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GENERAL INTRODUCTION

GENERAL INTRODUCTION

Induction motors are the most widely used motors in the industry. These motors find ap-
plications in servo drives, heating, ventilation and air conditioning systems, motor driven
pumps, fans, washing machines and other domestic appliances. The induction motors
offer numerous distinct advantages over other motors. They are rugged, reliable, easy to

maintain, cheap, highly efficient [1][2].

Without the use of power electronic converters and other sophisticated equipment,
induction motors can operate in constant speed mode only. Original drive systems mostly
depend on the use of DC motors. DC motors offer inherent decoupled flux and torque
control with a simple control mechanism and fast torque response. The use of DC motors
is limited mainly due to high maintenance requirements, and high voltages. DC drives
are being replaced by AC drives due to the advent of advanced control techniques such
as direct torque control offering precise position control and an extremely fast torque

response [1].

Despite the fact that many Artificial intelligence (AI) techniques for control of induc-
tion motors have been developed, such as artificial neural networks (ANN), fuzzy logic
control (FLC), and the adaptive neuro - fuzzy interference system (ANFIS). Human com-
portment and thinking (decision making, pattern recognition, associative memory etc.)
form the basis of intelligent control techniques. By adopting techniques based on artificial-

intelligence, the performance of motor control systems can be further improved [1][2] [3].

Neural networks are a class of statistical learning algorithms drawing inspiration from
the functioning of the human nervous system. ANNs can be thought of as a system of
interconnected neurons which compute values from inputs, and are capable of solving a
wide range of problems. Similar to how a human brain remembers and learns, an ANN
is trained to learn by associating patterns and mapping input/output data. The use of
statistical and signal processing methods for use in software implementations of ANNs is

increasing [1][2].

For variation speed of AC drives, there are several types of faults can possibly happen

such as controller faults, motor faults, current sensor faults, switching device faults, and
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DC bus faults. Switching devices are the weakest components. As a result, these compo-

nents in a power conversion system are prone to be destroyed by faults.

For the voltage source inverter several faults are possible. In this work, two cases will

be studied:

e Occurrence of one fault at a time. One class is dedicated to the healthy domain and

the last six are to each faulty inverter switch.

e Occurrence of two faults simultaneously. One is dedicated to the healthy domain,
fifteen are to each two faulty inverter switches, and the last six are to each faulty

inverter switch.

The aim of this work is to make a simple feature extraction method to study the feasibility
of fault detection, isolations, and reconfiguration using neural networks. And result Our

work is divided in two chapters:

e In the first chapter, we describe the artificial neural networks (ANN), the basic
direct torque control (DTC), and an artificial neural networks control of a system of
asynchronous motor drive using a neural direct torque control. We end, by giving a
simulation results in the case of one and two faults in inverter switch in classic and

neural DTC mode.

e The second chapter will be dedicated to a theoretical study of switching defects of
(Pulse with Modulation) PWM inverter in both cases (one and two fault occurrence).
Also, we will make a feature extraction method to determine the signature of each
defect based on the surface algebraic calculation of the three stator phase currents.
A defect classifier based on artificial neural networks will be set to allow detection
and localization of one or multiple faults in the PWM inverter. After detection and
localization of faulty position, the diagnostic results will be generated to allow the
replacement of the defective arm by a healthy auxiliary arm as a reconfiguration

process for the PWM inverter.

Finally, we will terminate by a general conclusion where we give perspectives to this work.




1. CHAPTER ONE

1.1 INTRODUCTION

The asynchronous machine is currently the most used machine in industrial field and grad-
ually replacing the DC machine. However, the asynchronous machine is a multivariate
system. It is characterized by a nonlinear model, which makes the control very compli-
cated. The Direct Torque Control (DTC) strategy is the most developed drive control
technique of asynchronous machines. It is characterized by a fast dynamic response, sim-
ple implementation and robustness essentially to the rotor parameter variation. However,
the direct torque control has the main disadvantages such as electromagnetic torque and
stator flux ripples. Therefore, many methods are used to overcome these disadvantages
for example replacing the hysteresis torque and flux controllers with neural block. The
artificial neural networks are capable to explore multivariate correlations between the

outputs and inputs variables without knowing the mathematical model of the system.
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1.2 Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) is a mathematical model that simulates the
structure and functionalities of biological neural networks. A simple mathematical model
has three sets of rules: multiplication, summation, and activation. At the entrance of
artificial neuron are the inputs, each input has its own relative weight. Some inputs
are made more important than others to have a greater effect; Weights are adaptive
coefficients that determine the intensity of the input signal. In the middle section of
artificial neuron is sum function that sums all weighted inputs and bias. At the exit
of artificial neuron the sum of weighted, inputs and bias is passing through activation

function that is also called transfer function (Fig. 1.1)[4].

Information fi =

Input 1 =— xW1

Input2  =— x W2

Inputd =— xW3
I H

Input i »--—- Wi

+ (" Output

- L I .
Inputm =+ xWm

b

Multiplication Sum : Transfer function

Fig. 1.1: Artificial neuron design[3].

For the above general model of artificial neural network, the output can be calculated

As follows|[3]:

y(h) = F(Z wi(k)(k) + b) (L1)

Where:

e z;(k) is input or pattern value in discrete time k
e w;(k) is weight value in discrete time k

e b is bias

e [ is a transfer function
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e y(k) is output value in discrete time k

The bias is much like a weight, except that it has a constant input of 1.However, if you
do not want to have a bias in a particular neuron, it can be omitted. [5]

1.3 A Biological Neuron (BNN)

The connections between neurons are much more complex than those implemented
in neural computing architectures. A typical neuron consists of the following four parts

(Figure 1.2)[6][7]:
e Dendrites: is responsible for receiving the information from other neurons.

e Soma: It is the cell body of the neuron and is responsible for processing of infor-

mation, they have received from dendrites.
e Axon: It is just like a cable through which neurons send the information.

e Synapses: It is the connection between the axon and other neuron dendrites.

