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Notations and conventions

• rm : Random measure.

• ms : Measure space.

• SBM: Standard Measure space.

• ps :Probability space.

• rv : Random Variable.

• Pv : Poisson Variable.

• fps: Filtred probability space.

• sp : Stochastic process.

• BM : Brownian motion.

• SBM : Standard Brownian motion.

• Prm: Poisson random measure.

• cp : Counting process.

• Psp : Poisson process.

• cpp: Compensated Poisson process.

• SDEs: Stochastic Differential Equations.

• RCLL: Right continuous with left limit.
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• a.s : almost surely.

• f+: max(f, 0) .

• f−: max(−f, 0).

• a ∨ b: max(a, b).

• a ∧ b: min(a, b).

• ]{∗}: the numbers of the set *.

• Xt+ = lims→t,s>tXs.

• Xt− = lims→t,s<tXs.

• 4Xt = Xt −Xt− .

• 1A(x): The indicator function of A.

• N = {0, 1, 2, . . .}.

• R: The real line.

• Rd: The d-dimensional Euclidean space where d ∈ N.

• C2(R) = {f : R→ R, f is twice continuously differentiable}.

• FW : Filtration generated by SBM W .

• FW,k: Filtration generated by SBM W and point Poisson process k.

v



 لب  

 الملخص

وجود و وحدانية حل  الهدف من هذه الاطروحة هو دراسة

 المشتقة بواسطة قياس العشوائية  المعادلات التفاضلية

بواسون. معوض  

 

Abstract  

The aim of this thesis is to study the 

existance and uniqueness of solution of 

stochastic differential equations deriven by 

compensated  Piosson random measure. 

Résumé  

L’object de ce mémoire est l’etude de 

existence et unicité de la solution des 

equations différentielles stochastiques 

dérigée par  la  mesure de Poisson  

compensée. 
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Introduction

The classical stochastic differential equations derived by Brownian motion are used to widely in

a variety of sciences as stochastic modeling to describe some phenomena; there are many ap-

plications such as mathematical finance, economic processes as well as signal processing but in

the phenomena which can get suddenly events that violate the continuity such as catastrophes,

failure of a system we can’t use the classical stochastic differential equations; the researchers dis-

covered other stochastic differential equations called stochastic differential equations with jumps.

This thesis is a survey of some aspects of stochastic differential equations derived by compen-

sated Poisson random measure; In chapter one we will given a basic theory of stochastic process

and Poisson process. In chapter two we will define Wiener and Poisson measure and in chapter

three we discuss the stochastic integral with respect to Poisson random measure and Compen-

sated Poisson measure. Finally, in chapter four we will study the existence and uniqueness of

the stochastic differential equation derived by compensated Poisson random measure.
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Chapter 1

Introduction to Poisson stochastic
processes

1.1 Filtred Probability space

Let us fix (Ω,F ,P) a probability space, see Appendix (A.9), (Ω′ ,F ′) be a ms, see Appendix

(A.3). We fix T , 0 ≤ T <∞.

Definition 1.1 (Filtration) Let F be a σ-algebra. The filtration F := (Ft)t∈[0,T ] is an increas-

ing family of σ-algebra for s ∈ [0, T ]

∀ 0 ≤ s ≤ t, Fs ⊆ Ft ⊆ F .

Definition 1.2 Let F be a filtration. We define

Ft+ = ∩s>0Ft+s s, t ∈ [0, T ].

We call (Ft)t∈[0,T ] a right continuous filtration if for all t ∈ [0, T ], Ft+ = Ft.

Definition 1.3 Let F be a filtration. We say F is complete filtration if it contains all the

P−negligible sets.

Definition 1.4 Let F be a filtration. We say F has the Usual conditions if:

• F is complete filtration.

• F is right continuous filtration.

Definition 1.5 A filtred probability space is a Probability space equipped with a filtration F .

We write (Ω,F ,F,P).
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1.2 Stopping time

Definition 1.6 (Stopping time) Let (Ω,F ,P) be a ps, τ : Ω → R+ be a rv. We say it is

F-stopping time if for any t ∈ [0, T ]:

{τ ≤ t} ∈ Ft.

Definition 1.7 • Let τ be a stopping time. We call it a finite stopping time if τ <∞ a.s.

• We say τ a bounded stopping time if there exist l ∈ [0,∞], τ ≤ l a.s.

Definition 1.8 Let τ be a stopping time . The σ-algebra Fτ generated by τ is defined by:

Fτ = {A ∈ F : ∀t ∈ [0, T ], A ∩ {τ ≤ t} ∈ Ft}.

1.3 Stochastic process

Definition 1.9 Let Xt be a rv indexed by time t ∈ [0, T ]. The stochastic process X = {Xt, t ∈

[0, T ]} is a collection of a rv Xt.

X is defined by the following function :

X : (Ω,F ,P)× [0, T ]→ (Ω
′
,F ′).

(ω, t) 7→ Xt(ω).

• For fixed ω ∈ Ω, the function : t 7→ Xt(ω) is the trajectory of the process X associated

with ω.

• For fixed t ∈ [0, T ], the function : ω 7→ Xt(ω) is a real rv.

1.3.1 Characteristics of stochastic process

Definition 1.10 (The n-dimensional distribution function) The n-dimensional distribu-

tion function of a sp {Xt, t ∈ [0, T ]} is defined by:

For n ∈ N, for all tk ∈ [0, T ] where k = 1, . . . , n;

FXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = P[Xt1 ≤ x1, . . . , Xtn ≤ xn], ∀xk ∈ R, n ∈ N.

Definition 1.11 (The n-dimensional density function) Let FXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) be

a n-dimensional distribution function of sp {Xt, t ∈ [0, T ]}. If the partial derivatives exist then

the n-dimensional density function is defined by:

fXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) =

∂n

∂x1, ∂x2, . . . , ∂xn
FXt1 ,Xt2 ,...,Xtn

(x1, x2, . . . , xn).
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Definition 1.12 (The trend function) Let X = {Xt, t ∈ [0, T ]} be a sp. We assume that

E[Xt] exists for all t ∈ [0, T ]. The trend function m(t) of Sp X is the mean value of Xt

m(t) = E[Xt] =

∫
Ω

Xt(ω)P(dω).

Definition 1.13 ( The variance function) Let X = {Xt, t ∈ [0, T ]} be a sp and let m(t) be

a trend function of sp X. The variance function V ar(X) of X is given by:

V ar(X) = V ar(Xt) = E[X2
t ]− (m(t))2.

Definition 1.14 (The covariance function ) Let X = {Xt, t ∈ [0, T ]} be a sp. The covari-

ance function C(r, t) of Sp X is the covariance between Xr and Xt ; r, t ∈ [0, T ] :

C(r, t) = C(Xr, Xt) = E[(Xr −m(r))(Xt −m(t))]

= E[Xr.Xt]−m(r)m(t).

Definition 1.15 Let X = {Xt, t ∈ [0, T ]} be a sp. The σ-algebra FXt generated by X is defined

by:

For s ∈ [0, T ]:

FXt = σ(Xs, 0 ≤ s ≤ t). (1.1)

and FX∞ = σ(Xs, s ≥ 0).

1.3.2 Some examples of stochastic processes

Example 1.3.1 Let (Ω,F ,P) be a ps. We define a Sp X = {Xt, t ∈ [0, T ]} where Xt = B cosωt,

ω ∈ Ω be a rv and B v P (λ);

1. Trend function:

m(t) = E[Xt] = E[B cosωt] = E[B] cosωt = λ cosωt.

2. Variance function:

V ar(Xt) = V ar(B cosωt)

= V ar(B)(cosωt)2

= λ(cosωt)2.
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3. Covariance function:

C(r, t) = E[(B cosωr)(B cosωt)]−m(r)m(t)

= E[(B cosωr)(B cosωt)]− E[B] cosωr.E[B] cosωt]

= (E[B2]− (E[B])2)(cosωr)(cosωt)

= V ar(B)(cosωr)(cosωt)

= λ(cosωt)2(cosωr)(cosωt).

Example 1.3.2 Let (Ω,F ,P) be a ps, S v exp(λ). We define a sp X = {Xt, t ∈ [0, T ]} where

Xt = S ln at, for a > 0.

• m(t) = E[Xt] = E[Xt] = E[S]. ln at =
1

λ
ln at.

• V ar(X) = V ar(S ln at) =
2

λ2
ln at.

1.3.3 Classification of stochastic process

Definition 1.16 (Measurable processes) Let (Ω,F ,F,P) be a fps, (Ω
′
,F ′) be a ms and let

X = {Xt, t ∈ [0, T ]} be a sp. We say the Sp X is F-measurable if the mapping :

Xt : (Ω× [0, T ],B([0, T ])⊗F)→ (Ω
′
,F ′)

(ω, t) 7→ Xt(ω)

is measurable,i.e: for each B ∈ F ′, the set {(t, ω), Xt(ω) ∈ B} ∈ B([0, T ]⊗F).

Definition 1.17 (Adapted process to a filtration F) Let X = {Xt, t ∈ [0, T ]} be a sp. We

say the Sp X is F-adapted if it is F-measurable for all t ≥ 0.

Definition 1.18 (Modification (version)) Let X = {Xt, t ∈ [0, T ]} and Y = {Yt, t ∈ [0, T ]}

be a Sps. We call X a modification of Y if:

For all t ∈ [0, T ]

P (ω : Yt(ω) = Xt(ω)) = 1 (1.2)

Definition 1.19 (Stationarity (Homogeneous)) Let X = {Xt, t ∈ [0, T ]} be a sp.We say it

is stationary if:

For all n ∈ N,for any h > 0, for all ti ∈ [0, T ] ,ti + h ∈ [0, T ] and i = 1, . . . , n ;

The joint n-dimensional distribution function of the random vector (Xt1 , Xt2 , . . . , Xtn) has the

following property:

FXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = FXt1+h

,Xt2+h
,...,Xtn+h

(x1, x2, . . . , xn).
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Definition 1.20 (Independent Increments) 1. The increment: The increment of a sp

X = {Xt, t ∈ [0, T ]} with respect to the interval [ti−1, ti] for ti−1, ti ∈ [0, T ], i ∈ N is the

following difference (Xti −Xti−1
).

2. Independent Increments: Let X = {Xt, t ∈ [0, T ]} be a sp. We say it has the indepen-

dent increments if for n ∈ N and for all t0, t1, . . . , tn with ti ∈ [0, T ] and 0 ≤ t0 < t1 <

· · · < tn the increments

X0, (X1 −X0), (X2 −X1), . . . , (Xn −Xn−1)

are independent, see Appendix (A.16).

Definition 1.21 ( Stationary increments) Let X = {Xt, t ∈ [0, T ]} be a sp. We say it has

a stationary (Homogeneous) increments if:

For all r < t, t+ h, r + h ∈ [0, T ] and h ≥ 0, the increments (Xt −Xr) and (Xt+h −Xr+h) have

the same distribution function.

1.4 Markovian stochastic processes

Definition 1.22 Let (Ω,F ,F,P) be a fps, ν be a probability measure on (Rd,B(Rd)) and let

X = {Xt, t > 0} be a sp. We call X a Markovian process if it has the following properties :

• ∀A ∈ B(Rd), P[X0 ∈ A] = ν(A).

• For 0 ≤ r < t and ∀A ∈ B(Rd), P[Xt ∈ A|Fr] = P[Xt ∈ A|Xr] P.a.s.

