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Chapter 01 

Introduction 

 

>>Science is not everything, but science is 

very beautiful [1]<<  

J. Robert Oppenheimer 

 

 >> All science is either physics or stamp collecting [2]<< .That how the biggest physicist 

Ernest Rutherford define physics .It is the natural science that studies matter and its  

 

 

motion and behavior through space and time and that studies the related entities of energy and 

force [3]  . Physics is one of the most fundamental scientific disciplines, and its main goal is to 

understand how the universe behaves [4]  . 

 Physics became a separate science when physicists used experimental and quantitative 

methods to discover what are now considered to be the laws of physics . Major developments 

include the replacement of the geocentric model of the solar system with the heliocentric 

Copernican model [5] , the laws governing the motion of planetary bodies determined by 

Johannes Kepler between 1609 and 1619 [6] , pioneering work on telescopes and observational 

astronomy by Galileo Galilee in the 16th and 17th Centuries [7] , and Isaac Newton's discovery 

and unification of the laws of motion and universal gravitation that would come to bear his 

name [8]  . Newton also developed calculus, the mathematical study of change, which provided 

new mathematical methods for solving physical problems [9]  .The discovery of new laws in 

thermodynamicsand electromagnetics resulted from greater research efforts during the 

Industrial Revolution as energy needs increased [10] . 

 At the end of the 19
th

century, physicists believed that nothing remained unexplained, 

Even Lord Kelvin said : >>There is nothing new to be discovered in physics now , All that 

remains is more and more precise measurement [11]<< .However, inaccuracies in classical 

mechanics for very small objects and very high velocities led to the development of modern 

physics in the 20th century. they appeared a two new theories : quantum mechanics and the 

theory of relativity , which led us to re-thinking for everything that we know. 

 Quantum mechanics and general relativity have extended our understanding of the 

physical world widely . A large part of the physics of the last century has been a triumphant 

march of exploration of new worlds opened by these tow theories [12] .The quantum theory 

yielded correct predictions of a great deal of the data on the behavior of the molecular, 

atomic, nuclear and elementary particle domains of matter. In its form of general relativity, it 

https://en.wikiquote.org/wiki/P._A._M._Dirac
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has yielded a formalism that successfully predicted features of the phenomenon of gravity, 

also predicted by the classical Newtonian theory . 

 The problem we are now faced with is that in their precise mathematical forms and 

their conceptual bases, the theory of relativity and the quantum theory are both logically and 

mathematically incompatible [13] . They each entail opposing paradigms on the true nature of 

matter and radiation, as well as opposing epistemologies. For the purpose of description of 

particular phenomena, and so long as the physical conditions that require the use of the 

quantum theory and the theory of relativity do not overlap, these theories may be expressed 

separately. But in general, for the purpose of explanation, we must consider the conditions 

where both theories would be required simultaneously to correctly represent the laws of 

nature . 

 In our current understanding, there exist four fundamental interactions in nature: 

electromagnetism, weak interactions, strong interactions, and gravity. Everyone is familiar 

with electromagnetism. Weak interactions are involved in the decay of nuclei. Strong 

interactions keep nuclei together. The rules of quantum mechanics have been applied to 

electromagnetism, the weak and strong interactions. It is sort of natural to apply the rules of 

quantum mechanics to such interactions since they play key roles in the dynamics of atoms 

and nuclei and one knows that at such scales classical mechanics does not give correct 

predictions. The rules of quantum mechanics have not been applied to gravity in a satisfactory 

manner up to now.  Quantum gravity is an attempt to do so, but it is an incomplete theory. 

 Quantum gravity is the field of theoretical physics attempting to unify the theory of 

quantum mechanics, which describes three of the fundamental forces of nature, with general 

relativity, the theory of the fourth fundamental force: gravity . The ultimate goal is a unified 

framework for all fundamental forces-a theory of everything [14] . The unification of quantum 

theory with Einstein‘s theory of general relativity is perhaps the biggest open problem of 

theoretical physics. Such a theory is not only needed for conceptual reasons, but also for the 

understanding of fundamental issues such as the origin of the Universe, the final evaporation 

of black holes, and the structure of space and time . 

 In the last few decades, researchers have pursued the problem in two separate 

programs : String theory and Loop Quantum Gravity . 

 String theory is a theory that attempts to unify gravity with the other forces by 

postulating that all particles and forces arise from the vibrations of extended objects . String 

theory comes from the observation that all the quanta that carry the known forces, and all the 

known particles, can be found among the vibrations of these extended objects [15]  . The main 

problem of string theory is that it seems to predict the wrong spacetime dimension: 26 for 

bosonic strings , 10 for supersymmetric strings, and 11 in the case of M theory. In order to be 

compatible with the observed 3 + 1 dimensions at the currently accessible energies, one needs 

to compactify some of the extra dimensions. In this process, a large amount of arbitrariness is 

introduced and it has remained an open problem to extract predictions from string theory 

which are independent of the details of the compactication. Also, our knowledge about full 

non-perturbative string theory is limited, with the main exceptions of D-branes and using 

AdS/CFT as a definition of string theory [16] . 
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 Loop Quantum Gravity is a background independent and mathematically rigorous 

canonical quantization of the gravitational field [17]  . The main problem of loop quantum 

gravity is to obtain general relativity in a suitably defined classical limit. In other words, the 

fundamental quantum geometry present in loop quantum gravity has to be coarse grained in 

order to yield a smooth classical spacetime, while the behaviour of matter fields coupled to 

the theory should be dictated by standard quantum field theory on curved spacetimes in this 

limit . Also, it has not been possible so far to fully constrain the regularization ambiguities 

that one encounters in quantizing the Hamiltonian constraint. In order to cope with these 

issues, a path integral approach, known as spin foams , has been developed, as well as the 

group field theory approach , which is well suited for dealing with the question of 

renormalization [18] . 

Our research will focus on sex chapters, the first chapter is a general introduction to our 

subject , the second chapter will present a reminder on the theory of general relativity, the 

third chapter will present some famous definitions in cosmology , the fourth chapter will 

introduce the String theory , the fourth chapter will introduce the Loop Quantum Gravity 

theory. The last chapter is a general conclusion of our research work . 
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Albert Einstein(14 March 1879 – 18 April 1955) was a German 

physicist who developed the theory of relativity . He received the 1921 

Nobel Prize in Physics for his discovery of the law of the photoelectric 

effect . 

 

figure 1.1 Albert Einstein 

 

John Archibald Wheeler (9 July 1911 – 13 April 2008) was an 

American physicist . He was largely responsible for reviving interest in 

general relativity in the United States after World War 2 . He originated a 

novel approach to the unified field theory and popularized the term black 

hole. 

figure 1.2John Wheeler 

 

Abhay Vasant Ashtekar(5 July 1949 –  ) is an Indian physicist . He is 

the creator of Ashtekar variables and one of the founders of loop quantum 

gravity and its subfield loop quantum cosmology . 

 

 

figure 1.3AbhayAshtekar 

 

Leonard Susskind(20 may 1940 –  ) is an American physicist who is 

considered to be one of the three fathers of string theory . His research 

interests include string theory, quantum field theory, quantum statistical 

mechanics and quantum cosmology. 

 

figure 1.4Leonard Susskind 

 

Carlo Rovelli(3 May 1956) is an Italian physicist, philosopher and 

writer . His work is mainly in the field of quantum gravity, where he is 

among the founders of the loop quantum gravity theory . 

 

figure 1.5Carlo Rovelli 
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Chapter 02 

General Relativity 

 

>> which was probably the greatest scientific 

discovery that was ever made [1]<<  

P. A. M. Dirac 

 

2.1   Introduction  

>> I believe that the general acceptance of general relativity was due in large part to 

the attractions of the theory itself—in short, to its beauty <<[2]  , that how the famous physicist 

Steven Weinberg described it . So what is general relativity ? 

General relativity is the geometric theory of gravitation, that was developed by Albert 

Einstein between 1907 and 1915 , with contributions by many others after 1915 [3]  . General 

relativity has been described as the most beautiful of all existing physical theories [4]  . 

General relativity generalizes special relativityand Newton's law of universal 

gravitation, providing a unified description of gravity as a geometric property 

of space and time , or spacetime [5]  .According to general relativity , the observed gravitational 

attraction between masses results from the warping of space and time by those masses . In 

particular, the curvature of spacetime is directly related to the energy and momentum of 

whatever matter and radiation are present [6]  . 

Before the advent of general relativity, Newton's law of universal gravitation had been 

accepted for more than two hundred years as a valid description of the gravitational force 

between masses, even though Newton himself did not regard the theory as the final word on 

the nature of gravity. Although even Newton was bothered by the unknown nature of that 

force, the basic framework was extremely successful at describing motion [7]  . 

Some predictions of general relativity differ significantly from those of classical 

physics , especially concerning the passage of time , the geometry of space , the motion of 

bodies in free fall, and the propagation of light . Examples of such differences 

include gravitational time dilation , gravitational lensing , the gravitational redshift of light , 

and the gravitational time delay [8]  . 

Although general relativity is not the only relativistic theory of gravity, it is 

the simplest theory that is consistent with experimental data. The predictions of general 

relativity have been confirmed in all observations and experiments to date. For example , it 

implies the existence of black holes – regions of space in which space and time are distorted 

in such a way that nothing , not even light , can escape– as an end-state for massive stars. 

https://en.wikiquote.org/wiki/P._A._M._Dirac
https://en.wikipedia.org/wiki/Differential_geometry
https://en.wikipedia.org/wiki/Scientific_theory
https://en.wikipedia.org/wiki/Gravitation
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Theory_of_relativity
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
https://en.wikipedia.org/wiki/Space
https://en.wikipedia.org/wiki/Time_in_physics
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Curvature
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Matter
https://en.wikipedia.org/wiki/Radiation
https://en.wikipedia.org/wiki/Classical_physics
https://en.wikipedia.org/wiki/Classical_physics
https://en.wikipedia.org/wiki/Classical_physics
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Free_fall
https://en.wikipedia.org/wiki/Gravitational_time_dilation
https://en.wikipedia.org/wiki/Gravitational_redshift
https://en.wikipedia.org/wiki/Shapiro_delay
https://en.wikipedia.org/wiki/Alternatives_to_general_relativity
https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Experimental_data
https://en.wikipedia.org/wiki/Tests_of_general_relativity
https://en.wikipedia.org/wiki/Massive_star
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General relativity also predicts the existence of gravitational waves  , which have since 

been observed directly by the physics collaboration LIGO [9]  . In addition , general relativity is 

the basis of current cosmological models of a consistently expanding universe [10]  . 

However, unanswered questions remain, the most fundamental being how general 

relativity can be reconciled with the laws of quantum physics to produce a complete and self-

consistent theory of quantum gravity [11]  . 

In this chapter , we will know the gravitational between Newton and Einstein , 

postulates of general relativity then the mathematical formalism of the theory and finally the 

Einstein field equation with the constant cosmological . 

 

2.2   Gravitational between Newton and Einstein  

2.2.1 Gravity according to Newton 

Gravity According to Newton is a force that works between two objects [12] . So if you 

have the Earth and the Sun – for example – then the Earth feels a force that is exerted by the 

Sun , and in turn the Sun feels the same force , exerted by the Earth.  The magnitude F of this 

force is given by : 

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
                                                              (2.1) 

Where : 

G isthe gravitational constant , and equal to 6.67 × 10
−11

N.m
2
.Kg

−2
 

m1 , m2 are their respective masses 

 r is the distance between the centres of the Earth and the Sun 

figure 2.1 : The gravitational interaction of two spherical bodies according to Newton [13]  

Newton could use his second law to conclude that the force exerted by gravitation is 

proportional to the mass of the body on which it acts , the third law then ensures that the force 

is also proportional to the mass of its source [14]  . 

https://en.wikipedia.org/wiki/Gravitational_wave
https://en.wikipedia.org/wiki/List_of_gravitational_wave_observations
https://en.wikipedia.org/wiki/Laser_Interferometer_Gravitational-Wave_Observatory
https://en.wikipedia.org/wiki/Physical_cosmology
https://en.wikipedia.org/wiki/Metric_expansion_of_space
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_gravity
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The forces experienced by Earth and Sun may be equal in magnitude , but the 

resulting motion is not the same for the two bodies . According to Newton's second law of 

motion , the magnitude of the acceleration a body experiences when it is subjected to a force 

is equal to the magnitude of the force divided by the body's mass. Since the Sun's mass is 

large, the acceleration it experiences due to the Earth's gravitational pull is negligible 

compared to that experienced by the much less massive Earth. That's why the Sun remains 

more or less stationary, while the Earth is forced on an orbit around it. 

 

2.2.1 Gravity according to Einstein 

In 1915, Einstein's quest for a relativistic theory of gravity resulted not in a new force 

law or a new theory of a relativistic gravitational field , but in a pro-found conceptual 

revolution in our views of space and time . Einstein saw that the experimental fact that all 

bodies fall with the same acceleration in a gravitational field led naturally to an understanding 

of gravity in terms of the curvature of the four-dimensional union of space and time—

spacetime . Mass curves spacetime in its vicinity, and the trajectories along which all masses 

fall are the straight paths in this curved spacetime [15]  . 

In Newtonian theory the Sun exerts a gravitational force on the Earth and the Earth 

moves around the Sun in response to that force . In general relativity the mass of the Sun 

curves the surrounding spacetime , and the Earth moves on a straight path in that curved 

spacetime . Gravity is geometry . 

We can summarize all this in John Wheeler's quote >>Spacetime tells matter how to 

move , matter tells spacetime how to curve <<[16]  . 

 

2.3 Mathematical formalism of general relativity 

The mathematics of general relativity refers to various  mathematical structures and 

techniques that are used in studying and formulating Albert Einstein's theory of general 

relativity. The main tools used in this geometricaltheory of gravitation are tensor or tensor 

fields . 

Tensors are a powerful mathematical tool that is used in many areas in engineering 

and physics including general relativity theory , quantum mechanics , statistical 

thermodynamics , classical mechanics , electrodynamics , solid mechanics , and fluid 

dynamics . Laws of physics and physical invariants must be independent of any arbitrarily 

chosen coordinate system [17]  . 

Tensor analysis allows us to consider very generalized differential geometries and to 

investigate how they apply to the universe at large. The merger of differential geometry and 

spacetime was accomplished in the early 20th century by Dr. Albert Einstein [18]  . 

so we will use tensor analysis [19]  to describe the mathematical form of General 

relativity . 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Gravitation
https://en.wikipedia.org/wiki/Tensor_field
https://en.wikipedia.org/wiki/Tensor_field
https://en.wikipedia.org/wiki/Tensor_field
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2.3.1 Covariance and contravariance of vectors 

We consider a vector space 𝜉 of dimensions n subtended by n basis vector 𝑒 𝜇  , 

𝜇 = 0,1, … . , 𝑛 − 1 as any element 𝑣 ∈ 𝜉 is written [20] : 

𝑣 = 𝑣𝜇𝑒 𝜇                                                           (2.3.1.1) 

Where : 

𝑣𝜇 are  the components of the vector field𝑣 in the basis𝑒 𝜇  

To choose a new basis of 𝜉 of basis (𝑒 𝜇′ , …  , 𝑒 𝛼′) , this choice is connected as that of 

the basis 𝑒 𝜇′ , …  , 𝑒 𝛼′ ) . The vector 𝑣  is independent of the choice of the basis ,so we can say 

that the vector is invariant. The components 𝑣𝜇  verifying : 

𝑣𝜇 = 𝑣 . 𝑒 𝜇                                                         (2.3.1.2) 

𝑣𝜇  are called covariant components 

𝑣 = 𝑣𝜇 . 𝑒 𝜇                                                        (2.3.1.3) 

𝑣𝜇  are called contravariant components 

The new components are written : 

𝑉 = Λ 𝑉      
 𝑉𝜇  =  Λ𝜇′

𝜇
𝑉𝜇′          𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑞𝑢𝑎𝑑𝑟𝑖𝑣𝑒𝑐𝑡𝑜𝑟

         𝑉𝜇   =  Λ𝜇
𝜇′

𝑉′𝜇          𝐶𝑜𝑛𝑡𝑟𝑎𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑞𝑢𝑎𝑑𝑟𝑖𝑣𝑒𝑐𝑡𝑜𝑟
  

Where : 

𝜕𝑥𝜇

𝜕𝑥𝜇 ′
= Λ𝜇′

𝜇
 represents an element of matrix transformation for variants 𝑥𝜇  . 

Then : 

𝑉  = 𝑉𝜇𝑒 𝜇 = 𝑉𝜈′𝑒 𝜈′ = Λ       𝛼
𝜈′ 𝑉𝛼𝑒 𝜈′ = 𝑉𝛼Λ       𝛼

𝜈′ 𝑒 𝜈′                        (2.3.1.4) 

 

Properties  

- We suppose that the vector space has a symmetric scalar product of two vectors can then be 

calculated in the basis 𝑒 𝜇 and defined by : 

𝑒 𝜇 . 𝑒 𝜈 = 𝑔𝜇𝜈                                                             (2.3.1.5) 

 

Where : 

𝑔𝜇𝜈  is the metric tensor 
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- Thus, quite generally, in a coordinate basis the scalar product of two vectors is given by : 

𝑣 . 𝑤   =  𝑣𝜇𝑒 𝜇 .  𝑤𝜈𝑒 𝜈 =  𝑒 𝜇 . 𝑒 𝜈 𝑣𝜇𝑤𝜈 = 𝑔𝜇𝜈 𝑣𝜇𝑤𝜈                (2.3.1.6) 

- We write the dual basis vectors by the relation : 

𝑒 𝜇 . 𝑒 𝜈 = 𝛿𝜈
𝜇
𝑔𝜇𝜈                                                         (2.3.1.7) 

- Using the relation (2.4.1.6) , we can find simple expressions for the contravariant and 

covariant components of a vector v , we write : 

𝑣  . 𝑒 𝜇 = 𝑣𝜈𝑒 𝜈  . 𝑒 𝜇 = 𝑣𝜈𝛿𝜈
𝜇

= 𝑣𝜇                                   (2.3.1.8) 

- We Use the inverse of the matrix  Λ for the inverse basic transformation , we put that : 

Λ𝜇′
       𝜈 = (Λ−1)       𝜇′

𝜈 .
withΛ𝜇′

       𝜈Λ       𝛼
𝜇′

= 𝛿𝛼
𝜈                       (2.3.1.9) 

 

2.3.2 Tensors  

Tensor calculus is a specific language within the general language of mathematics.  It 

is used to express the concepts of multivariable calculus and its applications in disciplines as 

diverse as linear algebra , differential geometry , calculus of variations , continuum mechanics 

, and perhaps tensors‘ most popular application : general relativity [24]  . 

Vectors , covectors , and linear operators are all special cases of tensors . We will not 

attempt to define tensors in abstract terms , but settle for a coordinate based definition, as 

follows . 

An (N,M)-tensor at a given point in space can be described by a set of numbers with N 

+ M indices which transforms , upon coordinate transformation given by the matrix Λ , in the 

following way [21[]22[]23]  : 

𝑇𝛽1….𝛽𝑁

′  𝛼1….𝛼𝑁 = Λ𝜇1

𝛼1 …  Λ𝜇𝑁

𝛼𝑁 (Λ−1)𝛽1

𝜈1 … (Λ−1)𝛽𝑀

𝜈𝑀 𝑇                  𝜈1…..𝜈𝑀

𝜇1…..𝜇𝑁                                     (2.3.2.1) 

An (N,M)-tensor in a three-dimensional manifold therefore has 3(N+M) components . 

It is contravariant in  N components and covariant in M components. 

 

Symmetry and antisymmetry 

A tensor T is called symmetricin the indices μ and ν if the components are equal upon 

exchange of the index-values . So , for a 2nd rank contravariant tensor, 

𝑇𝜇𝜈 = 𝑇𝜈𝜇  (symmetric)                                           (2.3.2.2) 

A tensor T is called anti-symmetricin the indices μ and ν if the components are equal 

but-opposite upon exchange of the index-values . So, for a 2nd rank contravariant tensor , 

𝑇𝜇𝜈 = −𝑇𝜈𝜇   (anti − symmetric)                                 (2.3.2.3) 
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Tensor product 

There are several operations on tensors that again produce a tensor. The linear nature 

of tensor implies that two tensors of the same type may be added together, and that tensors 

may be multiplied by a scalar with results analogous to the scaling of a vector. On 

components, these operations are simply performed component-wise. These operations do not 

change the type of the tensor; but there are also operations that produce a tensor of different 

type. 

Let a be an (N,M)-tensor and b a (p, q)-tensor. We write the coordinates of the first 

tensor as 𝑎𝑗1…𝑗𝑀

𝑖1…𝑖𝑁 and those of the second tensor as 𝑏
𝑗𝑀+1…𝑗𝑀+𝑞

𝑖𝑁+1…𝑖𝑁+𝑝
 . Note that all indices are distinct 

within and across tensors . The tensor product 𝑐 = 𝑎 ⨂ 𝑏is defined as the (N + p , M + q)-

tensor having the coordinates 

𝑐
𝑗1…𝑗𝑀 𝑗𝑀+1…𝑗𝑀+𝑞

𝑖1…𝑖𝑁 𝑖𝑁+1…𝑖𝑁+𝑝 = 𝑎𝑗1…𝑗𝑀

𝑖1…𝑖𝑁 𝑏
𝑗𝑀 +1…𝑗𝑀+𝑞

𝑖𝑁+1…𝑖𝑁+𝑝                                     (2.3.2.4) 

Let us elaborate more on this definition . The tensor c is allocated n
N+p+M+q

 addresses . 

The N+pcontravariant enits of the address 𝑖1 …𝑖𝑁𝑖𝑁+1 … 𝑖𝑁+𝑝  are subdivided into Nleftmost 

enits and p rightmost enits . Similarly, the M+qcovariant enits of the address 

𝑗1 … 𝑗𝑀𝑗𝑀+1 …𝑗𝑀+𝑞  are subdivided into Mleftmost enits and q rightmost enits . 

 

2.3.3 Metric Tensor  

the metric tensor  is the fundamental object  In general relativity . It may loosely be 

thought of as a generalization of the gravitational potential of Newtonian gravitation . The 

metric captures all the geometric and causal structure of spacetime , being used to define 

notions such as time , distance , volume , curvature , angle , and separating the future and the 

past [27]  . 

Spacetime is represented by a four-dimensional differentiable manifold Mand the 

metric tensor is given as a covariant, second-degree, symmetric tensor on M , conventionally 

denoted by . Moreover, the metric is required to be nondegenerate with signature (− + + +). A 

manifold  equipped with such a metric is a type of Lorentzian manifold. 

g is a symmetric covariant tensor of rank 2. This tensor is known as the metric tensor. 

The components of this tensor are [25[]26] : 

𝑔 𝑒 𝜇 , 𝑒 𝜈 = 𝑔𝜇𝜈 𝑢𝜇𝑢𝜈                                           (2.3.3.1) 

𝑢   . 𝑣 = 𝑔(𝑢  , 𝑣 ) = 𝑔(𝑢𝜇𝑒 𝜇 , 𝑢𝜈𝑒 𝜈) = 𝑢𝜇𝑣𝜈𝑔 𝑒 𝜇 , 𝑒 𝜈 = 𝑔𝜇𝜈 𝑢𝜇𝑣𝜈          (2.3.3.2) 

Usual notation : 

𝑢   . 𝑣 =  𝑔𝜇𝜈 𝑢𝜇𝑣𝜈                                               (2.3.3.3) 

https://en.wikipedia.org/wiki/Scalar_multiplication
https://en.wikipedia.org/wiki/Differentiable_manifold
https://en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors
https://en.wikipedia.org/wiki/Tensor_degree
https://en.wikipedia.org/wiki/Symmetric_tensor
https://en.wikipedia.org/wiki/Nondegenerate
https://en.wikipedia.org/wiki/Lorentz_signature
https://en.wikipedia.org/wiki/Lorentzian_manifold
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Where : 

𝑔𝜇𝜈  is a quantity that contains all the information we need to describe Space or curved surface 

. In other words , the metric tells us how the spacetime changes from flat spacetime to 

curvedspacetime [28]  . 

the matrix representation of 𝑔𝜇𝜈  is : 

𝑔𝜇𝜈 =  

1 0
0 −1

0   0
0    0

0 0
0 0

−1 0
0 −1

                                          (2.3.3.4) 

We now define distance along a curve . Let the curve be parameterized by 𝜆 Let 𝑣  be 

the tangent vector-field of the curve . 

The squared distance ds
2
 between the points along the curve is defined as : 

𝑑𝑠2 = 𝑔(𝑣 , 𝑣 )𝑑𝜆2                                            (2.3.3.5) 

gives : 

𝑑𝑠2 = 𝑔𝜇𝜈 𝑣𝜇𝑣𝜈𝑑𝜆2                                           (2.3.3.6) 

The tangent vector has components 𝑣𝜇 =
𝑑𝑥𝜇

𝑑𝜆
 , which gives: 

𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈                                               (2.3.3.7) 

The expression ds
2
 is known as the line-element . 

The components of the metric depend on the choice of local coordinate system . Under 

a change of coordinates 𝑥𝜇  to𝑥𝜇′  . 

from the following relation : 

𝑑𝑥𝜇 = Λ𝜇′
𝜇

𝑑𝑥𝜇′ =
𝑑𝑥𝜇

𝑑𝑥𝜇′
𝑑𝑥𝜇′                                    (2.3.3.8) 

the metric components transform as : 

𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 = 𝑔𝜇𝜈 Λ𝜇′
𝜇

Λ𝜈′
𝜈 𝑑𝑥𝜇′𝑑𝑥𝜈′                                (2.3.3.9) 

Where : 

𝑔𝜇′𝜈′ = 𝑔𝜇𝜈 Λ𝜇′
𝜇

Λ𝜈′
𝜈                                                     (2.3.3.9) 

Finally , we can write : 

𝑑𝑠2 = 𝑔𝜇′𝜈′𝑑𝑥𝜇′𝑑𝑥𝜈′ = 𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈                                (2.3.3.10) 

The metric in Flat space is : 

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 = 𝜂𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 = 𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈             (2.3.3.10) 
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Where : 

𝜂𝜇𝜈  is the Minkowski metric  

The generalization from the flat Minkowskispacetime of special relativity to the curved 

spacetime of general relativity is made by replacing the Minkowskispacetime metric 

coefficients 𝜂𝜇𝜈  , which are constants, with metric coefficients 𝑔𝜇𝜈 that are function of the 

coordinates [29]  . 

 

2.3.4 Christoffel's symbols and covariant derivative 

Christoffel's symbols 

The equation for the covariant derivative can be written in terms of Christoffel 

symbols. The Christoffel symbols find frequent use in Einstein's theory of general relativity, 

where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-

Civita connection. The Einstein field equations – which determine the geometry of spacetime 

in the presence of matter – contain the Ricci tensor. Since the Ricci tensor is derived from the 

Riemann tensor, which can be written in terms of Christoffel symbols, a calculation of the 

Christoffel symbols is essential. Once the geometry is determined, the paths of particles and 

light beams are calculated by solving the geodesic equations in which the Christoffel symbols 

explicitly appear . 

