aggregated
within a square window. This measure has a higher computational complexity compared
to SAD algorithms as it involves numerous multiplication operations.

Cross Correlation is even more complex to both SAD and SSD algorithms as it involves
numerous multiplication, division and square root operations. In which for a feature point
in the first image, cross correlation can be built with each feature point of the second
image, and choosing the corresponding features as the ones with the highest correlation
values in the interval [-1; + 1] with a value of + 1 for identical features in both overlapped
images. In practice, a value greater than 0.8 is considered to be a good match [29, 30].

Correlation matching is easier to implement compared to other matching techniques,
but a common problem with this matching approach is that false matches can occur. In
practice, a number of rules are applied before a match is accepted:
• All pairs having a correlation score above some defined threshold value can be

considered as pairs of corresponding points. But a feature point could be matched
with several others. Imposing unicity means that for each feature point in one
image, only its strongest match in the other image is considered [56].
• Imposing symmetry condition to keep only pairs in which each point is the other’s

strongest match [57]. This increases the chances that the two points in the matched
pairs correspond to projections of the same physical scene point.

III.4.2 SIFT/SURF descriptors based features matching
In this method, the best candidate match for each key-point is found by identifying

its nearest neighbour in the database of key-points from training images. The nearest
neighbours are defined as the key-points with minimum Euclidean distance from the given
descriptor vector. The probability that a match is correct can be determined by taking
the ratio of distance from the closest neighbour to the distance of the second closest [21].
Lowe rejected all matches in which the distance ratio is greater than 0.8, which eliminates
90% of the false matches while discarding fewer than 5 % of the correct matches.

With the Nearest-neighbour algorithm, the similarity score between two feature vectors
is the magnitude of the difference of their descriptors, so a lower score indicates a closer
match. For each feature p in image 1, we compute the difference between p and every
feature p’ in image 2, keeping track of the best and second-best matches. We accept
a match between p and p’ if the difference between p and p’ is less than t times the
difference between p and its second-best match from image 2. Additionally, to prevent
points in image 2 from being matched to more than one feature in image 1, we output
only the best match for each feature in image 2.
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Figure III.5: Index pairs of the matched features.

This matching algorithm is characterized by:

h Suitable when good features can be extracted from the scene.

h Faster than correlation-based methods .

h Good for applications like visual navigation.

h Relatively insensitive to illumination changes.

III.4.3 LBP Descriptors Based features matching
Local Binary Patterns (LBP) algorithm is a binary system description which expresses

the relationship of size of a gray image pixel point and its neighbour-hood pixels points; it
was originally used to describe image texture information. Nowadays, research workers put
forward a lot of improved LBP algorithm which has been applied in features matching;
face recognition, etc. because of its simple computation complexity and partial scale,
rotation, and illumination invariance [58].

From the description of Local Binary Descriptors (LBDs), it is clear that they involve
only simple arithmetical operations. Furthermore, the distance between two LBDs is mea-
sured using the Hamming distance, which is a simple bitwise exclusive or (XOR) instruc-
tion. Hence, computation and matching of LBDs can be implemented efficiently, some-
times even using hardware instructions (XOR), allowing their use on mobile platforms
where computational power and electric consumption are strong limiting constraints.
Since they also provide good matching performances, LBDs are getting more and more
popular over SIFT and SURF: combined with FAST or Harris for the key-point detection,
they provide a fast and efficient feature extraction and matching.

III.4.3.1 LBP Feature Descriptor

The original LBP operator labels the pixels of an image with decimal numbers, called
Local Binary Patterns or LBP codes, which encode the local structure around each pixel.
So, to describe pixel points, it should be compared with its N neighbours. The following
algorithm shows how to create LBP Feature descriptor for N=8 [58, 59]:
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1. The gray values of 8 neighbourhood pixel points are compared with the gray value
of the central pixel point. According to the comparison sign value, binarization is
done to those 8 neighbourhood pixel points, i.e. If a pixel point’s gray value is
greater than the central pixel point’s, the gray value will be set to 1, and if a pixel
point’s gray value is less than the central pixel point’s, the gray value will be set to
0.

2. After the binarization, the obtained binarized gray values of the eight neighbourhood
pixel points should be multiplied by weight matrix as shown in Figure III.6.

3. The decimal numeral after adding the eight values up is LBP=1+2+4+16=23. And
the binary vector is LBP = (10110010).

Figure III.6: The steps to create LBP Feature Descriptor (P=8, R=1).

Calculation of LBP feature descriptor is no longer limited to 3 × 3 neighbourhood,
because of the basic LBP operator (3×3 neighbourhoods) cannot capture dominant fea-
tures with large scale structures. To deal with the texture at different scales, the operator
was later generalized to use neighbourhoods of different sizes [59, 60, 61].

A local neighbourhood is defined as a set of sampling points evenly spaced on a circle
which is centred at the pixel to be labelled, and the sampling points that do not fall within
the pixels are interpolated using bilinear interpolation, thus allowing for any radius and
any number of sampling points in the neighbourhood.

Figure III.7: LBP descriptors for different values of points (P) and radius (R).

For any radius and any number of sampling points in the neighbourhood, the local
binary patterns code for a pixel located at the coordinate (xc,yc) can be defined as :

LBPN,R(x,y) =
N−1∑
p=0

s(gp−gc)2p (III.2)
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III.4.3.2 Efficient distance matching for LBP Descriptors

Given binary vectors for all features in the overlapped images, we can efficiently com-
pare them. Unlike standard feature descriptors which undergo a large variety in descrip-
tive power.

For two feature points, pij and pi′j′ from images i and i’ respectively, we can compute
the matching distance as [59]:

ds
(
pij ,pi′j′

)
= dham

(
ĥij , ĥi′j′

)
(III.3)

Where dham(a,b) is the Hamming distance between the two binary vectors a and b.
If two features are compared, small distance value context between them is a sign of

good match ability. Although in the ideal case the binary vectors of the matched features
should be completely coinciding, some relaxation should be made to avoid mismatching
due the noise in the binary vectors. For that, we define features to have a potential to be
matched if their matching distance is smaller than a threshold tham.

Instead of matching every feature point of the first image to every feature in the second
image, some approaches were proposed for facilitating both the speed and the quality
of the matching process. It takes much less time to perform the search of the binary
vector that is close to a given one than to perform full searching the feature descriptor
space. Moreover, using binary descriptors guarantees that the matched points describe
the objects of the same classes, reducing the number of potential outliers.

III.4.4 BRISK, and FREAK Based features matching
As binary visual descriptors, BRISK, and later FREAK were meant for fast matching,

allowing tracking while the object was moving in front of the camera. Clearly they suit
events where the object is still, and the camera is changing its position. As said before,
binary descriptors computation requires less resources in terms of calculation power, and
memory to store the resulting feature points. The matching phase provides another speed
up if done using the Hamming distance.

The Hamming distance calculated between two binary string having the same length
is the number of differing bits. The matching between two BRISK obtained descriptions
can be achieved with a single instruction, the sum of the XOR operation between the two
binary strings [40].

