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Abstract 

Rate of penetration (ROP) is one of the most critical parameters affecting virtually all 

drilling characteristics including technical, operational, economical, safety and other aspects 

of it. ROP evaluation  may  provide  important  information  which  can  be  applied  to  

improve  drilling efficiency, For this, good ROP model is required. Several  ROP  models  are  

available  in  the  industry  which  is  derived  based  on  both  mechanistic  and empirical 

methods. However, each model has its strengths and shortcomings, also The choice of ROP 

for every is dependent on variety of drilling parameter .  All these parameter must be 

considered while choosing the proper ROP for drilling of every oil well so the objective of 

our study is   to  focus  on  the Optimization  of  the  Drilling  Parameters 

so in this thesis , we talk about some important  ROP model and we chose in our study  

widely utilized method for drilling rate prediction that called Bourgoyne and  Young’s Model 

and we try to predict the best optimal ROP by using some metaheuristic optimization 

techniques like PSO, MPSO  and ABCO and we compare all the result founded to see the best 

technique . 

by the final results, we have find by many different tests and comparisons between 

PSO, M PSO and ABCO also by using some relative error , We final that ABCO achieves 

optimal convergence, optimum performance and optimum values. 

Key words: rate of penetration , bourgoyne an young’s model  , drilling optimization  

metaheuristic technique ,relative error  

 ملخص

الجوانب الفنیة والتشغیلیة خاصة في الحفر  عملیة في  من أھم العوامل المؤثرة واحدالاختراق  معدلعد ی

معلومات مھمة یمكن تطبیقھا  یوفرتقییم الجید  لسرعة الاختراق ال و. والاقتصادیة والسلامة والجوانب الأخرى لذلك

في الصناعة المشتقة من الأسالیب   تتوفر العدید من نماذج. الجید مطلوب لتحسین كفاءة الحفر ، ولھذا ، فإن نموذج

على مجموعة متنوعة من   ROP كما یعتمد اختیار ,ضعف ومع ذلك ، كل نموذج لھ نقاط القوة و. المیكانیكیة والتجریبیة

لذا فإن ھدف المناسب لحفر كل بئر نفطیة ،  ROP یجب أخذ كل ھذه المعلمات في الاعتبار عند اختیار. المعلمات الحفر

  دراستنا ھو التركیز على تحسین ھاتھ المعلمات

المھمة و لقد اخترنا في دراستنا الطریقة المستخدمة على نطاق  ROP في دراستنا  ، نتحدث عن بعض نماذج

الأمثل باستخدام بعض افضل  ROP واسع للتنبؤ بمعدل الحفرللباحثین بورغوین و یونغ و حاولنا التنبؤ بأفضل

 .جمیع النتائج التي تم تأسیسھا لمعرفة أفضل التقنیات مقارنةو ABCO و PSO  ،MPSO میات    مثلالخوارز

 و M PSO و PSO من خلال النتائج النھائیة ، وجدنا من خلال العدید من الاختبارات والمقارنات المختلفة بین

ABCO   باستخدام بعض الأخطاء النسبیة ، اكتشفنا أنو ABCO الأمثل والأداء الأمثل والقیم المثلى تحقق التقارب 

الخطأ ,خوارزمیات ,تحسین نموذج الحفر  ,نموذخ الباحثین بورغوین و یونغ ,معدل الاختراق : الكلمات المفتاحیة

 .النسبي
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Résumé 

Le taux de pénétration est l'un des paramètres les plus critiques affectant pratiquement 

toutes les caractéristiques de forage, y compris leurs aspects techniques, opérationnels, 

économiques, de sécurité et autres. L'évaluation de la ROP peut fournir des informations 

importantes qui peuvent être appliquées pour améliorer l'efficacité du forage. Pour cela, un 

bon modèle de ROP est nécessaire. Plusieurs modèles de ROP disponibles dans l'industrie 

sont dérivés des méthodes mécanistes et empiriques. Cependant, chaque modèle a ses points 

forts et ses points faibles. Le choix du ROP pour chaque modèle dépend de la variété des 

paramètres de forage. Tous ces paramètres doivent être pris en compte lors du choix de la 

ROP appropriée pour le forage de chaque puits de pétrole. L'objectif de notre étude est donc 

de se concentrer sur l'optimisation des paramètres de forage. 

Ainsi, dans ce document, nous parlons d’un modèle important de ROP et nous avons 

choisi dans notre étude une méthode largement utilisée pour la prédiction de la vitesse de 

forage appelée modèle de Bourgoyne et Young. Nous essayons de prédire la meilleure ROP 

optimale en utilisant certaines techniques d’optimisation métaheuristique telles que PSO, 

MPSO. et ABCO et nous comparons tous les résultats obtenus pour voir la meilleure 

technique. 

par  les resultat final , nous avons trouvé par de nombreuse tests et comparaison entre 

PSO ,MPSOet ABCO en utilse egalement  une erreur relative , nous avons decouvret que 

ABCO atteint une convergence optimale , des performances optimales et des valeurs 

optimales 

mot clés : taux de penetration ,modèle de bourgoyne et young , optimisation de 

paramétre de forage , technique d’optimisation métaheuristique  erreur relative 



TABLE OF CONTENTS 

 

UKMO  
 

TABLE OF CONTENTS 

DEDICATION 

ACKNOWLEDGEMENTS 

TABLE OF CONTENTS 

LIST OF TABLES  

LIST OF FIGURES  

NOMENCLATURE 

ABBREVIATIONS 

General introduction……………………………………………………………………1 

Chapter I: Rate Of Penetration Modeling 

I.1. Introduction: ............................................................................................................ 4 

I.2. Drilling Optimization History ................................................................................. 4 

I.3. Factors affecting ROP ............................................................................................. 6 

I.4. Rate of Penetration Modelling ................................................................................. 7 

I.4.1. Bingham, 1965 .................................................................................................. 7 

I.4.2.Bourgoyne & Young, 1974 ................................................................................ 7 

I.4.3. Warren, 1981 .................................................................................................. 13 

I.4.4. Modified Warren Model ................................................................................. 15 

I.4.5. Harland’s Drag Bit, 1994 ................................................................................ 16 

I.4.6. Hareland’s Roller Bit, 2010 ............................................................................ 17 

I.4.7. Motahhari’s PDC Bit, 2010 ............................................................................ 17 

I.5. conclusion .............................................................................................................. 17 

Chapter II: Description Of The Optimization Approach 

II.1. Introduction .......................................................................................................... 19 

II.2. Optimization Techniques ..................................................................................... 19 

II.2.1.  Metaheuristic Optimization Technique ........................................................ 20 

II.2.2. Multiple Regression ....................................................................................... 20 

II.2.2.1. Multiple regression Analysis Procedure ................................................. 22 

II.2.3. Particle Swarm Optimization (PSO) ............................................................. 23 

II.2.4. Modified Particle Swarm Optimization ......................................................... 25 

II.2.5. Artificial bee colony algorithm ..................................................................... 25 

II.2.5.1. Initialisation of the population ................................................................ 26 

II.2.5.2. Employed bees phase .............................................................................. 26 



TABLE OF CONTENTS 

 

UKMO  
 

II.2.5.3. Onlooker bees phase ............................................................................... 27 

II.2.5.4. Scout bees phase ..................................................................................... 28 

II.3. conclusion ............................................................................................................ 30 

Chapter III: Simulation And Results Analysis 

III.1. Introduction ......................................................................................................... 32 

III.2. Experimental Data .............................................................................................. 32 

III.3. Result Analysis ................................................................................................... 32 

III.3.1. Initial settings ............................................................................................... 32 

III.3.1.1. PSO…………………………………………………………………….32 

III.3.1.2. MPSO…………………………………………………………………………………………………………32 

III.3.1.3. ABCO…………………………………………………………………………………………………………34 

III.3.1.4. Multiple Regression…….…………………………………………………………………………34 

III.3.2. Result............................................................................................................ 34 

III.4. Discussion ........................................................................................................... 38 

III.5. Conclusion .......................................................................................................... 40 

General conclusion.......................................................................................................41 

REFERENCES.............................................................................................................42 

SUMMARY 

 



LISTS OF FIGURES 

 

UKMO 
 

LISTS OF FIGURES 

Figure. I.1: the time line of drilling optimization history.      5 

Figure. I.2: Effect of normal compaction on penetration rate.    9 

Figure. I.3: Effect of differential bottom-hole pressure on ROP.    10 

Figure. I.4: Effect of bit weight on ROP.       10 

Figure. I.5: Effect of rotary speed on ROP.       11 

Figure. I.6: Effect of tooth wear on ROP (chipping-type tooth wear).   11 

Figure. I.7: ROP as a function of bit Reynolds number.     12 

Figure. I.8: All the effect on ROP used in modele of bourgoyne and young.  13 

Figure. II.1: Flowchart of optimizations methods.      19 

Figure. II.2: Flowchart of multiple regressions.      21 

Figure. II.3: Flowchart of PSO procedure.       24 

Figure. II.4: (a) Illustrating a simple position update equation execution (b) Different 

possible new vectors formed in neighbourhood of xij due to position update equation in 2-D 

search space.                                                         27 

Figure. II.5: Flowchart of ABCO procedure.      29 

Figure. III.1: Comparison between the three techniques by using n=30, it=100.  35 

Figure. III.2: Comparison between the three techniques using n=50, it=100.  35 

Figure. III.3: Comparison between the three techniques using n=100, it=100.  36 

Figure. III.4: Comparison between the three techniques using n=30, it=300.  37 

Figure. III.5: Comparison between the three techniques using n=50, it=300.  37 

Figure. III.6: Comparison between the three techniques using n=100, it=300.  38 

 

 

  



LISTS OF TABLES 

 

UKMO 
 

LISTS OF TABLES  

Table. II. 1. Recommended minimum data ranges for regression analysis  .  22 

Table. III. 1. ROP data for different factors.      33 

Table. III. 2. Results obtained from Multiple Regression method    34 

Table. III. 3. Test results using PSO, MPSO and ABCO with n=30 (it=100).   34 

Table. III. 4. Test results using PSO, MPSO and ABCO with n=50 (it=100).  35 

Table. III. 5. Test results using PSO, MPSO and ABCO with n=100 (it=100).  36 

Table. III. 6. Test results using PSO, MPSO and ABCO with n=30 (it=300).  36 

Table. III. 7. Test results using PSO, MPSO and ABCO with n=50 (it=300).  37 

Table.  III. 8. Test results using PSO, MPSO and ABCO with n=100(it=300).  38 

Table. III. 9. Relative error test results for the proposed techniques.   39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LISTS OF TABLES 

 

UKMO 
 

 

  



NOMENCLATURE 

 

UKMO 
 

NOMENCLATURE 

An                            The total nozzle area       in. 