We note that [30] : 

𝜕𝑖 =
𝜕

𝜕𝑥𝑖
= 𝑒 𝑖     , 𝑖 = 1,2, … , 𝑛                               (2.3.4.1) 

These can be used to define the metric tensor: 

𝑔𝑖𝑗 = 𝑒 𝑖 . 𝑒 𝑗                                                             (2.3.4.2) 

which can in turn be used to define the contravariant basis : 

𝑒 𝑖 = 𝑒 𝑗𝑔
𝑖𝑗                                                            (2.3.4.3) 

the general definition given below for the Christoffel symbols of the second kind can be 

proven to be equivalent to : 

Γ   𝑖𝑗
𝑘 =

𝜕𝑒 𝑖
𝜕𝑥𝑗

𝑒 𝑘 =
𝜕𝑒 𝑖
𝜕𝑥𝑗

𝑔𝑘𝑚 𝑒 𝑚                                          (2.3.4.4) 

Christoffel symbols of the first kind can then be found : 

Γ𝑘𝑖𝑗 = Γ𝑖𝑗
𝑚𝑔𝑚𝑘 =

𝜕𝑒 𝑖
𝜕𝑥𝑗

𝑒 𝑚𝑔𝑚𝑘 =
𝜕𝑒 𝑖
𝜕𝑥𝑗

𝑒 𝑘                           (2.4.4.5) 

 

 

https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Lorentz_manifold
https://en.wikipedia.org/wiki/Levi-Civita_connection
https://en.wikipedia.org/wiki/Levi-Civita_connection
https://en.wikipedia.org/wiki/Einstein_field_equations
https://en.wikipedia.org/wiki/Ricci_tensor
https://en.wikipedia.org/wiki/Solving_the_geodesic_equations
https://en.wikipedia.org/wiki/Metric_tensor
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Rearranging, we see that : 

𝜕𝑒 𝑖
𝜕𝑥𝑗

= Γ   𝑖𝑗
𝑘 𝑒 𝑘 = Γ𝑘𝑖𝑗 𝑒 

𝑘                                                 (2.3.4.6) 

In this form, it easy to see the symmetry of the lower or last two indices: 

Γ  𝑖𝑗
𝑘 = Γ  𝑗𝑖

𝑘   𝑎𝑛𝑑   Γ𝑘𝑖𝑗 = Γ𝑘𝑗𝑖                                             (2.3.4.7) 

The same numerical values for Christoffel symbols of the second kind also relate to 

derivatives of the contravariant basis, as seen in the expression : 

𝜕𝑒 𝑖
𝜕𝑥𝑗

= −Γ  𝑗𝑘
𝑖 𝑒 𝑘                                                       (2.3.4.8) 

Christoffel symbols isn't tensors although his notations [33]  . 

 

Covariant derivative 

The covariant derivative is the derivative that under a general coordinate 

transformation transforms covariantly, that is, linearly via the Jacobian matrix of the 

coordinate transformation [34]  . 

The covariant derivative of a quadrivector of contravariant components𝑉𝜇  is defined 

by [31[]32]  : 

𝑉  = 𝑉𝜇𝑒 𝜇                                                            (2.3.4.8) 

When we use  2.4.4.1 , we can writte ∶ 

𝜕𝜈𝑉  =
𝜕𝑉  

𝜕𝑥𝜈
=

𝜕

𝜕𝑥𝜈
 𝑉𝜇𝑒 𝜇 =

𝜕𝑉𝜇

𝜕𝑥𝜈
𝑒 𝜇 + 𝑉𝜇

𝜕𝑒 𝜇

𝜕𝑥𝜈
                   (2.3.4.9) 

When we use  2.4.4.6 , we can writte ∶ 

𝜕𝜈𝑉  = 𝜕𝜈𝑉𝜇𝑒 𝜇 + Γ   𝜈𝜇
𝑘 𝑉𝜇𝑒 𝑘                                     (2.3.4.10) 

When we change         𝑘  , we write (2.4.4.10) like this : 

𝜕𝜈𝑉  = 𝜕𝜈𝑉𝑘𝑒 𝑘 + Γ   𝜈𝜇
𝑘 𝑉𝜇𝑒 𝑘 = (𝜕𝜈𝑉𝑘 + Γ   𝜈𝜇

𝑘 𝑉𝜇 )𝑒 𝑘                          (2.3.4.11) 

𝜕𝜈𝑉  = 𝐷𝜈𝑉𝜇𝑒 𝑘                                                       (2.3.4.12) 

The covariant derivative of a scalar quantity is : 

𝐷𝜈𝜙 = 𝜕𝜈𝜙                                                          (2.3.4.13) 

The covariant derivative of a contravariant vector is : 

𝐷𝜈𝑉𝜇 = 𝜕𝜈𝑉𝜇 + Γ   𝜈𝑘
𝜇

𝑉𝑘                                            (2.3.4.14) 

https://en.wikipedia.org/wiki/Covariant_transformation
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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The covariant derivative of a covariant vector is : 

𝐷𝜈𝑉𝜇 = 𝜕𝜈𝑉𝜇 − Γ   𝜈𝑘
𝜇

𝑉𝑘                                               (2.3.4.15) 

The covariant derivative of a tensor for type (2,0) is : 

𝐷𝜈𝑇𝜇𝑘 = 𝜕𝜈𝑇𝜇𝑘 + Γ   𝜈𝑖
𝜇

𝑇𝑖𝑘 + Γ   𝜈𝑖
𝑘 𝑇𝜇𝑖                               (2.3.4.16) 

The covariant derivative of a tensor for type (0,2) is : 

𝐷𝜈𝑇𝜇𝜅 = 𝜕𝜈𝑇𝜇𝑘 − Γ   𝜈𝜇
𝑖 𝑇𝑖𝑘 − Γ   𝜈𝑘

𝑖 𝑇𝜇𝑖                              (2.3.4.17) 

The covariant derivative of a tensor for type (1,1) is : 

𝐷𝜈𝑇𝑘
𝜇

= 𝜕𝜈𝑇𝑘
𝜇

+ Γ   𝜈𝑖
𝜇

𝑇𝑘
𝑖 − Γ   𝜈𝑘

𝑖 𝑇𝑖
𝜇

                                 (2.3.4.18) 

In general , the covariant derivative of any kind of tensor is : 

𝐷𝜈𝑇     𝜇𝑘
𝑖𝑗

= 𝜕𝜈𝑇    𝜇𝑘
𝑖𝑗

 

                             +Γ   𝑙𝜈
𝑖 𝑇    𝜇𝑘

𝑙𝑗
+ a term for each contravariant index 

                                   −Γ   𝜈𝜇
𝑙 𝑇    𝑙𝑘

𝑖𝑗
− a term for each covariant index                                (2.3.4.19) 

 

The relation between 𝚪𝝂𝝁
𝝀 and 𝒈𝝁𝝂 

From (2.3.4.17) , we can write : 

𝐷𝜈𝑔𝜇𝑘 = 𝜕𝜈𝑔𝜇𝑘 − Γ𝜈𝜇
𝑘 𝑔𝑖𝑘 − Γ𝜈𝑘

𝜇
𝑔𝜇𝑖                              (2.3.4.20) 

When 𝐷𝜈𝑔𝜇𝑘 = 0 

That‘s gives :   

     𝜕𝜈𝑔𝜇𝑘 = Γ𝜈𝜇
𝑖 𝑔𝑖𝑘 + Γ𝜈𝑘

𝑖 𝑔𝜇𝑖 = 0     (1)

     𝜕𝜇𝑔𝑘𝜈 = Γ𝜇𝑘
𝑖 𝑔𝑖𝜈 + Γ𝜇𝜈

𝑖 𝑔𝑘𝑖 = 0     (2)

     𝜕𝑘𝑔𝜇𝜈 = Γ𝑘𝜈
𝑖 𝑔𝑖𝜇 + Γ𝑘𝜇

𝑖 𝑔𝜈𝑖 = 0     (3)

                             (2.3.4.21) 

 

By using  2.3.4.21  , we can do (1) + (2) – (3) and Γ𝜈𝜇
𝑖 = Γ𝜇𝜈

𝑖  ;  𝑔𝑖𝑘 = 𝑔𝑘𝑖 , and writing : 

2Γ𝜇𝜈
𝑖 𝑔𝑘𝑖 = 𝜕𝜈𝑔𝜇𝑘 + 𝜕𝜇𝑔𝑘𝜈 − 𝜕𝑘𝑔𝜇𝜈                              (2.3.4.22) 

By multiplying in 𝑔𝑘𝜆  , we can write : 

Γ𝜇𝜈
𝑖 𝛿𝑖

𝜆 =
1

2
𝑔𝑘𝜆 (𝜕𝜈𝑔𝜇𝑘 + 𝜕𝜇𝑔𝑘𝜈 − 𝜕𝑘𝑔𝜇𝜈 )                     (2.3.4.23) 
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Where : 

𝛿𝑖
𝜆 = 𝑔𝑘𝜆𝑔𝑘𝑖  

We know that : 

Γ𝜇𝜈
𝑖 𝛿𝑖

𝜆 = Γ𝜇𝜈
𝜆  

Finally , we can write (2.3.4.23) : 

Γ𝜇𝜈
𝜆 =

1

2
𝑔𝑘𝜆 (𝜕𝜈𝑔𝜇𝑘 + 𝜕𝜇𝑔𝑘𝜈 − 𝜕𝑘𝑔𝜇𝜈 )                      (2.3.4.24) 

 

2.3.5 Geodesic equation 

a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, 

the world lineof a particle free from all external, non-gravitational force, is a particular type of 

geodesic. In other words, a freely moving or falling particle always moves along a 

geodesic [39]  . 

consider a particle moving freely under the influence of purely gravitational forces . 

According to the principle of equivalence , there is a freely falling coordinate system in which 

its equation of motion is that of a straight line in spacetime , that is [35[]36[]38]  : 

𝜕2𝜉𝜇

𝜕𝑠2
= 0                                              (2.3.5.1) 

Where : 

𝑑𝑠2 is the proper time ,  𝑑𝑠2 = −𝑔𝜇𝜈 𝑑𝜉𝜇𝑑𝜉𝜈  

 

We try to derive (2.3.5.1) : 

𝜕

𝜕𝑠
 
𝜕𝜉𝜇

𝜕𝑠
 = 0                                              (2.3.5.2) 

𝜕

𝜕𝑠
 
𝜕𝜉𝜇

𝜕𝑥𝜈

𝜕𝑥𝜈

𝜕𝑠
 = 0                                           (2.3.5.3) 

𝜕𝜉𝜇

𝜕𝑥𝜈

𝜕2𝑥𝜈

𝜕𝑠2
+

𝜕

𝜕𝑠
(
𝜕𝜉𝜇

𝜕𝑥𝜈
)
𝜕𝑥𝜈

𝜕𝑠
= 0                                 (2.3.5.4) 

By multiplying and dividing in 𝜕𝑥𝜌  in the second limit of the equation , we can write 

(2.3.5.4) : 

𝜕𝜉𝜇

𝜕𝑥𝜈

𝜕2𝑥𝜈

𝜕𝑠2
+

𝜕𝑥𝜌

𝜕𝑠

𝜕

𝜕𝑥𝜌
 
𝜕𝜉𝜇

𝜕𝑥𝜈
 

𝜕𝑥𝜈

𝜕𝑠
= 0                          (2.3.5.5) 

https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/World_line
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𝜕𝜉𝜇

𝜕𝑥𝜈

𝜕2𝑥𝜈

𝜕𝑠2
+

𝜕2𝜉𝜇

𝜕𝑥𝜌𝜕𝑥𝜈

𝜕𝑥𝜌

𝜕𝑠

𝜕𝑥𝜈

𝜕𝑠
= 0                              (2.3.5.6) 

By multiplying in 
𝜕𝑥𝛼

𝜕𝜉𝜇
 , we can write : 

𝜕𝑥𝛼

𝜕𝜉𝜇

𝜕𝜉𝜇

𝜕𝑥𝜈

𝜕2𝑥𝜈

𝜕𝑠2
+

𝜕𝑥𝛼

𝜕𝜉𝜇

𝜕2𝜉𝜇

𝜕𝑥𝜌𝜕𝑥𝜈

𝜕𝑥𝜌

𝜕𝑠

𝜕𝑥𝜈

𝜕𝑠
= 0                  (2.3.5.7) 

We put : 

Γ𝜌𝜈
𝛼 =

𝜕𝑥𝛼

𝜕𝜉𝜇

𝜕2𝜉𝜇

𝜕𝑥𝜌𝜕𝑥𝜈
(2.3.5.8) 

Where :  

Γ𝜌𝜈
𝛼  is the Christoffel symbols  

Finally , the geodesic equation is written like this : 

𝜕2𝑥𝛼

𝜕𝑠2
+ Γ𝜌𝜈

𝛼
𝜕𝑥𝜌

𝜕𝑠

𝜕𝑥𝜈

𝜕𝑠
= 0                                (2.3.5.9) 

 

2.3.6 Riemann tensor(curvature tensor ) 

 The Riemann tensor ( or the curvature tensor or Riemann–Christoffelcurvature tensor) 

is a central mathematical tool in the theory of general relativity and the curvature 

of spacetime is in principle observable via the geodesic deviation equation . It is one of the 

most important tensors in general relativity. If  it is zero then it means that the space is flat. If 

it is non-zero then we have a curved space. This tensor is most easily derived by considering 

the order of double differentiation on tensors [42]  . 

 The Riemann tensor curvature tensor. It plays an essential role in the development of 

general relativity [43]  . Because it tells us everything essential about the curvature of a space 

[44] . 

 Riemann is the only tensor that can be constructed from the metric tensor and its first 

and second derivatives [45]  . 

 We can find a solution to the problem of measuring the curvature of a manifold at any 

point by considering changing the order of covariant differentiation. Covariant differentiation 

is clearly a generalization of partial differentiation [46]  . 

The general formula for the change of a vector defined by [40[]41]  : 

∆𝑉𝜇 = 𝑉𝑓
𝜇

− 𝑉𝑖
𝜇

=  𝛿𝑉𝜇 = −  Γ𝜈𝜆
𝜇

𝑉𝜈𝜕𝑥𝜆                            (2.3.6.1) 

Γ𝜈𝜆
𝜇  𝑥 = Γ𝜈𝜆

𝜇  𝐴 +  𝑥𝛼 − 𝑥𝜈
𝛼 𝜕𝛼Γ𝜈𝜆

𝜇
+ ⋯                      (2.3.6.2) 

https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Geodesic_deviation_equation


 

17 
 

𝑉𝜈 𝑥 = 𝑉𝜈 𝐴 +  𝑥𝛼 − 𝑥𝜈
𝛼 𝜕𝛼𝑉𝜈 + ⋯ (2.3.6.3) 

We replace (2.3.6.1) in (2.3.6.3) , and we write : 

𝑉𝜇  𝑥 = 𝑉𝜈 𝐴 −  𝑥𝛼 − 𝑥0
𝛼 Γ𝛼𝛽

𝜈 𝑉𝛽 + ⋯ (2.3.6.4) 

∆𝑉𝜇 = −Γ𝜈𝜆
𝜇  𝐴 𝑉𝜈 𝐴  𝜕𝑥𝜆 − 𝜕𝜆Γ𝜈𝜆

𝜇  𝐴 𝑉𝜈   𝑥𝛼 𝜕𝑥𝜆 − 𝑥0
𝜈  𝜕𝑥𝜆 

+ Γ𝜈𝜆
𝜇  𝐴 Γ𝛼𝛽

𝜈 (𝐴)𝑉𝛽 𝐴   𝑥𝛼 𝜕𝑥𝜆 − 𝑥𝛼  𝜕𝑥𝜆 (2.3.6.5) 

∆𝑉𝜇 = −𝜕𝛼Γ𝜈𝜆
𝜇  𝐴 𝑉𝜈 𝐴   𝑥𝛼 𝜕𝑥𝜆 + Γ𝜈𝜆

𝜇  𝐴 Γ𝛼𝛽
𝜈 (𝐴)𝑉𝛽 𝐴   𝑥𝛼 𝜕𝑥𝜆 (2.3.6.6) 

∆𝑉𝜇 =  −𝜕𝛼Γ𝜈𝜆
𝜇

𝑉𝜈 + Γ𝜈𝜆
𝜇

Γ𝛼𝛽
𝜈 𝑉𝛽   𝑥𝛼 𝜕𝑥𝜆(2.3.6.7) 

we simplify the integral : 

 𝑥𝛼 𝜕𝑥𝜆 =  𝑥𝜆𝜕𝑥𝛼
𝐵

𝐴

+   𝑥𝛼 + 𝑑𝑥𝛼 
𝐶

𝐵

𝑑𝑥𝛼 + ⋯ 

                                = 𝑥𝜆  𝑑𝑥𝛼
𝑥𝛼 +𝑑𝑥𝛼

𝑥𝛼

+ 𝑥𝜆  𝑑𝑥𝛼
𝑥𝛼

𝑥𝛼 +𝑑𝑥𝛼

+  𝑑𝑥𝜆𝑑𝑥𝛼
𝑥𝛼

𝑥𝛼 +𝑑𝑥𝛼

 

                                = 𝑑𝑥𝜆  𝑑𝑥𝛼
𝑥𝛼

𝑥𝛼 +𝑑𝑥𝛼

                                                                                      (2.3.6.8) 

So we write (2.3.6.7) , like this : 

∆𝑉𝜇 =  −𝜕𝛼Γ𝜈𝜆
𝜇

𝑉𝜈 + Γ𝜈𝜆
𝜇

Γ𝛼𝛽
𝜈 𝑉𝛽   𝑥𝜆 𝜕𝑥𝛼 [40][41](2.3.6.9) 

∆𝑉𝜇 =  𝜕𝛼Γ𝜈𝜆
𝜇

𝑉𝜈 − Γ𝜈𝜆
𝜇

Γ𝛼𝛽
𝜈 𝑉𝛽   𝑥𝛼 𝜕𝑥𝜆 [40][41](2.3.6.10) 

By combination , we find : 

∆𝑉𝜇 = −
1

2
 𝜕𝛼Γ𝜈𝜆

𝜇
− 𝜕𝜆Γ𝜈𝛼

𝜇
+ Γ𝜈𝛼

𝜇
Γ𝜆𝛽

𝜈 − Γ𝜈𝜆
𝜇

Γ𝛼𝛽
𝜈  𝑉𝛽  𝑥𝛼 𝜕𝑥𝜆 (2.3.6.11) 

∆𝑉𝜇 = −
1

2
𝑅𝜈𝜆𝛼

𝜇
𝑉𝛽  𝑥𝛼 𝜕𝑥𝜆 (2.3.6.12) 

Where : 

𝑅𝜈𝜆𝛼
𝜇

 is the Riemann tensor  

𝑅𝜈𝜆𝛼
𝜇

= 𝜕𝛼Γ𝜈𝜆
𝜇

− 𝜕𝜆Γ𝜈𝛼
𝜇

+ Γ𝜈𝛼
𝜇

Γ𝜆𝛽
𝜈 − Γ𝜈𝜆

𝜇
Γ𝛼𝛽

𝜈 (2.3.6.13) 
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Properties of the Riemann tensor 

The symmetry properties of the curvature tensor can, of course , immediately be picked out 

from the defining equation (2.3.6.13), or from : 

𝑅𝜇𝜈𝛽𝛼 = 𝜕𝛼Γ𝜇𝜈𝛼 − 𝜕𝛼Γ𝜇𝜈𝛽 − Γ𝛽𝜈
𝜌

Γ𝜇𝜌𝛼 + Γ𝛼𝜈
𝜌

Γ𝜇𝜌𝛽 (2.3.6.14) 

For completeness , we note that in an arbitrary coordinate system an explicit form for these 

components is found : 

𝑅𝜇𝜈𝛽𝛼 =
1

2
(𝜕𝛽𝜇 g𝜈𝛼 − 𝜕𝜈𝛼 g𝜇𝛽 − 𝜕𝜈𝛽 Γ𝜇𝛼 + 𝜕𝛼𝜇 g𝜈𝛽 ) − 𝑔𝜌𝜍  Γ 𝛼𝜍𝜈 Γ𝜇𝜌𝛼 − Γ𝛼𝜍𝜈 Γ𝜇𝜌𝛼       (2.3.6.15) 

Let us choose some arbitrary point P in the manifold and construct a geodesic coordinate 

system about this point , the metric 𝑔𝜇𝜈  is : 

𝑔𝜇𝜈 = 𝜂𝜇𝜈  
𝜕𝛼 g𝛼𝛽   =    0  ⇒ Γ𝛼𝛽

𝜆  𝑃 = 0

  𝜕𝛼𝜕𝛽 g𝛼𝛽   ≠    0 ⇒ 𝜕𝛼Γ𝜇𝜈
𝜆 (𝑃) ≠ 0

 (2.3.6.16) 

We can define : 

𝑅𝜈𝜆𝛼
𝜇

= 𝜕𝜆Γ𝜇𝜈
𝜆 − 𝜕𝜈Γ𝜇𝛼

𝜆 (2.3.6.17) 

We define : 

𝑅𝜇𝜈𝛼𝛽 = 𝑔𝜈𝜆 𝑅𝜇𝛽𝛼
𝜆 (2.3.6.18) 

In local coordinate system (with  Γ𝛼𝛽
𝜆 (𝑝) = 0) : 

𝑅𝜇𝜈𝛼𝛽 = 𝑔𝜇𝜈 𝑅𝜈𝛼𝛽
𝜆  

= 𝑔𝜇𝜆 (𝜕𝛽Γ𝜈𝛼
𝜆 − 𝜕𝛼Γ𝜈𝛽

𝜆 ) 

= 𝑔𝜇𝜆  𝜕𝛽 (
1

2
𝑔𝜆𝜌 (𝜕𝜈g𝛼𝛽 + 𝜕𝛼 g𝜈𝜌 − 𝜕𝜌g𝜈𝛼 )) − 𝜕𝛼 (

1

2
𝑔𝜆𝜌 (𝜕𝜈g𝛽𝜌 + 𝜕𝛽 g𝜈𝜌 − 𝜕𝜌g𝜈𝛽 ))  

=
1

2
(𝜕𝛼𝜕𝜈g𝛼𝜇 + 𝜕𝛼𝜕𝜇 g𝜈𝛽 − 𝜕𝛽𝜕𝜇 g𝜈𝛼 − 𝜕𝛼𝜕𝜈g𝛽𝜇 )                                (2.3.6.19) 

We can note : 

𝜕𝛼𝑉𝜇 = 𝑉   ,𝛼
𝜇

 

𝜕𝛼g𝜇𝜈 = 𝑔𝜇𝜈 ,𝛼  

𝜕𝛼𝜕𝛽 g𝜇𝜈 = 𝑔𝜇𝜈 ,𝛼𝛽  

From (2.3.6.19)one may immediately establish the following symmetry properties at P: 

1 –Symmetry of indices: 

𝑅𝜇𝜈 ,𝛼𝛽 = 𝑅𝛼𝛽 ,𝜇𝜈                                    (2.3.6.20) 
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2 – Anti-symmetry in the first pair of indices: 

𝑅𝜇𝜈 ,𝛼𝛽 = −𝑅𝜈𝜇 ,𝛽𝛼                                    (2.3.6.21) 

3 – Anti-symmetry in the second pair of indices: 

𝑅𝜇𝜈 ,𝛼𝛽 = −𝑅𝜇𝜈 ,𝛽𝛼                                    (2.3.6.22) 

4 – the cyclic identity (First Bianchi identity) : 

𝑅𝜇𝜈𝛼𝛽 + 𝑅𝜇𝛼𝜈𝛽 + 𝑅𝜇𝛽𝜈𝛼 = 0                          (2.3.6.23) 

 

2.3.7 Ricci tensor 

 The Riemann tensor is a four-index tensor [47[]48] . For many purposes this is not the 

most useful object, but we can create new tensors by contractions of the Riemann tensor [49]  . 

One of them is the Ricci tensor, which iscalculated from the Riemann tensor by contraction 

on the first and third indices [50] . 

𝑅𝜇𝜈 = 𝑅𝜇𝜆𝜈
𝜆                           (2.3.7.1) 

Where: 

𝑅𝜇𝜈  is the Ricci tensor 

 

Properties of the Ricci tensor 

It follows from the symmetries of the Riemann tensor that𝑅𝜇𝜈  is symmetric. Indeed: 

𝑅𝜇𝜈 = 𝑅𝜈𝜇                                         (2.3.7.2) 

𝑅𝜈𝜇 = 𝑔𝛼𝛽 𝑅𝛼𝜈𝛽𝜇 = 𝑔𝛼𝛽 𝑅𝛽𝜇𝛼𝜈 = 𝑔𝛽𝛼 𝑅𝛽𝜇𝛼𝜈 = 𝑅𝜇𝛼𝜈
𝛼 = 𝑅𝜇𝜈               (2.3.7.3) 

From the definition of the Ricci tensor in terms of the Christoffel symbols , we have the 

following explicit expression 

𝑅𝜇𝜈 = 𝑅𝜇𝛼𝜈
𝛼 = 𝜕𝜈Γ𝜇𝜈

𝜆 − 𝜕𝜆Γ𝜇𝜈
𝜆 + Γ𝜇𝜆

𝜌
Γ𝜌𝜈

𝜆 − Γ𝜇𝜈
𝜌

Γ𝜌𝜆
𝜆  2.3.7.4  

 

Curvature Scalar  

There is one more contraction of the Riemann tensor we can perform, namely on the Ricci 

tensor itself :  

𝑅 = 𝑔𝜇𝜈 𝑅𝜇𝜈 = 𝑔𝜇𝜈 𝑅𝜇𝜈 = 𝛿𝜈
𝜇
𝑅𝜇

𝜈 = 𝑅𝜇
𝜇

= 𝑔𝛼𝛽 𝑔𝜇𝜈 𝑅𝛼𝜇𝜈𝛽  2.3.7.5  
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Where : 

𝑅 is curvature scalar ( or the Ricci scalar) 

𝑅 = 𝑔𝜇𝜆 𝑅𝜇𝜌𝜆                                                                        
𝜌  2.3.7.6  

 

2.3.8 Einstein tensor 

 The covariant derivatives of the Ricci tensor and the curvature scalar obey a 

particularly important relation [51[]52] , which will be central to our development of the field 

equations of general relativity [53]  . 