K

-

J

."

. Bias source
“a
R, Dendrites A X, synaptic +1.0
i / ~, Wweights T
To other ﬁN \ (W)
neurons Ma s W)
— b
orlas )\ N\ .
TSNV Fi5)
= ~a/ N =1 F
N i ' s 31 Neurcn
Inputs  x, (ws) .:Su‘_.::\ff*‘b | | _I | & Sty
/’.

- transfer
: X = .~ summing node function
Ve W)

y

Fig. 1.2: Biological and artificial neuron design|[7].

1.4 Network Topology

A network topology is the arrangement of a network along with its nodes and connect-
ing lines. According to the topology, ANN can be classified as the following kinds[6][5]:
1.4.1 Feedforward Network

It is a non-recurrent network the signal can only flow in one direction, from input to

output. It may be divided into the following two types:

e Single layer feedforward network: the input layer is fully connected to the

output layer.
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Inputs Outputs

Fig. 1.3: Single layer feed forward network

e Multilayer feedforward network: this network has one or more layers between

the input and the output layer, it is called hidden layers.

Inputs Hidden Outputs

Fig. 1.4: Multilayer layer feed forward network

1.4.2 Feedback Network
A feedback network has feedback paths, which means the signal can flow in both

directions using loops.
e Recurrent networks:

They are feedback networks with closed loops. Having one or more hidden layers with at

least one feedback loop is known as recurrent network as shown in Figure 1.5.

Fig. 1.5: Recurrent network

1.5 Learning or Training Artificial Neural Networks
When a network has been structured for a particular application, it is ready for train-

ing. At the beginning, the initial weights are chosen by chance and then the training or
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learning begins. There are three major learning models; supervised learning, unsupervised
learning and reinforcement learning[4][6].

1.5.1 Supervised Learning

This type of learning is done under the supervision of a teacher. This learning process
is dependent. During the training of ANN under supervised learning, the input vector
is presented to the network, which will give an output vector. This output vector is
compared with the desired output vector. An error signal is generated, if there is a
difference between the actual output and the desired output vector. The weights are

adjusted until the actual output is matched with the desired output[4][6]. .

) Neural
X (input) —» » Y (Actual output)
Network
Error Signal <
(D-¥)
SeToe D (Desired Output)
esired Outpu
l—" Signal [— ( ?
Generator

Fig. 1.6: Supervised learning block diagram

1.5.2 Unsupervised Learning

This type of learning is done without the supervision of a teacher, the network is pro-
vide with inputs but not with desired outputs. This is often referred to as self-organization
or adaption. During the training of ANN under unsupervised learning, the input vectors
of similar type are combined to form clusters. When a new input pattern is applied,
then the neural network gives an output response indicating the class to which the input
pattern belongs. There is no feedback from the environment to adjust their weights or
what should be the desired output and if it is correct or incorrect. Hence, in this type of
learning, the network itself must discover the patterns and features from the input data,

and the relation for the input data over the output[6]. .

. Neural
X(input) ——»f __ » Y (Actual output)
Network

'y

Fig. 1.7: Unsupervised learning block diagram
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1.5.3 Reinforcement Learning

This type of learning is used to reinforce or strengthen the network over some critic
information. This learning process is similar to supervised learning; however we might
have very less information. During the training of network under reinforcement learning,
the network receives some feedback from the environment. This makes it somewhat
similar to supervised learning. However, the feedback obtained here is evaluative not
instructive, which means there is no teacher as in supervised learning. After receiving the
feedback, the network performs adjustments of the weights to get better critic information

in future[4][6].

* (input) Neural ¥ (Actual output)
— — ual outp
Network |

Error Signal
Error | .
Signal R {Reinforcement signal)
Generator |

Fig. 1.8: Reinforcement learning block diagram

1.6 Transfer Functions
A particular transfer function is chosen to satisfy some specification of the problem that

the neuron is trying to solve. Three of the most commonly used functions are in figure

below|[5].

@ '

A—l : ‘—l
e | P

O DA O

=% : L "3
e Fraavcdlivee (31) @ havdlin twp + b)

Hard Limit Transfer Function Single-Input Liardiing Neuron

+&
oAl -A
- —

a = purelin (1) a = purelininwp + b

Linear Transfer Function Single-Input pua-elin: Neuron

a = logsig ) a = logsigiwp +b)

Log-Sigmoid Transfer Function Single-Input Jogsig Neuron

Fig. 1.9: Transfer function[5]
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1.7 Network Architectures
1.7.1 Single-Input Neuron
A single-input neuron is shown in Figure 1.10.a
1.7.2 Multiple-Input Neuron
A neuron with multiple Inputs is shown in Figure 1.10.b
1.7.3 A Layer of Neurons
A single-layer network of S neurons is shown in Figure 1.10.c. Each of the P inputs is

connected to each of the neurons. .

Inputs Layer of S Neurons

Inputs Multiple-Input Neuron

Inputs General Neuron

/ N N

P " " (L)

b

| SE ) W —
a=f(wp+b) U’"_f.{“'p'bi

a by &

Fig. 1.10: a. Single-input neuron, b. Multiple-input neuron, c. Layer S neurons[5]

1.7.4 Multiple Layers of Neurons

A network with several layers is shown in Figure 1.11. .

