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Introduction

There is a plenty of methods that can be applied on the biharmonic equation. Our work

focuses on C1 finite element method for this equation.

In order to conduct our research, we will deal with the modelization model in chapter 1

by presenting Kircchoff plate model hypothesis. Besides that, we will use the theory of

Lax Milgram to realize the existence and uniqueness of the solution.

In chapter 2, we will go deeply in the core of the study through the discretization of the

model and confirming the finite element method. We will choose the finite element of

Argyris to ensure the well-posedness of the discrete problem.

For the approximation of the problem solution, chapter 3 analyses the error in two parts.

The first part studies the priori estimation of the discretization error to ensure the (Céa),

while the second part studies the posteriori error estimates to show the reliability of the

indicator and optimality of the indicator.
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Notations

In this chapter, scalars are denoted by simple letters and vectors and matrices by bold-

face letters. Throughout this chapter, we use the standard Cartesian coordinate system

and denote the Cartesian components of a vector v and a matrix A using subscripts,

i.e., v = (vi) and A = (Ai,j) . Latin induces take values {1, 2, 3} and Greek induces

{1, 2} . Furthermore, Einstein’s summation convention is applied to induces appearing

twice within a product. When ever we use the term (second-order) tensor we mean its

representation as matrix with respect to the Cartesian coordinate system. In this sense,

we do not distinguish between second-order tensors and matrices in this chapter.

We use the dot for the inner product between vectors v,u ∈ R2 and c,d ∈ R3

v · u = vαuα, c · d = cidi,

and the colon for the inner product between matrices A,B ∈ R2×2 and C,D ∈ R3×3

A : B = AαβBαβ, C : D = Ci,jDi,j,

where usually the dimension is clear from the context and otherwise stated explicitly. Let

the midsurface ω be a domain with a Lipschitz boundary Γ. In what follows let n = (nα)

and t = (tα), with t1 = −n2 and t2 = −n1, represent the unit outer normal vector and

the unit counterclockwise tangent vector to Γ, respectively. Furthermore, ∂n denotes the

normal derivative and ∂t the tangential derivative along Γ.

For a vector v = (vα) we introduce the following notations

vn = v · n, vt = v · t

for the normal component and the tangential component, and for a matrix A = (Aαβ)

Ann = An · n, Ant = An · t

for the normal-normal component and the normal-tangential component.

Let v represent a scalar field ω → R, ψ a vector field ω → R2, and l a matrix field
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ω → R2×2, all sufficiently smooth. Here and in the following we use the notation ∂α = ∂xα .

Then we have the following classical definitions of the differential operators:

we fix some notations:

ä ∇v = grad(v) =

(
∂xv
∂yv

)
: Le gradient d’un vector v.

ä D2v = ∇2v =

(
∂2
xv ∂yxv

∂2
xyv ∂2

yv

)
: La matrice Hessienne

ä D2w : D2v =
2∑

i,j=1

wxixjvxixj : Le produit scalaire dans R4.

ä |v|2, ω =

(∑
α=2

‖Dαv‖0,ω

)1/2

.

ä ∆u =
∂2u

∂x2
+
∂2u

∂y2

ä JvK = v−n
− + v+n

+.

ä {{v}} =
∇v− +∇v+

2
.

ä
∂2v

∂n2
= n · (∇2v)n .

ä

s
∂v

∂n

{
= (∇v+ +∇v−) · n.

ä Osc2(f) = (
∑

T∈Th h
4
T‖f − fT‖2

L2(T ))
1
2 .

ä curlv =

(
∂2v
−∂1v

)
,

ä Curl ψ =

(
∂2ψ1 −∂1ψ1

∂2ψ2 −∂1ψ2

)
,

ä div ψ = ∂1ψ1 + ∂2ψ2,

ä DivL =

(
∂1L11 + ∂2L12

∂1L21 + ∂2L22

)
,

ä rotψ = ∂1ψ2 − ∂2ψ1,

ä RotL =

(
∂1L12 − ∂2L11

∂1L22 − ∂2L21

)
,
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Chapter 1

Kirchhoff plate model

This chapter is based on the thesis[1]:

A New Approach to Mixed Methods for Kirchhoff-Love Plates and Shells.

By: Katharina Refetseder. Johannes Kepler University of Linz (Germany) (2018).

The Kircchoff plate is a planar thin-walled structure. One dimension, in our case x3, is

significantly smaller than the other two. The 3D plate in the undeformed configuration

is defined by

Ω =
{

(x1, x2, x3) ∈ R3 : (x1, x2) ∈ ω, x3 ∈
(
−ε

2
,
ε

2

)}
where ω ⊂ R2 defines the midsurface of the plate and ε denotes the thickness, which

we assume for simplicity to be constant. In the following considerations the plate is

subject to loads that cause bending and stretching deformations. before we introduce the

Kirchhoff plate model. Note that the Kirchhoff model, can be deduced from the Reissner-

Mindlin model. The comparaison between the two models, was an interesting question for

researchers. Roughly speaking, for very small thickness values the Kirchhoff model gives

more accurate results, whereas, the Reissner-Model is better when the plate is recently

thick or when singularities are present.
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1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

1.1 Plate kinematics and constitutive equation

The invention of the classical plate theory dates back to 1850 and is accredited to Gustav

Kirchhoff (1824-1887). In his model, the Kirchhoff plate model, the displacement field

is based on the Kirchhoff kinematical assumptions, which consist of the following three

parts:

1. Straight lines orthogonal to the midsurface (i.e. transverse normals) in the unde-

formed configuration remain straight during the deformation.

2. Transverse normals remain unstreched during the deformation.

3. Transverse normals rotate such that they remain orthogonal to the midsurface after

the deformation.

N

N̄

Figure 1.1: Kirchhoff geometric assumption

For thick plates this theory is too restrictive, since also transverse shear deformations

have to be taken into account. Transverse shear deformations can be understood as the

sliding over each other of the surfaces parallel to the midsurface. These effects were first

incorporated in their plate models by Eric Reissner (1913-1996) in 1945 and by Ray-

mond Mindlin (1906-1987) in 1951. The idea was to consider the rotations as additional

unknown beside the displacement of the midsurface. This means the third of Kirchhoff

assumptions was dropped, leading to the Reissner-Mindlin kinematical assumptions.