We define the Bianchi identities : 

𝐷𝜌𝑅𝛽𝜇𝜈
𝛼 + 𝐷𝜇 𝑅𝛽𝜈𝜌

𝛼 + 𝐷𝜈𝑅𝛽𝜌𝜇
𝛼 = 0                           2.3.8.1  

By contracting on the indices α and μ and using the definition of the Ricci tensor (𝑅𝛼𝛽 =

𝑅𝛼𝜆𝛽
𝜆 ) , we can write  2.3.8.1  : 

𝐷𝜌𝑅𝛽𝜈 + 𝐷𝜇 𝑅𝛽𝜈𝜌
𝛼 + 𝐷𝜈𝑅𝛽𝜌𝜇

𝛼 = 0                            2.3.8.2  

We use the Anti-symmetry Property 

𝐷𝜇𝑅𝛽𝜌𝜇
𝜇

= −𝐷𝜈𝑅𝛽𝜇𝜌
𝜇

= −𝐷𝜈𝑅𝛽𝜌  2.3.8.3  

So we write  2.3.8.2  : 

𝐷𝜌𝑅𝛽𝜈 + 𝐷𝜇𝑅𝛽𝜈𝜌
𝛼 − 𝐷𝜈𝑅𝛽𝜌 = 0                             2.3.8.4  

By contracting this with 𝑔𝛽𝜈 we obtain : 

𝐷𝜌𝑔𝛽𝜈 𝑅𝛽𝜈 + 𝐷𝜇 𝑔𝛽𝜈 𝑅𝛽𝜈𝜌
𝜇

− 𝐷𝜈𝑔𝛽𝜈 𝑅𝛽𝜌 = 0                2.3.8.5  

In another way , we have : 

𝑔𝛽𝜈 𝑅𝛽𝜈𝜌
𝜇

= 𝑔𝛽𝜈 𝑔𝜇𝜍 𝑅𝜍𝛽𝜈𝜌 = −𝑔𝛽𝜈 𝑔𝜇𝜍 𝑅𝛽𝜍𝜈𝜌 = −𝑔𝛽𝜈 𝑔𝜇𝜍 𝑅𝜈𝛽𝜍𝜌 = −𝑔𝛽𝜈 𝑔𝜇𝜍 𝑅𝜈𝛽𝜍𝜌

= −𝑔𝜇𝜍 𝑔𝜈𝛽 𝑅𝜈𝛽𝜍𝜌 = −𝑔𝜇𝜍 𝑅𝛽𝜍𝜌
𝛽

= −𝑔𝜇𝜍 𝑅𝜍𝜌  

So  2.3.8.5  , it will be : 

𝐷𝜌𝑅 − 𝑔𝜍𝜇 𝐷𝜇𝑅𝜍𝜌 − 𝑔𝛽𝜈 𝐷𝜈𝑅𝛽𝜌 = 0                          2.3.8.6  

𝐷𝜌𝑅 − 𝑔𝛽𝜈𝐷𝜈𝑅𝛽𝜌 − 𝑔𝛽𝜈 𝐷𝜈𝑅𝛽𝜌 = 0                          2.3.8.7  

𝐷𝜌𝑅 − 2𝑔𝛽𝜇 𝐷𝜈𝑅𝛽𝜌 = 0                                         2.3.8.8  
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By multiplying  2.3.8.8  in −
1

2
 , we use the symmetry𝑅𝛽𝜌 = 𝑅𝜌𝛽  , and we change indices of 

notation 𝜈         𝜇 and 𝜌         𝛼 , we can write : 

𝑔𝛽𝜇 𝐷𝜈𝑅𝛽𝜌 −
1

2
𝐷𝛼𝑅 = 0                                           2.3.8.9  

In another way , we have : 

𝐷𝛼𝑅 = 𝛿𝛼
𝜇
𝐷𝜇𝑅 = 𝑔𝛼𝛽 𝑔𝛽𝜇 𝐷𝜇𝑅 = 𝑔𝛼𝛽 𝐷𝛽𝑅 = 𝐷𝛽 (𝑔𝛼𝛽  𝑅) 

So  2.3.8.9  , it will be : 

𝐷𝛽𝑅𝛽𝛼 −
1

2
𝐷𝛽 (𝑔𝛼𝛽 𝑅) = 0                                    2.3.8.10  

𝐷𝛽  𝑅𝛽𝛼 −
1

2
𝑅𝑔𝛼𝛽  = 0                                    2.3.8.11  

𝐷𝛽𝐺𝛼𝛽 = 0                                                   2.3.8.11  

With : 

𝐺𝛼𝛽  is the Einstein tensor 

𝐺𝛼𝛽 = 𝑅𝛽𝛼 −
1

2
𝑅𝑔𝛼𝛽  2.3.8.12  

 

2.3.9 Stress – energy tensor 

The sources of any gravitational field (matter and energy) is represented in relativity 

by a type (0, 2) symmetric tensor called the energy–momentum tensor . It is a tensor quantity 

in physics that describes the density and flux of energy and momentum in spacetime, 

generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and 

non-gravitational force fields [57]  .  

The stress–energy tensor is the source of the gravitational field in the Einstein field 

equations of general relativity, just as mass density is the source of such a field in Newtonian 

gravity . the stress–energy tensor is symmetric [58]  . 

we note that in the case of a region of space that contains electric and magnetic fields 

but no matter , the components of the energy–momentum tensor are [54[]55[]56] : 

𝑇𝜇ν =
1

𝜇0
 𝐹   𝜍

𝜇
𝐹𝜈𝜍 −

1

4
𝑔𝜇𝜈 𝐹𝜌𝜍 𝐹𝜌𝜍  (2.3.9.1) 

Where :  

𝐹𝜇𝜈  is the electromagnetic field tensor , 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜈  
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Another simple example of an energy–momentum tensor is that of an perfect fluid . 

the components of the energy–momentum tensor of an perfect fluid are : 

𝑇𝜇ν =  𝜌 +
𝑝

𝑐2
 𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 (2.3.9.2) 

We put :  

c =1 

we can write : 

𝑇𝜇ν =  𝜌 + 𝑝 𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 (2.3.9.2) 

Where : 

ρ is  the mass–energy density 

P is the hydrostatic pressure 

𝑢𝜇  is the fluid four velocity , 𝑢𝜇 =
𝜕𝜉𝜇

𝜕𝑠
 

the energy–momentum tensor of the perfect fluid is represented by the matrix : 

𝑇𝜇ν =  

𝜌 0
0 𝑝

0 0
0 0

0 0
0 0

𝑝 0
0 𝑝

 (2.3.9.3) 

The next thing to note is that : 

𝑇𝜈
𝜇
𝑢𝜈 =   𝜌 + 𝑝 𝑢𝜇𝑢𝜈 + 𝑝𝛿𝜈

𝜇
 𝑢𝜈  

=  𝜌 + 𝑝 𝑢𝜇 + 𝑝𝑢𝜇  

= 𝜌𝑢𝜇 (2.3.9.4) 

Also : 

𝑇𝜇𝜈 𝑢𝜇𝑢𝜈 = 𝜌(2.3.9.5) 

An important general property of the energy–momentum tensor is that its covariant 

divergence is zero ; we write : 

𝜕𝜇𝑇𝜇ν = 0(2.3.9.6) 

 

 

 

 

https://en.wikipedia.org/wiki/Four_velocity
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2.4 Einstein field equation  

General relativity explains gravity as the curvature of spacetime. It's all about 

geometry . The basic equation of general relativity is called The Einstein field equations 

(EFE) [59] . 

The Einstein field equations describe the fundamental interaction  of  gravitation as a 

result of  spacetime being  curved  by  mass  and  energy . First published by Einstein in 1915 

 as a tensor equation . The EFE describe how mass and energy (as represented in the stress–

energy tensor) are related to the curvature of spacetime (as represented in the Einstein 

tensor) [60]  .  

Similar to the way that electromagnetic fields are determined using  charges 

 and currents via Maxwell's equations, the EFE are used to determine the spacetime 

geometry resulting from the presence of mass–energy and linear momentum, that is, they 

determine the metric tensor of spacetime for a given arrangement of stress–energy in the 

spacetime [61]  .  

The relationship between the metric tensor and the Einstein tensor allows the EFE to 

be written as a set of non-linear partial differential equations when used in this way [62]  .  

The Einstein field equations (EFE) may be written in the form : 

𝑅μν −
1

2
𝑔μν 𝑅 + Λ𝑔μν =

8𝜋𝐺

𝑐4
𝑇μν (2.4.1) 

Where : 

𝑅μν  is the Ricci curvature tensor 

R is the scalar curvature 

𝑔μν  is the metric tensor 

Λ is the cosmological constant 

G isthe gravitational constant , and equal to 6.67 × 10
−11

N.m
2
.Kg

−2
 

c is the speed of light in vacuum , and equal  

𝑇μν  is the stress–energy tensor 

𝑘 =
8𝜋𝐺

𝑐4
 is the Einstein constant 

The solutions of the EFE are metric tensors . The EFE being non-linear differential 

equations for the metric, are often difficult to solve . Metric tensors resulting from cases 

where the resultant differential equations can be solved exactly for a physically reasonable 

distribution of energy–momentum are called exact solutions. 

https://en.wikipedia.org/wiki/Fundamental_interaction
https://en.wikipedia.org/wiki/Gravitation
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Curvature
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Tensor_equation
https://en.wikipedia.org/wiki/Stress%E2%80%93energy_tensor
https://en.wikipedia.org/wiki/Stress%E2%80%93energy_tensor
https://en.wikipedia.org/wiki/Einstein_tensor
https://en.wikipedia.org/wiki/Einstein_tensor
https://en.wikipedia.org/wiki/Einstein_tensor
https://en.wikipedia.org/wiki/Electromagnetic_field
https://en.wikipedia.org/wiki/Charge_(physics)
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Spacetime_geometry
https://en.wikipedia.org/wiki/Spacetime_geometry
https://en.wikipedia.org/wiki/Spacetime_geometry
https://en.wikipedia.org/wiki/Metric_tensor_(general_relativity)
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Ricci_curvature_tensor
https://en.wikipedia.org/wiki/Scalar_curvature
https://en.wikipedia.org/wiki/Metric_tensor_(general_relativity)
https://en.wikipedia.org/wiki/Cosmological_constant
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Stress%E2%80%93energy_tensor
https://en.wikipedia.org/wiki/Exact_solutions
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Special classes of exact solutions are most often studied as they model many 

gravitational phenomena, such as rotating black holes and the expanding universe . Examples 

of important exact solutions include the Schwarzschild solution and the Friedman-Lemaître-

Robertson-Walker solution. These equations are used to study phenomena such 

as gravitational waves. 

 

 

figure 2.1 Massive Bodies Warp Spacetime [63]  

 

2.4.1 Derivation of the equation 

 We begin with the realization that we would like to find an equation which supersedes 

the Poisson equation for the Newtonian potential [65[ ]64]  : 

∇2ϕ = 4𝜋𝐺𝜌(2.4.1.1) 

Where : 

∇2 is the Laplacian  

ϕ = −
𝐺𝑀

𝑟
 is the gravitational potential 

𝜌  is the mass density 

 The tensor generalization of the mass density is the energy-momentum tensor 𝑇μν . The 

gravitational potential should get replaced by the metric tensor 𝑔μν  . It is thus reasonable to 

guess that the new equation will have 𝑇μν  set proportional to some tensor which is second-

order in derivatives of the metric.So we write : 

∇2𝑔μν = 8𝜋𝐺 𝑇μν (2.4.1.2) 

 We know that  the Riemann tensor is  a second derivatives of the metric . It doesn‘t 

have the right number of indices, but we can contract it to form the Ricci tensor . and we 

write: 

https://en.wikipedia.org/wiki/Exact_solutions_in_general_relativity
https://en.wikipedia.org/wiki/Rotating_black_hole
https://en.wikipedia.org/wiki/Metric_expansion_of_space
https://en.wikipedia.org/wiki/Schwarzschild_solution
https://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker
https://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker
https://en.wikipedia.org/wiki/Gravitational_waves
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𝐺μν = 8𝜋𝐺 𝑇μν (2.4.1.2) 

the statement of energy-momentum conservation in curved spacetime should be : 

∇𝜇𝑇μν = 0(2.4.1.3) 

which would then imply : 

∇𝜇𝐺μν = 0(2.4.1.3) 

We know that the Einstein tensor is : 

𝐺μν = 𝑅μν −
1

2
𝑅𝑔μν (2.4.1.4) 

from (2.4.1.2) and (2.4.1.4) , we can write : 

 𝑅μν −
1

2
𝑅𝑔μν = 8𝜋𝐺 𝑇μν (2.4.1.5) 

We put : 

𝑘 =
8𝜋𝐺

𝑐4
(2.4.1.6) 

from (2.4.1.5) and (2.4.1.6) , we write the Einstein field equation like this : 

 𝑅μν −
1

2
𝑅𝑔μν = 𝑘 𝑇μν (2.4.1.7) 

 

2.4.2 The cosmological constant 

 in 1917 , Albert Einstein added the cosmological constant Λ to his theory of general 

relativity [66 ]  .  

 Einstein included the cosmological constant as a term in his field equations for general 

relativity because he was dissatisfied that otherwise his equations did not allow  for a static 

universe gravity would cause a universe that was initially at dynamic equilibrium to contract . 

To counteract this possibility, Einstein added the cosmological constant [67]  .  

This effort was unsuccessful because: 

 the universe described by this theory was unstable 

 observations by Edwin Hubble confirmed that our universe is expanding. 

So Einstein abandoned the cosmological constant , and calling it the biggest blunder he ever 

made in his life [68]  . 

A simple explanation of this phenomenon is provided by the non-vanishing of the 

cosmological constant in the Einstein equations [69]  . 

Λ = 0 , = 0 : Flat space 

https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Einstein_field_equations
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Static_universe
https://en.wikipedia.org/wiki/Static_universe
https://en.wikipedia.org/wiki/Static_universe
https://en.wikipedia.org/wiki/Edwin_Hubble
https://en.wikipedia.org/wiki/Expanding_universe
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Λ > 0 : Universe contraction 

Λ > 0 : Universe expansion 

 

2.5Schwarzchild metric  

 The Schwarzschild solution is the unique static, spherically symmetric vacuum 

spacetime and describes the field outside a spherically symmetric body. It is the most 

important exact solution of Einstein‘s field equations [70]  . 

 It was found in 1916 by the German physicist Karl Schwarzschild while he was 

serving on the Russian front during the First World War [71]  . Schwarzschild sent his solution 

to Einstein in latter and concluded the letter by writing : >>As you see , the war treated me 

kindly enough, in spite of the heavy gunfire , to allow me to in the land of your ideas <<[72]  . 

 

2.5.1 Deriving the Schwarzschild solution  

Einstein's equation should be exactly valid . Therefore it is interesting to search for exact 

solutions . The simplest and most important one is empty space surrounding a static star or 

planet. There, one has 𝑇𝜇𝜈 = 0 , so the Einstein field equations become [73][74][75][76]  : 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈 𝑅 = 0                                          (2.5.1.1) 

Then there is spherical symmetry. Take spherical coordinates : 

𝑥0  , 𝑥0  , 𝑥0  , 𝑥0 = (𝑡 , 𝑟 , 𝜃 , 𝜙) 

we can express the Minkowski metric in spherical coordinates : 

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2sin2 𝜃 𝑑𝜙2                       (2.5.1.2) 

We can re-write (2.5.1.2) as the function as : 

𝑑𝑠2 = 𝐴 𝑐2𝑑𝑡2 − 𝐵 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃 𝑑𝜙2               (2.5.1.3) 

Where : 

A and B  are functions of the radial coordinate r alone 

In order to correspond to the metric at large r , we also need to preserve the signature . This 

can be done by writing the coefficient functions as exponentials , which are guaranteed to be 

positive functions . That is, we set 𝐴 = 𝑒2𝐴 and = 𝑒2𝐵 . This gives us the metric that is used 

to obtain the Schwarzschild solution : 

𝑑𝑠2 = 𝑒2𝐴𝑐2𝑑𝑡2 − 𝑒2𝐵  𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2sin2 𝜃 𝑑𝜙2          (2.5.1.4) 
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We know that ,  metric of the unit sphere is : 

dΩ2 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜙20                                (2.5.1.5) 

from (2.5.1.5) , the metric in (3.2.1.4) will be : 

𝑑𝑠2 = 𝑒2𝐴𝑐2𝑑𝑡2 − 𝑒2𝐵  𝑑𝑟2 − 𝑟2dΩ2                    (2.5.1.6) 

We define the metric tensor 𝑔𝜇𝜈  : 

𝑔𝜇𝜈 =  

𝑔00 0
0 𝑔11

0 0
0 0

0 0
0 0

𝑔22 0
0 𝑔33

                                   (2.5.1.7) 

From (2.5.1.7) , we can write (3.2.1.4) like this : 

𝑔𝜇𝜈 =  

𝑒2𝐴 0
0 −𝑒2𝐵

0             0
0             0

0      0
0     0

−𝑟2       0
0 − 𝑟2sin2 𝜃

                          (2.5.1.8) 

The inverse metric 𝑔𝜇𝜈  is : 

𝑔𝜇𝜈 =

 

 
 
 

𝑒−2𝐴 0
0 −𝑒−2𝐵

0 0
0 0

0 0
0 0

−1

𝑟2
0

0
−1

𝑟2sin2 𝜃 

 
 
 

                         (2.5.1.9) 

To determine the values of 𝑒2𝐴 and 𝑒−2𝐵 , first we will have to calculate the following 

quantities : 

- Non-zero Christoffel symbols : 

we re-write the Christoffel symbols(2.3.4.24) : 

Γ𝜇𝜈
𝜆 =

1

2
𝑔𝑘𝜆 (𝜕𝜈𝑔𝜇𝑘 + 𝜕𝜇𝑔𝑘𝜈 − 𝜕𝑘𝑔𝜇𝜈 ) 

As an example we calculate Γ 00
1  , we find : 

Γ 00
1 =

1

2
𝑔11(𝜕0𝑔10 + 𝜕0𝑔01 − 𝜕1𝑔00)                      (2.5.1.10) 

The final result of all calculations of this type is the following : 

Γ 10
0 = Γ 01

0 = 𝐴′Γ 00
1 = 𝐴′𝑒2(𝐴−𝐵) 

Γ 11
1 = 𝐵′Γ 22

1 = −𝑟𝑒−2𝐵 

Γ 33
1 = −𝑒−2𝐵  𝑟 sin2(𝜃) Γ 12

2 = Γ 21
2 =

1

𝑟
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Γ 33
2 = − cos(𝜃) sin(𝜃) Γ 13

3 = Γ 31
3 =

1

𝑟
 

Γ 23
3 = Γ 32

3 =
1

tan(𝜃)
= cot(𝜃) 

Where : 

𝜈′ =
𝑑𝜈

𝑑𝑟
   ,   𝜇′ =

𝑑𝜇

𝑑𝑟
 

- Ricci tensor : 

we re-write Ricci tensor  2.3.7.4 :  

𝑅𝜇𝜈 = 𝜕𝜈Γ𝜇𝜈
𝜆 − 𝜕𝜆Γ𝜇𝜈

𝜆 + Γ𝜇𝜆
𝜌

Γ𝜌𝜈
𝜆 − Γ𝜇𝜈

𝜌
Γ𝜌𝜆

𝜆  

As an example we calculate 𝑅00  , we find : 

𝑅00 = 𝜕0Γ0𝜆
𝜆 − 𝜕𝜆Γ00

𝜆 + Γ0𝜆
𝜌

Γ𝜌0
𝜆 − Γ00

𝜌
Γ𝜌𝜆

𝜆                  (2.5.1.11) 

The final result of all calculations of this type is the following : 

𝑅00 = −𝑒2(𝐴−𝐵)  𝐴′′ + (𝐴′)2 − 𝐴′𝐵′ +
2𝐴′

𝑟
               (2.5.1.12) 

𝑅11 = −𝑒2(𝐴−𝐵)  𝐴′′ + (𝐴′)2 − 𝐴′𝐵′ +
2𝐵′

𝑟
               (2.5.1.13) 

𝑅22 = −𝑒2𝐵 1 + 𝑟(𝐴′ − 𝐵′) − 1                                 (2.5.1.14) 

𝑅33 = sin2(𝜃)  𝑒2𝐵 1 + 𝑟(𝐴′ − 𝐵′) − 1                    (2.5.1.15) 

- curvature scalar : 

we re-write curvature scalar 2.3.7.6  : 

𝑅 = 𝑔𝜇𝜈 𝑅𝜇𝜈  

The final result of calculation of this type is the following : 

𝑅 = 𝑔00𝑅00 + 𝑔11𝑅11 + 𝑔22𝑅22 + 𝑔33𝑅33                    (2.5.1.16) 

𝑅 = −2𝑒−2𝐵  𝐴′′ + (𝐴′)2 − 𝐴′𝐵′ +
2

𝑟
(𝐴′ − 𝐵′) +

1

𝑟2
 

2

𝑟2
         (2.5.1.17) 

- Einstein tensor : 

Combining the results for the curvature scalar and the components of the Ricci tensor .we re-

write Einstein tensor  2.3.8.12  : 

𝐺𝜇𝜈 =  𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈  
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As an example we calculate 𝑅00  , we find : 

𝐺00 =  𝑅00 −
1

2
𝑅𝑔00                                    (2.5.1.18) 

The final result of all calculations of this type is the following : 

𝐺00 = −
2𝑒2(𝐴−𝐵)

r
𝐵′ +

𝑒2(𝐴−𝐵)

𝑟2
−

𝑒2𝐴

𝑟2
                                   (2.5.1.19) 

𝐺11 = −
2𝐴′

𝑟
+

𝑒2𝐵

𝑟2
−

1

𝑟2
                                                          (2.5.1.20) 

𝐺22 = −𝑟2𝑒−2𝐵  𝐴′′ + (𝐴′)2 +
(𝐴′ − 𝐵′)

𝑟
− 𝐴′𝐵′            (2.5.1.21) 

𝐺33 = sin2(𝜃) 𝐺22                                                                      (2.5.1.22) 

Now , the vacuum field equations demand that even these Einstein tensor components should 

each be zero in the space outside the spherically symmetric body . One consequence of this is 

that : 

𝑒−2𝐴𝐺00 + 𝑒−2𝐵𝐺11 = 0                                          (2.5.1.23) 

𝑒−2𝐴  −
𝑒2(𝐴−𝐵)

r
𝐵′ +

𝑒2(𝐴−𝐵)

𝑟2
−

𝑒2𝐴

𝑟2
 + 𝑒−2𝐵  −

2𝐴′

𝑟
+

𝑒2𝐵

𝑟2
−

1

𝑟2
 = 0          (2.5.1.24) 

−
2𝑒−2𝐵

r
𝐵′ +

𝑒−2𝐵

𝑟2
−

1

𝑟2
−

2𝑒−2𝐵

𝑟
𝐴′ +

1

𝑟2
−

𝑒−2𝐵

𝑟2
= 0                        (2.5.1.25) 

This impliesthat : 

−
2𝑒−2𝐵

r
𝐵′ −

2𝑒−2𝐵

𝑟
𝐴′ = 0                             (2.5.1.26) 

2𝑒−2𝐵

r
(𝐴′ + 𝐵′) = 0                                     (2.5.1.27) 

Implyingthat : 

𝐴′ + 𝐵′ = 0                                                (2.5.1.28) 

Which can be integrated to give : 

𝐴 + 𝐵 = C                                                  (2.5.1.29) 

The equation 𝐺00 = 0 can be rewritten as : 

1

𝑟2

𝑑 𝑟 1 − 𝑒−2𝐵  

𝑑𝑟
= 0                                      (2.5.1.30) 

We can ignoring 
1

𝑟2
 , and re-write (2.5.1.30) : 
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𝑑 𝑟 − 𝑟𝑒−2𝐵 

𝑑𝑟
= 0                                      (2.5.1.31) 

𝑑𝑟

𝑑𝑟
−

𝑑𝑟𝑒−2𝐵

𝑑𝑟
= 0                                      (2.5.1.32) 

𝑑𝑟𝑒−2𝐵

𝑑𝑟
= 1                                             (2.5.1.33) 

Integrating this equation gives : 

𝑟𝑒−2𝐵 = 1(𝑟 + 𝐾)                                        (2.5.1.34) 

𝑒−2𝐵 = 1 +
𝐾

𝑟
(2.5.1.35) 

Where : 

K is the integration constant 

Since 𝑒2𝐴 = 𝑒−2𝐵, we can now identify the explicit form that must be takenby the two 

exponential functions in the line element of Equation (3.2.1.4) if the corresponding metric is 

to satisfy the vacuum field equations. Explicitly : 

𝑒2𝐴 = 1 +
𝐾

𝑟
(2.5.1.36) 

𝑒2𝐵 =
1

1 +
𝐾

𝑟

(2.5.1.37) 

We define the Newtonian limit : 

𝑔00 = 1 +
2𝜙

𝑐2
(2.5.1.38) 

Where :  

ϕ = −
𝐺𝑀

𝑟
 is the gravitational potential 

It follows that in the Newtonian limit : 

𝑔00 = 1 −
2𝐺𝑀

 𝑐2 𝑟
(2.5.1.39) 

comparing this(2.5.1.39) result  with(2.5.1.36) , we find : 

𝐾 = −
2𝐺𝑀

𝑐2
(2.5.1.40) 

So we re-write (2.5.1.36) and (2.5.1.37) : 

𝑒2𝐴 = 1 −
2𝐺𝑀

𝑐2 𝑟
(2.5.1.41) 
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𝑒2𝐵 =
1

1 −
2𝐺𝑀

𝑐2  𝑟

(2.5.1.42) 

We can now represent the metric tensor of the Schwarzschild solution in the diagonal matrix 

form : 

𝑔𝜇𝜈 =

 

 
 
 
 

1 −
2𝐺𝑀

𝑐2 𝑟
0

0
1

1 −
2𝐺𝑀

𝑐2  𝑟

0 0
0 0

0            0
0           0

−𝑟2 0
0 − 𝑟2sin2 𝜃 

 
 
 
 

                         (2.5.1.43) 

This shows that the line element of the Schwarzschild solution can be written as : 

𝑑𝑠2 =  1 −
2𝐺𝑀

𝑐2 𝑟
 𝑐2𝑑𝑡2 −  

1

1 −
2𝐺𝑀

𝑐2  𝑟

  𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2sin2 𝜃 𝑑𝜙2         (2.5.1.44) 

We put : 

𝑅𝑠 =
2𝐺𝑀

𝑐2
                                                 (2.5.1.45) 

Where : 

𝑅𝑠is the Schwarzchild radius 

From (2.5.1.45) , we can re-write (2.5.1.44) : 

𝑑𝑠2 =  1 −
𝑅𝑠

 𝑟
 𝑐2𝑑𝑡2 −  

1

1 −
𝑅𝑠

𝑟

  𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2sin2 𝜃 𝑑𝜙2        (3.2.1.46) 

 

 

2.5.2 Properties of the Schwarzschild solution 

 The Schwarzschild metric is a static (and therefore stationary) , spherically symmetric 

solution of the Einstein field equations in the empty region exterior to any distribution of 

energy and momentum characterized by mass M that produces purely isotropic effects in that 

region . The solution is asymptotically flat, approaching the Minkowski metric in spherical 

coordinates for sufficiently large values of r. The solution has a coordinate singularity at the 

Schwarzschild radius 𝑟 = 𝑅𝑠 =
2𝐺𝑀

𝑐2
and a gravitational singularity at r = 0 , though neither of 

these singularities is within the region described by the solution for normal ‗star-like‘ bodies 

[77]  . 
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 Both theoretically and experimentally the Schwarzchild Solution can be studied 

through the orbits of test particles and light rays . Observations of the small effects predicted 

by general relativity on the orbits of planets and trajectories of light rays in the solar system 

are important tests of the theory [78]  . 