III.4.5 Features tracking based matching
This approach of features matching using tracking is more widely used for image

registration and video tracking applications, it is based on finding features in a set of
overlapped images , then matching those features by finding a set of likely feature locations
in every two successive images where the expected amount of motion and appearance
deformation between them is expected to be small.
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III.4.5.1 KLT Standard Tracking Algorithm

KLT (Kanade-Lucas-Tomasi) algorithm was proposed by Kanade, Lucas in 1981 [62]
and it was developed by Tomasi and Kanade [63, 64], this technique is largely used in
computer vision for tracking features in a sequence of images. The KLT is based on
extracting the features in the first image, then tracking these features in the sequence
of images. With assumption that the camera moves slowly so that the change between
images is small, so that the neighbour of a point f(x,y)T tracked in the image I1 is found
in image I2 by a simple translation d:

I2 = I1(x−dx,y−dy) +n(x,y) (III.4)

Where
d(dx,dy)T is the vector of translation between the image I1 and the image I2.
n(x,y) is the noise in the position (x,y).
The estimation of the distance d is done while minimizing the quadratic error ε com-

puted in neighbour window W according to an optimization criteria given by the following
relation (III.5).

ε=
∑

[I1(f −d)− I2(f)]2ω(f) (III.5)

Where ω(f) is a weighting function, generally ω(f), but it can also take a Gaussian form
if we want to give more importance to the centre of the window. The development of
Taylor series to the first order of the intensity function I1 is given as follows (III.6):

I1(p−d) = I1(p)−JJTd (III.6)

Where J is the Jacobian matrix of I1; with J =
[
∂I1(p)
∂x

∂I1(p)
∂y

]T
.

The development gives a solution of the form Ad= b with :


A=∑
JJTW (p)

b= ∑
P∈Q

[I1(P )− I2(p)]J(p)W (p) (III.7)

Having these equations, a least squares approach can be used to estimate d.

III.5 Geometric transformations
III.5.1 Geometric transformations Models

Given a set of point correspondences pk⇒ pk′ , for k = 0,1, ...N , between two images,
I(x,y) and I ′(x,y), a geometric transformation T can relate those images such that (III.8):

I ′(x,y) = I(T (x,y)) (III.8)
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The function T can be very complex; the image formation process likely yields images
that vary non-linearly in their geometry (radial lens distortion, for example, varies non-
linearly as a function of the radius from the centre of the image). We limit ourselves to
the simpler case where T is modelled as a linear coordinate transformation.

III.5.1.1 Isometric transformation

An isometric is a simple geometric transformation that preserves Euclidian distance.
This means that after applying this transformation; the distance between two points in one
image will be the same as the distance between their corresponding points in the mapped
image. The same goes for the angles between lines and areas. The matrix of isometric
transformation is composed only of 2D rotations and 2D translations and therefore has
only 3 degrees of freedom [65].

XAn isometric transformation can be written as follows (III.9):

x′ =
R t

0T 1

∗x (III.9)

Where:
R: is a 2x2 rotation matrix.
t: is a translation 2-vector.
0T : is a row of 2 zeros.

III.5.1.2 Similarity transformation

The only difference between a similarity transform and an isometric transform is that
the latter contains a factor called isotropic scaling which is invariant with respect to
direction. This scale adds an additional degree of freedom so a similarity transform
contains 4 degrees of freedom overall. Like with isometrics, angles are not affected by
this transformation. The distance between points are no longer invariant, but the ratio
of distances is preserved under similarity transformations since any scale change cancels
out [66].

XA similarity transform can be written as (III.10):

x′ =
s∗R t

0T 1

∗x (III.10)

Where:
s: is a scalar and represents the isotropic scaling.

III.5.1.3 Affine transformation

An affine transformation is similar to a similarity transform, but it is a composed of
two rotations angles and two non-isotropic scaling factors. Thus, affine contains two more
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degrees of freedom than the similarity transformation; one for the angle specifying the
scaling direction and one for the ratio of the scaling parameters. An affine transformation
does not preserve the distance ratios or the angles between lines. However, after applying
this geometric transformation to map two images, parallel lines in one image remain
parallel in the mapped image, and the ratios of lengths of parallel line segments and areas
are also preserved [21, 65, 66].

XAn affine transformation can be written (III.11):

x′ =
A t

0T 1

∗x (III.11)

Where:
A : is a 2x2 non-singular matrix.

A can be decomposed as:

A=R(θ)∗R(ϕ)DR(ϕ) (III.12)

Where:
R(θ) and R(ϕ) are rotation matrices for θ and ϕ respectively .

D is a diagonal matrix.

D =
λ1 0

0 λ2

 (III.13)

Where:
λ1 and λ2 can be considered as two scaling values.

The matrix A is thus a concatenation of a rotation by ϕ, a scaling by λ1 in the x
direction, a scaling by λ2 in the y direction, a rotation back by −ϕ and then another
rotation by θ.

III.5.1.4 Projective transformations

Projective transformations contain two more degrees of freedom than affine transfor-
mations, thus, the matrix contains nine elements. The form of the projective transfor-
mation matrix H determines the type of geometric transformation represented. With a
rotation angle θ, and making use of the "1" in the homogeneous coordinate, we can add
translation [66].

H =


cos(θ) −sin(θ) tx

sin(θ) cos(θ) ty

0 0 1

=
R t

0T 1

 (III.14)

University of Kasdi Merbah-Ouargla 36



Chapter III. Image Mosaicing and Template Object Tracking

Multiply the rotation matrix by s to obtain scaling:

H =


s∗ cos(θ) −s∗ sin(θ) tx

s∗ sin(θ) s∗ cos(θ) ty

0 0 1

=
s∗R t

0T 1

 (III.15)

Skewing can be introduced by multiplying the a and b parameters:

H =


s∗a∗ cos(θ) −s∗ b∗ sin(θ) tx

s∗a∗ sin(θ) s∗ b∗ cos(θ) ty

0 0 1

=
s∗R t

0T 1

 (III.16)

While perspective is adjusted in the final row:

H =


s∗a∗ cos(θ) −s∗ b∗ sin(θ) tx

s∗a∗ sin(θ) s∗ b∗ cos(θ) ty

p1 p2 1

 (III.17)

In total, there are 8 parameters encoded in the H-matrix. Its elements are shown in
equation (III.18):

H =


h00 h01 h02

h10 h11 h12

h20 h21 1

 (III.18)

Since H operates on homogeneous coordinates, it is homogeneous itself (we can always
divide H by a constant without changing its function). Linear transformation matrices
can be combined. For example, say we want to rotate an image around its centre at (xc;
yc). We can express that operation as shifting the image upward and to the left, until its
centre lies on the origin, rotating the image and then translating it back to its original
position. A projective transformation can be written as:

x′ =
 A t

V T v

 (III.19)

Where: V =
(
v1 v2

)T
; A=

h00 h01

h10 h11

 and t=
H02

H12

.
The main differences between affine and projective transformations are summarized

in the Table III.2 as follows [66]:
There are many situations in computer vision where estimating a one of the mentioned

transformations may be required. In our case, for image mosaicing; we need a transfor-
mation model to project two overlapped images on each other to create an image mosaic,

University of Kasdi Merbah-Ouargla 37



Chapter III. Image Mosaicing and Template Object Tracking

Table III.2: Comparison between affine and projective transformations.