Inputs First Layer Second Layer Third Layer

a =1 (Wip+b') al = (Wiaat+b?) al =1 (Wiai+b')

Fig. 1.11: Three-layer neurons|5|

1.8 Multiple Layer Perceptron (MLP) model
The most common NN model is the MLP Neural Network. It is a kind of supervised
network which requires a desired output in order to learn; with nonlinear transfer functions

allow the network to learn nonlinear and linear relationships between input and output
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vectors [8]. The purpose of this network is to create a model that appropriately maps the
input to the output using historical data so that the model can be used to produce the
output when the desired output is unknown, it requires three or more layers, one or more
hidden layer, and output layer as shown in Figure 1.12. The output signal should indicate
the appropriate data of the input data. The weighted connections define the behavior of
the network and are adjusted during training through a supervised training. In a feed
forward network each input pattern vector is presented to input layer. For successive

activation, the input to each term is the summation by their respective weight.

Input Laver Hidden Layer Output Laver

Fig. 1.12: Structure of perceptron network. [9]

1.9 Developing of Neural Network
The structure of the multilayer network is shown in Figure 1.13. Neural network has been
employed to emulate space vector. The three inputs of the network are the flux error,
torque error and the sector location. The three output signals are S, Sy, S.. The neurons
are represented by the circles and the interconnection between them is shown by links.
Each link has a weight associated with it. The circle contains the summing node of the
neuron with the activation function. Three layers of neurons exist in the network: input
layer, hidden layer, and output layer. The network described is a 3-10-3 network with the

number indicating the number of neurons in a layer. .

10
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HIDDEN LAYER

INPUT LAYER
OUTPUT LAYER

FLUX ERROR S
X
TORQUE ERROR .’I&. Sa
‘f: *
‘
() \

WEIGHT J
ADJUSTMENT J
ALGORITHM

Fig. 1.13: The structure of the multilayer network|[1]

1.9.1 Training Data

Network will be trained with normal and abnormal data, thus the size of the input matrix
is three input data rows with 150000 columns for each pattern input (er, €, s). That
gives 450000 for the training data set should also cover the operating region; thus, the
test data sets are generated from simulation with various speed references. In our work
25% of input /output data are taken for validation and 25% for testing. We will make the

training under the following conditions:
e The entries of the system are gathered in a matrix.
e The outputs of the system are gathered in a matrix.

The number of the off-line training epochs is 36 to reach the 0.03 imposed error (Figure

1.14). |
| pedomanceiopetom - © BEW

Biest Validation Performance is 0.030569 at epoch 36

Train

Walidation
Tast
....... Best
-----=- Goal

Mean Squared Error {mse)

3 \ . . . \ \ ,
o ey 10 15 20 25 30 35
36 Epochs

Fig. 1.14: Training, Validation, and Test Errors of the Developed Neuron Networks

11
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1.10 Basic Principle DTC

Direct Torque Control is shown in figure 1.15. There are two different loops corre-
sponding to the magnitudes of the stator flux and torque. The reference values for the
stator flux ¢, and the torque T,* are compared with the actual values, and the resulting
error values are fed into the two level and three level hysteresis block respectively. The
outputs of the stator flux error and torque error hysteresis blocks, together with the posi-
tion of the stator flux are used as inputs of the switching table. The inverter is switched
on using these errors and position of stator flux over six region control in such a way that
the inverter output voltage vector minimizes the flux and torque errors and defines the
direction of the flux rotation. The outputs of these controllers are S,, S, and S. where

their values (0 or 1) are used to determine the inverter output voltage[9].

o* + Uo -
0 3+ o E S I I
ARRARARE
s N v Se Voltage
- i > vV [ > cource
L [w[vvw] S :
Te ET "_Il WINIVIG% < > mvcrter
I"_" ". ‘- ‘: A\ "J ‘|
Switching Table

Stator Flux & Torque Estimators ' 14

3 . .
‘Te = Ep(qosaisﬂ - (osﬂisa) iB

<
-

s =[ (V5 — RsI)dt

Fig. 1.15: Block diagram of basic DTC|9]

1.10.1 Voltage Source of Inverter
The figure 1.16 shows a voltage source inverter which is feeding a three phase asynchronous
motor. The inverter converts the DC to AC through power electronic. The circuit is
operated by switching S, Sy, S.. The inverter uses two pairs of complementary controlled
switches in each inverter phase or leg, as shown in figure 1.16. Considering that the two
switches in each inverter phase or leg operate in a balancing pair in order to avoid short

circuiting the DC source[10][11].

12
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QH:

T‘;mlm“_,...i“,,h. ‘I‘;l_ilom

\ "
\

v, 1011; VIJIOO} o

\ 2610 vector
T‘ (000), V5(111)

Vunntr l L101)

Fig. 1.16: Schematic of inverter voltage source[10]

The inverter is controlled from logic Boolean the state of the switches are S; = 1 (i=a, b,
c): S; = 1: If the top switch is closed and the bottom open
S; = 0: If the top switch is open and the bottom switch is closed

The vector V; of the stator voltage can be written as[10]:

V= \/gUO {Sa + Spexp (22%) + S.exp (z%)} (1.2)

The different combinations of the three values (5,, 5, and S.) are used to generate eight
positions including two V; vector corresponding to the zero vector. Where (S,, Sy, S.)
represents the logical state of the 3 switches. So we seek to control the flux and torque
via the selection voltage vector which will be by a switch configuration. As we have 3
switches, so there are 8 possibilities for vector V. Two vectors (V, and V7 ) is the zero
vector (Sq, Sp, Se) = (0, 0, 0) and (S,, Sp, S¢) = (1, 1, 1).