 

figure 3.1 exterior Schwarzschild solution [79]  

 

2.5   Conclusion 

 The aim of this chapter is to introduce the core ideas of general relativity (Einstein‘s 

relativistic theory of gravity) .  firstly , we star with a little comparisonbetween the 

Gravitational of Newton and the Gravitational of Einstein , then wego on to examine the basic 

Mathematical formalism ( the tensor analysis ) of the theory , also we present the Einstein 

equation field with the cosmological constant as a new explanation of gravitation , and finally 

extend the Schwarzchild solution like an exact solution of the Einstein equation field . 
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Chapter 03 

Cosmology 

 

>>Not only is the Universe stranger than we 

think , it is stranger than we can think [1]<<  

Werner Heisenberg 

 

3.1   Introduction   

 >> As Copernicus made the Earth go round the Sun so Friedmann made the Universe 

expand <<[2]  . That how Alexander A. Friedmann described our vision to cosmology . 

 Cosmology is the study of the dynamics of the entire universe [3]  ,  which give the 

ability to study global properties such as the structure and temporal evolution of the universe 

on the largest scale [4]  . 

 The mathematical study of cosmology turns out to be relatively simple for two reasons 

. The first is that gravity dominates on large scales, so we don‘t need to consider the local 

complexity that arises from the nuclear and electromagnetic forces . The second reason is that 

on large enough scales , the universe is to good approximation homogeneous and isotropic .  

 Cosmology as a science originated with the Copernican principle , which implies that 

celestial bodies obey identical physical laws to those on Earth , and Newtonian mechanics , 

which first allowed us to understand those physical laws . Cosmology – as it is now 

understood –  began with the development in 1915 of Albert Einstein's general theory of 

relativity [5] , followed by major observational discoveries in the 1920s: first, Edwin Hubble 

discovered that the universe contains a huge number of external galaxies beyond our own 

Milky Way and  showed that the universe is expanding [6] . 

 Much of the subject‘s recent success has been the result of developments in our 

understanding of the physics of elementary particles and rapid progress in observational 

astronomy [7]  . 

 Due to the difficulty of performing cosmological experiments and making precise 

measurements at large distances , many of the most basic questions about the universe are still 

unanswered today : What actually happened at (or even before) what is usually called the Big 

Bang ? , is our universe spatially finite or infinite ? , Will our universe keep expanding 

forever or will it re-collapse ? , What is Dark Matter ? , Is Dark Energy, responsible for what 

appears to be a current phase of accelerated expansion of the universe, a cosmological 

constant ? 

https://en.wikiquote.org/wiki/P._A._M._Dirac
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3.1.1 The cosmological principle 

 Copernicus told us that the Earth is not the center of the solar system . This idea can 

be generalized to basically say that the Earth is not the center of the universe . We call this 

statement the cosmological principle . 

 The cosmological principle is the name given to a powerful simplifying assumption 

that makes the formulation of relativistic cosmological models tractable [8]  . The principle can 

be stated as follows : on a large enough scale the universe is spatially homogeneous and 

isotropic [9]  .By homogeneity we mean that the properties of the universe are the same at 

every point in space and by isotropy we mean that being in a given point, in every direction 

we look at, the properties of the universe look the same [10]  .  

 The validity of the cosmological principle on the largest scales is manifested in a 

number of different observations, such as  number counts of galaxies , and  observations of 

diffuse 𝑋-ray and 𝛾-ray backgrounds , and in the 2.7° 𝐾microwave background radiation [11]  . 

 

3.2   Robertson – Walker metric 

 The most complete description of the geometrical properties of the Universe is 

provided by Einstein's general theory of relativity. In General Relativity , the fundamental 

quantity is the metric which describes the geometry of spacetime . 

  Around 1935 , Howard Robertson and Arthur Walker showed , independently , 

that a single spacetime metric underlies all relativistic models that are homogeneous and 

isotropic [12]  . That metric is now known as the Robertson–Walker metric [13]  . 

 The Robertson–Walker metric is an exact solution of Einstein's field equations of 

general relativity . It describes a homogeneous , isotropic expanding or contracting universe 

that is path connected , but not necessarily simply connected [14] . 

 We can write the Robertson–Walker metric in its most common form [15]  : 

𝑑𝑠2 = 𝑐2(𝑑𝑡)2 − 𝑎2 𝑡  
(𝑑𝑟)2

1 − 𝑘𝑟2
+ 𝑟2(𝑑𝜃)2 + 𝑟2 sin2 𝜃 (𝑑𝜙)2 (3.2.1) 

Where : 

𝑎 𝑡  is the scale factor 

𝑘 is a constant representing the curvature of the space 

𝑘 = 0 the spacetime is flat 

𝑘 = −1 the spacetime is positive curvature 

𝑘 = +1 the spacetime is positive curvature 
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3.3   Friedmann equation  

 The Friedmann equations are a The Einstein equation with the Robertson–Walker 

metric and ideal fluid source that govern the expansion of space in homogeneous and 

isotropic models of the universe [16] . They were first derived by Alexander Friedmann in 1922 

from Einstein's field equations of gravitation [17]  . 

 There are two independent Friedmann equations for modeling a homogeneous, 

isotropic universe . The first is ( with 𝑐 = 1 ) [18]  : 

𝑎 2 + 𝑘

𝑎2
=

8𝜋𝐺𝜌

3
+

Λ

3
                                       (3.3.1) 

The second is : 

𝑎 

𝑎
= −

4𝜋𝐺

3
 𝜌 + 3𝑝 +

Λ

3
                                 (3.3.2) 

Where : 

𝑎 is the scale factor 

𝐻 =
𝑎 

𝑎
 is the Hubble parameter 

G isthe gravitational constant , and equal to 6.67 × 10
−11

N.m
2
.Kg

−2
 

𝑘 is a constant representing the curvature of the space 

Λ is the cosmological constant 

ρ is  the mass–energy density 

P is the hydrostatic pressure 

 

Using the first equation , the second equation can be re-expressed as : 

𝜌 = −3𝐻(𝜌 + 𝑝)                                                      (3.3.3)  

Some cosmologists call the second of these two equations the Friedmann acceleration 

equation and reserve the term Friedmann equation for only the first equation [19]  . 

 

3.3.1 The Density parameter 

 Whether or not the universe is open or closed is determined by the density of stuff in 

the universe.  In other words, is there enough matter, and therefore enough gravity, to slow 

down the expansion enough so that it will stop and reverse ?  If so, we would live in a closed 

universe. The density required to have a closed universe is called the critical density [20]  . we 

define it as:  

https://en.wikipedia.org/wiki/Cosmological_constant
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𝜌𝑐 =
3𝐻2

8𝜋𝐺
                                           (3.3.1.1) 

Where : 

𝜌𝑐 = 1.8788 . 10−262 𝑘𝑔 𝑚3  

The density parameter is then defined as : 

Ω =
8𝜋𝐺𝜌

3𝐻2
                                         (3.3.1.2) 

The density used here is obtained by adding contributions from all possible sources (matter, 

radiation, vacuum) . 

Ω < 1 : the universe is open 

Ω = 0 : the universe is flat 

Ω > 1 : the universe is close 

 

figure 3.1  The evolution of universe in the Friedmann models [21]  

 

3.4   Hubble law 

 Hubble‘s twin discoveries ( that there are many galaxies in the universe –not just the 

Milky Way– and that all of those galaxies are traveling out ward , expanding the universe ) 

rank as the most important astronomical discoveries of the twentieth century [22]  . These 

discoveries radically changed science‘s view of the cosmos and of our place in it . Hubble‘s 

work also represents the first accurate assessment of the movement of stars and galaxies .  

 Hubble's law is considered the first observational basis for the expansion of the 

universe and led directly to the discovery of the Big Bang and the origin of the universe as 

well as to a new concept of time and of the future of the universe [ 23]  . The motion of 

astronomical objects due solely to this expansion is known as the Hubble flow [24]  . 
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 We can write the Hubble law [25]  : 

𝑣 = 𝐻0 . 𝐷                                                       (3.4.1) 

Where : 

𝑣 is the recession speed of a given galaxy , typically expressed in (𝐾𝑚/𝑠) 

𝐻0 is the Hubble constant ,  𝐻0 = 73.52 ± 1.62 
Km /s

Mpc
[26]  

𝐷 is the distance from the galaxy to the observer , measured in mega parsecs (𝑀𝑝𝑐) 

 

figure 3.2  Scatter plot of fit of redshift to Hubble's law [27]  

 

3.4.1 the age of the universe 

 The Hubble constant has units of inverse time called the Hubble time . It is simply 

defined as the inverse of the Hubble constant , and write [28]  : 

𝑡𝐻 =
1

𝐻0
=

1

73.52 
𝐾𝑚

𝑠
/𝑀𝑝𝑐

                                     (3.4.1.1) 

Where : 

𝑡𝐻 is the Hubble time , measured in second (s) 

From the Hubble time , we can know the age of universe , firstly we define : 

1 𝑝𝑐 =  3.0857 . 1016  𝑚 =  3.0857 . 1013  𝑘𝑚 

1 𝑦𝑒𝑎𝑟 =  31 556 926 𝑠 
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We re-write  3.4.1.1  : 

𝑡𝐻 =
1

𝐻0
=

1

73.52 
Km

s

× 3,0857 . 1019𝑘𝑚                       (3.4.1.2) 

𝑡𝐻 = 4,197089227 . 1017  𝑠                                             (3.4.1.3) 

𝑡𝐻 = 13,3 . 109 𝑦𝑒𝑎𝑟                                                             (3.4.1.4) 

 

3.5   Big bang theory 

  Modern cosmology is dominated by the Big Bang theory , which brings together 

observational astronomy and particle physics [29]  . The Big Bang theory is the prevailing 

cosmological model for the universe from the earliest known periods through its subsequent 

large-scale evolution [30]  . The model describes how the universe expanded from a very high-

density and high-temperature state , and offers a comprehensive explanation for a broad range 

of phenomena , including the abundance of light elements , the cosmic microwave 

background (CMB) , large scale structure and Hubble's law [31]  . If the known laws of physics 

are extrapolated to the highest density regime, the result is a singularity which is typically 

associated with the Big Bang .  

 

figure 3.3  Cosmic microwave 

background seen by Planck 

space telescope [32]  

    

  

 

 English astronomer Fred Hoyle is credited with coining the term Big Bang during a 

1949 BBC radio broadcast , saying : >> These theories were based on the hypothesis that all 

the matter in the universe was created in one big bang at a particular time in the remote 

past <<[33]  . 

 Physicists are undecided whether this means the universe began from a singularity, or 

that current knowledge is insufficient to describe the universe at that time . Detailed 

measurements of the expansion rate of the universe place the Big Bang at around 13.8 billion 

years ago , which is thus considered the age of the universe [34]  . 

 After the initial expansion, the universe cooled sufficiently to allow the formation of 

subatomic particles, and later simple atoms . Giant clouds of these primordial elements later 

coalesced through gravity in halos of dark matter, eventually forming the stars and galaxies 

visible today [35]  . More recently , measurements of the supernovae redshift indicate that the 

expansion of the universe is accelerating, an observation attributed to dark energy's 

existence [36] . 
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figure 3.4 diagram showing that how the formation of the Universe [37]  

Epoch Time Radiationtemperature(Energy) 

Planck epoch  <10
−43

 s 
>10

32
 K 

(>10
19

 GeV) 

Grand unificationepoch  <10
−36

 s 
>10

29
 K 

(>10
16

 GeV) 

Inflationary epoch , 

Electroweak epoch 
<10

−32
 s 

10
28

 K ~ 10
22

 K 

(10
15

 ~ 10
9
 GeV) 

Quark epoch  10
−12

 s ~ 10
−6

 s 
>10

12
 K 

(>100 MeV) 

Hadron epoch  10
−6

 s ~ 1 s 
>10

10
 K 

(>1 MeV) 

Neutrinodecoupling  1 s 
10

10
 K 

(1 MeV) 

Lepton epoch  1 s ~ 10 s 
10

10
 K ~ 10

9
 K 

(1 MeV ~ 100 keV) 

Big Bangnucleosynthesis  10 s ~ 10
3
 s 10

9
 K ~ 10

7
 K 

https://en.wikipedia.org/wiki/Planck_epoch
https://en.wikipedia.org/wiki/Grand_unification_epoch
https://en.wikipedia.org/wiki/Inflationary_epoch
https://en.wikipedia.org/wiki/Electroweak_epoch
https://en.wikipedia.org/wiki/Quark_epoch
https://en.wikipedia.org/wiki/Hadron_epoch
https://en.wikipedia.org/wiki/Neutrino_decoupling
https://en.wikipedia.org/wiki/Lepton_epoch
https://en.wikipedia.org/wiki/Big_Bang_nucleosynthesis


 

40 
 

(100 keV ~ 1 keV) 

Photon epoch 

10 s ~ 1.2·10
13

 s 

            (380 ky) 

10
9
 K ~ 4000 K 

(100 keV ~ 0.4 eV) 

Recombination 380 ky 
4000 K 

(0.4 eV) 

Dark Ages 380 ky ~ 150 My 4000 K ~ 60 K 

Reionization 150 My ~ 1 Gy 60 K ~ 19 K 

Galaxy formation 

and evolution 

1 Gy ~ 10 Gy 19 K ~ 4 K 

Present time 13.3 Gy 2.7 K 

Table 3.1 Chronology of the universe 

 

3.6 Conclusion 

 In this chapter , we try to introduce some basic ideas in cosmology , first weintroduce 

The Friedmann–Lemaître–Robertson–Walker model , with Robertson–Walker metric and 

Friedmann–Lemaître equation, which provided the mathematical description of an expanding 

universe , also we define Hubble law , which provided the experimentaldescription of an 

expanding universe, and Finally The Big Bang theory as a standard model of cosmology. 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Photon_epoch
https://en.wikipedia.org/wiki/Recombination_(cosmology)
https://en.wikipedia.org/wiki/Dark_Ages_(cosmology)
https://en.wikipedia.org/wiki/Reionization
https://en.wikipedia.org/wiki/Galaxy_formation_and_evolution
https://en.wikipedia.org/wiki/Galaxy_formation_and_evolution
https://en.wikipedia.org/wiki/Age_of_the_universe
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Chapter 04 

Loop Quantum Gravity 

 

>>The quest for a quantum gravity is one of 

the greatest unsolved problems in all of 

science [1]<<  

Michio Kaku 

 

4.1   Introduction   

 How can the theory of quantum mechanics be merged with the theory of general 

relativity ( gravitational force ) and remain correct at microscopic length scales ? What 

verifiable predictions does any theory of quantum gravity make ? . It is a big questions that 

search for a nice answers . 

 In general relativity, the spacetime metric provides the physical field of gravity and is 

subject to dynamical laws . For a complete and uniform fundamental description of nature, the 

gravitational force, and thus spacetime , is to be quantized by implementing the usual features 

of quantum states , endowing it with quantum fluctuations and imposing the superposition 

principle . Only then do we obtain a fully consistent description of nature , since matter as 

well as the non-gravitational forces are quantum , described by quantum stress-energy which 

can couple to gravity only via some quantum version of the Einstein tensor [2]  . 

 A satisfactory physical theory must combine both of these fundamental principles , 

quantum mechanics and general relativity , in a consistent way and will be called Quantum 

Gravity . 

 The theory of quantum gravity promises a revolutionary new understanding of gravity 

and spacetime , valid from microscopic to cosmological distances [3] . Research in this field 

involves an exciting blend of rigorous mathematics and bold speculations, foundational 

questions and technical issues . 

 In this chapter , we will know an introduction about Quantum Gravity then the Loop 

Quantum Gravity theory and their mathematical formalism and finally Loop Quantum 

Cosmology as an application . 

 

 

 

https://en.wikiquote.org/wiki/P._A._M._Dirac
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4.2   Quantum Gravity 

 Quantum gravity is the research in theoretical physics that seeks a consistent quantum 

theory of gravity . It is considered by many as the open problem of paramount importance in 

fundamental physics, as its task is to unify quantum mechanics (more specifically, quantum 

field theory, QFT) and general relativity (GR) , which are the two greatest theories discovered 

in the twentieth century and have become the cornerstones of modern physics [4]  . The 

problem of unifying them is the main open problem in physics left for us to solve in this 

century  [5]  . 

 Eight decades have passed since physicists realized that the theories of quantum 

mechanics and gravity don‘t fit together, and the puzzle of how to combine the two remains 

unsolved  [6]  . There are a number of proposed quantum gravity theories but researchers have 

pursued the problem in two separate programs : String Theory and Loop Quantum Gravity [7]  

. 

 The necessity of a quantum theory of gravity was pointed out by Albert Einstein 

already in a1916 paper . He wrote : 

>>Nevertheless, due to the inneratomic movement of electrons, atoms would have to radiate 

not only electromagnetic but also gravitational energy, if only in tiny amounts. As this is 

hardly true in Nature, it appears that quantum theory would have to modify not only 

Maxwellian electrodynamics but also the new theory of gravitation <<[8] . 

 Today we do not have a theory of quantum gravity , what we have is [9]   : 

1 –  The Standard Model : a quantum theory of the non-gravitational interactions 

(electromagnetic , weak and strong) or matterwhich , however, completely ignores general 

relativity . 

2 – Classical General Relativity : which is a background independent theory of all interactions 

but completely ignores quantum mechanics . 

 

figure 4.1  A diagram showing where quantum gravity sits in the hierarchy of physics theories [10]  

https://en.wikipedia.org/wiki/quantum_gravity
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 Research in Quantum Gravity developed slowly for several decades during the 

twentieth century, because General Relativity had little impact on the rest of physics and the 

interest of many theoreticians was concentrated on the development of quantum theory and 

particle physics. In the past 20 years, the explosion of empirical confirmations and concrete 

astrophysical, cosmological and even technological applications of General Relativity on the 

one hand, and the satisfactory solution of most of the particle physics puzzles in the context of 

the Standard Model on the other, have led to a strong concentration of interest in Quantum 

Gravity, and the progress has become rapid . Quantum Gravity is viewed today by many as 

the big open challenge in fundamental physics [11] . There is hope that direct experimental 

support might come soon, but for the moment either theory could be right, partially right or 

simply wrong . However, the fact that we have two well developed, tentative theories of 

quantum gravity is very encouraging . We are not completely in the dark, nor lost in a 

multitude of alternative theories, and quantum gravity offers a fascinating glimpse of the 

fundamental structure of nature [12] . 

 

4.2.1 The need to Quantum Gravity 

 Quantum mechanics and General Relativity have extended our understanding of the 

physical world widely . A large part of physics of the last century has been a triumphant 

march of exploration of new worlds opened by these two theories [13]  . 

 The very first question about Quantum Gravity is : Why do we even bother to quantize 

gravity at all ? Apart from many aesthetic considerations for an elegant unification of known 

fundamental physics , the logical necessity of a quantum description of gravity follows from 

the conflicts between the two fundamental theories of GR and QFT [14]  . 

 Why should one be interested in developing a quantum theory of the gravitational 

field ? The main reasons are conceptual  [15]  . 

Singularities 

 The famous singularity theorems show that the classical theory of general relativity is 

incomplete: Under very general conditions, singularities are unavoidable. Such singularities 

can be rather mild, that is, of a purely topological nature, but they can also consist of 

diverging curvatures and energy densities. In fact, the latter situation seems to be realized in 

two important physical cases : The Big Bang and black holes. The presence of the cosmic 

microwave background (CMB) radiation indicates that a Big Bang has happened in the past. 

Curvature singularities seem to lurk inside the event horizon of black holes. One thus needs a 

more comprehensive theory to understand these situations . 

Spacetime 

 A theory of gravity is also a theory of spacetime . Quantum gravity should thus make 

definite statements about the behavior of spacetime at the smallest scales . For this reason it 

has been speculated long ago that the inclusion of gravity can avoid the divergences that 

plague ordinary quantum field theories. These divergences arise from the highest momenta 
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and thus from the smallest scales. This speculation is well motivated. Non-gravitational field 

theories are given on a fixed background spacetime, that is, on a non-dynamical structure . 

Black holes thermodynamics 

 Also , Classical black holes exhibit a very intriguing thermodynamic behavior , and 

laws resembling the three laws of thermodynamics characterize their behavior. In particular, 

one assigns an entropy to black holes which is proportional to their surface area. This 

observation signals that black holes could have microscopic constituents which are 

responsible for this entropy. These microscopic constituents are expected to be the degrees of 

freedom of a suitable quantum theory of gravity , and counting them should result in the black 

hole's entropy . 

 

4.2.2 Spacetime background dependence 

 Background independence means that there is no preferred spacetime metric available, 

rather the metric is a dynamical entity1 which evolves in tandem with matter, classically 

according to the Einstein equations. These precisely encode the backreaction [16]  . 

 A fundamental lesson of general relativity is that there is no fixed spacetime 

background, as found in Newtonian mechanics and special relativity ; the spacetime geometry 

is dynamic. While easy to grasp in principle , this is the hardest idea to understand about 

general relativity, and its consequences are profound and not fully explored , even at the 

classical level [17]  . 

 One reason why it has taken so long to construct a quantum theory of gravity is that all 

previous quantum theories were background dependent . It proved rather challenging to 

construct a background independent quantum theory, in which the mathematical structure of 

the quantum theory made no mention of points , except when identified through networks of 

relationships [18]  . 

 

4.2.3 Graviton 

 Popularly harmonizing the theory of general relativity that describes gravitation, and 

applications to large-scale structures like stars, planets, and galaxies with quantum mechanics, 

that describes the other three fundamental forces acting on the atomic scale, quantum 

mechanics and general relativity can seem fundamentally incompatible . Also, demonstrations 

of the structure of general relativity essentially follows inevitably from the quantum 

mechanics of interacting theoretical spin-2 massless particles called gravitons [19]  . 

 The graviton is the hypothetical elementary particle that mediates the force of gravity. 

There is no complete quantum field theory of gravitons due to an outstanding mathematical 

problem with renormalization in general relativity. 
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 No concrete proof of gravitons exist, but quantized theories of matter may necessitate 

their existence .The observation that all fundamental forces except gravity have one or more 

known messenger particles leads researchers to believe that at least one must exist . This 

hypothetical particle is known as the graviton  .The predicted find would result in the 

classification of the graviton as a force particle similar to the photon of the electromagnetic 

interaction  [20]  . 

 

4.3 Loop Quantum Gravity 

 The challenge for the physicists of the 21st century is to complete the scientific 

revolution that was started by general relativity and quantum theory . For this we must 

understand quantum field theory in the absence of a background spacetime . Loop quantum 

gravity is the most resolute attempt to address this problem [21]  . 

 Loop quantum gravity (LQG) is a theory of quantum gravity , merging quantum 

mechanics and general relativity . Its goal unifies gravity in a common theoretical framework 

with the other three fundamental forces of nature , beginning with relativity and adding 

quantum features [22]  . Loop quantum gravity seriously considers general relativity's insight 

that spacetime is a dynamical field and is therefore a quantum object. Its second idea is that 

the quantum discreteness that determines the particle-like behavior of other field theories (for 

instance, the photons of the electromagnetic field) also affects the structure of space . 

 The main achievement of loop quantization is to quantize gravity as it is geometry . 

No additional structures are involved. In some sense , it is a minimalistic quantization. On the 

other hand , it does not include other interactions in nature . It may , of course, be questioned 

whether a quantum theory of gravity , or better a quantum theory of general relativity has to 

contain all existing forces [23]  . 

 Another big development of loop quantum gravity is that we now know how to 

describe not only space but spacetime including causality , light cones , and so on in loop 

quantum gravity . Spacetime also turns out to be discrete, described by a structure called a 

spin foam . Recently there have been important results showing that dynamical calculations in 

Spinfoam models come out finite . Together these two results strongly suggest that loop 

quantum gravity is giving us sensible answers to questions about the nature of space and time 

on the shortest scales  [24]  . 

 

4.3.1 Loops 

 The loops are space because they are the quantum excitations of the gravitational field, 

which is the physical space. It therefore makes no sense to think of a loop being displaced by 

a small amount in space. There is only sense in the relative location of a loop with respect to 

other loops, and the location of a loop with respect to the surrounding space is only 

determined by the other loops it intersects. A state of space is therefore described by a net of 

intersecting loops. There is no location of the net, but only location on the net itself; there are 



 

46 
 

no loops on space, only loops on loops. Loops interact with particles in the same way as, say, 

a photon interacts with an electron, except that the two are not in space like photons and 

electrons are [25] . 

 

4.3.2 Ashtekar variables  

 Many of the technical problems in canonical quantum gravity revolve around the 

constraints . Canonical general relativity was originally formulated in terms of metric 

variables, but there seemed to be insurmountable mathematical difficulties in promoting the 

constraints to quantum operators because of their highly non-linear dependence on the 

canonical variables . The equations were much simplified with the introduction of Ashtekars 

new variables . 

 In 1986 AbhayAshtekar introduced a new set of canonical variables , The Ashtekar 

variables (or the Connection representation) to represent an unusual way of rewriting the 

metric canonical variables on the three-dimensional spatial slices in terms of gauge 

theories [26]  . 

 One half of Ashtekar's variables are the densitized triads we discussed in the chapter 

on general relativity , 𝐸 𝑖
𝑎  . The other half behave like an SU(2) Yang-Mills connection 𝐴𝑖

𝑎  and 

constitute the configuration variables , the densitized triads being their canonically conjugated 

momentum [27[]28] : 

 𝐴𝑖
𝑎 𝑥  ,  𝐸 𝑖

𝑎 𝑥  = 8𝜋𝐺𝛽𝛿𝑏
𝑎𝛿𝑗

𝑖𝛿3(𝑥 − 𝑦)                  (4.3.2.1) 

Where  : 

G isthe gravitational constant 

𝛽 is a constant know as the Immirzi parameter (or  Barbero–Immirzi parameter) 

The densitized triads can be used to reconstruct the spatial metric via : 

𝑞 𝑎𝑏 = det 𝑞 𝑞𝑎𝑏 = 𝛿𝑖𝑗  𝐸 𝑖
𝑎  𝐸 𝑗

𝑏 =  𝐸 𝑖
𝑎  𝐸 𝑖

𝑏                (4.3.2.2) 

The connection can be used to reconstruct the extrinsic curvature, which , as we mentioned , 

is a measure of how the three metric evolves in spacetime . The relation is given by : 

𝐴𝑎
𝑖 = Γ𝑎

𝑖 + 𝛽𝑘𝑎
𝑖                                          (4.3.2.3) 

Where : 

Γ𝑎
𝑖  is the Spin connection , Γ𝑎

𝑖 = Γ𝑎𝑗 𝑘𝜖𝑗𝑘𝑖  

K𝑎
𝑖 = 𝑘𝑎𝑏 𝐸 𝑎𝑖  det(𝑞)  
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4.3.3 Quantum space : Spin networks 

 Loop quantum gravity seriously considers general relativity's insight that spacetime is 

a dynamical field and is therefore a quantum object . Its second idea is that the quantum 

discreteness that determines the particle-like behavior of other field theories (for instance, the 

photons of the electromagnetic field) also affects the structure of space . 

