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I. INTRODUCTION

Given an undirected graph G = (V,E), where V is the set
of vertices and E the set of edges, and an integer k, we ask
for a subset S ⊆ V of k vertices whose deletion maximizes
the number of connected components in the induced subgraph
G[V \S]. Note that G[V \S] denotes the subgraph induced by
V \S. This problem is known as the K-way vertex cut problem
[7], [16]. Its recognition version can be stated as follows. Let
c(G) denotes the number of connected components in G.

K-way Vertex Cut Problem (KVCP)

Instance: A graph G = (V,E), and an integer k.
Question: Is there a subset of vertices S ⊆ V , where |S| ≤ k,
the deletion of which satisfies c(G, [V \ S]) ≥ K? where K
is an integer.

The objective is to find a subset S ⊆ V of at most k vertices,
the deletion of which partitions the graph into at least K
connected components. This problem is the vertex-version of
the well-known Minimum k-cut problem [1]–[5], where we ask
for deleting a set of edges instead of vertices, with the purpose

of maximizing the number of connected components in the
induced graph. Note that the number of connected components
in a graph can be computed in linear time using either breadth-
first search or depth-first search algorithm [6].

The K-way vertex cut problem has been proven to be NP-
complete on general graphs [7] through a reduction from the
Maximum Independent Set problem (MIS). Indeed, we can
easily see that any subset of vertices whose deletion separates
the graph into at least K components identifies an independent
set of size at least K. Accordingly, the K-way vertex cut
problem on G is a natural generalization of the MIS on G.
Conversely, the MIS is the particular case of the K-way vertex
cut problem where the connected component size has to be
equal to one. The two problems are equivalent if k ≥ |V \ I|
where I is the maximum independent set of G.

One can hope that the K-way vertex cut problem becomes
polynomial on classes of graphs for which MIS is polynomially
solvable. However, this is not the case for the class of bipartite
graphs. In this paper, we prove that the K-way vertex cut
problem remains NP-complete even on this class of graphs.
While for the class of split graphs, we provide an equivalence
between the KVCP and CNP. This allows the KVCP to be
solved using any algorithms for solving the CNP.

Figure 1 reviews the KVCP complexity on different classes
of graphs considered in the literature and highlights the
contributions of this paper.

The rest of the paper is organized as follows. We com-
plete this section by a state-of-the-art of the K-way vertex
cut problem, where we review different works handled this
problem in the literature. Also, we give some definitions we
need in the rest of the paper. In section II, we provide the
NP-completeness proof of the problem on bipartite graphs. In
section III, we deduce its equivalence to the CNP, while in
section IV we deduce its resolvability in polynomial time on
weighted graphs of bounded treewidth. We close up the paper
by some future works in section V.
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On the Complexity of the K-way Vertex Cut
Problem

Abstract—The K-way vertex cut problem consists in, given
a graph G, finding a subset of vertices of a given size, whose
removal partitions G into the maximum number of connected
components. This problem has many applications in several
areas. It has been proven to be NP-complete on general graphs,
as well as on split and planar graphs. In this paper, we enrich
its complexity study with two new results. First, we prove that
it remains NP-complete even when restricted on the class of
bipartite graphs. This is unlike what it is expected, given that the
K-way vertex cut problem is a generalization of the Maximum
Independent set problem which is polynomially solvable on
bipartite graphs. We also provide its equivalence to the well-
known problem, namely the Critical Node Problem (CNP), On
split graphs. Therefore, any solving algorithm for the CNP on
split graphs is a solving algorithm for the K-way vertex cut
problem and vice versa.
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Fig. 1. The complexity of the K-way vertex cut problem on different classes
of graphs. Contributions of this paper concern the colored classes.

A. Related works

The K-way vertex cut problem can be considered as a
parametrized version of the graph separation problem [8],
where we ask for the vertex-separator set that partitions the
graph into the maximum number of connected components.
As well, it can be considered as a variant of the Critical
Nodes Detection Problem (CNDP) [9]. This problem (CNDP)
consists in finding the subset of vertices whose removal
significantly degrades the graph connectivity according to
some predefined connectivity metrics, such as: minimizing the
pairwise connectivity in the network [10]–[13], minimizing
(or limiting to a given bound) the largest component size [7],
[14], [15], etc. In the case of the K-way vertex cut problem
the metric considered is maximizing the number of connected
components.

