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Abstract

Face based automatic kinship verification is a novel challenging research

problem in computer vision. It performs the automatic examining of the

facial attributes and expecting whether two persons have a biological kin

relation or not.

The focus is on providing novel solutions for challenges of family ver-

ification from faces with an efficient system with the aim of providing

enhancement to the accuracy of kinship verification.

In our work, we analyzed the facial kinship verification systems in two

modes the unimodal and multi-modal system. The feature extraction is

a crucial step in the kinship recognition system. For this reason, we pro-

posed two efficient feature learning extraction algorithms called discrete

cosine transform network (DCTNet) and Context-Aware Local Binary

Feature Learning (CA-LBFL).

Various databases are used and extensive experiments are carried out in

order to validate our proposed methods and developed methods.

Besides, the experimental results demonstrated that the proposed meth-

ods achieved competitive results compared with other state-of-the-art.

Index Terms Biometrics, Kinship, Verification, DCTNet, CA-LBFL.



Résumé

En vision par ordinateur, la vérification automatique de la parenté est un nouveau

systéme de recherche. Il effectue l’examen automatique des attributs faciaux et mon-

tre si deux personnes ont une relation biologique.

L’objectif est de fournir de nouvelles solutions aux problémes de vérification de la

parenté avec un systéme efficace dans le but d’améliorer la précision du systéme de

vérification de la parenté.

Dans notre travail, nous avons analysé le système de vérification de la parenté fa-

ciale selon deux modes, le système unimodal et le système multimodal. L’extraction

des caractéristiques est une étape essentiel dans le systéme de reconnaissance de

la parenté. Pour cette raison, nous proposons deux algorithmes d’extraction des

caractéristiques efficaces appelés réseaux de transformation en cosinus discret et

l’apprentissage des motifs binaires locaux contextuelles.

Diverses bases de données sont utilisées et différentes expériences sont menées afin

de valider les approches proposées et les méthodes développées.

En outre, les résultats expérimentaux démontrent que les méthodes proposées a

permis d’obtenir des résultats compétitifs par rapport á l’état de l’art .

Mots-clés - Biométrie, parenté, vérification, DCTNet, CA-LBFL.
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Chapter 1
Introduction

This Chapter contains:

1.1 Kinship Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The ability to automatically verify whether two persons are from the same family

is referred to as family (kinship) verification. The general objective of this thesis is

to research, develop and evaluate novel computational models to determine whether

two persons are from the same family or not based on their faces. For example, the

inputs could be two faces (Face A and Face B) and the expected output could be a

decision whether Person A is the father, mother, sister, brother of Person B or not.

The focus is on providing novel solutions for challenges of family verification from

faces with an efficient system with the aim of providing enhancement to the accuracy

of kinship verification.

This chapter introduce the main topic of this thesis that is facial kinship verifica-

tion. The challenge is to automatically learn and extract the most significant features

of human faces. This chapter begins by outlining the kinship verification topic in Sec-

tion 1.1. Section 1.2 provides the contribution of this thesis. Section 1.3 describes

the thesis organization.

1.1 Kinship Verification

Facial appearance is a primary source of information regarding the persons identity,

gender, ethnicity, affective state, head pose, age and kinship relations. Hence, the

1



perception of facial attributes governs person perception, interpersonal attraction,

and consequently pro-social and social behavior [1], [2] and [3].

Automatic detection of kinship from facial appearance is a challenging problem,

and it has been thoroughly studied across several disciplines such as psychology e.g.,

[4], [5], [6] sociology e.g., [7], [8], medicine e.g., [9] , anthropometry e.g., [10], Human

Behavior and Evolution Society e.g., [11], [12] and recently in computer vision and

machine learning e.g., [13], [14], [15], [16], [17], [18], [19].

In this thesis, we focus on using computer vision techniques to automatically

detect the relationships between two persons from their faces.

Facial kinship verification is a module aiming to analyze pedigree construction

and calculate similarity indices for different facial traits. This problem has several

interesting applications, such as family album organization, finding missing children

and social media it still challenging for real applications because there are usually

large variations in pose, expression, illumination, age, ethnicity, especially, when face

images are captured in unconstrained environments.

The studies of kinship verification in psychology and sociology [7], [8] have found

that:

1. Humans can recognize kin relationships among unknown individuals.

2. Human faces convey essential cues helping to determine the kin relationships

between individuals.

3. Since facial appearance is found to be a useful cue for genetic similarity, previ-

ous studies attempted to identify which facial features are providing clues for

humans to recognize the relationships between two people.

Inspired by the observations and results of the psychological studies and by cap-

italizing on recent advances in computer vision and machine learning, researchers

investigated the kinship verification problem from facial images, aiming to develop

computational models and algorithms to automatically verify kin relationships be-

tween people. Usually, four different types of kinship relations are considered: father-

son (F-S), father-daughter (F-D), mother-son (M-S), and mother-daughter (M-D).

During the past years, the challenge of kinship verification has attracted different

levels of research. In 2010, Fang et al. [20] the first researchers who tackled the

kinship verification challenge, they extracted low-level features from facial parts. In

2011, researchers started to investigate this problem with several mid-level features

[21]. Recently, some researchers used the high-level feature representations.

2



Fundamentally, two important challenges in kinship verification are addressed.

The first one is related to the environment of the database such as age, illumination,

facial expression, pose variations, resolution and rotations. The second one is related

to kinship itself this latter is based on checking the existence of kinship by verifying

feature resemblance between kin. Moreover, features extraction is important and

most sensitive because special feature have an observable impact on the efficiency of

the recognition system.

This thesis focus on kinship verification based feature extraction task. We present

an original investigation to detect the most significant characteristic features of human

faces and it should help from the improved performance of kinship verification.

1.2 Research Contributions

The main contributions of this thesis are highlighted as follows:

1. Firstly, the biggest challenge is how to describe a face, how to recognize the

different facial features for children, and then learn how to relate them to their

corresponding parents without being affected by different challenges. We ad-

dressed many challenges: i) diverse ages, expressions, gender, skins, lighting

changes even dramatically illumination; ii) several features extraction methods

are explored, such as: the Hand-Crafted Features and the learned features (No

Hand-Crafted Features).

2. An experiment study is provided. We investigate the global and local fea-

tures and matching approaching to gain insights into the problem. The global

appearance-based methods try to find a suitable representation of the whole

image. The local texture descriptors represent certain region properties.

3. We explore the feature combination to perform multiple feature fusion to extract

complementary information to improve the kinship verification performance.

4. We have proposed an efficient system based on Context-Aware Local Binary

Feature Learning (CA-LBFL) for kinship verification. The CA-LBFL is a

method has applied to learn contextual features from raw pixels directly and to

eliminate the dependence on hand-crafted features.

5. We have proposed an efficient system with the aim of providing enhancement

to the accuracy of kinship verification. The system based on a simple deep

learning method called Discrete Cosine Transform Network (DCTNet), where

3



2D-DCT is adopting as a filter bank to extract the most significant inherited

facial features. To the best of our knowledge, the DCTNet is being used for the

first time in our work for the kinship verification. We introduced the multimodal

system based on some discriminative biological information.

1.3 Thesis Organization

The rest of thesis is divided as following:

Chapter 2 details the facial kinship verification task. We give an overview of

automatic kinship verification from faces by presented some notions, definitions and

terminology required for understanding this topic. Next, we describe the system

design of facial kinship verification. Also some applications and the challenges related

to facial kinship verification. We summarize some existing databases.

The chapter presents also a review of the current state-of-the-art in automatic

kinship verification is provided. We discussed the features extraction methods that

divided into two approaches. The first one based on the Hand-Crafted Feature-based

methods including (Local Binary Patterns (LBP), Histogram of Gradient (HOG),

Gabor Wavelets... etc.). The second approach based on the Deep Learning Feature-

based method. Also several proposed metric learning to tackle the kinship verification

problem. However, three different kinship verification setting has been proposed to

evaluate the performance of the system.

In chapter 3, the features extraction and classification method used for the

kinship verification are discussed in detail in this chapter. First, we introduce the

hand-crafted features extraction techniques including global and local features. Next,

we present two methods based on learned (No Hand-Crafted) features learning, the

first one is the CA-LBFL and the second approach is based on DCTNet. The learned

features are proposed in order to eliminates the dependence on hand-crafted features

(extract and represent features automatically instead of selected manually) and to

extract the most significant inherited facial features. The results obtain are discussed

and shows that the proposed approach provided a valuable solution to the facial

kinship verification problem.

Two matching methods are proposed to deal with kinship verification. Firstly,

we discuss a supervised methods that called Support vector machines (SVM ). SVM

performs classification by finding the hyperplane that gives the largest minimum

distance to the training examples. The second method present a simple approach

that requires no training data by computing the distance between pairs of features

4



with different functions. The rest of the chapter, provide a brief discussion of the

tools and techniques used. Functionality of feature selection algorithm is explained.

Also, we explains the different fusion techniques and its related strategies. We present

the details of performance evaluation measurement throughout the thesis.

In chapter 4, experimental results of facial kinship verification analysis are pre-

sented and discussed. We have investigated the kinship verification task using three

experiments. In experiment 1, we have investigated several feature extraction meth-

ods and similarity measures. In experiment 2, we tackled the problem using a novel

solution using a DCTNet via 2D-DCT filters bank. To improve the kinship verifica-

tion performance, a discriminative biological information are used. From a biological

opinion, the chromaticity of the face is tied to genetically expressed characteristics,

such as eye color or skin tone, In experiment 3, we proposed an effective method

called CA-LBFL. The CA-LBFL is a method has applied to learn contextual features

from raw pixels directly and to eliminate the dependence on hand-crafted features.

Finally, Summary and future work are drawn in Chapter 5.

5



Chapter 2
Facial Kinship Verification

This Chapter contains:
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2.2 Kinship terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.9.2 Approaches based on deep learning features . . . . . . . . . . 25

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Introduction

Kinship verification is operation can verify the relationship of a person based on

facial characteristics. This skill is well demonstrated in recognizing people in images.

In this chapter, we present the background information and the notions required

for understanding the kinship verification topic. Also, we present an overview of
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the challenges related to kinship verification through human facial images and we

introduce the main remedies proposed by state-of-the-art works.

Firstly, we discuss the kinship terminology and then we present the concept of

kinship verification in computer vision. We highlighted the difference between fa-

cial verification and kinship verification system. Also, we devoted to system design

and application. The chapter also summarizes some existing databases. Finally, we

present the approaches and protocols proposed for solving this problem.

2.2 Kinship terminology

We need to be familiar with various kinship terminologies before deepening into the

problem and the solutions.

As a special type of social relationship, kinship plays an important role in the

field of social network analysis [22]. Kinship is a term that has several meanings.

In general, kinship (similarity, familiarity) is a word used to recognize relationships

between individuals in a family. In biology, kinship is the degree of genetic relatedness

between two family members. In psychology, Kinship is the state of being related by

birth, common ancestry, marriage or adoption [23]. In the anthropological context,

kinship refers to the network of social relationships between people that form an

important part of the lives of most humans in most societies [24]. In Physiognomy, is

to estimate the relationships of children and their parents, based on signs and to the

likeness of them, and to identify the proportions of the child in view of the members

of his body and the members of his father. Moreover, different societies classify kin

relationships differently and therefore use different systems of kinship terminology

[25].

2.3 Kinship in computer vision

A biometric system is essentially a pattern-recognition system that recognizes a per-

son based on a feature vector derived from a specific physiological or behavioral

characteristic (also known as modalities) that the person possesses [26].

These modalities provide a very high level of protection against fraud and it has

several key advantages such as not transferable, non-repudiation, not guessable. The

technology has been successfully implemented in different real-life applications such as

forensics, government agencies, banking, and financial institutions, enterprise identity

management.
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Indeed, one of the most used biometric modalities is the face, according to its

potentiality and capability to distinguish between people; it has several advantages

over other biometric modalities e.g., fingerprint [27], [28], Palm-prints [29], [30], voice

[31], [32] or iris [33], [34]. It is more accepted due to its major advantage: it is the

only physiological biometric that can be reliable measured remotely and, moreover,

the authentication of the users can happen without their explicit interaction with the

sensor or their knowledge. Several areas are emerging, such as: age estimation [35],

face anti spoofing [36], facial cosmetics [37], analyzing attractiveness, for surgical/

orthodontics planning [38].

At recent days, one of the new areas of application of biometric that exploit the

face modalities is the kinship verification.

Automatic kinship verification system tries to recognize the relationships between

people based only on photographs of their faces. Kin recognition is the task of training

the machine to recognize the genetic kin and non-kin based on features extracted from

digital images and try to determine whether or not kinship exists between a pair of

faces, but they do not aim to recognize the exact type of kinship [39].

In computer vision, kinship verification is a very challenging problem it encoun-

ters many variations as in face recognition problems such as low-resolution images,

illumination changes, pose variations, effects of aging, mixed ethnicities, and multiple

age groups.

In addition, the kinship system is the classification of persons related through

kinship based on patterns such as their faces (see figure 2.1). For example, the inputs

could be two faces (Face A and Face B) and the expected output could be a decision

whether Person A is the father/sister/mother/brother of Person B or not.

2.4 Face verification and kinship verification

At first look, the kinship verification process may seem similar to face verification

process. In effect, these two processes are different things but they have common

factors. We might say that kinship verification is the highest level of face verification

[39].

The basic structure is the common factor between kinship verification and face

verification system and the differences between the facial and kinship verification is

shown in Table 2.1.
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Table 2.1: Difference between kinship and face verification system.

Facial Verification Kinship Verification

Extract features from same person Extract features from different person

Verify or identity Verify the relationships

Same trait of query image1 and query Different trait of query image1 and
image 2 query image 2

Height level system Highest level system

The most common application is the Studying the biological relationship
security, monitoring and extensively and utilizes by people and less
by government a agencies by government agencie

In decision stage Matched or not matched In decision stage Kin or not kin

Performance of the machine is very Accuracy is not satisfactory
roughly as accurate as human
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Figure 2.1: An example of kinship verification via face images. The images on the
left correspond to parents and those on the right to children. The challenge is to
automatically find the correspondences parent-child.

2.5 System design

The automatic detection of kinship from facial images is a difficult problem that re-

cently received attention from the computer vision and pattern recognition research

community. Kinship is a genetic relationship between two family members. Specif-

ically, there are four different types of kinship relations: Mother-Daughter (M-D),

Father-Daughter (F-D), Mother-Son (M-S) and Father-Son (F-S) kinship relations

see Figure 2.2.

The kinship verification has been studied in psychology and sociology [20], [40]

and [41]. The findings from the literature include that:

• Humans are able to recognize kinship relationships between unknown individu-

als.

• The mechanism of kinship perception is probably different from identity recog-

nition.

• Human faces can convey some important cues to identify the kin relations of

persons.

• Even attempted to identify the facial features providing kinship clues.
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Figure 2.2: KinFaceW-II database. Four type relationships: (F-S), (F-D), (M-D),
and (M-S).

• Facial appearance is a useful cue for genetic similarity.

Inspired by this observation, researchers started to investigate this problem from facial

images, where the objectives are to develop computational models and algorithms to

verify human kin relations.

