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Abstract

In this work, we study the existence and uniqueness of a solution of Stochastic Differential
Equations with respect to Compenseted Poisson random measure. First, we reduce these
equations and the types of solution, then we study the existence and uniqueness of solution.

1. Introduction

The Stochastic Differential Equations play an important role in applied mathematics.
The stochastic differential equations with respect to compensated Poisson random measure
used to describe phenomena which can get suddenly events that violate the continuity such
as catastrophes, failure of a system...
The objective of this thesis is to study the existence and uniqueness of solution of these
equations.

2. Poisson and Compensated Poisson processes

Let us fix (Ω,F,F,P) be a filtred probability space, (Ω
′
,F ′) measurable space.

Definition 2.1 Let N = {Nt, t ∈ [0, T ]} be a Stochastic Process. We said to N is a Poisson
process with intensity λ if it is satisfying the following properties:
•N0 = 0 P-a.s,i.e: P(ω ∈ Ω, N0(ω) = 0) = 1

• For r, t ∈ [0, T ], If r < t then the increment Nt−r) = Nt − Nr is a Poisson rv with intensity
λ(t− r).
•N has the independent increments.
• The trajectory t→ Nt is right continuous with left limits.

Proposition 2.2E[Nt] = V ar[Nt] = λt.

Definition 2.3 Let N = {Nt, t ≥ 0} be a Poisson process. We define the compensated Pois-
son process by:

Ñt = Nt − E[Nt]

= Nt − λt

We call λt the compensator of Poisson process.

3. Stochastic Integral with respect to Poisson random measure

3.1 Poisson and Compensated Poisson random measure

Definition 3.1 (Poisson random measure) We consider N : Ω × F ′ → N be an integer ran-
dom measureandµ is radon measure on (Ω

′
,F ′). We call N is a Poisson random measure

with mean measure µ if:
1. For almost all ω ∈ Ω, N(ω, .) is an integer valued radon measure on Ω

′
.

2. For each measurable set A ⊂ F ′, N(., A) = N(A) is a Poisson rv with parametre µ(A).

3. For disjoint measurable sets A1, A2, . . . , An ∈ F
′
, the variables N(A1), N(A2), . . . , N(An) are

independent.
Definition 3.2 (Compensated Poisson random measure) Let N be a Poisson random mea-
sure with mean measure µ. The compensated poisson random measure is define by:
Ñ = N− E[N] = N− µ.

3.2 Stochastic integral with respect to Poisson random measure
We consider X = {Xt, t ∈ [0, T ]} be a simple predictable process suth that:

X : Ω× [0, T ]× Rd→ R

X(t, r) =

n∑
i=1

m∑
j=1

ϕij1]Ti,Ti+1](t)1Aj
(r).

where n,m ∈ N, {Ti}i=1,2,...,n are an increasing partition of [0, T ], (Aj)j=1,2...,m are a disjoint
subsets of Rd and ϕij ∈ FTi are bounded rv whose valued at Ti. Let N be a Poisson random
measure on [0, T ]× Rd with mean measure µ(dt dr) and µ([0, T ]× Aj) <∞ .
the stochastic integral of X with respect to Poisson measure N is define as:∫ T

0

∫
Rd
X(t, r)N(dt dr) =

n∑
i1

m∑
j=1

ϕi,jN(]Ti, Ti+1]× Aj)

=

n∑
i=1

m∑
j=1

ϕij(NTi+1
(Aj)− NTi(Aj)).

For each Ti−1 ≤ t < Ti.∫ t

0

∫
Rd
X(t, r)N(dt dr) =

n∑
i=1

m∑
j=1

ϕijNTi+1∧t(Aj)− NTi∧t(Aj)).

3.3 Stochastic Integral with respect to compensated Poisson random
measure
Let X be a simple predictable process, Ñ be a compensated Poisson random measure. The
stochastic integral of X with respect to Ñ is given by:∫ T

0

∫
Rd
X(t, r)Ñ(dt dr) =

n,m∑
i,j=1

ϕi,jÑ(]Ti, Ti+1]× Aj)

=

n∑
i=1

m∑
j=1

ϕij(ÑTi+1
(Aj)− ÑTi(Aj)).

Since Ñ = N− µ then:∫ T

0

∫
Rd
X(t, r)Ñ(dt dr) =

n,m∑
i,j=1

ϕi,jÑ(]Ti, Ti+1]× Aj)

=

n,m∑
i,j=1

ϕi,j(N(]Ti, Ti+1]× Aj)− µ(]Ti, Ti+1]× Aj)).