Definition 1.23 (Markov chain) A Sp {Xt, t ∈ [0, T ]} is a Markov chain if:

For all n ∈ N, t1 < t2 < · · · < tn+1 with ti ∈ [0, T ] and i = 1, 2, . . . , n + 1 and for xj ∈ N with

j = 1, . . . , n+ 1;

P(Xtn+1 = xn+1/Xtn = xn, . . . , Xt1 = x1) = P(Xtn+1 = xn+1/Xtn = xn).

1.5 Brownian motion

Definition 1.24 Let (Ω,F ,F,P) be a fps. A Brownian motion is a sp B = {Bt, t ≥ 0} wich

has the following properties:

• The trajectory t 7−→ Bt is continuous.

• B has independent stationary increments.
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• For 0 ≤ r < t, the increment (Bt −Bt) ∼ N (0, t− r).

Definition 1.25 LetW = {Wt, t ≥ 0} be a BM. We callW a Standard Brownian motion(Wiener

process) if:

• W0 = 0-a.s

• E[Wt] = 0 and E[W 2
t ] = t

1.6 Martingale

Definition 1.26 Let (Ω,F ,F,P) be a fps and X = {Xt, t ∈ [0, T ]} be a sp. We say X is a

martingale if :

• X is F-adapted.

• ∀t ∈ [0, T ], E[|Xt|] <∞.

• ∀0 ≤ r < t ∈ [0, T ], E[Xt|Fr] = Xr.

Definition 1.27 Let X = {Xt, t ∈ [0, T ]} be a sp:

• If ∀r, t ≥ 0 E[Xt+r|Ft] ≥ Xt then X is sub-martingale.

• If ∀r, t ≥ 0 E[Xt+r|Ft] ≤ Xt then X is super-martingale.

Example 1.6.1 Let (Ω,F ,F,P) be a fps, Ft = σ(Wt, t ∈ [0, T ]), and let W = {Wt, t ∈ [0, T ]}

be a Standard BM.

The Brownian motion W is a martingale:

• Ft = σ(Wt, t ∈ [0, T ]) so W is (Ft)t≥0-adapted.

• Wt ∼ N (0, t) so E[|Wt|] = 0 <∞.

• For r, t ∈ [0, T ]

E[Wt|Fr] = E[Wt −Wr +Wr/Fr]

= E[Wt −Wr/Fr] +Wr

= Wr.

8



1.7 Poisson and compensated Poisson stochastic processes

Definition 1.28 Let h be a function [0, T ] → Rd. We call it a right continuous with left limit

if it is satisfies:

1. For each t ∈ [0, T ] the limits : h(t−) = lims→t,s<t h(s) and h(t+) = lims→t,s>t h(s) exist.

2. h(t) = h(t+).

We note RCLL.

1.7.1 Poisson stochastic process

Definition 1.29 Let (Ω,F ,F,P) be a fps, N = {Nt, t ∈ [0, T ]} be a sp. N is a Poisson process

if it is satisfying the following properties:

• N0 = 0 P-a.s,i.e: P(ω ∈ Ω, N0(ω) = 0) = 1

• For r, t ∈ [0, T ], If r < t then the increment Nt−r = Nt−Nr is a Poisson rv with intensity

λ(t− r).

• N has the independent increments.

• The trajectory t→ Nt is RCLL.

Definition 1.30 (Construction of a Poisson process) Let Υ1,Υ2, . . . be a sequence of an

independent exponential rv (A.32) with mean 1
λ
. We define Tn as:

Tn =
n∑
k=1

Υk.

The Poisson process N = {Nt, t ∈ [0, T ]} is defined as:

Nt =



0 0 ≤ t < T1.

1 T1 ≤ t < T2.
...

...
...

...
n Tn ≤ t < Tn+1

...
...

...
...

More generally:

Nt = ]{n, Tn ≤ t}.

Proposition 1.31 (Distribution function of a Poisson process) To determine the distri-

bution function of the Poisson process N , we need to determine the distribution of Tn:

9



Lemma 1.32 For n ≥ 1, the rv Tn has the gamma distribution:

g(l) =
(λl)k−1

(k − 1)!
λ exp−λl, l ≥ 0.

For the prove see [5 p 464,section 11.2.3].

We determine the distribution of N :

For k > 1, we have Nt ≥ k if and only if Tk ≤ t

P[Nt ≥ k] = P[Tk ≤ t] =

∫ t

0

(λl)k−1

(k − 1)!
λ exp−λl dl

P[Nt ≥ k + 1] = P[Tk+1 ≤ t] =

∫ t

0

(λl)k

(k)!
λ exp−λl dl

We integrate by parts:
∫ t

0
uv
′
dl = u.v|l=tl=0 −

∫ t
0
u
′
vdl. We take u =

(λl)k

(k)!
and v′ = λ exp−λl

P[Nt ≥ k + 1] = P[Tk=+1 ≤ t]

=

∫ t

0

(λl)k

(k)!
λ exp−λl dl

= −(λl)k

(k)!
exp−λl |l=tl=0 +

∫ t

0

kλ
(λl)k−1

k!
exp−λl dl

= −(λt)k

(k)!
exp−λt +

∫ t

0

(λl)k−1

(k − 1)!
λ exp−λl dl

= −(λt)k

(k)!
exp−λt +P[Nt ≥ k]

This implies for k ≥ 1

P[Nt = k] = P[Nt ≥ k]− P[Nt ≥ k + 1]

=
(λt)k

(k)!
exp−λt .

For k = 0:

P[Nt = 0] = P[T1 > t] = P[Υ1 > t]

= exp−λt .

Properties 1.33 Let N be a Poisson process then:

E[N ] = λt.

V ar(N) = λt.
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Proof.

• The mean:

We have exponential power series

expx =
∞∑
k=0

xk

k!
=
∞∑
k=1

xk−1

(k − 1)!
=
∞∑
k=2

xk−2

(k − 2)!
.

exp−λt . expλt = 1.

E[N ] =
∞∑
k=0

kP[Nt = k]

=
∞∑
k=0

k exp−λt
(λt)k

k!

= exp−λt
∞∑
k=0

k
(λt)k

k!

= exp−λt
∞∑
k=1

(λt)k

(k − 1)!

= exp−λt
(
λt+

(λt)2

1!
+

(λt)3

2!
+ · · ·+ (λt)n

(n− 1)!
+

(λt)n + 1

(n)!
+ . . .

)
= exp−λt

(
λt

(
1 +

(λt)

1!
+

(λt)2

2!
+ · · ·+ (λt)n − 1

(n− 1)!
+

(λt)n+

(n)!
. . .

))
= exp−λt λt

∞∑
k=0

(λt)k

k!

= λt exp−λt
∞∑
k=0

(λt)k

k!

= λt exp−λt .expλt

= λt.
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• The variance: V ar(N) = E[N2]− E[N ]2.

E[N2] =
∞∑
k=0

k2P[Nt = k]

=
∞∑
k=0

k2 exp−λt
(λt)k

k!

= exp−λt
∞∑
k=1

k
(λt)k

(k − 1)!

= exp−λt
(
λt+ 2

(λt)2

1!
+ 3

(λt)3

2!
+ 4

(λt)4

3!
+ · · ·+ n

(λt)n

(n− 1)!
+ . . .

)
= exp−λt

(
λt+ (λt)2 +

(λt)2

1!
+

(λt)3

1!
+

(λt)3

2!
+

(λt)4

2!
+

(λt)4

3!
+ · · ·+ (λt)n

(n− 2)!
+

(λt)n

(n− 1)!
+ . . .

)
= exp−λt

(
∞∑
k=2

(λt)k

(k − 2)!
+
∞∑
k=2

(λt)k

(k − 1)!

)

= exp−λt
∞∑
k=2

(λt)k

(k − 2)!
+ exp−λt

∞∑
k=2

(λt)k

(k − 1)!

= exp−λt(λt)2

∞∑
k=0

(λt)k

(k)!
+ exp−λt(λt)

∞∑
k=0

(λt)k

(k)!

= (λt)2 + λt.

V ar(N) = (λt)2 + λt− (λt)2 = λt = E[N ].

Proposition 1.34 Let N be a Psp, The increment Poisson process Nt−r = N(t)−N(r) has the

following distribution function:

P[Nt−r = k] = exp−λ(t−r) λ
k(t− r)k

k!
.

Proposition 1.35 Let N be a Psp. the increment Poisson process Nt−r has:

E[Nt−r] = λ(t− r).

V ar[Nt−r] = λ(t− r).

Proof.

• The mean:

E[Nt−r] =
∞∑
k=0

kP[Nt−r = k]

=
∞∑
k=0

k exp−λ(t−r) λ
k(t− r)k

k!

12



this proof is the same of the proof the mean of Poisson process, see the proof (1.7.1):

∞∑
k=0

k exp−λ(t−r) λ
k(t− r)k

k!
= λ(t− r).

E[Nt−r] = λ(t− r).

• The variance:

V ar(Nt−r) = E[N2
t−r]− E[Nt−r]

2

E[N2
t−r] =

∞∑
k=0

k2P[Nt−r = k]

=
∞∑
k=0

k2 exp−λ(t−r) (λ(t− r))k

k!

= exp−λ(t−r)
∞∑
k=1

k
(λ(t− r))k

(k − 1)!

= (λ(t− r))2 + λ(t− r).

V ar(Nt−r) = λ(t− r).

Definition 1.36 Let N = {Nt, t ∈ [0, T ]} be a Psp. We say it is homogeneous if it satisfies the

following properties:

• N0 = 0 a.s.

• N has homogeneous and independent increments.

• Nt−r = Nt −Nr, 0 ≤ r ≤ t, has a Poisson distribution with parameter λ(t− r).

Definition 1.37 Let (Ω,F ,F,P) be a fps, Z = {Zt, t ∈ [0, T ]} be a sp. We call Z a counting

process if it satisfies the following properties:

• Z is an integer valued rv.

• Z0 = 0.

• For r, t ∈ [0, T ], for r ≤ t, Zr ≤ Zt.

Definition 1.38 Let (Ω,F ,F,P) be a fps, N = {Nt, t ∈ [0, T ]} be a cp. We say N is a Poisson

process with a parameter λ if it has the following properties:

• N0 = 0, a.s.

13



• N has independent increments.

• The increments Nt−r has a Poisson distribution with parameter λ(t− r) :

P[Nt−r = k] = exp−λ(t−r) (λ(t− r))k

k!
.

Definition 1.39 (Counting Poisson process) Let {Tn, n ≥ 1} be a sequence of independent

identically distributed exponential rv occurring in [0, t] with P(Tn →∞) = 1.

The Poisson process counts the number of {Tn, n ≥ 1}. We can define the associated counting

process C = {Ct, t ≥ 0} by:

Ct = ]{n ≥ 1, Tn ≤ t}.

Properties 1.40 Let N = {Nt, t ∈ [0, T ]} be a Poisson process. We call N a standard Poisson

process If λ = 1.

1.7.2 Compensated Poisson process:

Definition 1.41 Let N = {Nt, t ∈ [0, T ]} be a Psp. The center version of N is defined by:

Yt = Nt − E[Nt] = Nt − λt.

Definition 1.42 Let N = {Nt, t ∈ [0, T ]} be a Psp, Yt be a center version of N . The sp

Y = {Y (t), t ∈ [0, T ]} is called a Compensated Poisson process and {λt, t ∈ [0, T ]} is called a

compensator of N .

Proposition 1.43 The compensated Poisson process Y = {Yt, t ∈ [0, T ]} is a martingale.

Proof.

• E[|Yt|] = E[|Nt − E(N)|] = λt− λt = 0 <∞.

• For r ∈ [0, T ]

E[Yt/Fr] =

= E[Nt − λt/Fr]

= E[Nt − λt−Nr +Nr/Fr]

= E[Nt −Nr]− λt+Nr

= λ(t− r)− λt+Nr

= Nr − λr

= Yr.