The aim of kinship verification is to recognize the genetic kin or not-kin relation-

ship based on image feature. In recent years, several methods have been proposed to

investigate this problem using computer vision and machine learning. In 2010, Fang

et al. [20] was tackle the first attempt of kinship verification; they proposed a method

to automatically verify parent-child image pair relationships through the analysis of

facial features. His method works according to the following steps:

• Step 1: Parent-child database collection. Over on-line search, they collected

the databases that contain facial pairs image (parent-child) from celebrities and

public figures.

• Step 2: Inherited facial feature extraction. They used a set of low-level

image features extractions including, facial parts, color and geometry distances

between parts and gradient of the face.

• Step 3: Classifier training and testing. Objective of this experiment is to

classify the child - parent pairs into two false and true categories. Same number

of negative pairs (no kin relation) as positive pairs (with a kin relation) is

created by associating faces from persons which do not have a kinship relation.
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The positive examples are the true pairs of parents and children and negative

examples are each parent with a randomly selected child from the children

images who is not his/her true child. Using the extracted feature vectors, they

calculate the differences between features vector of the corresponding parents

and children, and apply different machine for classification.

Figure 2.3 presents a general schema of kinship verification based on facial images.

This kinship system has the following essential components:

Figure 2.3: General schema of kinship verification system.

1. Input (face datasets): includes public figure face images of family members.

Therefore, the face images are captured under uncontrolled environments with

no constraints.

2. Pre-processing: is an important component. In order to localize the face of the

image, this latter is then cropped, such that the non-facial regions such as the

background and hairs were removed and only facial region was used for kinship

verification. If those are color images, they converted into gray-scale images.

For each cropped image, histogram equalization was applied to mitigate the

illumination.

3. Face describing: the best way to learn kinship analysis is first to learn how to

recognize the different facial features for children, and then learn how to relate

them to their corresponding parents. Facial features must be described in a way

that enables them to be efficiently descriptors.

4. Classification and Decision: kinship Verification is bi-classification problem

where the pair of input faces is classified as positive (the true pairs of parents

and children) or negative (the false pairs of parents and children).
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2.6 Application

Determining if someone is a father, mother, son, or daughter is a complicated task. It

is possible to use the most advanced of methods to determine if two persons are likely

to have the suspected relation or not. Researchers started to investigate the problem

of kinship verification, where the objectives are to estimate relatedness between closely

related individuals based on face features. There are some potential applications for

kinship verification such as family album organization, social media, missing child

search and entertainment.

2.6.1 Social media and family album organization

Over the past few years, with the development of technology in social media, most

smart phone and social media such as Google+ and Facebook use facial recognition

system to automatically organize billions of images. There are two principal questions

to be responded: (1) who these people are, and (2) what their relations are. The first

question can be addressed with Face recognition technique and kinship verification

is a useful system to approach the second question. When the relationships between

people are recognized, it is possible to automatically construct the family tree from

this network society.

2.6.2 Finding missing children

Another important application of kinship verification is missing children search. Al-

though a DNA test is the most accurate test for family kinship verification, but, it

is restricted in some applications. It unfortunately cannot be used in many scenarios

such as in video surveillance, and the DNA privacy testing and the coast is very high.

However, facial kinship verification can solve these limitations because verifying

kinship relationships from facial images is very convenient and its cost is very low. For

example, if we want to find a missing child from thousands of children, it is difficult

to use the DNA testing to verify their kin relation due to privacy concerns. However,

if our kinship verification method is used, we can quickly first identify some possible

candidates which have high similarity from facial images. Then, the DNA testing is

applied to get the exact search result.

13



2.6.3 Entertainment

The film making industry used the visual effects that can age or rejuvenate the actors.

These effects are not limited to movies but are also widely applied to photo editing.

The imminent integration of such tools into popular design software will make for

more realistic retouch of photos. Make-up artists that specialize in transforming the

face can leverage the construction of person, age and kin specific morph-able models.

Guided by those models, the artists will transform the face of the actor for roles that

demand sibling-like similarity actors.

2.7 Kinship challenges

In this thesis, the challenge is to improve the accuracy of facial kinship verification

so that the several complications do not cause a reduction of the performance of the

system. Fundamentally, we focus on kinship verification based feature extraction task.

We considered the facial kinship verification problem as features extraction problem.

In particular, facial kinship verification is very challenging. There are at least two

major challenges. The first one is related to the environment of the database. The

second one is related to kinship itself.

• The face of pairs (parent- child) may look different due to variance in age,

gender, and mixed ethnicity environments and also to deal with other factors

such as: pose variations, illumination, and expression, especially, when face

images are captured in unconstrained environments.

• Secondly, extracting features can be considered as a main problem to determin-

ing the relationships. We must initially determine which facial features are most

relevant for determine parentchild relationships. It is necessary to describe and

extract the most inherited feature in order to perform robust kinship verification

system.

2.8 Databases

The appearance of a face is affected by a large number of factors including identity,

face pose, illumination, facial expression, age, occlusion, and facial hair. The devel-

opment of algorithms robust to these variations requires databases of sufficient size

that include carefully controlled variations of these factors. Furthermore, common

databases are necessary to comparatively evaluate algorithms. Kinship verification
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continues to be one of the most popular research areas of computer vision and machine

learning. Along with the development of kinship verification algorithms, a compar-

atively diverse databases have been collected. Examples of different data sets are

shown in Figure 2.4.

Table 2.2 provides a list of datasets that can be used for kinship verification.

Figure 2.4: Samples of images from a different database for different kin relations.
KinFacew-II. From top to bottom are the (F-S), (F-D), (M-S) and (M-D) kinship
relations. UB inFace (Daughter-Yong father and Old Father), TSKinFace (F-M-S-
D), Cornell KinFace (F-D), (M-D), (F-S) and (F-D).

In this section we review different databases:

• KinFaceW-I , KinFaceW-II [42] 1: includes public figure face images of family

members collected from the Internet. Therefore, the face images are captured

under uncontrolled environments with no constraints. The difference between

KinFaceW-I & KinFaceW-II is that face images with a kin relation were acquired

from different photos in KinFaceW-I while, in most cases, faces are cropped from

the same photo in KinFaceW-II. KinFaceW-I dataset contains 156 F-S, 134 F-D,

1http://www.kinfacew.com/
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Table 2.2: Kinship verification databases.

Input Database
Number of Type of kinship Controlled Pairs from Publicly
Pair image relation Pairs condition same photo available

Image

KinFaceW-I 533

F-S 156

No Partially Yes
F-D 134
M-S 116
M-D 127

KinFaceW-II 1000

F-S 250

No Yes Yes
F-D 250
M-S 250
M-D 250

UBKinFace 400
Old P-C 200

No No Yes
Yong P-C 200

TSKinFace 1015
F-M-S 285

No Yes YesF-M-D 274
F-M-S-D 228

Family 101 206 FamilY 206 No No Yes

IIITD Kin 272

S-S 52

No No No

F-D 33
F-S 52
M-D 26
M-S 15
B-S 49
B-B 42

Cornell Kin 143 P-C 143 No Partially Yes

Video

UvA-NEMO 95

F-S 94

Yes No No

F-D 58
M-S 82
M-D 133

Smile B-B 28
S-S 52
B-S 66

KFVW 418

F-S 107

No Partially No
F-D 101
M-S 100
M-D 110
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116 M-S, and 127 M-D pairs of kinship images. For the KinFaceW-II dataset,

each relation contains 250 pairs of kinship images.

• UB KinFace [41] 2: comprises 600 images of 400 people which can be separated

into 200 groups. Each group is composed of child, young parent and old parent

images. Most of images in the database are real-world collections of public

figures (celebrities and politicians) from Internet. The face images were collected

without restriction in terms of pose, expression, illumination, background, age,

ethnicity, and occlusion.

• Cornell Kin Face [20] 3: contains 143 of parents-children pairs. The database

is collected through a controlled on-line search for images of public figures and

celebrities and their parents or children. The database includes faces with vari-

ations in age, gender, race, career, etc.

• TSKinFace (Tri-Subject Kinship Face) [43] 4: The ”TSKinFace” dataset is the

first large-scale dataset of families for one-versus-two kin relation. It contains

1015 different family with distinct family names, including 2,589 individuals,

with 787 images. All images in the dataset are harvested from the internet

based on knowledge of public figures family and photo-sharing social network

such as flickr.com. Each family contains one child and two parents. The final

dataset includes 274, 285 and 228 family photos for Father-Mother-Daughter

(FM-D), Father-Mother-Son (FM-S) and Father-Mother-Son- Daughter (FM-

SD), respectively. Two kinds of family-based kinship relations are constructed

in the TSKinFace database: Father-Mother-Son (FM-S) and Father-Mother-

Daughter (FM-D). The FM-S and the FM-D contain 513 and 502 groups of tri-

subject kinship relations, respectively. Hence we have 1015 tri-subject groups in

our database totally. The families included in our database are diverse in terms

of races as well. For FM-S relation, there are 343 and 170 groups of tri-subject

kinship relations for Asian and non-Asian, respectively. And for FM-D relation,

the numbers for Asian and non-Asian groups are respectively 331 and 171. For

pair-wise relationships, there are 513 father-son relations, 502 father-daughter

relations, 513 mother-son relations, and 502 mother-daughter relations.

2http://www.ece.neu.edu/ yunfu/research/Kinface/Kinface.htm
3http://chenlab.ece.cornell.edu/projects/KinshipVerification
4http://parnec.nuaa.edu.cn/xtan/data/TSKinFace.html
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• The ”Family101” dataset [40] 5: it is a large-scale dataset of families across sev-

eral generations and race. The ”Family101” includes around 72% Caucasians,

23% Asians, and 5% African Americans. For relationships, there are 213 father-

son relations, 147 father-daughter relations, 184 mother-son relations, and 148

mother-daughter relations.

• IIITD Kinship [44]: includes celebrities face images collected from the Inter-

net. Therefore, the downloaded face images are classified into four ethnicities:

Asian, Afro-American, Indian and American. The kinship relation has been

categorized into the following seven relations: Brother-Brother, Brother-Sister,

Father-Daughter, Father-Son, Mother-Daughter, Mother-Son, and Sister-Sister.

• UvA-NEMO Smile Database [45] 6: is a large-scale smile database which has

1240 smile videos (597 spontaneous and 643 posed) from 400 subjects. Ages

of subjects vary from 8 to 76 years. Videos are in RGB color and recorded

with a resolution of 19201080 pixels at a rate of 50 frames per second under

controlled illumination conditions. For further illumination and color normal-

ization, a color chart is present on the background of the videos. Many families

participated in the database collection, allowing its use for evaluation of auto-

matic kinship from videos. A total of 95 kin relations were identified between

152 subjects in the database. There are seven different kin relations between

pairs of videos: Sister-Sister (S-S), Brother-Brother (B-B), Sister-Brother (S-

B), Mother-Daughter (M-D), Mother-Son (M-S), Father-Daughter (F-D), and

Father-Son (F-S). The association of the videos of persons having kinship rela-

tions gives 228 pairs of spontaneous and 287 pairs of posed smile videos.

• Kinship Face Videos in the Wild (KFVW) [46]: the KFVW dataset included

418 pairs of face videos was collected from TV shows on the Web under un-

controlled condition such as lighting, pose, occlusion, age, expression, makeup,

background, etc. Each video contains about 100 500 frames The average size

of a video frame is about 900 500 pixels. There are four kinship relation types

in the KFVW dataset: Father-Son (F- S), Father-Daughter (F-D), Mother-Son

(M-S), and Mother-Daughter (M-D), and there are 107, 101, 100, and 110 pairs

of kinship face videos for kin relationships F-S, F-D, M-S, and M-D respectively.

5http://chenlab.ece.cornell.edu/projects/KinshipClassificatio
6https://www.uva-nemo.org/
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Figure 2.5: Examples of collected data base (parent-child) pairs from the work of
Fang et al.[20].

2.9 State of the art in Kinship verification

Face recognition is defined as the automated identification or verification of indi-

viduals based on facial physiological characteristics. Face recognition has become a

popular topic of research in image processing, computer vision and biometrics over

the last years and one of the most successful applications of image analysis. The

realm of face recognition systems growing both in the business and security screening

sectors, thereby making them a prevalent solution for old techniques. Face recognition

tools were developed to verify the relationship between two family members. This

technology is called family (kinship) verification. This concept based on analyzing

family relationships.

Automatic kinship verification aims to recognize the degree of kinship of two

individuals (e.g. parents and children) from their facial images.

A remarkable interest has been given to the problem of kinship verification by

researchers these last years. This interest is motivated by the potential applications

of the topic, especially in social data mining.

Fang et al. [20] were among the first researchers who tackled the kinship veri-

fication. Database used containing 150 pairs image, collected from the Internet, as

illustrated in Figure 2.5. They used the Pictorial Structures Model to locate facial

parts (eyes, nose, mouth, etc.) by representing an object by a collection of parts

arranged in a deformable configuration. Then, they extracted a set of 22 low-level

features from these parts including:
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• Parts color: the central position of the facial part is found, and the color at this

point is used such as eye color and hair color. For skin color, the center of the

nose was used. For hair color, a sub-window of the top of the image was taken,

and a mode filter is applied to this sub-window to obtain the most commonly

occurring color in this region.

• Facial parts (geometry): they detected the central position and the boundaries

of each part. With these image coordinates, they extracted the sub-window for

each face.

• Facial Distances: distances between parts are calculated using the Euclidean

distance.

• Histogram of Gradients feature (HoG).

The K-Nearest-Neighbor (KNN) and Support Vector Machine (SVM) are used to

classify the pairs of images as having kin relation or not. They performed the K-

Nearest-Neighbors with K = 11 and Euclidean distance, and Support Vector Ma-

chine with a radial basis function (RBF) kernel and the LibSVM package [47]. The

best classification achieved 70.69%, outperforming the 67.19% obtained by a panel of

human raters on the same data.

Motivated by the first results, several scientists have investigated the kinship ver-

ification via facial images, different approaches have been proposed. These methods

can be roughly divided into two approaches. The first one based on Hand- Crafted

Feature-based methods. The second one based on the Deep Learning Feature-based

methods.

On the other hand, various metric learning methods have been investigated for

tackling the facial kinship verification problem. Furthermore, different protocols are

proposed. Table 2.3 and Table 2.4 collects some of the main features used in facial

automatic kinship verification.

2.9.1 Approaches based on hand-crafted features

The most proposed to tackle the facial kinship verification used traditional hand-

crafted features (shallow structure). Typical the hand-crafted features descriptor

include Histogram of Oriented Gradients (HOG) [67], Scale-Invariant Feature Trans-

form (SIFT) [68], Gabor Filter [69], Local Binary Pattern (LBP) [70], Local Phase

Quantization (LPQ) [71] etc. However, these features are based on the learning of the
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Table 2.3: Summary of the Hand-Crafted features.