Affine Transformation Projective Transformation
V = 0 V =

(
v1 v2

)T
Scaling factors λ1 and λ1 are the same ev-
erywhere in the plane.

Scaling factors λ1 and λ1 vary with the po-
sition in the image.

The orientation of a transformed line de-
pends only on the orientation of the original
line.

The position of the original line on the plane
also effects the transformed line’s orienta-
tion.

Minimum of 3 pairs of corresponding points
are needed to estimate the parameters.

Minimum of 4 pairs of corresponding points
are needed to estimate the parameters.

therefore; the projective transformation (homography) is the most suitable model for our
purpose.

Table III.3 illustrates examples of the most important types of geometric transforma-
tion, those transformations are used in many computer vision applications.

Table III.3: Illustration of the projective linear group and its three subgroups [21].

Name Symbolic Matrix Example Matrix Example Image

Original
1 0 0

0 1 0
0 0 1


1 0 0

0 1 0
0 0 1



Isometric
 cos(θ) sin(θ) tx
−sin(θ) cos(θ) ty

0 0 1


 0.707 0.707 0
−0.707 0.707 0

0 0 1



Similarity
 s∗ cos(θ) s∗ sin(θ) tx
−s∗ sin(θ) s∗ cos(θ) ty

0 0 1


1.5 0 0

0 1.5 0
0 0 1



Affine

α00 α01 tx
α10 α11 ty
0 0 1


1.5 0 0

1 1.5 0
0 0 1



Projective
h00 h01 h02
h10 h11 h12
h20 h21 h22


1 0 0

0 1 0
0 0.005 1
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III.5.2 Homography estimation
The estimation of the homography between two views is a key step in many appli-

cations involving multiple view geometry. The homography exists between two views
between projections of points on a 3D plane. A homography exists also between projec-
tions of all points if the cameras have purely rotational motion.

A number of algorithms have been proposed for the estimation of the homography
relation between two images of a planar scene. They use features or primitives ranging
from simple points to complex ones like non-parametric curves. Different algorithms
make different assumptions on the imaging setup and what is known about them. After
the matching problem is completed, a homography transformation then is needed to be
determined in order to map one image to the other image by establishing point-by-point
correspondence between the two images. Homography transformation is a mathematical
concept used in projective geometry to describe a relationship between two planes, such
that any point on one plane corresponds to one point in the other plane [67].

Figure III.8: Two images of a planar scene connected by a rotation and translation.

This transformation is valid in the following three cases[68]:
• Images of a plane viewed under arbitrary camera motion.
• Almost-planar image : A common situation when the UAV flies at high altitude.
• Images obtained by a rotation around the optical centre of the camera.
Homography can be defined as an invertible application of the projective space P2

into P2 that applies lines into lines. Some basic properties of the homography are the
following [21]:

1. Any homography can be represented as a linear and invertible transformation in
homogeneous coordinates:

kx′

ky′

k

=


h00 h01 h02

h10 h11 h12

h20 h21 h22


︸ ︷︷ ︸

H


x

y

1

 (III.20)
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2. A homography between two planes is a linear transformation between three-dimensional
homogeneous vectors y, represented by the 3×3 H matrix such as y =Hx

3. Given the homogeneous skill of the homography H, it can be multiplied by an
arbitrary constant k 6= 0 and represent the same transformation. This means that
the matrix H is constrained by eight independent parameters and a scale factor.

The homography that relates two given images is computed from sets of matches
between point features. Depending on the scene characteristics, the homography compu-
tation from these matches could become a hard problem. A careful analysis points out two
factors that may significantly increase the complexity of the computation, mainly when
the UAV flies at altitudes of the same order of other elements on the ground (buildings,
trees...etc.):

– In 3D scenes, the parallax effect will increase, and the planarity assumption may
not hold.

– Depending on the frame-rate and the vehicle motion, the overlap between images
in the sequence is sometimes small. This generates a non-uniform distribution of the
features along the images.

III.5.2.1 Basic DLT algorithm

Estimating homography from pairs of images has been studied quite extensively in
the literature. The Direct Linear Transform (DLT) algorithm is a simple algorithm used
to solve for the homography matrix H given a sufficient set of point correspondences[69].
Letting a point and its correspondent that can be written respectively as (x,y,1); (u,v,1),
we can get:

−h4x−h5y−h6 + (h7x+h8y+h9)v = 0 (III.21)

−h1x−h2y−h3 + (h7x+h8y+h9)u= 0 (III.22)

These two equations; (III.21) and (III.22); can be written in matrix form as:

Ah= 0 (III.23)

where:

A=
−x −y −1 0 0 0 ux uy u

0 0 0 −x −y −1 vx vy v


and

h=
(
h1 h2 h3 h4 h5 h6 h7 h8 h9

)T
Since N pairs of correspondences provide 2N equations, 4 pairs are sufficient to solve

for the 8 degrees of freedom of H. For N > 4 pairs of points, this equation will not have an
exact solution. In this case, a solution which minimizes the algebraic residuals, r=AH, in
a least-squares sense may be obtained, by taking the singular vector corresponding to the
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smallest singular value [64]. The Estimation of homography matrix using the minimum
number of correspondences is useful for many applications [66, 70].

After estimating homography matrix from the set of found matched key-points us-
ing the mentioned techniques above, this matrix may be incorrect and would introduce
excessive error; because of false associations problem, one most commonly used method
to correct homography is random sample consensus (RANSAC), a general technique to
take data, fit an initial model made of a random sample of the provided data, test for
consensus among the rest of the data (i.e., find data that is ’close’ to the model), produce
a new model using the data in consensus, and if the stopping conditions are not met, start
over [71].

III.5.2.2 RANSAC

Homography estimation using RANSAC (Random Sample Consensus) is a key step
in feature matching as it improves the stability of image registration. It can estimate the
parameters of homography matrix with a high degree of accuracy. In this method, for a
number of iterations, a random sample of 4 correspondences is selected and a homography
H is computed from those four correspondences by the direct method.

Each other correspondence is then classified as an inlier or outlier depending on its
concurrence with H. After all of the iterations are done, the iteration that contained
the largest number of inliers is selected. H can then be recomputed from all of the
correspondences that were considered as inliers in that iteration [72].

One important issue when applying the RANSAC algorithm described above is to
decide how to classify correspondences as inliers or outliers. Statistically speaking, the
goal is to assign a distance threshold, t, (between x′ and Hx for example), such that with
a probability the point is an inlier [65].