 The quantum state of spacetime is described in the theory by means of a mathematical 

structure called Spin Networks. Spin networks were initially introduced in 1964 by Roger 

Penrose in abstract form, as a way to set up an intrinsically quantum mechanical model of 

spacetime [29]  , and later shown by Carlo Rovelli and Lee Smolin to derive naturally from a 

non-perturbative quantization of general relativity [30]  . Spin networks do not represent 

quantum states of a field in spacetime : they represent directly quantum states of spacetime [31 ]

 . 

 The history of spin networks goes back to the early seventies when Penrose first 

constructed networks as a fundamentally discrete model for three-dimensional space . 

Difficulties inherent in the continuum formulation of physics led Penrose to explore this 

possibility . These difficulties come from both quantum and gravitational theory as seen from 

three examples: First, while quantum physics is based on noncommuting  quantities, 

coordinates of space are commuting numbers, so it appears that our usual notion of space 

conflicts with quantum mechanics. Second, on a  more pragmatic level, quantum calculations 

often yield divergent answers which grow 

arbitrarily large as one calculates physical 

quantities on finer and smaller scales. A good bit 

of machinery in quantum field theory is devoted 

to regulating and renormalizing these divergent 

quantities . However, many of these difficulties 

vanish if a smallest size or ―cut-off‖ is 

introduced [32]  . 

 

figure 4.2  Simple spin network that used in 

Loop Quantum Gravity [33]  

 

 One of the key results of loop quantum 

gravity is quantization of areas: the operator of 

the area A of a two-dimensional surface Σ should 

have a discrete spectrum . Every spin network is 

an eigenstate of each such operator, and the area 

eigenvalue equals [34]  : 

𝐴 = 8𝜋𝑙𝑃𝐿
2  𝛾   𝑗𝑖(𝑗𝑖 + 1)

𝑖

                                              (4.3.3.1) 

Where : 

𝑙𝑃𝐿
2  is the Planck length  

https://en.wikipedia.org/wiki/Spin_network
https://en.wikipedia.org/wiki/Quantization_(physics)
https://en.wikipedia.org/wiki/Spectrum_of_a_matrix
https://en.wikipedia.org/wiki/Eigenstate
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𝛾 is the Immirzi parameter 

𝑗𝑖  is the spin associated with the link i of the spin network 

 

4.3.4 Quantum spacetime : Spinfoam 

 Loop quantum gravity replaces the Newtonian concept of background space with a 

history of spin networks called a Spinfoam . Each link in the network is associated with a 

quantum number of area called ―spin‖, which is measured in units related to the Planck 

length [35] . 

 The topological structure of Spinfoam consists of two-dimensional faces representing 

a configuration required by functional integration to obtain a Feynman's path integral 

description of Loop quantum gravity [36] . the present Spinfoam Theory has been inspired by 

the work of Ponzano-Regge model [37] . 

 The aim of the Spinfoam formalism is to provide an explicit tool to compute transition 

amplitudes in quantum gravity [38] . 

The summary partition function for a spin foam model is [39] : 

𝑍 =  𝑤 Γ 𝜍  

Γ

 𝐴𝑓(𝑗𝑓) 

𝑓

 𝐴𝑒(𝑗𝑓 , 𝑖𝑒) 

𝑒

 𝐴𝜈(𝑗𝑓 , 𝑖𝑒)

𝜈

                (4.3.4.1) 

With : 

A set of 2-complexes Γ each consisting out of faces 𝑓 , edges 𝑒 and vertices 𝜈 and a set of 

irreducible representations 𝑗 which label the faces and intertwiners 𝑖 which label the edges . 

Where : 

𝑤 Γ 𝜍   is the weight factor  

𝐴𝑓(𝑗𝑓) is the face amplitude 

𝐴𝑒(𝑗𝑓 , 𝑖𝑒) is the edge amplitude 

𝐴𝜈(𝑗𝑓 , 𝑖𝑒) is the vertex amplitude 

𝑗𝑓 , 𝑖𝑒  are the colorings adjacent 
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figure 4.3  A simple spin foam composed of 2 vertices , 6 edges , and 6 faces [ 40]  

 

4.4 Loop  Quantum Cosmology 

 Loop quantum cosmology is a finite, symmetry-reduced model of loop quantum 

gravity that applies principles of the full theory to cosmological settings [41] . 

 The distinguishing feature of Loop quantum cosmology is that the quantum geometry 

of Loop quantum Gravity gives rise to a brand new quantum force that is inappreciable at low 

spacetime curvature but rises very rapidly and opposes the classical gravitational force in the 

Planck regime . As a consequence , for a variety of models of Loop quantum cosmology , the 

cosmological singularity (big bang , big crunch , big rip , etc.) is avoided by the opposing 

force , therefore affirming the long-held conviction that singularities in General Relativity 

signal a breakdown ofthe classical theory and should be resolved by the quantum effects of 

gravity .  Particularly , the big bang singularity is replaced by a quantum bounce , which 

bridges the present expanding universe with a preexistent contracting universe. The new 

cosmological scenario suggests a change of the paradigm in the standard big-bang cosmology. 

 

4.4.1 Black hole 

>> The black hole epitomizes the revolution wrought by general relativity. It pushes to an 

extreme — and therefore tests to the limit — the features of general relativity (the dynamics 

of curved spacetime) that set it apart from special relativity (the physics of static, ‗flat‘ 

spacetime) and the earlier mechanics of Newton <<[42]  , that how John Archibald Wheeler 

described it . So what is black hole ? 

 

A black hole is a place in spacetime where gravity pulls so much that even light can 

not get out. The gravity is so strong because matter has been squeezed into a tiny space. This 

can happen when a star is dying [43] . It‘s a ‗hole‘ because matter and radiation can fall into it. 

It‘s ‗black‘ because light is unable to escape from it [44] . 
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 The first modern solution of general relativity that would characterize a black hole 

was found by Karl Schwarzschild in 1916, although its interpretation as a region of space 

from which nothing can escape was first published by David Finkelstein in 1958. Black holes 

were long considered a mathematical curiosity; it was during the 1960s that theoretical work 

showed they were a generic prediction of general relativity [45] . 

 A black hole can't be seen because strong gravity pulls all of the light into the middle 

of the black hole. But scientists can see how the strong gravity affects the stars and gas around 

the black hole. Scientists can study stars to find out if they are flying around, or orbiting, a 

black hole. When a black hole and a star are close together, high-energy light is made. This 

kind of light can not be seen with human eyes. Scientists use satellites and telescopes in space 

to see the high-energy light [46] . 

 Black holes of stellar mass are expected to form when very massive stars collapse at 

the end of their life cycle. After a black hole has formed, it can continue to grow by absorbing 

mass from its surroundings. By absorbing other stars and merging with other black holes, 

supermassive black holes of millions of solar masses  may form [47] . 

 A black hole can't be seen because strong gravity pulls all of the light into the middle 

of the black hole. But scientists can see how the strong gravity affects the stars and gas around 

the black hole. Scientists can study stars to find out if they are flying around, or orbiting, a 

black hole [48] . 

 

figure 4.4 Schwarzschild Black hole [49]  

 

Thefact that General Relativity does predict the 

existence of black holes and that General Relativity is 

a reliable theory of gravitation does not necessarily 

prove the existence of black holes, because General 

Relativity does not describe the astrophysical processes 

by which a black hole may form [50]  . 

 

3.3.1 The classification of black holes 

 The basis of the most common classification scheme for black holes is John Wheeler‘s 

pronouncement that >> a black hole has no hair <<[51] .. the no-hair theorem emerged , stating 

that a stationary black hole solution is completely described by the three parameters : mass 

, angular momentum and electric charge. 

 As a consequence , there exists only 4 exact solutions of Einstein's equations 

describing black hole solutions with or without charge and angular momentum [52]  :  

-  The Schwarzschild solution (1917) : has only mass M ; it is static , spherically symmetric . 

- The Reissner-Nordstrom solution (1918) : static , spherically symmetric , depends on mass 

M and electric charge Q. 

https://en.wikipedia.org/wiki/Karl_Schwarzschild
https://en.wikipedia.org/wiki/David_Finkelstein
https://en.wikipedia.org/wiki/No-hair_theorem
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Angular_momentum
https://en.wikipedia.org/wiki/Electric_charge
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- The Kerr solution (1963) : stationary , axisymmetric , depends on mass and angular 

momentum . 

- The Kerr-Newman solution (1965) :  stationary and axisymmetric , depends on all three 

parameters M , J , Q . 

 

 Schwrz RN Kerr  Kerr-Newman  

Mass 𝑀 > 0 𝑀 > 0 𝑀 > 0 𝑀 > 0 

Charge 𝑄 = 0 𝑄 ≠ 0 𝑄 = 0 𝑄 ≠ 0 

Angular momentum 𝐽 = 0 𝐽 = 0 𝐽 ≠ 0 𝐽 ≠ 0 

 

Table 4.1 Black hole classifications by M , J , Q 

 

Another widely used classification scheme for black holes is perhaps morerelevant to 

astrophysics. It is based on the mass of the black hole [53]  .  

 

Class Mass 
 

Mini black holes 0 to 0.1𝑀⊙ 

 

Stellar mass black holes 0.1 to 300𝑀⊙ 

 

Intermediate mass black holes 300 to 10
5𝑀⊙ 

 

Supermassive black holes 10
5
to 10

10𝑀⊙ 

 

 

Table 4.2 Black hole classifications by mass 

 

 
 

figure 4.5 a Black hole [54]  
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4.5 Conclusion 

 The main aim of these chapter is to provide with an elementary understanding of loop 

quantum gravity. at the beginning , we define the quantum gravity and the need to them and 

the problem of the Background independence of Spacetime, Then we give an introduction for 

the loop quantum gravity and a basic mathematical formalism of it , and finally we represent 

the loop quantum cosmology and the black hole as an application of it . 
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Summary 

 

In this part of the thesis we studied the original formulation of the bosonic chord, called 

algebraic chord in order to introduce it into the study of some fundamental aspects of loop 

quantum gravity. 

For this, we have considered the bosonic chord as a toy model on which we can test the 

quantization methods of quantum loop gravitation. 

First of all we were interested in identifying the invariance of parameterization in a one-

dimensional space-time and then we went to D dimensions. Starting from the principle of 

least action in order to determine the equations of the movement of the two types of strings 

(open string and closed strings) to the edge condition, using the notation of Green Schwartz, 

arrived at the transversal Gauge one passes to the stresses in terms of coordinates of open and 

closed strings in a space. The cords attached at its ends to the D-brane were started, starting 

with a single 𝐷𝑝 -brane and then moving on to several parallel 𝐷𝑝 -branes; where the 

Interactive Gauge field and the possibility of massive Gauge appeared. 

   Finally, this theory aims to unify the elementary interactions seen previously also, whether 

on the macroscopic or microscopic scale; it claims that everything would be ropes. 
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History of string theory 

 

By describing elementary particles as vibrating strings, string theory explains their properties 

in an elegant way and could even bring together general relativity and quantum mechanics. 

This catch has been followed for several decades but is bristling with obstacles. Rough 

mathematically, it is also difficult to verify. 

Until the last days before his death, in 1955, Eintein continued his dream of a unified theory 

of all the forces and particles of matter, and accounting for the laws of quantum mechanics, 

by means of the geometry of space-time more complex than that of its general relativity. His 

heirs believe that string theory, still under construction and at and at the working hypothesis 

stage, is very promising for realizing this dream. In addition to accounting for the mass and 

charge of particles in the standard model, from the Brought-angler-Higgs boson to the quarks 

and Leptons, this theory could also account for the nature of the dark matter and the darkness. 

Black energy. Some in even more spectacular successes; a deep understanding of the origin of 

the universe and perhaps a technology for making cross worm holes to travel between stars. 

It is said that the theory of the strings that it was the physics of the twenty-first century came 

by chance in the twentieth century as it is difficult to break through its secrets. It is indeed 

formidable from a mathematical and conceptual point of view, and requires the use of theories 

as esoteric as algebraic geometry and topology. The equations of string theory are so difficult 

to solve that the physicist Edward Witten was forced, like Newtton at the time, to discover 

new mathematics. It earned him the Fields Medal, the equivalent of the Nobel Prize in 

mathematics. 
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Particles can be described as vibrating strings 

String theory originated in the work of Gabriele Veneziano in 1968 when he sought to unravel 

the mystery of strong nuclear interactions between protons and neutrons. This physicist thus 

initiated the "resonance model" describing the hadronic particles involved in these 

interactions. Such as mesons and hyperons. A few years later, the Nobel Prize in physics 

YoichiroNambu and the physicist Leonard Susskind discovered that behind the mathematical 

equation proposed by Veneziano were hidden cords capable of vibrating and turning on itself. 

In the early 1770s, it was discovered with the help of physicists like the French 

RierreRammond and Joel Scherk that these strings open or closed in loops, can represent the 

particles of matter like quarks, but also the vector particles of the forces, like the photon and 

the bosons W and Z but especially the mythical graviton. This requires the existence of 

additional spatial reductions already postulated almost 50 years ago by Theodor Kaluza and 

Oskar Klein when they sought as Eistein to unify the forces. 

We must also postulate the existence of new particles described by a new mathematical theory 

called super symmetry. The string theory then became super strings. By turning the super 

strings acquire kinetic moments that are none other than the spins of known particles. Capable 

of different modes of vibrations like a violin string, they have so many states of energy 

corresponding to the different masses of the particles, because of the famous equivalence 

between mass and energy of Einstein. 
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Introduction to string theory 

 

String theory is one of the most exciting areas of theoretical physics. This ambitious theory is 

speculative and offers the potential to unify gravity and all other forces of nature and all forms 

of matter into a unified conceptual structure. 

String theory unfortunately has a reputation for being incredibly difficult to understand. To a 

certain extent, it is because, even for its practitioners, the theory is so new and so poorly 

understood. However, the basic concepts of string theory are quite simple and should be 

acceptable to physics students with only advanced training. In this end-of-cycle dissertation 

thesis part, we first presented a complete remarkable description of string theory, assuming 

only minimal knowledge of advanced physics, and leads to the current limits of physics, then 

we have continued the chained demonstrations of all the formulas used to obtain all the 

physical parameters of the open and closed strings after discussing the classical movement of 

the closed and open strings. Some exercises have also been started, called quick calculations, 

inserted in various places in the next chapter and carried to understand the difficulties of the 

chapter and sometimes to develop new ideas. 
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Chapter 05 

String theory 

 

>>The most important single thing about string 

theory is that it's a highly mathematical theory , and 

the mathematics holds together in a very tight and 

consistent way . It contains in its basic structure 

both quantum mechanics and the theory of gravity. 

That's big news [1]<<  

Leonard Susskind 

  Given the great elegance of the classical relativistic string compared to the non-relativistic 

channel considered previously, we are now beginning to make our study of it. 

First, inspired by the case of the point particle, we focus our attention on the surface traced by 

the rope in space-time. We use the surface area of this surface as the action; it is the action 

Nambu-Goto. We study the repairing property of this action, identify the tension of the string 

and find the equations of motion. Thus, for the open string, we focus on the movement of 

endpoints and introduce the concept of D-branes. 

Finally, we see that the only physical movement is transverse to the rope. 

 

5-1 Functional Area for Spatial Surfaces 

 

  The action for a relativistic string must be a function of the trajectory of the string. Just as a 

particle draws a line in space-time, a string draws a surface. The line drawn by the particle in 

space-time is called the world-sheet. A closed chain, for example, will draw a tube, while an 

open string will draw a band. These two-dimensional world sheets are shown in the space-

time diagram in Figure 5.1. The lines of constant 𝑥0 in these surfaces are ropes. These are 

objects that an observer sees at fixed time 𝑥0. They are open curves for the surface describing 

the evolution of the open string (on the left), and they are closed curves for the surface 

describing the evolution of the closed string (on the right). 

We have learned that the action of point particles is proportional to the elapsed time on the 

world-sheet of point particles. The Lorentz invariance which is "clean length" of the world 

line is obtained by the time own multiplied by c. For strings,the Lorentz invariance is defined 

as "clean zone" of world-sheet. The relativistic string action will be proportional to this own 

area, and is called the Nambu-Goto action. 

https://en.wikiquote.org/wiki/P._A._M._Dirac
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Air functions are useful in other applications; for example a soap film between two rings, 

automatically builds the surface of the minimal area that connects one ring to another (Figure 

5.2) very different types of surfaces. At any given moment, a Lorentz observer will see the 

full two-dimensional surface of the soap film, but he can only see one two-dimensional 

world-sheet chain. If we imagine that the soap film is static in a Lorentz setting. In this case 

the time is not relevant for the description of the film, and we consider the film as a spatial 

surface, namely a surface that extends along two spatial dimensions. 

 

Figure- 5.1- the leaves of the world drawn by an open string (left) and a closed string 

(right) 

 

Figure- 5.2 - Area a space stretch between two rings. If the surface exists in its entirety 

at any time of the deadline.  

We will first study these familiar surfaces, and then we will apply the experiment to the 

surfaced case in space-time. 
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A line in space-time can be parameterized using a single parameter. A surface in space is two-

dimensional, so it requires two parameters 𝜉1and𝜉2. Given a parameterized surface, one can 

draw on this surface the lines of constant 𝜉1 and the lines of constant𝜉2. These lines open the 

surface with a grid. The target space is the world where the two-dimensional surface lives. In 

the case of a three-dimensional soap bubble, the target space is the three-dimensional 

space𝑥1𝑥2𝑥3. The parameterized area is described by all the functions. A face was a soap 

film; it would be a minimal area. 

 

 

 

Figure-5.3- on the left: the parameter space, with a small rectangle selected. Adroit: the 

surface of the target space with the image of the small rectangle, a parallelogram whose 

c¬-sides are vectors d𝒗𝟏     and d𝒗𝟐      (displayed enlarged at the end of the wavy arrow) 

𝑥  𝜉1, 𝜉2 =  𝑥1 𝜉1, 𝜉2 , 𝑥2 𝜉1, 𝜉2 , 𝑥3 𝜉1, 𝜉2                    (5.1)  

The parameter space is defined by the parameter ranges 𝜉1and𝜉2. It can be a square; for 

example, if we use the parameters𝜉1,𝜉2 ∈[0, π]. The physical surface is the image of the space 

of the parameters under the map 𝑥  (𝜉1, 𝜉2); it is a surface in the target space. Alternatively, 

one can see the parameters𝜉1 and𝜉2entant that coordinated on the physical surface, at least 

locally. The inverse maps of 𝑥  takes the surface of the parameter space. Locally, this map is 

one-to-one and it performs at each point, from the surface two coordinates: the values of the 

parameters𝜉1 and𝜉2. 

We want to calculate the area of a small element of the surface of the target space. We begin 

by looking at an infinitesimal rectangle on the parameter space, as we can see its dimensions 

by d𝜉1andd𝜉2. And we try to find𝑑𝐴, the area of the image of this small rectangle in the large 

space. As shown in Figure -5.3-, this is the area of the real surface that corresponds to the 

infinitesimal rectangle of the parameter space. 

This element of infinitesimal zone is not necessarily a rectangle. In general, it is a 

parallelogram. Let's call the dimensions of this parallelogram 𝑣1      and d𝑣2     . These are the 

images under the map 𝑥  of the vectors (d𝜉1.0) and (0, d𝜉2), respectively. We can write them  
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𝑑𝑣 1 =
𝜕𝑥 

𝜕𝜉1 𝑑𝜉1𝑑𝑣 2 =
𝜕𝑥 

𝜕𝜉2 𝑑𝜉2  (5.2)    

This has the meaning: ∂𝑥  / ∂𝜉1, for example, represent the rate of variation of spatial 

coordinates with respect to𝜉1. By multiplying this ratio by the length d𝜉1 of the horizontal 

side of the small rectangle of parametric space, we obtain the vector d𝑣1      which represents this 

side in the target space. Then we calculate the surfacedA. Using the formula for the area of a 

parallelogram: 

𝑑𝐴 =  𝑑𝑣 1  𝑑𝑣 2  sin 𝜃 =  𝑑𝑣 1  𝑑𝑣 2  1 − 𝑐𝑜𝑠2𝜃 

=   𝑑𝑣 1 2 𝑑𝑣 2 2 −  𝑑𝑣 1 2 𝑑𝑣 2 2𝑐𝑜𝑠2𝜃  .                                   (5.3) 

Whereθ is the angle between the vectors d𝑣1      andd𝑣2     . In terms of space products, we have, 

𝑑𝐴 =   𝑑𝑣 1. 𝑑𝑣 1  𝑑𝑣 2. 𝑑𝑣 2 −  𝑑𝑣 1. 𝑑𝑣 2 2                                (5.4) 

Finally using (6.2) 

𝑑𝐴 = 𝑑𝜉1𝑑𝜉2  
𝜕𝑥 

𝜕𝜉1 .
𝜕𝑥 

𝜕𝜉1  
𝜕𝑥 

𝜕𝜉2 .
𝜕𝑥 

𝜕𝜉2 −  
𝜕𝑥 

𝜕𝜉1 .
𝜕𝑥 

𝜕𝜉2 
2

                      (5.5)  

This is the general expression of the area element of a parameterized spatial area. Functional 

area A is given by 

𝐴 =  𝑑𝜉1𝑑𝜉2  
𝜕𝑥 

𝜕𝜉1 .
𝜕𝑥 

𝜕𝜉1  
𝜕𝑥 

𝜕𝜉1 .
𝜕𝑥 

𝜕𝜉2 −  
𝜕𝑥 

𝜕𝜉1 .
𝜕𝑥 

𝜕𝜉2 
2

                      (5.6)  

 

The integral extends over the relevant ranges of the parameters 𝑑𝜉1 and 𝑑𝜉2. The solution of 

a minimal surface problem for a spatial surface is the function𝑥  (𝜉1,𝜉2) which minimizes the 

function A. 
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5-2- Repair Invariance of the Region 

 

As we have seen, the parameterization of a surface makes it possible to write the element of 

the area in an explicit form. The area of the surface; or even more, the surface of any part of 

the surface, should be independent of the parameterization chosen to calculate it, it is what we 

wean when we say that the zone must be invariant of reparametrization. 

Because we will soon assimilate the action of relativistic string to a concept of clean zone, it 

too, will be invariant repair metrics. This means that we will be free to choose the most useful 

parameter without changing the underlying physics. A good choice of metrics will solve the 

equations of the movement of the relativistic string in an elegant way. 

Reparametrie invariance is therefore an important concept, one must understand it well. To 

this end, we try to manifest it in the formulas presented. The purpose of the following analysis 

is to show how this can be done. 

The question that arises first is: Is functional area a (5-6) repaired in variance? We certainly 

hope that it is. 

In fact, at first glance, it seems to be invariant reparameterization. After all; If we repair the 

surface with 𝜉1 (𝜉1) and 𝜉2 (𝜉2), then all the derivatives introduced by the string  rule cancel 

each other appropriately. 

This reparameterization above, is not completely general because it fails to mix the 

coordinates 𝜉1and𝜉2 On the contrary, we suppose a reparameterization 𝜉1 (𝜉1 , 𝜉2) and𝜉2 

(𝜉1, 𝜉2 

In order to make the (5.6) manifest repair invariance, the functional area must be rewritten in 

a different way. 

The calculation variable change theorem says that: 

𝑑𝜉1𝑑𝜉2 =  𝑑𝑒𝑡  
𝜕𝜉 𝑖

𝜕𝜉 𝑗
  𝑑𝜉 1𝑑𝜉 2 =  𝑑𝑒𝑡𝑀 𝑑𝜉 1𝑑𝜉 2.                           (5.7) 

 OrM = [𝑀𝑖𝑗 ] is the matrix defined by𝑀𝑖𝑗  = (∂𝜉𝑖) /∂𝜉𝑗 . Similarly. 

𝑑𝜉 1𝑑𝜉 2 =  𝑑𝑒𝑡  
𝜕𝜉 𝑖

𝜕𝜉 𝑗  𝑑𝜉1𝑑𝜉2 =  𝑑𝑒𝑡𝑀  𝑑𝜉1𝑑𝜉2                               (5.8)  

Where M = [𝑀𝑖𝑗 ] is the matrix defined by 𝑀𝑖𝑗  = (∂𝜉𝑖) / (∂𝜉𝑗 ) 

By combining equations (5.7) and (5.8), we see that. 

 𝑑𝑒𝑡𝑀  𝑑𝑒𝑡𝑀  = 1                                                    (5.9) 

We now consider a target surface S described by the mapping functions𝑥 (𝜉1,𝜉2).  

Cried by a vector d𝑥  tangent to the surface, or we note that 𝑑S is long. So we can write. 
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𝑑𝑆2 ≡  𝑑𝑆 2 = 𝑑𝑥  . 𝑑𝑥                                                   (5.10) 

The vector d𝑥  can be expressed in terms of partial derivatives and the differentials d𝜉1, d𝜉2: 

𝑑𝑥 =
𝜕𝑥 

𝜕𝜉1 𝑑𝜉1 +
𝜕𝑥 

𝜕𝜉2 𝑑𝜉2 =
𝜕𝑥 

𝜕𝜉 𝑖 𝑑𝜉𝑖                                           (5.11) 

Back to (5.10), the repeated index 𝑖 summed over its possible values 1 and 2, we can write, 

 

𝑑𝑆2 =  
𝜕𝑥 

𝜕𝜉 𝑖 𝑑𝜉𝑖  
𝜕𝑥 

𝜕𝜉 𝑗 𝑑𝜉𝑗  =
𝜕𝑥 

𝜕𝜉 𝑖

𝜕𝑥 

𝜕𝜉 𝑗 𝑑𝜉𝑖𝑑𝜉𝑗                           (5.12)  

We can summarize 

𝑑𝑆2 = 𝑔𝑖𝑗  𝜉 𝑑𝜉𝑖𝑑𝜉𝑗                                                           (5.13) 

Where 𝑔𝑖𝑗  (ξ) is defined as 

𝑔𝑖𝑗  𝜉 ≡
𝜕𝑥 

𝜕𝜉 𝑖 .
𝜕𝑥 

𝜕𝜉 𝑗                                                                     (5.14)  

The quantity 𝑔𝑖𝑗 (ξ) is as under the name metric induced on S? Because, 𝜉𝑖playing the role of 

coordinates on S, equation (5.13) determines the distances on S. 

Since we have only two parameters 𝜉1and𝜉1, then the complete metric𝑔𝑖𝑗 takes the following 

form: 

𝑔𝑖𝑗 =  

𝜕𝑥 

𝜕𝜉1 .
𝜕𝑥 

𝜕𝜉1

𝜕𝑥 

𝜕𝜉1 .
𝜕𝑥 

𝜕𝜉2

𝜕𝑥 

𝜕𝜉2 .
𝜕𝑥 

𝜕𝜉1

𝜕𝑥 

𝜕𝜉2 .
𝜕𝑥 

𝜕𝜉2

                  (5.15) 

The determinant of𝑔𝑖𝑗 is precisely the quantity that appears under the square root in  

𝑔 ≡ 𝑑𝑒𝑡 𝑔𝑖𝑗  (5.16) 

We can write 

𝐴 =  𝑑 𝜉1𝑑𝜉2 𝑔                                                          (5.17)  

Following the expression (5.17), which is simpler, we are now able to understand the 

invariance of the zone in terms of transformation property of the metric𝑔𝑖𝑗 . The key to this 

lies in equation (2.13). 