Paper Year Database Features

[20] 2010 CornellKinFace Face appearance & geometry

[21] 2011 UBKin Face Gabor

[41] 2012 UBKin Face Gabor
[44] 2012 IITD Kin DoG salient points
[48] 2012 UBKin Face Binary, Relative attributes

[40] 2013 Family 101 SIFT
[13] 2013 UvA-NEMO Smile Dynamic features, CLBP-TOP, CLBP
[49] 2013 CornellKinFace Geometric, WLD

[42] 2014 KinFaceW-I & II LBP, LE, SIFT, TPLBP
[50] 2014 KinFaceW-I & II LBP, SIFT, SPLE

CornellKinFace
UBKin Face

[51] 2014 KinFaceW-I & II LE, LBP, TPLBP, SIFT
[52] 2014 Family101 LBP, Grassman Manifold

[53] 2015 KinFaceW-I & II LBP, SIFT, SPLE
[54] 2015 KinFaceW-I & II LPQ, TPLBP, FPLBP, WLD
[43] 2015 TSKinFace SIFT
[55] 2015 KinFaceW-I & II LBP, SIFT

CornellKinFace
UBKin Face

[56] 2016 KinFaceW-I & II LBP, HOG
[57] 2016 KinFaceW-I & II LBP, HOG
[58] 2016 KinFaceW-I & II HOG, SIFT
[59] 2016 KinFaceW-I & II SIFT

[60] 2017 KinFaceW-I & II LBP, DSIFT, HOG, LPQ
[61] 2017 UvA-NEMO BSIFTOP, LBPTOP, LPQTOP
[62] 2017 KinFaceW-I & II LE
[63] 2017 KinFaceW-I & II LTP

[46] 2018 KFVW LBP, HOG
[64] 2018 KinFaceW-I & II BSIF, LPQ, CoALBP

CornellKinFace
TSKinFace

[65] 2018 KinFaceW-I & II LBP, HOG
[66] 2018 KinFaceW-I & II LBP, HOG, SIFT, LPQ, WLD
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surface properties and appearance of an object given by the shape, size, arrangement,

density, a proportion of its elementary parts.

For instance, two papers on kinship verification [41] and [72] are proposed by Xia

et al. The first paper [41] involved three different types of data sets, old parents,

young parents and children set. The first two are images of the same persons at

different ages (i.e. young and old). The authors employed transfer subspace learning

(TSL) to find the similarity between children-young and children-old parents pairs.

The Gabor wavelets are used for feature extraction.

In the second paper [72], their basic idea is to partition the face into five layers

and use Gabor filters as face descriptor. The contextual feature used to determination

the relationships with Transfer Subspace Learning.

Kohl et al. [44] tackled this new technology by proposing a new algorithm works

according following steps: first, they normalize the face detected using the weber

normalization. Next, The key points are extracted by taking the local extrema of the

above difference of Gaussian (DOG) named (self-similarity descriptors). Finally, they

show the result of classification accuracy of SVM.

Fang et al. [8] proposed a method to address the kinship challenge as reconstruct-

ing the query face from a mixture of parts from a set of families. They reconstructed

the query face from a sparse set of samples among the candidate families. The family

classification is determined based on the reconstruction error for each family. Twelve

facial parts are selected to build the part-based dictionaries for sparse representation

based classification (SRC).

Lu et al. [42] proposed a new largest kinship data sets called KinFace in the Wild

I (KinFaceW-I) and KinFace in the Wild II (KinFaceW-II). There are four different

relationships in both the KinFaceW-I and KinFaceW-II data sets: Father-Daughter

(F-D), Father-Son (F-S), Mother-Daughter (M-D) and Mother-Son (M-S).

They addressed the facial kinship verification problem with a new neighborhood

repulsed metric learning (NRML) method. They used a metric learning to seek an

effective distance between pairs images. They aim to seek an effective distance be-

tween pairs images. They projected the distance as close as possible for facial images

with kinship relations and those without kinship relations in the neighborhoods are

pushed away as far as possible. They experimented with four features descriptors

(LBP, HOG, LE and SIFT).

Kou et al. proposed method in [53] for explicitly learning a genetic similarity

measure. The method is based on quadruple input, using LBP, SIFT, LE features,

and issues a similarity matrix as output.
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Qin et al. [43] exploiting the informations from both parents (Father-Mother) to

detect the kinship relationship. Novel Relative Symmetric Bilinear Model (RSBM)

was introduced to estimate the similarity between the parents and the child. They

use the LBP, LE, SIFT and TPLBP for face representation.

Recently, many researchers have been using a combined of facial descriptors to

verifying the kinship relation. For example, in the last kinship competition [73], all

the proposed methods used three or more descriptors. The best performing method

in this competition employed different local features (LBP, HOG, and OCLBP).

Xiaoting Wu et al. [71] investigated the usefulness of color information in the

kinship verification from facial images. To encode both the chrominance and the

luminance information in the color images, they extracted joint color-texture features.

The performance of kinship verification using joint color-texture (LPQ, BSIF, and

NRML) in the three color spaces (RGB, HSV, and YCbCr) is then compared against

approaches using only Grey-scale information.

On the other hand, statistical techniques are applied to classify the kinship rela-

tionships. They are usually used to learn an effective classifier such as metric learning

[42], transfer learning [41], and subspace learning [41].

Lu et al. [42] learned that the distances between pair image in same classes are

as small as possible, while the distances are as large as possible between pair image

different class based on textural features.

Yuan et al. [74] learned similarity matrix for kinship verification, by proposing

a Sparse Similarity Metric Learning (SSML) method which enforces both the PSD

constraints and the group sparsity.

Hu et al. [75] learned multiple global and local distance metrics, by maximising

the correlations of features and the distance between each positive pair is less than a

low threshold, and that for each negative pair is greater than a high threshold.

P. Ajit et al [59] presented a novel SIFT flow based genetic Fisher vector feature

(SF-GFVF) which enhances the facial genetic features for kinship verification. The

proposed SF-GFVF feature is derived by applying a novel similarity enhancement

method based on SIFT flow and learning an inheritable transformation on the Fisher

vector feature so as to enhance and encode the genetic features of parent and child

image in kinship relations.

B. Patel et al.[63] explored the effectiveness of periocular region in verifying facial

kinship captured in the wild. They proposed a block-based Neighborhood Repulsed

Metric Learning (BNRML) to learns multiple local distance metrics from different
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blocks of the images represented by local ternary patterns. Moreover, to contem-

plate diversity in discrimination power of different blocks, weighted score-level fusion

scheme is used to obtain a similarity score of image pair. Extensive experiments

on KinFaceW-I and KinFaceW-II datasets demonstrated the potential of periocular

features for kinship verification.

To evaluate the performance of different kinship verification algorithms three set-

ting has been proposed in the FG kinship competition (the 2015 IEEE International

Conference on Automatic Face and Gesture Recognition, Ljubljana, Slovenia.) [73].

The unsupervised setting, image-restricted setting and image-unrestricted setting.

For each face image, they extracted two different feature descriptors: the LBP and

HOG.

• Unsupervised setting: No labeled kin relation information is used. Given a face

pair, the cosine similarity of their features is used to compute their similarity

directly.

• Image-restricted setting: Only the given kin relation information is used in the

training splits. For each face image, we first apply PCA to project feature into a

low-dimensional feature vector and then Side-Information based Linear Discrim-

inant analysis (SILD) [76] is employed to learn a distance metric. Specifically,

the positive pairs and negative pairs in the training set were used to estimate the

within-class and between-class variations of LDA. Finally, the cosine similarity

of each test pair in the learned LDA space is computed.

• Image-unrestricted setting: The identity information of the person is available

to potentially form additional negative pairs in the training splits. For each face

image, PCA is first used to project feature into a low dimensional feature vector

and then neighborhood repulsed metric learning (NRML) is employed to learn

a discriminative distance metric. Specifically, the label of training sample is

used to seek the most similar intra-class neighbors to learn the distance metric.

Finally, the cosine similarity of each test pair in the learned NRML space is

computed.

In this evaluation, the Image-restricted setting shows better kinship verification per-

formance than the baseline methods. The most challenging Protocol is the unsuper-

vised setting and the image-unrestricted setting is the easiest one.

Haibin.Y et al. [46] investigated the problem of video-based kinship verifica-

tion. They present a new video face dataset called Kinship Face Videos in the Wild
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(KFVW) which were captured in wild conditions for the video-based kinship verifica-

tion. On the other hand, they compared the performance of several state-of-the-art

metric learning based kinship verification methods.

Zhao, Yan-Guo, et al. [66] investigate the facial kinship verification based on

the similarity computation witch is essentially an implicit nonlinear feature transfor-

mation. They proposed a novel Multiple Kernel Similarity Metric (MKSM) which

cover a flexible family of linear and nonlinear metrics. The proposed MKSM method

provides a simple framework for metric learning and feature fusion/selection in the

Kinship Verification task.

In general, local descriptor constitutes power visual cues for feature representa-

tion. They provide discriminative information about small appearance details in local

neighborhoods. So, they are robust to local changes databases such as illumination,

identity, and expression.

However, these features are not learned, can be lost, difficult to design, and the per-

formance using these features degrades dramatically in variations and unconstrained

environments [39], therefore, it is required to use the deep learning technique for

solving this problem.

2.9.2 Approaches based on deep learning features

Deep learning approaches are proposed to automatically learn and understand fea-

tures from a huge amount of data like images, rather than designing features manually.

Accordingly, we can gain useful features to perform tasks without much effort and

request expertise. The deep features can provide highly informative representations

for a classification task and thus lead to improved accuracy. In kinship verification,

a few work has been proposed using deep learning.

In 2014, Dehghan, Afshin, et al. [77] introduced a new method for learning dis-

criminative, genetic features for describing the parent-offspring relationship. They

uncover three key insights that bridge the gap between anthropological studies and

computer vision. They proposed an algorithm that fuses the features and metrics

discovered via gated auto-encoders with a discriminative neural network layer that

learns the genetic features to delineate parent-offspring relationships. Further, they

analyzed the correlation between features detected and those found in anthropological

studies.

Recent research [78] pointed out the misleading of kinship problem by automati-

cally learning and extracting important descriptors using manually designed features.

It used Similarity Metric based Convolutional Neural Network (SMCNN). The general
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Table 2.4: Summary of the proposed deep learning methods.

Paper Year Database Approach

[77] 2014 KinFaceW-I & II Discriminative neural network layer
[79] 2015 KinFaceW-I & II Deep Convolutional Neural Networks (CNN)
[78] 2016 KinFaceW-I & II Similarity Metric Based Convolutional Neural

Network (CNN)
[61] 2017 UvA-NEMO Smile Deep Convolutional Neural (CNN)
[80] 2018 KinFaceW-I & IIe Deep Convolutional Neural (CNN)

CornellKinFace
TSKinFace

[81] 2019 KinFaceW-I & II Deep Neural Network (DNN)
CornellKinFace
UBKin Face

idea is to extract highly discriminative multi-scale features by using two convolution

layers for eliminating the redundant information generated by the symmetrical struc-

ture in SMCNN. A cost function of the Siamese architecture is used to calculate the

distance between the image pair.

Zhang et al. [79] proposed deep Convolutional Neural Networks (CNN) to extract

the high-level features where produced from the neuron activations of the last hidden

layer, and then fed the extracted feature into soft-max classifier to verify the kinship

relationships. They also extracted the key-points-based features.

E. Boutellaa et al. [61] proposed a method to address the kinship verifica-

tion challenge from spatio-temporal descriptors and explore the use of texture fea-

tures (BSIFTOP, LPQTOP, and LBPTOP) and deep Convolutional Neural Networks

(CNN) for characterizing faces, his experimental based on videos over still images.

They have performed various experiments on UvA-NEMO Smile database. Support

Vector Machine (SVM) was used to classify a pair of facial features as a positive or

negative sample.

M. Dawson et al. [80] investigated the problem of facial kinship verification by

training the deep Convolutional Neural Networks (CNN) classifier to determine if two

faces are from the same photograph or not. Since faces from the same photograph

are more likely to be from the same family.

Newly, Zhou, X et al. [81] proposed a method to address the facial kinship ver-

ification from kinship metric learning (KML) with a coupled Deep Neural Network

(DNN) model. The proposed method aimed to learn a deep compact cross-generation

similarity metric. Moreover, the proposed KML implicitly learns to fuse a pair of deep
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embeddings for robust similarity measure of the parent-child pairs.

Figure 2.6: An overview of some issues related to facial kinship verification.
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Figure 2.6 provide an overview of some issues related to facial kinship verification.

2.10 Conclusion

In this chapter, we gave an overview of automatic kinship verification from faces. We

presented some notions and several definitions. The system design of facial kinship

verification is described.

We discussed some exciting applications for the continuous research in this topic.

We have also enumerated a number of practical challenges that restrain the facial

kinship verification problems and we summarized the existing databases. Also, we

have presented the main state of the art and an overview of automatic kinship verifi-

cation approaches. We discussed some used methods that divided into Hand-Crafted

Feature-based methods and Deep Learning Feature-based method. Several metric

learning are proposed to describe the basic kinship verification like SSRW, NRML,

SRC and transfer subspace learning.

In kinship verification problem, deep learning approaches are proposed were nu-

merous layers of information processing stages are exploited, and deep learning was

implemented by convolutional neural network (CNN) to feature extraction based and

classification based.

Also, different kinship verification setting has been proposed to evaluate the per-

formance of the system. In the next chapters of the thesis, we will be presented with

the technical details of features extraction methods, protocols, classifiers used in this

work.

28



Chapter 3
Kinship verification Methods

This Chapter contains:

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Features extractions based on Hand-Crafted features . . . . . . . . . 30

3.2.1 Global Appearance-based . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Local Texture-based: . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Face Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Features extractions based on learned (No Hand-Crafted) features . . 39

3.4.1 Context-Aware Local Binary Feature Learning . . . . . . . . 39

3.4.2 Discrete Cosine Transform Network (DCTNet) . . . . . . . . . 43

3.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Support vector machines . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Fusion Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.1 Score Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8.2 Feature Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Introduction

In this chapter, features extraction and classification methods are discussed. A fa-

cial image is a crucial clue that contains many useful human characteristics, such
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as identity, race, gender, age, expression, ethnicity, etc. What type of features help

to identify the relationships and how the features are represented to determine the

relationship, therefore, it becomes a major problem and an important challenge in

estimating kinship. It is necessary to focus on the features extraction stage as it

has a noticeable impact on the performance of the recognition system. This chap-

ter begins by introducing the features extractions based on Hand-Crafted features.

some important cues are proposed such as PCA, LDA, LBP, LPQ ...etc. Next, two

approaches based on learned (No Hand-Crafted) features are proposed. Secondly, we

focus the research on kinship classification and techniques used to improve the accu-

racy of system performance. Kinship Verification is bi-classification problem where

the pair of input faces are classified as positive (the true pairs of parents and children)

or negative (the false pairs of parents and children). Two different classifiers are used

the support vector machine (SVM) and several metric learning (distances) such as L1

and L2.

Next, an optional phase called feature selection is conducted. The aim of the

feature selection algorithm is to select the best subset of extracted features that gives

the smallest classification error. The rest of this chapter presented the details of

performance evaluation and fusion process.

3.2 Features extractions based on Hand-Crafted

features

3.2.1 Global Appearance-based

Global appearance-based methods try to find a suitable representation of the whole

image, all pixels are regarded, by approximating (reduce the dimension) the original

data and keeping as much information as possible. Therefore, represented by the

vector containing the weights of a linear combination of the basis vectors.

The holistic (global) approach takes the input face images globally and extracts

important facial features based on the high-dimensional intensity values of face images

automatically. The main feature of the global appearance-based is that they capture

both facial texture and geometry information.