The Reissner-Mindlin kinematical assumptions imply the following form of the 3D dis-
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1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

~e1

~e3

~e2

Γc,
∑

c = Γc×]− ε
2
, ε

2
[

f

ε

Figure 1.2: A deformed plate

placement U = (Ui):

Uα(x1, x2, x3) = uα(x1, x2)− x3θα(x1, x2),

U3(x1, x2, x3) = u3(x1, x2),
(1.1)

where u = (ui) denotes the displacement of the midsurface of the plate and θ = (θα) the

rotation of a transverse normal. In the following we refer to u = (uα) and u3 as in-plane

and transverse (vertical) part of the displacement, respectively.

Throughout the thesis we consider small displacements, i.e., linear analysis. Then the 3D

strain tensor e(U) is given by its components

eij(U) =
1

2
(∂jUi + ∂iUj) with ∂i = ∂xi .

For the specific displacement in (1.1) we obtain

eαβ(U) =
1

2
(∂βuα + ∂βuα)− x3(∂βθα + ∂αθβ) = εαβ(u) + x3καβ(θ),

eα3(U) =
1

2
(∂αu3 − θα) = γα(u3, θ),

(1.2)

where

εαβ(u) =
1

2
(∂βuα + ∂αuβ), καβ(u3) =

1

2
(∂βθα + ∂αθβ). (1.3)

5



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

The tensors ε(u), κ(θ) and γ(u3, θ) with components introduced above are called mem-

brane strain, bending strain, and shear strain tensor, respectively. The third part of the

Kirchhoff kinematical assumptions implies

θα = ∂αu3. (1.4)

as we can show in the next lemma:

Lemma 1.1.1 The third Kirchhoff assumption means that :

θ = ∇u3

Remark 1.1.2 The Kirchhoff assumptions reduce the number of degree of freedom from

5 (for Reissner-Mindlin model) to 3 i.e., only (u1, u2, u3) represent the unknowns.

Substituting the expression (1.4) for the rotation in (1.2) leads to

eαβ(U) =
1

2
(∂βuα + ∂βuα)− x3∂αβu3 = εαβ(u) + x3καβ(u3),

eα3(U) = 0

(1.5)

with the bending strain tensor κ(u3) given by

καβ(u3) = −∂αβu3. (1.6)

For an isotropic homogeneous linear elastic material Hooke’s law provides for the compo-

nents of the 3D stress tensor σ

σij = 2µeij + λ(e11 + e22 + e33)δij, (1.7)

with the lame constants λ and µ given by

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)

if we denote Young’s modulus by E and Poisson’s ratio by ν, as usual.

By applying the plane stress assumption σ33 = 0 we obtain

e33 = − ν

1− ν
(e11 + e22),

6



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

which leads to the 2D constitutive equation for the plane stress state

σαβ =
E

1 + ν

(
eαβ +

ν

1− ν
(e11 + e22)δαβ

)
(1.8)

In short we write for σ2D = (σαβ) and e2D = (eαβ)

σ2D = Ce2D

with the application of the fourth-order material tensor given by

CA =
E

1 + ν

(
A +

ν

1− ν
tr(A)I

)
for all A ∈ R2×2, (1.9)

where I is the identity matrix and tr is the trace operator for matrices. The theory pre-

sented in the following is independent of the particular structure of the material tensor.

We only assume that the material tensor is symmetric and positive definite on symmetric

matrices, i.e.,

CA : B = A : CB for all A,B ∈ R2×2
sym

CA : A > 0 for all 0 6= A ∈ R2×2
sym

where R2×2
sym denotes the space of symmetric matrices in R2×2. Furthermore, λmin(C) and

λmax(C) denote the minimal and maximal eigenvalue of the material tensor, respectively,

then

λmin(C)A : A ≤ CA : A ≤ λmax(C)A : A for all A ∈ R2×2
sym

7



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

1.1.1 Derivation of the Plate Model

Throughout this section all functions are assumed to be sufficiently smooth.

We consider the standard linear elasticity problem in the domain Ω ⊂ R3 with boundary∑
. The undeformed midsurface ω ⊂ R2 is assumed to have a Lipschitz boundary Γ. Let

the boundary Γ be written in the form

Γ = νΓ ∪ εΓ with εΓ =
K⋃
k=1

Ek,

where Ek, k = 1, 2, ...,K, are the edges of Γ, considered as open possibly curvilinear seg-

ments and νΓ denotes the set of corner points in Γ. The edges are numbered consecutively

in counterclockwise direction. We denote the vertex at the start point of Ēk by xk were

Ēk denotes the closure of Ek. Since we consider a closed boundary curve, the index k = 0

is in the following always identified with k = K.

The 3D plate is considered to be clamped on a part
∑

c = Γc × (−ε/2, ε/2), simply sup-

ported on a part
∑

s = Γs × (−ε/2, ε/2), and free on a part
∑

f = Γf × (−ε/2, ε/2),

with Γ = Γc ∪ Γs ∪ Γf and pairwise disjoint subsets Γc,Γs and Γf , and the edges each

edge E ∈ εΓ is contained in exactly on the sets Γc,Γs,Γf , and the edges are maximal in

the sense that two edges with the same type of boundary condition do not meet at an

angle of π. We suppose that no kinematical boundary conditions for the displacement are

prescribed on the top and botton boundaries of Ω. Tractions g = (gi) are prescribed on

the whole boundary
∑

, and body forces f = (fi) are given in Ω .

Thus, the total energy of the elasticity problem reads as

J(U) =
1

2

∫
Ω

σ(U) : e(U)dx−
∫

Ω

f ·Udx−
∫
∑ g ·UdΓ,

where the first part is the strain energy corresponding to a displacement U, the second

part is the potential energy related to the body forces f , and the third part is the energy

resulting from the prescribed boundary tractions g .

The displacement U = (U, U3) is then obtained by minimizing the energy J(U) with

respect to the space of kinematically admissible displacements U = (U, U3) satisfying the

8



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

kinematical boundary conditions

U = Û U3 = Û3 on
∑
c

,

U t = Û t U3 = Û3 on
∑
s

.
(1.10)

for the function J accept

J(U + V) = J(U) +
〈
J
′
(U), V

〉
+ ◦(‖ · ‖)

so

J(U + V) =
1

2

∫
Ω

C(e(U + V ) : e(U + V ))dx−
∫

Ω

f(U + V )dx−
∫
∑ g(U + V )dΓ

=
1

2

∫
Ω

Ce(U) : e(U)dx+

∫
Ω

Ce(U) : e(V )dx+
1

2

∫
Ω

Ce(V ) : e(V )dx−
∫

Ω

f.Udx

−
∫

Ω

f.V dx−
∫
∑ g.UdΓ−

∫
∑ g.V dΓ

J(U + V) = J(U) +

∫
Ω

Ce(U) : e(V )dx−
∫

Ω

f · V dx−
∫
∑ g · V dΓ + ◦(‖V ‖)

so 〈
J
′
(U), V

〉
=

∫
Ω

Ce(U) : e(V )dx−
∫

Ω

f.V dx−
∫
∑ g.V dΓ

Remark 1.1.3 The functional J : W 1,p
0 (ω)→ R defined by:

J(U) =
1

2

∫
Ω

σij(U) : eij(U)dx−
∫

Ω

f.Udx−
∫
∑ g.UdΓ

accept critical point U solution to B(U) = f so ∇J(U) = 0

This is equivalent to solving the variational formulation : find U = (U, U3) satisfying the

kinematical boundary conditions (1.10) such that∫
Ω

σij(U) : eij(V )dx =

∫
Ω

f.V dx+

∫
∑ g.V dΓ (1.11)

for all V satisfying the homogeneous counter part of the kinematical boundary conditions

Lemma 1.1.4 ( first Korn’s inequality ) Let Ω be a bounded domain of Rn, then,

∀u ∈ H1
0 (Ω) ‖∇u‖2

0,Ω ≤ 2 ‖e(u)‖2
0,Ω (1.12)

9



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

Lemma 1.1.5 (second Korn’s inequality ) Let Ω be a bounded domain of Rn, then,

∀u ∈ H1(Ω) ∃C(Ω) > 0 ‖u‖1,Ω ≤ C(‖u‖0,Ω + ‖e(u)‖0,Ω) (1.13)

Lemma 1.1.6 (Lax-Milgram) Let V be a Hilbert space with norm ‖·‖V and scalar product

(., .)V and assume a is a bilinear functional and L is a linear functional that satisfy:

1. a is continuous, i.e.

∃C > 0 such that ∀(u, v) ∈ V × V, |a(u, v)| ≤ C ‖u‖V ‖v‖V

2. a is coercive (V-elliptic), i.e.

∃α > 0, such that ∀u ∈ V a(u, u) ≥ α ‖u‖2
V .

3. L(v) is continuous, i.e.

∃γ > 0 such that , ∀v ∈ V |L(v)| ≤ γ ‖v‖V

then there is a unique function u ∈ V such that a(u, v) = L(v) ∀v ∈ V ,

Let’s consider these spaces [2]

VKL = {v ∈ V ei3(v) = 0}

VH =
{

(ϕ1, ϕ2) ∈ (H1(ω))2 ϕα|Γc = 0
}

V3 =
{
ϕ3 ∈ H2(ω) ϕ3|Γc = ∂ϕ3|Γc = 0

}
Using the strain representation (1.5), which is a consequence of kinematical assumptions,

and the constitutive equation for the plane stress state (1.8) the variational formulation

(1.11) becomes by performing explicit integration with respect to x3 :

find u = (u, u3) satisfying the essential boundary conditions

u = û, u3 = û3, ∂nu3 = θ̂n on Γc,

ut = ût, u3 = û3 on Γs
(1.14)

10



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

such that

∫
Ω

σ(u) : e(v)dx =

∫
Ω

f · vdx+

∫
∑ g · vdΓ

We take the left-hand∫
Ω

σ(u) : e(v)dx =

∫
Ω

(2µ · eαβ(u) + λ · eαα(u) · δαβ) eαβ(v)dx

=

∫
Ω

[2µeαβ(u) : eαβ(v) + λ · eαα(u) : eββ(v)]dx

=

∫
ω

∫ ε
2

− ε
2

[2µ(εαβ(u) + x3καβ(u))(εαβ(v) + x3καβ(v))

+ λ(εαα(u) + x3καα(u))(εββ(v) + x3κββ(v))]dx3dx

=

∫
ω

∫ ε
2

− ε
2

[2µ(εαβ(u) · εαβ(v) + x3καβ(u) · εαβ(v)

+ εαβ(u) · x3καβ(v) + x2
3καβ(u) · καβ(v))]dx3dx

+

∫
ω

∫ ε
2

− ε
2

[λ(εαα(u) · εββ(v) + x3καα(u) · εββ(v) + εαα(u) · x3κββ(v)

+ x2
3καα(u) · κββ(v))]dx3dx

We take the right-hand∫
Ω

f · vdx+

∫
∑ g · vdΓ

=

∫
ω

∫ ε
2

− ε
2

(fα(v − x3∇v3) + f3 · v3)dx3dx+

∫
Γc∪Γf∪Γs

∫ ε
2

− ε
2

(gα(v − x3∇v3) + g3 · v3)dx3ds

=

∫
ω

[
v

∫ ε
2

− ε
2

fαdx3 −∇v3

∫ ε
2

− ε
2

x3 · fαdx3 +

∫ ε
2

− ε
2

f3dx3v3)

]
dx

+

∫
Γf

[
v

∫ ε
2

− ε
2

gαdx3 −∇v3

∫ ε
2

− ε
2

x3 · gαdx3 + v3

∫ ε
2

− ε
2

g3dx3

]
ds

+

∫
Γs

[
v

∫ ε
2

− ε
2

gαdx3 −∇v3

∫ ε
2

− ε
2

x3 · gαdx3

]
dx

11



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

such that, the variational formulation∫
ω

(
εCε(u) : ε(v) +

ε3

12
Cκ(u3) : κ(v3)

)
dx =

∫
ω

(
f̂ · v − ĉ · ∇v3 + f̂3 · v3

)
dx (1.15)

+

∫
Γs

(
N̂nvn − M̂n∂nv3

)
ds

+

∫
Γf

(
N̂ · v − M̂ · ∇v3 + Q̂v3

)
ds

for all v = (v, v3) satisfying the homogeneous counterpart of the essential boundary

conditions. Here the applied distributed forces f̂ = (̂f , f̂3) and couples ĉ = (ĉα) are given

by

f̂α =

∫ ε
2

− ε
2

fαdx3 + 〈gα〉 , f̂3 =

∫ ε
2

− ε
2

f3dx3 + 〈g3〉 , ĉα =

∫ ε
2

− ε
2

fαx3dx3 + 〈gαx3〉 ,

with the operator 〈·〉 defined by

〈a(x1, x2, x3)〉 = a(x1, x2,
−ε
2

) + a(x1, x2,
ε

2
),

and the boundary forces N̂ = (N̂α), Q̂ and moments M̂ = (M̂α) read

N̂α =

∫ ε
2

− ε
2

gαdx3, Q̂ =

∫ ε
2

− ε
2

g3dx3, M̂α =

∫ ε
2

− ε
2

gαx3dx3.