14



Chapter 2

Wiener and Poisson random measure

2.1 Preliminaries on random measure

Let us fix (Ω,F ,F,P) a fps,(Ω′ ,F ′) a ms.

Definition 2.1 Let (Ω,F ,F,P) be a fps and (Ω′ ,F ′) be a ms. A rm is a mapping M : Ω×F ′ →

R such that:

1. For each ω ∈ Ω , M(ω, .) is a measure on (Ω′ ,F ′).

2. For each A ∈ F ′, M(., A) is real-valued rv.

Definition 2.2 Let M(ω,A) be a rm on (Ω′ ,F ′) . The rm of set A ∈ F ′ is written as the rv

M(A).

Definition 2.3 Let M be a rm on (Ω′ ,F ′) and let M(A) be a rv of a set A ∈ F ′. The mean of

M(A) on (Ω′ ,F ′) is given by:

m(A) = E[M(A)].

Called the mean measure.

Example 2.1.1 Let (Ω,F ,P) be a ps, (Ω′ ,F ′) be a ms and {Xt, t ∈ [0, T ]} taking values in

(Ω′ ,F ′). We define :

M(ω,A) =
∑
t≥0

1A(Xt(ω)).

Then:

15



1. For each ω ∈ Ω, M(ω, .) is measure because it is summation of Dirac measure.

2. For each A ∈ F ′, we get M(., A) is a random variable because it is summation and com-

position of 1A wich are measurables .

2.2 Wiener measure, Point measure:

2.2.1 Wiener measure

Let us fix (Ω,F,F,P) a fps, (Ω′ ,F
′
) a ms.

Let C(R+,R) be the space of all continuous functions from R+ into R. We equip C(R+,R) with

the σ-field Z defined as the smallest σ-field on C(R+,R) for which the coordinate mappings

W → W (t) are measurable for every t ≥ 0 and let B be a BM. We can consider the mapping :

Ω→ C(R+,R)

ω 7→ Bt(ω).

Definition 2.4 (Wiener measure (law of BM) ) Let C(R+,R) and P(dω) be a probability

measure. The Wiener measure W (dw) is the probability measure on C(R+,R), for every mea-

surable subset A of C(R+,R):

W (A) = P(B. ∈ A)

where B. stands for the random continuous function t→ Bt(ω).

Definition 2.5 Let (C(R+,R),Z,W ) be a ps andW be a Wiener measure. We call (C(R+,R),Z,W )

a Wiener space (or a canonical Ps of BM).

Proposition 2.6 Let (C(R+,R),Z,W ), The Wiener measure W is unique.

Proof. See [5, proof p35].

2.2.2 Point measure

Definition 2.7 Let (Ω,F ,F,P) be a fps, (Ω′ ,F ′) be a ms , {T1, T2, . . .} be a sequence of point

random time and let N = {Nt, t ∈ [0, t]}, as the definition (1.30) Nt = ]{n, Tn ≤ t}.

We can define a rm for any measurable set A ⊂ R+ by:

M(ω,A) = ]{n ≥ 1, Tn(ω) ∈ A}.

We call M the random Point measure associated to Poisson process N .
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Property 2.8 Let M a point measure then M(ω, .) is a positive and integer valued measure and

M(A) is finite.

2.3 Poisson random measure:

Definition 2.9 (Radon measure (σ−finite)) Let Ω
′ ⊂ Rd, µ be a measure on (Ω′ ,F ′). We

call µ a σ− finite if : for Ki ∈ F
′
, i = 1, 2, . . .

Ω
′
= ∪∞i=1Ki.

µ(Ki) <∞.

Definition 2.10 Let µ be a measure on (Ω′ ,F ′). We say µ is an integer valued if for any

measurable set A ∈ F ′, µ(A) is an integer.

Definition 2.11 (Poisson random measure) Let (Ω,F,F,P) be a fps, (Ω
′
,F ′) be a ms,

N : Ω × F ′ → N be an integer rm andµ is radon measure on (Ω
′
,F ′). We call N a Poisson rm

with mean measure µ if:

1. For almost all ω ∈ Ω, N(ω, .) is an integer valued radon measure on Ω
′.

2. For each measurable set A ⊂ F ′ , N(., A) = N(A) is a Poisson rv with parameter µ(A).

3. For disjoint measurable sets A1, A2, . . . , An ∈ F
′, the variables N(A1), N(A2), . . . , N(An) are

independent.

Proposition 2.12 Let Ω
′ ⊂ Rd, µ be a radon measure on Ω

′. For any rm µ on Ω
′ there exist

a Poisson rm N on (Ω
′
,F ′) with mean measure µ.

Proof. Let (Ω,F ,F,P) be a fps, (Ω
′
,F ′) be a ms where Ω

′ ⊂ Rd and let µ be radon measure

on (Ω
′
,F ′). To construct a Poisson rm N, we have two cases µ(Ω

′
) <∞ and µ(Ω

′
) =∞.

We begin by considering µ(Ω
′
) <∞:

• We take Y1, Y2, . . . where i = 1, . . . be a independent identically distributed rv with

P(Yi ∈ A) =
µ(A)

µ(Ω′)
.

• And take N(Ω
′
) a Poisson rv with mean measure µ(Ω

′
) and it is independent of the (Yi)i≥1.

• We define

N(A) =

N(Ω
′
)∑

i=1

1{Yi∈A}, i = 1, 2 . . . for allA ∈ F ′ .

It is easy to verify that N is a Poisson rm with intensity µ by the Poisson splitting property

(A.39).
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Second case : µ(Ω
′
) =∞

• Since Ω
′ ⊂ Rd and µ a radon measure on (Ω

′
,F ′):

Exists Ω
′
i ⊂ F

′ such that Ω
′
= ∪∞i=1Ω

′
i i ∈ N and µ(Ω

′
i) <∞

• We construct Ni(.) a Poisson rm with mean measure η, and make (Ni)i≥1 independent

and N(A) =
∑∞

i=1 Ni(A).

• We define for all : A ∈ F ′ ;

N(ω,A) =
∑
i≥1

Ni(A ∩ Ω
′

i).

It easy to verify that N is a Poisson rm with intensity µ by the Poisson addition property

(A.38).

Definition 2.13 Let (C(R+,R),B(C(R+,R),P∗) be a Wiener space , N be a Poisson rm. We

call (C(R+,R),B(C(R+,R),P∗, N) a Wiener-Poisson space.

2.4 Compensated Poisson random measure:

Definition 2.14 Let N be a Poisson rm with mean measure µ. The compensated Poisson rm is

defined by: Ñ = N− E[N] = N− µ.

2.5 Construction of jump processes via Poisson randommea-
sure

Definition 2.15 Let (Ω,F ,F,P) be a fps, X = {Xt, t ∈ [0, T ]} be a sp. We call X a jump

process if there exist a nondecreasing sequence 0 = t0 < t1 < · · · < tk < . . . and Xk−1 ∈ Ftk−1

such that:

tk−1 < t < tk, Xt = Xk−1.

Definition 2.16 (Dirac measure) Let s ∈ Ω
′ be a point. The Dirac measure δs associated to

s is defined by: for a measurable set A;

δs(A) =

{
1 if s ∈ A.
0 if s /∈ A.

Definition 2.17 (Counting measure) Let S = {si}i≥1 ⊂ Ω
′ be a countable set of points

si ∈ Ω
′, δsi be a Dirac measure. We define µS =

∑
i≥1 δsi by the sum of Dirac measure. We call
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µS a counting measure.

µS(A) counts the number of point si ∈ A, for any measurable set A ∈ Ω
′, it is given by:

µS(A) = ]{i, si ∈ A} =
∑
i≥1

1si∈A.

Definition 2.18 (Integral with respect to a measure) Let (Ω
′
,F ′) be a ms, µ be a mea-

sure and let f : Ω
′ → R. The integral of f with respect to µ is defined by:

• For a simple function f ,i.e: for a measurable sets (Ap) and Cp ∈ R where p = 1, 2, . . . , n;

f has the from f =
∑n

p=1Cp1Ap .

The integral of f with respect to µ is define as:

µ(f) =
n∑
p=1

Cpµ(Ap).

• For a measurable function f . The integral of f with respect to µ is defined by: where l be

a simple function, µ(f) = sup{µ(l), l < f}.

Since f is a positive measurable function we can write f as f = f+−f− where f+, f− ≥ 0.

We can define as above µ(f+) and µ(f−);

If µ(f+) and µ(f−) are finite, we can define µ(f) = µ(f+)− µ(f−).

The construction of jump processes via Prm: Let (Ω,F ,P)be a ps and (Ω
′
,F ′) be a ms

where Ω
′
= [0, T ]× Rd \ {0}. We Consider Poisson rm N on Ω

′ with mean measure µ:

N =
∑
n≥1

1{Tn,Yn}

Such that :

• (Tn)n≥1 represent the time such that Tn < t.

• Yn is happened at Tn.

For each ω ∈ Ω, N(ω, .) is a measure on Ω
′ . We can define an integral with respect to this

measure as (2.18) :

1. For a simple function f =
∑n

i=1Ci1(Ai), where Ci ∈ R, Ai are a disjoint measurable

sets, i = 1, 2, . . . , n we define N(f) =
∑n

i=1CiN(Ai) a rv with expectation E|N(f)| =∑n
i=1 Ciµ(Ai)).

2. For a positive measurable function f : Ω
′ → R+ and (fn)n≥1 an increasing sequence of

a simple functions. We define N(f) = limn→∞ N(fn) where fn → f , N(f) is a rv with

expectation E|N(f)| = µ(f).
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3. For a measurable function f : Ω
′ → R we can write f = f+ − f−

If µ(|f |) =
∫

[0,T ]

∫
R\{0} |f(r, y)|µ(dr×dy) <∞, then the positive rvs N(f+) and N(f−) have

finite expectations E(N(f+)) = µ(|f+|) ≤ µ(|f |) <∞ and E(N(f−)) = µ(|f−|) ≤ µ(|f |) <

∞. In particular N(f+) and N(f−) are finite.a.s. We can write N(f) = N(f+) − N(f−).a.s

and N(f) is a rv with intensity µ such that:

µ(f) =

∫
[0,T ]

∫
R\{0}

f(r, y)µ(dr × dy). (2.1)

The integral of f with respect to N yields an adapted stochastic process:

Zt =

∫ t

0

∫
R\{0}

f(r, y)N(dr dy) =
∑

{n,Tn∈[0,t]}

f(Tn, Yn).

{Zt, t ∈ [o, T ]} is a jump process whose jumps happen at time Tn.

Remark 2.19 This construction makes a sense if the function f verifies (2.1).

2.6 Poisson point processes

Let us fix (Ω,F ,F,P) a fps, (Ω
′
,F ′) a ms and let S ⊂ [0,∞) be a countable set.

The function k : S → Ω
′ is called a point function on Ω

′ . We can give the point measure

associated to k by:

For any measurable set A ∈ F ′ and for all t > 0, Nk([0, t]× A) = ]{s ∈ S; s ≤ t, k(s) ∈ A}.

Let K : S×Ω→ Ω
′ , for each ω ∈ Ω the function k a point function the point measure associated

to k is defined by:

For any measurable set A ∈ F ′ and for all t > 0: Nk([0, t]×A, ω) = ]{s ∈ S; s ≤ t, k(s, ω) ∈ A}.

Definition 2.20 Let K be a Point function and Nk([0, t] × A, ω) be a point measure as above.