In this work, we extract three global descriptors: Principal Component Analysis

(PCA)[82], [83], Linear Discriminant Analysis (LDA)[84], [83] and Locality Preserving

Projections (LPP)[85], [83].
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• The Principal Component Analysis (PCA), first introduced by Sirovic and Kirby

[82], have been lately used for face analysis. PCA is one of the most successful

techniques that have been used in face recognition. PCA is a mathematical

method which transforms a set of correlated variables into uncorrelated variables

by using an orthogonal components known as eigenvectors and eigenvalues.

In mathematical terms, we wish to capture the variation in a set of face images

and utilize this information to encode and compare images of individual faces in

a holistic way. Specifically, a set of eigenfaces can be created by implementing

a mathematical process named principal component analysis (PCA) on a large

set of human faces images, or equivalently, the eigenvectors of the covariance

matrix of the set of face images.

The PCA was implemented for kinship verification on each set of images, to ob-

tain the eigenvectors (or eigenfaces) of face corresponding to the higher variance

among the images being analyzed. Aim to indicate only the most significant

facial feature.

Method:

– Define a data matrix, X = [v1, v2, ..., vN ]

Where N is the total number of learning images.

– Calculate the mean.

Ψ =
1

N

N∑
i=1

vi (3.1)

– Subtract the mean of the distribution from the data set.

φi = vi −Ψ, i = 1...N (3.2)

– Calculate the covariance matrix.

C =
N∑
i=1

φiφ
T
i = AAT , A = [φ1, φ2, ..., φN ] (3.3)

– Calculate the eigenvalues and the eigenvectors of the covariance matrix.

The weights are then obtained by the normalized components of the eigen-

vector (v1) which corresponds to the highest eigenvalue:

βi =
v1i∑N
i=1 v1i

(3.4)
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• Linear Discriminant Analysis (LDA) or Fisherfaces method is one of the most

popular supervised feature extraction techniques. LDA aims to find a linear

combination of features characterizes or separates two or more classes. LDA

seeks an optimal set of discriminant projection vectors to map the original data

space onto a lower dimensional feature space, by maximizing the Fisher crite-

rion. It takes into account the scatter between-classes and the scatter within-

classes by maximize the between-class and minimizing the within-class. It is

also adapted to distinguish the image variation due to identity from variation

due to other sources such as expression and illumination.

Method:

– Let SB be the between-class scatter and SW the within-class scatter.

SB =
c∑
i=1

Ni(mi −m)(mi −m)T (3.5)

Sw =
c∑
i=1

Ni∑
j=1

(xij −mi)(xij −mi)
T (3.6)

Where xij denotes the jth training sample of the ith class, mi is the mean

of the training sample of the ith class and m is the mean of all the training

samples.

– The objective function of LDA is defined as:

max
w

wTSBw

wTSWw
(3.7)

– Solving the generalized eigenvalues problem.

SBw = λSWw (3.8)

– Let w1, w2, ..., wk be the eigenvectors corresponding to the k largest eigen-

values λi | i = 1, 2, ..., k decreasingly ordered λ1 ≥ λ2 ≥ ... ≥ λk, then

W = [w1, w2, ..., wk] is the learned mapping of LDA. Since the rank of SB

is bounded by c− 1, k is at most equal to c− 1.

The idea behind the choice of LDA is to separate the relation into two class, first

class is with kinship relation and the second class is without kinship relation.
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• The Locality Preserving Projections (LPP) was introduced by He and Niyogi

[42], it is unsupervised technique and performs a linear transformation. There-

fore, the Laplacian notion was used by LPP to builds a graph incorporating

neighborhood information of the data set. The transformation matrix which

maps the data points to a subspace was built. This linear transformation op-

timally conserves the local neighborhood information. In kinship verification,

LPP aims to preserve the intrinsic geometry structure of the face and to main-

tain the locality relationship after projection. Before using those descriptors,

the features are extracted by converting each image into gray-scale and averag-

ing the whole image.

Method

1. Given a dataset of N samples, X = x1;x2, ..., xN ;wherexi ∈ <D

2. Find the transformation matrix W of size D × d.

3. map yi = WTxi, whereyi ∈ <d

4. Construct the adjacency graph either by

– Neighborhood.

– K-nearst neighbors.

– Find the similarity matrix S (using Heat kernel).

Sji =


exp ‖ xi − xj ‖2

t
i, jconnected

1 otherwise

5. Compute generalized eigenvalues problem

XLXTW = λXDXTW (3.9)

Where D : DiagonalmatrixDij =
∑

j SijandL = D − S

The main difference between PCA, LDA, and LPP is that PCA and LDA focus

on the global structure of the Euclidean space, while LPP focuses on the local

structure of the manifold, but they are all considered as linear subspace learning

algorithms.
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3.2.2 Local Texture-based:

Local texture descriptors represent certain region properties by multi-dimensional

histograms. Very often geometric properties (e.g., location, distance) of interest points

in the region (corners, edges) and local orientation information (gradients) are used.

• Local Binary Patterns (LBP) were first introduced by Ojala et al. [86] to

classify texture patterns. Latterly, Ahnon.t et al. [70] used the LBP for face

description. The LBP is an operator assigns a label to every pixel of an image

by thresholding its value with neighborhood pixels with the center pixel value

and considering the result as a binary number. The basic LBP operator is

illustrated in Figure 3.1. The histogram of the labels can be used as a texture

descriptor. Mathematically, the LBP operator is defined as in Equation 3.10:

LBP (N,R) =
N−1∑
n=0

s(In − Ic)2n (3.10)

Where N is the number of pixels in the neighborhood, R is the radius, and the

threshold function s(x) = 1 if x ≥ 0, otherwise s(x) = 0. The Ic and In values

are the gray levels of the center pixel and thexth surrounding pixel, respectively.

Figure 3.1: The basic LBP operator.

• Three Patch LBP (TPLBP) [87] was proposed to produce a single bit value

in the code assigned to each pixel by comparing the values of three patches.

For each pixel in the image, we consider a w × w patch centered on the pixel,

and S additional patches distributed uniformly in a ring of radius r around it

(Figure 3.2). For a parameter α, we take pairs of patches,α− patches apart

along the circle, and compare their values with those of the central patch. The

value of a single bit is set according to which of the two patches is more similar

to the central patch. The resulting code has S bits per pixel. Specifically, the

Three-Patch LBP is produced by applying the following formula to each pixel:
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Figure 3.2: (a) The Three-Patch LBP code with α = 2 and S=8. (b) The TPLBP
code computed with parameters S= 8, w= 3, and α = 2. (c) Present an example of
LBP encoding (different intensities representing different codes) [87].

TPLBPr,S,w,α(p) =
S∑
i

f(d(Ci, Cp)− d(Ci+αmodS, Cp))2
i (3.11)

• Four Patch LBP (FPLBP) [87] is an operator assigns to compare two center

symmetric patches in the inner ring with two center symmetric patches in the

outer ring positioned patches away along the circle (say, clockwise). One bit

in each pixels code is set according to which of the two pairs being compared

is more similar. Thus, for S patches along each circle we have S/2 center

symmetric pairs which is the length of the binary codes produced. The formal

definition of the FPLBP code is as follows:

FPLBPr1,r2,S,ω,α(p) =

S/2∑
i

f(d(C1i, C2, i+ αmodS)

− d(C1i+S/2, C2, i+ S/2αmodS))2i

(3.12)

For every pixel in the image, we look at two rings of radii r1 and r2 centered on

the pixel, and S patches of size ω × ω spread out evenly on each ring (Figure

3.3).

• Local Phase Quantization (LPQ) [88] was proposed by Ojansivu et al. [89] as a

descriptor for texture which is robust to image blurring. The LPQ encodes the

local phase information of four frequencies of the short-term Fourier transform
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Figure 3.3: (a) The Four-Patch LBP code. Four patches involved in computing
a single α = 1 bit value with parameter are highlighted. (b) The FPLBP code
computed with parameters S= 8, w= 3, and α = 1. (c) Present an example of LBP
encoding (different intensities representing different codes) [87].

(STFT) over a local window. The corresponding LPQ function is defined as in

Equation 3.13:

F (u, x) =
∑
y

f(x− y) exp(−j2Π)uTy) =T
uWxf (3.13)

Where Wu is the basis vector of the 2-D Discrete Fourier Transforms (DFT) at

frequency u and fx is another vector containing all M2 image samples from Nx.

Figure 3.4 illustrated the basic LPQ operator.

Figure 3.4: The basic LPQ operator [88].

• Binarized Statistical Image Features (BSIF) [90] is a method based on efficient

scalar quantization scheme and independent component analysis to construct a
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local texture descriptors. Given an image patch X of size (l × l) pixels and a

linear filter Wi of the same size, the filter response si is obtained as in equation

3.14

si =
∑
u,v

Wi(u, v)X(u, v) = W T
i x (3.14)

Where vector notation is introduced in the latter stage. Given n linear filters

Wi, we stack them into a matrix W and compute all responses at once S = Wx

Next, given a random sample of natural image patches, we compute the filters

Wi so that the elements si of s are as independent as possible when considered

random variables.

• Histograms of Oriented Gradient (HOG) have been proposed for face recogni-

tion purposes [67] [92]. The essential thought behind the HOG descriptors is

that local object appearance and shape within an image can be described by

the distribution of intensity gradients or edge directions. The implementation

of these descriptors can be achieved by dividing the image into small connected

regions, called cells, and for each cell compiling a histogram of gradient direc-

tions or edge orientations for the pixels within the cell. The combination of

these histograms then represents the descriptor. The gradient magnitude, GM,

and the gradient angle, GA, are computed by

GM =
√
G2
X +G2

Y andGA = atan(GY , GX) (3.15)

Where GX is the image gradients in the horizontal directions and GY is the

image gradients in the vertical directions. The gradient orientations, or angles,

for each pixel are used to select the histogram bin. Figure 3.5 shown a simplified

procedure for HOG features.

• Gabor features [93] Gabor filter is one of the best-known tunable filters, which is

appropriate for capturing orientation information from the image. Gabor filters

(Gabor wavelets) can be used to extract components corresponding to different

scales and orientations from images. In [94], the Gabor filter-based features are

directly extracted from the gray-level images. In the spatial domain, a two-

dimensional Gabor filter is a Gaussian kernel function modulated by a complex

sinusoidal plane wave, defined as:

G(x, y) =
f 2

πγη
exp(
−(x′2 + γ2 + y′2)

2σ2
) exp(j2πfx′ + φ) (3.16)

x′ = xcosθ + ysinθ (3.17)
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Figure 3.5: A simplified procedure for HOG features [92].

y′ = −xsinθ + ycosθ (3.18)

Where f represents the frequency of the sinusoid, h is the orientation of the

normal to the parallel stripes of a Gabor function, φ is the phase offset, σ is the

standard deviation and γ is the spatial aspect ratio.

3.3 Face Representation

• Multi-Block (MB) [91] is a variant that replaces intensity values in the compu-

tation of descriptor with the mean intensity value of image blocks. The MB is

a technique that divides the face into (n× n) blocks. On each block, we apply

a texture descriptor to get more features of the face.

• Multi-Level (ML) representation is a technique that combines the features ex-

tracted from consecutive different MBs. In other terms, we extract features of

the whole image, and then we divide it into different blocks of different sizes
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and extract features of each block. The entire features are then concatenated

into one vector.

Figure 3.6 explains the Multi-Level (ML) approach.

Figure 3.6: Example of multi-level features extraction with (n = 3× 3 sub-blocks).

3.4 Features extractions based on learned (No Hand-

Crafted) features

3.4.1 Context-Aware Local Binary Feature Learning

In this thesis, we propose a new local binary feature learning method for kinship veri-

fication. Local binary descriptor constitutes power visual cues for feature description

and classification. It provides discriminating information about small appearance

details in local neighborhoods. So, it is robust to local changes databases such as il-

lumination, identity, geometric distortions and transformations, expression, age, and

occlusion. Unlike existing local descriptors are not discriminatory enough to estimate

the relationship of face images because are hand-crafted features, which previous

knowledge is required. To better utilize feature descriptors for facial kinship verifi-

cation, we proposed the Context-Aware Local Binary Feature Learning (CA-LBFL)
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[95] method to learn contextual features from raw pixels directly. It is applied to

eliminates the dependence on hand-crafted features (extract and represent features

automatically instead of selected manually).

After the success of local binary learning in face image verification, the CA-LBFL

is the new variant of a local binary learning method. Thus, the block diagram of

CA-LBFL algorithm presented in Figure 3.7 can be described as follows:

Pixel Difference Vectors (PDV): Given any pixel in the image, first, we compute

the differences between the central pixel and its (2R+1)×(2R+1) neighboring pixels,

where R is the size of neighborhood. Then, these differences are aligned as a vector

which becomes the PDV feature of the pixel. We select 8 neighboring pixels, so, The

PDV is a 8-dimensional vector.

Figure 3.7: The block diagram of CA-LBFL [95].

Projection Matrix W: We learn K hash functions to obtain context-aware binary

codes, we map and quantize each xn into a binary vector bn = [b1n, ..., bKn]T ε0, 1K×1.

Let wkεR
d be the projection vector for the kth function, and the kth binary code bkn

of xn can be computed as:

bkn = 0.5× (sgn(wTk xn) + 1) (3.19)
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where sgn(v) equals to 1 if v ≥ 0 and -1 otherwise.

To obtain the binary codes for feature representation, we formulate the following

optimization objective function:

minwkJ = J1 + λ1J2 + λ2J3 + λ3J4

=
N∑
n=1

||
K−1∑
k=1

||bkn − b(k+1)n||2 − 1||2

+ λ1

N∑
n=1

K∑
k=1

||(bkn − 0.5)− wTkXn||2

+ λ2

K∑
k=1

N∑
n=1

||(bkn − 0.5||2

− λ3
N∑
n=1

K∑
k=1

||(bkn − µk||2

(3.20)

Where N is the PDVs number which is obtained from the original images, the

mean of the kth bit of all N PDVs is µk. The three parameters λ1, λ2 and λ3 are used

to equilibrate the weight of variant terms. In equation 3.20, the physical meaning of∑K−1
k=1 ||bkn − b(k+1)n||2 is the sum of bitwise 0/1 changes in each binary vector.

The minimization of J1 executes the contextual information and makes the codes

more robust to the noises. J2 aims to minimizes the loss of energy in the process of

projection which reduce the loss of quantization between the binary codes and the

original features. J3 is to evenly distribute the feature in the binary codes. J4 project

the vector as independent as possible by maximize the variance of the binary codes.

We can mapped the projection matrix W and each sample xn into a binary vector as

follows:

0.5× (sgn(W Txn) + 1) (3.21)

Then, (2) can be re-written into the matrix form as:

minwJ = J1 + λ1J2 + λ2J3 + λ3J4

= tr(((AB)T (AB)− IN)2)

+ λ1||(B − 0.5)−W TX||2F
+ λ2||(B − 0.5)× 1N×1||2F
− λ3tr((B − U)T (B − U))

(3.22)
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Where W = [w1, w2, ....wK ] ∈ Rd×K , the matrix of all binary codes B defined as

B = 0.5(sgn(W TX + 1) ∈ {0, 1}K×N , U ∈ RK×N is the mean matrix repeating the

row vector of the mean of all binary bits, IN is the identity matrix, and they minimize

the difference between adjacent bits in binary codes using matrix Aε0, 1,−1K−1 ×K
as follows: 

1, i=j;
−1, i=j-1;
0, otherwise.