The formulation is to find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V, (1.16)

where

a(u, v) =

∫
ω

(
εCε(u) : ε(v) +

ε3

12
Cκ(u3) : κ(v3)

)
dx

L(v) =

∫
ω

(
f̂ · v − ĉ · ∇v3 + f̂3 · v3

)
dx

+

∫
Γs

(
N̂nvn − M̂n∂nv3

)
ds

+

∫
Γf

(
N̂n · vn − M̂n · ∇v3 + Q̂v3

)
ds

12



1.1. PLATE KINEMATICS AND CONSTITUTIVE EQUATION CHAPTER 1.

for the existence and uniqueness of the solution we use theory of Lax-Milgram

a is bilinear and continuous,

To verify the continuity of a, we use the Cauchy-Schwarz inequality

a(u, v) =

∫
ω

(
εCε(u) : ε(v) +

ε3

12
Cκ(u3) : κ(v3)

)
dx ≤ C (‖ε(u)‖L2 ‖ε(v)‖L2 + ‖κ(u)‖V ‖κ(v)‖V )

≤ 2C ‖e(u)‖V ‖e(v)‖V

≤ 2C (‖e(u)‖L2 + ‖u‖L2) (‖e(v)‖L2 + ‖v‖L2)

≤ C ‖u‖H1 ‖v‖H1

(Korn’s inequality)

a is coercive (V-elliptic)

To verify the V-elliptic, we use the Korn’s and Poincare’s inequalities,

The V-elliptic of a

a(u, u) =

∫
ω

(
εCε(u) : ε(u) +

ε3

12
Cκ(u3) : κ(u3)

)
dx ≥

∫
ω

(εCε(u) : ε(u)) dx

= C ‖ε(u)‖2
L2 ≥ ‖u‖2

H1

L(v) is linear and continuous,

To verify the continuity, we use the Cauchy-Schwarz inequality and trace theorem,

13
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L(v) =

∫
ω

(
f̂ · v − ĉ · ∇v3 + f̂3 · v3

)
dx

+

∫
Γs

(
N̂nvn − M̂n∂nv3

)
ds

+

∫
Γf

(
N̂ · v − M̂ · ∇v3 + Q̂v3

)
ds

≤
∥∥∥f̂∥∥∥

L2(ω)
‖v‖L2(ω) + ‖ĉ‖L2(ω) ‖∇v3‖L2(ω) +

∥∥∥f̂3

∥∥∥
L2(ω)

‖v3‖L2(ω)

+
∥∥∥N̂n

∥∥∥
L2(Γs)

‖vn‖L2(Γs)
+
∥∥∥M̂n

∥∥∥
L2(Γs)

‖∂nv3‖L2(Γs)

+
∥∥∥N̂∥∥∥

L2(Γf )
‖v‖L2(Γf ) +

∥∥∥M̂∥∥∥
L2(Γf )

‖∇v3‖L2(Γf ) +
∥∥∥Q̂∥∥∥

L2(Γf )
‖v3‖L2(Γf ) (Cauchy-Schwarz)

≤ C
′ ‖v‖H1(ω) + C

′′ ‖v3‖H2(ω) +
∥∥∥M̂∥∥∥

L2(Γf )
‖∇v3‖L2(Γf )

+
∥∥∥M̂n

∥∥∥
L2(Γs)

‖∂nv3‖L2(Γs)

(trace inequality)

≤ C1 ‖v‖L2(ω) + C2 ‖v3‖L2(Γf )

(normel trace inequality)

The variational problem (1.15) decouples into two independent problems:

1.1.2 Membrane problem

Find u = (uα) satisfying the essential boundary conditions

u = û on Γc

ut = ût on Γs

such that ∫
ω

εCε(u) : ε(v)dx =

∫
ω

f̂ · vdx+

∫
Γs

N̂nvnds+

∫
Γf

N̂ · vds (1.17)

for all v = (vα) satisfying the homogeneous counterpart of the essential boundary condi-

tions.

14
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1.1.3 Bending problem

Find u3 satisfying the essential boundary conditions

u3 =û3, ∂nu3 = θ̂n on Γc,

u3 =û3 on Γs

such that ∫
ω

ε3

12
Cκ(u3) : κ(v3)dx

=

∫
ω

(
f̂3v3 − ĉ · ∇v3

)
dx−

∫
Γs

M̂n∂nv3ds

+

∫
Γf

(
Q̂v3 − M̂ · ∇v3

)
ds, (1.18)

for all v3 satisfying the homogeneous counterpart of the essential boundary conditions.

Note, variational formulation of the membrane problem only involves, first-order deriva-

tives and variational formulation of the bending problem involves second-order derivatives,

since the bending strain is defined by κ(u3) = −∇2u3, see (1.6). The membrane prob-

lem can be solved (independently) using standard techniques for second-order problems.

Therefore, we restrict our considerations in the following to the plate bending problem

for the transverse displacement u3, as this is the only unknown we skip the subscript and

just write u for the rest of this chapter.

For completeness we derive the strong formulation of the bending problem (1.15). For this

we define the bending moment tensor M, which is related to the bending strain through

the constitutive equation

M =
ε3

12
Cκ(u) = − ε

3

12
C∇2u.

15
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Two times integration by parts of the left-hand side in (1.18) provides

−
∫
ω

M : ∇2vdx =

∫
ω

DivM · ∇vds−
∫

Γ

(Mn) · vds

= −
∫
ω

(div DivM)vdx+

∫
Γ

(DivM · n)vds−
∫

Γ

(Mn) · ∇vds.

Using the representation ∇v = (∂nv)n + (∂tv)t we obtain∫
Γ

(Mn) · ∇vds =

∫
Γ

(Mnn∂nv +Mnt∂tv)ds.

In the next step we perform integration by parts along the boundary in tangent direction.

For this as well as for later use, we first define the following notations:

Definition 1.1.7 with the notations introduced at the beginning of chapter we define the

restriction of a function f to the boundary of an edge Ek−1 by

f |∂Ek−1
= f(xk)− f(xk−1) for k = 1, 2, ..., K (1.19)

and the jump at the corner point xk by

JfKxk = f(x−k )− f(x+
k ) for k = 1, 2, ..., K, (1.20)

with the one-sided limits given by

f(x−k ) = lim
ε→0

f(xk − εtk−1) and f(x+
k ) = lim

ε→0
f(xk + εtk),

where tk−1 and tk are the tangent vectors on the edges Ek−1 and Ek, respectively, in case

of a polygonal boundary and an appropriate adaption for curved boundaries.