III.6 Image projection "Warping"
When the homography is computed, we can transform an image to the coordinate

frame of the other one. And that can be done in two different ways:

III.6.1 Forward warping
Here, we find the coordinates of pixels of the second image in the frame of the first

image using the forward application of the homography.

x′ =H ∗x (III.24)

III.6.2 Backward warping
Here, we find the coordinates of pixels of the first image in the frame of the second

image with the backward application of the homography.

x=H−1 ∗x′ (III.25)
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III.7 Template object tracking
Template matching is conceptually a simple process. We need to match a template to

an image, where the template is a sub-image that contains the shape we are trying to find.
Accordingly, we centre the template on an image point and count up how many points
in the template matched those in the image. The procedure is repeated for the entire
image and the point which led to the best match, the maximum count, is deemed to be
the point where the shape (given by the template) lies within the image. Consider that
we want to find the template of Figure III.9a in the image of Figure III.9b. The template
is first positioned at the origin and then matched with the image to give a count which
reflects how well the template matched that part of the image at that position. The count
of matching pixels is increased by one for each point where the brightness of the template
matches the brightness of the image. The points in the image are matched with those in
the template, and the sum is of the number of matching points as opposed to the weighted
sum of image data. The best match is when the template is placed at the position where
the rectangle is matched to itself. Obviously, this process can be generalized to find, for

(a)

(b)

Figure III.9: Illustrating template matching.

example, templates of different size or orientation. In these cases, we have to try all the
templates (at expected rotation and size) to determine the best match. Formally, template
matching can be defined as a method of parameter estimation. The parameters define the
position (and pose) of the template. We can define a template as a discrete function Tx,y.
This function takes values in a window. That is, the coordinates of the points (x,y) ∈W .
For example, for a 2x2 template, we have the set of points W = (0,0),(0,1),(1,0),(1,1)
[6].

One strategy to determine the moving object, by background removal, and to then
track points in the moving object. Another strategy is to determine interest points, such
as corners, and to then track the appearance of these points in successive frames (and
there is natural debate on which features to track ).
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Indeed, Several methods are proposed among which extracting and using the key points
of the image is the one mostly applied. Here, the classical detectors (Harris & FAST)
is applied and the binary descriptors and indexes of each key point found thereof are
introduced by FREAK, inspired by human eye, applied in comparing and recognizing the
objects in each frame. Based on this the accuracy and speed of the recognition increase
with less memory space needed for implementation [73].

III.8 Conclusion
In this chapter, we presented a very wide application of image registration which is

image mosaicing. We stated the various necessary steps to create an image mosaic in
which different approaches were discussed. The image mosaic is obtained by fusing the
overlapped split images of a large split, but the most important task before mosaicing is
to find out the overlap region or correspondence points between the split images. The
overlap region is found by matching similar features present in the given split images.
Even if there are many approaches for achieving image mosaicing, we can hardly tell
which is the easy way or the best way to achieve it.

In the next chapter we will present our strategy to approach an image mosaiced, then
we will visualise the simulation results of this strategy.
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IV.1 Introduction
In this chapter we are going to present the results obtained by our application (in

MATLAB platform and LabVIEW platform), with a quantitative evaluation of these
performances, associated by a comparison between deference methods.

IV.2 Work environment
The algorithm proposed here has been implemented in Matlab R2014b and has been

executed in system with configuration an Intel R©CoreTM i5 CPU powered PC equipped
with 8GB of RAM.

In fact, we choose as platform of development the tool Matlab R© as the implementa-
tion of the various stages, and this due to the ease of implementation of the operations of
image processing, generally, because Matlab software is suitable for the development of
complex image processing algorithms such as image mosaicing algorithm.
Furthermore, we convert to the LabVIEW platform which constitutes a graphical pro-
gramming environment that allows one to design (Front Panel (graphical user interface))
and analyse a DSP system in a shorter time as compared to text-based programming
environments. LabVIEW graphical programs are called virtual instruments (VIs). VIs
run based on the concept of data flow programming [74]. Expecting to implement the
image mosaicing algorithm on the FPGA, because with the NI LabVIEW FPGA Module,
we can take advantage of the parallel processing capabilities of FPGAs without being an
expert in VHDL or Verilog.

44



Chapter IV. Results and Evaluation

IV.3 Evaluation and results
IV.3.1 Image Mosaicing

The proposed mosaicing algorithm is based on Harris detector/ FREAK descriptor
for a robust matching followed by estimating the homography for geometric registra-
tion.Figure IV.1 shows the flow chart for the essential steps of the mosaicing algorithm
applied.

Figure IV.1: Flowchart for the proposed image mosaicing.

IV.3.1.1 Matlab results

To visualize(display) the results of each stages of our method, we are going to work
on a typical sample, which represents two digital images of the laboratory Figure IV.2,
we notice these two image pairs, the view of interest has significantly changed but some
of the local details are even though there are some of the details are significantly different
also.

Image I1 Image I2

Figure IV.2: The inputs images.
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¶ Features extraction:

In Figure IV.3 we can observe that a lot of points features are detected, such as the
chair there, and some features at the computer screen there...etc. We can see similar
features and actually now we can notice that it found features repeated in both images.
In general, this Harris detector output we are looking for which we need to achieve the
next stage, which is matching I1 features (corners) with correspondence features (corners)
detected in I2.

Harris corner points of image I1 Harris corner points of image I2

Figure IV.3: Features detection using Harris detector.

The main effective parameter on Harris Corner Detector algorithm is the threshold
value, Table IV.1 illustrates the effect of threshold value on the performance of the detec-
tor.

Table IV.1: The effect of threshold value on the performance of the detector.

Threshold Value Features de-
tected in I1 Time (s) Features de-

tected in I2 Time (s)

1000 260 0.1021 304 0.0471
2000 167 0.0983 183 0.0468
3000 114 0.1364 134 0.0631

From the above results, we can notice that :

h Harris corner algorithm fully utilizes the characteristics of the corner.

h Harris algorithm gives efficient number of features in a short time.

h Harris detector provides distinctive corners features with high repeatability.

· Features matching:

i.Correlation-based matching:
For correlation-based matching, we measure the sum of absolute difference (SAD) cor-

relation to select the best corner matches, Figure IV.4 shows the output of this operations.
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Figure IV.4: Features matching using correlation.

We can observe from the correlation-based matching, even though it simple to calcu-
lated but there are a lot of false associations occur in the matching, which effect badly in
next stage (homgraphy estimation). The correlation window is the effective parameter in
this algorithm (see Table IV.2 bellow).

Table IV.2: The effect of the correlation window.

Correlation window Matched features Correct matches Time (s)
3x3 260 8 0.6028
7x7 167 18 0.9019
9x9 114 27 1.0188

h We note that the larger window size has increased the number of Correct matching
points. On the other hand, the process become a slower.

h To eliminate the false association, we mast to use the RANSAC algorithm, or we
should use descriptors-based features matching.

ii.Descriptor-based matching:
Figure IV.5 shows the output of binary descriptor matching to associate the corners

which are detected in previous stage by using Harris corner detection.

Figure IV.5: Features matching using BRISK descriptor.

When we compare the output results in Figure IV.4 with the results of Figure IV.5 , we
can easily judge that classical Harris features detector associated with BRISK descriptors
give better matching result than correlation.
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h This method has a significant resistance against changes in scene, brightness, rota-
tions and low scale change.