For the set of parametersξ and𝑔 (ξ), the following equality must be respected: 

𝑔𝑖𝑗  𝜉 𝑑𝜉𝑖𝑑𝜉𝑗 = 𝑔 𝑝𝑞  𝜉  𝑑𝜉 𝑝𝑑𝜉 𝑞                                                           (5.18)  

Using the string rule to express the differentials dξ in terms of differentials dξ 

𝑔𝑖𝑗  𝜉 𝑑𝜉𝑖𝑑𝜉𝑗 = 𝑔 𝑝𝑞  𝜉  
𝜕𝜉 𝑝

𝜕𝜉 𝑖

𝜕𝜉 𝑞

𝜕𝜉 𝑗 𝑑𝜉𝑖𝑑𝜉𝑗                                 (5.19) 
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Since this result is valid for any variable choice, we find a relation between the metric in 

ξand𝜉 : 

𝑔𝑖𝑗  𝜉 = 𝑔 𝑝𝑞  𝜉  
𝜕𝜉 𝑝

𝜕𝜉 𝑖

𝜕𝜉 𝑞

𝜕𝜉 𝑗                                                       (5.20) 

Using the definition of M below (5.8), we rewrite the equation above 

𝑔𝑖𝑗  𝜉 = 𝑔 𝑝𝑞 𝑀 𝑝𝑖𝑀 𝑞𝑗 =  𝑀 𝑇 
𝑖𝑝

𝑔 𝑝𝑞 𝑀 𝑞𝑗  .                                                                           (5.21) 

 In matrix notation, the right-hand side is the product of three matrices. 

Take the determinant and use the notation in (5.16) gives    

𝑔 =  𝑑𝑒𝑡𝑀 𝑇 𝑔  𝑑𝑒𝑡𝑀  = 𝑔  𝑑𝑒𝑡𝑀  
2
                                   (5.22)  

Take a square root 

 𝑔 =  𝑔  𝑑𝑒𝑡𝑀                                                         (5.23)  

We are now ready to evaluate the reparameterization invariance. Using (5.7), (5.23), and 

(5.9), we have 

 𝑑𝜉1 𝑑𝜉2 𝑔 =  𝑑𝜉 1𝑑𝜉 2 𝑑𝑒𝑡𝑀  𝑔  𝑑𝑒𝑡𝑀  =  𝑑𝜉 1𝑑𝜉 2  𝑔         (5.24)  

Which proves the invariance of repairing the functional area? 

 

5-3 Functional area for the space-time surface 

 

The space-time surface for the ropes case is a two-dimensional surface called the world-sheet 

of the rope. 

They require two parameters. Instead of calling the parameters𝜉1and𝜉2, we give them special 

names: τetσ, given our spatial coordinates 𝑥𝜇  = (𝑥0,𝑥1,........ , 𝑥𝑑 ), the surface is described by 

the mapping functions. 

𝑥𝜇  𝜏, 𝜍  ,                                                                                                                             (5.26) 

Which takes a certain region of the parameter space (τ, σ) in space-time? We will indicate the 

mapping functions above with the symbols in uppercase 

𝑋𝜇  𝜏, 𝜍   (5.27) 

Given a fixed point (τ, σ) in the parameter space, this point is mapped to a point with space-

time coordinates. 

 𝑋0 𝜏, 𝜍 𝑋0 𝜏, 𝜍 , 𝑋1 𝜏, 𝜍 , … … . . 𝑋𝑑 𝜏, 𝜍                                                                       (5.28) 
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Figure 5.4 Left: the parameter space (τ, σ), with a small square selected. On the right: 

the surface in the target space-time with the image of the small square, a parallelogram 

whose sides are the vectors 𝒅𝑽𝟏
𝝁
 and 𝒅𝑽𝟐

𝝁
 

 

We can write 𝑋𝜇 without the arguments (τ, σ) knowing that we are talking about the mapping 

functions of the string. We will call 𝑋𝜇  the coordinates of the string as previously, the 

parameters τ and σ can be considered as coordinates on the sheet of the world (world sheet), 

at least locally. The inverse map of 𝑋𝜇   brings the world map back to the parameter space, and 

locally assigns two coordinates to each point of the surface: the values of the parameters τ et 

σ. 

In figure 5.4, we consider an open string: on the left, you see the surface of the parameter 

space and on the right; you see the surface of the space-time. In this parameter space, σ 

extends over a finite interval, while τ can range from minus infinity to infinity. The parameter 

τ is roughly related to the time on the strings much more on the latter; and the parameter σ is 

roughly related to the positions along the strings the world lines of the extremities have a 

constantσ, so they are parametrized by τ. When τ circulates, the time must elapse. So, at least 

at the ends. 

 𝜕𝑋0

𝜕𝜏
 
𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡

≠ 0                                                           (5.29)  

We assume that this also holds for other values of σ 

To find the element of the zone, we proceed as in the case of the spatial surface this time 

using the relativistic notation. The situation is illustrated in Figure 5.4. A small rectangle of 

dimension dτetdσ in the parameter space becomes a quadrilateral element in space-time. This 

quadrilateral is traversed by the vectors 𝑑𝑣1
𝜇

and 𝑑𝑣1
𝜇

. Furthermore 

𝑑𝑣1
𝜇

=
𝜕𝑋𝜇

𝜕𝜏
𝑑𝜏 ,              𝑑𝑣2

𝜇
=

𝜕𝑋𝜇

𝜕𝜏
𝑑𝜍                                     (5.30)       

Which are analogous to our previous spatial formulas (5.2)? We can now use the analog of 

(5.4) as candidate for the surface element dA: 
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𝑑𝐴   𝑑𝑣1, 𝑑𝑣1  𝑑𝑣2, 𝑑𝑣2 −  𝑑𝑣1, 𝑑𝑣2 2
=

?
                                    (5.31) 

Where the point is the relativistic scalar product? The use of this scalar product guarantees 

that the surface element is invariant to Lorentz: it is an appropriate zone element. Even if it is 

not yet obvious, the sign of the object under the square root is negative. To be able to take the 

square root one must exchange the two terms under the square root. This sign change has no 

effect on the Lorentz invariance. By doing this, and using (5.30). We find that the appropriate 

area is given as 

𝐴 =  𝑑𝜏𝑑𝜍  
𝜕𝑋𝜇

𝜕𝜏

𝜕𝑋𝜇

𝜕𝜏
 

2

−  
𝜕𝑋𝜇

𝜕𝜏

𝜕𝑋𝜇

𝜕𝜏
  

𝜕𝑋𝜈

𝜕𝜍

𝜕𝑋𝜈

𝜕𝜍
                             (5.32)    

Using relativistic scalar product notation 

𝐴 =  𝑑𝜏𝑑𝜍  
𝜕𝑋

𝜕𝜏

𝜕𝑋

𝜕𝜍
 

2

−  
𝜕𝑋

𝜕𝜏
 

2

 
𝜕𝑋

𝜕𝜍
 

2

                              (5.33)   

 

For: 
𝜕𝑋

𝜕𝜏

𝜕𝑋

𝜕𝜍
 

2

−  
𝜕𝑋

𝜕𝜏
 

2

 
𝜕𝑋

𝜕𝜍
 

2

≥ 0 at any point on the sheet of the world of a string. 

The local characteristics of the space-time surface drawn by a string are: Consider a point on 

the world map and the entire vectors tangent to the surface at this point. It is stated that in this 

vector space there is a basis made by two vectors, one of which is similar to space and the 

other is of temporal type. This implies that at every point of the world leaf there are tangent 

directions both temporal and spatial. For the fixed-time string case, there may be a finite set of 

exceptional points where tangents to the world's leaf do not include a time vector. At these 

points, as we shall see, the rope moves with the speed of light. 

Example: Consider Figure (5.5) where we show a piece of rope along the x-axis moving with 

the speed of light in the y direction. This string at different times closely separated. Any 

tangent direction of P-sheet is represented by one of these arrows. The tangent world leaf 

vector associated with PQ is clearly similar to space, since P and Q occur at the same time. 

The typical tangent that associated with the arrow PR is always on the scale: in the elapsed 

time, P can reach 𝑅  at the speed of light, but arrive at R It must move faster than the light. 

 

FIGURE 5.5 a chord along the x direction moving with the speed of light in the y 

direction. This movement is not allowed. All tangent vectors of the world leaf at any 

point P of the chain are either spatial or null 
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All tangent directions are scaled, except the one associated with PS, which is zero. This shows 

that there is no temporal tangent to P. So there is no temporal vector tangent to the world leaf. 

Indeed, in our framework, the events defining the chain are simultaneous but spatially 

separated. 

We now consider the world line of a point particle. The vector tangent to the world line of a 

particle is temporal. At each point of the world line, this tangent vector can be used to 

describe an instant observer of Lorentz who sees the particular rest. It describes a particle that 

moves faster than the speed of light. But the string is not made up of constituents whose 

position we can follow (in exception: we can follow the ends of an open string). However, a 

tangent close to the world leaf at a given point in a string can describe an instant Lorentz 

observer who sees the point at rest. If there is a tangent similar to dawn, there are many, by 

continuity. 

Looking at a string at two closely separated moments we cannot tell which point went where, 

but for each point P on the final string, we must find a point 𝑃᾽on the initial string which 

could reach P in motion with less of or at most equal to c. The existence of temporal 

directions and spatial directions at any regular point on the sheet of the world is the criterion 

for physical movement. This ensures that equation (5.33) makes sense. 

 CLAIM: 

At every point P on the leaf of the world where there is both a temporal direction and spatial 

direction, the quantity under the square root in (5.33) is positive: 

 
𝜕𝑋

𝜕𝜏
 .

𝜕𝑋

𝜕𝜍
 

2

−  
𝜕𝑋

𝜕𝜍
 

2

 
𝜕𝑋

𝜕𝜏
 

2

> 0                                                (5.34)   

 

 

 

EVIDENCE: 

Consider the set of tangent vectors 𝑣𝜇 (λ) to P obtained as: 

𝑣𝜇  𝜆 =
𝜕𝑋𝜇

𝜕𝜏
+ 𝜆

𝜕𝑋𝜇

𝜕𝜍
                                                     (5.35) 

Where λ∈ (-∞, ∞) is a parameter. Since (∂𝑋𝜇 ) /∂τ and (∂𝑋𝜇 ) /∂σare linearly independent 

tangent vectors, when we vary λ, we get, until constant scales, all vectors tangent to P, 

including (∂𝑋𝜇 ) /∂σ which is obtained in the limit λ⟶∞ (figure 5.6). The constant scaling of a 

vector decided if a vector is similar to a time or a space. To determine i𝑣𝜇 (λ) is similar to a 

like volume or a spacelike, we consider its square: 

𝑣2(λ) = 𝑣𝜇  (λ) 𝑣𝜇 (λ) = 𝜆2  
𝜕𝑋

𝜕𝜍
 

2

+ 2λ 
𝜕𝑋

𝜕𝜏
.
𝜕𝑋

𝜕𝜍
  +  

𝜕𝑋

𝜕𝜏
 

2

                                                (5.36) 
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𝑣2(λ) Must take both negative and positive values when λ is different.𝑣2(λ) = 0, must have 

two real roots. For this to happen, we see that this requires 

 
𝜕𝑋

𝜕𝜏
.
𝜕𝑋

𝜕𝜍
 

2

+  
𝜕𝑋

𝜕𝜍
 

2

 
𝜕𝑋

𝜕𝜏
 

2

> 0                                                                                      (5.37) 

This is precisely the condition (5.34) that has been tried to prove. 

𝑣2(λ)> 0, except for a value of λ where 𝑣2vanishes. The equation 𝑣2(λ) = 0 must have a 

unique root and the associated discriminated is zero. Any possible movement of the P-string 

must be associated with a P-sheet tangent of the world. Since motion along spatial directions 

is non-physical, only the null vector provides an acceptable response: the string moves with 

velocity light in P. 

 

Figure 5.6: On the left: a set of tangent vectors v(λ) at a point P on the world map. On 

the right: a graph of 𝒗𝟐(λ) as a function of λ. The vector 𝒗(λ) can be of spatial or 

timelike type depending on the value of λ. 

 

5-4 The action of Numbo-Goto string 

 

After finding the appropriate area and using the following relativistic scalar product notation: 

𝐴 =  𝑑𝜏𝑑𝜍  
𝜕𝑋

𝜕𝜏

𝜕𝑋

𝜕𝜍
 

2

−  
𝜕𝑋

𝜕𝜏
 

2

 
𝜕𝑋

𝜕𝜍
 

2

 

One is sure that the functional zone in (5.33) is correctly defined; one can introduce the action 

for the relativistic string. This action is proportional to the appropriate area of the world map. 

The functional area in (5.33) has units of length squared, as it should be. This is because 𝑋𝜇 a 

unit of length, and each term under the square root has four X. The units of τand of σ cancel 

each other out. The units of the two terms cancel each other against the units of the 

differentials. Nevertheless, we will take σ to have units of length and τ to have units of time. 

We do this by anticipating a relation between τ and time and between σ and the positions on 

the strings to sum up: 
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 𝜏 = 𝑇,   𝜍 = 𝐿, 𝑋𝜇  = 𝐿 ,  𝐴 = 𝐿2                                                                                (5.38) 

Since σ must have units of M𝐿2/T and A units of 𝐿2, the appropriate area must be multiplied 

by an amount with A/T units. The tension of the rope𝑇0 has units of force and the force 

deviated by the velocity has desired units of M/T. One can thus multiply the clean surface by 

𝑇0/𝑐  to obtain a quantity with the units of action by using (5.33), one defines the action of 

string equal to 

𝑆 = −
𝑇0

𝑐
 𝑑𝜏

𝜏𝑓

𝜏𝑖
 𝑑𝜍

𝜍1

0
  𝑋. 𝑋᾽ 

2
−  𝑋  

2
 𝑋᾽ 2                             (5.39) 

Here, 𝜍1>0 is a constant. And we introduced a notation for derivatives: 

𝑋 𝜇 ≡
𝜕𝑋𝜇

𝜕𝜏
 ;     𝑋𝜇᾽ ≡

𝜕𝑋𝜇

𝜕𝜍
                                                       (5.40) 

Action S is the Nambu-Goto action for the relativistic string. 

It is essential that this action be invariant reparameterization. 

We can proceed as we did with spatial surfaces to write the Naubu-Goto action in an 

invariable way by reparameterization. In this case we have 

−𝑑𝑆 = 𝑑𝑋𝜇𝑑𝑋𝜇 = 𝜂𝜇𝜈𝑑𝑋𝜇𝑑𝑋𝜈 = 𝜂𝜇𝜈
𝜕𝑋𝜇

𝜕𝜉𝛼

𝜕𝑋𝜈

𝜕𝜉𝛽 𝑑𝜉𝛼𝑑𝜉𝛽                  (5.41)  

Here 𝜂𝜇𝜈  is the Minkowski metric of the target space. 

  

The indices αand β pass through two values, 1 and 2, and we have taken 𝜉1=τ,𝜉2=σ. Just as 

we did for the spatial surface, we define an induced metric 𝛾𝛼𝛽  on the sheet of the world: 

𝛾𝛼𝛽 ≡ 𝜂𝜇𝜈
𝜕𝑋𝜇

𝜕𝜉𝛼

𝜕𝑋𝜈

𝜕𝜉𝛽 =
𝜕𝑋

𝜕𝜉𝛼 .
𝜕𝑋

𝜕𝜉𝛽                                                     (5.42) 

More explicitly, the matrix 2 par2 𝛾𝛼𝛽  is 

𝛾𝛼𝛽 =  
 𝑋  

2
𝑋 . 𝑋᾽

𝑋 . 𝑋᾽  𝑋᾽ 2
                                                          (5.43) 

With the help of this metric, we can write the action Nambu-Goto in the invariant form 

obviously reparameterization 

𝑆 = −
𝑇0

𝑐
 𝑑𝜏𝑑𝜍 −𝛾    .       𝛾 = 𝑑𝑒𝑡 𝛾𝛼𝛽                                             (5.44) 

Not only is action (5.44) obviously reparametric, but it is also more compact than (5.39). 

In this form, one can easily generalize the Nambu-Goto action to describe the dynamics of 

objects that have more dimensions than strings. An action of this kind is useful as a first 

approximation of the dynamics of D-brandes. 
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5-5 Movement equations, boundary conditions and D-branes 

 

In this section, we will obtain the equations of motion which follow by the variation of the 

action of the string. Indeed we will have the opportunity to discuss various boundary 

conditions that will be interpreted as being due to the existence of D-branes. 

We begin by writing the action Nambu-Goto (5.39) as the integral of a Lagrangian density L 

𝑆 =  𝑑𝜏
𝜏𝑓

𝜏𝑖
𝐿 =  𝑑𝜏  𝑑𝜍

𝜍1

0

𝜏𝑓

𝜏𝑖
 ℒ 𝑋 𝜇 , 𝑋𝜇᾽                                                (5.45) 

Where L is given by 

ℒ 𝑋 𝜇 , 𝑋𝜇᾽ = −
𝑇0

𝐶
  𝑋 , 𝑋᾽ 

2
−  𝑋  

2
 𝑋᾽ 2                                 (5.46)  

We can obtain the equations of motion for the relativistic string by putting the variation of the 

action (5.45) to zero. The variation is simply  

𝛿𝑆 =  𝑑𝜏
𝜏𝑓

𝜏𝑖
 𝑑𝜍

𝜍1

0
 

𝜕ℒ

𝜕𝑋 𝜇
𝜕 𝛿𝑋𝜇  

𝜕𝜏
+

𝜕ℒ

𝜕𝑋𝜇 ᾽

 𝛿𝑋𝜇  

𝜕𝜍
                                            (5.47) 

Where we used 

𝛿𝑋 𝜇 = 𝛿  
𝜕𝑋𝜇

𝜕𝜏
 =

𝜕 𝛿𝑋𝜇  

𝜕𝜏
                                                         (5.48) 

And an analogous equation for𝛿𝑋𝜇᾽. 

The quantities 
𝜕ℒ

𝜕𝑋 𝜇  and 
𝜕ℒ

𝜕𝑋𝜇 ᾽  will appear frequently throughout the rest of the discussion, so it 

is useful to introduce new symbols for them. That's just what we did when we studied the 

non-relativistic string and found 

𝑃𝜇
𝜏 ≡

𝜕ℒ

𝜕𝑋 𝜇
= −

𝑇0

𝐶

 𝑋 .𝑋᾽ 𝑋᾽𝜇 − 𝑋᾽ 2𝑋 𝜇

  𝑋 .𝑋᾽ 2− 𝑋  2 𝑋᾽ 2
                                      (5.49) 

 

𝑃𝜇
𝜍 ≡

𝜕ℒ

𝜕𝑋𝜇 ᾽ = −
𝑇0

𝐶

 𝑋 .𝑋᾽ 𝑋᾽𝜇 − 𝑋  2𝑋᾽𝜇

  𝑋 .𝑋᾽ 2− 𝑋  2 𝑋᾽ 2
                                       (5.50)  

Using this notation, the variation δS in (5.47) becomes (5.51) 

𝛿𝑆 =  𝑑𝜏
𝜏𝑓

𝜏𝑖
 𝑑𝜍  

𝜕

𝜕𝜏
 𝛿𝑋𝜇𝑃𝜇

𝜏 +
𝜕 𝛿𝑋𝜇 𝑃𝜇

𝜍  

𝜕𝜍
− 𝛿𝑋𝜇  

𝜕𝑃𝜇
𝜏

𝜕𝜏
 +  

𝜕𝑃𝜇
𝜍

𝜕𝜍
  

𝜍1

0
     (5.51)  

The first term on the right side, being a complete derivative in t, will give terms proportional 

to 𝛿𝑋𝜇 𝑡𝑓 , 𝜍  and𝛿𝑋𝜇  𝑡𝑖 , 𝜍  . Since the flux of τ implies the passage of time, we can imagine 

specifying the initial and final states of the string, and we restrict ourselves to the variations 

for which𝛿𝑋𝜇 𝑡𝑓 , 𝜍 =𝛿𝑋𝜇  𝑡𝑖 , 𝜍 = 0. The variation then becomes 

𝛿𝑆 =  𝑑𝜏
𝜏𝑓

𝜏𝑖
 𝛿𝑋𝜇𝑃𝜇

𝜍  −  𝑑𝜏
𝜏𝑓

𝜏𝑖
 𝑑𝜍

𝜍1

0
𝛿𝑋𝜇  

𝜕𝑃𝜇
𝜏

𝜕𝜏
+

𝜕𝑃𝜇
𝜍

𝜕𝜏
                    (5.52)  
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Since the second term on the right side must disappear for all the variations 𝛿𝑋𝜇  on the 

movement, we put  

𝜕𝑃𝜇
𝜏

𝜕𝜏
+

𝜕𝑃𝜇
𝜍

𝜕𝜏
= 0                                                                (5.53)   

This is the equation of motion for the relativistic string, open or closed. This equation is so 

complicated. The key to its solution lies in the invariance of reparameterization of the 

Nambu-Goto action. 

The first term on the right side of (5.52) concerns the ends of the string. It is, in fact, a 

collection of terms that includes two terms for each value of the index. More explicitly, the 

list  

 𝑑𝜏 𝛿𝑋0 𝜏, 𝜍1 𝑃0
𝜍 𝜏, 𝜍1 − 𝛿𝑋0 𝜏, 0 𝑃0

𝜍 𝜏, 0 + 𝛿𝑋1 𝜏, 𝜍1 𝑃1
𝜍 𝜏, 𝜍1 −

𝜏𝑓

𝜏𝑖

𝛿𝑋1 𝜏, 0 𝑃1
𝜍 𝜏, 0 + ⋯ …… . 𝛿𝑋𝑑 𝜏, 𝜍1 𝑃𝑑

𝜍 𝜏, 𝜍1 − 𝛿𝑋𝑑 𝜏, 0 𝑃𝑑
𝜍 𝜏, 0                              (5.54) 

The boundary conditions for each term of the above is a total of 2D = 2 (d + 1) boundary 

conditions. 

If we focus on a single term, that is, we set μ and choose an end. Let σ * be the coordinate σ 

of an end; 𝜍∗ can be zero or equal to𝜍1. 

As before, there are two natural boundary conditions that can be imposed on an endpoint. 

The first is a boundary condition of Dirichlet, in which the end of the string remains fixed 

throughout the movement: 

Dirichlet boundary condition: 

𝜕𝑋𝜇

𝜕𝜏
 𝜏, 𝜍∗ = 0.                   𝜇 ≠ 0                                  (5.55)  

As the time varies with τ (see (5.29)), the value μ = 0 must be excluded. Since the constant in 

τ means the constant in time, the equation (5.55) implies that the μ coordinate of the end of 

the selected string is fixed in time. 

We can specify a constant value for𝑋𝜇  𝜏, 𝜍∗ . If the end of the string is fixed, the variations 

are defined to disappear there 𝜕𝑋𝜇  𝜏, 𝜍∗ . 

       The second possible limit condition is a free endpoint condition 

𝑃𝜇
𝜍 𝜏, 𝜍∗ = 0                                                            (5.56)   

This condition, if necessary, also results in the disappearance of the relevant term in (5.5). 

This is called a free endpoint condition because it imposes no constraint on the 

variation 𝜕𝑋𝜇  𝜏, 𝜍∗   of the string coordinate at the end is free to do whatever is necessary to 

to make disappear the variation of the action. The limit condition of the free end must apply 

for μ = 0. 

𝑃0
𝜍 𝜏, 𝜍1 = 𝑃0

𝜍 𝜏, 0 = 0                                                 (5.57)  
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For the non-relativistic chain, the boundary condition of the free end implies the 

disappearance of 𝑃𝑥 , which imposes a boundary condition of Neumann on the coordinate of 

the string. 

 

 

 

Fig5-7 A brane D2- stretched on the plane (𝑿𝟏, 𝑿𝟐). The end of the open string can move 

freely on the plane but must remain attached to it. The 𝒙𝟑 coordinate of the ends must 

disappear at any time. This is a boundary condition of Dirichlet for the string 

coordinate𝒙𝟑. 

We end up understanding (5.56) in terms of a boundary condition of Neummann. Similarly, 

the Dirichlet limit (5.55) will be involved in the disappearance of 𝑃𝜇
𝜏  ends of the string. 

To explain the case of the boundary conditions of  Dirichlet. It is clear from the non-

relativistic sting study that the boundary conditions of Dirichletoccur if the ends of the strings 

are attached to certain physical objects. For example, consider the following figure; 

 

Fig. 5-8 Left: strings with boundary conditions of Dirichlet at the ends. Right: string 

with Neumann boundary conditions at the ends 

On the left, the string is attached to two points on the right, the rope is free to slide up and 

down at the ends; the ends of the strings are forced to remain on one-dimensional lines and 

the horizontal movement of the ends is forbidden. 
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The objects on which the ends of the open strings must bear are characterized by their 

dimensionality, more precisely by the number of spatial dimensions they possess. They are 

called D-branes, where the letter D means Dirichlet. The objects that fix the ends of the 

strings on the left side of figure 4.2 are of dimension zero. They are called D0-branes. The 

lines that bind the ends of the strings on the right side of the figure are one dimension. They 

are called D1-branes. 

A𝐷𝑝 -brane is an object with spatial dimensions. Since string endpoints must be on point 𝐷𝑝a 

Dirichlet boundary condition set is specified. A second plane 𝐷2 in a three-dimensional space, 

for example, is specified by a condition. Say 𝑥3 = 0 (Figure 5.7). This means that the brane𝐷2 

expands on the plane (𝑥1, 𝑥2). The Dirochlet limit condition applies to the string 

coordinate𝑋3, which must disappear at the ends of the string. Since the movement of the ends 

of the open strings is free in the direction of the brane, the coordinates of the strings 𝑋1 and 

𝑋2 satisfy the free boundary conditions. When open-ended endpoints have free-bound 

conditions in all directions of space, we still have a D-brane, but this time it's a D-brane filling 

the space. The D-brane extends over the entire space, and since the open string ends may be 

anywhere on the D-brane, the open string ends are completely free. For relativistic (quantum) 

strings, the coherence of the boundary conditions of Dirichlet makes it possible to discover 

the properties of D-brane. Are physical objects existing in a string theory and are not 

introduced by hand. D-branes have computable energy densities and a host of remarkable 

properties. 

 

5-6 the static gauge 

To progress in understanding the action of the relativistic string, it is very useful to set the 

world map. The choice of the parameterization was done freely because of the invariance of 

reparametrisation of the action of string. Invariance by reparamétrisation in the theory of the 

strings is analogous to the invariance of the gauges in electrodynamics. Maxwell's equations 

have a symmetry under Gauge transformations that allows to use different potentials 𝐴𝜇 to 

represent the same electromagnetic fields𝐸  and𝐵  . In the same way one can use many different 

grids on the sheet of the world to describe the same physical movement of the rope. An 

appropriate choice of the grid facilitates this task. The equation of motion of the relativistic 

particle is simpler when the trajectory is parameterized by the proper time. 

