
UUNNIIVVEERRSSIITTYY  OOFF  KKAASSDDII  MMEERRBBAAHH--OOUUAARRGGLLAA  

FFaaccuullttyy  ooff  NNeeww  TTeecchhnnoollooggiieess  ooff  IInnffoorrmmaattiioonn  aanndd  CCoommmmuunniiccaattiioonn  

DDeeppaarrttmmeenntt  ooff  EElleeccttrroonniiccss  aanndd  CCoommmmuunniiccaattiioonnss  

  

DDiisssseerrttaattiioonn  
SSuubbmmiitttteedd  iinn  PPaarrttiiaall  FFuullffiillllmmeenntt  ooff  tthhee  RReeqquuiirreemmeenntt    

ffoorr  aann  AAccaaddeemmiicc  MMaasstteerr  DDeeggrreeee    

DDoommaaiinn::  SScciieennccee  aanndd  TTeecchhnnoollooggyy  

FFiieelldd::  EElleeccttrroonniicc  

SSppeecciiaallttyy::  EElleeccttrroonniicc  ooff  EEmmbbeeddddeedd  SSyysstteemmss  

SSuubbmmiitttteedd  bbyy::  

TTAAMMIISSSSAA  YYoouunneess  

TTIITTLLEE    

  

  

    

  

    

  

PPuubblliiccaallllyy  ddeeffeennddeedd:  

OOnn::........//JJuunnee//22001188  

BBeeffoorree  tthhee  jjuurryy  ::  

  

  

AAccaaddeemmiicc  YYeeaarr  22001177//22001188  

DDrr          CChhoouuaaiibb  CCHHAAKKOOUURR  MMCC  ((BB))  PPrreessiiddeenntt  UUKKMM  OOuuaarrggllaa  

MMrr          FFaarriidd  KKAADDRRII  MMAA  ((AA))  SSuuppeerrvviissoorr  UUKKMM  OOuuaarrggllaa  

DDrr            MMaannssoouurr  BBOOUUZZIIDDII  MMCC  ((BB))  EExxaammiinneerr  UUKKMM  OOuuaarrggllaa  



Contents 

Acknowledge  

 الإهداء

List of abbreviations and notification  

List of figures  

List of tables  

General Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………. ……. . . . .. ....……………….1 

 Chapter 1  

1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . ………. . 3 

1.2 Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . . .. . …………….………….. ……. .4 

1.3 A Biological Neuron (BNN) . . . . . . . . . . . . . ………………………... . . . . .. . . . …….. . ..5 

1.4 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………… . . ……... ..5 

1.4.1 Feedforward Network . . . . . . . . . . . . . . . . . …………………….. . . . . . . ………. . ..5 

1.4.2 Feedback Network . . . . . . . . . . . . . . . . . . . . . . . . …………………….. . ………… ..6 

1.5 Learning or Training Artificial Neural Networks . . . . . ………………………… . …….  ..6 

1.5.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . ………………………..…….. . ..7 

1.5.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . ………………………..…… ..7 

1.5.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . ……………………... . ……… . . ..8 

1.6 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . …………………………. . …….. . . . ..8 

1.7 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . …….……………………..…. ... . . 9 

1.7.1 Single-Input Neuron . . . . . . . . . . . . . . . . . . . ………..……………. . . . . ……….... . 9 

1.7.2 Multiple-Input Neuron . . . . . . . . . . . . . . . . . . . . ……………….…….. . ………. ... . 9 

1.7.3 A Layer of Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………….….... 9 

1.7.4 Multiple Layers of Neurons . . . . . . . . . . . . . . . . . . . . . ……………………. . …..…..9 

1.8 Multiple Layer Perceptron (MLP) model . . . . . . . . . . . ……………………………. . . … .9 

1.9 Developing of Neural Network . . . . . . . . . . . . . . . . ........ .. ……………………..... . . . ....10 

1.9.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . …….……………. …………... . .. .11 



1.10 Basic Principle DTC …. . . . . . . . . . . . . . . . . . . . . . . ………………………. . ……..... ..12 

1.10.1 Voltage Source of Inverter . . . . . . . . . . . . . . . . . . . . . . ……………………….... .12 

1.10.2 Selection of stator voltage . . . . . . . . . . . . . . . . . . . . . …………………………. . .13 

1.10.3 Switching table . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………………….. .14 

1.10.4 Flux and Torque Estimator . . . . . . . . . . . . . . . . . . . . ………………………….... .14 

1.10.5 The flux comparator . . . . . . . . . . . . . . . . . . . . . . . . . ………………………….... .16 

1.10.6 Electromagnetic Torque Comparator . . . . . . . . . . . . . . ……………….………… 16 

1.11 Structure of Basic Direct Torque Control . . . . . . . . . . …………………….. . ……….. ..17 

1.11.1 Voltage Source Inverter Model . . . . . . . . . . . . . ….…………… . . . . ……….…..18 

1.11.2 PI Speed Control Model . . . . . . . . . . . . . . . . . . . . ………………. . . . ………......19 

1.12 Simulation and Discussion of Results . . . . . . . . . . . . . . . ……………………….…… …20 

1.12.1 Basic DTC Simulation for a Speed and Flux Variation . …………………..……20 

1.12.2 Basic DTC Simulation for all Cases in a Single Fault Defect . . ……………..  ...20 

1.12.3 Basic DTC Simulation for all Cases in a Double Faults Defect . .  ……………...20 

1.12.4 Neural DTC Simulation for a Speed and Flux Variation . . . . . … ………………24 

1.12.5 Neural DTC Simulation for all Cases in a Single Fault Defect . . …………… …25 

1.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………….... …………………..25 

 Chapter 2  

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………... ……………………...26 

2.2 Current patterns mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …….………………………..27 

2.2.1 Current patterns in healthy mode . . . . . . . . . . . . . . . . . . . …………………………...27 

2.2.2 Current patterns in faulty modes . . . . . . . . . . . . . . . . . . ……….... …………………27 

2.3 Feature Extraction System . . . . . . . . . . . . . . . . . . . . . . . . . . . …..………………………..28 

2.4 Structure of Fault Diagnosis System . . . . . . . . . . . . . . . . . . . . . …... …………………….29 

2.5 Neural Network Fault Classification . . . . . . . . . . . . . . . . . . . . . ……. …………………...30 

2.6 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………… ……………………30 

2.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………………32 



2.7.1 Current Patterns without a Fault Switch . . . . . . . . . . . . . . . ………..........................32 

2.7.2 Current Pattern in Single Fault Switches . . . . . . . . . . . . . . . ……………………….32 

2.8 Reconfiguration of the inverter at the faults occurrence . . . . . . . . . . . …………………..33 

 2.8.1 Diagnosis Results for a Sequence of Faulty Transistor . . . . . . . ….. ……………….33 

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………………………………...37 

General Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………….………...38   

    Bibliography 

 