Then:

• If Nk([0, t]× A, ω) is a rm on (B([0,∞),F ′)× Ω) then K is called a point process.

• If Nk([0, t]×A, ω) is a Poisson rm on (B([0,∞),F ′)×Ω) then K is called a Poisson point

process.

• Let v(dx) be a measure on (Ω
′
,F ′). If the intensity measure m(dt dx) = E[Nk(dt dx)] of

the Poisson point process k satisfies: m(dt dx) = v(dx)dt then k is a stationary Poisson

point process.
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Definition 2.21 Let Nk([0, t]×A) be a stationary Poisson rm with mean measure E[Nk([0, t]×

A)] = v(A)t. We can define a compensated Poisson rm by:

Ñk([0, t]× A) = Nk([0, t]× A)− E[Nk([0, t]× A)]

= Nk([0, t]× A)− v(A)t.

We note N̂k([0, t]× A) = v(A)t and we call it the compensator of Nk([0, t]× A).
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Chapter 3

Stochastic integral with respect to
Poisson random measure

3.1 Stochastic integral with respect to Brownian motion

3.1.1 Preliminaries on stochastic integral

Let us fix (Ω,F ,F,P) a fps ,(Ω′ ,F ′) a ms;

Definition 3.1 (Simple predictable process) Let X = {Xt, t ∈ [0T ]} be a sp on (Ω,F ,F,P).

We call X a simple predictable process if: for an increasing sequence {Ti}i=0,...,n with T0 = 0 and

Tn = T there exist ϕi ∈ FTi a bounded rv whose value is revealed at Ti :

Xt = ϕ01t=0(t) +
n∑
i=0

ϕi1[Ti,Ti+1(t)].

Definition 3.2 Let H = {Ht, t ∈ [0, T ]} and L = {Lt, t ∈ [0, T ]} are a sps. The integral

I(H) =
∫ .

0
HrdLr is called a stochastic integral of H with respect to L.

Definition 3.3 Let X = {Xt, t ∈ [0, T ]} be a simple predictable process and L{Lt, t ∈ [0, T ]} be

a Sp. The stochastic integral I(X) of X with respect to L is given by:∫ T

0

XrdLr = ϕ0L0 +
n∑
i=0

ϕi(LTi+1
− LTi).

For Ti ≤ t < Ti+1 the stochastic integral I(X) is given by:∫ t

0

XrdLr = ϕ0L0 +
n∑
i=0

ϕi(LTi+1∧t − LTi∧t)
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Proposition 3.4 Let H be a simple predictable process and L be a martingale then the stochastic

integral I(H) is a martingale.

3.1.2 Stochastic integral with respect to standard Brownian motion

Definition 3.5 Let X = {Xt, t ∈ [0T ]} be a simple predictable process and W be a SBM. The

stochastic integral of X with respect to SBM (or the Ito integral) I(X) =
∫ t

0
XdW is defined by:

For Ti ≤ t < Ti+1, i = 0, 1, . . . , n

I(X) =

∫ T

0

XrdWr =
n∑
i=0

ϕi(ω)(WTi+1
−WTi)

For each Ti ≤ t < Ti+1:

I(X) =

∫ t

0

XrdWr =
n∑
0

ϕi(WTi+1∧t −WTi∧t).

Where (Ti+1 ∧ t) = min(Ti+1, t).

Proposition 3.6 The stochastic integral of X with respect to SBM W is a martingale for any

predictable process X.

Proof. Since W is martingale then I(X) is a martingale, see(3.4).

3.2 Stochastic integral with respect to Poisson measure

We consider X = {Xt, t ∈ [0, T ]} be a simple predictable process such that:

X : Ω× [0, T ]× Rd → R (3.1)

X(t, r) =
n∑
i=1

m∑
j=1

ϕij1]Ti,Ti+1](t)1Aj
(r). (3.2)

Where n,m ∈ N, {Ti}i=1,2,...,n are an increasing partition of [0, T ], (Aj)j=1,2...,m are a disjoint

subsets of Rd and ϕij ∈ FTi are bounded rv whose valued at Ti. Let N be a Poisson rm on

[0, T ]× Rd with mean measure µ(dt dr) and µ([0, T ]× Aj) <∞ .

The stochastic integral of X with respect to Poisson measure N is defined by:∫ T

0

∫
Rd

X(t, r)N(dt dr) =
n∑
i=1

m∑
j=1

ϕijN(]Ti, Ti+1]× Aj)

=
n∑
i=1

m∑
j=1

ϕij(NTi+1
(Aj)− NTi(Aj)).

For each Ti ≤ t < Ti+1.∫ t

0

∫
Rd

X(t, r)N(ds dr) =
n∑
i=1

m∑
j=1

ϕijNTi+1∧t(Aj)− NTi∧t(Aj)).
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3.3 Stochastic integral with respect to compensated Pois-
son random measure

In section (3.2) we defined the stochastic integral with respect to Poisson rm N. Now we define

the stochastic integral with respect to compensated Poisson rm

Let X be a simple predictable process, see (3.1), Ñ be a compensated Poisson rm. The stochastic

integral of X with respect to Ñ is given by:∫ T

0

∫
Rd

X(t, r)Ñ(dt dr) =

n,m∑
i,j=1

ϕij Ñ(]Ti, Ti+1]× Aj)

=
n∑
i=1

m∑
j=1

ϕij(ÑTi+1
(Aj)− ÑTi(Aj)).

Since Ñ = N− µ then:∫ T

0

∫
Rd

X(t, r)Ñ(dt dr) =

n,m∑
i,j=1

ϕi,j Ñ(]Ti, Ti+1]× Aj)

=

n,m∑
i,j=1

ϕi,j(N(]Ti, Ti+1]× Aj)− µ(]Ti, Ti+1]× Aj)).

For each Ti ≤ t < Ti+1.∫ t

0

∫
Rd

X(t, r)Ñ(ds dr) =
n∑
i=1

m∑
j=1

ϕij(ÑTi+1∧t(Aj)− ÑTi∧t(Aj)).

Proposition 3.7 Let X be a simple predictable process then the stochastic integral with respect

to compensated Poisson rm is a martingale.

3.4 Stochastic integral with respect to Poisson rm associ-
ated to Poisson point process

In section (2.6) we defined a Poisson rm Nk([0, T ] × A, ω). Now we define a stochastic integral

of any predictable process with respect to Nk([0, T ]× A, ω);

Definition 3.8 Let Nk([0, T ] × A, ω) =
∑

s∈S,s≤t 1A(k(s, ω)) for any A ∈ F ′, X = {Xt, t[0, T ]}

be a simple predictable process. The stochastic integral of X with respect to Nk([0, T ] × A, ω) is

defined by: ∫ T

0

XrdNk(r, A) =
∑

s≤t,s∈S

Xs1A(k(s, y)).

We can define the stochastic integral with respect to compensated Poisson rm by:
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Definition 3.9 let X be a simple predictable process and Ñk(r, A) be a compensated Poisson rm

the stochastic integral of X with respect to Ñk(r, A) is given by:∫ T

0

XrdÑk(r, A) =

∫ T

0

XrdNk(r, A)−
∫ T

0

XrdN̂k(r, A)

=
∑

s≤t,s∈S

Xs1A(k(s, y))−
∫ T

0

XrdN̂k(r, A).

Lemma 3.10 For any simple predictable process X = {Xt, t ≥ 0} and A ∈ F ′, the stochastic

integral
∫ T

0
XrdÑk(r, A) is a martingale .
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Chapter 4

Stochastic differential equations
perturbed by Poisson noise

4.1 Stochastic differential equations derived by Brownian
motion

Definition 4.1 Let X = {Xt, t ≥ 0} be a sp, W = {Wt, t ≥ 0} be a SBM. We consider the

following equation: {
dXt = f(t,Xt)dt+ g(t,Xt)dWt

X0 = x0 ∈ Rd.
(4.1)

is called a stochastic differential equation derived by BM where X0 ∈ F0 and

f(t,Xt), g(t,Xt) : [0,∞)× Rd → Rd are (Ft)t≤0-adapted.

We say it makes a sens if
∫ t

0
f(s,Xs)ds <∞ ,

∫ t
0
g(s,Xs)dWs <∞

Definition 4.2 Let X = {Xt, t ≥ 0} be a Sp such that:

Xt = X0 +

∫ t

0

f(s,Xs)ds+

∫ t

0

g(s,Xs)dWs. (4.2)

We say X is a solution of (4.1) if it satisfies (4.1).

Definition 4.3 Let X = {Xt, t ≥ 0} be a continuous sp and F-adapted and W = {Wt, t ≥ 0}

be a SBM.We call (X,W ) a weak solution of (4.1) if for all t ≥ 0 it satisfies (4.1).

If for all t ≥ 0 Xt is adapted to FW where FW is a filtration generated by SBM, W . Then we

call (X,W ) a strong solution of (4.1) .
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Definition 4.4 (Lipschitz condition) Let (4.1) be a SDE. The Lipschitz condition is defined

by:

For any x, y ∈ Rd, there exist a constant L such that:

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ L|x− y|. (4.3)

Definition 4.5 (Growth condition) Let (4.1) be a SDE. The growth condition is defined by:

There exist a constant L such that:

|f(t, x)|2 + |g(t, x)|2 ≤ L2(1 + |x|2). (4.4)

Theorem 4.6 (Existence and uniqueness of strong solution) Let (4.1) be a SDE and (4.2)

be a Sp, If E|X0|2 ≤ +∞ and f(t, x), g(t, x) are measurable functions such that they satisfy the

Lipschitz condition (4.4) and growth condition (4.5).

Then for any 0 ≤ T <∞, the SDE (4.1) has a pathwise unique solution (4.2) and

E(supt∈[0,T ] |Xs|2) < +∞.

Definition 4.7 (Itô formula) Let F ∈ C2(R). The Itô formula of (4.2) is defined by:

F (Xt) = F (X0) +

∫ t

0

F
′
(Xs)dXs +

1

2

∫ t

0

F
′′
(Xs)d < X,X >t .

Where < X,X >t=
∫ t

0
(g(s,Xs))

2ds.

dt.dt = 0, dWt.dWt = dt, dtdWt = 0.

Example 4.1.1 Let {
dXt = σXtdt+ βXtdWt

X0 = e0.

be a SDE where σ, β are a positive constants, W = {Wt, t ≥ 0} be a 1-dimensional SBM.

dXt = σXtdt+ βXtdWt

dXt = Xt(σdt+ βdWt)

dXt

Xt

= σdt+ βdWt.

We pose Yt = lnXt = f(Xt) ∈ C2(R); by Itô formula:

f(Xt) = f(X0) +

∫ t

0

f
′
(Xs)dXs +

1

2

∫ t

0

f
′′
(X)sd < X,X >s

lnXt = ln e0 +

∫ t

0

1

Xs

(Xs(σds+ βdWs))−
1

2

∫ t

0

1

X2
s

X2
sβ

2ds

ln(
Xt

e0

) =

∫ t

0

(σds+ βdWs)−
1

2

∫ t

0

β2ds

Xt = e0 expσt−
1
2
β2t+βWt .
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Example 4.1.2 Let X = {Xt, t ≥ 0} be a sp, W = {Wt, t ≥ 0} be a d-dimensional BM and

ν = {νt, t ≥ 0} be F−adapted process such that P(
∫ t

0
|νs|2ds <∞) = 1.

We consider the following SDE: {
dXt = νt.XtdWt

X0 = 1
(4.5)

Xt = exp[
∫ t

0
νsdWs − 1

2

∫ t
0
|νs|2ds] solves (4.5).