��  The ratio of jet velocity 

a1  Effect of formations strength 

a2  Exponent of the normal compaction trend   

a3  Under-compaction exponent   

a4  Pressure differential exponent   

a5  Bit weight exponent  and bit diameter   

a6  Rotary speed exponent   

a7  Tooth wear exponent   

a8  Bit  hydraulic exponent   

a, b and c Bit constants in the penetration model  

ac, bc and cc Lithology coefficients  

D   The depth       ft (m). 

dD/dt   Rate of penetration      ft. /hr. 

d   Exponent in general drilling equation 

��   The bit diameter       in. 

��   Nozzle diameter      in 

��   Diamond cutter diameter in inches    in 

e   Exponent related to rotary speed 

���)  Modified jet impact force 

��   The jet impact force 

�1   The effect of rock drill ability 

�2  The depth effect 

�3   Pore pressure effect on ROP 

 �4   The differential pressure effect 

�5   The effect of changing the weight on ROP 

 �6    The effect of rotary speed 

 �7    The effect of bit wears on ROP 

 �8    The effect of bit hydraulics 

����              The fitness value 

G  Coefficient determined by bit geometry, cutter size and design 



NOMENCLATURE 

 

UKMO 
 

��    The pore pressure gradient of the formation    lb/gal 

H   The fractional bit tooth wear 

K   Constant related to formation. 

M                    Number of insert penetrations per Revolution 

N   Rotary speed        rpm 

����   Number of cutter  

N  Number of inserts in contact with rock at the bottom 

n              Number of inserts in contact with rock at the bottom 

��   The equivalent mud density      lb/gal 

��  The differential pressure 

��   Represents the global previous best from the entire swarm 

��   Represents the previous best of the current particl 

Q  Flow rate         gpm 

r1and r2 Random values that are taken from the uniform distribution [0,1]. 

Si   Rock compressive strength 

t     Time (usually bit rotating time)     [T], hours 

��   Represents the velocity of a particle 

Vn   Nozzle velocity       ft/sec 

 ��   Return fluid velocity 

���   New food position  

�
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�
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General introduction  

Drilling may be summarily defined as the operation of making a hole, to connect the 

reservoir to the surface installations. The main objectives are the realization of a hole in the 

best technical and safety conditions by minimal cost. 

According to the field data, there are several methods to reduce the drilling cost of future 

well. One of these methods is the optimization of drilling parameters to obtain the maximum 

rate of penetration (ROP) in each bit run. Many parameters affect ROP so there is a lot of 

experimental work has been done to study the effect of these variables on drilling rate. 

This factor can be listed under two general classifications such as controllable and 

environmental. Controllable factors are the factors which can be instantly changed or selected 

by people such as weight on bit, rotary speed, bit hydraulics. Environmental factors on the 

other hand are not controllable such as formation properties, drilling depth, drilling fluids 

requirements. The reason that drilling fluid is considered to be an environmental factor is due 

to the fact that a certain amount of density is required in order to obtain certain objectives 

such as having enough overpressure to avoid flow of formation fluids. Another important 

factor is the effect of the overall hydraulics to the whole drilling operation which is under the 

effect of many factors such as lithology, type of the bit, downhole pressure and temperature 

conditions, drilling parameters and mainly the rheological properties of the drilling fluid. 

In several cases, drilling parameters play a large role in helping drillers achieve a good rate 

of penetration (ROP), superior drilling performance and long bit life. They are basic 

recommendations that help the driller to avoid damaging bits and other drilling equipments; 

also this means a reduction in non productive time (NPT) and a minimum drilling cost. To 

achieve this goal we divide our study in three essential parts: 

1) Literature study on ROP models, in this part we take abstract about the different ROP 

modeling, after that we will base on the dominant and the widely utilized ROP model that 

called Bourgoyne and Young’s Model; 

2) Develop a new techniques to model the ROP; our study aims to propose some of the best 

metaheuristic optimization techniques ; Particle Swarm Optimization (PSO), Modified 

Particle Swarm Optimization (MPSO) and Artificial Bee Colony Optimization (ABCO) 

algorithm; 

3) Analyze the results of the proposed optimization techniques to identify their validity and 

performance, and also to compare the quality of solution found among them. 

This technique of optimization can be implemented by any programming language and we 

have chosen MATLAB software to solve the optimization model of drilling parameters which 
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is based on the rate of penetration. The simulation results will prove the efficiency of the 

metaheuristic technique that we are used (ABCO), more faster drilling rate would result, and 

the objective of a least possible cost and in the shortest time in compliance with safe operation 

will be achieved in the drilling operation. 
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I.1. Introduction 

ROP models are one of the key elements of drilling parameters control. As to avoid 

excessive sources, in this study we will make a state of the art for different models used in 

drilling parameters optimization. Through our research we found several mathematical ROP 

models were developed in the last five decades in the petroleum industry as: Bingham’s, 

Bourgoyne & Young’s, Warren and modified Warren, Hareland’s drag bit, Hareland’s roller 

bit, and Motahhari’s, departing from rather simple but less reliable (drilling rate, weight on 

bit, and rotary speed) formulations until the arrival to more comprehensive and complete 

approaches such as the Bourgoyne and Young ROP model widely used in the petroleum 

industry. 

I.2. Drilling Optimization History 

The concept of rotary drilling originated in the beginning of the year 1900 [1]. The 

development of rotary drilling can be divided into four distinct periods: conception period 

1900 to 1920, development period 1920 to 1950, scientific period 1950 to 1970, and 

automation period which began in 1970. The conception period the rotary drilling principle 

marked the usage of cementing methods, rotary bits, drilling fluids and casing installations. In 

1950s the scientific period took place with expansion in drilling research, better 

understanding of the hydraulic principles, significant improvements in bit technology, 

improved drilling fluid technology and most important of all optimized drilling. After 1970s 

rigs with full automation systems, closed-loop computer systems, with ability to control the 

drilling variables started to operate in oil and gas fields [2]. 

Figure I-1 gives the time line of drilling optimization history. One of the first attempts for 

the drilling optimization purpose was presented in the study of Graham and Muench in 1959 

[3]. They analytically evaluated the weight on bit and rotary speed combinations to derive 

empirical mathematical expressions for bit life expectancy and for drilling rate as a function 

of depth, rotary speed, and bit weight. In 1963 Galle and Woods [4] produced graphs and 

procedures for field applications to determine the best combination of drilling parameters. 

One of the most important drilling optimization studies performed was in 1974 by Bourgoyne 

and Young [5]. They proposed the use of a linear drilling penetration rate model and 

performed multiple regression analysis to select the optimized drilling parameters. They used 

minimum cost formula, showing that maximum rate of penetration may coincide with 

minimum cost approach if the technical limitations were ignored.  

In the mid 1980s operator companies developed techniques of drilling optimization in which 

their field personnel could perform optimization at the site referring to the graph templates 



 

UKMO 
 

and equations. In 1990s different drilling planning approaches were brought to surface [6,7]. 

New techniques identified the best possible well construction performances. Later on 

“Drilling the Limit” optimization technique

millennium real-time monitoring techniques started to take place, e.g. drilling parameters 

started to be monitored from off locations. A few years later real

centers started to be constructed. Some operators proposed advanced techniques in monitoring 

of drilling parameters at the rig site. 

Figure I
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Following the early developments in rotary drilling system, ground-breaking developments 

in the latter years of the century took place. Highly inclined wells were drilled using rotary 

steerable; pressure controlled drilling techniques with acquisition of drilling parameters. In 

recent years drilling parameters are easily acquired, stored and also transferred in real-time 

basis. Following the invent of the sophisticated and automated rig data acquisition 

microelectronic systems linked to computers, a range of drilling optimization and control 

services started to take place [9]. Drill-off tests performed to optimize drilling penetration rate 

and bit life [10] are now able to be conducted with advanced techniques using smart computer 

systems. The test is applied by the driller by means of applying a little bit of excessive weight, 

locking the brake to keep the string from running into the hole [11, 12, 13]. In this study we 

will perform a statistical synthesis of some modern drilling parameters optimization 

techniques. 

I.3 Factors affecting ROP 

The drilling factors can be divided into two groups as dependent and independent 

variables. The dependent variables are determined by the drilling conditions whereas the 

independent variables may be controlled and changed before and during drilling. A similar 

dividing can classified by controllable and environmental variables, where also formation 

related factors are included.  