Although its importance, the K-way vertex cut problem has
received a little attention, in the literature, as expected for
such an important problem. On general graphs, the problem
has been shown to be NP-complete [7], [16], and NP-hard
to be approximated within a factor of n(1−ε), for any ε > 0
[16]. Also, it is W[1]-hard, i.e. not fixed-parameter tractable,
with respect to the two parameters, namely the number of
deleted vertices k, and the number of connected component
in the induced graph K [8]. We recall that when we deal with
parametrized problems, the input instance has an additional
part called parameters. The complexity of the problem is
then measured as a function of those parameters, and the
problem is said to be fixed-parameter tractable if it can be
solved using algorithms that are exponential only in the size of
these parameters, while polynomial in the size of the problem
instance.

For solving the K-way vertex cut problem on general graphs,
a Mixed-Integer Program formulation has been presented in
[7], where bounds and validated inequalities for the proposed
formulation have been studied. As well, an evolutionary
framework, that uses two greedy methods embedded within
two main genetic operators, has been presented in [17]. The
two operators, namely reproduction and mutation, are used to
repair the obtained solutions, while the greedy methods are
used to guide the search in the feasible solution space.

Considering the K-way vertex cut problem on particular
classes of graphs, it has been proved to be NP-complete
on split and planar graphs [16]. Also it has been shown,

by the same authors, that the problem is NP-hard to be
approximated on split graphs [16], while on planar graphs it
can be approximated using a polynomial-time approximation
scheme (PTAS) of complexity O(nk2f(ε)), where ε > 0 and
f is a function only depending on ε [16]. We note that a
PTAS outputs an approximate solution of value at least (1−ε)
times the optimum, and the running time is polynomial in the
size of the problem. Considering the parametrized complexity
on these two classes of graphs, the problem remains W[1]-
hard with respect to parameter k (the number of vertices to
be deleted) on split graphs [16], however on planar graphs, a
fixed-parameter tractable algorithm of complexity O(nkO(k)),
with respect to k, has been proposed [16].

On trees, k-hole and series-parallel graphs, polynomial dy-
namic programming algorithms have been developed for solv-
ing the problem with complexity O(n3), O(n3+k) and O(n3),
respectively [14]. Also on graphs of bounded treewidth, the
problem can be solved in polynomial-time using a dynamic
programming algorithm with complexity O(nk2ww), where
w − 1 is the treewidth [16].

Table I summarizes the different results arisen from
studying the K-way vertex cut problem on different classes of
graphs.

B. Definitions and notations
Let G = (V,E) be an undirected graph, where V is the set

of vertices and E ⊆ V × V is the set of edges. Two distinct
vertices u and v are adjacent (or neighbour) if there exists an
edge uv ∈ E connecting them. u and v are called the endpoints
of the edge uv. The neighbourhood set of a vertex v ∈ V is
defined as N(v) = {u ∈ V |{u, v} ∈ E}. Let degG(v) denote
the degree of the vertex v, we have degG(v) = |N(v)|.

A chain in G is a sequence of distinct vertices
{v1, v2, . . . , vk} such that vivi+1 is an edge for each 0 <
i < k − 1.

Given a subset of vertices S ⊆ V , S is called an independent
set if there are no edges between any pair of vertices in S. We
use G[S] to denote the subgraph of G induced by S, and hence
G[V \ S] denotes the subgraph induced by V \ S. Also, we
use c(G,S) to denote the number of connected components in
G[V \ S] obtained by removing S from G. As well, c(G,A)
denotes the number of connected components obtained by
deleting a set of edges A ∈ E.