 

 

 

 

 

 

 

 



List of Figures 

 

1.1 Artificial Neuron Design[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …. . . . . …..4 

1.2 Biological and Artificial Neuron Design[7]. . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .5 

1.3 Single Layer Feed Forward Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 6 

1.4 Multilayer Layer Feed Forward Network . . . . . . . . . . . . . . . . . ……………………………. . 6 

1.5 Recurrent Network . . . . . . . . . . . . . . . . . . . . …………………………………… . . . . . . . . . . 6 

1.6 Supervised Learning Block Diagram . . . . . . . . . . . . …………………………….. . . . . . . . . . 7 

1.7 Unsupervised Learning Block Diagram . . . . . . . . . . . . …………………………….. . . . . . . . 7 

1.8 Reinforcement Learning Block Diagram . . . . . . . . . . . . . . . . . . …………………………… . 8 

1.9 Transfer Function [5] . . . . . . . . . . . . . . . . . . . . . . . . . ……………………….…………. . . . . 8 

1.10 a. Single-Input Neuron, b. Multiple-Input Neuron, c. Layer S Neurons [5] ………...……… 9 

1.11 Three-Layer Neurons [5] . . . . . . . . . . . . . . . . . . . . . …………………………….. . . . . ... . . 9 

1.12 Structure of Perceptron Network. [9] . . . . . . . . . . . . . . . . …………………………… . . ... . 10 

1.13 The Structure of the Multilayer Network [1] . . . . . . . . . . . ……………………….. . . . . . ... 11 

1.14 Training, Validation, and Test Errors of the Developed Neuron Networks ………………... 11 

1.15 Block Diagram of Basic DTC[9] . . . . . . . . . . . . . . ……………………………. . . . . . . . . .. 12 

1.16 Schematic of Inverter Voltage Source[10] . . . . . . . . . . . . . . . . . ……………….. . . . . . .  . . 13 

1.17 Sectors Detection[10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………. . . . . .. . . . . . . .. . . .. 14 

1.18 a.Two levels Hysteresis flux corrector, b.Three Levels Hysteresis Torque Corrector [12].  . 17 

1.19 Induction Motor Direct Torque Control Block Diagram (Neural network DTC)[13]. . . .   . . 18 

1.20 Voltage Source Inverter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . 18 

1.21 PI Speed Control Model[17][18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 19 

1.22 Basic DTC Simulation in Permanent State for a Speed and Flux Variation. . . . . . . . . . . . . . 21 

1.23 Basic DTC Simulation for all Cases in a Single Fault Defect . . . . . . . . . . . . . . . . . . …... .. . 22 

1.24 Basic DTC Simulation for all Cases in a Double Faults Defect . . . . . . . . . . .. . . . . . . .. . . . . 23 

1.25 Neural DTC Simulation in Permanent State for Speed and Flux Variation . . . . . . . . . . . . . . 24 

1.26 Neural DTC Simulation for a T1 Switch Defect . . . . . . . . . . . . . . . . . . . . . . . . . ……….. . . 25 



2.1 healthy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ... 27 

2.2 Single Faulty Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

2.3 Two Faulty Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 28 

2.4 proposed fault diagnosis system[12][19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . 29 

2.5 Feature Extraction functions in α _β plane . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . ….. . . . 29 

2.6 flow chart of fault diagnostic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …. . . . . . . . 31 

2.7 training validation and test errors of the developed neuron networks . . . . . . . . . . . . . . . . …. 31 

2.8 Regression, and Training States of the Proposed Neuron Networks . . . . . . . . . . . . . . . . . . . ..32 

2.9 Stator Currents Simulation and diagnosis result in healthy mode . . . . . . . . . . . . . . . . . . . . .. . 32 

2.10 Stator Currents Simulation and Diagnosis Result for Single Faulty Mode . . . . . . . . . . . . . . 33 

2.11 SIMULINK Model of PWM Inverter with Reconfiguration . . . . . . . . . . . . . . . . . . . . . . .. . . 33 

2.12 Matlab/Simulink block diagram of reconfigurable PWM inverter controlled by DTC . . . . . 34 

2.13 Flux and Torque Simulation for a Sequence of Faulty Transistor . . . . . . . . . . . . . ………… 35 

2.14 Speed and α _β Stator Currents Simulation for a Sequence of Faulty Transistor . . . .. . ……38 

 



LIST OF TABLES 

 

1.1 Generalized Tables for Voltage Vector Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 14 

1.2 Values of the Control Signals …………… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . 14 

1.3 Switching Table for Basic DTC……………. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 17 

1.4 Characteristics of the Induction Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .20 

 



Abbreviation and notification

ANN : Artificial Neural Network.

BNN : Biological Neural Network.

DTC : Direct Torque Control.

PWM : Pulse With Modulation.

AI: Artificial Intelligence.

FLC: Fuzzy Logic Control ,

ANFI: Adaptive Neuro - Fuzzy interference System.

AC : Alternative Current.

DC : Direct Current.