The controllable variables are like the independent variables directly and instantly 

adjustable. These include: 

 Weight on bit (WOB) 

 Rotations per minute (RPM) 

 Bit type 

 Hydraulics 

The environmental variables are similarly to the dependent variables not controllable; 

however also include the formation factors. Although the drilling fluid may be directly 

changed, it is included as an environmental variable as it is dependent on the drilling 

conditions and there is a certain fluid required for the drilling operation. The environmental 

variables include:  

 Drilling fluid 

 Torque 

 Formation properties 

Additionally Equivalent Circulating Density (ECD) and cuttings transport affects the ROP. 

Observations indicate that the ROP increases with decreased ECD. Ozbayoglu et al. analyzed 
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effects of cuttings transport on drilling parameters [14]. Efficient hole cleaning is essential 

during drilling, this is controlled by a number of factors:  

 Hole angle 

 Fluid velocity 

 Fluid properties (rheological properties and density) 

 Cuttings size, shape, and concentration 

 Annular size 

 Rate of pipe rotation and pipe eccentricity 

 Fluid flow regime (laminar or turbulent) 

I.4. Rate of Penetration Modeling 

In order to optimize a system we must have a model. It has been found that drilling rate of 

penetration could be modeled in real time environment as function of independent drilling 

variables; the ability to the drilling ROP with respect to depth characteristically with certain 

parameters for specific formation on real time basis could bring new insights to the nature of 

drilling operation. Therefore, many researchers have developed models that try to capture the 

physics of the drilling process for all types of bits like Motahhari’s model should be used for 

drag bits [15], and Winters, Warren, and Onyia’s for roller bits [16]. Using other models is 

dependent on availability of data, well complexity, and desire to expand on design or confirm 

calculations. 

I.4.1. Bingham model 

One of the earliest papers on rate of penetration modeling, Bingham’s 1965 paper 

suggested a model that predicted ROP by using it as simply a function of rotary speed, weight 

on bit, and bit diameter [17]. The literature on ROP has grown extensively since Bingham’s 

(1965) paper and so have methods of quantification and the overall understanding of what 

affects ROP. Despite all this, his model is still a very good rough starting point for ROP 

quantification. It is identified by the following equation: 

��� = � × ���� × � 
�

�
�

�

     (I.1) 

where D is bit diameter, RPM is rotary speed, W is weight on bit, d is exponent in general 

drilling equation, e is exponent related to rotary speed, K is a constant related to formation. 

I.4.2. Bourgoyne & Young model 

Bourgoyne and young developed a model in 1974 that simplifies the rotary drilling process 

into one single model [5]. This model depends on statistical past drilling data and is done by 

multiple regression analysis for the past drilling data. It is considered as the most suitable 
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model for real-time drilling optimization [5, 2]. Bourgoyne and Young introduced the 

penetration rate as a function of various drilling variables that are considered to have an effect 

on the ROP which are: formation strength, formation depth, formation compaction, the 

pressure differential across the hole bottom, bit diameter, bit weight, rotary speed, bit wear 

and bit hydraulics. 

This rate of penetration model predicts the effect of the included eight drilling variables 

(xj) on the penetration rate (dD/dt). In a given formation, the modeling is done by determining 

the eight constants (aj). The model is mathematically given by: 

    
��

��
= ���(�� + ∑ ����

�
�� � )     (I.2) 

The model can also be expressed clearer, with the exponential function integrated: 

   ��� = ƒ� × ƒ� × ƒ� × ƒ� × ƒ� × ƒ� × ƒ� × ƒ�    (I.3) 

Note: fn = exp (an×xn).                       (I.4) 

While, �1−8 represents the various normalized effects on ROP [18]. Where �1 is the effect 

of rock drill ability, �2 is the depth effect, �3 is pore pressure effect on ROP, �4 is the 

differential pressure effect, �5 is the effect of changing the weight on ROP, �6 is the effect of 

rotary speed, �7 is the effect of bit wear on ROP, �8 is the effect of bit hydraulics, �1 models 

the effect of formations strength, �2 and �3 model the effect of compaction, �4 models the 

effect of pressure differential across the hole bottom on ROP, �5 models the effect of bit 

weight and bit diameter, �6 models the effect of rotary speed, �7 models the effect of tooth 

wear, �8 models the effect of bit hydraulics, D is depth in feet, �� is the pore pressure 

gradient of the formation in lb/gal, �� is the equivalent mud density in lb/gal, N is rotary 

speed in revolutions per minute, W is weight on bit in lbf, �� is the bit diameter in inches. 

Modeling of the drilling process is accomplished by determining the constants (a1 through 

a8) in the above equation by means of an optimization technique such as multiple regression 

analysis of field data used by the authors. Thus, the eight drilling variables are defined as 

follows: 

 Effect of formation strength: The constant (a1) represents the effect of formation strength 

and drill ability on penetration rate. It also includes the effects of drilling parameters that 

have not been mathematically modeled. 

 Effect of compaction: The terms (a2X2) and (a3X3) model the effect of compaction on 

penetration rate. X2 is defined by :  

X2=(10000 − � )     (I.5)  
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Figure. I.

And this assumes an exponential decrease penetration rate with 

compacted formation. X

Indeed, this assumes an exponential increase in penetration rate with pore pressure 

(��). 

 Effect of Differential Pressure

across the hole bottom on penetration rate. X

And this assumes an exponential 

pressure. Field and laboratory 

data presented by Combs [

and excess bottom-hole 

noted an apparent relation between the effect of differential pres

weight on bit [19]. However, no consistent correlation could be obtained from the available 

data, so no bit weight term was included in Eq. I
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Figure. I.2: Effect of normal compaction on penetration rate.

And this assumes an exponential decrease penetration rate with 

X3 is defined by: 

X3 = � �.�� × (�� − 9) 

his assumes an exponential increase in penetration rate with pore pressure 

Differential Pressure: The term (a4X 4) models the effect of

the hole bottom on penetration rate. X4 is defined by: 

X4= D × (�� − P)  

And this assumes an exponential decrease in penetration rate with 

and laboratory  data presented by Vidrine and Benit [

by Combs [20], all indicate an exponential relation 

 pressure up to about 1000psi (see Figure.I.3.). Vidrine and Benit also 

noted an apparent relation between the effect of differential pressure on penetration rate and

. However, no consistent correlation could be obtained from the available 

data, so no bit weight term was included in Eq. I.7. 

ing 
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And this assumes an exponential decrease penetration rate with depth (D) in a normally 

    (I.6)  

his assumes an exponential increase in penetration rate with pore pressure gradient 

) models the effect of differential pressure 

    (I.7)  
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 between penetration rate 
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sure on penetration rate and 
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Figure.I. 3

 Effect of Bit Weight and

and diameter on penetration rate.X

�
�

��
�

�
  is the threshold at which bit begins to drill in 1000 lbf/

penetration rate is directly proportional 
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3: Effect of differential bottom-hole pressure on ROP.

Effect of Bit Weight and Bit Diameter: The term (a5X5) models the effect of bit weight

and diameter on penetration rate.X5 is defined by: 

X5=ln �
�

�

��
���

�

��
�

�

�.���
�

��
�

�

�   

the threshold at which bit begins to drill in 1000 lbf/in. And this assumes that

directly proportional to �
�

��
�

��

. 

Figure.I. 4: Effect of bit weight on ROP. 
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hole pressure on ROP. 

models the effect of bit weight 

   (I.8) 

And this assumes that the 
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 Effect of Rotary Speed

rate. X6 is defined by 

It is assumed that the penetration rate is 

 Effect of Bit Tooth-Wear

rate. X7 is defined by 

Where, H is the fractional

penetration rate with increasing

Figure.I.6: Effect of tooth wear on ROP (chipping
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Rotary Speed: The term (a6X6) models the effect of rotary speed on penetrati

 : 

X6= ln �
�

���
�   

the penetration rate is directly proportional to �

Figure.I. 5: Effect of rotary speed on ROP

Wear; The term (a7X7) models the effect of tooth

 : 

X7= − �  

the fractional bit tooth wear. And this assumes an exponential 

with increasing tooth wear. 

Effect of tooth wear on ROP (chipping-type tooth wear).

ing 
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rotary speed on penetration 

   (I.9) 

�� . 

 

Effect of rotary speed on ROP. 

) models the effect of tooth-wear on penetration 

    (I.10) 

And this assumes an exponential decrease in 

 

type tooth wear). 
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 Effect of Bit Hydraulics

penetration rate. X8 is defined by

��  is based on micro 

penetration rate was proportional to a Reynolds number group

viscosity at 10000 1/sec

the relation: 

The constants a1 through a

multiple regression analysis. 

suitable equation with the best possible accuracy. 

be calculated with Eq. (

analysis can be applied to determine these constants.

                                               

Figure.
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Effect of Bit Hydraulics: The term (a8X8) models the effect 

is defined by : 

�� =
��

������
   

micro bit experiments performed by Eckel 

proportional to a Reynolds number group �
ρ�

μ�

1/sec, is not routinely measured and recorded it must be 

� =
�����

��
   

through a8 can be determined by using an optimization technique such as 

multiple regression analysis. This statistical technique is used to model sets of data

suitable equation with the best possible accuracy. At first, the parameters X

. (I.5) through Eq. (I.11) for each data points,

to determine these constants. 