For each Ti−1 ≤ t < Ti.∫ t

0

∫
Rd
X(t, r)Ñ(dt dr) =

n∑
i=1

m∑
j=1

ϕij(ÑTi+1∧t(Aj)− ÑTi∧t(Aj)).

4. Stochastic Differential Equations with respect to compensated Poisson random
measure

Let X = {Xt, t ≥ 0} be a right continuous with left limits stochastic process, W = {Wt, t ≥ 0}
be a d1-dimensional SBM, and Ñk be a compensated Poisson random measure generated by
a d2-dimensional stationary Poisson point process k where d1, d2 ∈ N
The stochastic differential equations with respect to Compensated Poisson random measure
in d-dimensional space is given by:

dXt = f (t,Xt, ω)dt + g(t,Xt, ω)dWt +

∫
Ω′
h(t,Xt−, r, ω)Ñk(dr, dt). (4.1)

Where f, g : [0,∞[×Rd × Ω→ Rd are a measurable and F−adapted.
h : [0,∞[×Ω× Rd × Ω

′ → Rd be a simple predictable process.
Ñk(dr, dt) = Nk(dr, dt)− v(dr)dt.
We call this equation makes sense if:

• the integrals:∫ t

t0
f (s,Xs, ω)ds,

∫ t

t0
g(s,Xs, ω)dWs,

∫ t

t0

∫
Ω′
h(s,Xs−, r, ω)Ñk(dr, ds) <∞.

makes a sense (they are finite).

•X is F-adapted and locally bounded ,i.e:
supt0<s<t |Xs| <∞ fort0 < s < t, t0, t, s ∈ [0,∞[.

Definition 4.1 (Solution) We said to X is a solution of (4.1) if it is satisfies (4.1) for t ≥ t0.
Let X = {Xt, t ≥ 0},Y = {Yt, t ≥ 0} are a solution of (4.1) define on the same space
(Ω,F , (Ft)t≥0,P). We said to the pathwise uniqueness of solution if P(supt≥0 |Xt−Yt| = 0) = 1.

Definition 4.2 (Weak solution) Let (Ω,F ,F,P) be a filtred Probability space, An F-adapted
process X = {Xt, t ≥ 0} defined on (Ω̃, F̃ , F̃, P̃, W̄ , N̄k). We call (X, W̄ , N̄k) is a Weak solution
of (4.1) if it is satisfies (4.1) P̃−a.s and ∀B ∈ B(Rd),P(X0 ∈ B) = µ(A)
We said to (4.1) has a Weak uniqueness solution if for any two Weak solution {Xi

t , t ≥ 0}
defined on (Ω̃i, F̃ i, F̃i, P̃i, W̄ i, N̄ik where i = 1, 2. and Xi

0 having the same law µ then ∀t1 < t2 <

· · · < tu,∀B ∈ B(Rd)⊗u, P̃1(Xt1, Xt2, . . . , Xtu
∈ B) = P̃2(Yt1, Yt2, . . . , Ytu ∈ B).

If X ∈ FW,k we call X a strong solution where FW,k is a filtration generated by W and k.

Théorème 4.3 (Existence and unique strong solution) Let (4.1) be a SDE with respect to
compensated Poisson random measure. We assume that:
Exists K(t) a non random and non negative function such that

∫ T
0 k(t) <∞;

A1: for X0 ∈ F0:
E|X0|2 <∞.

A2: For (t, x, ω) ∈ [0,∞]× Rd × Ω; |f (t, x, ω)| ≤ k(t)(1 + |x|).
|g(t, x, ω)|2 +

∫
Ω′ |h(r, t, x, ω)|2v(dr) ≤ k(t)(1 + |x|2).

A3: for x, y ∈ Rd;
|f (t, x, ω)− f (t, y, ω)| ≤ k(t)|x− y|
|g(t, x, ω)− g(t, y, ω)|2 +

∫
Ω′ |h(r, t, y, ω)− h(r, t, x, ω)|2v(dr) ≤ k(t)|x− y|2.

Then (4.1) has pathwise unique F-adapted solution X.
If f, g are (FW,Ñk)t∈[0,T ]-adapted and h is a (FW,Ñk)t∈[0,T ]-predictable
Then {Xt}t≥0 is strong solution of (4.1).
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