VSI: voltage-source inverter

ASM : asynchronous machine

Sa, Sb, Sc: inverter switches

εT :the hysteresis width of the electromagnetic torque comparator

εF :the hysteresis width of the flux comparator

Fs: stator flux

Te:electromagnetic stator Torque

Fs∗:reference stator flux

Te∗: reference electromagnetic stator torque

V s:The stator voltage vector

KF :the flux amplitude of hysteresis flux comparator

KT :the torque amplitude of hysteresis torque comparator

φs: The stator flux vector

Is:The stator currant vector

p: number of pole pair of induction motor

( φsα,φsβ):the estimated flux magnitudes

(Ia,Ib ,Ic ):currant in three dimension vector

( Isα,Isβ):currant in two dimension vector



  

      AAcckknnoowwlleeddggeemmeennttss    
 

I would like to express my deep gratitude and appreciation to 

my supervisor, Mr Farid KADRI, for his help and insightful 

comments and suggestions that helped fulfill the present 

study.  

   

I must also like to extent my heartfelt thanks to the members 

of the board of examiners: Dr Chouaib CHAKOUR and       

Dr Mansour BOUZIDI for proofreading and examining my 

paper.  

 

I am also grateful to the staff at the Department of electronics 

and communications at the University of Ouargla. They were 

wonderful whether by their attitudes toward the students, or 

by their devotion in work. 

 

Finally, I would like to thank everyone who has taken part in 

this study. Their contribution has been great in the fulfillment 

of this project. I am very grateful to them 

 

 



 

 لا يمكن للكلمات أن توفي حقهماإلى من 

 

 إلى من لا يمكن للأرقام أن تحصي فضائلهما

 

 إلى والدي العزيزين أدامهما الله لي

 

 إلى زوجتي و أخواتي

 

 :إلى الأصدقاء

 

 حسين وعلي

 

 تهعائلبوعنان  إلى اسماعيل

 

 إلى كل من عائلة تميسة و سلامي

 

 2102ة تخصص الأنظمة المضمنة دفع 2إلى كل طلبة ماستر 

 

 أهدي هذا العمل



GENERAL INTRODUCTION

GENERAL INTRODUCTION

Induction motors are the most widely used motors in the industry. These motors find ap-

plications in servo drives, heating, ventilation and air conditioning systems, motor driven

pumps, fans, washing machines and other domestic appliances. The induction motors

offer numerous distinct advantages over other motors. They are rugged, reliable, easy to

maintain, cheap, highly efficient [1][2].

Without the use of power electronic converters and other sophisticated equipment,

induction motors can operate in constant speed mode only. Original drive systems mostly

depend on the use of DC motors. DC motors offer inherent decoupled flux and torque

control with a simple control mechanism and fast torque response. The use of DC motors

is limited mainly due to high maintenance requirements, and high voltages. DC drives

are being replaced by AC drives due to the advent of advanced control techniques such

as direct torque control offering precise position control and an extremely fast torque

response [1].

Despite the fact that many Artificial intelligence (AI) techniques for control of induc-

tion motors have been developed, such as artificial neural networks (ANN), fuzzy logic

control (FLC), and the adaptive neuro - fuzzy interference system (ANFIS). Human com-

portment and thinking (decision making, pattern recognition, associative memory etc.)

form the basis of intelligent control techniques. By adopting techniques based on artificial-

intelligence, the performance of motor control systems can be further improved [1][2] [3].

Neural networks are a class of statistical learning algorithms drawing inspiration from

the functioning of the human nervous system. ANNs can be thought of as a system of

interconnected neurons which compute values from inputs, and are capable of solving a

wide range of problems. Similar to how a human brain remembers and learns, an ANN

is trained to learn by associating patterns and mapping input/output data. The use of

statistical and signal processing methods for use in software implementations of ANNs is

increasing [1][2].

For variation speed of AC drives, there are several types of faults can possibly happen

such as controller faults, motor faults, current sensor faults, switching device faults, and

1



GENERAL INTRODUCTION

DC bus faults. Switching devices are the weakest components. As a result, these compo-

nents in a power conversion system are prone to be destroyed by faults.

For the voltage source inverter several faults are possible. In this work, two cases will

be studied:

• Occurrence of one fault at a time. One class is dedicated to the healthy domain and

the last six are to each faulty inverter switch.

• Occurrence of two faults simultaneously. One is dedicated to the healthy domain,

fifteen are to each two faulty inverter switches, and the last six are to each faulty

inverter switch.

The aim of this work is to make a simple feature extraction method to study the feasibility

of fault detection, isolations, and reconfiguration using neural networks. And result Our

work is divided in two chapters:

• In the first chapter, we describe the artificial neural networks (ANN), the basic

direct torque control (DTC), and an artificial neural networks control of a system of

asynchronous motor drive using a neural direct torque control. We end, by giving a

simulation results in the case of one and two faults in inverter switch in classic and

neural DTC mode.

• The second chapter will be dedicated to a theoretical study of switching defects of

(Pulse with Modulation) PWM inverter in both cases (one and two fault occurrence).

Also, we will make a feature extraction method to determine the signature of each

defect based on the surface algebraic calculation of the three stator phase currents.

A defect classifier based on artificial neural networks will be set to allow detection

and localization of one or multiple faults in the PWM inverter. After detection and

localization of faulty position, the diagnostic results will be generated to allow the

replacement of the defective arm by a healthy auxiliary arm as a reconfiguration

process for the PWM inverter.

Finally, we will terminate by a general conclusion where we give perspectives to this work.
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1. CHAPTER ONE

1.1 INTRODUCTION

The asynchronous machine is currently the most used machine in industrial field and grad-

ually replacing the DC machine. However, the asynchronous machine is a multivariate

system. It is characterized by a nonlinear model, which makes the control very compli-

cated. The Direct Torque Control (DTC) strategy is the most developed drive control

technique of asynchronous machines. It is characterized by a fast dynamic response, sim-

ple implementation and robustness essentially to the rotor parameter variation. However,

the direct torque control has the main disadvantages such as electromagnetic torque and

stator flux ripples. Therefore, many methods are used to overcome these disadvantages

for example replacing the hysteresis torque and flux controllers with neural block. The

artificial neural networks are capable to explore multivariate correlations between the

outputs and inputs variables without knowing the mathematical model of the system.
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1.2 Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) is a mathematical model that simulates the

structure and functionalities of biological neural networks. A simple mathematical model

has three sets of rules: multiplication, summation, and activation. At the entrance of

artificial neuron are the inputs, each input has its own relative weight. Some inputs

are made more important than others to have a greater effect; Weights are adaptive

coefficients that determine the intensity of the input signal. In the middle section of

artificial neuron is sum function that sums all weighted inputs and bias. At the exit

of artificial neuron the sum of weighted, inputs and bias is passing through activation

function that is also called transfer function (Fig. 1.1)[4].