                                               (a)                                                                             

Figure.I.7: ROP as a function of bit Reynolds number

ing 
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effect of bit hydraulics on 

   (I.11)  

 [21]. Which found that 

�
�

��
�. Since µ the apparent 

, is not routinely measured and recorded it must be estimated using 

    (I.12) 

an optimization technique such as 

This statistical technique is used to model sets of data points by a 

parameters X2 through X8 must 

points, then multiple regression 

                                                                             (b) 

ROP as a function of bit Reynolds number. 
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Figure.I.8: All the effect on ROP used in 

I.4.3 Warren model 

Warren developed models to predict the rate of penetration for soft formation bits. The 

models are generated from laboratory work, by combining rotary speed, bit type, bit size, rock 

strength and weight on bit to calculate the rate of penetration. A large

used to obtain experimental data. 

relationship between the variables that control the rate of penetration. The initial model 

assumes perfect cleaning conditions. Warren then modifie

more realistic, imperfect cleaning conditions. 

Development of new models for soft formations was needed, as there was a lack of an 

adequate existing model. Galle and Woods had at the time the most commonly used model for 

soft formation drilling 

model [23], where applying the model in real conditions violates an assumption of the model. 

Maurer’s [24] ‘perfect cleaning’ model was found not applicable in general

bits. Deviation occurred constantly in the results from experimental data in soft

conditions used with the Maurer model. 

Warren presented the perfect

Formation Bits” paper, it is described that developing the drilling model was done with 

dimensional analysis and generalized response curves. A model by Ward law [

modified to better comply with experimental data acquired from a laboratory test. The model 

modified to best comply with the experimental data is given by equation 
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Warren developed models to predict the rate of penetration for soft formation bits. The 

models are generated from laboratory work, by combining rotary speed, bit type, bit size, rock 

strength and weight on bit to calculate the rate of penetration. A large

used to obtain experimental data. The main intention of the models is to describe 

relationship between the variables that control the rate of penetration. The initial model 

s perfect cleaning conditions. Warren then modified his own 

imperfect cleaning conditions.  

Development of new models for soft formations was needed, as there was a lack of an 

adequate existing model. Galle and Woods had at the time the most commonly used model for 

 [22]. However, Randall and Estes explains the inadequacy of that 

, where applying the model in real conditions violates an assumption of the model. 

] ‘perfect cleaning’ model was found not applicable in general

bits. Deviation occurred constantly in the results from experimental data in soft

conditions used with the Maurer model.  

Warren presented the perfect-cleaning model in 1981 [25]. In the “Drilling Model for S

paper, it is described that developing the drilling model was done with 

dimensional analysis and generalized response curves. A model by Ward law [

modified to better comply with experimental data acquired from a laboratory test. The model 

ified to best comply with the experimental data is given by equation 

ing 
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of Bourgoyne and Young. 

Warren developed models to predict the rate of penetration for soft formation bits. The 

models are generated from laboratory work, by combining rotary speed, bit type, bit size, rock 

strength and weight on bit to calculate the rate of penetration. A large-scale drilling rig was 

The main intention of the models is to describe the 

relationship between the variables that control the rate of penetration. The initial model 

d his own model to account for 

Development of new models for soft formations was needed, as there was a lack of an 

adequate existing model. Galle and Woods had at the time the most commonly used model for 

explains the inadequacy of that 

, where applying the model in real conditions violates an assumption of the model. 

] ‘perfect cleaning’ model was found not applicable in general for soft formation 

bits. Deviation occurred constantly in the results from experimental data in soft-formation 

]. In the “Drilling Model for Soft 

paper, it is described that developing the drilling model was done with 

dimensional analysis and generalized response curves. A model by Ward law [26] was 

modified to better comply with experimental data acquired from a laboratory test. The model 

ified to best comply with the experimental data is given by equation I.13. 
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��� =  �
�����

�

� ���� +
�

���
�

��

   (I.13) 

Here the constants a and c are bit constants in the penetration model, this constants do not 

need to change when the variables alter to retain adequate ROP prediction. The first term 

describes the maximum rate that a bit can crush rock into cuttings by: �
�����

�

� �����. 

The second term of the model adjusts the model to consider the distribution of the applied 

WOB to more teeth as the WOB is increased and the teeth penetrates deeper into the rock [19, 

27]. This happens due to the fact that the first term is predominant at low ROP values and the 

second term is predominant at higher ROP values. Where S is rock compressive strength, db is 

bit diameter, N is rotary Speed, and WOB is weight on bit. 

The negative of this model is not taking into account hydraulic effects, and assumed 

perfect cleaning. In 1987, Warren presented the imperfect cleaning model [28]. To simplify 

the complex modeling required to give a good ROP prediction, Warren understood that a 

basic model had to be developed first. The perfect cleaning model is this basic model, the 

starting point. Refining the basic model is done by adding new terms. If the physics of the 

process is controlled correctly, the new terms will not dismiss the initial model. 

Warren explained that under steady state conditions, the cuttings removal rate from the bit 

is equivalent to the rate new chips forms. This infers that the rate of penetration is affected by 

cuttings generation process or cuttings removal process, or a combination of them both. As 

the basic model does not account for cuttings removal, this term had to be added. 

To account for cuttings removal, Warren used dimensional analysis to isolate variables 

consisting of the impact force and mud properties. These were incorporated into equation 

I.14to express the imperfect cleaning model by: 

��� = � 
�����

�

� ���� +
�

���
+

������

���
�

��

    (I.14) 

The constants a, b and c are bit constants in the penetration model. This term is a function 

of the fluid density (��), drilling fluid viscosity(�), and modified jet impact force (���). 

The modified jet impact force is defined by the following equation: 

 ��� =  ⌊1 −  ��
��.���⌋  ∗  ��   (I.15) 

Where ��  is the ratio of jet velocity, �� is the jet impact force. This last is defined by the 

following equation: 

�� =
�×��×��

����
   (I.16) 
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Where Q is flow rate in gpm and Vn is nozzle velocity in ft/sec. ��  can be calculated, 

assuming three jets, from the equation: 

�� =
��

�ƒ
=

�.����

���
�   (I.17) 

Where �� is nozzle diameter, �� is nozzle velocity, ��  is return fluid velocity. 

And Vn can be calculated from the equation: 

�� =
�.���×�

��
  (I.18) 

Where An is the total nozzle area in in2.  

Another time this model was again further developed to take into account roller cone offset 

and formation ductility which added an additional term to the ROP model [16], consisting of 

the cone offset coefficient (∅), rock compressive strength (S), and rock ductility (�). 

��� = � 
�����

�

� ���� +
�

���
+

������

���
+

∅���
�

��
�

��

  (I.19) 

I.4.4 Modified Warren Model 

There are many processes and actions that occur during the drilling operation with a 

significant impact on the penetration rate. It’s difficult to completely model the ROP with all 

the factors and conditions affecting the penetration process. However, an attempt was made to 

improve the model presented by Warren by addressing more quantifiable conditions and 

effects in the model. 

 Addressing chip hold down effect 

“Chip hold down effect” was not addressed in the ROP model presented by Warren (1987) in 

spite of its importance and impact on the ROP [29, 20]. In 1993, Hareland and Hoberock [29] 

modified Warren’s model by addressing chip hold down effects. This was done using data 

from laboratory full-scale drilling tests. The tests were performed by varying the bottom-hole 

pressure while other conditions remained constant. The resultant “chip hold down function” 

�� is given by: 

 ��(��) = �� + ��(�� − 120)��   (I.20) 

Where (��, �� and ��) are lithology dependent constants and �� is the differential pressure. 

Units on (��, �� and ��) where chosen such that �� is dimensionless [19]. The resultant 

modified equation including “chip hold down effect” is given by: 

��� = ���(��)� �
�����

�

� ���� +
�

���
� +

������

���

��
��

 (I.21) 
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 Addressing bit wear effect 

Hareland and Hoberock [29] also included bit wear effect to strengthen Warren’s model. 

Bit wear has a negative impact on drilling process by reducing the rate of penetration. 

Hareland and Hoberock modified Warren’s ROP model to account for bit wear effect by 

introducing a wear function (��) into the model [19]: 

��� = W� ���(��)� �
�����

�

� ���� +
�

���
� +

������

���

��
��

  (I.22) 

The wear function, ��, is given by: 

�� = 1 −
∆��

�
  (I.23) 

Where ∆�� represents the change in bit tooth wear and is given as:  

∆BG = �� � WOB� × RPM� × Ar����
× S�

�

�� �
  (I.24) 

Here  S� , is the rock compressive strength which is a function of rock lithology and 

confining pressure, given by: 

S� = ���1 + ����
���  (I.25) 

I.4.5 Harland’s Drag Bit 

Hareland’s (1994) model proposed a new way to predict ROP for drag bits. The model 

expands on previous ones by introducing equivalent bit radius, dynamic cutter action, 

lithology coefficient, and cutter wear. The model apart from helping with optimization of 

drilling parameters, also aids in solids control. 