¸ Homography estimation:

By using the previous images and by assuming that the geometrical transformation which
connects them is projective, the homography matrix will not have an exact solution.
Because the number pairs of point N is greater than four (N>4). Thus, we solve this by
using Singular Value Decomposition (SVD); which obtain the most appropriate matrix.
this estimated homography matrix allowed us to tronsform image I2 to new image I2’:

H =


0.9094 0.0010 121.4578
−0.0377 0.9663 3.5759
−0.0003 −0.0000 1.0000


¹ Image warping:

The projection of the two images on each other according to a mapping between source
image I1 and destination image I2 give us the final image mosaic :

Figure IV.6: Image mosaic by backward warping.

h Our algorithm provides seamless images mosaic with high resolution and extended
field of view.

IV.3.1.2 LabVIEW results

To build a single image with a wide view from two overlapped images, we design
a LabVIEW VI programme which allowed us to obtain a mosaiced image. To being
able to test our system, and verify some results given in this document, we design an
execution interface on LabVIEW. this allowed the user to upload two overlapped images
furthermore, we give the user the ability to select the type of corners detector (FAST or
Harris) and its threshold value. also, the user will be able to choose between FREAK or
BRISK descriptor for the matching. as a result, the mosaiced image, the detected corners
in both images, and their matching is shown to the user, with some essential information:
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• Number of features detected in both images.
• Number of matched points.
• Elements of the transformation matrix (Homography matrix).
The following figures are some screen shots of our LabVIEW interface (Front Panel):

Figure IV.7: Page 1: displaying Features detect in both images.

Figure IV.8: Page 2: displaying the features matched between images.
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Figure IV.9: Page 3: displaying the estimated matrix

Figure IV.10: Page 4: displaying the mosaiced image and the summary.

After all, for testing the results of our LabVIEW application, we are going to present
in the flowing tables different categories of images sources outputs: satellite, aerial images
(from UAV) and medical images.
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Table IV.3: Testing on Outdoor/Indoor phone images

Result 1: tow images of the entrance of NTIC faculty mosaicig

Result 2: panoramic mosaic of three images
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Table IV.4: Testing on Aerial and satellite images

Result 3: mosaicing of aerial images1(from UAV)

Result 4:mosaicing of three satellite images2

1sequence of video images filmed by drone https://www.youtube.com/watch?v=L_dPBK2tAbY
2The images are extracted from hamza 2012 [69]
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Table IV.5: Testing on remote sensing and medical imaging

Result 5: image mosaicing in medical imaging3(CT scan)

Result 6:image mosaicing in Remote Sensing imaging2

3Computed Tomography CT scan imaging download from:http://okradiologygroup.com/ct/
2The images are extracted from hamza 2012 [69]
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h The performance and efficiency of our proposed algorithm were validated using
different data set, these data set are collected using different camera types in different
conditions.

h On these tests, our application gives generally very satisfying results.

IV.3.2 Template object tracking
Tracking of an object pre-selected by the user or recognizing the specific object of

interest and its tracking can be applied in public transportation, traffic, military and
rescue systems etc. In recent decades several studies are conducted on image processing
for object recognizing and tracking through different scientific and experimental methods.

Our strategy to achieve this algorithm firstly, we pass through the same three stages
(feature extraction and feature matching then the homography estimation) ,then we mul-
tiple the four corners coordinates of the template image with the homography matrix ,
then we obtain new four coordinates which represent the corners of the rectangular target
tracked.Figure IV.11 shows the flow chart for the essential steps of the object tracking
algorithm applied.

Figure IV.11: The method proposed for object tracking flowchart.

Some results of this algorithm are shown next in Table IV.6
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Table IV.6: Template object tracking results

Initial image t0 t1

t2 t3
Result 74: Car tracking (detected object within green trapezium).

P1 P2

P3 P4
Result 8:object (Arduino) detection

Key points-based tracking is illustrated in which Table IV.6 shows the result of track-
ing a car moving in a sequence of video (filming by UAV) images 4 and shows also the
results of object (Arduino) detection and tracking. In both results, of which four are

4sequence of images captured from video, link: https://www.youtube.com/watch?v=X792Jf2HGFE

University of Kasdi Merbah-Ouargla 55

https://www.youtube.com/watch?v=X792Jf2HGFE


Chapter IV. Results and Evaluation

shown here. A green trapezium has been drawn around the template target in each frame
and the parameters of this trapezium are delivered by the tracking algorithm. As the
object or camera moves, the position of the rectangle is cantered on the car and the width
and angles of the rectangle changes as the car’s motion. From this, we can then analyse
the target and their motion, we can conclude this algorithms could be useful in public
transportation, traffic, military and robotic domains.

IV.4 Conclusion
In this chapter, we displayed results of our execution LabVIEW interface mosaicing

algorithm based on Harris detector/ FREAK descriptor which gives better robust match-
ing than the correlation method, applied to various categories of images. The visual tests
were very satisfactory.

The performance of an image mosaicing algorithm depends mainly on the performance
of the first and the second stages. Those stages are features detection and matching, be-
cause if features are extracted using a robust detector, and matching guarantees that
the points which represent the same element of the scene in both images are correctly
matched, the work which remains to create the mosaiced image is only finding an image
transformation model (Homography matrix), by which overlapped images can be warped
on each other.

The template object tracking algorithms described in this chapter can detect and track
any kind of object, at various distances even if the object is moved, rotated or flipped.
And it can be useful in many domains such as surveillance, traffic, military, biometry and
robotics etc.

Both of our VI executable for image mosaicing and object tracking are based on points
features,Those VIs give good outputs results with different images from different sources
in many domains.
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General Conclusion
The work presented in this memory deals with the extraction of geometry information
from a sequence of images. The problem is decomposed into a number of tasks; each task
is being performed with existing techniques and combined to create an image mosaic or
to follow object in a scene. Within our project, we went through literature review about
the various classifications of features and approaches developed during the last years for
their detection, and also; we gave an outline on some performed works.

For most of computer vision applications, points based features are the ideal image
primitives, because their coordinates can be used directly to estimate certain transfor-
mation between overlapped images, therefore; we discussed in the second section of our
report; the famous types of classical and modern key points detector, in which we saw
the advantages and drawbacks of each detector.

Following some procedures which are illustrated in the third chapter, we can success-
fully do images mosaicing or track moving object with two images. In our results, due to
its high repeatability, the Harris Corners Detector was used to detect massive sparse points
of corner features in overlapped images, then; sum of absolute difference (SAD) correla-
tion measure was used to select the best corner matches. But so far these correspondences
are redundant with errors; therefore, imposing some constraints for eliminating the wrong
matches were required, that is why we have proposed to use other matching technique;
which is based on creating binary descriptors around the detected corners in both images,
and calculating distance measure between these descriptors to choose the best matches.
The second matching approach produced better result compared to the first one, thus, it
was used to estimate the homography matrix from a set of produced inliers. To create
an image mosaic; backward image warping technique was used to project images in a
simple planar manifold, and for object tracking; four corners around the tracked object
were selected and linked at each new overlapped image; with a condition that the new
view includes corners of the tracked trick.