(3.23)

The element of the matrix A is aij, and the indices are i and j. The differences

between all the adjacent bits in learned binary codes are represented in matrix AB.

and the diagonal of (AB)T (AB) is the sum of bitwise changes. Thus, J1 can be

rewritten as follows:

J1(W ) = tr(((AW TX)T (AW TX)− IN)2)

= tr(XTWATAW TXXTWATAW TX)

− 2× tr(XTWATAW TX) +N

(3.24)

Similarly, we rewrite J3(W ) and J4(W ) as:

J3(W ) = ||(W TX − 0.5)× 1N×1||22
= tr(W TXN×1

1 11×NXTW )

−N × tr(11×KW TX1N×1)

+ 0.25× 11×N1N×1

(3.25)

J4(W ) = tr(W TXXTW )− 2× tr(W TXMTW )

+ tr(W TMMTW )

(3.26)

where MεRd×N is the mean matrix which are repeated row vector of the mean of

all PDVs. Therefore, they optimize W and B using the following iterative approach.

Obtaining B with a fixed W: when W is fixed, equation 3.27 can be written as follows:

minBJ(B) = ||(B − 0.5)−W TX||2F (3.27)
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As B is a binary matrix, the solution can be directly obtained as:

B = 0.5× (sng(W TX) + 1) (3.28)

Learning W with a fixed B: when B is fixed, the equation 3.29 can be written as

follows:

minWJ(W ) = tr(XTWATAW TXXTWATAW TX

− 2× (tr(XTWATAW TX) + tr(W TQW )

− 2× λ1tr((B − 0.5)×XTW )

− λ2 ×N × tr(11×KW TXN×1
1 )

(3.29)

subject toW TW = I. Where

Q = λ1XX
T + λ2X

N×1
1 11×NXT

− λ3(XXT − 2XMT +MMT )

(3.30)

Unsupervised Clustering. The conventional K-means ( unsupervised clustering)

is used to learn the codebook to represent all binary codes as a histogram features.

3.4.2 Discrete Cosine Transform Network (DCTNet)

Deep learning is proposed to eliminate the dependence on handcrafted features and

learn features from pixels directly. Deep learning has been recently outperforming

state-of-the-art in various applications in general and faces recognition in particular,

[96], [97], [98]. However, deep learning recognition methods automatically learn, un-

derstand and design features from an image manually. It requires recognizing visual

patterns from pixels directly with minimal pre-processing [98], it provides robust-

ness to geometric distortions and transformations, and other 2-D shape variations,

such as illumination, pose, and scale. Our proposed approach using Discrete Cosine

Transform Network (DCTNet) [99] works according to the following steps:

1. Filter Banks: Discrete Cosine Transform (DCT) adopting 2D-DCT basis as

filter banks. This is motivated by the fact that 2D DCT basis is indeed a good
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approximation for high ranked eigenvectors. The transformation of 2D-DCT

can be extended from 1D-DCT as following:

f(x, y, u, v) = C(u)C(v)cos(
(2x+ 1)uπ

2N
)cos(

(2y + 1)vπ

2N
) (3.31)

Where

C(u) =


√

1
N
, for u=0;√

2
N
, for u=1,2,....N-1.

(3.32)

Note that C(v) is defined the same way as in Equation 3.32.

2. Convolution layers: The network is composed of 2 convolution layers. Since

DCT basis of each layer can be combined to form a flat single layer network. The

last convolution layer of DCTNet forms the real-valued outputs. The output of

input image Id of size nm with D channels given by:

Op
d = {Id ∗W l

p}
pl
p=1 (3.33)

where ∗ denotes the discrete convolution and the size of output Op
d is same as

Id and W l
p ∈ Rk×k, p = 1, 2, ..., Pl is 2D-DCT bases from Pl filters at layer l.

Of each layer, we have d outputs.

3. Binarization and Block-wise Histogramming: Binarization is performed on each

set separately by first binarising the responses with a threshold at zero [99]. In

this stage, the real value of the last convolution layer is turned into a binary

format by thresholding to zero (value 1 for a positive response, zero otherwise)

denoted by BIN :

BIN(Op
d) =

{
1 if Op

d ≥ 0
0 otherwise

(3.34)

Where BIN(Op
d) is a binary image. Then, each of these binarized images is

partitioned into non-overlapping blocks. The characteristics of these images are

obtained by concatenating all the histograms of each block B such as:

H = {Hd
b }

B,D
b=1,d=1 (3.35)

Where b = 1, 2, ..., B; d = 1, 2, ..., D

The combination of binarization and block-wise histogramming is expected to

be able to extract discriminative features.
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4. Histogram Tied Rank Normalization (TR normalization): is applied to elimi-

nate the disparity of histogram vector. Based on the tied rank principle used

by robust statistic and intra-normalization. The input of TR normalization is

H the extracted block-wise histogram of an image and the output is v TR nor-

malized histogram feature vector. Given H as the extracted histogram where

H = HB,D
b=1,d=1.

The histogram TR normalization is presented in Algorithm 1.

Data: Extracted block-wise histogram of an image: H
Result: TR normalized histogram feature vector: v

1 Compute Hd
b .;

2 Calculate vdb .;
3 Normalize vdb .;

4 Concatenated all vdb . v = [v̂11, v̂
1
2, ..., v̂

1
B, v̂

2
1, ..., v̂

D
B ]εR(2PL)BD.;

Algorithm 1: Histogram TR Normalization

In order to give a complete description of the histogram TR normalization

methodology, we detail each step of the previous algorithm:

(a) For each Hd
b we compute tied rank without bin with zero occurrence yields

Hd
b . This is because bin with zero occurrences is not a sample in histogram.

It should be ignored in the ranking process.

(b) Calculate vdb where vdb =

√
Hd
b .

(c) Normalize vdb with L2 norm to obtain v̂db .

(d) The final TR normalized histogram feature vector is obtained by Concate-

nate all v̂db . Where v = [v̂11, v̂
1
2, ..., v̂

1
B, v̂

2
1, ..., v̂

D
B ]εR(2PL)BD.

The block diagram of DCTNet algorithm presented in Figure 3.8.
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Figure 3.8: The block diagram of DCTNet [99].

3.5 Classification

After the feature representations are adopted, the next step is image classification.

The choice of the classifier has a great impact on the performance or recognition

accuracy of the kinship verification task.

In terms of biometrics, classification means finding a proper identity for the query

[72]. Generally, image classification is performed by calculating the similarity between

a target discriminating vector of feature and a query discriminating vector of feature

[100]. In kinship verification, the facial images are classified into two classes. The

first class is the true pairs of parents and children and the second one is the false

pairs of parents and children.

In this work, two classifiers are used, the Support vector machines (SVM ) and

metric learning.

3.5.1 Support vector machines

In machine learning, Support vector machines (SVM ) is a supervised classification,

regression and outliers detection algorithm. They were originally proposed by Vapnik

[101] and improved by Vapnik and Corinna Cortes [102].

SVM performs classification by finding the optimal separating hyperplane which
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maximizes the margin (the distance of closest data, regardless its class, to the hyper-

plane) of the high dimensional training data. The training feature vectors along with

their labels are input to SVM, which outputs a model able to predict the labels of

new unseen data.

In other words, the operation of the SVM algorithm is based on finding the hy-

perplane that gives the largest minimum distance to the training examples. Twice,

this distance receives the important name of margin within SVMs theory. Therefore,

the optimal separating hyperplane maximizes the margin of the training data. Figure

3.9 illustrate the SVM idea.

Figure 3.9: SVM example.

In this work, a Library for Large Linear Classification (LIBLINEAR) [103] is used

where the pair of input faces is classified as positive (the true pairs of parents and

children) or negative (the false pairs of parents and children). LIBLINEAR is an open

source library for large-scale linear classification. It supports linear support vector

machines and implements the one-against-one approach.

In our experiments, a linear support vector machine with 0/1 labels based on the

kinship relationship is used for bi-classification. The five fold cross-validation strategy

is applied to the training set to evaluate the performance of the system. However,

difference SVMs method is very sensitive to chosen parameters. The C parameter of

the SVM are set by sampling on a grid.

In SVM, we look for two things i) setting a larger margin, ii) lowering misclassifi-

cation rate. For large value of parameter C will cause a small margin hyperplane and

small values of C will cause a large margin hyperplane.
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Before training the SVM machine, we convert a pair of features into a single feature

vector as required by the classifier. We have tried different techniques of combining

a pair of features, such as concatenation and vector distances. We have empirically

found that utilizing the normalized absolute difference shows the best performance.

The corresponding normalized absolute difference function is defined as in Equation

3.36

fi =
∑
i

| xi − yi |∑
i(xi + yi)

(3.36)

Where X = x1, ..., xn and Y = y1, ..., yn are pair of feature vectors and represented

by the vector F = f1, ...fd. Figure 3.10 depicts the basic schema for facial kinship

verification based on SVM classifier.

Figure 3.10: Kinship verification flowchart based on SVM classifier.

3.5.2 Metric Learning

In computer vision and machine learning, metric learning has received a lot of atten-

tion in last years. Number of metric learning algorithms has been proposed in the

literature, they concerned to learn a distance function. The metric learning methods

aim to seek an appropriate distance metric for classification tasks and have achieved

a good performance in many facial image analysis applications.

In this work, we present a simple method that requires no training data, we

compute the distance between the pairs of features with different functions and use

the result as a score for deciding whether the pair is a kin or not. Several following

distances are used in our case :

City block distance (L1) [104]: City-Block distance or Manhattan distance, also

called, L1 distance and L1 norm. It represents the distance between points in a

city road grid. It examines the absolute differences between the coordinates of

a pair of objects as follows:

dL1 =
∑
i

|xi − yi| (3.37)
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Euclidean distance (L2) [105]: The Euclidean distance is the most used distance

in literature. It based on calculating the distance between two points in Eu-

clidean space by examining the root of squares difference between a coordinate

of a pair of the image.

dL2 =

√∑
i

(xi − yi)2 (3.38)

Chi-Square distance (χ2) [106]: The chi-squared distance is a nonlinear metric

and is widely used to compare histograms. Chi-Square distance can be defined

as the distance between two histograms.

dχ2 =
∑
i

(xi − yi)2

xi + yi
(3.39)

Cosine distance (cos) [107]: Cosine similarity is a measure of similarity between

two vectors and can be computed as:

dcos =
∑
i

xiyi√∑
i x

2
i

√∑
i y

2
i

(3.40)

Where x and y are the two feature vectors of the pair of images being compared.

Figure 3.11 depicts the basic schema for facial kinship verification based on Metric

Learning classifier.

Figure 3.11: Kinship verification flowchart based on Metric classifier.

3.6 Feature selection

In machine learning, Feature Selection (FS) is a data preprocessing step that is ap-

plied after feature extraction step. Feature selection method aims to select the most

relevant subset of extracted features to provide a useful classification with the smallest
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error and to discard non-relevant features. In this thesis, we used Fisher/Correlation

feature selection using Wrapper for Spider toolbox [108], [109] and [110].

Spider Wrapper is a library of objects in Matlab. It is meant to handle large

unsupervised, supervised or semi-supervised machine learning problems.

The fundamental idea of choosing Fisher/Correlation (F/C) [111] score for kinship

verification is to find a subset of characteristics, the distances between data points in

same classes (positive pairs) are as small as possible, while the distances are as large

as possible between data points in different classes (negative pairs).

Let I = (xi, yi)|i = 1...N be the training data of pairs of parent and child images,

where xi is the vector of the ith parent and yi of the ith child, and L the class of this

data. Each xi and yi are ranked with Fisher/Correlation algorithm, next the size of

the optimal (F/C) set is heuristically found.

The proposed feature selection method is presented in Algorithm 2.

Data: Input images, labels and the number of features to be selected.
Result: The selected features.

1 Trasformation the pair features into a single feature vector using U .;
2 Calculate S.;
3 Output the features selected.;

Algorithm 2: Feature Selection Algorithm.

In order to give a complete description of Feature Selection methodology, we

detail each step of the previous algorithm: The input of the algorithm are: data I =

(xi, yi)|i = 1...N , labels of data and the number of features to be selected.

First step. It based on normalized absolute difference U to transform the pair

features into a single feature vector.

U =
∑
i

|xi − yi|∑
i(xi + yi)

.

Where x are the parents images and y are the children images.

Second step. Select the most relevant descriptors of the input features based on

Fisher score S.

Si =

∑K
k=1 nj(µij − µ2

i )∑K
k=1 njηjρ

2
ij

.

Where µj is the mean, σj denote the standard deviation of the whole data set

and K= number of selected features.
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Fisher score is one of the most widely used supervised feature selection methods.

However, it selects each feature independently according to their scores under

the Fisher criterion, which leads to a suboptimal subset of features.

We calculates the Fisher score for each feature by returning the fisher object

initialized with parameter (K: numSelect; the number of descriptors that are

selected for each feature). In our experiments we change the K in order to

identify the best performance for the algorithm.

Result. The output of the algorithm is features selected.

3.7 Performance evaluation

In machine learning research, Receiver Operating Characteristic (ROC) [112] is an

accepted method and widely used to show the effectiveness of a recognition system.

ROC curve, can defined as a function of the decision threshold, it created by plotting

the rate of true positive (ie. image classified correctly as positive pairs or negative

pairs), against the rate of false positive (ie. image classified incorrectly) at various

threshold settings. An illustration of a ROC curve is presented in Figure 3.12. Each

point on the ROC curve represents a positive/ negative pair corresponding to a par-

ticular decision threshold. therefore, our evaluation performance is based on ROC

curve and accuracy. More specifically:

Accuracy =
TP + TN

P +N
(3.41)

Where TP is the number of image that classified correctly as positive pairs, TN is

the number of image that correctly classified as negative pairs, P is the number of all

positive pairs, and N is the number of all negative pairs.

3.8 Fusion Process

Multimodal systems overcome many practical problems that occur in single modal-

ity biometric systems, such as noisy sensor data, non-universality and/or lack of

distinctiveness of a biometric trait, unacceptable error rates, and spoof attacks, by

consolidating multiple biometric information pertain to the same identity [113]. Bio-

metric fusion can be implemented at various levels, such as raw data level, image

level, feature level, rank level, score level, decision level and color may be seen as a

fusion process too.
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Figure 3.12: Example of ROC curve: true positive rate against false positive rate.

In this work, we proposed two types of fusion strategies, namely, score fusion [114]

and color fusion [71].

3.8.1 Score Fusion

The fusion score level is to combine scores obtained from different features. In our

work, we have combined two features which produce the best score, in order to com-

bine the decisions of several features into one final decision and to achieve higher

kinship verification accuracy. Therefore, a simple sum rule at the score-level is opted

to perform the fusion.

3.8.2 Feature Fusion

The color-based method is proposed to explore the role of color features and to encode

both the luminance and the chrominance. In this work, we used the psycho-visual

feature (HSV). However, The Hue-Saturation-Value (HSV) color space is motivated

by human vision system, in which the light intensity (V channel) is separated from

the color tonality (H channel) and the saturation of the color (S channel).

The following steps covers the color fusion experiments:
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1. A pair of face images is given as an input. These two images were first splitting

into different color spaces HSV.

2. Then, from each channel of the considered color space H, S and V we extracted

the features (e.g., LBP).

3. The features were then concatenated to form one enhanced feature vector.

4. Finally, we applied classifiers between the feature vectors of the pair of the two

face images.