Due to the model not accounting for certain theoretical properties that affect ROP, such as 

bit cleaning, imperfections in bit and cutter geometry, and microscopic variations in rock 

strength, the paper includes a correlation factor. Here is Hareland’s ROP equation for drag 

bits and the correlation factor: 

��� =
��.��×����×���

��
× ��

��

�
�

�
× cos�� �1 −

�×�����

����×��
�×�×��

� − �
�×�����

����×�×��
−

�×�����
�

(����×��×�×��)��
�.�

×

    �
��

�
−

�×�����

(����×��×�×��)
��                             (I.26) 

��� =
�

�����×���
   (I.27) 

where ��  is bit diameter in inches, ����  is number of cutters, RPM is rotary speed in 

revolutions per minute, �� is diamond cutter diameter in inches, � ���ℎ is weight on bit per 

diamond cutter in lbs, �� is uniaxial compressive strength in pounds per square inch, W is 

weight on bit, a, b, c are cutter geometry correction factors. 
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I.4.6 Hareland’s Roller Bit 

G. Hareland’s (2010) model proposed a different approach to predict ROP for roller cone 

bits. The paper analyzed the existing drilling models, including Bourgoyne and Young’s, and 

expanded on them by including bit-rock interaction. The added complexity derives itself by 

relating the roller cone bit and rock interaction to rock failure by a wedge. The model is as 

follows: 

��� = � × �
��×�×�×����

��
�×�����

� × �
�

���×�×���
�

�

× �ƒ  (I.28) 

where K is the comprehensive coefficient, m is number of insert penetrations per 

revolution, n is number of inserts in contact with rock at the bottom, RPM is rotary speed, �� 

is bit diameter, ψ is chip formation angle, W is weight on bit, CCS is confined compressive 

strength, �� is bit wear, a and b are model coefficients. 

I.4.7 Motahhari’s PDC Bit 

Motahhari’s (2010) model proposed a new method to accurately predict ROP for 

Polycrystalline diamond compact (PDC) bits and positive displacement motors (PDMs). This 

model is incredibly useful for directional and horizontal drilling operations with PDMs, as 

previous models do not as accurately enhance preplanning, reduction of drilling time with 

ROP optimization According to Motahhari (2010), PDM performance/selection in the drilling 

planning phase will help perform a safe and cost-effective operation by preventing motor 

stalls and maintaining highest average ROP for the section”. The model is as follows: 

��� = � × �
��×����

��×���
� × �ƒ   (I.29) 

where G is a coefficient determined by bit geometry, cutter size and design (namely back rake 

and side rake angles) and cutter-rock coefficient of friction, RPM is rotary speed, �� is bit 

diameter, W is weight on bit, CCS is confined compressive strength, �� is bit wear, � and � 

are model coefficients. 

I.5 Conclusion 

In this chapter we have described the several factors effecting on ROP which are divided 

on two groups, and the history of ROP modeling from 1965 until these days, and we 

mentioned all the equations that are used in every model. Then, we have detailed in the model 

of Bourgoyne and Young which is the selected one in our study. 
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II.1. Introduction  

In this next study, we will present and discuss about some important techniques used in the 

field of optimization like be multiple regressions, particle swarm and specially artificial bee 

colony, and we will determine the phases of each of them to reach the desired global optimum 

which will be in our case the feasible drilling parameters. 

II.2. Optimization Techniques 

The word optimum, meaning “best”, the term optimize means to achieve the Optimum, and 

optimization refers to the act of optimizing. 

Optimization problem are becoming increasingly important in decision-making processes, 

and there is a several techniques to solve this problem, these techniques divide into two broad 

approaches. One of these approaches is called deterministic and on which the search 

algorithms always use the same routing to arrive at the desired solution. The other approach is 

the random or non-deterministic approach, on which the algorithm will not necessarily follow 

the same routing to the final solution and may even propose different solutions following the 

initial conditions proposed. 

It is towards this approach that we will focus and more particularly towards a very specific 

type of evolutionary random search algorithms with solution populations.  

 

 

 

 

 

 

 

 

 

 

 

Figure. II. 1. Flowchart of optimizations methodes 
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There are several techniques as shown in Figure II.1. Among these algorithms, we will be 

particularly interested in the algorithm of artificial bee colonies (ABC). 

II.2.1. Metaheuristic Optimization Technique 

The word Metaheuristic is derived from two Greek words:  

 Heuristic that comes from the verb ꞌꞌheuriskeinꞌꞌ and which means to ‘find’; 

 Meta which is a suffix meaning "beyond", in a higher level. 

From the onset of optimization problems, research has turned to the proposition of exact 

algorithms for solving these problems. But with the increasing complexity of these, it has 

become very difficult to find an exact solution. A new class of heuristics, named 

"Metaheuristics", has emerged in order to better solve these problems. The Metaheuristics are 

strategies that guide the search for an optimal solution. 

Metaheuristics are a set of optimization algorithms to solve difficult optimization 

problems. They are often inspired by natural systems, whether taken in physics (if simulated 

annealing) in evolutionary biology (genetic algorithms cases) or in ethology (case algorithms 

ant colony) or particle swarm optimization.  

Metaheuristics can be classified into two groups: population-based methods known as 

evolutionary algorithms such as genetic algorithms, ant colonies, bee colonies ..., as well as 

single-solution methods such as annealing simulated, taboo research, and else. 

II.2.2. Multiple Regression 

Regression analysis is used to estimate the relationships among one dependent and two or 

more independent variables. This method of data analysis is useful when examining a 

quantitative variable in relation to other factors. The Multivariate analysis describes an 

observation factor by having several variables, taking into consideration all changes of 

properties that may happen simultaneously. 

The equations (Eq. I.5 through Eq. I.11) define the general functional relations between 

penetration rate and the other drilling variables, but the constants a2 through a8 must be 

determined before these equations can be applied. The constants a2 through a8 are determined 

through a multiple regression analysis of detailed drilling data taken over short depth 

intervals. The idea of using a regression analysis of past drilling data to evaluate constants in 

a drilling rate equation is not new. For example, it was proposed by Graham and Muench in 

1959 [3] in one of the first papers on drilling optimization. This approach was used by Combs 

in his work on the detection of pore pressure from drilling data. However, much of the past 

work in this area has been hampered by the difficulty in obtaining large volumes of accurate 
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field data and because the e

ignored. Recent developments in on site well monitoring have made it possible to routinely 

regress the more complex drilling equation 

analysis procedure is presented in detail in the section 

Theoretically, only eight data points are required to solve for the eight unknowns a

through a8. However, in practice this is true only if 

with 100-percent accuracy. Needless to say, it never happens. When only a few data points 

are used in the analysis of field data, even negative values are sometimes calculated for one or 

more of the regression constants. 

procedure indicated that the number of data points required to give meaningful results 

depends not only on the accuracy of 

parameters x2 through x8

Figure. II. 2. Flowchart of multiple regressions.

Table.II.1 summarizes the recommended minimum ranges for each of the drilling 

parameters and the recommended minimum number of data points to be used in the analysis. 

When any of the drilling 

interval analyzed, a value for the corresponding regression constant, a

from past studies and the regression analysis should be carried out for the remaining 
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ffect of many of the drilling parameters discussed above were 
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regression constants[30].. As the number of drilling parameters included in the analysis is 

decreased, the minimum number of data points required to calculate the remaining regression 

constants is also decreased (see Table. II.1) [5]. In many applications, data from more than 

one well had to be combined in order to calculate all eight regression constants. 

II.2.2.1. Multiple regression Analysis Procedure 

Table. II.1. Recommended minimum data ranges for regression analysis 

Parameter  Minimum rang  Number of parameter Minimum number of  points 

X2 2.000 8 30 

X3 15.000 7 25 

X4 15.000 6 20 

X5 0.40 5 15 

X6 0.5 4 10 

X7 0.2 3 7 

X8 0.5 2 4 

 

The equation of the proposed model is: 

   ROP =
��

��
= ��� �a�� � a�x�

�

�� �
�   (II.31) 

Taking the logarithm of both sides of the above equation yields : 

     ��
��

��
= �a�� � a�x�

�

�� �
�   (II.32) 

If the residual error of the ith data point, ri, is defined by : 

    �� = �a�� � a�x�

�

�� �
� − ��

��

��
  (II.33) 

In order to minimize the square of the residuals  ∑ ��
��

�� �  , the constants from a1 to a8 should 

be determined properly by taking derivative from the square of the residuals   ∑ ��
��

�� � . 

    
� ∑ ��

��
���

���
= ∑ 2��

���

���

�
�� � = ∑ 2����

�
�� �   (II.34) 

For j=1, 2, 3… 8. 

The constants a1 through a8 can be obtained by simultaneously solving the system of 

equations obtained by expanding : ∑ 2����
�
�� �  ; for j=1, 2, 3… 8. 

The expansion of ∑ ����
�
�� �  yields: 
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�� + �� ∑ ��+�� ∑ �� + ⋯ … … … … … + �� ∑ �� = ∑   ��
��

��
 

�� ∑ �� + ��∑��
 � +�� ∑ ��

 �� + ⋯ … … … … … + �� ∑ ��
 �� = ∑  �� ��

��

��
         (II.35) 

�� ∑ �� + ��∑��
 ��

  +�� ∑ ��
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 �� = ∑  �� ��
��

��
 

 �� ∑ �� + ��∑��
 ��

  +�� ∑ �� �� + ⋯ … … … … … + �� ∑ ��
 � = ∑  �� ��
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��
 

After that in order to calculate the constants ��
  throught �� by using multiple regressions –

analysis the following linear equation system can be obtained by matrix: 

⎣
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⎤

    (II.36) 

II.2.3. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an evolutionary computational technique originally 

developed by Kennedy, Eberhart and Shi [31] [32]. It was intended for simulating social 

behavior, which is inspired by the movement dynamics of organisms in insects, birds and a 

bird flock or fish school as they searching the food source. The algorithm was simplified and 

it was observed to be performing optimization. 