Then we receive∫
Γ

(Mn) · ∇vds =

∫
Γ

(Mnn∂nv − ∂tMntv)ds+
∑
E∈εΓ

(Mntv(x))|∂E

=

∫
Γ

(Mnn∂nv − ∂tMntv)ds+
∑
x∈νΓ

JMntKxv(x).

16
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We end up with

−
∫
ω

M : ∇2vdx = +

∫
ω

(div DivM)vdx

+

∫
Γf

(∂tMnt + DivM · n)vds−
∫

Γs∪Γf

Mnn∂nvds−
∑
x∈νΓ,f

JMntKxv(x),

where we incorporate the boundary conditions of v. Here νΓ,f denotes the set of corner

points whose two adjacent edges belong to Γf .

By integration by parts of the term involving ĉ of right-hand side in (1.18) and again using

the representation ∇v = (∂nv)n+ (∂tv)t and integration by parts along the boundary we

obtain

∫
ω

(f̂3v − ĉ · ∇v)dx−
∫

Γs

M̂n∂nvds+

∫
Γf

(Q̂v − M̂ · ∇v)ds

=

∫
ω

(f̂3 + divĉ)vdx−
∫

Γs∪Γf

M̂n∂nvds+

∫
Γf

((Q̂− ĉn)v − M̂t∂tv)ds

=

∫
ω

(f̂3 + divĉ)vdx−
∫

Γs∪Γf

M̂n∂nvds+

∫
Γf

(Q̂+ ∂tM̂t − ĉn)vds

−
∑
x∈νΓ,f

JM̂tKxv(x).

Summing up, we obtain∫
ω

(
−(div DivM)− (f̂3 + divĉ)

)
vdx−

∫
Γs∪Γf

(Mnn − M̂n)∂nvds

+

∫
Γf

(
(∂tMnt + DivM · n)− V̂n

)
vds−

∑
x∈νΓ,f

(JMntKx − JM̂tKx)v(x) = 0

with V̂n = ∂tM̂t + Q̂− ĉn.

The procedure to deduce the strong formulation is to first consider test functions v that

vanish on the boundary Γ, which leads to

−div DivM = f̂3 + divĉ in ω.

17
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In order to receive the natural boundary conditions we consider in a first step test functions

v with v = 0 and arbitrary normal derivative ∂nv, which leads to the following boundary

condition for the normal-normal component of M:

Mnn = M̂n on Γs ∪ Γf .

Next we consider test functions v with v(x) = 0 for all x ∈ νΓ,f , which leads to the

boundary condition for the Kirchhoff shear force

∂tMnt + DivM · n = V̂n on Γf .

Finally, using that v(x) can be chosen arbitrary at the corners x ∈ νΓ,f we deduce the

corner conditions

JMntKx = JM̂tKx for all x ∈ νΓ,f .

In summary, the strong form of the plate bending problem (1.18) reads as

− div DivM = f̂3 + divĉ in ω, with M = − ε
3

12
C∇2u (1.21)

with the boundary conditions

u = û3, ∂nu = θ̂n on Γc,

u = û3, Mnn = M̂n on Γs, (1.22)

Mnn = M̂n, ∂tMnt + DivM · n = V̂n on Γf ,

with V̂n = ∂tM̂t + Q̂− ĉn, and the corner conditions

JMntKx = JM̂tKx for all x ∈ νΓ,f , (1.23)

where νΓ,f denotes the set of corner points whose two adjacent edges belong to Γf .

1.2 Variational formulation (plate bending problem)

So far we have assumed all functions to be sufficiently smooth.In this section we state

mathematically precisely what is meant by the term smoothness. To do this, we equip the

18
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variational formulation of the plate bending problem with appropriate function spaces.

Then the (primal) variational formulation of the plate bending problem derived in (1.18)

becomes: find u ∈ Wg such that∫
ω

ĉ∇2u : ∇2vdx =
〈
F̂ , v

〉
for all v ∈ W0 (1.24)

with the right-hand side〈
F̂ , v

〉
= 〈F, v〉 −

∫
Γs∪Γf

M̂n∂nvds+

∫
Γf

V̂nvds−
∑
x∈νΓ,f

R̂xv(x), (1.25)

where

〈F, v〉 =

∫
ω

fvdx with f = f̂3 + divĉ,

Vn = ∂tM̂t + Q̂− ĉn,

Rx = JM̂tKx.

The application of the modified material tensor Ĉ = ε3

12
C is given by

ĈA = D

(
A +

ν

1− ν
tr(A)I

)
for all A ∈ R2×2 (1.26)

with

D =
ε3

12

E

1− ν
.

Here the function spaces are given by

W0 =
{
v ∈ H2(ω) : v = 0, ∂nv = 0 on Γc, v = 0 on Γs

}
, (1.27)

Wg =
{
v ∈ H2(ω) : v = û3, ∂nv = θ̂n on Γc, v = û3 on Γs

}
(1.28)

with associated norm ‖v‖W = ‖v‖2. For the further considerations we make the following

assumptions on the boundary data: We consider M̂n ∈ L2(Γs ∪ Γf ) and V̂n = L2(Γf ),

well aware that by using appropriate duality products this requirements can be weakened.

Furthermore, we assume that there exists an extension ū ∈ H2(ω) of the boundary data

û3 and θ̂n such that ū = u3 on Γs ∪ Γf and ∂nū = θ̂n on Γc i.e,

Wg = ū+W0. (1.29)
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and throughout the thesis L2(ω) and Hm(ω) denote the standard Lebesgue and Sobolev

spaces of functions on ω with corresponding norms ‖.‖0 and ‖.‖m for positive integers m.

For functions on Γ we use L2(Γ) and H
1
2 (Γ) to denote the Lebesgue space and the trace

space of H1(ω) with corresponding norms ‖.‖0,Γ and ‖.‖ 1
2
,Γ. Moreover, H1

0,Γ′
(ω) denotes

the set functions in H1(ω) which vanish on a part Γ
′ of Γ. The L1 − inner product on ω

and Γ
′ are always denoted by (., .) and (., .)Γ′ , respectively, no matter whether it is used

for scalar, vector-valued, or matrix-valued functions.
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Chapter 2

Conforming finite element method

2.1 Notation of finite element

We use Ciarlet’s definition of a finite element:

Definition 2.1.1 A finite element is the datum of a triplet (T,P ,N ) such as:

äT is a compact, connected, non-empty interior part of Rn.

äP a vector space of functions defined on T .