Fig. 1.1: Artificial neuron design[3].

For the above general model of artificial neural network, the output can be calculated

As follows[3]:

y(k) = F

(
m∑
k=0

wi(k)xi(k) + b

)
(1.1)

Where:

• xi(k) is input or pattern value in discrete time k

• wi(k) is weight value in discrete time k

• b is bias

• F is a transfer function

4
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• y(k) is output value in discrete time k

The bias is much like a weight, except that it has a constant input of 1.However, if you

do not want to have a bias in a particular neuron, it can be omitted. [5]

1.3 A Biological Neuron (BNN)

The connections between neurons are much more complex than those implemented

in neural computing architectures. A typical neuron consists of the following four parts

(Figure 1.2)[6][7]:

• Dendrites : is responsible for receiving the information from other neurons.

• Soma : It is the cell body of the neuron and is responsible for processing of infor-

mation, they have received from dendrites.

• Axon : It is just like a cable through which neurons send the information.

• Synapses : It is the connection between the axon and other neuron dendrites.

Fig. 1.2: Biological and artificial neuron design[7].

1.4 Network Topology

A network topology is the arrangement of a network along with its nodes and connect-

ing lines. According to the topology, ANN can be classified as the following kinds[6][5]:

1.4.1 Feedforward Network

It is a non-recurrent network the signal can only flow in one direction, from input to

output. It may be divided into the following two types:

• Single layer feedforward network: the input layer is fully connected to the

output layer.

5
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Fig. 1.3: Single layer feed forward network

• Multilayer feedforward network : this network has one or more layers between

the input and the output layer, it is called hidden layers.

Fig. 1.4: Multilayer layer feed forward network

1.4.2 Feedback Network

A feedback network has feedback paths, which means the signal can flow in both

directions using loops.

• Recurrent networks:

They are feedback networks with closed loops. Having one or more hidden layers with at

least one feedback loop is known as recurrent network as shown in Figure 1.5.

Fig. 1.5: Recurrent network

1.5 Learning or Training Artificial Neural Networks

When a network has been structured for a particular application, it is ready for train-

ing. At the beginning, the initial weights are chosen by chance and then the training or

6
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learning begins. There are three major learning models; supervised learning, unsupervised

learning and reinforcement learning[4][6].

1.5.1 Supervised Learning

This type of learning is done under the supervision of a teacher. This learning process

is dependent. During the training of ANN under supervised learning, the input vector

is presented to the network, which will give an output vector. This output vector is

compared with the desired output vector. An error signal is generated, if there is a

difference between the actual output and the desired output vector. The weights are

adjusted until the actual output is matched with the desired output[4][6]. .

Fig. 1.6: Supervised learning block diagram

1.5.2 Unsupervised Learning

This type of learning is done without the supervision of a teacher, the network is pro-

vide with inputs but not with desired outputs. This is often referred to as self-organization

or adaption. During the training of ANN under unsupervised learning, the input vectors

of similar type are combined to form clusters. When a new input pattern is applied,

then the neural network gives an output response indicating the class to which the input

pattern belongs. There is no feedback from the environment to adjust their weights or

what should be the desired output and if it is correct or incorrect. Hence, in this type of

learning, the network itself must discover the patterns and features from the input data,

and the relation for the input data over the output[6]. .

Fig. 1.7: Unsupervised learning block diagram

7
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1.5.3 Reinforcement Learning

This type of learning is used to reinforce or strengthen the network over some critic

information. This learning process is similar to supervised learning; however we might

have very less information. During the training of network under reinforcement learning,

the network receives some feedback from the environment. This makes it somewhat

similar to supervised learning. However, the feedback obtained here is evaluative not

instructive, which means there is no teacher as in supervised learning. After receiving the

feedback, the network performs adjustments of the weights to get better critic information

in future[4][6].

Fig. 1.8: Reinforcement learning block diagram

1.6 Transfer Functions

A particular transfer function is chosen to satisfy some specification of the problem that

the neuron is trying to solve. Three of the most commonly used functions are in figure

below[5].

Fig. 1.9: Transfer function[5]

8
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1.7 Network Architectures

1.7.1 Single-Input Neuron

A single-input neuron is shown in Figure 1.10.a

1.7.2 Multiple-Input Neuron

A neuron with multiple Inputs is shown in Figure 1.10.b

1.7.3 A Layer of Neurons

A single-layer network of S neurons is shown in Figure 1.10.c. Each of the P inputs is

connected to each of the neurons. .

Fig. 1.10: a. Single-input neuron, b. Multiple-input neuron, c. Layer S neurons[5]

1.7.4 Multiple Layers of Neurons

A network with several layers is shown in Figure 1.11. .

Fig. 1.11: Three-layer neurons[5]

1.8 Multiple Layer Perceptron (MLP) model

The most common NN model is the MLP Neural Network. It is a kind of supervised

network which requires a desired output in order to learn; with nonlinear transfer functions

allow the network to learn nonlinear and linear relationships between input and output

9
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vectors [8]. The purpose of this network is to create a model that appropriately maps the

input to the output using historical data so that the model can be used to produce the

output when the desired output is unknown, it requires three or more layers, one or more

hidden layer, and output layer as shown in Figure 1.12. The output signal should indicate

the appropriate data of the input data. The weighted connections define the behavior of

the network and are adjusted during training through a supervised training. In a feed

forward network each input pattern vector is presented to input layer. For successive

activation, the input to each term is the summation by their respective weight.

Fig. 1.12: Structure of perceptron network. [9]

1.9 Developing of Neural Network

The structure of the multilayer network is shown in Figure 1.13. Neural network has been

employed to emulate space vector. The three inputs of the network are the flux error,

torque error and the sector location. The three output signals are Sa, Sb, Sc. The neurons

are represented by the circles and the interconnection between them is shown by links.