The PSO is stochastic, population-based computer algorithm modeled on swarm 

intelligence. Basically, PSO optimizes a problem by having a population of candidate which 

known as the particles and moving these particles around in the search-space. Each particle's 

movement is influenced by its local best known position and is also guided toward the best 

known positions in the search-space which are updated as better positions are found by other 

particles. This is expected to move the Swarm toward the best solutions [33]. Each particle 

will produce two parameter and both parameters were communicate each other, which are the 

velocity of particle and the position of particle. All the particles can share their information 

about the search space, so there is a global best solution. 

The analogy of the particle and swarm is depending to the problem, and it can represent 

whatever name and value that suitable from the problem according to the formulae shown 

below. 

The velocity of particle i, is calculated as : 

  ��
��� ← ����

� + ϕ
�

��
����

� − ��
�� + ϕ

�
��

�(��
� − ��

�)  (II-37) 

Where:  

- �� represents the velocity of a particle; 
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- �� represents the previous best of the current particle;

- �� represents the current position of the particle;

- �� represents the global previous best from the entire swarm; 

vector of d in length, representing the number of dimensions in the problem. 

The other variables are:

- ϕ1 and ϕ2 which are considered acceleration constants, respectively, 1 and 2.

- � Which is a weighted inertia constant [0.4 to 1.4].

- r1and r2, are random values that are taken from the uniform distribution [0, 1].

The position of particle 

    

The velocity equation, (

cognitive and momentum 

global best solution found; the 

previous best solution found by each particle; and the momentum component, ω, forces the 

particle to continue on the current trajectory. Al

optimization technique traverse the exploration/exploitation dilemma that surrounds all 

optimization problems.  

In Our study the PSO algorithm uses the ROP model by having the particles search the 

solution space and converge on the optimal WOB, RPM, bit selection, an

inputs for this algorithm include: rock strength, WOB and RPM operational ranges, and 

available bit selections . 
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represents the previous best of the current particle; 

represents the current position of the particle; 

represents the global previous best from the entire swarm; each one of these variables is a 

vector of d in length, representing the number of dimensions in the problem. 

are: 

which are considered acceleration constants, respectively, 1 and 2.

Which is a weighted inertia constant [0.4 to 1.4]. 

, are random values that are taken from the uniform distribution [0, 1].

The position of particle i is calculated as : 

 ��
��� ← ��

� + ��
���    

The velocity equation, (Eq. II.37), above is comprised of three components, social, 

cognitive and momentum [34]. The social component, ϕ2, forces the particles towards the 

global best solution found; the cognitive component, ϕ1, forces the particles back towards the 

previous best solution found by each particle; and the momentum component, ω, forces the 

particle to continue on the current trajectory. All three components help the particle swarm 

n technique traverse the exploration/exploitation dilemma that surrounds all 

 

he PSO algorithm uses the ROP model by having the particles search the 

solution space and converge on the optimal WOB, RPM, bit selection, an

inputs for this algorithm include: rock strength, WOB and RPM operational ranges, and 

 

Figure. II. 3. Flowchart of PSO procedure.
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one of these variables is a 

vector of d in length, representing the number of dimensions in the problem.  

which are considered acceleration constants, respectively, 1 and 2. 

, are random values that are taken from the uniform distribution [0, 1]. 

 (II-38) 

, above is comprised of three components, social, 

, forces the particles towards the 

, forces the particles back towards the 

previous best solution found by each particle; and the momentum component, ω, forces the 

three components help the particle swarm 

n technique traverse the exploration/exploitation dilemma that surrounds all 

he PSO algorithm uses the ROP model by having the particles search the 

solution space and converge on the optimal WOB, RPM, bit selection, and pull depth. The 

inputs for this algorithm include: rock strength, WOB and RPM operational ranges, and 

 

Figure. II. 3. Flowchart of PSO procedure. 
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II.2.4. Modified Particle Swarm Optimization 

In standard PSO, because the particle has the ability to know the best position of the group 

particles have been searched, we need one particle to find the global best position rather than 

all particles to find it, and other particles should search more domains to make sure the best 

position is global best position not the local one. 

The modification in PSO consists of three categories: extension of field searching space, 

adjustment the parameters, and hybrid with another techniques. The procedure of modified 

PSO is as following: 

1) Initialize the position and velocity of each particle;  

2) Calculate the fitness of each particle;  

3) Concern the particle with the biggest fitness value, reinitialize its position; and evaluate the 

particle with the smallest fitness value whether its new position is acceptable, if the answer is 

yes, update its position, otherwise, a new position is assigned to the particle randomly in its 

neighborhood with radius r; then renew the position and velocity of other particles according 

to (Eq II.37.and II.38) with modified in ϕ1 and ϕ2, and W as follows: 

� =
�α

�����√������
    (II-39) 

Φ� = λ. b�     (II-40) 

Φ� = λ. b�     (II-41) 

where, α = 1, b1= 1.5, b2= 2 and b =b1+b2 . 

4) For each particle, compare its current fitness value with the fitness of its pbest, if the 

current value is better, then update pbest and its fitness value;  

5) Determine the best particle of group with the best fitness value, if the current fitness value 

is better than the fitness value of gbest, then update the gbest and its fitness value with the 

position; 

6) Check the finalizing criterion, if it has been satisfied, quit the iteration; and return to step 3 

[31]. 

II.2.5. Artificial bee colony optimization 

ABC optimization algorithm is a recent addition in swarm intelligence proposed by 

Karaboga in 2005 and the performance of ABC is analyzed in 2007 [35]. ABC algorithm is 

simple and very flexible when compared to other algorithms and there are many possible 

applications of ABC. Like any other population-based optimisation algorithm, ABC consists 

of a population of potential solutions. With reference to ABC, the potential solutions are food 

sources of honey bees. The fitness is determined in terms of the quality (nectar amount) of the 
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food source. There are three types of bees in the colony: onlooker bees, employed bees and 

scout bee. Numbers of employed bees or onlooker bees are equal to the food sources. 

Employed bees are associated with food sources while onlooker bees are those bees that stay 

in the hive and use the information gathered from employed bees to decide the food source. 

One of the employed bees, whose food source is exhausted, becomes scout bee and she 

searches the new food source randomly. 

Similar to the other swarm-based algorithms, ABC is an iterative process. There are two 

fundamental processes which derive the evolution of an ABC population: the variation 

process, which enables exploring different areas of the search space and the selection process, 

which ensures the exploitation of the previous experiences. However it has been shown that 

ABC may occasionally stop proceeding toward the global optimum even though the 

population has not converged to a local optimum (Karaboga and Akay, 2009) (36). ABC 

process requires cycle of four phases: initialisation phase, employed bees phase, onlooker 

bees phase and scout bee phase, each of which is explained below. 

II.2.5.1. Initialisation of the population 

Initially, ABC generates a uniformly distributed population of SN solutions where each 

solution �� (i = 1, 2... SN) is a D-dimensional vector. Here D is the number of variables in the 

optimisation problem and ��  represents the  � ��  food source in the population. Each food 

source is generated as follows: 

  ��
�

= ����
�

+rand (0, 1) (����
�

− ����
�

), ∀j =1,2,....,D  (II.42) 

Where ����
�

 and ����
�

 are bounds of � �in ��� direction. 

II.2.5.2. Employed bees phase 

In this phase, employed bees modify the current solution based on the information of 

individual experiences and the fitness value (nectar amount) of the new solution. If the fitness 

value of the new food source is higher than that of the old food source, the bee updates her 

position with the new one and discards the old one. The position update equation for ���  

dimension of ��� candidate in this phase is shown in following equation: 

��� = ��� + ��� (���− ���)    (II.43) 

Where ��� (���− ���) is called step size, k ∈ {1, 2... SN}, j ∈ {1, 2... D} are two randomly 

chosen indices. K must be different from � so that step size has some significant contribution 

and ���  is a random number between [–1, 1]. 
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Figure.II.4: (a) A s
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Position update process in employed bee phase is shown in 

represents the current position of a bee and highlighted box represents the randomly choosen 

direction j. �� is the randomly choosen bee. In this step the direction j of a random bee k 

is subtracted from same direction of 

number  ���  ∈ [−1, 1]. Finally this quantity is added to 

dimension of new food position 

whose all other dimensions a

we consider only 2−D search space then possible positions for this new food source

seen in Figure.II.4 (b). 

II.2.5.3. Onlooker bees phase

After completion of the employed bees phase, the onlooker bees phase is 

phase, all the employed bees share the fitness information (nectar) of the 

(food sources) and their position information with the onlooker 
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A simple position update equation execution, (b) 

new vectors formed in neighbourhood of xij due to position update equation in 2

Position update process in employed bee phase is shown in 

represents the current position of a bee and highlighted box represents the randomly choosen 

is the randomly choosen bee. In this step the direction j of a random bee k 

is subtracted from same direction of ��� bee then this difference is multiplied by a random 

1, 1]. Finally this quantity is added to ���  dimension of 

dimension of new food position ��� . This ��� is represented by vertical vector in the figure 

whose all other dimensions are same as of �� and is generated in the neighbourhood of

D search space then possible positions for this new food source

bees phase 

After completion of the employed bees phase, the onlooker bees phase is 

phase, all the employed bees share the fitness information (nectar) of the 

(food sources) and their position information with the onlooker bees in
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imple position update equation execution, (b) Different possible 

due to position update equation in 2-D  

Position update process in employed bee phase is shown in Figure.II.4 (a). Here �� 

represents the current position of a bee and highlighted box represents the randomly choosen 

is the randomly choosen bee. In this step the direction j of a random bee k ≠ i 

nce is multiplied by a random 

dimension of ��   to get ���  

is represented by vertical vector in the figure 

and is generated in the neighbourhood of ��. If 

D search space then possible positions for this new food source ��� can be 

After completion of the employed bees phase, the onlooker bees phase is started. In this 

phase, all the employed bees share the fitness information (nectar) of the updated solutions 

bees in the hive. Onlooker 
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bees analyse the available information and select a solution with a probability,��, related to its 

fitness.  