3.9 Conclusion

In this chapter, different features extraction and matching methods are proposed to

deal with kinship verification problem. Firstly, we discussed the methods based on

Hand-Crafted features and approaches based on learned (No Hand-Crafted) features.

The main advantage of the first method is constituted of power visual cues for

feature description. They provide discriminating information about small appearance

details in local neighborhoods. So, they are robust to local changes databases such

as illumination, identity, geometric distortions and transformations, expression.

The second method introducing the CA-LBFL and the DCTNet. The CA-LBFL

is applied to learn contextual features from raw pixels directly. Furthermore, the

(DCTNet) is applied to extract and represent features automatically where numerous

layers of information are exploited.

Secondly, we discussed a supervised methods that called (SVM ). SVM performs

classification by finding the hyperplane that gives the largest minimum distance to

the training examples.

The second method present a simple approach that requires no training data by

computing the distance between pairs of features with different functions and use the

result as a score for deciding whether the pair is a kin or not. Several distances are

used (the City block distance, the Euclidean distance, the Chi-Square distance and

the Cosine distance.)

The rest of the chapter, provided a brief discussion of the tools and techniques

used. Functionality of feature selection algorithm is explained. Also, we explained

the different fusion techniques and its related strategies. We presented the details of

performance evaluation measurement throughout the thesis.
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Chapter 4
Results and Discussions
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4.1 Introduction

In this chapter, we develop different studies to employ the ideas introduced through-

out this thesis on the facial kinship verification.

We represent the experimental results obtained by the tests we have performed

of facial kinship verification. We investigate several features characteristics: texture-

based methods, the global-based methods, and learning methods. The first methods
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includes LBP, TPLBP, FPLBP, HOG, Gabor, BSIF, and LPQ. The second methods

includes PCA, LDA, and LPP. The learning methods include DCTNet and the CA-

LBFL. We conduct intensive experiments on different existing kinship databases. The

results are analyzed and compared and interesting conclusions are deduced.

4.2 Experimental 1

We will start by investigation several local feature extraction and similarity compu-

tation approaches and we will address many challenges: diverse ages, expressions,

gender, skins, lighting changes even dramatically illumination. Also, we will explore

the feature combination to perform multiple features fusion to extract complementary

information to improve the kinship verification performance.

4.2.1 Experimental Evaluation and Databases

In this experimental, we investigated various feature extraction and similarity com-

putation approaches for the problem of kinship verification from facial images. We

conduct intensive experiments on different existing kinship databases. The results

are analysed, compared and interesting conclusions are deduced.

We analysed the performance of five texture descriptors (LBP, TPLBP, FPLBP,

HOG and Gabor wavelets) on four kinship datasets that are publicly available: KinFaceW-

I, KinFaceW-II, Cornell Kin Face and UB KinFace V2.

LBP and HOG are selected for their popularity in computer vision and showed

very promising results in different problems. TPLBP and FPLBP are chosen to

change the scale of LBP and provide other categories of local information.

Gabor is one of the best known tunable filters. Moreover, we address the problem

with a simple setting: For each face image, PCA is first used to project feature and

then the cosine similarity of each test pair is computed. Finally, error normalization

is employed.

For the experiments, each face is cropped using Viola Jones detector and then

resized to 64 × 64 pixels and the gray histogram is equalized. Examples of cropped

image are shown in Figure 4.1.

Then same number of negative pairs (no kin relation) as positive pairs (with a

kin relation) is created by associating faces from persons which do not have a kinship

relation. We apply the Principal component analysis (PCA) for the dimensionality

reduction of feature vectors. For each of the four kinship subsets (i.e. F-D, F-S, M-

D and M-S), we recommend taking the feature normalization technique to improve

55



Figure 4.1: Examples of cropped face image of KinFaceW-I & II database.

recognition rate. The result of normalization is that the features will be rescaled so

that they all have properties of a standard normalization distribution.

We perform 5-fold cross validation and compute the mean accuracy of the five

folds. We report the mean verification accuracy of the four kinship subsets as the

measure of system performance.

4.2.2 Feature Extraction

LBP, TPLBP, FPLBP: The face image is divided into 4 × 4 non overlapping

blocks and the size of each block is 16×16 and we applied the LBP, TPLBP, FPLBP

for each block. The face is represented by concatenating the vectors from all the

blocks.

HOG: HOG features are quantized with 9 histogram bins and the number of HOG

windows are (3× 3).

Gabor: The parameters of Gabor filters were empirically determined for the face

images. These were set as orientation v = 8 and scales u = 5. The feature vectors

are normalized to zero mean and unit variance.

4.2.3 Results and Analysis

In this work, we compared the performance of five texture description methods on

kinship recognition, using the Support Vector Machines (SVM) and Nearest Neighbor

(NN). Our system classification based on the determination of the similarity from two

feature descriptors by measuring the score. We investigated the system in two modes:

the unimodal and the multimodal system.

a) Unimodal system

In this context, we have performed two experiments to assess the performance of

the proposed approach. In the following, we present the reported results.
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Table 4.1: Mean kinship verification accuracy in % on different database.

database Features SVM
NN

L1 L2 χ2 cos

LBP 63.20 53.65 53.25 53.35 75.85

TPLBP 61.20 54.35 54.05 53.05 70.00

KinFaceW II FPLBP 58.59 53.25 53.05 53.15 69.80

HOG 66.00 54.05 53.35 53.85 75.10

GABOR 63.85 53.35 53.75 54.35 72.95

LBP 66.97 54.68 54.65 53.09 68.92

KinFaceW I HOG 67.94 53.90 53.92 54.81 67.38

GABOR 62.65 58.36 53.49 54.95 65.04

LBP 57.80 54.77 53.83 55.09 64.70

UBKF Yong P HOG 58.00 52.88 55.14 52.26 63.25

GABOR 55.00 54.80 52.87 53.55 59.90

LBP 58.75 55.08 54.14 54.79 59.75

UBKF Old P HOG 58.25 51.94 50.97 55.79 60.00

GABOR 58.25 54.80 52.87 53.55 60.50

LBP 61.99 54.09 55.98 52.59 68.92

CornelKinFace HOG 59.19 52.96 55.23 55.23 64.90

GABOR 60.85 55.21 54.12 52.25 62.65
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Nearest Neighbor. We presented a simple method that requires no training data,

we compute the distance between (parent-children) vectors, including L1, L2, χ
2, and

cos.

Comparing distances: Table 4.1 shows the mean verification rates of different

metric learning on different kinship datasets. Our results show that the average

accuracy of human performance on the task of kinship verification is 50.97 - 75.85 %

on the four data bases. With suitable descriptors the recognition rate of the Cosine

distance exceeds the recognition rates of the other distance, while L2 shows the worst

performance.

Comparing features: The results for different features are reported in Table 4.1.

The performances of the LBP show competitive results on different kinship database.

The LBP descriptor can achieve a higher accuracy equal to 75.85 % at the KinFaceW-

II. On the other hand, Gabor descriptor report the best performance on UBkinFace

(Old Parent).

Comparing databases: the classification accuracy obtained by cosine distance

method on UB Kin Face (young parents) reaches around 62.48%, this is compa-

rable to UB Kin Face (old parents) who’s reaches 60.08%. These results are maybe

due to the different age of the pairs. The best verification accuracy is obtained on

KinFaceW-II while the lowest are on UB Kin Face (old parents). These results are

maybe due to the different Database environment.

Support vector machines To classify the parent-child pairs into two true and

false categories, we used the binary linear classifier without including kernel, we first

create training data by concatenate the (parent-child) pairs, the parameter of training

model is C = 1. From Table 4.1, the best results is the HOG feature that produce

67.94% on KinFaceW-I.

b) Multimodal system

We have fused the LBP feature and the HOG feature (two best features) to check

their complementarity. Our experiments based on score-level fusion.

From Table 4.2, the higher accuracy equal to 80.80% with NN − cosine on Kin-

FaceW II. Overall, the fusion enhanced the verification accuracy of unimodal system.

The experiment result shows that the cosine similarity is appropriate to measure

the relationships of facial image and the LBP is more informative in learning this

metric learning.
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Table 4.2: Verification accuracy (in %) for feature fusion on different databases.

KFW-I KFW-II UBK-Y UBK-O Cornell
SVM 68.01 69.00 61.96 60.75 60.71
NN-cos 70.47 80.80 67.96 65.75 68.71

From this experimental, we can see that there are several labels affecting the

accuracy of an automatic kinship.

Ethnicity : The accuracy of human performance on the task of kinship verification

on KinFaceW II (where the faces are cropped from the same images) have a high

potential for biased data sets, which includes a majority of Caucasian individuals,

the other datasets used are more balanced.

Age : The labels such as age and gender are helpful to determine the relationship.

UB kinface included, for each child, images of his/her young and old parent, which

makes it impossible to evaluate the classification rate.

Data base environment : The appearance of a face is affected by a large number

of factors including identity, face pose, illumination, facial expression and resolution.

The development of algorithms robust to these variations requires databases of suf-

ficient size that include carefully controlled variations of these factors. Furthermore,

common databases are necessary fair comparison.

Finally, we can see that: i) The pertinent features that help us to recognize

the kinship relationship are: the genetic relatedness, age variation and data base

environment; ii) The best features are obtained by the LBP algorithm which estimates

the resemblance based on local special information and those features extended to

detect the relation in different poses and orientations; iii) The best classifier is the

NN which attributes a sample to the class with the closest samples according to some

similarity measure.

4.3 Experimental 2

Because of the large variance in the facial appearance of the parent and children,

kinship verification is very challenging. In general, a suitable face representation must

be provided to deal with this challenge. In this experimental, various global and local

face representations were introduced. The Global appearance-based methods try to

find a suitable representation of the whole image. The Local texture descriptors

represent certain region properties. Many different types of visual features derived
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from these measures were over-viewed. Furthermore, some of the ideas suggested

overcoming the problem were summarized.

Also, we proposed a novel learning method for kinship verification consists of

four main stages: 1) A DCTNet applied to each face image in order to extract the

most significant inherited facial features through convolutional layers based on 2D

DCT filter bank. 2) The response of the last layer is binarized and partitioned into

non-overlapping block-wise histograms. 3) A Tied Rank (TR) Normalization is used

to eliminate the disparity of histogram vectors of DCTNet. 4) The last stage is to

distinguish between the different pairs. The distances between data points in same

classes (positive pairs) are as small as possible, while the distances are as large as

possible between data points in different classes (negative pairs).

Experiments are conducted on three public databases (UBKinFace, KinFaceW-I

and KinFaceW-II). They show significant performance improvements compared to

state-of- the-art methods.

Finally, we introduced the multimodal system based on some discriminative bio-

logical information to improve the kinship verification performance.

This investigation are published in papers C (1) 1.

4.3.1 Experimental Evaluation and Databases

We report our experimental investigations on the UBKinFace (set 1 and set 2), Kin

Face in the Wild II (KinFaceW-II) and Kin Face in the Wild I (KinFaceW-I) datasets

showing auspicious performance compared to state-of-the-art.

For the experiments, each face is converted into gray-scale image, then we cropped

and resized to 32×32 pixels and the gray histogram is equalized, then the same number

of negative pairs (no kin relation) as positive pairs (with a kin relation) is created by

associating faces from persons who do not have a kinship relation.

To evaluate the performance of kinship verification, three step is performed:

feature selection, dimensionality reduction and classification. Firstly, we used the

Fisher/Correlation algorithm to select the most informative features from the ob-

tained histograms. Next, the obtained features were projected into a 399-dimensional

using PCA. Finally, the cosine similarity of each test pair is computed. For each of

the four kinships, we performed 5-fold cross-validation and computed the mean accu-

racy of the five folds. To evaluate the performance of system, the Receiver Operating

Characteristic (ROC ) is used. We reported the mean verification accuracy of the

three kinship subsets as the measure of the system performance.
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4.3.2 Feature Extraction

For the proposed method, first, we tested the mean area under ROC with the re-

stricted setting on F-S relationship in KinFace in the Wild-II database with varying

the number of different parameters, and then the number who is performed the best

performance for all relationships including F-D, M-D, and M-S.

• Appearance: The feature dimension for appearance-based was empirically set

to be 300.

• Texture: for LBP, we divide each image into (6 × 6) blocks where the size of

each block is (10 × 10) with neighborhood P = 8, a radius R = 1. With ML

representation using level 6.

For LPQ, we divide each image into (4× 4) blocks where the size of each block

is (10 × 10) with a window of size (3 × 3), a Gaussian derivative quadrature

filter for local frequency estimation was used. With ML representation using

level 7.

For BSIF, we divide each image into (4× 4) blocks where the size of each block

is (16 × 16), a linear filter of size (8 × 8) was used. With ML representation

using level 4.

• DCTNet: The network is composed of 2 convolution layers, to achieve the best

performance, we tested different values of filters number, filters size, and block

wise histogram size. The results are shown in Table 4.3.

The parameters selected are six filters for the first layer and five filters for the

second layer, and the perfect result gave when the filter size equal (8 × 8).

The outputs of convolution layer give real values. The output of the last layer

is turned into binary format. Then, we divided binary images into six non-

overlapping blocks. The characteristics of these images are obtained by concate-

nating all the histograms of each block. Next, we apply (TR Normalization)

to eliminate the disparity of histogram vector. Finally, we minimize the data

using PCA.

We exploit a deep learning machine, where numerous layers of information pro-

cessing stages are used. To extract the discriminant features for kinship verification,

the input of the network is a gray-scale image.

After, 2D DCT filter bank is applied to the image to extract the most significant

inherited features. As shown in Figure 4.2, we can see that some part of the face
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Table 4.3: Average area under ROC of KinfaceW-II versus varying the parameters.

Number of The filter The block-Wise Accuracy
Filters Size Histogram Size Father-Sun

[2 2] [2 2] [2 2] 73.40

[2 2] [4 4] [2 2] 82.00

[2 2] [8 8] [2 2] 81.40

[2 6] [5 5] [6 6] 83.60

[2 6] [5 5] [8 8] 84.40

[4 4 ] [4 4] [2 2] 77.60

[5 6] [5 5] [6 6] 82.60

[5 5] [5 5] [12 12] 80.20

[6 6] [5 5] [6 6] 84.80

[6 6] [5 5] [8 8] 84.60

[6 6] [5 5] [10 10] 84.20

[6 5] [8 8] [6 6] 88.80

[6 5] [8 8] [14 14] 82.20

[6 6] [5 5] [5 5] 82.20

[7 7] [5 5] [6 6] 84.20

[8 8] [5 5] [6 6] 81.60

[8 2] [5 5] [8 8] 80.60

[10 10] [5 5] [5 5] 75.60

[14 14] [5 5] [8 8] 73.60
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Figure 4.2: Example of the DCTNet filter bank on gray-scale image.

have a higher frequency like eye and nose, while other parts have a smaller frequency

like frontal face. The results of this filters give only the most significant facial fea-

tures. The light blue and yellow regions in the visualization highlight the inheritable

genetic feature regions in the kinship images. One essential issue to address when

adopting 2D DCT basis into the network as filter bank is the basis selection. The

prior knowledge of human face characteristic is taken into account. Since human face

distinct features are composed of more high-frequency horizontal components (eyes,

eyebrows, and lips) than low-frequency vertical component, it is natural to rank the

2D DCT bases by horizontal-frequency major order. The DCTNet keeps the im-

portance of horizontal frequency direction at each turn to extract inherited feature

passed from parents to his children that are a result of genetic inheritance. On the

other hand, block-wise histogramming, which is capable of implicitly encoding spa-

tial information of image regions, is useful for the classification task. We propose

an efficient method normalization (TR Normalization) to regulate the histogram of

DCTNet for robustness. We adopt the ranking idea by quantifying the correlation

between variables.