Proof. We consider F (x) = ln x ∈ C2(R), by Itô formula:

F (Xt) = F (X0) +

∫ t

0

F
′
(Xs)dXs +

∫ t

0

F
′′
(Xs)d < X,X >s

lnXt = lnX0 +

∫ t

0

1

Xs

XsνsdWs −
1

2

∫ t

0

1

X2
s

X2
s |νs|2ds

ln

(
Xt

X0

)
=

∫ t

0

νsdWs −
1

2

∫ t

0

|νs|2ds

Xt = X0 exp
∫ t
0 νsdWs− 1

2

∫ t
0 |νs|

2ds

Since X0 = 1, Xt = exp
∫ t
0 νsdWs− 1

2

∫ t
0 |νs|

2ds

4.2 SDEs derived by Poisson processes

Definition 4.8 Let X = {Xt, t ≥ 0} be a SP, N = {Nt, t ≥ 0} be a Poisson process with

intensity λ. We define a SDE derived by Poisson process as follow:{
dXt = f(t,Xt)dt+ g(t,Xt−)dNt.

X0 = x0 ∈ Rd.
(4.6)

We consider Xt =
∫ t

0
f(s,Xs)ds+

∫ t
0
g(s,Xs−)dNs.

Theorem 4.9 Let us fix 0 < T <∞, (4.6) a SDE derived by Poisson process N .

If f, g satisfy the Lipschitz and Growth conditions and X0 is independent of Nt and E[X2
0 ] <∞

Then for all t < T the SP X = {Xt, t ≥ 0} is a unique strong solution of (4.6) and

supt<T E[X2
t ] <∞.

4.3 SDEs with respect to Poisson random measure

Let (Ω,F ,F,P) be a Fps, (Ω
′
,F ′) be a Ms.

We note FW,k the σ-algebra generated by W and point Poisson process k.

The SDE with respect to Poisson rm is given by:

dXt = f(t,Xt)dt+ g(t,Xt)dWt +

∫
Ω′
h(t,Xt− , r)Nk(dt, dr) (4.7)
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Where f, g : [0, T ]×Rd → R are a measurable function, h : [0, T ]×Rd×Ω
′ → R is a predictable

process, W = {Wt, t ≥ 0} is a SBM and Nk(dr, dt) is a Poisson rm associated to a Poisson Point

process K .

Let Xt =
∫ t

0
f(s,Xs)ds+ g(s,Xs)dWs +

∫
Ω′
h(r, s,Xs−)Nk(dr, ds) be an adapted RCLL process.

Definition 4.10 (solution) Let X = {Xt, t ≥ 0} be a F-adapted Sp. We call the (X,W, Nk)

(or(Ω,F ,F,P,W, Nk, X)) a weak solution of SDE(4.7) if it satisfies (4.7).

If X ∈ FW,k then we call it a strong solution.

Definition 4.11 Let (Ω,F ,F,P,W, Nk, X) and (Ω̌, F̌ , F̌, P̌, W̌ , Ňk, X̌) are two solutions of (4.7)

with initial distribution µ(X0) = µ(X̌0). We say that a weak uniqueness hold for SDE (4.7) if

µ(X) = µ(X̌).

Definition 4.12 Let (Ω,F ,F,P,W, Nk, X) and (Ω̌, F̌ , F̌,P,W, Nk, X̌) with P(X0 = X̌0) = 1. We

say that the Pathwise uniqueness hold for (4.7) if P(X = X̌ for all t ≥ 0) = 1.

4.4 SDEs with respect to compensated Poisson randommea-
sure

Let X = {Xt, t ≥ 0} ba a RCLL stochastic process, W = {Wt, t ≥ 0} be a d1-dimensional SBM,

and Ñk be a compensated Poisson random measure generated by a d2-dimensional stationary

Poisson point process k where d1, d2 ∈ N.

The stochastic differential equations with respect to Compensated Poisson random measure in

d-dimensional space is given by:

dXt = f(t,Xt, ω)dt+ g(t,Xt, ω)dWt +

∫
Ω′
h(t,Xt− , r, ω)Ñk(dr, dt). (4.8)

Where f, g : [0,∞[×Rd × Ω→ Rd are a measurable and F−adapted.

h : [0,∞[×Ω× Rd × Ω
′ → Rd be a simple predictable process.

Ñk(dr, dt) = Nk(dr, dt)− v(dr)dt.

We call (4.9) makes sense if:

• the integrals:∫ t

t0

f(s,Xs, ω)ds <∞,
∫ t

t0

g(s,Xs, ω)dWs <∞,
∫ t

t0

∫
Ω′
h(s,Xs− , r, ω)Ñk(dr, ds) <∞.

makes a sense (they are finite).

• X is F-adapted and locally bounded ,i.e:

supt0<s<t |Xs| <∞ for t0 < s < t, t0, t, s ∈ [0,∞[.
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4.4.1 Notation

Let S2,loc
F (R) =

{
f(t, ω) : f(t, ω) is(Ft)t≥. − adapted,Rd − valued such that :

E
[
supt∈[0,T ] |f(t, ω)|2

]
<∞, ∀T <∞

}
.

For 0 ≤ T <∞; t0, t ∈ [0, T ],≤ t0 < t we consider

Xt = X0 +

∫ t

t0

f(s,Xs, ω)ds+

∫ t

t0

g(s,Xs, ω)dWs +

∫ t

t0

∫
Ω′
h(s,Xs− , r, ω)Ñk(dr, ds). (4.9)

Definition 4.13 (Solution) An adapted RCLL process X is a solution of the SDE with jumps

(4.8) if it is satisfies (4.8) for t ≥ t0.

Definition 4.14 (Uniqueness of solutions) Let X = {Xt, t ≥ 0},Y = {Yt, t ≥ 0} are the

solutions of (4.8) defined on the same space (Ω,F , (Ft)t≥0,P). We say to the pathwise uniqueness

of solution if:

P(sup
t≥0
|Xt − Yt| = 0) = 1.

Lemma 4.15 Let Xt be a solution of (4.8), 0 ≤ T <∞. We assume that:

A1. For every (t, x, ω) in [0,∞[×Rd×Ω, f(t, x, ω) and g(t, x, ω) are uniformly locally bounded

on x.i.e: for 0 < u <∞ and Lu ≥ 0 is a constant depending only on u:

|f(t, x, ω)|+ |g(t, x, ω)| ≤ Lu and |x| ≤ u.

A2. For each n = 1, 2, . . . , τ < ∞ there exists two functions Cn
τ (t) and νnτ (t) where Cn

τ (t) > 0

and
∫

[0,T ]
Cn
τ (t) < ∞ and νnτ (t) is positive,increasing continuous and concave such that as

|x| , |y| ≤ n, and t ∈ [0, T ]:

2(x− y)(f(t, x, ω)− f(t, y, ω)) + |g(t, x, ω)− g(t, y, ω)|2 +

∫
Ω′
|h(r, t, x, ω)− h(r, t, y, ω)|2v(dr)

≤ Cn
τ (t)νnτ (t)(|x− y|2).

Then the solution of (4.8) is pathwise unique .

Let

X i
t = X i

0 +

∫ t

0

f i(s, ω)ds+

∫ t

0

g(s,X i
s, ω)dWs +

∫ t

0

∫
Ω′
h(s,X i

s− , r, ω)Ñk(dr, ds) (4.10)

be a SDE with jump in 1-dimensional space where W is 1-dimensional SBM and k is a 1-

dimensional Poisson point process and Let X = {X i
t , t ≥ 0} is solution of (4.9) where i = 1, 2

and t ≥ 0;
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Theorem 4.16 (Comparison for Solutions of SDE) Let (4.10) be a SDE with jump in 1-

dimensional space.We assume that for i = 1, 2 and ∀t ≥ 0 :

A1.
∫ t

0
|f i(s, ω)|ds <∞ P−a.s.

A2. There exists zi(t, x, ω) such that z1(t, x, ω) ≥ z2(t, x, ω) for n ≥ 0 there exists jTn (t), cTn (l)

where jTn is non random
∫ T

0
jTn dt <∞ and cTn (l) is non random and strictly increasing on

l > 0 with cTn (0) = 0 and
∫

0
dl
cn(l)

=∞; such that for (t, x, ω),(t, y, ω) ∈ [0, T ]× R× Ω:

1. f 1(t, ω) ≥ z1(t,X1
t , ω); f 2(t, ω) ≤ z2(t,X2

t , ω).

2. for x, y ∈ R and |x|, |y| ≤ n;

sgn(x, y).(z2(t, x, ω)− z2(t, y, ω)) ≤ cTn j
T
n (|x− y|).

3. |g(t, x, ω)− g(t, y, ω)|2 ≤ cTn j
T
n (|x− y|).

A3. x ≥ y ⇒ x+ h(t, x, r, ω) ≥ y + h(t, x, r, ω).

If X1
0 ≤ X2

0 then X1
t ≤ X2

t P− a.s ∀t ≥ 0.

4.4.2 Existence and uniqueness of solution of SDEs with respect to
compensated Prm

Existence of strong solution for the Lipschitzian Case:

Definition 4.17 let X be a solution of (4.8). We say it is strong solution if X ∈ FW,Ñk .

Lemma 4.18 Let (4.8) be a SDE with jump. We assume that :

A1. : Xt is a solution of (4.8).

A2. : E|X0|2 <∞.

A3. : For every (t, x, ω)in[0,∞[×Rd × Ω, q(t) ≤ 0 is non-random:

2 < x.f(t, x, ω) > ≤ q(t)(1 + |x|2).

|g(t, x, ω)|2 +
∫

Ω′
|h(r, t, x, ω)|2v(dr) ≤ q(t)(1 + |x|2) and;

For 0 < T <∞; QT =
∫ T

0
q(t)dt <∞ then E

(
supt∈[0,T ] |Xt|2

)
≤ RT .

Where RT is constant only depending on QT and E|X0|2 .

Under this assumptions then for T <∞;E
(
supt∈[0,T ]|Xt|2

)
≤ RT <∞ and the solution

Xt ∈ S2,loc
F (R).

Let 0 < T <∞, we define L2
F(Rd) = {f(t, ω) : f(t, ω)isF− adapted, Rd − valeud such that

E[
∫ T

0
|f(t, ω)|2dt] <∞}.
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Theorem 4.19 Let{
dXt = f(t,Xt, ω)dt+ g(t,Xt, ω)dWt +

∫
Ω′
h(r, t,Xt, ω)Ñk(dr, dt), t ∈ [0, T ].

X0 = x0 ∈ Rd.
(4.11)

be a SDE with jump where f, g : [0,+∞[×Rd × Ω→ Rd are measurable and

h : [0,∞]× Rd × Ω× Ω
′ → Rd is F-adapted.

We assume that:

There exist K(t) a non random and non negative function such that
∫ T

0
k(t) <∞;

A1: For X0 ∈ F0: E|X0|2 <∞.

A2: For (t, x, ω) ∈ [0,∞]× Rd × Ω; |f(t, x, ω)| ≤ k(t)(1 + |x|).

|g(t, x, ω)|2 +
∫

Ω′
|h(r, t, x, ω)|2v(dr) ≤ k(t)(1 + |x|2).

A3: For x, y ∈ Rd;

|f(t, x, ω)− f(t, y, ω)| ≤ k(t)|x− y|

|g(t, x, ω)− g(t, y, ω)|2 +
∫

Ω′
|h(r, t, y, ω)− h(r, t, x, ω)|2v(dr) ≤ k(t)|x− y|2.