äN is a set of nf linear forms (N1, ...,Nnf ) acting on the functions of P such as the

application:

p 7→ (N1(p), ....Nnf (p))

is an isomorphism.

Linear shapes (N1, ....Nnf ) are called local degrees of freedom.

2.2 Finite element of Argyris [3]
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Let P = P5, we use • to draw the evaluation of function in a point,
⊙

for the evaluation

of gradient and � for the evaluation of secondary three derivations, • → draw the value

of the following normal derivation.

let

N = {N1, N2, ..., N21}

•

• •

⊙

⊙ ⊙

�

� �

z3

z1 z2•

• •

m3

m2 m1

Figure 2.1: Element of Argyris.

Proposition 2.2.1 Let p ∈ P5 if

Ni(p) = 0, i = 1, 2, 3, ..., 21.

then, p = 0.

Proof.

p = qL1L2L3, deg(q) = 2.

∂LiLi = 0, Li(z3) 6= 0, i = 1, 2, ∂LiLj 6= 0, j 6= i

∂L1∂L2p(z3) = 0⇒ q(z3)L3(z3)∂L1L2∂L2L1 = 0

then, q(z3) = 0, in the same way q(z1) = q(z2) = 0.

L1(m1) = 0,
∂

∂n
p(m1) = 0⇒ q(m1) = 0.
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2.2.1 Discrete Problem

the regular triangulation Th of ω, and let Xh and Vh spaces

Xh =
{
vh ∈ H2(ω); vh|T ∈ P5(T ), ∀T ∈ Th

}
Vh = {vh ∈ Xh; vh = 0 sur ∂ω ∂vh = 0 sur ∂ω}

note that

Vh = Xh ∩H2
0 .

with these spaces, we discretized (1.24) by conforming finite element method :
Find uh ∈ Vh∫
ω

ĉ∇2uh : ∇2vhdx =
〈
F̂ , vh

〉
∀vh ∈ Vh.

(2.1)

Proposition 2.2.2 The discrete problem 2.1 admits one and only one solution

Proof. Since the bilinear form a(·, ·) is coercive on V , and then on Vh ( since Vh ⊂ V )

we conclude the well-posedness of the discrete problem with the help of the Lax-Milgram

lemma.

2.3 A priori estimation of the discretization error

2.3.1 Abstract a priori error analysis

One of the advantages of using conforming finite element methods is the fact that it leads

to optimale a priori error analysis by a simple use of the Céa lemma.

Lemma 2.3.1 (Céa) we have an error estimate

‖u− uh‖V ≤
C

α
inf
vh∈Vh

‖u− vh‖V . (2.2)

Let V be a real Hilbert space , L a linear continuous form on V , and let a(., .) be a bilinear

form on V × V . Assume that a(., .) is continuous, i.e., a constant C exists such that

|a(u, v)| ≤ C ‖u‖V ‖v‖V ∀(u, v) ∈ V × V (2.3)
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and V-elliptic, i.e., a constant α > 0 exists such that

∀u ∈ V a(u, u) ≥ α ‖u‖2
V . (2.4)

We see that α ≤ C. Consider now a nonempty finite dimensional subspace Vh ⊂ V .Then,

by the Lax-Milgram lemma, the problem: Find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V, (2.5)

and: Find uh ∈ Vh such that

a(uh, vh) = L(vh) ∀vh ∈ Vh, (2.6)

have exactly one solution each. The function uh is called the Galerkin approximation

.Céa’s lemma says that there exists a constant Cte such that

‖u− uh‖H2(ω) ≤ Cte inf
vh∈Vh

‖u− vh‖H2(ω) . (2.7)

The knowledge of the best possible value of Cte is thus important in obtaining reliable a

priori bounds of the discretization error. A standard proof of (2.7) follows directly from

(2.3)− (2.6). Indeed, for every vh ∈ Vh we find that

α ‖u− uh‖2
H2(ω) ≤ a(u− uh, u− uh) = a(u− uh, u− vh)

≤ C ‖u− uh‖H2(ω) ‖u− vh‖H2(ω) . (2.8)

then

‖u− uh‖H2(ω) ≤
C

α
‖u− uh‖H2(ω) .

2.3.2 A concrete error estimate

When the solution of the continuous problem has the full regularity H4, we can deduce

the following concrete error estimate:

Corollary 2.3.2

‖u− uh‖H2(ω) ≤ Ch2|u|H4(ω)
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2.3.3 A posteriori error estimates [4]

For the a posteriori analysis [4] we need to use that quantity

ηT (f, uh, h) =

(
h4
T‖f −∆2uh‖2

0,T +
∑
e∈Eh

∫
e

he‖J∆uhK‖2
0,e +

∑
e∈Eh

∫
e

h3
e‖J∂n(∆uh)K‖2

0,e

)1/2

2.3.4 Bubble function

Lemma 2.3.3 Let bT ∈ H1
0 (T ) a functions such as

1. 0 ≤ bT ≤ 1

2. ∃D ⊂ T as mesD > 0 and bT |D ≥ 1/2

let m ∈ N. It exists c1 > 0 and c2 > 0 tell that for any function φ ∈ Pm(T ) we have

‖bTφ‖0,T ≤ ‖φ‖0,T ≤ c1‖b1/2
T φ‖0,T (2.9)

|bTφ|1,T ≤ c2h
−1
T ‖φ‖0,T (2.10)

2.3.5 Extension Operator

Lemma 2.3.4 let’s be ∈ H1
0 (e) a function such as:

1. 0 ≤ be ≤ 1

2. ∃D ⊂ V (e) as mesD > 0 and be|D ≥ 1/2

Let’s m ∈ N. It exists c1 > 0 et c2 > 0 tell that for any function φ ∈ Pm(e) we have

‖beφ‖0,e ≤ ‖φ‖0,e ≤ c1‖b1/2
e φ‖0,e (2.11)

c2|e|1/2‖φ‖0,e ≤ ‖bePe(φ)‖0,V (e) ≤ c3|e|1/2‖φ‖0,e (2.12)

|beφ|1,V (e) ≤ c4|e|−1/2‖φ‖0,e (2.13)

∀φ ∈ Pk(e), Pe(φ) =

{
Pe,T (φ) sur T,

Pe,T ′(φ) sur T ′,
(2.14)

where V (e) is the set of two triangles of which e is the interface
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2.3.6 Clément Interpolation

Proposition 2.3.5 There is an operator Ch of Hm(Ω) in Hm(Ω), such that for every

triangle T ∈ Th, any edge e ∈ Eh ,any function v ∈ Hm(Ω) there is a constant c > 0 such

that, for 0 ≤ m ≤ `:

‖v − Chv‖m,T ≤ c h`−mT ‖v‖`,V (T )

‖v − Chv‖m,e ≤ c h`−m−1/2
e ‖v‖`,V (e)

(2.15)

2.3.7 Reliability of the indicator

Theorem 2.3.6 Let u, uh are solution of the continuous problem, solution of the discrete

problem, respectively

‖u− uh‖2,ω ≤ c

(∑
T∈Th

η2
T (uh, f, h)

)1/2

(2.16)

Proof.