4.3.3 Results and analysis

This section demonstrates the performance of our proposed method on four kinship

relations: father-son (F-S), father-daughter (F-D), mother-son (M-S), and mother-

daughter (M-D) on KinFaceW-II database. In this experiment, we use different

feature descriptors to determine to which extend the dominant facial features are

crucial in verifying and establishing the relationship between individuals and how the

features are represented to explain the relationship.

1. First, the results of our proposed appearance method are reported in Table 4.4.

Considering the average accuracy and the accuracy of all the kinship relations,
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Table 4.4: Kinship verification accuracy in % using appearance features on KinFaceW-
II database.

Type Features FS FD MD MS Mean

Appearance based PCA 74.40 70.00 73.00 70.60 72.00

LDA 77.00 75.60 75.80 74.20 75.70

LPP 70.90 63.30 65.40 65.00 67.00

Table 4.5: Kinship verification accuracy in % using texture features on KinFaceW-II
database.

Type Features FS FD MD MS Mean

Texture based MB-LBP 79.00 77.00 75.00 73.20 76.10

MB-LPQ 81.20 74.00 74.00 73.20 75.00

MB-BSIF 83.00 77.00 76.00 75.00 78.00

ML-LBP 82.60 77.80 76.80 75.20 78.10

ML-LPQ 80.20 75.00 75.40 74.60 76.30

ML-BSIF 83.20 79.00 76.80 75.60 79.20
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Table 4.6: Kinship verification accuracy in % on KinFaceW-II using DCTNet.

TR Normalization FS FD MD MS Mean

Yes 88.80 80.80 83.80 85.60 84.75

No 84.60 78.80 78.80 78.60 80.20

LDA is the best performing method with accuracy equal to 75.7% , while LPP

shows the worst performance. For global descriptors, we conducted that LDA

is more informative in learning kin relationship.

2. Table 4.5 shows a comparison between representations (MLs and MBs), texture

descriptors (LBP, LPQ, and BSIF). We observed from the table that the per-

formance of MLs is better than MBs when using the same descriptor. This is

due that to the fact MLs representation gives more detailed information of the

image than the MBs. When comparing the different baseline methods, we can

see that BSIF yields in the best overall performance.

3. We tested our proposed method DCTNet with TR normalization against the

DCTNet without TR normalization. The results are reported in Table 4.6. The

performance of DCTNet feature with normalization technique report the best

performance on the four relationships. Overall, the TR Normalization enhanced

the verification accuracy by a significant margin, F-S (improved by 4.2%), F-D

(improved by 2.0%), M-D (improved by 5.0%), and M-S (improved by 7.0%).

4. On the other hand, DCTNet features report the best performance on all kinship

relations significantly improving the verification accuracy. The gain in verifica-

tion performance of the deep features varies between 1.8% and 10%, compared

with the best texture accuracy. These results highlight the high ability of DCT-

Net in learning kinship verification.

5. Deep features against texture and appearance features: Local-based features

perform better than global based. These results are due to the local features

which have a highly discriminative, invariance to monotonic gray-level changes

and computationally efficient, but the global features have no discriminating

ability for constituent parts of the image. One can conclude that checking

the kinship relation is easier when using facial parts rather than the whole
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Table 4.7: Kinship verification accuracy in % on KinFaceW-II database of proposed
multimodal system using texture features.

Type Features FS FD MD MS Mean

Color based ML-LBP 86.4 79.0 82.0 83.8 82.80

ML-LPQ 85.8 77.0 79.2 82.4 81.00

ML-BSIF 86.7 80.0 82.4 86.2 83.80

Table 4.8: Mean accuracy in % of proposed multimodal system using DCTNet on
KinFace-W.

Data base FS FD MS MD Mean

KinFace in the Wild-I 82.33 75.15 72.36 68.60 74.61

KinFace in the Wild-II 91.40 88.20 87.40 90.00 89.25

face. The local descriptors achieved a good performance, but the features are

designing manually, incomprehensible regarding of gender, age variation and

need to search over space and scale. So no relation between blocks exists.

We have proposed a simple deep Learning (DCTNet) technique to address this

problem. Deep learning recognition methods automatically learn high-level fea-

tures from multilayer and parameters, rather than designing features manually

and a spatial relation between blocks are encoded.

6. For the multimodal system, we extracted features based on color cue, we have

used ML method and DCTNet which they achieve the best accuracy. The results

are shown in Table 4.7 and Table 4.8. From Table 4.8, we observed that DCTNet

descriptor achieves a higher accuracy equal to 89.25%. The performance is

improved unlike the use on the gray-scale image directly. The proposed color-

texture features outperform the gray-texture features methods in verification

accuracy 4.4%, 5.5% and 4.6% and 4.5 % on LBP, LPQ, BSIF and DCTNet

features respectively. DCTNet reported the best performance on all kinship
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relations and the higher accuracy of human performance on the task of kinship

verification is 91.4% on Father-Son relationship.

We can conclude that color does provide some discriminative information that

can help in boosting the kinship verification performance. From a biological

opinion, the chromaticity of the face is tied to genetically expressed character-

istics, such as eye color or skin tone.

Our method showed good generalization capabilities and outperformed the

recognition capabilities of human raters and previous approaches in the lit-

erature.

7. Comparison with Databases: In order to validate our proposed DCTNet, we

conducted experimental based on KinFaceW-I, KinFaceW-II, and UBKinFace

databases. The results for different relationships ( F-S, F-D, M-S, and M-D)

on KinFaceW databases is reported in Table 4.8 and UBKinFace is reported in

Table 4.9. Our results show that the average accuracy of human performance

on the task of kinship verification is 67.00 - 89.25 % on the three databases.

The KinFaceW-II database is the best performing. These results are maybe due

to the nature KinFaceW-II images (Image cropped from same photo) data sets.

However, we showed that the images in these data sets have a high potential

for biased results.

The classification on UB Kin Face (young parents) reaches around 70%, and this

is comparable to UB Kin Face (old parents) who reaches 67%. Moreover, the

variation in age of the persons has an effect on the kinship verification accuracy

because facial features continuous changes over time. These results are maybe

due to the different age of the pairs. One can conclude that checking the kinship

relation is easier between persons of close age.

8. Comparing relations. On the three databases, the best verification accuracy

is obtained for F-S relationship. The ROC curves for separate relations are

depicted in Figure 4.3, 4.4, 4.5 and 4.6. These results are maybe due to the

different sex of the pairs. One can conclude that the labels such as sex are

helpful to determine the relationship. Although this finding is not an absolute

rule. It is remarkable that the performance of kinship verification between M-S

is better than M-D in different approaches. These results motivate us to try

to identify the characteristic that distinguishes the differences between sexes.
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Figure 4.3: The ROC curves of BSIF method obtained on KinFaceW-II data sets.

Figure 4.4: The ROC curves of LBP method obtained on KinFaceW-II data sets.
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Figure 4.5: The ROC curves of DCTNet method obtained on KinFaceW-II data sets.

Figure 4.6: The ROC curves of LPQ method obtained on KinFaceW-II data sets.
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Table 4.9: Mean kinship verification accuracy in % on UB Kin Face using DCTNet.

Database Mean Accuracy

UB Kin Face (Young Parent) 70.00

UB Kin Face (Old Parent) 67.00

Interestingly, specific facial parts like eyes, nose, and mouth can be considered

as strong similarities which are considered as kinship clues in daily life. But,

this idea is sensitive because the family may have weak or strong similarities in

specific facial parts. For instance, the eyes of the son may be very similar to

his father’s eyes but very different from his mother’s eyes, thereby complicating

the analysis.

Comparisons with other methods. We presented the comparison between our

proposed DCTNet method and other state-of-the-art deep learning, feature learning

under different metric learning methods. The comparison results are reported in Table

4.10. Table 4.11 shows a comparison of the multimodal results with the previous

works. Firstly, we can see that deep learning method perform better than other

traditional machine learning methods.

Unimodal system: Comparing our results against the state-of-the-art ones

demonstrates considerable improvements in all the kinship subsets. The improve-

ment in verification accuracy of our approach compared with the best performing

method ranges from 3.4% to 7.2% respectively depending on the relationship type.

Multimodal system: We can remark that our advanced approach outperforms

another state-of-the-art approach concerning the mean verification rate. Compared

with the best performing methods, our method makes improvement in two relation-

ships F-S and F-D because our proposed fused method provides some discriminative

biological information that can help in boosting the kinship verification performance.

We can explain the reason why our DCTNet achieves better verification rate when

compared to the state-of-the-art approaches. By using the 2D DCT as a filter bank,

proposed filters enjoys a good approximation for high ranked eigenvectors, the prior

knowledge of human face characteristic is taken into account, and the obtained data

contain a higher-level information. By creating a spatial relation between blocks using
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Table 4.10: Comparison of proposed DCTNet against state of the art on KinFaceW-II
(unimodal system).

Method Years Features FS FD MS MD Mean

NRML [42] 2014 LBP 79.20 71.60 72.20 68.40 72.85

HOG 80.80 72.80 74.80 70.40 74.70

SM [53] 2015 SPLE 76.90 74.30 77.40 77.60 76.60

LBP 69.20 68.30 68.90 69.3 68.90

LGM [53] 2015 LBP 69.20 68.30 68.90 69.30 68.90

SPLE 74.90 71.00 76.90 76.40 74.80

SSML [74] 2016 LBP 82.40 78.60 79.80 77.93 79.68

HOG 85.00 77.00 80.40 78.40 80.15

LMNN [74] 2016 LBP 77.80 73.20 70.60 70.40 73.00

HOG 83.20 75.60 77.60 77.40 78.45

GSML [74] 2016 LBP 75.60 72.00 69.20 71.80 72.15

HOG 83.38 75.20 75.80 76.40 77.70

SMCNN [78] 2016 CNN 75.00 79.00 85.00 78.00 79.20

LML [75] 2017 LE 76.80 74.20 76.60 73.80 75.40

LBP 66.00 64.80 67.80 66.80 66.40

TPLB 68.60 66.20 65.40 70.80 67.80

SIFT 72.20 66.00 68.20 66.20 68.20

SML [75] 2017 LE 76.20 70.10 72.40 71.80 72.60

LBP 66.90 65.50 63.10 68.30 66.00

TPLBP 71.80 63.30 63.00 67.60 66.40

SIFT 68.10 63.80 67.00 63.90 65.70

Our method 2018 DCTNet 88.80 80.80 83.80 85.60 84.75
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Table 4.11: Comparison of proposed DCTNet against state of the art on KinFaceW-II
(Multimodal system).

Method Reference FS FD MS MD Mean

Polito [73] 85.3 85.8 87.5 83.7 86.30

MNRML [42] 76.9 74.3 77.4 77.6 76.60

LM3L [75] 82.4 74.2 76.6 78.7 78.70

DMML [50] 78.5 76.5 78.5 79.5 78.20

IML [50] 79.4 71.5 76.3 77.3 76.10

DDMML [60] 87.4 83.8 83.2 83.0 84.30

CNN -Basic [79] 84.9 79.6 88.3 88.5 85.30

CNN -Points [79] 89.4 81.9 89.9 92.4 88.40

Our - 91.4 88.2 87.4 90.0 89.25

block-wise histogramming. By applying Fisher/Correlation functions, the method can

discard the duplicate features and provide a useful classification with the smallest

error.

Compared with Convolutional Neural Networks (CNN ): Discrete Cosine

Transform Network (DCTNet) is a lightweight design compared with a convolutional

neural network (CNN ).

In CNN, Different filters were applied to get a varied information and no prior

knowledge of human face characteristic is taken into account. We need thousands of

facial images to train a deep convolutional network. In kinship verification problem,
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it is very hard to build a basic model and to estimate the CNN parameters because

the kinship databases are not big enough. Instead, a simple DCTNet was proposed to

learn 2D DCT filters bank by binarization and a spatial relation between blocks are

encoded by block-wise histogramming where the prior knowledge of human face char-

acteristic is taken into account. The DCTNet network was built with an independent

set of data.

4.4 Experimental 3

Local binary descriptor constitutes power visual cues for feature representation. They

provide discriminative information about small appearance details in local neighbor-

hoods. So, they are robust to local changes databases such as illumination, identity,

and expression. Unlike existing local descriptors is not discriminatory enough to esti-

mate the relationship between two people. This is mainly due to the learning feature

code individually and the hand-crafted features which previous knowledge is required.

In this experimental, we proposed an effective Context-Aware Local Binary Feature

Learning (CA-LBFL) for kinship verification in order to solve the proposed problem.

CA-LBFL a method has applied to learn contextual features from raw pixels directly

and to eliminates the dependence on hand-crafted features. Experimental results

demonstrate that the proposed method achieves competitive results compared with

other states-of-the-art.

To evaluate the effectiveness of proposed CA-LBFL methods, we performed kin-

ship verification experiments on the challenging KinFace W-I, KinFace W-II and UB

KinFace V2. A brief presentation of the used databases is provided bellow.

4.4.1 Experimental Evaluation

For the experiments, same number of negative pairs (no kin relation) as positive

pairs (with a kin relation) is created by associating faces from persons which do not

have a kinship relation. We apply the features selection technique to select the most

relevant features. For each of the four kinship subsets (i.e. F-D, F-S, M-D and M-

S), we recommend taking the feature normalization technique to improve recognition

rate. The result of normalization is that the features will be rescaled so that they

all have properties of a standard normalization distribution. We perform 5-fold cross

validation and compute the mean accuracy of the five folds. Finally, the cosine

similarity of each test pair is computed. We report the mean verification accuracy of

the four kinship subsets as the measure of system performance.
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Table 4.12: Mean kinship verification accuracy in % on KinFaceW-II versus varying
λ1, λ2, and λ3.

Parameters Accuracy
λ1 λ2 λ3 F-S

102 102 105 79.0
102 103 106 81.5
103 104 107 84.2
103 103 108 86.8
103 102 108 88.8
104 102 109 83.0
104 103 109 82.3
102 103 108 81.0

Table 4.13: Mean kinship verification accuracy in % on KinFaceW-II versus varying
local region.

Local Region Accuracy

4 4 80.0
6 6 83.0
8 8 88.8
10 10 82.2

This investigation are published in conference Papers C (2) 1.

4.4.2 Parameter Adaptation

For the proposed CA-LBFL method, first we tested the mean area under ROC on

KinFace in the Wild-II database with different parameters, and then applied these

parameters for the rest of experiments. We fixed dictionary size as 500, the binary

code length K as 30 and set R as 3. To achieve the best performance, we tested

different values of λ1, λ2 and λ3. The results are shown in Table 4.12.

The three parameters λ1, λ2 and λ3 were selected as 103, 102 and 108.

We also tested different values of local region, finally, was fixed to 8× 8, each face

image was represented as a 38400-dimensional feature vector after using CA-LBFL

(38400 = 600× 8× 8). The results are shown in Table 4.13.