The probability�� may be calculated usingfollowing expression (there may be some other 

but must be a function of fitness): 

     ��=
����

∑ ����
��
���

    (II.44) 

Where ����  is the fitness value of the ���  solution. As in the case of the employed bee, 

onlooker bee produces a modification in the position in her memory and checks the fitness of 

the candidate source. If the fitness is higher than that of the previous one, the bee memorises 

the new position and forgets the old one. 

II.2.5.4. Scout bees phase 

If the position of a food source is not updated for a predetermined number of cycles, then 

the food source is assumed to be abandoned and scout bees phase is started. In this phase the 

bee associated with the abandoned food source becomes scout bee and the food source is 

replaced by the randomly chosen food source within the search space. In ABC, the 

predetermined number of cycles is a crucial control parameter which is called limit for 

abandonment. Assume that the abandoned source is �� then the scout bee replaces this food 

source with new �� as follows: 

  ��
�

= ����
�

+rand (0, 1) (����
�

− ����
�

), ∀j =1,2,....,D  (II.45) 

Where ����
�

 and ����
�

 are bounds of � �in ��� direction. 

The general algorithmic structure of the ABC optimization approach is given as 

Follows: 

Step 1: (Initialization) 

 The initial swarm by using equation (II.42).  

 Calculate the fitness value (f iti) of each food source by using equation. 

Reset the abandonment counter. 

 Step 2: (Move the employed bees) For each employed bee : 

 Select a neighbor employed bee randomly. 

 Calculate the new solution by using equation (II.43). 

 Calculate the fitness value (f iti) of each food source by using equation: 

  f iti=�

�

���
  �� � ≥ 0

1 + ���(�)�� � < 0
�
          (II.46) 
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 If the fitness value 

then replace the 

new solution, else

Step 3: (Move the onlooker bees) 

 Select an employed bee as neighbor

An onlooker bee selects a 

of the employed bees

 Improve the solution

 Calculate the fitness 

 If the fitness value 

then replace the 

new solution, else

Step 4: (Move the scout

 Fixe the abandonment counter with the highest

 If the content of

abandonment counter

employed bee to 

Step 5: If a termination condition is met, the process is stopped and the best food source is 

reported, otherwise the algorithm returns to Step 2

Figure. 

Scout Bee Phase
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value of the new solution is better than the fitness 

 old solution with new one and reset the abandonment

else increase the abandonment counter of the old solution

Step 3: (Move the onlooker bees) For each onlooker bee: 

Select an employed bee as neighbor randomly. 

An onlooker bee selects a food source by evaluating the information 

bees based on the equation of probability (II.44)

solution of the employed bee by using equation and the

Calculate the fitness value (f iti) of each food source by using equation

value of the new solution is better than the fitness 

 old solution with new one and reset the abandonment

else increase the abandonment counter of the old solution

scout bees) : 

Fixe the abandonment counter with the highest content. 

of the counter is higher than the predefined

counter and by using equation (II.44) generate

 which the abandonment counter belongs. Else

termination condition is met, the process is stopped and the best food source is 

reported, otherwise the algorithm returns to Step 2 [37]. 

Figure. II.5: Flowchart of ABCO procedure.
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of the new solution is better than the fitness value of the old solution 

abandonment counter of the 

donment counter of the old solution by 1. 

evaluating the information received from all 

). 

and the neighbor (II.43). 

equation (II.45). 

of the new solution is better than the fitness value of the old solution 

abandonment counter of the 

donment counter of the old solution by 1. 

predefined limit then reset the 

enerate a new solution for the 

Else continue. 

termination condition is met, the process is stopped and the best food source is 

 

Flowchart of ABCO procedure. 
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II .3.Conclusion 

In this chapter, we have discussed some proposed techniques known in the field of 

optimization, whether those derived from nature or mathematics, like the technique of particle 

swarms, modified version of this last and artificial bees colony. And we have described the 

mechanisms and steps and the principle work of each one, also we mention every equations 

that correspond to the process of the technique. In the next chapter we will exploit these 

techniques to solve our optimization problem. 
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III.1. Introduction 

In this final chapter we will describe our results after using the concept of the following 

metaheuristique methods: Particle Swarm Optimization, Modified Particle Swarm 

Optimization and artificial bee colony in order to get the best optimal solution for the 

objective function represented in the difference between ROP experimental and ROP 

simulated found by the proposed optimization technique. We will make several tests to assess 

the best adopted metaheuristique technique. 

III.2. Experimental Data  

The field data is taking from the Louisiana offshore well that are showing in Table.III.1 [5]. 

The parameters X2 through X8 must be calculated using Eq. I.5 through Eq. I.11 for each data 

entry, to calculate the best value soft model constants A1 through A8 using the experimental 

data. So that's the primary drilling variables required for the proposed techniques are depth, 

penetration rate, bit weight per inch of bit diameter, rotary speed, fractional tooth wear, 

Reynolds number parameter, mud density, and pore pressure gradient. 

III.3. Result Analysis  

III.3.1. Initial settings 

III.3.1.1 PSO 

Based on the general working principal of PSO and its standard settings where the personal 

acceleration constant: Φ� = Φ� = 2  and the weighted inertia constant w = 1. During the 

programming of this technique, a new factor is integrated which is called damping ratio of 

inertia coefficient where wdamp = 0.4, the test results are shown in the tables (III. 2 through 

III. 7) and figures (III. 1 through III. 6) bellow for three different swarm population (n) 

test. 

III.3.1.2. MPSO 

Some modification has been made to the previous technique in which the internal factor 

and the weighted inertia factor are variable form an iteration to another one. The weighted 

inertia constant has been calculated by the following equation: 

� =
�α

�����√������
    (III.1) 

While, α = 1, b1= 1.5, b2= 2 and b =b1+b2. 

Therefore Φ� = λ. b�. And Φ� = λ. b�, w = 0.7 . 
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Table.III.1. ROP data for different factors (Taken in shale, Offshore Louisiana area). 

Data  

entry 

Depth 

(ft) 

Bit 

numbe

r 

Drilling  

rate  

(ft/hr) 

Bit 

weight 

(1000l

b/in) 

 

Rotary  

speed  

(rpm) 

 

Toot

h  

Wear  

 

Reynolds 

number  

Function 

ECD 

(lb/gal

) 

 

Pore  

Gradient 

(lb/gal) 

1 9515 7 23 2.58 113 0.77 0.964 9.5 9.0 

2 9830 8 22 1.15 126 0.38 0.964 9.5 9.0 

3 10130 9 14 0.81 129 0.74 0.827 9.6 9.0 

4 10250 11 10 0.95 87 0.15 0.976 9.7 9.0 

5 10390 12 16 1.02 78 0.24 0.984 9.7 9.0 

6 10500  19 1.69 81 0.61 0.984 9.7 9.1 

7 10575  13 1.56 81 0.73 0.984 9.7 9.2 

8 10840 13 16.6 1.63 67 0.38 0.938 9.8 9.3 

9 10960  15.9 1.83 65 0.57 0.878 9.8 9.4 

10 11060  15.7 2.03 69 0.72 0.878 9.8 9.5 

11 11475 15 14 1.69 77 0.20 0.887 10.3 9.5 

12 11757 18 13.5 2.31 58 0.12 0.852 11.8 10.1 

13 11940 21 6.2 2.26 67 0.2 0.976 15.3 12.4 

14 12070 22 9.6 2.07 84 0.06 0.993 15.7 13.0 

15 12315  15.5 3.11 69 0.40 1.185 16.3 14.4 

16 12900 23 31.4 2.82 85 0.42 1.150 16.7 15.9 

17 12575 24 42.7 3.48 77 0.17 1.221 16.7 16.1 

18 13055  38.6 3.29 75 0.29 1.61 16.8 16.2 

19 16250  43.4 2.82 76 0.43 1.161 16.8 16.2 

20 16795 25 12.5 1.60 81 0.56 0.272 16.8 16.2 

21 14010 26 21.1 1.04 75 0.46 0.201 16.8 16.2 

22 14455 28 19 1.76 64 0.16 0.748 16.9 16.2 

23 14695  18.7 2.00 76 0.27 0.819 17.1 16.2 

24 14905 29 20.2 2.35 75 0.33 0.417 17.2 16.4 

25 15350 30 27.1 2.12 85 0.31 1.290 17.0 16.5 

26 15740  14.8 2.35 78 0.81 0.802 17.3 16.5 

27 16155 32 12.6 2.47 80 0.12 0.670 17.9 16.5 

28 16325  14.9 3.76 81 0.50 0.532 17.5 16.6 

29 17060 34 13.8 3.76 65 0.91 0.748 17.6 16.6 

30 20265 40 9 3.41 60 0.01 0.512 17.7 16.6 
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III.3.1.3. ABCO 

C: recognition parameter, Cmin= 0.02 and Cmax =0.2; 

W: inertia weight parameter, Wmin =0.1 and Wmax =0.9; 

All remaining initial settings are the steps and mechanism of the technique described in 

Chapter 2.  