In this section we will discuss only partial setting on the world sheet. We will fix the lines of 

the constant τen relating τ to the time coordinate 𝑋0= cst in a chosen Lorentz plot. The 

constant time hyper plane t =𝑡0,is considered in the target space (Figure 5.8). This plane 

intersects the world sheet along a curve. The string at time𝑡0, and the curve is a curve of 

constant τ; in fact, one declares at the curve τ =𝑡0, and that for every point Q on the sheet of 

the world. 

τ(Q) = t (Q)                                                                   (5.58) 

This τ parameterization is called static gauge because the constant lines τ are "static strings" 

in the chosen Lorentz frame. 
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For an open string, one edge of the world leaf will be chosen as the curve σ = 0 and the other 

as the curve σ = 𝜍1 

σ∈ [0,𝜍1], for an open string (5.59). 

We will draw lines of constants σ on the surface in a completely arbitrary way, provided, of 

course, that the constant linesσ vary smoothly do not intersect and are in agreement with the 

two curves which are the boundary of the leaf of the world (Figure 5.8). 

 

Figure 5-9. Left: the parameter space band for an open string. The vertical segment AB 

is the line τ = 𝒕𝟎.Right: the world map of the string open in the target space. The string 

at time t =𝒕𝟎 is the intersection of the world leaf with the hyper plane t =𝒕𝟎. In the static 

gauge, the string at time t = 𝒕𝟎 is the image of τ = 𝒕𝟎segment AB. 

To draw lines of constantσ is equivalent to giving an explicit parameterization σ to all the 

strings. For the closed strings, one applies the same ideas, but there is an important condition: 

there must be identification in the space of the parameters (τ, σ). The directionσ must be 

transformed into a circle, which makes the parameter space (τ, σ) in a cylinder. This is 

necessary because the closed-string world map is logically a cylinder. 𝜍𝑐  Indicates the 

circumference of the circle σ, the identification is 

 𝜏, 𝜍 ~ 𝜏, 𝜍 + 𝜍𝑐                                                          (5.60)       

The points that are identified by this relationship on the parameter space map at the same 

point on the closed chain world map. Closed strings can be parameterized using any interval 

of length σ, for example 

𝜍 ∈  0, 𝜍𝑐 . For a closed string                               (5.61)  

We will now see some implications of our choice of τ. We can write (5.58) as 

𝑋0 𝜏, 𝜍 ≡ 𝑐𝑡 𝜏, 𝜍 = 𝑐𝜏                                                   (5.62)  

Or simply 

𝜏 = 𝑡                                                                     (5.63) 

We can therefore describe the collection of string coordinates 𝑋𝜇 as 

𝑋𝜇  𝜏, 𝜍 = 𝑋𝜇  𝑡, 𝜍  𝑐𝑡, 𝑋    𝑡, 𝜍                               (5.64)  
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𝑋  Represent the coordinates of the space string. 

𝜕𝑋𝜇

𝜕𝜍
=  

𝜕𝑋0

𝜕𝜍
,
𝜕𝑋  

𝜕𝜍
 =  0,

𝜕𝑋  

𝜕𝜍
  . 

𝜕𝑋𝜇

𝜕𝜏
=  

𝜕𝑋0

𝜕𝑡
,
𝜕𝑋  

𝜕𝑡
 =  0,

𝜕𝑋  

𝜕𝑡
                                                                         (5.65)  

Note that this setting separates the time and space components in a very clear way. 

Now we can do a simple test to confirm that we got the right sign under the radical in the 

Nambu-Goto action (5.39). 

Imagine a small piece of string without velocity. Because it does not move, 
𝜕𝑋  

𝜕𝑡
= 0 and using 

(5.65), the square root in (5.39) becomes 

 0 −
𝜕𝑋  

𝜕𝜍

2

 −𝑐2                                                          (5.66)   

The quantity under the square root is positive, as expected 

 

5-7 Tension and energy of a tense rope 

We now do our first calculation with the Nam-Goto action, our first calculation in string 

theory. 

Our analysis on a stretched relativistic string. 

The ends of the string are set to 𝑥1= 0 and 𝑥1= a> 0 with null values for the coordinates of the 

additional spatial dimensions. We therefore designate the spatial coordinates of the 

extremities as (0,0  ) and (a,0  ). The inclusion of the common vector (d,-1) -dimensional 0   tells 

us that the string is only stretched along the first spatial coordinate. The action of the string 

for this stretched string is evaluated using the static gauge 𝑋0= cτ. 

Because it is a static string stretched from 𝑋1 = 0 to 𝑋1 = a, we can write 

𝑋1 𝑡, 𝜍 = 𝑓 𝜍 , 𝑋2 = 𝑋3 = ⋯ … … … … . . = 𝑋𝑑 = 0                           (5.67)  

Where  

𝑓 0 = 0,𝑓 𝜍1 = 𝑎                                                       (5.68)  

And the function f is strictly increasing and continuous over the intervalσ∈ [0, 𝜍1]. The 

configuration is shown in Figure (6.9). It is guaranteed that each string point is assigned a 

unique σ coordinate. 
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Fig.5-10.A string of length stretched along the axis𝑿𝟏. The string is parametrized 

as𝑿𝟏(t,σ) = f (σ). 

It now follows. 

𝑋 𝜇 =  𝑐, 0, 0   , 𝑋 𝜇 =  0, 𝑓᾽, 0   ,                                           (5.69)    

With𝑓᾽ = 𝑑𝑓/𝑑𝜍 > 0 

𝑋 2 = −𝑐2,  𝑋᾽ 2 =  𝑓᾽ 2, 𝑋 𝑋᾽ = 0                                 (5.70)  

We can now evaluate the action (6.39): 

𝑆 = −
𝑇0

𝑐
 𝑑𝑡  𝑑𝜍 0 −  −𝑐2  𝑓᾽ 2𝜍1

0
= −𝑇0  𝑑𝑡  𝑑𝜍

𝑑𝑓

𝑑𝜍

𝜍1

0

𝑡𝑓

𝑡𝑖

𝑡𝑓

𝑡𝑖
           (5.71)  

The integrator σ is a total derivative, so 

𝑆 = −𝑇0  𝑑𝑡 𝑓 𝜍1 − 𝑓 0  =
𝑡𝑓

𝑡𝑖
 𝑑𝑡

𝑡𝑓

𝑡𝑖
 −𝑇0𝑎                                     (5.72) 

This is an explicit confirmation of the reparmeterization invariance of the string action. 

Reminder: the action is the temporal integral of Lagrangian L. When the kinetic energy 

disappears, L = -V, where V is the potential energy. Since our string is static, there is no 

kinetic energy, so 

𝑆 =  𝑑𝑡 −𝑉 
𝑡𝑓

𝑡𝑖
                                                     (5.73)   

Comparing this with (6.72) we conclude that 

𝑉 = 𝑇0𝑎                                                                      (5.74)  

The potential energy of our tight rope is just𝑇0𝑎. 

So if the voltage of a static string is𝑇0, whatever its length, 𝑇0 𝑎is the amount of energy that 

must be spent to create a string of length 𝑎. 

If we begin to draw an infinitesimal string, we give energy to the rope; in fact we create rest 

or mass energy at rest. The remaining mass 𝜇0 per unit length is 
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𝜇0𝑐2 =
𝑉

𝑎
= 𝑇0       → 𝜇0 =

𝑇0

𝑐2                                                           (5.75)  

The mass (or energy of rest) arise only because the rope has a tension. For this reason, the 

relativistic string is sometimes referred to as mishmash. 

Because of (5.69), 𝑛𝑖𝑋 𝜇𝑛𝑖𝑋𝜇᾽ have no dependence. Therefore, neither 𝑛𝑖𝑃𝜏𝑛𝑖𝑃𝜍 is dependent 

(see (5.49) and (5.50)), which is the case, the equation of motion (5.53) is reduced to 

𝜕𝑃𝜇
𝜍

𝜕𝜍
= 0                                                                     (5.76)   

This requires that 𝑃𝜇
𝜍be independent of σ. We still look at (5.50) and we use (5.70) to find 

𝑃𝜇
𝜍 = −

𝑇0

𝑐

𝑐2𝑋᾽𝜇

 𝑐2 𝑓᾽ 2
= −𝑇0

𝑋᾽𝜇

𝑓᾽
                                         (5.77)  

This c is not zero only for μ = 1 in which case𝑋᾽1 = 𝑓᾽, so 𝑃𝜍  is indeed independent of σ. So 

the equation of motion is satisfied. Even the boundary conditions are satisfied. For the zero 

coordinate, the equation (5.57) requires the free boundary condition 𝑃0
𝜍= 0. This goes for 

(5.77). 

 

5-8 Action in terms of transverse speed 

 

The choice of the partial parameterization of the sheet of the world which has been made 

imposes the condition 𝑋0= ct = cτ. 

Then the constant line τ on the sheet of the world corresponds to the string, as seen by the 

observer of Lorentz chosen at the time, at the particular time t = τ. 

What kind of rope velocity can we define? 

Since the components of 𝑋 (t, σ) are spatial coordinates of the string, the derivative ∂𝑋 /∂t 

seems to be the closest thing to velocity. This speed, however, depends on the choice ofσ. Its 

direction, for example, goes in the direction of constants σ. 

The physical setting of the parameterizationσ of a string is subtle because the string is an 

object without substructure. To talk about points on the string one needs a parameterization, 

and the invariance of reparamétrisation makes it possible to understand that this 

parameterization is not unique. This suggests that the longitudinal movement of the rope has 

no physical meaning. There is an invariant reparamétrisation speed which can be defined on 

the string. It is however a transverse speed. 
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Interpretation of Figure (5.10): 

We consider the movement of the rope in space; imagine that each point of the rope moves 

transversely to the rope. Consider a string at a certain time t and choose a point above. Draw 

the orthogonal hyperplane to the string on p. At time t +𝑑𝑡, with infinitesimal, the string has 

moved, but it will always intersect the plane, this time at a point p. The transverse velocity is 

what we obtain if we suppose that the point p has moved towards p. No channel 

parameterization is needed to set this velocity. 

 

Figure 5-11 A string at time t and the point orthogonal to the string at p. At the instant 

+𝒅𝒕, the string cuts the plane in p. To define the transverse velocity, we assume that p 

has passed to p. 

The transverse velocity 𝑣 ⊥  at any point of the string is a vector orthogonal to the string and 

tangent to the spatial surface of the string. Since 𝑣 ⊥ is an invariant notion of speed of 

reparametrisation of the string, it is expected that it naturally enters into the evaluation of the 

action of the string. 

To define the transversal velocity 𝑣    ⊥, it is useful to have a unit vector tangent to the string. 

Finally we now introduce a parameter s which is more physical than our almost arbitrary σ: s 

measures the length along the string. 

We define s (σ) as the length of the string in the interval [0, σ]. For example, s (0) =0, and 

s(𝜍1) is the length of an entire open string. Since 𝑑𝑠 is the length of the infinitesimal vector 

d𝑋  that comes from an interval dσ along the string, we have: 

𝑑𝑠 =  𝑑𝑋  =  
𝜕𝜍

𝜕𝜍
  𝑑𝜍                                                             (5.78)  

We now consider the quantity 𝜕𝑋 /∂s, which is the rate of change of 𝑋 with respect to the 

length of the chain. Note that it is a unit vector: 

𝜕𝑋  

𝜕𝑠
.
𝜕𝑋  

𝜕𝑠
=

𝜕𝑋  

𝜕𝜍
.
𝜕𝑋  

𝜕𝜍
 

𝜕𝜍

𝜕𝑠
 

2

=  
𝜕𝑋  

𝜕𝜍
 

2

 
𝜕𝜍

𝜕𝑠
 

2

= 1                                             (5.79)   

The derivative (∂X  ) / ∂σ is taken with t held fixed, so that it lies along a constant line. Since 

the lines of the constant t. Are precisely the strings, they are tangents to the rope. In addition 

𝜕𝑋  

𝜕𝑠
=

𝜕𝑋  

𝜕𝜍

𝜕𝜍

𝜕𝑠
                                                                      (5.80)  
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And so 
𝜕𝑋  

𝜕𝑠
 is also tangent to the string. Because he has the length of the unit. 

𝜕𝑋  

𝜕𝑠
Is a unit vector tangent to the string (5.81) 

 

Fig5-12 a small piece of the world leaf showing the vector
𝝏𝑿   

𝝏𝒕
, the transverse velocity 𝒗   ⊥ 

and the unit vector
𝝏𝑿   

𝝏𝒔
 . 

𝒗   ⊥ is taken as the component of the velocity
𝝏𝑿   

𝝏𝒕
 , in the direction perpendicular to the string 

(see figure5 .11). Using our unit vector
𝝏𝑿   

𝝏𝒔
 along the string, we have 

𝑣 ⊥ =
𝜕𝑋  

𝜕𝑡
−  

𝜕𝑋  

𝜕𝑡
.
𝜕𝑋  

𝜕𝑠
 

𝜕𝑋  

𝜕𝑠
                                                  (5.82)    

The calculation of𝑣2
⊥ gives: 

𝑣2
⊥ =  

𝜕𝑋  

𝜕𝑡
 

2

−  
𝜕𝑋  

𝜕𝑡
.
𝜕𝑋  

𝜕𝑠
 

2

                                                (5.83)   

Now, our goal is to write the chord action in terms of 𝑣 ⊥ and other quantities, if necessary. 

Using the static gauge τ = t, and the equations (5.65), we find 

 𝑋  
2

= −𝑐2 +  
𝜕𝑋  

𝜕𝑡
 

2

 ,  𝑋᾽ 2 =  
𝜕𝑋  

𝜕𝜍
 

2

,  𝑋 𝑋᾽ =
𝜕𝑋  

𝜕𝑡

𝜕𝑋  

𝜕𝜍
                                                        (5.84)  

With these relationships, we simplify the argument of the square root in the string 

action: 𝑋 . 𝑋᾽ 
2

−  𝑋  
2
 𝑋᾽ 2 =  

𝜕𝑋  

𝜕𝑡
.
𝜕𝑋  

𝜕𝜍
 

2

+  𝑐2 −  
𝜕𝑋  

𝜕𝑡
 

2

  
𝜕𝑋  

𝜕𝜍
 

2

=

                                                      
𝜕𝑠

𝜕𝜍
 

2

  
𝜕𝑋  

𝜕𝑡
.
𝜕𝑋  

𝜕𝑠
 

2

+ 𝑐2 −  
𝜕𝑋  

𝜕𝑡
 

2

                                            (5.85)   

The terms on the right side above can be perfectly expressed in terms of𝑣⊥
2 . Using (5.83). 

 𝑋 . 𝑋᾽ 
2

−  𝑋  
2
 𝑋᾽ 2 =  

𝜕𝑠

𝜕𝜍
 

2
 𝑐2 − 𝑣⊥

2                                      (5.86)  
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Or 

  𝑋 . 𝑋᾽ 
2

−  𝑋  
2
 𝑋᾽ 2 = 𝑐

𝜕𝑠

𝜕𝜍
 1 −

𝑣⊥
2

𝑐2                                       (5.87) 

This simple expression for the Lagrangian string shows that 𝑣 is a natural dynamic variable. 

Moreover the longitudinal component of the speed is completely out of rest. Now we can 

write the string action as 

𝑆 = −𝑇0  𝑑𝑡  𝑑𝜍
𝜍1

0
 

𝑑𝑠

𝑑𝜍
  1 −

𝑣2

𝑐2                                  (5.88)  

Here 
𝑑𝑠

𝑑𝜍
= 𝜕𝑋 /𝜕𝜍 . 𝑑σ is not cancelled because it is useful to have an integral over a fixed 

parameter range. So the range of σ is constant. We introduce s as the function of σ which 

gives the length of the string at a fixed time. This definition, used at different times, confers a 

temporal dependence that can be relevant if we compare strings at different times. 

The associated Lagrangian is given by 

𝐿 = −𝑇0  𝑑𝑠  1 − 𝑣⊥
2                                                    (5.89)     

Expression (6.89) is like the natural generalization of the Lagrangian relativistic particle (5.8). 

Action (6.88) is valid for both open strings. 

Although relatively simple, it leads to rather complicated equations of motion in all but the 

most symmetrical situations. 

We end this section by simplifying the expressions (5.49) and (5.50) for 𝑃𝜏𝜇 and 𝑃𝜍𝜇  in the 

static gauge. 

For  𝑃𝜍𝜇 . Its denominator is given in (5.87) and its numerator is simplified using relations 

(5.84). We find 

𝑃𝜍𝜇 = −
𝑇0

𝑐

 
𝜕𝑋    

𝜕𝜍
.
𝜕𝑋    

𝜕𝑡
 𝑋 𝜇 − −𝑐2+ 

𝜕𝑋    

𝜕𝑡
 

2

 𝑋𝜇 ᾽

𝑐
𝑑𝑠

𝑑𝜍
 1−𝑣⊥

2
                                            (5.90)  

By rising the 𝑑𝑠/ dσ of the denominator to the numerator, we can transform the derivatives 

with respect to σen derivatives with respect to σ. 

𝑃𝜍𝜇 = −
𝑇0

𝑐2

 
𝜕𝑋    

𝜕𝑠
.
𝜕𝑋    

𝜕𝑡
 𝑋 𝜇 + 𝑐2− 

𝜕𝑋    

𝜕𝑡
 

2

 
𝜕𝑋𝜇

𝜕𝑠

 1−
𝑣⊥

2

𝑐2

                                           (5.91)  

The component μ = 0 of this quantity simplifies considerably. Since 𝑋0=𝑐 and  
𝜕𝑋0

𝜕𝑠
= c

𝜕𝑡

𝜕𝑠
 = 0. 

We find 
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𝑃𝜍0 = −
𝑇0

𝑐

 
𝜕𝑋    

𝜕𝑠
.
𝜕𝑋    

𝜕𝑡
 

 1−
𝑣⊥

2

𝑐2

                                                                       (5.92)  

A rather similar calculation for 𝑃𝜏𝜇  gives 

𝑃𝜏𝜇 =
𝑇0

𝑐2

𝑑𝑠

𝑑𝜍

𝑋 𝜇 − 
𝜕𝑋    

𝜕𝑠
.
𝜕𝑋    

𝜕𝑡
 
𝜕𝑋𝜇

𝜕𝑠

 1−
𝑣⊥

2

𝑐2

                                                             (5.93)   
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Chapter 06 

 

𝐃-branes 

>>The most important single thing about string 

theory is that it's a highly mathematical theory , and 

the mathematics holds together in a very tight and 

consistent way . It contains in its basic structure 

both quantum mechanics and the theory of gravity. 

That's big news [1]<<  

Leonard Susskind 

 

Introduction 

So far we have studied the open strings that have been described by coordinates that satisfy all 

the boundary conditions of Neumann. These open strings open on the volume of words of a 

D25-brane filling the space. Here we quantify the open strings attached to 𝐷-branes more 

general. We start with the case of a single 𝐷𝑝 -brane, with 1≤p≤25 then we go on to the case of 

several parallel 𝐷𝑝 -branes where the interactive gauge fields appear and the possibility of 

massive gage fields. We continue with the case of parallel 𝐷-branes of different dimensions. 

 

6-1 𝑫𝒑-branes and boundary conditions 

 

A𝐷𝑝 -brane is an extended object with p spatial dimensions. In the theory of bosonic strings 

where the number of spatial dimension is 25, a brane D25 is a brane filling the space. The 

letter D in𝐷𝑝 -brane represents Dirichlet. From a 𝐷𝑝 -brane, the ends of the open string must 

be on the brane. As will be discussed in more detail below, this requirement imposes a 

number of Dirichlet boundary conditions on the movement of the ends of open strings. 

All the extended objects that teach the theory are not D-branes. The strings for example, are 

1-branes because they are extended objects with a spatial dimension, but they are not branes 

D1. Branes with p spatial dimensions are usually called p-branes. A 0-brane is a kind of 

particle. Just as the world line of a particle is one-dimensional, the world volume of a p-brane 

is (p + 1) dimensional. Among these dimensions p + 1, one is the temporal dimension and the 

other p are spatial dimensions. First we will discuss the concept of D-branes in section (5.5). 

In addition the problem (5.11) considered the classical movement of the open strings ending 

with D-branes of various dimensions. 

https://en.wikiquote.org/wiki/P._A._M._Dirac
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Our main subject in this chapter is the quantification of open strings in the presence of various 

types of D-branes. It is a rich subject with important implications for the problem of building 

realistic physical models using strings. Moreover, the study of D-branes and the gravitational 

fields they produce has led to surprising new discoveries in the study of strong interaction 

gauge theories. 

In this section, the notation required to describe D-brane is put in place and the appropriate 

boundary conditions are stated. We denote d the total number of spatial dimensions in the 

theory: in this case d = 25. The total number of space-time dimensions is 𝐷= d + 1 = 26. A 

𝐷𝑝 -brane with p <25 extends over a p-dimensional subspace of the 25-dimensional space. We 

will focus on the simple 𝐷𝑝 -branes: the ones that are p-dimensional, hyperlanes inside the 

dimension space D. 

How can one specify such hyper planes? 

We need (d-p) linear conditions. In three spatial dimensions (d = 3), a 2-brane (p = 2) is a 

plane and is specified by a linear condition (d-p = 3-2 = 1). For example, z = 0 specifies the 

plane (x, y). Similarly, a string along the z axis (p = 1) is specified by two linear conditions 

(d-p = 3-1 = 2): x = 0ety = 0. 

Now consider a 𝐷𝑝 -brane. We introduce the space-time coordinates 𝑥𝜇  with μ = 0, 1 , ......... 

25 which are divided into two groups. The first group includes tangential coordinates to the 

volume world of the brane. These are the temporal coordinates and the spatial coordinate‘s p. 

The second group includes the coordinates (d-p) normal to the volume-world of the brane. We 

write 

𝑥0 , 𝑥1 , … … … . 𝑥𝑝           
𝐷𝑝𝑐𝑜𝑜𝑟𝑑𝑜𝑛𝑛 é𝑒𝑠𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑒𝑙𝑙𝑒

𝑥𝑝+1, 𝑥𝑝+2, … … … . 𝑥𝑑               
𝐷𝑝𝑐𝑜𝑜𝑟𝑑𝑜𝑛𝑛 é𝑒𝑠𝑛𝑜𝑟𝑚𝑎𝑙𝑒𝑠

                  (6.1) 

The location of the𝐷𝑝 -brane is specified by setting the values of the normal coordinates to the 

brane. With this division in mind, we write 

𝑥𝑎 = 𝑥 𝑎  ,          𝑎 = 𝑝 + 1 … … … … … 𝑑                          (6.2) 

Here the 𝑥 𝑎are a set of constraints (d-p). In a completely analogous way the choral 

coordinates 𝑋𝜇 (τ, σ) are split as 

𝑋0, 𝑋1 , … … …… 𝑋𝑝             
𝐷𝑝𝑐𝑜𝑜𝑟𝑑𝑜𝑛𝑛 é𝑒𝑠𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑙𝑙𝑒𝑠

𝑋𝑝+1, 𝑋𝑝+2, … …… … 𝑋𝑑               
𝐷𝑝𝑐𝑜𝑜𝑟𝑑𝑜𝑛𝑛 é𝑒𝑠𝑛𝑜𝑟𝑚𝑎𝑙𝑒𝑠

 

Since the ends of the open chain must be on the 𝐷𝑝  ramp, the normal coordinates of the brane 

must meet the Dirichlet boundary conditions. 

Since the ends of the open chain must be on the Dp ramp, the normal coordinates of the brane 

must meet the Dirichlet boundary condition 

 𝑋𝑚᾽ 𝜏, 𝜍  
𝜍=0

=  𝑋𝑚᾽ 𝜏, 𝜍  
𝜍=𝜋

= 0𝑚 = 0,1, … …… . . 𝑝                       (6.5) 

These string coordinates are called NN coordinates because both ends satisfy a boundary 

condition of Neumann. We see that the division (6.3) in tangential and normal coordinates 
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and also a division in coordinates that satisfy the boundary conditions of Neumann and 

Dirichlet, respectively 

𝑋0, 𝑋1, … … . . 𝑋𝑝           
𝑁𝑁𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

𝑋𝑝+1, 𝑋𝑝+2, … … . . 𝑋𝑑               
𝐷𝐷𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

                                            (6.6) 

In order to use the light cone gauge, at least one spatial NN coordinate is needed which can be 

used with 𝑋0 to define the coordinates𝑋±. We must assume p≥1. To study them, we need a 

Lorentz covariant quantification. We will label the coordinates of the light-cone as 

𝑋+, 𝑋−,   𝑋𝑖           
𝑁𝑁

  𝑋𝑎   
𝐷𝐷

𝑖 = 2 … . . 𝑝𝑎 = 𝑝 + 1 … … … 𝑑                        (6.7) 

 

6-2 Quantification of open strings on 𝑫𝒑-branes 

 

The procedure of quantizing open strings in the presence of a 𝐷𝑝 -brane, allows us to 

make an analysis to determine the spectrum of the states of open strings and to use this 

result to understand more deeply what happens on the volume The coordinates NN 

𝑋𝑖(τ,σ) satisfy exactly the same conditions which are satisfied by the coordinates 𝑋𝐼 (τ,σ) 

of the cone of light of the open chains attached to a bridle D25. . All the expansions and 

commutations relations for the 𝑋𝑖  coordinates can be obtained from 𝑋𝐼 by replacing I →i 

in the relevant equations. 

Recall : 

𝑋 − ± 𝑋−᾽ =
1

2𝛼᾽

1

2𝑝+  𝑋 𝐼 ± 𝑋𝐼᾽ 
2
                                         (6.8) 

Moreover, the expansion of 𝑋 𝐼 ± 𝑋𝐼᾽ is: 

𝑋 𝐼 ± 𝑋𝐼᾽ =  2𝛼᾽  𝛼𝑛
𝐼 𝑒−𝑖𝑛 𝜏±𝜍 

𝑛∈ℤ                                      (6.9) 

A completely analogous mode expansion maintained for the 𝑋− coordinate; this expansion 

continues to hold unchanged since𝑋−remains an NN coordinate. We summarize as 

2𝑝+𝑝− ≡
1

𝛼᾽
 

1

2
𝛼᾽0𝛼0᾽ +  𝛼᾽−𝑛𝛼𝑛 ᾽ + 𝑎∞

𝑛=1                              (6.10) 

The order constant 𝑎 has been determined to be at least one for the quantization of strings on a 

D25 brane. The cone of light index I = 2 ............, 25, takes values which, for a ramp Dp, are 

executed on the coordinates 𝑖 and DD indicated by a. Consequently. (6.8) now become 

𝑋 − ± 𝑋−᾽ =
1

2𝛼

1

2𝑝+
   𝑋 𝑖 ± 𝑋𝑖᾽ 

2
+  𝑋 𝑎 ± 𝑋𝑎᾽ 

2
                              (6.11) 

Like, the coordinates are extended. 

𝑋 𝑖 ± 𝑋𝑖᾽ =  2𝛼᾽  𝛼𝑛
𝑖 𝑒−𝑖𝑛 𝜏±𝜍 

𝑛∈ℤ                                                     (6.12) 

The coordinates 𝑋𝑎  are those to be studied. 
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Now, the second part of the quantification of open strings attached to a 𝐷𝑝 -brane is discussed. 