It was proposed to implement our algorithms on embedded system (FPGA kit), we
started working to implement our algorithms with VHDL code on Xilinx kit, but we faced
problems of image acquisition because of the limited sources of the available kits. We also
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worked on implementing our algorithms on FPGA through LabVIEW tool that is why;
we implemented all stages of our application on LabVIEW; but unfortunately; we missed
hardware interface to allow charging our codes from LabVIEW to Xilinx kit.

Our applications were tested in Matlab platform, and then they were implemented on
LabVIEW tool, the efficiency of the obtained results is verified by using different types
of overlapped images. Finally, an execution interface was constructed on LabVIEW, this
allowed the user to upload overlapped images and get the result with one order. The
recommendations that can be made for the future investigation, is to use other kinds of
features detectors, such as SIFT or SURF, and also other techniques for features matching.
We also recommend the generalization of our algorithm to create a video from a sequence
of overlapped images and to track certain object in that video.

University of Kasdi Merbah-Ouargla 58



Bibliography
[1] Michael S Mahoney. The history of computing in the history of technology. Annals

of the History of Computing, 10(2):113–125, 1988.

[2] Mahesh K Prasanna and Shantharama C Rai. Image processing algorithms-a com-
prehensive study. International Journal of Advanced Computer Research, 4(2):532,
2014.

[3] Marcin Gabryel and Robertas Damaševičius. The image classification with different
types of image features. In International Conference on Artificial Intelligence and
Soft Computing, pages 497–506. Springer, 2017.

[4] Hemlata Joshi and Mr Khomlal Sinha. A survey on image mosaicing techniques.
International Journal of Advanced Research in Computer Engineering & Technology
(IJARCET), 2(2):pp–365, 2013.

[5] Heung-Yeung Shum and Richard Szeliski. Panoramic image mosaics. Technical re-
port, Citeseer, 1997.

[6] Mark S. Nixon and Alberto S. Aguado. Feature Extraction & Image Pro-
cessing for Computer Vision. 2012. ISBN 9780123965493. doi: 10.1016/
B978-0-12-396549-3.00001-X. URL http://www.sciencedirect.com/science/
article/pii/B978012396549300001X.

[7] Guillaume Gales. Detection et mise en correspondance de points d interet. 2007.

[8] Gaurav Kumar and Pradeep Kumar Bhatia. A detailed review of feature extraction
in image processing systems. International Conference on Advanced Computing and
Communication Technologies, ACCT, (February):5–12, 2014. ISSN 23270659. doi:
10.1109/ACCT.2014.74.

[9] J. Pi, Y., Liao, W., Liu, M., and Lu. Pattern Recognition Tech-
niques, Technology and Applications. 2008. ISBN 978-953-7619-
24-4. doi: 10.5772/90. URL http://www.intechopen.com/books/
pattern{_}recognition{_}techniques{_}technology{_}and{_}applications.

59

http://www.sciencedirect.com/science/article/pii/B978012396549300001X
http://www.sciencedirect.com/science/article/pii/B978012396549300001X
http://www.intechopen.com/books/pattern{_}recognition{_}techniques{_}technology{_}and{_}applications
http://www.intechopen.com/books/pattern{_}recognition{_}techniques{_}technology{_}and{_}applications


Bibliography

[10] R.S. Choras. Image feature extraction techniques and their applications for CBIR and
biometrics systems. International Journal of Biology and Biomedical Engineering, 1
(1):6–16, 2007. URL http://www.naun.org/journals/bio/bio-2.pdf.

[11] Dong Ping Tian. A review on image feature extraction and representation techniques.
International Journal of Multimedia and Ubiquitous Engineering, 8(4):385–395, 2013.
ISSN 19750080. doi: 10.1109/HIS.2012.6421310.

[12] M Kunaver and J F Tasic. Image feature extraction-an overview. The International
Conference on Computer as a Tool 2005 EUROCON 2005, (February):183–186, 2005.
doi: 10.1109/EURCON.2005.1629889. URL http://ieeexplore.ieee.org/xpls/
abs{_}all.jsp?arnumber=1629889.

[13] Zhonglong Zheng, Jie Yang, and Limin Yang. A robust method for eye features
extraction on color image. Pattern Recognition Letters, 26(14):2252–2261, 2005. ISSN
01678655. doi: 10.1016/j.patrec.2005.03.033.

[14] Nikhil R. Pal and Sankar K. Pal. A review on image segmentation techniques. Pattern
Recognition, 26(9):1277–1294, 1993. ISSN 00313203. doi: 10.1016/0031-3203(93)
90135-J.

[15] Haikel Salem Alhichri and Mohamed Kamel. Virtual circles: a new set of features
for fast image registration. Pattern Recognition Letters, 24(9-10):1181–1190, 2003.

[16] John Canny. A Computational Approach to Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986. ISSN
01628828. doi: 10.1109/TPAMI.1986.4767851.

[17] D. Marr and E. Hildreth. Theory of Edge Detection. Proceedings of the Royal Society
B: Biological Sciences, 207(1167):187–217, 1980. ISSN 0962-8452. doi: 10.1098/rspb.
1980.0020. URL http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/
rspb.1980.0020.

[18] Hannes Schulz, Weichao Liu, Jörg Stückler, and Sven Behnke. Line Structure-based
Localization for Soccer Robots. 4th Workshop on Humanoid Soccer Robots at Inter-
national Conference on Humanoid Robots (Humanoids), (Humanoids):73–78, 2009.
URL http://www.ais.uni-bonn.de/papers/HSR09{_}Schulz{_}Localization.
pdf.

[19] A. Ardeshir Goshtasby. 2-D and 3-D Image Registration, volume 26.
2004. ISBN 9780471724278. doi: 10.1002/0471724270. URL http:
//linkinghub.elsevier.com/retrieve/pii/S016786550500019X{%}0Ahttp:
//doi.wiley.com/10.1002/0471724270.

University of Kasdi Merbah-Ouargla 60

http://www.naun.org/journals/bio/bio-2.pdf
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1629889
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1629889
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.1980.0020
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.1980.0020
http://www.ais.uni-bonn.de/papers/HSR09{_}Schulz{_}Localization.pdf
http://www.ais.uni-bonn.de/papers/HSR09{_}Schulz{_}Localization.pdf
http://linkinghub.elsevier.com/retrieve/pii/S016786550500019X{%}0Ahttp://doi.wiley.com/10.1002/0471724270
http://linkinghub.elsevier.com/retrieve/pii/S016786550500019X{%}0Ahttp://doi.wiley.com/10.1002/0471724270
http://linkinghub.elsevier.com/retrieve/pii/S016786550500019X{%}0Ahttp://doi.wiley.com/10.1002/0471724270


Bibliography

[20] Adina Raluca Stoica. Delaunay Diagram Representations For Use in Image Near-
Duplicate Detection Senior Project submitted to The Division of Science , Mathe-
matics & Computing By. (May), 2011.