Then (4.11) has a pathwise unique F-adapted solution {Xt}t≥0 ∈ S2,loc
F (R)

If f, g are (FW,Ñkt )t∈[0,T ]-adapted and h is a (FW,Ñkt )t∈[0,T ]-predictable

Then {Xt}t≥0 is strong solution of (4.11).

Proof. See the proof [6,P 80].

Theorem 4.20 Let (4.11) be a SDE with jump. If the First assumption isn’t verified then we

give a new process Z = {Zt, t ≥ 0} ∈ (FW,Nkt )t≥0 such that E|Zt|2 < ∞, then (4.11) has a

pathwise unique strong solution X = {Xt, t ≥ 0}:

Xt = Zt +

∫ t

t0

f(s,Xs, ω)ds+

∫ t

t0

g(s,Xs, ω)dWs +

∫ t

t0

∫
Ω′
h(r, s,Xs− , ω)Ñk(dr, ds).

Where f, g : [0,∞[×Rd × Ω→ Rd are measurable and F−adapted.

h : [0,∞[×Rd × Ω
′ × Ω→ Rd is a simple predictable process.

Theorem 4.21 Let (4.11) be a SDE respect to compensated Poisson measure jump and suppose

that assumptions of theorem (4.19) are verified excepting the third assumption is weakened to :

For n = 1, 2 . . . ., there exists Dn(t) satisfies the same condition of K(t) such that |x|, |y| ≤ n;

|f(t, x, ω)− f(t, y, ω)| ≤ Dn(t)|x− y|;

|g(t, x, ω)− g(t, y, ω)|2 +

∫
Ω′
|h(t, x, r, ω)− h(t, y, r, ω)|2v(dr) ≤ Dn(t)|x− y|2.

Then (4.11) has the same result of theorem (4.19)
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Let (Ω,F ,F,P) be a Ps, (Ω
′
,F ′) be a Ms

We consider

Xt =

∫ t

0

f(s,Xs)ds+

∫ t

0

g(s,Xs)dWs +

∫ t

0

∫
Rd\{0}

h(s,Xs, r)Ñk(dr, ds), ∀t ≥ 0 (4.12)

a 1-dimensional SDE with jumps.

Theorem 4.22 Let (4.12) be a 1-dimensional SDE with respect to compensated Poisson random

measure. We assume that:

A1.
∫
Rd\{0}

|r|2

1 + |r|2
v(dr) <∞.

A2. The processes:

1. f : [0, T ]× Rd → Rd;

2. g : [0, T ]× Rd → Rd⊗d;

3. h : [0, T ]× Rd × Rd \ {0} → Rd ;

Are a Borel measurable processes such that for (t, x) ∈ [0, T ]×Rd, there exist a non random

function m such that
∫ T

0
m(t)dt <∞:

i. |f(t, x)| ≤ m(t)(1 + |x|)

ii |g(t, x)|2 +
∫
Rd\{0} |h(t, x, r)|2v(dr) ≤ m(t)(1 + |x|2).

A3. 1. f(t, x) and g(t, x) are continuous on x.

2. For h > 0, limh→0 |h(t, x+ h, r)− h(t, x, r)|2v(dr) = 0.

A4. For any given T <∞; n ≥ 0, there exist jTn (t), cTn (l) where jTn is non random
∫ T

0
jTn dt <∞

and cTn (l) non random and strictly increasing on l > 0 with cTn (0) = 0 and
∫

0
dl
cn(l)

=∞:

1. |g(t,X1)− g(t,X2)|2 ≤ jTn (t)cTn (t)(|X1 −X2|).

2. for any x, y ∈ R; x ≥ y ⇒ x+ h(t, x, r) ≥ y + h(t, y, r).

3. < X1 −X2, f(t,X2)− f(t,X2) > ≤ jTn (t)cTn (l)(|X1 −X2|2).

Then (4.10) has a pathwise unique strong solution.

Exponential Solutions to Linear SDE with jumps

We consider :

F1
k (R) = {g(t, x, ω); g(t, x, ω) is (Ft)≥0 − predictable such that, ∀t > 0
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E
[∫ t

0

∫
Ω′
|g(s, x, ω)|N̂k(ds, dr)

]
<∞}.

F2
k (R) = {g(t, x, ω); g(t, x, ω) is (Ft)≥0 − predictable such that, ∀t > 0

E
[∫ t

0

∫
Ω′
|g(s, x, ω)|2N̂k(ds, dr)

]
<∞}.

F2,loc
k (R) = {g(t, x, ω); g(t, x, ω) is (Ft)≥0 − predictable such that there exist a stopping time

σu ↑ ∞ a.s ∀ u = 1, 2, . . . and 1[0,σu](t)g(t, x, ω) ∈ F2
k}.

We consider a SDE with Compensated Poisson random measure as follow:{
dX = XtνtdWt +Xt−

∫
Ω
Θt(r)Ñk(dt, dr)

X0 = 1.
(4.13)

To solve this equation we separate it by two equations:

First: {
dHt = νt.HtdWt

H0 = 1
(4.14)

We solved in example (4.1.2).

Second: We solve the following equation:{
dYt = Yt−

∫
Ω′
Θt(r)Ñk(dr, dt).

Y0 = 1.
(4.15)

Where Θt is a simple predictable process such that Θt ∈ F2,loc
k (R) ∩ F1

k (R).

The following equation solves (4.15)

Yt =
∏

t0<s≤t

(1 +

∫
Ω′
Θs(r)Nk(dr, {s})). exp−

∫ t
0

∫
Ω
′ Θs(r)v(dr)ds . (4.16)

Proof.

1. We show that (4.15) makes sense: by Θt ∈ F2,loc
k (R) ∩ F1

k (R). there exist a stopping time

σu ↑ ∞ a.s ∀ u = 1, 2, . . . and 1[0,σu](t)g(t, x, ω) ∈ F2
k then

∫ t∧σu
0

∫
Ω′
Nk(ds, dr) makes

sense.

2. Suppose that

At =
∏

t0<s≤t

(1 +

∫
Ω′
Θs(r)Nk(dr, {s})).

Bt = exp−
∫ t
0

∫
Ω
′ Θs(r)v(dr)ds .

By the formula of integration by part dAtBt = At−dBt +Bt−dAt + d[A,B]t where
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[A,B]t =< Ac, Bc > +
∑

t0≤s<t4As4Bs = 0 because Bc = 0 and 4Bs = 0. Then

AtBt − A0B0 =

∫ t

0

As−dBs +
∑

0<s≤t

Bs− 4 As

AtBt − 1 =

∫ t

0

As−dBs +
∑

0<s≤t

Bs−(As − As−)

= −
∫ t

0

As−Bs

∫
Ω′
Θs(r)v(dr)ds+

∑
0 < s ≤ tBs−(

As
As−
− 1)

= −
∫ t

0

As−Bs

∫
Ω′
Θs(r)v(dr)ds+

∑
0 < s ≤ tBs− [(1 +

∫
Ω′
Θs(r)Nk(dr, {s}))− 1].

Then Yt solves (4.15).

Theorem 4.23 Let Xt = Ht.Yt, Assume that as above Θt ∈ F2,loc
k (R)∩F1

k (R) and P(
∫ t

0
|νs|2ds <

∞) = 1;

Then Xt is the unique solution of (4.13).

Weak Solution:

Let (Ω,F , (Ft)t≥0,P) be a fps, (Ω′ ,F ′) be a ms. We consider a SDE with jumps where

f(t, x, ω), g(t, x, ω), h(t, x, ω, r) have the same properties of (4.8) :

dXt = f(t,Xt, ω)dt+ g(t,Xt, ω)dWt +

∫
Ω′
h(r, t,Xt− , ω)Ñk(dr, dt). (4.17)

And suppose that X0 has a law µ,i.e: ∀B ∈ B(Rd);µ(B) = P(X0 ∈ B).

Definition 4.24 (Weak solution) Let X = {Xt, t ≥ 0} be an F-adapted process defined on a

new Wiener-Poisson space (Ω̃, F̃ , (F̃t)t≥0, P̃, W̄ , N̄l). We call X a Weak solution of (4.17) if it

satisfies (4.17), P̃−a.s and ∀B ∈ B(Rd),P(X0 ∈ B) = µ(A)

Definition 4.25 (Uniqueness of Weak solution) We say that (4.17) has a unique Weak so-

lution if, for any two Weak solutions X and Y such that X is defined on
(

Ω̃1, F̃1, (F̃t)t≥0,1, P̃1, W̄ , N̄l1

)
and Y is defined on

(
Ω̃2, F̃2, (F̃t)t≥0,2, P̃2, W̄ , N̄l2

)
; X0 and Y0 have the same law µ ,i.e:

∀B ∈ B(Rd)⊗u; P̃1(X0 ∈ B) = P̃2(Y0 ∈ B) = µ(B), where u is time and

B(Rd)⊗u = B(Rd)× B(Rd)× · · · × B(Rd).

Implies that ∀t1 < t2 < · · · < tu,∀B ∈ B(Rd)
⊗u :

P̃1(Xt1 , Xt2 , . . . , Xtu
∈ B) = P̃2(Yt1 , Yt2 , . . . , Ytu ∈ B)

Definition 4.26 Let (E, ε) be a Ms, We say that (E, ε) is a standard measurable space if there

is a mapping between two sets such that both the mapping itself and its inverse mapping are

measurable.
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Let dQt = Qtνtbtdt + νtQtdWt + Qt−
∫

Ω′
Θt(r)Ñk(dt, dr) be SDE with jumps to solve it we use

an exponential solution to (4.13) such that we suppose dQt = νtQtdW̃t +Qt−
∫

Ω′
Θt(r)Ñk(dt, dr),

where W̃t = Wt −
∫ t

0
νsds then we show if W̃ is SBM or not;

Theorem 4.27 (A Girsanov type Theorem) We assume that (E, ε) be a standard measur-

able space:

1. If for 0 ≤ T <∞ and for a constant l(t) such that
∫ T

0
l(t)dt ≤ ∞; |νt|2+

∫
Ω′
|Θt(r)|2v(dr)dt ≤

l(t), then for each 0 ≤ T < ∞, P̆T = QtdP is a probability measure; and there exist P̂ a

probability measure defined on (E, ε) such that for each 0 ≤ T <∞, P̂|εT = P̆T

W̃t = Wt −
∫ t

0

νsds, t ≥ 0 (4.18)

is SBM;

Under probability measure P̂ ;

Ñ
′

k = Ñk −Θt(r)v(dr)dt (4.19)

= N(dt, dr)− v(dr)dt−Θt(r)v(dr)dt (4.20)

= N(dt, dr)− (1 +Θt(r))v(dr)dt. (4.21)

is a compensated Poisson measure with compensator (1 +Θt(r))v(dr)dt.

If Θt(r) ≡ 0 then Ñ
′

k = Ñk is a Compensated Poisson measure under the probability measure

P̂.

2. We assume that dP̂ = QtdP with Θt(r) ≡ 0;for each t ≥ 0, P̂ = HtdP is defined in (E, ε)

such that, for each 0 ≤ T <∞, P̂|εT = P̂.

If for any given 0 ≤ T < 0,
∫ T

0
|νt|2dt P− a.s then:

(4.18) is SBM and Ñk is a compensate Poisson measure with compensator v(dr)dt.

Existence and Uniqueness of Weak solution of SDEs with Jumps

Proposition 4.28 Let{
dQt = νtQtbt(ω)dt+ νtQtdWt +Qt−

∫
Ω′
Θt(r)Ñk(dt, dr).