1.10.2 Selection of stator voltage

The choice of vector V, depends on the desired variation of the flux module, also the
desired changes to its rotation speed and to the torque. The stator flux is controllable if
a proper selection of the voltage vector is made. Figure 1.17 shows that the stator flux

plane is divided into six sectors where each one has a set of voltages vectors[13]. .

13
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Fig. 1.17: Sectors detection[10]

When flux is in zone i, vector V1 or V;_; is selected to increase the level of the flux, and
Viio or V;_5 is selected to decrease it. At the same time, vector Vi or V.4 is selected
to increase the level of torque, and V;_; or V;_, is selected to decrease it. If Vj or V7 is
selected, the rotation of flux is stopped and the torque decreases whereas the amplitude

of flux remains unchanged[10]. .

Vector Vi, | Vigr | Viga | Vier | Vi
F, N S N
T. L N

Tab. 1.1: Generalized tables for voltage vector selection

1.10.3 Switching source table

It’s Depending on the determinate the phase of the estimated flux angle and the evolution
of the magnitude of the flux as well as the evolution of the estimated torque. the voltage
Vican choose to be applied to respect the references flux, and torque . There are thus
parameters who give the right selection of choosing the adequate voltage vector Vi As

shown in table 1.2. and table 1.3.

SaSySe | 000 [ 100 | 110 | 010 | 011 | 001 | 101 | 111
Vi Vo Vi [ Vo [ Vs [ Va | Vs | Vs | Vr

Tab. 1.2: Values of the control signals [12][13][14]

1.10.4 Flux and Torque Estimator
The estimator calculates the stator flux and the electromagnetic torque. The inputs of the
estimator are stator voltage and current space vectors. They are referred to a stationary

reference frame; the voltage of the stator is given by[1][10]:

b5 = /Ot(vs — R,I)dt (1.3)

14
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The stator flux vector is calculated from two components of two-phase axes (a,3) is

given|[1][10]:

¢s = Qbsa + iqbs,@ (14)

¢sa = fot(‘/sa - Rs[sa) dt

1.5
bes = Jo (Vg — Rlos) dt o

The module of the stator flux is given by equation 1.6[1][10]:
Ps = 1/ Pha + Ps (1.6)
The angle ¢, is given by equation 1.7[1][10].

0s = arctan bsp (1.7)

s

We obtained the voltage Vi, Vs by using the switching status (S,, S, and S.) produced

by the switching table, the stator voltages in the reference frame are determined as[10]:

9 1
V;a:\/;UO(Sa_§(Sb—SC)) (1.8)

1
Vig = EUO<SZJ —Se)

The electromagnetic torque can be estimated from the estimated flux magnitudes ¢sq,¢s3

and the calculated magnitudes of the current I;,,/s5 It is evaluated by equation 1.9[8farid]

Te = gp(lsﬁ¢sa - Isa(bsﬁ) (19)

p: number of pole pair of induction motor
The measured currents (1,,f, ,I. ) can be transformed into two dimension vector ( Isq,/sp)

by[10]:

2 1 1
[sa = glsa - glsb - glsb
PO TS S (1.10)
sB — \/g 3 sb 3 sb

15
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1.10.5 The flux comparator
The purpose of this comparator is to keep the amplitude of the stator flux in a band .The
output of the comparator must indicate the direction of evolution of the module of the

flow. The control algorithm of this technique can be summarized as follows[10][12]:

(

ifAF, > €, then Kp =1
dF;
Zf — €4 < AFS < eFandW >0 then Kp=-1
(1.11)

dF,
if —ep < AF, < eFand% <0 then Kp=1

ZfAFS < —€p then Kp = —1

Kp = —1 signifies that the flow must be reduced
Kr =1 Means to increase the flow.
AF; = |Fs — F¥|,With: (FY) reference is a reference flux ,and ep is the hysteresis with of
the comparator

1.10.6 Electromagnetic Torque Comparator
The torque comparator maintains the torque within the following limits:
AT = |T — T*|,With: (T*) reference is a reference torque ,and ey is the hysteresis with
of the comparator.
The comparator allows motor control in two directions of rotation, either for positive or
negative torque. It indicates directly if the torque amplitude must be increased in absolute
value (K = 1), for a positive order and (K; = —1), for a negative order, or maintained
(K;=0).

The control algorithm of this technique can be summarized as follows [12][13][14]:

(

ifAT > ep then Kr =1
dT
i1f0 < AT < qandﬁ >0 then Kr =0

dT’
sz < AT < etcde <0 then KT =1
(1.12)

T
z'f—eTSATSOand(z—t>0 then Kr = —1

dT
if—eTSATSOCmd%<O then K7 =0

ifAT < —ep then Kr = —1

16
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e K; = 1 means that the torque is below the lower limit of the band and must be

increased.

e K; = —1 means that the torque is greater than the upper limit of the band and

must be reduced

e /{; = 0 means that the torque is inside the band and must be maintained there

A KF ?Iﬁ'
+] < +1 <
_ I_ _ *
> AFs= E_ﬁ; {]] |_‘_._ | AT =T-T
-1 > B 0 &
b

a

Fig. 1.18: a. Two levels hysteresis flux corrector, b.Three levels hysteresis torque corrector
[12]