Each link has a weight associated with it. The circle contains the summing node of the

neuron with the activation function. Three layers of neurons exist in the network: input

layer, hidden layer, and output layer. The network described is a 3-10-3 network with the

number indicating the number of neurons in a layer. .

10
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Fig. 1.13: The structure of the multilayer network[1]

1.9.1 Training Data

Network will be trained with normal and abnormal data, thus the size of the input matrix

is three input data rows with 150000 columns for each pattern input (εT , εφ s). That

gives 450000 for the training data set should also cover the operating region; thus, the

test data sets are generated from simulation with various speed references. In our work

25% of input/output data are taken for validation and 25% for testing. We will make the

training under the following conditions:

• The entries of the system are gathered in a matrix.

• The outputs of the system are gathered in a matrix.

The number of the off-line training epochs is 36 to reach the 0.03 imposed error (Figure

1.14). .

Fig. 1.14: Training, Validation, and Test Errors of the Developed Neuron Networks

11
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1.10 Basic Principle DTC

Direct Torque Control is shown in figure 1.15. There are two different loops corre-

sponding to the magnitudes of the stator flux and torque. The reference values for the

stator flux φs∗ and the torque Te∗ are compared with the actual values, and the resulting

error values are fed into the two level and three level hysteresis block respectively. The

outputs of the stator flux error and torque error hysteresis blocks, together with the posi-

tion of the stator flux are used as inputs of the switching table. The inverter is switched

on using these errors and position of stator flux over six region control in such a way that

the inverter output voltage vector minimizes the flux and torque errors and defines the

direction of the flux rotation. The outputs of these controllers are Sa, Sb and Sc where

their values (0 or 1) are used to determine the inverter output voltage[9].

Fig. 1.15: Block diagram of basic DTC[9]

1.10.1 Voltage Source of Inverter

The figure 1.16 shows a voltage source inverter which is feeding a three phase asynchronous

motor. The inverter converts the DC to AC through power electronic. The circuit is

operated by switching Sa, Sb, Sc. The inverter uses two pairs of complementary controlled

switches in each inverter phase or leg, as shown in figure 1.16. Considering that the two

switches in each inverter phase or leg operate in a balancing pair in order to avoid short

circuiting the DC source[10][11].

.
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Fig. 1.16: Schematic of inverter voltage source[10]

The inverter is controlled from logic Boolean the state of the switches are Si = 1 (i=a, b,

c): Si = 1: If the top switch is closed and the bottom open

Si = 0: If the top switch is open and the bottom switch is closed

The vector Vs of the stator voltage can be written as[10]:

V s =

√
2

3
U0

[
Sa + Sb exp

(
i
2π

3

)
+ Sc exp

(
i
4π

3

)]
(1.2)

The different combinations of the three values (Sa, Sb and Sc) are used to generate eight

positions including two Vs vector corresponding to the zero vector. Where (Sa, Sb, Sc)

represents the logical state of the 3 switches. So we seek to control the flux and torque

via the selection voltage vector which will be by a switch configuration. As we have 3

switches, so there are 8 possibilities for vector Vs. Two vectors (Vo and V7 ) is the zero

vector (Sa, Sb, Sc) = (0, 0, 0) and (Sa, Sb, Sc) = (1, 1, 1).

1.10.2 Selection of stator voltage

The choice of vector Vs depends on the desired variation of the flux module, also the

desired changes to its rotation speed and to the torque. The stator flux is controllable if

a proper selection of the voltage vector is made. Figure 1.17 shows that the stator flux

plane is divided into six sectors where each one has a set of voltages vectors[13]. .

13
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Fig. 1.17: Sectors detection[10]

When flux is in zone i, vector Vi+1 or Vi−1 is selected to increase the level of the flux, and

Vi+2 or Vi−2 is selected to decrease it. At the same time, vector Vi+1 or Vi+2 is selected

to increase the level of torque, and Vi−1 or Vi−2 is selected to decrease it. If V0 or V7 is

selected, the rotation of flux is stopped and the torque decreases whereas the amplitude

of flux remains unchanged[10]. .

Vector Vk Vi+1 Vi+2 Vi−1 Vi−2
Fs ↗ ↘ ↗ ↘
Te ↗ ↗ ↘ ↘

Tab. 1.1: Generalized tables for voltage vector selection

1.10.3 Switching source table

It’s Depending on the determinate the phase of the estimated flux angle and the evolution

of the magnitude of the flux as well as the evolution of the estimated torque. the voltage

Vscan choose to be applied to respect the references flux, and torque . There are thus

parameters who give the right selection of choosing the adequate voltage vector Vs As

shown in table 1.2. and table 1.3.

SaSbSc 000 100 110 010 011 001 101 111
Vi V0 V1 V2 V3 V4 V5 V6 V7

Tab. 1.2: Values of the control signals [12][13][14]

1.10.4 Flux and Torque Estimator

The estimator calculates the stator flux and the electromagnetic torque. The inputs of the

estimator are stator voltage and current space vectors. They are referred to a stationary

reference frame; the voltage of the stator is given by[1][10]:

φs =

∫ t

0

(Vs −RsIs) dt (1.3)

14
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The stator flux vector is calculated from two components of two-phase axes (α,β) is

given[1][10]:

φs = φsα + iφsβ (1.4)

 φsα =
∫ t
0
(Vsα −RsIsα) dt

φsβ =
∫ t
0
(Vsβ −RsIsβ) dt

(1.5)

The module of the stator flux is given by equation 1.6[1][10]:

φs =
√
φ2
sα + φ2

sβ (1.6)

The angle φs is given by equation 1.7[1][10].