The brane normal 𝑋𝑎  coordinates satisfy the wave equation, so that the general solution is a 

superposition of two waves 

𝑋𝑎 𝜏, 𝜍 =
1

2
 𝑓𝑎 𝜏 + 𝜍 + 𝑔𝑎 𝜏 − 𝜍  .                                  (6.13) 

Examiningthe boundary conditions (15.4). A σ = 0 we get 

𝑋𝑎 𝜏, 0 =
1

2
 𝑓𝑎 𝜏 + 𝑔𝑎 𝜏  = 𝑥 𝑎                                             (6.14) 

So that 

𝑔𝑎 𝜏 = 𝑓𝑎 𝜏 + 2𝑥 𝑎           And therefore, 

𝑋𝑎 𝜏, 𝜍 = 𝑥 𝑎 +
1

2
 𝑓𝑎 𝜏 + 𝜍 − 𝑓𝑎 𝜏 − 𝜍                                     (6.15) 

The limiting condition at σ = π then gives us 

𝑓𝑎 𝜏 + 𝜋 = 𝑓𝑎 𝜏 − 𝜋                                                            (6.16) 

This means that 𝑓𝑎 (u) is a periodic function with the period 2π. 

This information is incorporated in the following extension: 

𝑓𝑎 𝑢 = 𝑓 0
𝑎 +   𝑓 𝑛

𝑎 cos 𝑛𝑢 + 𝑔 𝑛
𝑎 sin 𝑛𝑢 ∞

𝑛=1                                     (6.17) 

It is interesting to note that there is no linear term in u. Such a term was present when the 

legend fulfilled a boundary condition of Neumann because, in this case, it was the derivative 

𝑓᾽(u) which was periodic. Replace (6.17) in (6.15) and perform some trigonometric 

simplification: we find 

𝑋𝑎 𝜏, 𝜍 = 𝑥 𝑎 +   −𝑓 𝑛
𝑎 sin nτ sin nσ +𝑔 𝑛

𝑎 cos 𝑛𝜏 sin 𝑛𝜍 ∞
𝑛=1 .           (6.18) 

 

Redefining the expansion coefficients that are arbitrary anyway, we can write 

𝑋𝑎 𝜏, 𝜍 = 𝑥 𝑎 +   𝑓 𝑛
𝑎 cos nτ +𝑓 𝑛

𝑎 sin 𝑛𝜏 ∞
𝑛=1 sin 𝑛𝜍.                         (6.19) 

Sincethere is no linear term in τ. The string has no average time in the x direction. This is 

reasonable since the strings must remain attached to the brane. If there were a term 𝑝𝑎τ 

present, the ends σ = 0, π would not remain at 𝑥𝑎  = 𝑥 𝑎  when τ≠0. 

In order to define the quantum theory associated with𝑋𝑎 , we are interested in the classical 

parameters that describe the motion of the open string in equation 6.19). 

On the one hand, the values𝑥 𝑎are not parameters that can be added to describe various 

movements the other hand the (𝑓𝑎 ,𝑓 𝑎 ) are parameters of the open string motion. So, by 

quantifying the open string, the𝑥 𝑎 remain numbers and do not become operators, while the 

(𝑓𝑎 ,𝑓 𝑎 ) become operators. 

We rewrite (6.19) in terms of defined oscillators in order to simplify the following analysis: 
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of open chains, on 𝑋𝑎 𝜏, 𝜍 = 𝑥 𝑎 +  2𝛼᾽  
1

𝑛
𝛼𝑛

𝑎𝑒−𝑖𝑛𝜏 sin 𝑛𝜍𝑛≠0                     (6.20) 

The coordinate of the chord 𝑋𝑎  is Hermitian if  

 𝛼𝑛
𝑎 † = 𝛼−𝑛

𝑎     , which is the usual property 

Hermitcity of the oscillator. Note that the zero modes 𝛼0
𝑎  did not exist. Aditionally 

𝑋 𝑎  = −𝑖 2𝛼᾽  𝛼𝑛
𝑎

𝑛≠0 𝑒−𝑖𝑛𝜏 sin 𝑛𝜍.  𝑋𝑎᾽ =  2𝛼᾽  𝛼𝑛
𝑎

𝑛≠0 𝑒−𝑖𝑛𝜏 cos 𝑛𝜍     (6.21) 

And so  

𝑋𝑎᾽ ± 𝑋 𝑎 =  2𝛼᾽  𝛼𝑛
𝑎

𝑛≠0 𝑒−𝑖𝑛 𝜏±𝜍                                     (6.22) 

The analogy with (6.12) is quite close, but there are two differences. 

The first, when the lower sign applies, the derivative combinations differ by a global negative 

sign. Second, the zero modes are absent from (6.22). 

Quantization is now right; with 

𝑃𝜏𝑎 (τ, σ) = 𝑋 𝑎 /2πα. It is assumed that the non-invisible switches are   

 𝑋𝑎 𝜏, 𝜍 , 𝑋 𝑏 𝜏, 𝜍᾽  = 2𝜋𝛼᾽𝑖𝛿𝑎𝑏 𝛿 𝜍 − 𝜍᾽                                   (6.23) 

Since the mode expansions (6.22) take the standard form, the difference of overflow sign 

mentioned below is irrelevant since  𝑋𝑎᾽ − 𝑋 𝑎  appears twice in the relevant switches. So we 

find 

 𝛼𝑚
𝑎 , 𝛼𝑛

𝑏  = 𝑚𝛿𝑎𝑏 𝛿𝑚+𝑛 ,0   ,        𝑚, 𝑛 ≠ 0                       (6.24) 

The zero modes operate uniformly: 𝑥 𝑎  is a constant, and there is no conjugate quantity since 

𝛼0
𝑎≡0. The sign difference is also irrelevant for the evaluation of (6.11) since  𝑋𝑎᾽ − 𝑋 𝑎  

appears squared. Therefore, equation (6.10) can be divided into (6.25) 

2𝑝+𝑝− ≡
1

𝛼᾽
 𝛼᾽𝑝𝑖𝑝𝑖 +   𝛼−𝑛

𝑖 𝛼𝑛
𝑖 + 𝛼−𝑛

𝑎 𝛼𝑛
𝑎 − 1∞

𝑛=1                             (6.25) 

Since 𝑝𝑎  ~ 𝛼0
𝑎≡0 and 𝛼0

𝜇
 = 2𝛼𝑝𝜇 . The control constant was set at minus one, as for the D25-

brane. The critical dimension has not been modified either. In particular, the naive 

contributions necessary for the normal order 𝐿0
⊥ are the same for 𝑋𝑎  and𝑋᾽. It follows from 

(6.25) that (6.26) 

𝑀2 = −𝑝2 = 2𝑝+𝑝− − 𝑝𝑖𝑝𝑖 =
1

𝛼᾽
   𝛼−𝑛

𝑖 𝛼𝑛
𝑖 + 𝛼−𝑛

𝑎 𝛼𝑛
𝑎 − 1∞

𝑛=1  .          (6.26) 

Using creation and annihilation operators we obtain (6.27) 

𝑀2 =
1

𝛼᾽
 −1 +   𝑛𝑎𝑛

𝑖ϯ𝑝
𝑖=2

∞
𝑛=1 𝑎𝑛

𝑖 +   𝑚𝑎𝑚
𝑖ϯ𝑑

𝑎=𝑝+1
∞
𝑚=1 𝑎𝑚

𝑎  .              (6.27) 

The associated field is a Maxwell gauge field living on the brane. Is a fondamental result. 
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A 𝐷𝑝 -brane has a Maxwell field living on its global volume 

                                                                                                                          (6.28) 

Like the Lorentz scalars on the brane. Consequently, a massless scalar field is obtained for 

each direction normal to the ramp𝐷𝑝 : 

A 𝐷𝑝 -brane has a massless scalar for each normal 

direction 

                                                                                                                          (6.29) 

6-3 Channels open between a parallel 𝑫𝒑-brane 

We will now consider the quantization of the chains opened by the notation to the extent 

between two parallel 𝐷𝑃-branes. 

Two parallel branes of the same dimensionality have the same set of longitudinal coordinates 

and the same set of normal coordinates. 

Recall that the value 𝑥 𝑎  has normal coordinates specify the position of a Dp-brane. This time 

the first 𝐷𝑝 -brane is located at 𝑥 𝑎= 𝑥 1
𝑎  and the second at 𝑥 𝑎=𝑥 2

𝑎 . If 𝑥 1
𝑎  =𝑥 2

𝑎   we says that the 

two 𝐷𝑝 -branes wedge in space and are superimposed on each other, they are separated as 

shown in Figure 6.1. So what types of open strings this parallel 𝐷𝑝 -brane configuration is 

supposed to be? 

Indeed, there are four classes of different strings, each of which should be analyzed 

separately. The first two classes are composed of open strings that start and end on the same 

D-brane, these strings have already been studied and quantified in the previous section. The 

other two classes consist of ropes that begin on one brane and end on the other. They are 

stretched ropes. The strings that start at the first and end at the second are different from the 

strings that start at the second and end at the first. 

 

Fig-6.1.Two D2- parallel branes. Here 𝒙𝟏and 𝒙𝟐 are longitudinal coordinates, and 𝒙𝟑 is a 

normal coordinate. The positions of brane 1 and brane 2 are specified by the coordinates 

𝒙 𝟏
𝟑 and𝒙 𝟐

𝟑, respectively. We show the four types of strings that this configuration 

supports. 
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These strings are oppositely oriented, and the orientation of a string (the direction of increase 

of σ) is important. The load of a string changes sign when its orientation is reversed. The 

classes of open strings supported on a particular configuration of D-branes are called sectors. 

The quantum theory of open strings in the presence of two parallel 𝐷𝑝 -branes has four sectors. 

Figure 6.1 shows a string for each of the four sectors. 

Consider the sector of open strings that start at the first and end at the second. The coordinates 

of the strings NN 𝑋+.𝑋−and 𝑋𝑖  are quantized as before, since the corresponding boundary 

conditions are always given by (6.5). On the other hand, for the strings DD, the coordinates 

with the boundary conditions (previously given by (6.4)) have become now 

 𝑋𝑎 𝜏, 𝜍  𝜍=0 = 𝑥 1
𝑎 ,        𝑋𝑎 𝜏, 𝜍  𝜍=𝜋 = 𝑥 2

𝑎 , 𝑎 = 𝑝 + 1 …… . . 𝑑 .     (6.38) 

The solution of the wave equation subjected to these boundary conditions can be studied from 

(6.15) which already incorporates the boundary condition at σ = 0. In this case we simply 

change 𝑥 𝑎  to𝑥 1
𝑎 : 

𝑋𝑎 𝜏, 𝜍 = 𝑥 1
𝑎 +

1

2
 𝑓𝑎 𝜏 + 𝜍 − 𝑓𝑎 𝜏 − 𝜍  .                       (6.39) 

The boundary condition at σ = π now gives us 

𝑓𝑎 𝜏 + 𝜍 − 𝑓𝑎 𝜏 − 𝜍 = 2 𝑥 2
𝑎 − 𝑥 1

𝑎    ,                                 (6.40) 

Or equivalent, 

𝑓𝑎 𝑢 + 2𝜋 − 𝑓𝑎 𝑢 = 2 𝑥 2
𝑎 − 𝑥 1

𝑎                                                        (6.41) 

This means that the derivative 𝑓𝑎᾽ 𝑢  is a periodic function of period 2π and has an expansion 

of the type indicated in (6.17). Integration, the function 𝑓𝑎 𝑢  has an expansion of the form 

𝑓𝑎 𝑢 = 𝑓0
𝑎𝑢 +   𝑛

𝑎 cos 𝑛𝑢 + 𝑔𝑛
𝑎 sin 𝑛𝑢 .∞

𝑛=1     (6.42) 

The constant 𝑓0
𝑎  is fixed by the boundary condition (15.41): 

𝑓0
𝑎 =

1

𝜋
 𝑥 2

𝑎 − 𝑥 1
𝑎 .                                                              (6.43) 

Substitute 𝑓0
𝑎  in (6.39), the computations are identical to those given in (6.19). This time we 

get 

𝑋𝑎 𝜏, 𝜍 = 𝑥 1
𝑎 +  𝑥 2

𝑎 − 𝑥 1
𝑎 

𝜍

𝜋
+   𝑓𝑛

𝑎 cos 𝑛𝜏 + 𝑓 
𝑛
𝑎 sin 𝑛𝜏 sin 𝑛𝜍.                                 ∞

𝑛=1 (6.44) 

 

To describe the strings which extend from the second brane to the first brane, we are 

exchanged in the above equation for 𝑥 1
𝑎and𝑥 2

𝑎 . We can rewrite (6.44) in terms of oscillators, 

using (15.20) as a model: 

𝑋𝑎 𝜏, 𝜍 = 𝑥 1
𝑎 +  𝑥 2

𝑎 − 𝑥 1
𝑎 

𝜍

𝜋
+  2𝛼᾽  

1

𝑛
𝛼𝑛

𝑎𝑒−𝑖𝑛𝜏 sin 𝑛𝜍𝑛≠0 .         (6.45) 

The constants𝑥 1
𝑎and𝑥 2

𝑎  do not become quantum operators because for the fixed 𝐷-branes as 

before, they are not parameters of the fluctuations of the open strings. Given the absence of 
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linear terms in τ; open strings have no average moments averaged in the directions𝑥𝑎 . The 

oscillators above are different from those we obtained when quantizing strings that start and 

end on the same 𝐷𝑝 -brane. Oscillators in different sectors should not be confused. This time 

the ideals give 

𝑋 𝑎 = −𝑖 2𝛼᾽  𝛼𝑛
𝑎𝑒−𝑖𝑛𝜏 sin 𝑛𝜍𝑛∈ℤ  ,       𝑋𝑎᾽ =  2𝛼᾽  𝛼𝑛

𝑎𝑒−𝑖𝑛𝜏 cos 𝑛𝜍𝑛∈ℤ (6.46) 

Or  

 2𝛼᾽𝛼0
𝑎 =

1

𝜋
 𝑥 2

𝑎 − 𝑥 2
𝑎 .                                                   (6.47) 

  

Although the strings do not carry the impulse in the direction 𝑥𝑎 , there is always a zero 𝛼0
𝑎not 

null. There is no contradiction since the interpretation of 𝛼0requires that 𝛼0 appear in 𝑋 . As 

you can see, 𝛼0
𝑎  appears in𝑋𝑎but not in𝑋𝑎᾽. A not null𝛼0

𝑎  implies measurable strings:𝛼0
𝑎  

vanishes precisely when the D-branes coincide. Similar operators appear in the expansion of 

closed strings that revolve around compact dimensions. 

The two derivatives of (6.46) combine and form 

𝑋𝑎᾽ ± 𝑋 𝑎 =  2𝛼᾽  𝛼𝑛
𝑎𝑒−𝑖𝑛 𝜏±𝜍 

𝑛∈ℤ .                                     (6.48) 

This result shows that the oscillators satisfy the expected switching relationships. To compute 

the mass-squared operator we reconsider the equation (6.10) .As before, we put I → (i, a) and 

we define the subtraction constant equal to minus one, gives 

2𝑝+𝑝− =
1

𝛼᾽
 𝛼᾽𝑝𝑖𝑝𝑖 +

1

2
𝛼0

𝑎𝛼0
𝑎 +   𝛼−𝑛

𝑖 𝛼𝑛
𝑖 + 𝛼−𝑛

𝑎 𝛼𝑛
𝑎 − 1∞

𝑛=1  .           (6.49) 

So we have 

𝑀2 = 2𝑝+𝑝− − 𝑝𝑖𝑝𝑖 =
1

2𝛼᾽
𝛼0

𝑎𝛼0
𝑎 +

1

𝛼᾽
   𝛼−𝑛

𝑖 𝛼𝑛
𝑖 + 𝛼−𝑛

𝑎 𝛼𝑛
𝑎 − 1∞

𝑛=1    (6.50) 

Using the explicit value of 𝛼0
𝑎  to (15.47) we finally get 

𝑀2 =  
𝑥 2

𝑎−𝑥 1
𝑎

2𝜋𝛼᾽
 

2

+
1

𝛼᾽
 𝑁⊥ − 1 ,                                              (6.51) 

Or  

𝑁⊥ =   𝑛𝑎𝑛
𝑖ϯ
𝑎𝑛

𝑖 +𝑝
𝑖=2

∞
𝑛=1   𝑚𝑎𝑚

𝑎ϯ
𝑎𝑚

𝑎𝑑
𝑎=𝑝+1

∞
𝑚=1                                  (6.52) 

Since the tension of the chord 𝑇0=
1

2𝜋𝛼 ᾽
 this term is simply the square of the energy of a 

classical static chord stretched between the two D-branes. It is reasonable to find that the 

squared mass operator is modified by the addition of this constant. The constant disappears 

precisely when the branes coincide. 

Now let's look at the fundamental states. In this configuration, the momentum tags of these 

states are the same for each sector: 𝑝2and𝑝 . To distinguish the different sectors, two 

additional integers [𝑖𝑗] are included as additional ground state labels, whose cache can be one 

or two. The first integer indicates the brane on which is the point σ = 0 and the second integer 
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indicates the brane on which is the end pointσ = π. In short, the strings opened in the sector 

[𝑖𝑗] extend from the brane i to the brane j. Fundamental states are written as | ├𝑝+, 𝑝 ; [𝑖𝑗]> ┤ 

and they are of four types: 

  𝑝+, 𝑝 ;  11   ,        𝑝+, 𝑝 ;  22  ,    𝑝+, 𝑝 ;  12   ,   𝑝+, 𝑝 ;  21  .            (6.53) 

The states of open strings in sector [ij] are constructed from oscillators acting on├𝑝+,𝑝 ; 

[ij]>┤. The states take the form indicated in (6.31), except that the ground state is replaced by 

| ├𝑝+, p  ; [𝑖𝑗]> ┤ the oscillators in the four sectors are the same in number and type, but they 

are fundamentally different operators. 

They can be labelled with labels [ij] for clarity, but this is rarely necessary because the basic 

states carry the sector tags. 

Where do the fields corresponding to the [12] string characters live? 

This question is hard to pin down. These are clearly dimensional (p + 1) fields, since the 

structure of state labels is the same as that for string states. 

In some ways, the fields must live on both D-branes. Operationally, the fields are declared to 

live on a fixed (p + 1) space (not necessarily identified with one of the two D-branes), and are 

considered to have non-local interactions that reflect the fact that the D -brans are separated. 

The space-time interpretation of fields from stretched strings appears to require a new way of 

thinking, the basis of which can be provided by a mathematical branch called non-

commutative geometry. 

Just as we did for the brane alone, we will determine whether the states are scalars or vectors 

with respect to Lorentz symmetry with (p + 1) dimensional. The simplest states are the 

fundamental states: 

  𝑝+, 𝑝;     12   ,       𝑀2 = −
1

𝛼᾽
+  

𝑥 2
𝑎−𝑥 1

𝑎

2𝜋𝛼᾽
 

2

                               (6.54) 

If the separation between the branes disappears, these states are tachyon states of the usual 

mass-square. If the branes are separated, the squared mass has a positive contribution. In fact 

for the critical separation the fundamental states represent a scalar field without mass. 

 𝑥 2
𝑎 − 𝑥 1

𝑎  = 2𝜋 𝛼᾽ ,                                              (6.55) 

For larger separations, the fundamental states represent a massive scalar field. 

If the oscillator acting on the base states comes from a normal brane we have 

𝑎1
𝑎ϯ  𝑝+, 𝑝;     12   ,      𝑎 = 𝑝 + 1 …… … 𝑑𝑀2 =  

𝑥 2
𝑎 −𝑥 1

𝑎

2𝜋𝛼᾽
 

2

.                     (6.56) 

If the oscillator comes from a coordinate tangent to the brane we have 

𝑎1
𝑎ϯ  𝑝+, 𝑝;     12   ,      𝑖 = 2 … … … … . 𝑝𝑀2 =  

𝑥 2
𝑎−𝑥 1

𝑎

2𝜋𝛼᾽
 

2

.                    (6.57) 

For any moment, these are (p + 1) -2 = p-1 massive states. In addition they carry p-1 massive 

states. In addition, they carry an index corresponding to the space-time (p + 1) dimensional. 
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We might think that these states form a massive gauge field of Maxwell, but that's not quite 

right. 

 

Conclusion. 

• General relativity explains the world of the greatest objects. 

• Quantum mechanics explains the world of smaller objects. 

• String theory would appease the world of turbulent quantum mechanics to unite the two 

theories. 

• String theory shows that everything in the universe is composed of strings 

• If this theory is proven, we could do countless things that seemed science fiction. 
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Appendix A 

The Newtonian limits 

The assumption that gravitational effects are weak allows us to assume that the metric 

coefficients are close to those of the Minkowski metric 𝜂𝜇𝜈 , so we can write : 

𝑔𝜇𝜈 ≈ 𝜂𝜇𝜈 + 𝜇𝜈                                                  (A. 1.1) 

Where 𝜇𝜈 ≪ 1 , and we can choose to work to first order in 𝜇𝜈  . We can also suppose that 

the metric is not changing significantly with time , so 𝜇𝜈 is not a function of time. 

We define the stress–energy tensor (2.4.9.5) : 

𝑇𝜇𝜈 = 𝜌𝑢𝜇 𝑢𝜈 + 𝜇𝜈                                               (A. 1.2) 

And we can write : 

𝑇 =  𝑇    𝜇
𝜇

𝜇

= 𝜌𝑐2                                               (A. 1.3) 

we define the Einstein field equation (2.4.1) : 

𝑅μν −
1

2
𝑔μν 𝑅 = 𝑘𝑇μν                                            (A. 1.4) 

And we can write (A. 1.4) in this form : 

𝑅μν = −𝑘(𝑇μν −
1

2
𝑔μν 𝑇)                                       (A. 1.5) 

So the Einstein field equation can take the form : 

𝑅μν = −𝑘(𝜌𝑢𝜇𝑢𝜈 −
1

2
𝑔μν  𝜌𝑐2)                               (A. 1.6) 

Substituting our simplified form of the metric (A. 1.1) gives : 

𝑅μν = −𝑘  𝜌𝑢𝜇𝑢𝜈 −
1

2
 𝜂𝜇𝜈 + 𝜇𝜈    𝜌𝑐2                     (A. 1.7) 

Examining the 𝑅00term , and remembering that speeds are low , so 𝑢0 = 0 and that 𝜇𝜈 ≪ 1 , 

we see that : 

𝑅00 = −𝑘  𝜌𝑐2 −
1

2
 𝜌𝑐2 = −𝑘

1

2
 𝜌𝑐2                       (A. 1.8) 

However , in the same limit , it can be shown from the definition of the Ricci tensor , we 

define the Ricci tensor  2.3.7.4  : 

𝑅00 = 𝑅0𝜇0
𝜆 = 𝜕𝜇Γ00

𝜆 − 𝜕0Γ𝜇0
𝜆 + Γ𝜇𝜈

𝜆 Γ00
𝜈 − Γ0𝜈

𝜆 Γ𝜇0
𝜈               (A. 1.9) 
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So we write : 

𝑅00 = −  
𝜕Γ00

𝑖

𝜕𝑥𝑖

3

𝑖=1

                                          (A. 1.10) 

We define The Christoffel symbols(2.4.4.4) : 

Γ00
𝑖 =

1

2
𝜂𝑘𝑖 (𝜕0𝜇0 + 𝜕00𝜈 − 𝜕𝑘00)                            (A. 1.11) 

So we write : 

Γ00
𝑖 = −

1

2
 𝜂𝑖𝑗

𝑗

𝜕00

𝜕𝑥𝑗
                            (A. 1.12) 

and consequently : 

𝑅00 =
1

2
 𝜂𝑖𝑗

𝑖,𝑗

𝜕200

𝜕𝑥𝑖𝜕𝑥𝑗
= −

1

2
∇200                         (A. 1.13) 

Equating the two expressions that we now have for 𝑅00 , we see that in the Newtonian limit : 

−
1

2
∇200 = −𝑘

1

2
 𝜌𝑐2                               (A. 1.14) 

And so : 

∇200 = 𝑘 𝜌𝑐2                                          (A. 1.15) 

In another way , we know that : 

−
1

2
∇00 = ∇  

Φ(x)

c2
                                      (A. 1.16) 

So : 

00 = 2
Φ

c2
                                             (A. 1.17) 

We can re-write (……) : 

∇2Φ = 𝑘
𝜌𝑐4

2
                                          (A. 1.18) 

We define the Poisson equation for the Newtonian potential (2.4.1.1) : 

∇2ϕ = 4𝜋𝐺𝜌                                             (A. 1.19) 

provided that we identify : 

𝑘 =
8𝜋𝐺

𝑐4
                                             (A. 1.20) 
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Appendix B 

 

General Relativity postulates 

 

General relativity as is called Einstein's theory; it is a modern theory of space-time and 

gravitation . it makes it possible to reconcile two different important theorems : that of 

Newtonian gravitation and Special Relativity.This theory is complementary to the theory of 

Special Relativity , and  it is based on some main ideas called postulates, they are as follows : 

 

B.1 The principle of equivalence 

B.1.1 Weak equivalence principle 

Within a sufficiently localized region of spacetime adjacent to aconcentration of mass, the 

motion of bodies subject to gravitational effectsalone cannot be distinguished by any 

experiment from the motion of bodieswithin a region of appropriate uniform acceleration. 

B.1.1 Strong equivalence principle 

Within a sufficiently localized region of spacetime adjacent to aconcentration of mass, the 

physical behaviour of bodies cannot bedistinguished by anyexperiment from the physical 

behaviour of bodieswithin a region of appropriate uniform acceleration. 

 

B.2 The principle of covariance 

According to the principle of general covariance, the laws of physics should take the same 

form in all frames of reference. In practice this means that they should be expressed as 

balanced tensor relationships that are covariant under general coordinate transformations . 

Legitimate algebraic operations involving tensors include scaling, addition and subtraction 

(provided that the types are identical), multiplication and contraction. The partial 

differentiation of a tensor does not generally produce another tensor, but the process of 

covariant differentiation does. This may be applied to a tensor of any rank and is exemplified 

by : 

𝐷𝜈𝑇𝑘
𝜇

= 𝜕𝜈𝑇𝑘
𝜇

+ Γ   𝜈𝑖
𝜇

𝑇𝑘
𝑖 − Γ   𝜈𝑘

𝑖 𝑇𝑖
𝜇

                                      (𝐵. 2.1) 
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B.3 The principle of consistency 

The essence of Newtonian gravitation as a field theory is expressed in the Poisson equation : 

∇2Φ = 4𝜋𝐺𝜌                                                            (𝐵. 3.1) 

which relates a combination of second derivatives of the Newtonian gravitational potential Φ 

to the mass density 𝜌 that is the source of the Newtonian gravitational field. The Newtonian 

gravitational field 𝑔 is related to Φ by : 

𝑔 = −∇Φ                                                               (𝐵. 3.2) 
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Abstract 

In this memorandum, we given a short study of the cosmology, and we presented the different 

theories of quantum gravity as: loop quantum gravity (LQG) and string theory. 

Keywords: Gravitation, Loop quantum gravity, String theory. 

 

 

 

 