N, 11213456
Ko=1] Kr=1 Vo | V5| Va| V5| Ve | Vi
Ko=1 | Kr=0 |V | Vo| Vs | Ve | Vi | Vo
Ko=1 |Kr=—1|Vs | Vi | Ve|Vs|Vi| Vs

Ky=—-1| Kp=1 | V3 | Vi | Vs | Vs |Vi|Vo
Ky=—-1| Kp=0 |V | V2|V |Vz | V| Vs
Ky=—-1|Kp==1|Vs | Vs | Vi | Vo | V5]V

Tab. 1.3: Switching table for basic DTC[12][13][14]

1.11 Neural Structure Of DTC
In this approach, (Figure 1.19) we replaced the two hysteresis controllers and the switch-
ing table (basic DTC) by a neural network controller with torque errorey flux error €4 and
number of sector S as inputs. The outputs of neural network controller are S,, S, and S,

where their values (0 or 1) are used to determine the inverter output voltage. .

17
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Fig. 1.19: Induction motor direct torque control block diagram (Neural network DTC)[13].

1.11.1 Voltage Source Inverter Model

—,_I_nl—rE (?A »: L~ {5
:;_I_rn [? —b;_l_n—p@
> _|_n ? | P
e i
[]
{.‘-_1 T

ﬂ4.i
i

_.-_ j -
) ~ =

Fig. 1.20: Voltage source inverter model
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e(t)

1.11.2 PI Speed Control Model

p(t)

i(t)

used. The anti-windup is in function when saturation occurred|[15][16].

u(t)

%
9

Y

>

Ts (241)
= i
2(z-1)

Zila
~

Fig. 1.21: PI speed control model[17][18]

J
Kp:;:5
kit

T

1
F,=—=1

ki

PI control has been widely used as a cascaded form of control in variable-speed motor
drives. Typical anti-windup methods are experimentally applied to the speed control of
a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage-
source inverter (VSI). In the speed control mode, a PID controller is used, the input of
which is the error between the reference speed and the actual speed of the motor. In the

scheme discussed in this study (Figure 1.21), a PID controller with anti-wind up gain is

(1.13)
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F(Hz) | P(kw) | P | V(v) | Bs() | Ro(Q) | Ly(H) = L,(H) | M(H) | J(kgm?)
50 | 15 | 2] 280 | 0.5 1 0.05 0.1 0.02

Tab. 1.4: Characteristics of the induction motor

1.12 Simulation and Discussion of Results

The simulation results of basic DTC are presented according to:
e Basic and neural DTC Simulation for a speed and flux variation.
e Basic and neural DTC Simulation for all cases in a single fault defect.
e Basic and neural DTC Simulation for all cases in a double faults defect.

1.12.1 Basic DTC Simulation for a Speed and Flux Variation

We will perform a reference speed to 90 rad/s, and a reference flow to 1 Wb.T.

After half a second (0.5s) of operation, the reference speed is varied into 30rad/s, and the
reference flux at 0.5 Wh.T.

After(1s) we made a fault in switch one (T1).

The simulation results are illustrated on the Figure 1.22.

1.12.2 Basic DTC Simulation for all Cases in a Single Fault Defect

We will make all the switches in faulty from T1 to T6.

The results are presented in the alpha-beta stator currents which are illustrated in Figure
1.23.

It can be noted that the path drawn is a semicircle for all cases of defects.

1.12.3 Basic DTC Simulation for all Cases in a Double Faults Defect

Here, we will make two faulty switches in all possible situations with a fifteen (15) cases.
The results are presented in alpha-beta stator currents which are illustrated in Figure
1.24.

It can be noted that the path drawn is a portion shape of circle for all cases of defects.

20
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Fig. 1.23: Basic DTC simulation for all cases in a single fault defect
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simulation for all cases in a double faults defect

Fig. 1.24: Basic DTC
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1.12.4 Neural DTC Simulation for a Speed and Flux Variation

We will perform a reference speed to 90rad/s, and a reference flux to 1Wb.T. After half
a second (0.5s) of operation, the reference speed is varied into 40rad/s, and the reference
flux at 0.5 Wh.T. After also half a second tow (0.5s) we made a fault in first switch (T1).

The simulation results are illustrated on the Figure 1.25.

Saator Pl (Mewrd DT) Eecromagresic Torqee (Meursl DTC)

fux (i b)
lorque (N m)
&

i I i
1 15 o [H 1 13

i) =)

sizor curet ofphase & (Newrsl OTC)

spaadiradls)

_______________________________________

Fig. 1.25: Neural DTC simulation in permanent state for speed and flux variation
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1.12.5 Neural DTC Simulation for all Cases in a Single Fault Defect .

Stator currant in alphabita (Neural DTC)

r—T—T T T T T T T
: : : : E £ : : T1 faulty
S i R L i bt it i St s
10 f------ : ] e 5 . feusees e S
5 ...................................... —
£ :
g 0 o g S o 3 'l: ''''' e i L il -
& 5
5 """""""" 13 ----- e ftd e iy R et el =
D O N SO U . U SR AU S
e L T e e S e e S e
20 i i i i i i i i i
0 8 6 4 2 0 2 4 6 8 10
Is Ipha(A)
Fig. 1.26: Neural DTC simulation for a T1 switch defect
e Note

We can obtain the same results in neural network DTC as in basic DTC by replacing
switching table, torque and flux controllers by a neural network block. Figure 1.26 illus-
trates an example of T1 faulty switch.

1.13 Conclusion

In this chapter, we presented a basic control system based on DTC applied to an induction
motor fed by a PWM three phase voltage inverter.