θs = arctan
φsβ
φsα

(1.7)

We obtained the voltage VsαVsβ by using the switching status (Sa, Sb and Sc) produced

by the switching table, the stator voltages in the reference frame are determined as[10]:
Vsα =

√
2

3
U0(Sa −

1

2
(Sb − Sc))

Vsβ =
1√
2
U0(Sb − Sc)

(1.8)

The electromagnetic torque can be estimated from the estimated flux magnitudes φsα,φsβ

and the calculated magnitudes of the current Isα,Isβ It is evaluated by equation 1.9[8farid]

Te =
3

2
p(Isβφsα − Isαφsβ) (1.9)

p: number of pole pair of induction motor

The measured currents (Ia,Ib ,Ic ) can be transformed into two dimension vector ( Isα,Isβ)

by[10]:


Isα =

2

3
Isa −

1

3
Isb −

1

3
Isb

Isβ =
1√
3

(
1

3
Isb −

1

3
Isb

) (1.10)

.
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1.10.5 The flux comparator

The purpose of this comparator is to keep the amplitude of the stator flux in a band .The

output of the comparator must indicate the direction of evolution of the module of the

flow. The control algorithm of this technique can be summarized as follows[10][12]:

if∆Fs > εφ then KF = 1

if − εφ ≤ ∆Fs ≤ εFand
dFs
dt

> 0 then KF = −1

if − εF ≤ ∆Fs ≤ εFand
dFs
dt

< 0 then KF = 1

if∆Fs < −εF then KF = −1

(1.11)

KF = −1 signifies that the flow must be reduced

KF = 1 Means to increase the flow.

∆Fs = |Fs − F ∗s |,With: (F ∗s ) reference is a reference flux ,and εF is the hysteresis with of

the comparator

1.10.6 Electromagnetic Torque Comparator

The torque comparator maintains the torque within the following limits:

∆T = |T − T ∗|,With: (T ∗) reference is a reference torque ,and εT is the hysteresis with

of the comparator.

The comparator allows motor control in two directions of rotation, either for positive or

negative torque. It indicates directly if the torque amplitude must be increased in absolute

value (Kt = 1), for a positive order and (Kt = −1), for a negative order, or maintained

(Kt = 0).

The control algorithm of this technique can be summarized as follows [12][13][14]:

if∆T > εT then KT = 1

if0 ≤ ∆T ≤ εtand
dT

dt
> 0 then KT = 0

if0 ≤ ∆T ≤ εtand
dT

dt
< 0 then KT = 1

if − εT ≤ ∆T ≤ 0and
dT

dt
> 0 then KT = −1

if − εT ≤ ∆T ≤ 0and
dT

dt
< 0 then KT = 0

if∆T < −εT then KT = −1

(1.12)
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• Kt = 1 means that the torque is below the lower limit of the band and must be

increased.

• Kt = −1 means that the torque is greater than the upper limit of the band and

must be reduced

• Kt = 0 means that the torque is inside the band and must be maintained there

Fig. 1.18: a.Two levels hysteresis flux corrector, b.Three levels hysteresis torque corrector
[12]

Ns 1 2 3 4 5 6
Kφ = 1 KT = 1 V2 V3 V4 V5 V6 V1
Kφ = 1 KT = 0 V7 V0 V7 V0 V7 V0
Kφ = 1 KT = −1 V6 V1 V2 V3 V4 V5
Kφ = −1 KT = 1 V3 V4 V5 V6 V1 V2
Kφ = −1 KT = 0 V0 V7 V0 V7 V0 V7
Kφ = −1 KT = −1 V5 V6 V1 V2 V3 V4

Tab. 1.3: Switching table for basic DTC[12][13][14]

1.11 Neural Structure Of DTC

In this approach, (Figure 1.19) we replaced the two hysteresis controllers and the switch-

ing table (basic DTC) by a neural network controller with torque errorεT flux error εφ and

number of sector S as inputs. The outputs of neural network controller are Sa, Sb and Sc

where their values (0 or 1) are used to determine the inverter output voltage. .
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Fig. 1.19: Induction motor direct torque control block diagram (Neural network DTC)[13].

1.11.1 Voltage Source Inverter Model

Fig. 1.20: Voltage source inverter model

.

18



Chapter 1 Neural Network Direct Torque Control

1.11.2 PI Speed Control Model

PI control has been widely used as a cascaded form of control in variable-speed motor

drives. Typical anti-windup methods are experimentally applied to the speed control of

a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage-

source inverter (VSI). In the speed control mode, a PID controller is used, the input of

which is the error between the reference speed and the actual speed of the motor. In the

scheme discussed in this study (Figure 1.21), a PID controller with anti-wind up gain is

used. The anti-windup is in function when saturation occurred[15][16].

Fig. 1.21: PI speed control model[17][18]



Kp =
J

τ
= 5

Ki =
f

τ
= 1

Fs =
1

ki
= 1

(1.13)
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F(Hz) P(kw) P V (v) Rs(Ω) Rr(Ω) Ls(H) = Lr(H) M(H) J(kgm2)
50 1.5 2 280 0.5 1 0.05 0.1 0.02

Tab. 1.4: Characteristics of the induction motor

1.12 Simulation and Discussion of Results

The simulation results of basic DTC are presented according to:

• Basic and neural DTC Simulation for a speed and flux variation.

• Basic and neural DTC Simulation for all cases in a single fault defect.

• Basic and neural DTC Simulation for all cases in a double faults defect.

1.12.1 Basic DTC Simulation for a Speed and Flux Variation

We will perform a reference speed to 90 rad/s, and a reference flow to 1 Wb.T.

After half a second (0.5s) of operation, the reference speed is varied into 30rad/s, and the

reference flux at 0.5 Wb.T.

After(1s) we made a fault in switch one (T1).

The simulation results are illustrated on the Figure 1.22.

1.12.2 Basic DTC Simulation for all Cases in a Single Fault Defect

We will make all the switches in faulty from T1 to T6.

The results are presented in the alpha-beta stator currents which are illustrated in Figure

1.23.

It can be noted that the path drawn is a semicircle for all cases of defects.

1.12.3 Basic DTC Simulation for all Cases in a Double Faults Defect

Here, we will make two faulty switches in all possible situations with a fifteen (15) cases.

The results are presented in alpha-beta stator currents which are illustrated in Figure

1.24.

It can be noted that the path drawn is a portion shape of circle for all cases of defects.
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Fig. 1.22: Basic DTC simulation in permanent state for a speed and flux variation
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Fig. 1.23: Basic DTC simulation for all cases in a single fault defect

22



Chapter 1 Neural Network Direct Torque Control

Fig. 1.24: Basic DTC simulation for all cases in a double faults defect

.
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1.12.4 Neural DTC Simulation for a Speed and Flux Variation

We will perform a reference speed to 90rad/s, and a reference flux to 1Wb.T. After half

a second (0.5s) of operation, the reference speed is varied into 40rad/s, and the reference

flux at 0.5 Wb.T. After also half a second tow (0.5s) we made a fault in first switch (T1).