Q0 = c0.
(4.22)

be a SDE with compensated Poisson random measure where ν = {νt, t ≥ 0} is a d-dimensional

(Ft)t≥0-adapted, Θ = {Θt, t ≥ 0} is a 1-dimensional (Ft)t≥0-predictable process, bt(ω) is a Sp, c0

is a constant, W is a d-dimensional SBM, Ñk(dt, dr) is a 1-dimensional Compensated Poisson

measure.
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We assume that: |νt|2 +
∫

Ω′
|Θt(r)|2 ≤ j(t), where j(t) ≥ 0 is non random and for 0 < T < ∞∫ T

0
j(t)dt ≤ ∞.

Then the SDE (4.22) has a unique weak solution if bt(ω) is a d-dimensional (Ft)t≥0-adapted

process such that |bt(ω)| ≤ O0, where O0is constant.

Let

Xt =

∫ t

0

f(s,Xs)ds+

∫ t

0

g(s,Xs)dWs +

∫ t

0

∫
Ω′
h(s,Xs, r)Ñk(dr, ds) ∀t ≥ 0 (4.23)

be a 1-dimensional SDE with jumps.

Theorem 4.29 Let (4.23) be a SDE. We assume that X = {X i
t , t ≥ 0, i = 1, 2} is a solution of

(4.23) defined in the same Probability space with the same SBM W and the compensated Poisson

random measure Ñk; and we assume that:

A1. The function f(s,Xs), g(s,Xs), h(s,Xs, r) is not dependent on ω.

A2.
∫ t

0

∫
Ω′
h(s,Xs, r)v(dr)ds <∞.

A3. For x, y ∈ R; x ≥ y ⇒ x+ h(t, x, r) ≥ y + h(t, y, r).

A4. L0
t (X

1
. −X2

. ) = 0

Then the weak uniqueness of weak solutions of (4.23) implies the pathwise uniqueness of solutions

of (4.23).

Theorem 4.30 Let

dXt = (f(t,Xt) + f 0(t,Xt))dt+ g(t,Xt)dWt +

∫
Ω′
h(t,Xt− , r)Ñk(dr, dt) (4.24)

and (4.17) are a SDEs with jumps.

We assume that :

• f 0(t, x) ∈ Rd⊗1-valued.

• For any 0 ≤ T <∞, there exist Gt non random and it is depending on T ; |f 0(t, x)|2 ≤ Gt

• For any 0 ≤ T < ∞, there exist mt-non random such that mt ≥ 0 and
∫ T

0
mtdt < ∞ and

there exist g−1(t, x) such that |g−1(t, x)|2 ≤ mt.

Then the following statements are equivalent:

1. The SDE (4.24) has a weak solution X = {Xt, t ≥ 0} with initial value X0 = x0, where x0

is Rd constant.
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2. X = {Xt, t ≥ 0} with initial value X0 = x0, where X0 is Rd constant is the weak solution

of a SDE(4.17).

Theorem 4.31 (A Girsanov type Theorem) Let (Ω,F ,F,P) be a Fps, dXt = (f(t,Xt) +

f 0(t,Xt))dt+ g(t,Xt)dWt +
∫

Ω′
h(t,Xt− , r)Ñk(dr, dt) be a SDE with jumps; and

dXt = f(t,Xt)dt+ g(t,Xt)dWt +

∫
Ω′
h(t,Xt− , r)Ñk(dr, dt) (4.25)

be a d-dimensional SDE with compensated Poisson random measure. We assume that:

• X = {Xt, t ≥ 0} is a weak solution of (4.25) with initial value X0 = x0 ∈ Rd is a constant.

• For any 0 ≤ T <∞, there exist Gt non random and it is depending on T ;

|f(t, x)|2 + |f 0(t, x)|2 + |g(t, x)|2 +
∫

Ω′
|h(t,Xt− , r)|2v(dr) ≤ G0(1 + |x|2).

• There exist g−1(t,Xt) such that for a non random mt where for any 0 ≤ T <∞;
∫ T

0
mtdt <

∞;

|g−1(t, x)|2 ≤ mt.

• We pose Qt(g
−1f 0) = exp[

∫ t
0
(g−1f 0)(s,Xs)dWs − 1

2

∫ t
0
|(g−1f 0)(s,Xs)|2ds]]

dP̃ = QtdP.

W̃t = Wt −
∫ t

0
(g−1f 0)(s,Xs)ds.

Then for 0 ≤ T <∞ and t ∈ [0, T ];

1. P̃ is a probability measure.

2. Under P̃T , W̃ = {W̃t, t ∈ [0, T ]} is SBM.

3. Under P̃T , Ñk([0, t], dr) is a Compensated Poisson measure with compensator v(dr)t.

By (4.27), an adapted process X = {Xt, t ∈ [0, T ]} defined on
(

Ω,F , (Ft)t∈[0,T ], P̃t, W̃t, Ñk([0, t], dr)
)

is a weak solution of (4.24) with initial value X0 = x0 ∈ Rd.

Theorem 4.32 Let (Ω,F , (Ft)t≥0,P) be a Ps. We assume that for any given 0 < T < ∞, t ∈

[0, T ], there exist q(t) non random and positive such that
∫ T

0
q(t) <∞;

If |Θt| < q(t). Then we can define a new Probability measure P̂T as: dP̂T = exp[
∫ T

0
ΘsdWs −

1
2

∫ T
0
|Θs|2ds]dP where W = {Wt, t ∈ [0, T ]} then ∀t ∈ [0, T ], W̃t = Wt − 1

2

∫ t
0
Θsds is a new

SBM under P̂T
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4.5 Some techniques to resolve SDEs, Ito, Girsanov

In this section we introduce Itô and Girsanov technique for solving the SDEs.

1. Let (Ω,F ,F,P) be a fps, W = {Wt, t ∈ [0, T ]} be a 1-dimensional SBM. We consider:{
dXt = σXtdt+ f(t,Xt)dt+ βdWt

X0 = e t ∈ [0, T ].
(4.26)

be a 1-dimensional SDE where σ, β are positive constants, f(t, x) is bounded and mea-

surable such that for any given 0 < T < ∞ for t ∈ [0, T ]; there exist q ≥ 0 for

(t, x), (t, y) ∈ [0, T ]× Rd

1. |f(t, x)| ≤ q.

2. |f(t, x)− f(t, y)| ≤ q|x− y|

To solve (4.26), we use (4.32);

dXt = σXtdt+ f(t,Xt)dt+ βdWt

dXt = σXtdt+ β(β−1f(t,Xt)dt+ dWt)

dXt = σXtdt+ βdW̃t.

Where dW̃t = β−1f(t,Xt)dt+ dWt.

We start by solving the following SDE for t ∈ [0, T ]{
dXt = σXtdt+ βdWt

X0 = e
(4.27)

We pose that h(t, x) = σx and g(t, x) = β and we verify the conditions of the theorem

(4.6):

For x, y ∈ R;

|h(t, x)− h(t, y)|+ |g(t, x)− g(t, y)| = |σx− σy|+ |β − β|

≤ |σ||x− y|.

And

|h(t, x)|2 + |g(t, x)|2 = |σx|2 + |β|2

≤ |σ|2|x|2 + |β|2

≤ |σ|2|x|2 + |β|2 + |σ|2 + |β|2|x|2

≤ (|σ|2 + |β|2)(1 + |x|2).
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Then there exist a constant L =
√
|σ|2 + |β|2, then the SDE (4.27) has a unique solution

X = {Xt, t ∈ [0, T ]}.

Search of solution X:

We pose Xt = S(t, u) ∈ C2(R) where u = Wt; by Itô formula:

S(t, u) = S(0, u) +

∫ t

0

S
′
(s, u)ds+

∫ t

0

S
′
(s, u)du+

1

2

∫ t

0

S
′′
(t, u)β2ds.

Then:

dS(t, u) =
∂S

∂t
(t, u)ds+

∂S

∂u
(t, u)du+

1

2

[
∂2S

∂t2
(t, u)dt2 +

∂2S

∂u2
(t, u)du2 + 2

∂2S

∂t∂u
(t, u)dtdu

]
.

With : dt2 = 0, du2 = dW 2 = dt, dtdu = 0, then:

dS(t, u) =

(
∂S

∂t
(t, u) +

1

2

∂2S

∂u2
(t, u)

)
dt+

∂S

∂u
(t, u)du.

By {
∂S
∂t

+ 1
2
∂2S
∂u2 = σS.

∂S
∂u

= β.

Then

∂S

∂t
= σS.

S(t, u) = k(u) expσt .

And

∂S

∂u
= k

′
(u) expσt = β.

k
′
(u) = β exp−σt .

Then we calculate k(u) with k(0) = X0 = e:

k(Xt) =

∫ t

0

k
′
(u)du =

∫ t

0

β exp−σs du.

k(Xt)−X0 =

∫ t

0

β exp−σs dWs

k(Xt) = e+ β

∫ t

0

exp−σs dWs.

So:

S(t,Wt) =

(
e+ β

∫ t

0

exp−σs dWs

)
expσt .

Xt = e expσt +β

∫ t

0

expσ(t−s) dWs
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Second:

We applying theorem (4.32): for (t, x) ∈ [0, T ]× R

|β−1f(t, x)|2 ≤ |β|2|f(t, x)|2

≤ |β|2q2

≤ L(t)

Then we define a new probability measure P̂T such that:

dP̂T = exp[

∫ T

0

β−1f(s,Xs)dWs −
1

2

∫ T

0

|β−1f(s,Xs)|2ds]dP.

And

W̃t = Wt −
∫ t

0

β−1f(s,Xs)ds.

Is a SBM.

SO we have under P̂T−a.s for t ∈ [0, T ]:{
dXt = σXtdt+ f(t,Xt)dt+ βdW̃t

X0 = e.

And Xt = e expσt +β
∫ t

0
expσ(t−s) dWs where Xt ∈ FW and Xt /∈ FW̃ .

There (Xt, W̃ ) is a Weak solution of (4.26).
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Conclusion

The Stochastic differential equations derived by compensated Poisson random measure is im-

portant in finance and it used in geometry and sens and it have a unique solution.

Those SDEs are used to describe phenomena which can get suddenly events that violate the

continuity such as catastrophes, failure of a system,....

In my opinion, the application in fact of this SDEs is fertile and important to encourage students

to undertake research in this area .
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Appendix A

Poisson random Variables

A.1 Probability space:

A.1.1 σ-algebra:

Definition A.1 (σ-algebra) Consider a non-empty set Ω, the σ-algebra (or σ-field) F is a

collection of subsets of Ω satisfies the following conditions:

• φ ∈ F (F contains the empty set).

• ∀A ∈ F =⇒ Ac ∈ F (F stable by complementation).

• ∀(Ai)i≥1 ⊂ F disjoint for i = 1, 2, . . . =⇒
⋃∞
i=1 Ai ∈ F (F stable under union).

Example A.1.1 Let Ω = {6, 7, 5, 9}, we define F = {φ,Ω, {6, 7}, {5, 9}}

F is a σ-algebra we can easy check:

1. φ ∈ F .

2. Stable by complement:

2.1 φc = Ω ∈ F .

2.2 Ωc = φ ∈ F .

2.3 {6, 7}c = {5, 9} ∈ F .

2.4 {5, 9}c = {6, 7} ∈ F .
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3. Stable by union:

3.1 φ ∪ Ω = Ω ∈ F , φ ∪ {6, 7} = {6, 7} ∈ F , φ ∪ {5, 9} = {5, 9} ∈ F .

3.2 Ω ∪ φ = Ω ∈ F , Ω ∪ {6, 7} = Ω ∈ F , Ω ∪ {5, 9} = Ω ∈ F .

3.3 {6, 7} ∪ {5, 9} = φ ∈ F .