[21] A Nemra. Robust airborne 3D visual simultaneous localisation and mapping. PHD
Thesis. Cranfield University, 55(4-5):345–376, 2011. URL http://dspace.lib.
cranfield.ac.uk/handle/1826/6157.

[22] Pietro Azzari, Luigi Di Stefano, and Stefano Mattoccia. An evaluation methodology
for image mosaicing algorithms. In International Conference on Advanced Concepts
for Intelligent Vision Systems, pages 89–100. Springer, 2008.

[23] Vimal Singh Bind, Priya Ranjan Muduli, and Umesh Chandra Pati. A robust tech-
nique for feature-based image mosaicing using image fusion. 2013.

[24] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In European conference on computer vision, pages 404–417. Springer, 2006.

[25] Edward Rosten and Tom Drummond. Machine learning for high-speed corner de-
tection. In European conference on computer vision.Graz, Austria., pages 430–443,
2006.

[26] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine
learning approach to corner detection. IEEE transactions on pattern analysis and
machine intelligence, 32(1):105–119, 2010.

[27] Edward Rosten and Tom Drummond. Fusing points and lines for high performance
tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Confer-
ence on, volume 2, pages 1508–1515. IEEE, 2005.

[28] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detec-
tion. In Proceedings of the European conference on computer vision, pages 430–443.
Springer, 2006.

[29] Tinne Tuytelaars, Krystian Mikolajczyk, et al. Local invariant feature detectors: a
survey. Foundations and trends R© in computer graphics and vision, 3(3):177–280,
2008.

[30] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[31] Takeo Kanade, Atsushi Yoshida, Kazuo Oda, Hiroshi Kano, and Masaya Tanaka.
A stereo machine for video-rate dense depth mapping and its new applications. In
Computer Vision and Pattern Recognition, 1996. Proceedings CVPR’96, 1996 IEEE
Computer Society Conference on, pages 196–202. IEEE, 1996.

University of Kasdi Merbah-Ouargla 61

http://dspace.lib.cranfield.ac.uk/handle/1826/6157
http://dspace.lib.cranfield.ac.uk/handle/1826/6157


Bibliography

[32] Sylvie Chambon and Alain Crouzil. Évaluation et comparaison de mesures de cor-
rélation robustes aux occultations. Rapport de recherche, 2002.

[33] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[34] Dilipsinh Bheda, Mahasweta Joshi, and Vikram Agrawal. A study on features extrac-
tion techniques for image mosaicing. International Journal of Innovative Research
in Computer and Communication Engineering, 2(3):3432–3437, 2014.

[35] Hemlata Joshi and Mr Khomlal Sinha. A survey on image mosaicing techniques.
International Journal of Advanced Research in Computer Engineering & Technology
(IJARCET), 2(2):pp–365, 2013.

[36] David Capel and Andrew Zisserman. Automated mosaicing with super-resolution
zoom. In Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE
Computer Society Conference on, pages 885–891. IEEE, 1998.

[37] Jin Zhao, Sichao Zhu, and Xinming Huang. Real-time traffic sign detection using
surf features on fpga. In High Performance Extreme Computing Conference (HPEC),
2013 IEEE, pages 1–6. IEEE, 2013.

[38] Bo Yu, Li Wang, and Zheng Niu. A novel algorithm in buildings/shadow detection
based on harris detector. Optik-International Journal for Light and Electron Optics,
125(2):741–744, 2014.

[39] Adam Schmidt, Marek Kraft, Micheal Fularz, and Zuzanna Domagała. Comparative
assessment of point feature detectors in the context of robot navigation. Journal of
Automation Mobile Robotics and Intelligent Systems, 7, 2013.

[40] Antonio Ezio Frascarelli. Object detection. master degree thesis . malardalen univer-
sity sweden.

[41] J Gleason. Brisk (presented by josh gleason). In International Conference on Com-
puter Vision, 2011.

[42] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina key-
point. In Computer vision and pattern recognition (CVPR), 2012 IEEE conference
on, pages 510–517. Ieee, 2012.

[43] Yoichiro Tokutake and Michael A Freed. Retinal ganglion cells–spatial organization of
the receptive field reduces temporal redundancy. European Journal of Neuroscience,
28(5):914–923, 2008.

University of Kasdi Merbah-Ouargla 62



Bibliography

[44] Andrew Witkin. Scale-space filtering: A new approach to multi-scale description.
In Acoustics, Speech, and Signal Processing, IEEE International Conference on
ICASSP’84., volume 9, pages 150–153. IEEE, 1984.

[45] Stephen Gould, Joakim Arfvidsson, Adrian Kaehler, Benjamin Sapp, Marius Mess-
ner, Gary R Bradski, Paul Baumstarck, Sukwon Chung, Andrew Y Ng, et al.
Peripheral-foveal vision for real-time object recognition and tracking in video. In
IJCAI, volume 7, pages 2115–2121, 2007.

[46] Matthew Brown, Richard I Hartley, and David Nistér. Minimal solutions for
panoramic stitching. In Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pages 1–8. IEEE, 2007.

[47] Zhengyou Zhang, Rachid Deriche, Olivier Faugeras, and Quang-Tuan Luong. A
robust technique for matching two uncalibrated images through the recovery of the
unknown epipolar geometry. Artificial intelligence, 78(1-2):87–119, 1995.

[48] Heung-Yeung Shum and Richard Szeliski. Construction and refinement of panoramic
mosaics with global and local alignment. In Computer Vision, 1998. Sixth Interna-
tional Conference on, pages 953–956. IEEE, 1998.

[49] Yuri Rzhanov, Lloyd Huff, and George Randy Cutter. Seafloor video mapping: mod-
eling, algorithms, apparatus. In Image Processing. 2002. Proceedings. 2002 Interna-
tional Conference on, volume 1, pages I–I. IEEE, 2002.

[50] Barbara Zitova and Jan Flusser. Image registration methods: a survey. Image and
vision computing, 21(11):977–1000, 2003.

[51] Jason Schlessman, Mark Lodato, Burak Ozer, andWayneWolf. Heterogeneous mpsoc
architectures for embedded computer vision. In Multimedia and Expo, 2007 IEEE
International Conference on, pages 1870–1873. IEEE, 2007.

[52] Brandyn A White. Using fpgas to perform embedded image registration. BSc. Major
Thesis, Computer Engineering, University of Central Florida, 2009.

[53] Richard Szeliski. Image alignment and stitching: A tutorial. Foundations and
Trends R© in Computer Graphics and Vision, 2(1):1–104, 2006.

[54] Vladan Rankov, Rosalind J Locke, Richard J Edens, Paul R Barber, and Borivoj
Vojnovic. An algorithm for image stitching and blending. In Three-Dimensional and
Multidimensional Microscopy: Image Acquisition and Processing XII, volume 5701,
pages 190–200. International Society for Optics and Photonics, 2005.

[55] A.Allouache. Construction 3d à partir de vues multiples.magister, laboratoire robo-
tique et productique, ecole militaire polytechnique (emp). algérie. 2014.