The simulation results are illustrated on the Figure 1.25.

Fig. 1.25: Neural DTC simulation in permanent state for speed and flux variation

.
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1.12.5 Neural DTC Simulation for all Cases in a Single Fault Defect .

Fig. 1.26: Neural DTC simulation for a T1 switch defect

• Note

We can obtain the same results in neural network DTC as in basic DTC by replacing

switching table, torque and flux controllers by a neural network block. Figure 1.26 illus-

trates an example of T1 faulty switch.

1.13 Conclusion

In this chapter, we presented a basic control system based on DTC applied to an induction

motor fed by a PWM three phase voltage inverter.

Also, we presented an artificial neural network and we developed a neural networks method

from a classic DTC in order to be able to improving performances of basic DTC.
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2. CHAPTER TOW

2.1 INTRODUCTION

The asynchronous machine(ASM) is the most robust machine. This machine is widely

used in most of electric systems in several industrial fields. However, the asynchronous

machines are exposed to breakdowns due to different faults such as electrical or mechan-

ical defects in the stator, or rotor, or both simultaneously which, leads to financial losses

as well as wastage of time, which affects productivity in industries. Therefore, early

detection of a fault is recommended to repair in the shortest delay and minimize these

consequences. This pushed the majority of manufacturers to use in their production lines

sophisticated systems of fault detection and isolation.

There are many research focused on early fault detection. In the last decades, several

artificial intelligence techniques have been developed and applied in monitoring and di-

agnostic of systems, such as, Artificial Neural Networks and Fuzzy Logic [8].

In this work, a robust ANN-based approach is proposed to detect and isolate faults

in case of asynchronous machines. A proposed model system is simulated using MAT-

LAB/SIMULINK We will study the detection and the diagnosis of opening faults of the

PWM inverter switch occurrence for one and two faults simultaneously. Different patterns

of faults (single and two faulty switches) are simulated but the proposed diagnosis system;

is done only for single faulty switch cases. A reconfiguration of the PWM inverter is done

before a faulty case to allow the control system to continue operating when a fault occurs

and a transistor switch is open.
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2.2 Current patterns mode

The current pattern which indicates the location of the faulty switch can be distinguished

into six-patterns. Figure 2.1. shows the shape of the current pattern in a healthy condi-

tion as a circle. If an open switch fault has occurred, the phase current where the fault

occurred has only a positive or a negative value. A semicircle shape, therefore, Figure 2.2

and Figure 2.3 represents an open fault condition.

2.2.1 Current patterns in healthy mode

.

Fig. 2.1: Healthy mode

2.2.2 Current patterns in faulty modes

• One Fault Occurrence at a Time

Fig. 2.2: Single faulty modes
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• Two faults occurrence simultaneously

Fig. 2.3: Two faulty modes

2.3 Feature Extraction System

Feature extraction is a process which can provide neural network enough significant infor-

mation in the pattern set to achieve the highest accuracy in neural network performance.

Feature extraction system should be universal for different speed references by normal-

ized functions. A feature is extracted to be used as input of neural network. Because is

playing a vital role in fault detection and localization to make the system more accurate

and effective by differentiating single and multiple faults. Block diagram of the proposed

extraction and diagnosis Technique is shown in Figure 2.4. To get the feature in the
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SIMULINK environment, this feature is explained using the follow equation[13][19]:

Sα,β =

∑N
i=1 Isα,β(i)

lengh(Isα,β) ∗max(Isα,β)
(2.1)

N: define the number of samples contained in Isα,β .

The choice of N depends on diagnosis decision time.

Faults are generated manually to obtain the features in faulty condition. This process

Fig. 2.4: Proposed fault diagnosis system[12][19]

is repeated several times for every possible change in data due to noise and other un-

predicted in a real-time environment. Also, for better neural network training, features

data entrance limit is determined in each faulty condition based on data collected pre-

viously (Figure 2.5.). The neural network is further trained with this organized data set. .

2.4 Structure of Fault Diagnosis System

Fig. 2.5: Feature extraction functions in α β plane
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The diagnostic method can be summarized by the flowchart shown in Figure 2.6.

.

Fig. 2.6: Flow chart of fault diagnostic system

2.5 Neural Network Fault Classification

The architecture of the proposed fault diagnostic neural network is multilayer feed forward

networks (MLP). The network has different hidden layers with two inputs corresponding

to the normalized algebraic sum of Sℵ,Sβ and three outputs describing the state of three

legs of PWM inverter. For each output, three levels are expected. 0 for a healthy leg,−1

for an upper faulty switch, and +1 for a downer faulty switch.

2.6 Training Data

The network will be trained with normal and abnormal data, thus the size of the input

matrix is two inputs data rows with 500 columns for each pattern inputs. That gives 500

for healthy pattern, 500*6=3000 for one fault occurrence. The target output correspond-

ing with classification data is represented for different speed references. The training data

set should also cover the operating region; thus, the test data sets are generated from

simulation with various speed references. In our work 25% of inputs/outputs data are

taken for validation and 25% for testing. .
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Fig. 2.7: Training Validation and Test errors of the developed neuron networks

Fig. 2.8: Regression, and Training States of the proposed neuron networks
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2.7 Simulation Results

2.7.1 Current Patterns without a Fault Switch

Figure 2.9 represents the healthy state, it takes the form of a circle.

Fig. 2.9: α β Stator currents simulation and diagnosis result in healthy mode

2.7.2 Current Pattern in Single Fault Switches

The figures 2.10 shows various forms of defects for different faulty switches. The semicircle

corresponds to the location of the defective switch (T1, T2, T3, T4, T5, and T6). .