4.4.3 Results and Analysis

To achieve the best performance, we tested different size of features to be selected on

KinFaceW-II (F-S relationship) and then applied for the rest of relationships. The

results are shown in Table 4.14. The final vector has size 662.

74



Table 4.14: Kinship verification accuracy in % of proposed method on KinFaceW-II
databases (F-S) versus varying features number.

num Features FS relationships

2592 81.80
2016 84.00
1440 85.80
1152 85.20
720 87.40
662 88.80
605 88.60
576 88.20
432 87.40
259 88.00
202 86.60
115 84.40

Table 4.15: Kinship verification accuracy in % of proposed method on KinFace W
databases.

Data Base FS FD MS MD Mean

KinFaceW-II 88.80 79.00 83.40 80.80 83.00
KinFaceW-I 72.84 69.17 65.57 68.63 69.05

Table 4.16: Kinship verification accuracy in % on UB Kin Face.

Data Base Mean Accuracy

UB Kin Face Young Parent 68.00
UB Kin Face Old Parent 61.00

The results for different relationships ( F-S, F-D, M-S and M-D) on different

databases are reported in Table 4.15 and Table 4.16. Our results show that the

average accuracy of human performance on the task of kinship verification is 61.00 -

83.00 % on the three data bases.

The best verification accuracy is obtained for F-S with 88.80% on The KinFace

W-II database while the lowest is F-D. The classification on UB Kin Face (young

parents) reaches around 68.0%, this is comparable to UB Kin Face (old parents)

who’s reaches 61.0%.

Also, we designed our evaluation with two different settings: image-unrestricted

(for each face image, we first apply PCA to project feature into a low-dimensional

feature vector and then side-information based linear discriminant analysis (SILD) is

employed to learn a distance metric) and image-restricted (for each face image, PCA
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Table 4.17: Kinship verification accuracy in % of proposed method on KinFaceW-II
databases.

Setting FS FD MS MD Mean

image-unrestricted 79.40 75.00 72.00 72.60 74.75
image-restricted 81.40 75.00 78.60 73.60 77.15

Table 4.18: Kinship verification accuracy in % of proposed method on KinFaceW-II
databases under restricted setting.

Features selection FS FD MS MD Mean

No 80.00 70.80 74.60 73.50 74.72
Yes 81.40 75.00 78.60 73.60 77.15

is first used to project feature into a low dimensional feature vector and then neigh-

borhood repulsed metric learning (NRML) [42] is employed to learn a discriminative

distance metric). Table 4.17 list the mean accuracy of the two different settings. From

the experimental results, we can see that the evaluation under image-restricted re-

port 77.15% better than image-unrestricted with 74.75%, while our proposed setting

report the best performance with 83.00%.

Under restricted setting, we tested our proposed method CA-LBFL with features

selection against the CA-LBFL without features selection method. The results re-

ported in Table 4.18 . The performance of CA-LBFL feature with features selection

technique report the best performance on the four relationships. Overall, the features

selection enhanced the verification accuracy by a significant margin, F-S (improved

by 1.4%), F-D (improved by 4.2%), M-S (improved by 4.0%), and M-D (improved by

0.1%).

Comparison with Baseline Methods: A comparison against other reported

methods on Kin Face W-II is reported in Table 4.19. We compare the proposed

method with various features under different strategies including Neighborhood Re-

pulsed Metric Learning (NRML) [115], Large Margin Nearest Neighbor (LMNN) [51],

Generalized Sparse Metric Learning (GSML) [74], single metric learning (SML) [75],

Individual Metric Learning (IML) [50], Local Large-Margin Multi-Metric Learning

(LM3L)[75] and Sparse Similarity Metric Learning (SSML) [74].

These results clearly show that our proposed approach outperform the state-of-

the-art methods in all configurations (i.e. for different protocols and parameters).

The F-S, M-D, M-D and F-D relationship, our method outperforms all the others and

provides state-of-the-art performance. The success of the proposed method is mainly

due to the robust information. It constrains the number of shifts from different binary
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Table 4.19: Comparison of our approach for kinship verification against state of the
art on KinFaceW-II database .

Method Feature FS FD MS MD Mean

NRML [42] LBP 79.20 71.60 72.20 68.40 72.85
HOG 80.80 72.80 74.80 70.40 74.70

LMNN[74] LBP 77.80 73.20 70.60 70.40 73.00
HOG 83.20 75.60 77.60 77.40 78.45

GSML[74] LBP 75.60 72.00 69.20 71.80 72.15
HOG 83.38 75.20 75.80 76.40 77.70

SML[75] LE 76.20 70.10 72.40 71.80 72.60
LBP 66.90 65.50 63.10 68.30 66.00

TPLBP 71.80 63.30 63.00 67.60 66.40
SIFT 68.10 63.80 67.00 63.90 65.70

IML [50] ALL 79.4 71.50 76.3 77.30 76.10

LML[74] LE 76.80 74.20 76.60 73.80 75.40
LBP 66.00 64.80 67.80 66.80 66.40

TPLB 68.60 66.20 65.40 70.80 67.80
SIFT 72.20 66.00 68.20 66.20 68.20

LM3L[75] ALL 82.40 74.20 76.60 78.70 78.70

SSML[74] LBP 82.40 78.60 79.80 77.93 79.68

Our method CA-LBFL 88.80 79.00 83.40 80.80 83.00
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bits to exploits the contextual information of adjacent bits and obtains more robust

local binary features.

Finally, Figure 4.7 and Figure 4.8 provide the performance of our best approaches.

Figure 4.7: The performance of our best approaches on unimodal system.
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Figure 4.8: The performance of our best approaches on multimodal system.

4.5 Conclusion

In this chapter, we have investigated the kinship verification problem from faces using

three experiments.

In experimental 1, we have investigated several feature extraction methods and

similarity measures. We performed extensive evaluation on four publicly available

databases (KinFaceW-I & II, UBKinFace and Cornell Kin Faces). Faces are described

using LBP, TPLBP, FPLBP, HOG and Gabor features. Support vector machines

and Nearest neighbor (City block distance, Euclidean distance, Chi-Square distance

and Cosine Distance) are used for classification. Our study demonstrates that the

performance of kinship verification affected by several labels such as age and database

environments. Furthermore, The best features are obtained by the Local Binary

Pattern and The best classifier is the cosine similarity.

In experimental 2, we tackled the problem of automatic kinship verification from

facial images considering four relationships: F-S, F-D, M-S and M-D. We proposed

a novel solution using a Discrete Cosine Transform Network (DCTNet) via 2D-DCT

filters bank. To improve the kinship verification performance discriminative biological

information are used. Our proposed method demonstrates a high efficiency of deep

features in describing faces for inferring kinship relations on the used KinFaceW-

I, KinFaceW-II and UBKinFace. Furthermore, comparison of our approach to the
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previous work indicates significant improvements in verification accuracy.

In experimental 3, we proposed an effective Context-Aware Local Binary Feature

Learning (CA-LBFL) for facial kinship verification. The CA-LBFL is a method has

applied to learn contextual features from raw pixels directly and to eliminate the

dependence on hand-crafted features. Our study demonstrates the high efficiency of

Context-Aware Local Binary Feature Learning in describing faces for kinship verifi-

cation and shown its effectiveness compared with several state-of-the-art methods.
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Chapter 5
Summary and future work

The purpose of the work presented in this thesis was the kinship verification from

face images. Several features extractions approaches are proposed in the literature,

Hand-Crafted approaches and Deep learning approaches. On the other hand, various

metric learning methods have been investigated for tackling this problem.

This thesis focus on kinship verification based feature extraction task. We pre-

sented an original investigation to detect the most significant characteristic features of

human faces and it should help from the improved performance of kinship verification.

In the first part of this work, we focused on the approaches based Hand-Crafted

features (Global and Local features), which is very used in face recognition. These

features are based on the learning of the surface properties and appearance of an

object given by the shape, size, arrangement, density, a proportion of its elementary

parts.

The Global appearance-based methods try to find a suitable representation of the

whole image, all pixels are regarded, by approximating the original data and keeping

as much information as possible. On the other hand, Local texture descriptors repre-

sent certain region properties by multi-dimensional histograms. Very often geometric

properties (e.g., location, distance) of interest points in the region (corners, edges)

and local orientation information (gradients) are used.

These methods have been validated on different databases, and have been imple-

mented under Matlab. Also, we explored the feature combination to perform multiple

feature fusion to extract complementary information to improve the kinship verifica-

tion performance.

The choice of these attributes to characterize a face is a critical problem requiring

increased experience in the field of kinship recognition. The existing local and global

descriptors are designing manually, which previous knowledge is required.
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We have proposed an efficient system with the aim of providing enhancement

to the accuracy of kinship verification. The system based on a simple deep learn-

ing method called Discrete Cosine Transform Network (DCTNet), where 2D-DCT

is adopting as a filter bank to extract the most significant inherited facial features.

Deep learning recognition methods automatically learn high-level features from mul-

tilayer and parameters, rather than designed features manually and a spatial relation

between blocks are encoded. To the best of our knowledge, the DCTNet is being used

for the first time in our work for the kinship verification. Moreover, we introduced the

multimodal system based on some discriminative biological information. Our results

highlight the high ability of DCTNet in learning kinship verification.

Finally, we proposed an effective Context-Aware Local Binary Feature Learn-

ing (CA-LBFL) for kinship verification. The CA-LBFL is a method has applied to

learn contextual features from raw pixels directly and to eliminate the dependence on

hand-crafted features. Experimental results demonstrate that the proposed method

achieves competitive results compared with other states-of-the-art.

In the future, more work should be carried out for developing of advanced meth-

ods for kinship verification from videos and possibly also 3D face images. Also,

development of novel methods for Kinship verification from gait, voice (and possibly

also recording new databases if needed) and development of multimodal methods for

Kinship verification from gait and voice.
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Appendix A
Side-Information Linear Discriminant
Analysis (SILD)

Side-Information based Linear Discriminant Analysis (SILD) [83] is proposed in which

the within-class and between-class scatter matrices are directly calculated by using

the side-information of pairs of data points.

In kinship verification, SILD is employed to learn a distance metric learning by es-

timate the within-class scatter matrix Cp by employing positive pairs and the between-

class scatter matrix Cn by using negative pairs in training set:

Cp =
∑

lij = 1(xi − xj)(xi − xj)T

Cn =
∑

lij = −1(xi − xj)(xi − xj)T

Then, SILD learns a discriminative linear projection W ∈ <d×m,m ≤ d by solving

the optimization problem:

maxw
det(W TCnW )

det(W TCpW )

By diagonalizing Cp and Cn as:

Cp = UDpU
T , (UD−1/2p )Cp(UD

−1/2
p ) = I

(UD−1/2p )Cn(UD−1/2p ) = V DnV
T

the projection matrix W can be computed as:

W = UD−1/2p V,

in which U and V are an orthogonal matrices, and Dp and Dn are a diagonal matrices.

In the transformed subspace, the squared Euclidean distance of a pair of data points

xi and xj is calculated by:

d2w(xi, xj) = ‖W Txi −W Txj‖22 = (xi − xj)TWW T (xi − xj) = (xi − xj)TM(xi − xj)
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This distance is equivalent to computing the squared Mahalanobis distance in the

original space, and we have M = WW T .
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Appendix B
Cross Validation

Cross-validation, sometimes called rotation estimation or out-of-sample testing is any

of various similar model validation techniques for assessing how the results of a statis-

tical analysis will generalize to an independent data set. It is mainly used in settings

where the goal is prediction, and one wants to estimate how accurately a predictive

model will perform in practice 1 [116].

It is commonly used in applied machine learning to compare and select a model

for a given predictive modeling problem because it is easy to understand, easy to

implement, and results in skill estimates that generally have a lower bias than other

methods.

B.1 K-fold Cross Validation

In k-fold cross-validation, the data is first partitioned into k equally (or nearly equally)

sized segments or folds. Subsequently k iterations of training and validation are

performed such that within each iteration a different fold of the data is held-out for

validation while the remaining k-1 folds are used for learning. Data is commonly

stratified prior to being split into k folds. Stratification is the process of rearranging

the data as to ensure each fold is a good representative of the whole 2.

In other words, the K-fold Cross-validation is a computer intensive technique,

using all available examples as training and test examples [117]. Figure B.1 showed

an example of 4-cross validation.

1https://en.wikipedia.org/wiki/Cross-validation(statistics)
2http://leitang.net/papers/ency-cross-validation.pdf
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Figure B.1: Example of 4-cross validation.

Mathematically, the k-fold cross-validation operator is defined as following:

• Divide the data into K roughly equal parts.

• for each k=1,2,...K, fit the model with parameter λ to the other K-1 parts,

giving β−k(λ) and compute its error in predicting the kth part:

Ek(λ) =
∑

i∈kthpart

(yi − xiβ̂−k(λ))2 (B.1)

• This gives cross validation error

CV (λ) =
1

K

K∑
k=1

Ek(λ) (B.2)

• Do this for many values of λ and chose the value of λ that makes CV (λ) smallest.
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Appendix C
List of publications

C.1 Journal Publication

• A. Tidjani, A. Taleb-Ahmed, D. Samai and K. Aiadi, ”Deep learning features

for robust facial kinship verification”. IET Image Processing, 12(12), 2018,

2336-2345.

• A. Tidjani, E. Boutellaa, D. Samai, A. hadid, A. Taleb-Ahmed and K. Ben

Sid, ”Investigating Feature Extraction and Matching Approaches for Kinship

Verification From Facial Images”. The special issue of EL MIR’AT SCIENCES

magazine ISSN 2170-1555 (print-only).

• K. Bensid, FZ. Laallam, D. Samai and A. Tidjani, ”Finger Knuckle Print Fea-

tures Extraction using Simple Deep Learning Method,” International Journal

of Computer Science, Communication & Information Technology(CSCIT), vol.

5, pp. 12-18, (2017).

C.2 Conferences Publications

• A. Tidjani, A. Taleb-Ahmed, D. Samai and K. Aiadi. ”Kinship Verification us-

ing Context-Aware Local Binary Feature Learning.” IEEE International Con-

ference on Control, Automation and Diagnosis, ICCAD’2018, MRRAKESH,

MROCCO. pp.1-5, 2018.

• A. Tidjani, D. Samai, A. Hadid, A. Taleb-Ahmed and K. Bensid ”En effective

kinship verefication system using Multi-levels features extraction,” Confrence

Internationale en Automatique & Traitement de Signal (ATS-2017), pp. 1-6,

2017.
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• A. Tidjani, D. Samai, A. Hadid, A. Taleb-Ahmed and K. Bensid ”Investegating

feature extraction and matching approaches for kinship verefication from facial

images,” Conference on Computing Systems and applications (CSA-2016), pp.

1-6, 2016.

• K. Bensid, D. Samai, FZ. Laallam, A. Tidjani and M. Korichi ”Multimodal

Palmprint Biometric System Using New Variants Of Local Phase Quantization

and Support Vector Machine,” the 2nd International Conference on Pattern

Analysis and Intelligent Systems (PAIS 2016), pp. 1-6, 2016.

• K. Bensid, D. Samai, FZ. Laallam, A. Tidjani, ”Efficient Person Identifica-

tion by Finger-Knuckle-Print Based on Discrete Cosine Transform Network and

SVM classifier,” Proceedings of Engineering and Technology PET (ATS 2017),

Vol.22, pp.78-83.
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