A graph G = (V,E) is a bipartite graph if the vertex set
V can be divided into two disjoint subsets V1 and V2, such
that every edge e ∈ E has one endpoint in V1 and the other
endpoint in V2. Each subset, V1 or V2, forms an independent
set of G. G is then denoted G = (V1, V2, E), where n1 = |V1|,
n2 = |V2| and n1+n2 = n. G is said to be a complete bipartite
graph, denoted Kn1,n2

, if each vertex in V1 is adjacent to all
vertices in V2. If one of the independent set, V1 or V2, is a
clique G is called a split graph.

II. BIPARTITE GRAPHS

In this section, we consider the K-way vertex cut problem
on bipartite graphs. This case is relevant when the network
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TABLE I
THE DIFFERENT RESULTS OBTAINED FROM STUDYING THE K-way vertex cut problem ON DIFFERENT CLASSES OF GRAPHS.

Graph class Complexity Solving approach Time
General graphs

NP-complete [7], [16]

Genetic algorithm [17] NC

Planar graphs PTAS [16] O(nk2f(ε))

FPT [16] O(nkO(k))
Split graphs \

Trees

Polynomial [14] Dynamic programming [14]
O(n3)

k-hole graphs O(n3+k)
Series-parallel graphs O(n3)

Graphs with bounded Tw Dynamic programming [16] O(nk2ww)

to be decomposed on connected groups or communities has a
bipartite structure, which is the case, for example, of users vs
files in a P2P system, traders vs stocks in a financial trading
system, conferences vs authors in a scientific publication
networks and so on.

In the following, we show that the K-way vertex cut problem
remains NP-complete even on this class of graphs. In order
to establish the complexity proof we have first to introduce
the following transformation of the k-cut problem on general
graphs [18] to the K-way vertex cut problem on bipartite
graphs.

The K-cut problem. Given a graph G = (V,E) and an integer
K, find a minimal subset of edges A ⊆ E, whose removal
partitions the graph into at least K connected components,
i.e. such that c(G,A) ≥ K. This problem is NP-complete on
general graphs [18], and its recognition version asks whether
there exists a cut-edges set A where |A| ≤ B, for a given
bound B.

We give a polynomial-time reduction from the k-cut problem
to the K-way vertex cut problem. Given an instance of the k-cut
problem on a general graph G(V,E), we define an instance
of the K-way vertex cut problem on a bipartite graph G′ =
(V ′, E′) as follows:

1) G′ contains all vertices and all edges of G, i.e. V ⊆ V ′

and E ⊆ E′.
2) For each vertex v ∈ V , if degG(v) ≥ 2, we add to G′

a chain pv = {v1, . . . , vk} of k vertices, such that v1
coincides with v (see Figure 2).

3) For each edge uv ∈ E′, we add a vertex x ∈ V ′ such
as we replace uv with two new edges ux, xv ∈ E′, i.e.
we replace each edge uv by a chain {u, x, v} such that
x is an added vertex. We denote U the set of all added
vertices x for which ux, xv ∈ E′ and u, v ∈ V .

4) For each chain pv = {v1, x1, v2, x2, . . . , vk} we add two
edges xx1, x′x1 ∈ E′ where x1 ∈ Pv and xv, vx′ are
two edges sharing the vertex v ∈ V (see Figure 2). Also
we add edges vvi where 2 ≤ i ≤ k, and vixi+1, xivi+1

where 1 ≤ i ≤ k for each chain pv .
Note that removing vertices of V from G′ does not dis-

connect the graph G′, and G′ becomes disconnected only
by removing vertices of U . Also, it is obvious that the
transformation can be done in polynomial time, and the graph
G′ is bipartite. Now, we prove the following theorem.
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Fig. 2. The reduction k-cut problem ∝ K-way vertex cut problem on bipartite
graphs. The added vertices are those with circles, and we have U = {x, x′}.

Theorem 2.1: The K-way vertex cut problem is NP-complete
on bipartite graphs.

Proof. The K-way vertex cut problem is in NP since given
a graph, we can compute in polynomial time the number of
connected components in the induced graph after deleting k
vertices. Now we prove that the K-cut problem on general
graphs ≤p K-way vertex cut problem on bipartite graphs.