Fig. 2.10: α β Stator currents simulation and diagnosis result for single faulty Mode
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2.8 Reconfiguration of the inverter at the faults occurrence

We add three auxiliary legs to be placed in operation with the three main legs of the

inverter. Each auxiliary leg is connected in parallel with the main leg. When a fault

switch occurs the auxiliary leg will be activated by a reconfiguration signal and the main

leg that carried the fault switch turned off by the same reconfiguration signal. Figure 2.11

present the structure of the proposed three-phase inverter; this structure consists of six

symmetrical arms, each arm has two switches in series, the center of each auxiliary arm

connected with the output of the asynchronous motor and the other arms linked with a

reconfigurable switch.

Three reconfiguration signals are generated as inputs C1, C2, C3 automatically by the

Fig. 2.11: SIMULINK Model of PWM Inverter with reconfiguration

diagnostic system, these signals are expected to disable or enable the inverter arms, and

they change the reconfiguration each time with respect to the type of fault. When there

is a fault, the main arm is disconnected by the switch lock and the auxiliary arm is

connected.

The following figure shows how to reconfigure PWM inverter faults controlled by DTC.

2.8.1 Diagnosis Results for a Sequence of Faulty Transistor The simulation is

done like the following:

• We made half a second (0.5s) for healthy mode.
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Fig. 2.12: Matlab/Simulink block diagram of reconfigurable PWM inverter controlled by
DTC 34
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• After each half a second (0.5s) we made a fault corresponding to the six faults

switches (T1, T2, T3, T4, T5 and T6). A total time is three second and half (3.5s)

the result of diagnosis is shown down. flux, torque, motor speed and three stator

currents for each phase feeding the induction motor.

• Speed reference is 90 (rad/s), flux is 1(wb).

Fig. 2.13: Flux and Torque Simulation for a Sequence of Faulty Transistor

.
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Fig. 2.14: Speed and α β Stator Currents Simulation for a Sequence of Faulty Transistor
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• Discussion of results

For a beginning all the signals are good for a healthy mode after each half a second

(0.5s) there is a ripple signals just for (0.25s) after the ripple signals are removed by an

automatic reconfiguration action making returning the drive motor in healthy state.

2.9 Conclusion

In this chapter, various inverter faults are done using MATLAB/SIMULINK to simulate

different situations. A simple feature extraction of current patterns method has been

proposed. In this chapter we made a neural network diagnosis system of a DTC motor

drive method able to detect switching inverter faults with a reconfiguration to allow the

motor drive to continue to operate in safely state.
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GENERAL CONCLUSION

In this project, the work was aimed in fault diagnosis and reconfiguration of a PWM

inverter with an induction motor drive controlled by an artificial neural networks direct

torque control (ANN DTC).

A model of ANN DTC of induction motor drive feeding a PWM three-phase inverter has

been presented. This control technique appears as a simple and effective way to control an

induction motor drive; therefore, it provides a promising solution to robustness problems.

Also in this project, we presented the simulation results of a speed regulation of induction

motor using a basic and neural direct torque control.

The proposed model system is developed using the SIMULINK tool from MATLAB. The

simulation results show the interest of the anti-windup regulator to solve the problem of

saturation and to limit the peaks of the currents during the variation or the inversion of

the speed of rotation.

We have studied the detection and diagnosis of an open inverter switching faults; where,

we have simulated the different modes of defects for the six switches using an artificial

intelligence technique. These diagnostic results are used to make a reconfiguration of

the inverter to deflect the appearance of faults making the neural networks direct torque

control system able to operate with any stability guarantee.

As perspective to this work, we propose to use other intelligent techniques to increase the

recognition rate and improving diagnostic for occurrence of two or three faults.
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 ملخص

. لذلك ، يجب التحريض وآلة العاكسب عام بشكل الكهربائية المحركات تقترن الحالي، الوقت في

أخذ هذين العنصرين في الاعتبار من أجل توفير تشخيص لهذه الأنظمة الكهربائية. من المهم 

هو دراسة جدوى الكشف عن  المذكرةالهدف من هذه إن اكتشاف الفشل المبكر ومنع حدوثه. 

 .الأطوار يثلاث عاكسطرف  منيتغذى  تزامني لا الأخطاء والتشخيص في محرك تحريضي

 مباشر تحكم نظام على بالاعتماد المحاكاة نتائج العمل هذه خلال من نقدم الغاية، لهذه وتحقيقا

 وإعادة للأعطال كشف نظام مع ،ةصطناعيالاالعصبية  اتالشبك باستعمال تزامني لا لمحرك للعزم

 ةصطناعيالاالعصبية  اتالشبكتقنية   خلال من الاصطناعي الذكاء باستعمال وذلك للعاكس هيكلة

 استعمال مع العاكس في الممكن حدوثها والثنائية الأحادية للأعطال مفصلا وصفا قدمنا حيث

 نفس وفي العيوب هذه ، وتحديدتشخيص، كشف بغرض الخصائص لاستخراج بسيطة طريقة

 .حدوثها فور والأعطال العيوب هذه لتفادي العاكس هيكلة إعادة محاولة الوقت

 اتالشبكالتحكم ب،  اللاتزامنيتحريضي ال، المحرك  المباشر للعزم التحكم :كلمات مفتاحيه

 .العاكس هيكلة، إعادة الأعطال، تشخيص  ةصطناعيالا العصبية

 

Abstract 

At the present time, electrical drives generally associate inverter and 

induction machine. Therefore, these two elements must be taken into 

account in order to provide a relevant diagnosis of these electrical 

systems. So it is important to detect early different defects that can 

occur in these systems in order to find ways to allow us to monitor the 

operation and preventive action to avoid frequent breakdowns. The aim 

of this work is to study the feasibility of fault detection and diagnosis in 

a three-phase inverter feeding an induction motor.  We present the 

simulation results of a neural network direct torque control of induction 

motor with a fault diagnosis and reconfiguration system using an 

artificial intelligence technique. we gave a detailed description of one or 

multiple inverter switching faults with a simple method for extraction of 

characteristics to study the feasibility of detection and diagnosis of these 

defects, and at the same time trying to made a reconfiguration of the 

inverter to surround faults when they occurs. 

Keywords: Direct Torque Control, Induction Motor, Neural Network 

Control, Fault Diagnosis, Inverter Reconfiguration. 
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