α‖u− uh‖2,ω ≤ sup
v∈H2

0 (ω)

a(u− uh, v − vh)
‖v‖2,ω

(2.17)

a(u− uh, v − vh) =
∑
T∈Th

∫
T

∆(u− uh)∆(v − vh) dx

=

∫
ω

∆u∆(v − vh) dx−
∑
T∈Th

∫
T

∆uh∆(v − vh) dx

=

∫
ω

∆2u (v − vh) dx−
∑
T∈Th

∫
T

∆uh∆(v − vh) dx

=

∫
ω

f (v − vh) dx−
∑
T∈Th

∫
T

∆uh∆(v − vh) dx

∫
T

(42uh)(v − vh) dx =

∫
T

4(4uh)(v − vh) dx

=

∫
∂T

∂(4uh)
∂n

(v − vh) ds−
∫
T

∇(4uh) · ∇(v − vh) dx

=

∫
∂T

∂ (4uh)
∂n

(v − vh) ds−
∫
∂T

4uh
∂(v − vh)

∂n
ds+

∫
T

4uh 4(v − vh) dx
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this gives∑
T∈Th

∫
T

∆uh∆(v − vh) =
∑
T∈Th

∫
T

∆2uh (v − vh) dx+
∑
e∈Eh

∫
e

J∆uhK∂n(v − vh) ds

−
∑
e∈Eh

∫
e

J∂n∆uhK(v − vh) ds

deduce that :

a(u− uh, v − vh) =
∑
T∈Th

∫
T

(f −∆2uh) (v − vh) dx+
∑
e∈Eh

∫
e

J∆uhK∂n(v − vh) ds

−
∑
e∈Eh

∫
e

J∂n∆uhK(v − vh) ds

Then we choose vh ∈ Vh as :

‖v − vh‖0,T ≤ h2
T‖v‖2,T

‖v − vh‖0,e ≤ h3/2
e ‖v‖2,T

‖∂n(v − vh)‖0,e ≤ h1/2
e ‖v‖2,T

Then, (2.17) gives (2.16).

2.3.8 Optimality of the Indicator

Theorem 2.3.7 Let u, uh are solution of the continuous problem, solution of the discrete

problem, respectively

ηT (f, uh, h) ≤ c

‖u− uh‖2
2,V (T ) +

∑
T∈V (T )

h4
T‖f − fh‖2

0,T

1/2

Proof. We recall that:

ηT (f, uh, h)2 = h4
T‖f −∆2uh‖2

0,T +
∑
e∈∂T

he‖J∆uhK‖2
0,e +

∑
e∈∂T

h3
e‖J∂n(∆uh)K‖2

0,e

and that if bT is the bubble function for T ∈ Th, alors (bT (x))m ∈ Hm
0 (T )

|bmT vh|m ≤ c h`−mT ‖vh‖`, vh ∈ Pk(T ), 0 ≤ ` ≤ m (2.18)
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‖f −∆2uh‖0,T ≤ ‖f − fh‖0,T + ‖fh −∆2uh‖0,T

‖fh −∆2uh‖2
0,T ≤

∫
T

(fh −∆2uh)b
2
T (fh −∆2uh)︸ ︷︷ ︸

=φh(x)

=

∫
T

(fh − f)φh(x) dx+

∫
T

(f −∆2uh)φh(x) dx (2.19)

since φh(x) we can extend it by zero outside T , as well as these partial derivatives, then

φh(x) ∈ H2
0 (T ) so ∫

T

fφh dx =

∫
T

∆2u φh dx

so ∫
T

(f −∆2uh)φh(x) dx =

∫
T

∆2(u− uh) φh dx

=

∫
T

∆(u− uh)∆φh dx

≤ ‖∆(u− uh)‖0,T‖∆φh‖0,T

≤ C|u− uh|2,T |φh|2,T

≤ C|u− uh|2,Th0−2
T ‖fh −∆2uh‖0,T

this last inequality and (2.19) give

‖fh −∆2uh‖2
0,T ≤ C

(
|u− uh|2,Th0−2

T ‖fh −∆2uh‖0,T + ‖f − fh‖0,T‖φh‖0,T

)
Which give,

h2
T‖f −∆2uh‖0,T ≤ C

(
|u− uh|2,T + h2

T‖f − fh‖0,T

)
(2.20)

Now moving to the second term in the indicator he‖J∆uhK‖2
0,e. We introduce the

function:

Ψe = (be(x))2

(
|T2|
|e|

λz3 −
|T1|
|e|

λz1

)
, où be = 4λz2λz4

We take note that :

ä Ψe(x) ∈ H2
0 (V (e))

ä Ψe(x) is canceled on e,
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z1•

z2
•

z3•

z4•

e T2T1

Figure 2.2: V (e)

ä its normal derivative ne · ∇Ψe is proportional to (be)
2.

ä we have the following inverse inequality :

‖Ψevh‖0,V (e) ≤ ch1/2
e ‖vh‖0,e

We recall that:∫
T

(42uh)φh dx =

∫
∂T

∂ (4uh)
∂n

φh ds−
∫
∂T

4uh
∂φh
∂n

ds+

∫
T

4uh 4φh dx

so for φh = ΨePe(J∆uhK) ∈ H2
0 (V (e))

0 =

∫
V (e)

∆(u− uh)∆φh =

∫
T1

∆(u− uh)∆φh +

∫
T2

∆(u− uh)∆φh

=

∫
V (e)

∆2(u− uh)φh +

∫
e

J4(u− uh)K
∂φh
∂n

ds

If u ∈ H4(ω) (i.e f ∈ L2(ω)), so J∆uK|e = 0,∀e ∈ Eh so∫
e

J4(uh − u)K
∂φh
∂n

ds =

∫
e

J4uhK
∂φh
∂n

ds =

∫
V (e)

∆(uh − u)∆φh −
∫
V (e)