Also, we presented an artificial neural network and we developed a neural networks method

from a classic DTC in order to be able to improving performances of basic DTC.
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2. CHAPTER TOW

2.1 INTRODUCTION

The asynchronous machine(ASM) is the most robust machine. This machine is widely
used in most of electric systems in several industrial fields. However, the asynchronous
machines are exposed to breakdowns due to different faults such as electrical or mechan-
ical defects in the stator, or rotor, or both simultaneously which, leads to financial losses
as well as wastage of time, which affects productivity in industries. Therefore, early
detection of a fault is recommended to repair in the shortest delay and minimize these
consequences. This pushed the majority of manufacturers to use in their production lines
sophisticated systems of fault detection and isolation.

There are many research focused on early fault detection. In the last decades, several
artificial intelligence techniques have been developed and applied in monitoring and di-
agnostic of systems, such as, Artificial Neural Networks and Fuzzy Logic [8].

In this work, a robust ANN-based approach is proposed to detect and isolate faults
in case of asynchronous machines. A proposed model system is simulated using MAT-
LAB/SIMULINK We will study the detection and the diagnosis of opening faults of the
PWM inverter switch occurrence for one and two faults simultaneously. Different patterns
of faults (single and two faulty switches) are simulated but the proposed diagnosis system;
is done only for single faulty switch cases. A reconfiguration of the PWM inverter is done
before a faulty case to allow the control system to continue operating when a fault occurs

and a transistor switch is open.
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2.2 Current patterns mode

The current pattern which indicates the location of the faulty switch can be distinguished
into six-patterns. Figure 2.1. shows the shape of the current pattern in a healthy condi-
tion as a circle. If an open switch fault has occurred, the phase current where the fault
occurred has only a positive or a negative value. A semicircle shape, therefore, Figure 2.2
and Figure 2.3 represents an open fault condition.

2.2.1 Current patterns in healthy mode

Fig. 2.1: Healthy mode

2.2.2 Current patterns in faulty modes

e One Fault Occurrence at a Time

| I
N ¢ )

Thopen ‘ e
—, | la

T4 open TS open
lo l ﬂ

Fig. 2.2: Single faulty modes
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e Two faults occurrence simultaneously

| | |
T1 T5 open
T1T2 open T1 T3 open T1 T4 open
N
>l o la la >l
|
A

>I o I € %' o I o
T1T6 open T2 T3 open T2 T5 open
T2 T4 open
| |
Aﬁ F ,\F‘ 4
T3 T4 open
) L . <Z)l 2 Va
T2 T6 open T3 T5 open 576 open
|
B
A lg
4
n THTh0pen T5T6 open
T4 T5 open f >« - la

Fig. 2.3: Two faulty modes

2.3 Feature Extraction System

Feature extraction is a process which can provide neural network enough significant infor-
mation in the pattern set to achieve the highest accuracy in neural network performance.
Feature extraction system should be universal for different speed references by normal-
ized functions. A feature is extracted to be used as input of neural network. Because is
playing a vital role in fault detection and localization to make the system more accurate
and effective by differentiating single and multiple faults. Block diagram of the proposed

extraction and diagnosis Technique is shown in Figure 2.4. To get the feature in the
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SIMULINK environment, this feature is explained using the follow equation[13][19]:

it Lo (0 (2.1)

S, =
p lengh(]saﬁ) % max([sayﬁ)

N: define the number of samples contained in [,
The choice of N depends on diagnosis decision time.

Faults are generated manually to obtain the features in faulty condition. This process

WA
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ﬁ -l e
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Fig. 2.4: Proposed fault diagnosis system[12][19]

is repeated several times for every possible change in data due to noise and other un-
predicted in a real-time environment. Also, for better neural network training, features
data entrance limit is determined in each faulty condition based on data collected pre-

viously (Figure 2.5.). The neural network is further trained with this organized data set. .

2.4 Structure of Fault Diagnosis System

Feature Extraction Feature Extraction
“r—tr 1 1 1 1 T | Yr—T T T
0.6
04
2
s 1
iﬂ gﬂ 0
0.2
04
o e e e T s e e T e S rIras I
healthy : T1 faulthy: T2 faulthyT3 faulthy | T4 faulthy: T5 faulthy: T6 faulthy] healthy iT1 faulthy} T2 fauithy} T3 faulthy: T4 faulthyiT5 faulthy i 76 gauhy
08 I L i i L 1 i i i i i i
Y ' & 9 4 3 6 ? 0% 1 2 3 4 5 § 7

He) t(s)

Fig. 2.5: Feature extraction functions in ov_f plane
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The diagnostic method can be summarized by the flowchart shown in Figure 2.6.

C start D
& i B, ic
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Fig. 2.6: Flow chart of fault diagnostic system

2.5 Neural Network Fault Classification

The architecture of the proposed fault diagnostic neural network is multilayer feed forward
networks (MLP). The network has different hidden layers with two inputs corresponding
to the normalized algebraic sum of Sx,S3 and three outputs describing the state of three
legs of PWM inverter. For each output, three levels are expected. 0 for a healthy leg,—1
for an upper faulty switch, and 41 for a downer faulty switch.