Given an instance I of the K-cut problem on a general graph
G = (V,E), we construct an instance I ′ of the K-way vertex
cut problem on a bipartite graph G′(V ′, E′) as described in
(1)-(4). We show that G has a cut-edge set A ∈ E of k edges
such that c(G,A) ≥ K if and only if G′ has a cut-vertex set
S ∈ V ′ of k vertices such that c(G′, V ′ \ S) ≥ K.

First, let A ⊆ E be a solution of I , so A contains no more
than k edges whose deletion disconnects G into at least K
components. In I ′, we select the k vertices of S as follows:
for each edge uv ∈ A, we select from G′ the corresponding
vertex x ∈ U such that ux, xv ∈ E′.

By deleting the vertices in S from G′, no more than
k vertices are deleted |S| ≤ k and at least K connected
components are generated c(G′, V ′ \ S) ≥ K. Hence, S is
a solution of the K-way vertex cut problem on G′.

Conversely, we prove that if there is a cut-vertex set S of
size k for G′, then we have a cut-edge set of size k for G.
Let S be a solution of I ′, so S contains a set of k vertices
whose deletion disconnects G′ into at least K components.
We can easily observe that G′ becomes disconnected only
by removing vertices of U . Thus, the solution satisfies the
condition that only vertices from U are deleted. Indeed, if the
condition is not satisfied, then S should contain the original
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vertices of G and/or vertices from the added paths pi. Given
such a solution an equivalent solution satisfying the condition
that only vertices from U are deleted can be constructed in
polynomial time. In doing so, we swap each vertex v ∈ S and
a vertex u ∈ U , i.e. we keep v and we delete u instead,
and hence we get an induced graph with probably more
components, since deleting vertices from U can disconnect G′

and generates further components. Thus, the obtained solution
is at least as good as S, and satisfies that only vertices from
U are deleted.

Now, let S ⊆ U be a solution of I ′. In I , we select the k
edges of A as follows: for each vertex v ∈ S, we select from
G the edge uw ∈ E such that uv, vw ∈ E′. By deleting A
from G, no more than k edges are deleted, |A| ≤ k, and at
least K connected components are generated. Therefore, A is
a solution of the K-cut problem on G.
This complete the proof.

�

Remark It is clear that for the complete bipartite graph
Kn1,n2 the K-way vertex cut problem is trivial, and the solution
is obtained by deleting the partition of smaller cardinality if
n1, n2 ≤ k. Otherwise, the solution is to delete any k vertices
that results in only one component.

III. SPLIT GRAPHS

Considering split graphs, we show that the K-way vertex
cut problem is equivalent to the Critical Node Problem (CNP)
[11].

Theorem 3.1: The K-way vertex cut problem and the CNP
are equivalent on split graphs.

Proof. Given a split graph G = (V,E) and a set of vertices
S ⊆ V , we can easily notice that G[V \ S] always contains a
non-trivial connected component and isolated vertices, if any
(see Figure 3). Note that G is a split graph if the set of vertices
can be partitioned into two subsets V1 and V2, V = V1 ∪ V2,
where V1 is an independent set and V2 is a clique.
We recall that the recognition version of both the CNP and
K-way vertex cut problem seeks for finding a set of vertices
of at most k, the deletion of which, respectively, minimizes
pairwise connectivity (for the CNP), or maximizes the number
of components (for the K-way vertex cut problem) in the
remaining graph. According to the value of k, two cases can
be considered:

Case 1: k ≥ |N(V1)|. This is a trivial case, where the
optimal solution, for both variants, is to delete the vertices
of N(V1) and any k − |N(V1)| vertices from V2. We then
obtain a residual graph that has |V1| isolated vertices and a
connected component of size |V2| − (k − |N(V1)|).