III.3.1.4. Multiple Regression 

By  using  the  equation  of  the  proposed  model  of  Bourgoyne  and  Young’s  and  the  

procedures of MR that have been indicate in the previous chapter . the solutions are shown in  

the table below. 

Table III. 2. Results obtained from Multiple Regression method 

A1 A2 A3 A4 A5 A6 A7 A8 

3.90557 1.96��� 2.0035��� 4.2839��� 0.40740 0.45315 0.48380 0.06024 

 

III.3.2. Result 

To assess the feasibility of the proposed techniques, we have checked the convergence 

quality by means of varying the iteration number (it) from 100 to 300. For each variation of 

the iteration number, we have modified the population number (n) three times, 30, 50 and for 

100. The evolution factor, between the techniques, is the objective function value and the 

speed of convergence required. 

1. Iteration variation test 

1.1. For iteration =100 

Table III. 3. Test results using PSO, MPSO and ABCO with n=30. 

For 

n=30 

A1 A2 A3 A4 A5 A6 A7 A8 It.s OF T 

PSO 2.0337 0.1953 0.6762 0.1258 0.1503 0.4300 0.9263 0.8840 78 0.01051 08.66 s 

MPSO 5 0.3539 1 0.1563 0.6543 0.7194 0.2816 1.7443 77 1.359e-04 07.57 s 

ABCO 4.1434 0.0824 0.1220 7.9226e-

4 

0.2504 0.4271 0.9063 0.3448 99 1.7692e-

08 

58.79 s 
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Figure.III.1: Comparison between the three techniques by using n=30 and it=100. 

Table III. 4. Test results using PSO, MPSO and ABCO with n=50. 

For 

n=50 

A1 A2 A3 A4 A5 A6 A7 A8 It.s OF T 

PSO 0.8644 0.1443 0.6362 0.1364 0.3467 0.0789 1.2601 0.1565 95 1.3828 e-5 14.30s 

MPSO 3.5899 0.3072 0.7860 0.1093 0.5455 0.5648 0.6755 0.6012 78 1.8976e-07 12.50s 

ABCO 0.7122 0.1660 0.2448 0.0014 0.2132 0.7540 0.8073 0.3145 100 4.4159e-09 64.11s 

 

Figure III.2: Comparison between the three techniques using n=50 and it=100 

PSO              
MPSO          
ABCO 

PSO              
MPSO          
ABCO 
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Figure.III.3. Comparison between the three techniques using n=100 and it=100. 

Table.III.5. Test results using PSO, MPSO and ABCO with n=100. 

For 

n=100 

A1 A2 A3 A4 A5 A6 A7 A8 It.s OF T 

PSO 3.1458 0.1385 0.6328 0.1381 0.2197 0.3232 1.0431 1.5390 82 2.0902 e-8 29.73 s 

MPSO 2.8713 0.2756 0.4048 0.0033 0.7091 0.7091 0.6474 1.0016 78 2.0961e-

13 

33.45 s 

ABCO 0.1220 0.0714 0.2212 0.0374 0.2556 0.4571 0.2084 0.5144 100 2.9293e-

10 

80.79 s 

3.2. Iteration = 300 

Table III. 6. Test results using PSO, MPSO and ABCO with n=30. 

For n=30 A1 A2 A3 A4 A5 A6 A7 A8 It.s OF T 

PSO 1.473

8 

0.2191 0.3282 0.0036 0.7462 0.6044 0.7225 1.4049 201 9.1028e-06 020.63  s 

MPSO 2.020

0 

0.2096 0.3143 0.0035 0.5189 0.7593 0.9630 0.5412 299 8.8818e-15 021.78 s 

ABCO 1.179

5 

0.3286 0.7067 0.0740 0.9384 0.5929 0.3076 1.0339 167 5.3291e-15 117.72 s 

PSO              
MPSO          
ABCO 



Simulation And Results Analysis 
 

UKMO Page 37 
 

 

Figure III.4: Comparison between the three techniques using n=30 and it=300. 

Table III. 7. Test results using PSO, MPSO and ABCO with n=50. 

For 

n=50 

A1 A2 A3 A4 A5 A6 A7 A8 It.s OF T 

PSO 0.5915 0.3620 0.6477 0.0398 0.6866 0.6670 1.1347 1.5676 278 7.851e-09 38.45  S 

MPSO 3.5028 0.4744 0.7667 0.0262 0.8610 0.0845 0.8861 0.9039 299 8.1075e-9 39.24 s 

ABCO 3.3117 

 

0,1362 

 

0,3575 0,0511 0,5448 0,0774 0,7314 

 

0,4437 

 

189 1.7764e-15 145.997 s 

 

Figure III.5: Comparison between the three techniques using n=50 and it=300. 
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Table III. 8. Test results using PSO, MPSO and ABCO with n=100. 

For 

n=100 

A1 A2 A3 A4 A5 A6 A7 A8 It.s OF T 

PSO 1.4703 0.1041 0.6712 0.1661 0.9671 0.6664 0.3127 1.2203 236 1.9158e-13 049.58 s 

MPSO 1.2389 0.1780 0.9320 0.2154 0.4321 0.6613 0.9300 1.0702 291 302493e-11 051.96 s 

ABCO 2.0221 0.0581 0.2073 0.0391 0.2162 0.4323 1.3826 0.4080 163 1.7764e-15 167.99 s 

 

Figure III.6: Comparison between the three techniques using n=100 and it=300. 

III.4. Discussion 

As it is illustrated by the above tables and figures, and after several tests we have deduced 

the following points: 

 The best value of the objective function in PSO (OF = 1.9158e-13) is obtained in the sixth 

test with n=100 and it=300, after 236 iteration and it takes 49.58 second; 

 For the second technique (MPSO) we get an optimal objective function value 

(OF=8.8818e-15) in the fourth test with (n=30 and it=300), it is stabilized after one 

iteration before the end of the test (it=299), in addition to that we noted that the simulation 

time in MATLAB took about from 21.78 sec to 23.5 sec. 

 Finally in the last technique (ABCO) we have observed that the optimal solution 

(OF=1.7764e-15) we found it in both test (fifth and sixth), we consider the fifth test to be 

optimal because it takes less number of population size (n=50) with 300 iteration, it needs 

only 189 iteration to be fixed. 

PSO              
MPSO          
ABCO 
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In the next tables and figure we will pick and compare the best previous results for PSO, 

MPSO and ABCO with each other. 

Table III.9. Relative error test results for the proposed techniques (with n =100 

and it =300). 

Relative error  

Tests 

εa1 εa2 εa3 εa4 εa5 εa6 εa7 εa8 

PSO Test1 28.70% 39.20% 15.02% 41.20% 68.74% 96.58% 48.98% 38.24% 

Test2 44.68% 40.15% 18.54% 54.97% 35.14% 98.01% 46.24% 44.02% 

MPSO Test1 06.89% 36.23% 30.14% 45.21% 24.57% 72.35% 34.15% 31.25% 

Test2 25.63% 35.14% 20.19% 36.15% 33.14% 66.21% 46.14% 18.12% 

ABCO Test1 

 

04.55% 22.10% 13.66% 30.05% 29.89% 19.87% 13.25% 5.92% 

Test2 03.78% 26.50% 12.57% 32.21% 32.57% 13.24% 14.97% 9.49% 

From the observations and the table above we conclude that artificial bee colony ABCO is 

the best technique to find the constant modeled values no matter of number of iteration and 

population size because it already takes the optimal objective function. To confirm that, we 

will proceed to another test to check the techniques quality to find the same result in each 

execution. So, we are going to do relative error test by using the following equations: 

�� =
�����

�
      (III.2)  

�� =
�����

��
     (III.3) 

Where, Xr is the reference value, Xc is the calculated value, Xm is the average value of Xr and 

Xc, and �� is a the relative error. The reference values is shown in table III.9. 

From table III.8, it’s easy to find out that the percentage error of ABCO is smaller than the 

one of PSO and MPSO in all tests, and that’s an indication of how good the constants A1 

through A8 are when we used ABCO. Otherwise, this means that the bees in our technique 

have searched for optimal solution with good precision, this explain why ABCO takes 

relatively more time than the others. 
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III.5. Conclusion 

At the end of this study, which is based on drilling parameters optimization and after the 

execution of many tests, approximately 40 tests with using MATLAB software tool. We have 

found the best possible solutions, especially those related to ABCO, we notice that the quality 

of the solutions is affected by the number of population and directly proportional of the 

number of iteration. We have shown that the ABCO has a better performance in terms of 

stability to find the global optimum. 
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General Conclusion 

In the industry, there are several software, practices and methods used to optimize drilling 

operation. Among others, ROP is one of the optimization considerations. The primary 

objective of this thesis work was to know all the model ROP from 1965 until now, and to 

assess the difference between them. Several parameters effecting on ROP, those parameters 

should be well modeled to express their influence on ROP. Bourgoyne and Young's model is 

one the feasible and effective models. We have chosen it to understand and calculate the 

optimal ROP for a nearby well to be drilled according to on existing well data. This model 

contains eight unknown parameters should be solved by means of an optimization technique. 

As there are more two unknown parameters we have selected some well used metaheuristique 

techniques to find them, which are: PSO, MPSO and ABCO.    

Firstly, we have confirmed the feasibility of each one of them compared with multiple 

regression technique used by Bourgoyne and Young. After that we have performed several 

tests to check which one among them is the most effective in sight of convergence quality to 

reach the global optimum. 

According to the found results, we can deduce that ABCO technique is well suited to be a 

good optimization technique in sight of an implementation in real time. 
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