2.6 Training Data

The network will be trained with normal and abnormal data, thus the size of the input
matrix is two inputs data rows with 500 columns for each pattern inputs. That gives 500
for healthy pattern, 500%6=3000 for one fault occurrence. The target output correspond-
ing with classification data is represented for different speed references. The training data
set should also cover the operating region; thus, the test data sets are generated from
simulation with various speed references. In our work 25% of inputs/outputs data are

taken for validation and 25% for testing. .
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Fig. 2.8: Regression, and Training States of the proposed neuron networks
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2.7 Simulation Results

2.7.1 Current Patterns without a Fault Switch
Figure 2.9 represents the healthy state, it takes the form of a circle.

DIAGNOSTIC
WITHOUT FAULT

Is BetalA)

EL i . . .
5 -10 5 0 5 10 15
Is Alpha(A)

Fig. 2.9: a_fB Stator currents simulation and diagnosis result in healthy mode

2.7.2 Current Pattern in Single Fault Switches

The figures 2.10 shows various forms of defects for different faulty switches. The semicircle

corresponds to the location of the defective switch (T1, T2, T3, T4, T5, and T6). .
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Fig. 2.10: «_f Stator currents simulation and diagnosis result for single faulty Mode
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2.8 Reconfiguration of the inverter at the faults occurrence

We add three auxiliary legs to be placed in operation with the three main legs of the
inverter. Each auxiliary leg is connected in parallel with the main leg. When a fault
switch occurs the auxiliary leg will be activated by a reconfiguration signal and the main
leg that carried the fault switch turned off by the same reconfiguration signal. Figure 2.11
present the structure of the proposed three-phase inverter; this structure consists of six
symmetrical arms, each arm has two switches in series, the center of each auxiliary arm
connected with the output of the asynchronous motor and the other arms linked with a
reconfigurable switch.

Three reconfiguration signals are generated as inputs C1, C2, C3 automatically by the

Fig. 2.11: SIMULINK Model of PWM Inverter with reconfiguration

diagnostic system, these signals are expected to disable or enable the inverter arms, and
they change the reconfiguration each time with respect to the type of fault. When there
is a fault, the main arm is disconnected by the switch lock and the auxiliary arm is
connected.

The following figure shows how to reconfigure PWM inverter faults controlled by DTC.
2.8.1 Diagnosis Results for a Sequence of Faulty Transistor The simulation is

done like the following:

e We made half a second (0.5s) for healthy mode.
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Fig. 2.12: Matlab/Simulink block diagram of reconfisurable PWM inverter controlled b
DTC 34
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e After each half a second (0.5s) we made a fault corresponding to the six faults
switches (T1, T2, T3, T4, T5 and T6). A total time is three second and half (3.5s)
the result of diagnosis is shown down. flux, torque, motor speed and three stator

currents for each phase feeding the induction motor.

e Speed reference is 90 (rad/s), flux is 1(wb).
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ne 1 15 & 25 18
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Fig. 2.13: Flux and Torque Simulation for a Sequence of Faulty Transistor
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e Discussion of results

For a beginning all the signals are good for a healthy mode after each half a second
(0.58) there is a ripple signals just for (0.25s) after the ripple signals are removed by an
automatic reconfiguration action making returning the drive motor in healthy state.

2.9 Conclusion

In this chapter, various inverter faults are done using MATLAB/SIMULINK to simulate
different situations. A simple feature extraction of current patterns method has been
proposed. In this chapter we made a neural network diagnosis system of a DTC motor
drive method able to detect switching inverter faults with a reconfiguration to allow the

motor drive to continue to operate in safely state.
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GENERAL CONCLUSION

GENERAL CONCLUSION

In this project, the work was aimed in fault diagnosis and reconfiguration of a PWM
inverter with an induction motor drive controlled by an artificial neural networks direct
torque control (ANN_DTC).

A model of ANN_DTC of induction motor drive feeding a PW M three-phase inverter has
been presented. This control technique appears as a simple and effective way to control an
induction motor drive; therefore, it provides a promising solution to robustness problems.
Also in this project, we presented the simulation results of a speed regulation of induction
motor using a basic and neural direct torque control.

The proposed model system is developed using the SIMULINK tool from MATLAB. The
simulation results show the interest of the anti-windup regulator to solve the problem of
saturation and to limit the peaks of the currents during the variation or the inversion of
the speed of rotation.

We have studied the detection and diagnosis of an open inverter switching faults; where,
we have simulated the different modes of defects for the six switches using an artificial
intelligence technique. These diagnostic results are used to make a reconfiguration of
the inverter to deflect the appearance of faults making the neural networks direct torque
control system able to operate with any stability guarantee.

As perspective to this work, we propose to use other intelligent techniques to increase the

recognition rate and improving diagnostic for occurrence of two or three faults.

38



[1]

BIBLIOGRAPHY

H. Khan, S. Hussain, M Abid Bazaz Neural Network Modulation for a
Direct Torque Controlled Induction Motor Drive ” 2015 ITEEE Student

Conference on Research and Development (SCOReD).India

Z. Mekrini, B. Seddik Control of Complex Dynamical Systems based on
Direct Torque Control of an Asynchronous Machine ” 978-1-5090-5146-
5/16/$31.00 192016 ITEEE

K. L. Shi, T. F. Chan, Y. K. Wong, and S. L. Ho. Direct Self Control of
Induction Motor Based on Neural Network. IEEE Trans. Industry Appli-
cations, 37(5), 2001.

A. Krenker, J. Beter, A. Kos, J. Beter, and A. Kos, Introduction to
the Artificial Neural Networks, Artif. Neural Networks Methodol. Adv.
Biomed.Appl., pp. 118, 2011. 2Faculty of Electrical Engineering, Univer-

sity of Ljubljana Slovenia

T. Martin, B. Howard, and H. Mark, Neural network design, Boston, Mas-
sachusetts PWS, 1996.

Tutorial Point, ”Artifi+cial Neural Network” About the Tutorial Dis-
claimer & Copyright, Organ. Behav., pp. 1305, 2014.