Case 2: k < |N(V1)|. In this case, we consider an optimal
solution for the CNP and try to prove that it is also an optimal
solution for the K-way vertex cut problem, and vice versa.
Given an optimal solution s∗ for the CNP on a split graph
G, this solution aims to find a set of vertices S ⊆ V so
that the non-trivial connected component of G[V \ S] is as

(a) (b)

Fig. 3. Deleting any subset of vertices (eg. vertices with circles) from a
split graph (see (a)) results in a non-trivial connected component and isolated
vertices (see (b)).

small as possible and the surviving isolated vertices of the
independent set be as large as possible. Therefore, we note
that for s∗ only vertices in V2 are removed from G (i.e.,
S ⊆ V2), and given any optimal solution for the CNP, an
equivalent solution satisfying this condition (S ⊆ V2) can be
constructed in polynomial time (for proof see [10]). On the
other hand, to solve the K-way vertex cut problem we aim to
obtain a maximal number of components in the residual graph.
In doing so, we seek for maximizing the number of isolated
vertices from V1 once the critical vertices have been deleted.
For this purpose, only vertices in V2 are removed from G,
which is exactly the solution s∗. Hence, the solution s∗ is
also the optimal solution of the K-way vertex cut problem.
Therefore, an optimal solution of one of the two problems is
an optimal solution of the other, and so the CNP and the the
K-way vertex cut problem are equivalent. �

According to Theorem 3.1 and since the CNP is NP-
complete on split graphs [10], we have the following corollary:

Corollary 3.2: The K-way vertex cut problem remains NP-
complete on split graphs.

This is also what has been proven by Berger et al. [16]
through a reduction from the k-clique problem.

IV. OTHER RESULTS

We mentioned above that the K-way vertex cut problem is
polynomially solvable on graphs of bounded treewidth [16].
The considered graphs are unweighted. In this section, we
deduce that it remains polynomially solvable on the case of
weighted graphs with bounded treewidth. Weighted graphs
means that a weight wi ≥ 0 is associated with each node
vi ∈ V . In this case, we ask for a subset of nodes of a
total weight (rather than a cardinality) no more than k, whose
removal maximizes the number of connected components in
the induced graph.

In [10], authors studied the MaxNumSC problem, for Max-
imizing the Number of Small Components, that can be for-
mulated as follows. Let f c(S) be the function that returns
the number of connected components in G[V \ S] with a
cardinality of at most c. :
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Input: A graph G = (V,E), and two integers c and k.
Output: argmax

S⊆V
f c(S), where |S| ≤ k.

Given a graph G = (V,E) and two positive integers k
and c, the MaxNumSC problem consists in maximizing the
number of connected components of cardinality at most c,
by deleting k vertices from G. The authors showed that the
problem is polynomially solvable on weighted graphs with
bounded treewidth.

It is obvious that the K-way vertex cut problem is a special
case of the MinMaxSC problem where c = |V |, and as the
MinMaxSC problem is polynomially solvable on weighted
graphs (where wi ≥ 0,∀vi ∈ V ) we have the following
corollary.

Corollary 4.1: The K-way vertex cut problem is polynomi-
ally solvable on weighted graphs with bounded treewidth.

V. CONCLUSION AND FUTURE WORKS

In this paper, we studied the complexity of the K-way vertex
cut problem on some particular classes of graphs, namely
bipartite and split graphs. This problem asks for finding the
subset of vertices in a graph, the deletion of which results in
the maximum number of connected components in the induced
subgraph. We proved its NP-completeness on bipartite graphs.
While on split graphs, we provided its equivalence to the well-
known problem, namely the Critical Node Problem (CNP).
This allows any solving method for the CNP to be used for
solving The K-way vertex cut problem and vice versa.

The problem still needs more investigation on both com-
plexity study and solving methods. For future works, we can
consider it on subclasses of (or related classes to) bipartite
and split graphs, which can help providing bounds for the
problem hardness. In fact, this is what we are already started
to do by considering bipartite-permutation graphs (which is
a subclass of the bipartite graph class). We found that the
problem can be solved polynomially, on this class of graphs,
using dynamic programming approach. Also, the problem can
be investigated on other important classes of graphs, such as
chordal graphs, disk graphs, etc. which will allow us to find
different applications of this parameter in real-world networks.
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