Definition A.2 Let Ω be a non-empty set and let A be a subset or collection of subsets of Ω,

the σ-algebra generated by A is a smallest σ-algebra containing A. We note it σ(A)

If any σ-algebra F contains A then σ(A) ⊂ F .

Example A.1.2 Let Ω = {2, 3, 9, 5, 6, 8} and A = {2, 3}

σ(A) = {Ω, φ, {2, 3}, {9, 5, 6, 8}}.

Definition A.3 Let Ω = R the Borel σ-algebra is the σ-algebra generated by all open subset

(interval).

We note B(R).

Definition A.4 Let Ω 6= φ and F be a σ-algebra on Ω.

We call (Ω,F) a measurable space.

Definition A.5 (Measure) Let (Ω,F) be a ms, the function: µ : F → [0,∞[ is a measure if

it has following properties:

• µ(φ) = 0.

• For any sequence of disjoint sets Ai ∈ F , for i = 1, 2, . . . :

µ(∪i≥1) =
∑
i≥1

µ(Ai).

Definition A.6 Let (Ω,F) be a ms and µ be a measure on (Ω,F).

We call the triple (Ω,F , µ) a measure space.

Definition A.7 (Probability measure) Let (Ω,F) be a ms, the probability measure P on

(Ω,F) is a measure P : F → [0, 1] such that P(Ω) = 1.

Definition A.8 Let (Ω,F) be a ms, P be a probability measure and A be measurable set. We

say A is P-negligible set if P(A) = 0.

Definition A.9 Let (Ω,F) be a ms and P be a probability measure.

We call the triple (Ω,F ,P) a probability space.
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Definition A.10 Let (Ω,F ,P) be a Ps. We call it a complete probability space if it contains all

the P−negligible sets.

Definition A.11 (Measurable mapping) Let (Ω,F),(Ω′ ,F ′) are a ms and let the mapping

f : (Ω,F)→ (Ω
′
,F ′). We call f a measurable mapping if :

For each subset A of F ′:

f−1(A) = {ω ∈ Ω, f(ω) ∈ A} ∈ F .

A.2 Random variable

Let us fix (Ω,F ,P) a ps and (Ω′ ,F ′) a ms;

Definition A.12 Let X : (Ω,F ,P)→ (Ω
′
,F ′) be a mapping.

We call X a random variable if X is measurable, see (A.11).

Definition A.13 Let X : (Ω,F ,P) → (Ω
′
,F ′) be a rv, we call X a real rv if Ω

′
= R and

F ′ = B(R) .

Definition A.14 (The law) Let X be a real rv. The law of X is defined by:

∀A ∈ B(R), P(A) = ({ω ∈ Ω : X(ω) ∈ A}).

Definition A.15 (The distribution function) Let X be a real random variable. The distri-

bution function of X is defined by:

FX(x) = P(X ≤ x), ∀ x ∈ R.

Definition A.16 (Independent) Let X1, X2, . . . , Xn be a rv we say that they are independent

if:

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P(X1 ≤ x1)P(X2 ≤ x2) . . .P(Xn ≤ xn). (A.1)

Definition A.17 Let X be a rv on (Ω,F ,P). We say that it is integrable if
∫

Ω
|X(ω)|P(dω) <

∞.

More generally if:
∫

Ω
|X(ω)|kP(dω) <∞, (k > 0) then we call X a k− integrable.

If k = 2, we call X a Square integrable.

Definition A.18 (The expectation) Let X be an integrable, positive rv. The expectation

E(X) of X is the integral of X with respect to probability measure P defined by:

E(X) =

∫
Ω

X(ω)P(dω).
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Definition A.19 (Conditional expectation) Let (Ω,F ,P) be a ps, X be an integrable rv

such that E[X] < ∞ and let G ⊂ F . The conditional expectation E[X|G] is the function on Ω

to Rd satisfying:

• E[X|G] is G-measurable.

• For all G ∈ G,
∫
G
E[X|G]dP =

∫
G
XdP.

Theorem A.20 Let (Ω,F ,P) be a ps, G ⊂ F , and let X : Ω→ Rd be a rv such that E[X] <∞.

We have:

• If X is G-measurable then E[X|G] = X.

• If X is independent of G then E[X|G] = E[X].

• E[E[X|G]] = E[X].

• Let Y be an integrable rv, α, β ∈ R then:

1. E[αX + βY |G] = αE[X|G] + βE[Y |G].

2. If Y is G-measurable and X is independent of G then E[X.Y ] = Y.E[X].

• |E[X|G]| ≤ E[|X||G].

• If X is a square integrable |E[X|G]|2 ≤ E[|X|2|G]

Definition A.21 (The covariance) Let X and Y are integrable rvs. The covariance, cov(X, Y )

of X, Y is defined by:

cov(X, Y ) = E[X.Y ]− E[X]E[Y ].

Definition A.22 (The variance) Let X be a square integrable rv. The variance, V ar(X) of

X is defined by:

V ar(X) = E[X − E(X)]2 = E[X2]− E[X]2.

The variance is the special case of covariance if X = Y .

Discrete and continuous random variable

1. Discrete random variable

Definition A.23 Let X be a rv. We say that X a discrete rv if it takes separate (finite)

values.
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Definition A.24 Let X be a discrete rv with a possible values x1, x2, . . . , xn. The proba-

bility mass function f(xi) is a function such that :

1. f(xi) ≥ 0.

2.
∑n

i=1 f(xi) = 1.

3. f(xi) = P(X = xi).

Definition A.25 (Expectation) Let X be a discrete rv. The expectation of X is defined

by:

E(X) =
n∑
i=1

xif(xi) xi ∈ Ω, i = 1, 2, . . . , n.

Important discrete distribution function:

1. Binomial distribution

Definition A.26 Let (Ω,F ,P) be a ps and let X be a discrete rv. X has a Binomial

distribution if:

P(X = k) = Ck
np

k(1− p)n−k, k = 0, 1, . . . , n, 0 ≤ p ≤ 1. (A.2)

E(X) = np V ar(X) = np(1− p).

We write X v B(n, p).

2. Poisson distribution

Definition A.27 Let (Ω,F,P) be a ps and let X be a discrete rv. X has a Poisson

distribution if:

P(X = k) =
λk

k!
exp−λ k = 0, 1, . . . , λ > 0. (A.3)

E(X) = V ar(X) = λ.

We write X v P(λ).

2. Continuous random variable

Definition A.28 Let X be a rv. We say that X is continuous rv if it takes values in

continuously interval.
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Definition A.29 Let X be a uniformly continuous rv. The density function fX(x) of X

is defined by:

fX(x) =
dFX(x)

dx
.

Such that:

1. fX(x) ≥ 0.

2.
∫ +∞
−∞ fX(x) = 1.

Definition A.30 (Expectation) Let X be a continuous rv. The expectation of X is

defined by:

E(X) =

∫ +∞

−∞
xfX(x)dx.

Important continuous distribution function:

1. Gaussian distribution

Definition A.31 Let X be a continuous rv. We say that X is a Gaussian (Normal)

variable if the form of its density function is:

fX(x) =
1

σ
√

2π
exp
(
− (x− µ)2

2σ2

)
.

2. Exponential Distribution

Definition A.32 Let X be a continuous rv. We say that X an exponential r.v. with

parameter λ if it has a density function of the form:

fX(x) =

{
λ exp−λx x>0.
0 x<0.

(A.4)

E(X) =
1

λ
V ar(X) =

1

λ2
.

We writ X v exp(λ).

A.2.1 Multidimensional random variable

Definition A.33 Let (Ω,F ,P) be a ps and (Rn,B(Rn)) be a ms and let X1, X2, . . . , Xn be

rvs .The multidimensional rv (vector random variable) X = (X1, X2, . . . , Xn) is a measurable

mapping such that :

X : (Ω,F ,P)→ (Rn,B(Rn))

ω 7→ X = (X1(ω), X2(ω), . . . , Xn(ω)).
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Characteristics of multidimensional random variable:

1. Distribution function

Definition A.34 Let X = (X1, X2, X3, . . . , Xn)T be a vector rv. The distribution function

is defined from :

FX(x) = FX1,X2,...,Xn(x1, x2, . . . , xn) (A.5)

= P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) (A.6)

= P(X1 ≤ x1)P(X2 ≤ x2) . . .P(Xn ≤ xn) (A.7)

= FX1(x1)FX2(x2) . . . FXn
(xn). (A.8)

2. Expectation

Definition A.35 Let X be a multidimensional rv. The expectation of X is defined by :

E(X) = E


X1

X2
...
Xn

 =


E(X1)
E(X2)

...
E(Xn)

 .

3. The covariance matrix

Definition A.36 The covariance matrix of X = (X1, X2, X3, . . . , Xn)T is:

V = V ar(X) = E[(X−E(X))(X−E(X))T ] =


var(X1) cov(X1, X2) . . . cov(X1,n )

cov(X2, X1) var(X2) . . . cov(X2, Xn)
...

... . . . ...
cov(Xn, X1) cov(Xn, X2) . . . cov(Xn, Xn)

 .

A.3 Poisson real random variable

Definition A.37 Let X a real rv we say that X is a Poisson real rv with parameter λ > 0, if

it has a Poisson distribution function, see equation (A.3).

E(X) = V ar(X) = λ.

We write X v P(λ).

Proposition A.38 ( Poisson addition property) Let a sequence X1, X2, . . . , Xk, . . . of in-

dependent Poisson rvs, then: ∑
k≥1

Xk v P(
∑
k≥1

λk). (A.9)
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Proposition A.39 (Poisson splitting property) Let X v P(λ), Yk, k ∈ N with P(Yk =

j) = pj for all j = 1, 2, . . . , n and X and Yk are independent. We define:

Zj =
X∑
k=1

1{Yk=j}. (A.10)

Then Z1, . . . , Zn are independent rvs with Xj v P(λpj), for all j = 1, 2 . . . .

A.4 Convergence in probability and convergence in distri-
bution

A.4.1 Convergence in probability

Definition A.40 Let (Ω,F,P) be a ps, X be a rv and let X1, X2, . . . , Xn be a sequence of rv.We

say that it converges in probability to X if for, each ε > 0:

lim
n−→∞

P(|Xn −X|) = 0.

A.4.2 Convergence in distribution

Definition A.41 Let (Ω,F ,P) be a ps, X be a rv and let (Xn)n>0 be a sequence of rv. We say

it is convergent in distribution X if:

lim
n−→∞

FXn(x) = FX(x).

A.5 The Poisson approximation to the Binomial distribu-
tion

The Binomial distribution tends toward the Poisson distribution as: n→∞, p→ 0 and λ = np

stays constant.

Ck
np

k(1− p)n−k ≈ λk

k!
exp−λ .

Example A.5.1 Albinism is a rare genetic disorder,that affects one in 20000 Europeans, people

with albinism produce little or none of the pigment melanin.

In a random sample of 1000 Europeans,what is the probability that exactly 2 have albinism ?.

solution:
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1. Binomial: n = 1000, p =
1

20000

P(X = k) = Ck
np

k(1− p)n−k

P(X = 2) = C2
1000(

1

20000
)2(1− 1

20000
)1000−2

= 0.0011879565.

2. Poisson: λ = np = 1000.
1

20000
= 0.05

P(X = k) =
λk

k!
exp−λ

P(X = 2) =
0.052

2!
exp−0.05

= 0.00118907.

The Poisson approximation is reasonable if n > 50 and np < 5.

Properties A.42 we Use this approximation because:

i. The factorials and exponentials in the binomial formula can become problematic to calcu-

late.

ii. A problem my be binomial conceptually, but n and p my be unknown, we may only know

the mean.
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