Bimal K. Bose, Life Fellow, IEEE,” Neural Network Applications in Power

Electronics and Motor DrivesAn Introduction and Perspective

R. Ouhibi, S. Bouslama, and K. Laabidi, Faults classification of asyn-
chronous machine based on the probabilistic neural network (PNN), 4th
Int. Conf. Control Eng. Inf. Technol. CEIT 2016, pp. 1618, 2017. Tunisia,

Hammamet

S. Boukadida, S. Gdaim, A. Mtibaa” Direct Torque Control for Asyn-

chronous Machine Using Artificial Neural Networks”14th international



[10]

[11]

[12]

[13]

[14]

[16]

[17]

conference on Sciences and Techniques of Automatic control. Sousse,

Tunisia, December 20-22, 2013

M.W. Benkdour, Diagnostique de Dfauts et Reconfiguration D’onduleur
pour la Commande Directe du Couple d’'une Machine Asynchrone par la
Logique Floue, Mmoire de Master, Dpartement lectronique et communica-

tions, Universit de Ouargla, Mai 2017.

C. Omaya, F. Djafour, Localisation de dfauts d’onduleur MLI d’une ma-
chine asynchrone commande en DTC |, Mmoire de Master, Dpartement

lectronique et communications, Universit de Ouargla, Mai 2016.

F. Kadri, D. Djarah, and S. Drid, Neural Network Direct Torque Control of
Induction Motor Fed by Three Phase PWM Inverter , First International
Congress on Models, Optimization and Security of Systems (ICMOSS2010)
May 29-31, 2010, Tiaret, Algeria.

F. Kadri, D. Djalal S. Drid, F. Djeffal, and L. Chrifi-Alaoui, Neural Direct
Torque Control for Induction Motor under Voltage Source Inverter Open

Switch Fault , 2014 Ninth International Conference on Ecological Vehicles
and Renewable Energies (EVER).

F. Kadri, D. Djarah, S. Drid, and F. Djeffal, Direct Torque Control of
Induction Motor Fed by Three Phase PWM Inverter Using Fuzzy logic
and Neural Network , ELECTROMOTION, Volume 18, Issue 1, pp 22-
28,2011, Romania.

F. Kadri, S. Bensalem, and K. Houfar, PI Speed Control for Fuzzy Direct
Torque Control of induction motor using Fuzzy switching pattern First
International Conference on Electrical Engineering, CIGET09. 25-26 Oc-
tobre/2009, Tebessa, Algeria.

S. Mandarapu, S. Lolla, and M. V. S. Kumar, Digital PI Controller Using
Anti-Wind-Up Mechanism for A Speed Controlled Electric Drive System,
no. 1, pp. 239242, 2013.

M. Tharayil and A. Alleyne. A generalized pid error governing scheme



[18] C. Bohn and D. P. Atherton. An analysis package comparing pid anti-
windup strategies. IEEE Systems Magazine, 15(2):3440, April 1995.

[19] F. Kadri, S. Drid, F. Djeffal, and L. Chrifi-Alaoui, Neural Classification
Method in Fault Detection and Diagnosis for Voltage Source Inverter in
Variable Speed Drive with Induction Motor , Eighth International Con-

ference and Exhibition on Ecological Vehicles and Renewable Energies,

EVER13, 27-30 March/2013, Monte Carlo, Monaco.



gedle

G ¢ A (g panl) Al (uslally ale Jdy Al Sl S janal) ¢80 Jlal) cd gl b
pall (o Al sl Al odgd el g Jal e LISV (A Cpainl) Gl A4
OF RSl (g 9aa Al d ga BSAal) oda (pe gl o) Algaa ey Suall JAAY Cilss)
DY) S sl Gl e i Al B Y kel djaa A el sUadY)

il aSad alli le alaicWl SlSlaal) gilil Jaall oy MR (pa adli (Al o3¢l W8T g

Bale) g JUae D CAiS allai aa cdgeliluaY) dyuand) ClSudld) Jlaniuly el 35 Y & jaal o all
Lo lhaY) dpandl Gl 408 DA (e SlihaY) oS3 Jlaiuly dld g uslall A<
Juariad aa guSlall A Lghgan oSaal) 4N 5 LaaY) Juae S Slada g g L Eua

ol Ay grd) o2 waaly (Al (S (2 iy palladl) gl Al Ay 48k

Lgigan )98 JUae Yl g cugant) oda (oAl uSlad) Al Bale) A glaa B gl

Gl a8t ¢ el ) et dpaal) ¢ ajell pdlual) aSadl) jdgalibe cilal

Abstract

At the present time, electrical drives generally associate inverter and
induction machine. Therefore, these two elements must be taken into
account in order to provide a relevant diagnosis of these electrical
systems. So it is important to detect early different defects that can
occur in these systems in order to find ways to allow us to monitor the
operation and preventive action to avoid frequent breakdowns. The aim
of this work is to study the feasibility of fault detection and diagnosis in
a three-phase inverter feeding an induction motor. We present the
simulation results of a neural network direct torque control of induction
motor with a fault diagnosis and reconfiguration system using an
artificial intelligence technique. we gave a detailed description of one or
multiple inverter switching faults with a simple method for extraction of
characteristics to study the feasibility of detection and diagnosis of these
defects, and at the same time trying to made a reconfiguration of the
inverter to surround faults when they occurs.

Keywords: Direct Torque Control, Induction Motor, Neural Network
Control, Fault Diagnosis, Inverter Reconfiguration.
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