∆2(uh − u)φh

house at

h−1
e

∫
e

J∆uhK2 ≤ c

∫
e

J∆uhK
∂φh
∂n

ds

≤ c
(
‖f −∆2uh‖0,V (e)‖φh‖0,V (e) + |u− uh|2,V (e)|φh|2,V (e)

)
≤
(
‖f −∆2uh‖0,V (e) + h−2

T |u− uh|2,V (e)

)
‖φh‖0,V (e)
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We used:

|φh|2,V (e) ≤ c h−2‖φh‖0,V (e)

then we use,

‖φh‖0,V (e) ≤ c h1/2
e ‖J∆uhK‖0,e

So we get :

h−3/2
e ‖J∆uhK‖0,e ≤ c

(
‖f −∆2uh‖0,V (e) + h−2

T |u− uh|2,V (e)

)
(2.21)

and we have already demonstrated (see (2.20))

‖f −∆2uh‖0,T ≤ C
(
h−2
T |u− uh|2,T + ‖f − fh‖0,T

)
(2.21) given :

h1/2
e ‖J∆uhK‖0,e ≤ c

(
|u− uh|2,V (e) + h2

T‖f − fh‖0,V (e)

)
For the last term in the indicator ηT (uh, h, f), i.e. h

3/2
e ‖J∂n(∆uh)K‖0,e, we consider the

function φh = b2
ePe(J∂n∆uhK) ∈ H2

0 (V (e))

0 =

∫
V (e)

∆(u− uh)∆φh =

∫
T1

∆(u− uh)∆φh +

∫
T2

∆(u− uh)∆φh

=

∫
V (e)

∆2(u− uh)φh +

∫
e

J∂n4(u− uh)Kφh ds

If u ∈ H4(ω) (i.e f ∈ L2(Ω)), ∆u ∈ H2(ω) so J∂n(∆u)K|e = 0,∀e ∈ Eh so∫
e

J∂n4(uh − u)Kφh ds =

∫
e

J∂n(4uh)Kφh ds =

∫
V (e)

∆(uh − u)∆φh −
∫
V (e)

∆2(uh − u)φh

house at

h3/2
e

∫
e

J∂n(∆uh)K2 ≤ c

∫
e

J∂n(∆uh)Kφh ds

≤ c
(
‖f −∆2uh‖0,V (e)‖φh‖0,V (e) + |u− uh|2,V (e)|φh|2,V (e)

)
≤
(
‖f −∆2uh‖0,V (e) + h−2

T |u− uh|2,V (e)

)
‖φh‖0,V (e)

We used:

|φh|2,V (e) ≤ c h−2‖φh‖0,V (e)
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then we use,

‖φh‖0,V (e) ≤ c h1/2
e ‖J∂n(∆uh)K‖0,e

So we get :

he‖J∂n(∆uh)K‖0,e ≤ c
(
‖f −∆2uh‖0,V (e) + h−2

T |u− uh|2,V (e)

)
(2.22)

and we have already demonstrated (see (2.20))

‖f −∆2uh‖0,T ≤ C
(
h−2
T |u− uh|2,T + ‖f − fh‖0,T

)
(2.22) given :

h3
e‖J∂n(∆uh)K‖0,e ≤ c

(
|u− uh|2,V (e) + h2

T‖f − fh‖0,V (e)

)
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Conclusion and Perspective

As a conclusion of our study, we can conclude that using C1 conforming finite element

methods for fourth order elliptic problems leads to optimal error analysis results by using

standard techniques, Lax-Milgram, Céa, residual a posteriori estimator,... The main

drawback, of such approach is the difficulty of writing down performing numerical codes

as it is mentioned by the very well known mathematician Franco Brezzi in his conference

at ICM. Therefore, realising efficient codes for such problem represents an intersting

perspective.
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Abstract 

Our work focuses on C¹ finite element method for the biharmonic equation. In order to conduct our 

research, we dealt with the modelization model in chapter 1 by presenting Kircchoff plate model 

hypothesis. Besides that, we used the theory of Lax-Milgram to realize the existence and uniqueness 

of the solution. In chapter 2, we went deeply in the core of the study through the discretization of 

the model and confirming the finite element method. We chose the finite element of Argyris to 

ensure the well-posedness of the discrete problem. For the approximation of the problem solution, 

in the second part of chapter 2 analyzed the error in two parts. The first part studied the priori 

estimation of the discretization error to ensure the (Céa), while the second part studied the 

posteriori error estimates to show the reliability of the indicator and optimality of the indicator. 

Resumé 

Nos travail concentre la méthode des éléments finis C¹ pour l’équation biharmonique. Afin de mener 

nos recherches, nous avons traité le modèle la modélisation dans le chapitre 1 en présentant 

l'hypothèse du modèle de plaque de Kircchoff. De plus, nous avons utilisé la théorie de Lax-Milgram 

pour démontrer l'existence et l'unicité* de la solution. Au chapitre 2, nous avons approfondi de 

l’étude en discridsant le modèle par une  méthode des éléments finis conformes. Nous avons choisi 

l'élément fini d'Argyris pour assurer la bonne pose du problème discret. Pour l’approximation de la 

solution du problème, le chapitre 2 a analysé l’erreur en deux parties. La première partie a étudié 

l'estimation à priori de l'erreur de discrétisation pour assurer la (Céa), tandis que la deuxième partie 

a étudié les estimations d'erreur a posteriori pour montrer la fiabilité de l'indicateur et son 

optimalité. 

 الملخص
 the biharmonicعلى المعادلة التفاضلية من الدرجة الرابعة )  C¹  يركز عملنا هذا على طريقة العناصر المنتهية            

equation ( في الفصل الأول  تقديم  فرضيات  )Kircchoff للحصول على المعادلة التفاضلية السابق ذكرها  والى جانب ذلك )

( لإثبات وجود ووحدانية الحل للمعادلة التفاضلية  أما في الفصل الثاني فقد عمقنا جوهر الدراسة Lax-Milgramنظرية ) استخدمنا

( ومنه Argyrisمن خلال تقسيم المجال )الصفيحة( وتأكيد نظرية العناصر المنتهية وبالتحديد اختيارنا تطبيق العناصر المنتهية ل )

ن المعادلة الأصلية  بالإضافة إلى ذلك من اجل تقريب الحل تطرقنا في الفصل الثالث لتحليل الخطأ في نستنتج  المعادلة الجزئية م

 ( في حين الجزء الثاني تقدير الخطأ بقيمة صحيحة   Céaجزأين في الجزء الأول تحليل الخطأ بمقدار تقريبيا بتطبيق )

 