University of Kasdi Merbah-Ouargla 63



Bibliography

[56] Etienne Vincent and Robert Laganiere. Matching feature points in stereo pairs: A
comparative study of some matching strategies. Machine Graphics and Vision, 10
(3):237–260, 2001.

[57] Pascal Fua. Combining stereo and monocular information to compute dense depth
maps that preserve depth discontinuities. In International joint conference on arti-
ficial intelligence (IJCAI), number CVLAB-CONF-1991-001, 1991.

[58] Ning Sun, Zhenhai Ji, Cairong Zou, et al. Gender classification based on local binary
pattern. Journal of Huazhong University of Science and Technology: Nature Science
Edition, 35:177–181, 2007.

[59] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Transac-
tions on pattern analysis and machine intelligence, 24(7):971–987, 2002.

[60] Hongliang Jin, Qingshan Liu, Hanqing Lu, and Xiaofeng Tong. Face detection using
improved lbp under bayesian framework. In Image and Graphics (ICIG’04), Third
International Conference on, pages 306–309. IEEE, 2004.

[61] Adel Hafiane, Guna Seetharaman, and Bertrand Zavidovique. Median binary pattern
for textures classification. In International Conference Image Analysis and Recogni-
tion, pages 387–398. Springer, 2007.

[62] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with
an application to stereo vision. 1981.

[63] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. 1991.

[64] Jianbo Shi et al. Good features to track. In Computer Vision and Pattern Recognition,
1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pages
593–600. IEEE, 1994.

[65] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[66] Joni-Kristian Kämäräinen and Pekka Paalanen. Experimental study on fast 2d ho-
mography estimation from a few point correspondences. Research report 111, De-
partment of Information Technology, Lappeenranta University of Technology, 2009.

[67] Tiago Coito, JR Caldas Pinto, and José Azinheira. Building and evaluation of a mo-
saic of images using aerial photographs. In International Conference Image Analysis
and Recognition, pages 798–805. Springer, 2013.

University of Kasdi Merbah-Ouargla 64



Bibliography

[68] H. Sayah A. Khellal. Realisation d’un systeme de stabilisation pour une camera
embarquee sur un vehicule aerien (mosaiquage et localisation).pfe. ecole militaire
polytechnique (emp), algérie. 2012.

[69] DJEBLI HAMZA. La mosaïque d’images.théme de magister, l’ecole nationale
supérieure d’informatique . algerie . 2012.

[70] Elan Dubrofsky. Homography estimation. Diplomová práce. Vancouver: Univerzita
Britské Kolumbie, 2009.

[71] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. In
Readings in computer vision, pages 726–740. Elsevier, 1987.

[72] Joong jae Lee and Gyeyoung Kim. Robust estimation of camera homography us-
ing fuzzy ransac. In International Conference on Computational Science and Its
Applications, pages 992–1002. Springer, 2007.

[73] S Khachikian and M Emadi. Applying fast & freak algorithms in selected object
tracking.

[74] Nasser Kehtarnavaz and Sidharth Mahotra. Digital Signal Processing Laboratory:
LabVIEW-Based FPGA Implementation. Universal-Publishers, 2010.

University of Kasdi Merbah-Ouargla 65



 
 

 – ملخص

فسيفساء  عن طريق إستخدام عدة مشاهد متداخلة. وتتبع الأشياء فسيفساء الصورة ءنشاإ العمل المقدم في هذه المذكرة من خوارزميتي كونيت

 أشياءمتحرك )أو  شيءهو عملية تحديد موقع  شياءتتبع الأ ،الرقميةالصور لمزج مفيدة اللجة الصور هي واحدة من تقنيات معاالصورة 

صور الاستشعار عن بعد والصور  مثل ،على العديد من الصور اتستخدام هذه التقنيإ يمكن ،امتعددة( مع مرور الوقت باستخدام كامير

النقاط  إلتقاطبشكل أساسي على  طورةتعتمد الخوارزميات الم  .الرقميةن الصور أو غيرها م صور الأقمار الصناعيةو الطبية الحيوية

قائمة على  على بعضها البعض. تم تنفيذ أساليب مطابقة تداخلةمالصور الومطابقتها من أجل إيجاد تحويل هندسي لتسجيل  مفتاحيةال

واجهة لتسهيل  أنشأنا حيث ،LabVIEW جبرنامعلى ، ثم قمنا بتنفيذ خوارزمياتنا Matlab برنامج ومقارنتها فيالارتباط والواصف 

        عن طريق النتائج المتحصل عليها من خلال معالجة صور حقيقية. اتتم التحقق من فعالية زرع الخوارزمي .الأمور للمستخدمين

 . الأشياء ، تتبعالصورة فسيفساء الدالة،مطابقة النقاط  الدالة،إلتقاط النقاط  ،- كلمات مفتاحية

 

Abstract – 

The work presented in this memory, consists of features based image mosaicing and object tracking 

algorithms from multiple overlapped views. An image mosaic is a combination of a sequence of 

overlapped views, and it is a powerful mean of obtaining a larger view of a scene than the available within 

single views. Object tracking is the process of locating a moving object (or multiple objects) over time 

using a camera; these techniques are generally used on several images; like remote sensed images, bio-

medical images, satellite images or other digital images.  Our developed algorithms are based mainly on 

key-points detection and matching in order to find geometric transformation to register overlapped images 

on each other. Correlation and descriptors based features matching techniques were implemented and 

compared in Matlab platform, then, we implemented our algorithms on LabVIEW platform, in which we 

have created an interface to facilitate the things for users. The efficiency of our implementation was 

verified from the quality of the obtained results using real images. 

 Keywords – Key points detection, Key points matching, Image mosaicing, Objects tracking. 

 

  

Résumé –   

Le travail présenté dans cette mémoire consiste en des algorithmes de mosaïquage d'images et de suivi 

d'objets à partir de multiples vues chevauchées. Ces techniques peuvent être utilisées sur plusieurs types 

d’images comme des images de télédétection, des images de biomédicales, des images satellitaires ou 

d'autres images numériques. Une image mosaïque est une combinaison d'une séquence de vues 

chevauchées et c’est un puissant moyen d'obtenir une plus grande vue d'une scène que celle disponible 

dans une seule vue. Le suivi d'objet est le processus de localisation d'un objet en mouvement (ou de 

plusieurs objets) au fil du temps à l'aide d'une caméra. Nos algorithmes développés sont basés 

principalement sur la détection et l'association de points d’intérêt afin de trouver la transformation 

géométrique pour le recalage des images chevauchées les unes sur les autres. Des techniques d’association 

basées sur la corrélation et les descripteurs ont été implémentées et comparées dans la plateforme Matlab, 

puis nous avons implémenté nos algorithmes sur la plateforme LabVIEW, dans laquelle nous avons créé 

une interface pour faciliter les choses pour les utilisateurs. Le travail est validé par les résultats obtenus à 

partir des images réelles.   

 Mots-clés – Détection de points d’intérêt, Association de points d’intérêt Mosaïquage d’image, Suivi 

d’objets. 
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