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Notations

Let G be a group, H a subgroup of G and w a word.

• H ≤ G subgroup of G.

• H < G subgroup proper of G.

• |G : H| the index of H in G.

• Aut(G) group of all automorphism of the group G.

• Inn(G) group of inner automorphisms of G.

• N(H) = {x ∈ G|xH = Hx} normalizer of H in G.

• Z(G) the center of H in G.

• L(G,A) the set of all commutators [g, a] with g ∈ G and a ∈ A.

• If H is normal subgroup of G, we denote G/N by G.

• ⇔ equivalent relation.

• tA(G/H) the number of orbits of A in the set G/H.

• H nG the semi-direct product of H and G.

• If f : S1 → S2 and g : S2 → S3 two maps, then we denote the composition map
g ◦ f simply by fg for all sets S1, S2, S3.

• w(G) = {w(g1, . . . , gn) | gi ∈ G, i ∈ {1, . . . , n}}

• w∗(G) = 〈w(G)〉
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INTRODUCTION

This work is, more or less, a reflexion on the recent work of Pr. Marian Deaconescu
entitled "Three Lemmas On Commutators" (cf. [3]). The notion of a commutator,
though represents a very particular group word, turned out to be very important in
group theory; it forms the basic notion to divide groups into reasonable classes (eg.
nilpotent, solvable, simple groups, etc.), each one has its own theory.

Roughly speaking, the paper [3] discusses mainly the question if whether the set
of commutators in an ambient group could be covered by the union of two distinct
subgroups of G but couldn’t be covered by any one of them. The answer is negative in
general (at least for periodic groups). This reflects in some sense an idea of irreducibility
of the set of commutators of G. It is natural then to ask the same question where the
commutator is replaced by more general words. The starting point of this work was
the aim to investigate the fertility of this idea, but lack of time influenced greatly the
quality of our project, and the reader rather than finding mature results, will just find
attempts to establish such results.

In fact, Deaconescu’s paper discusses more than the foregoing question. Let G be
a group, H,K be two subgroups of G, and A be a group of automorphisms of G (i.e.
a subgroup of Aut(G)). Define L(G,A) to be {[x, a] = x−1xa |x ∈ G, a ∈ A}. The
paper treats in general the question if whether L(G,A) ⊆ H ∪K implies L(G,A) ⊆ H

or L(G,A) ⊆ K? It is proved that the latter holds true for periodic groups. It is still
unknown if this remains true for arbitrary groups. The same paper contains other nice
combinatorial results on commutators and the fixed points of G under the action of A.

This thesis is organized as follows:
The first chapter reminds the basic notions related to groups: subgroups, normal
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and characteristic subgroups, homomorphisms, commutators, the action of a group on
another one, semi-direct product, etc.

The second chapter discusses Deaconescu’s results on the commutators and their
applications, and follows closely the presentation in [3], though the proofs are inflated
to be accessible to any beginner in group theory.

The last chapter is about the generalizations that we mentioned above. The first
part treats a new notion that we call consistency of subgroups with respect to a given
map. In the second part, we begin with some results on free groups, group words, and
the completion of a group with respect to a topology defined by a family of subgroups.
Our aim from that is to analyze the notion irreducibility of words on groups: let
w = w(x1, . . . , xn) be a (group) word in the variables x1, . . . , xn; in other words, w is
a (reduced) element (i.e does not contain a sub-word of the form xix

−1
i or x−1

i xi) of
the free group on the generators {x1, . . . , xn}. Such a word induces a map Gn → G

which sends every n-tuple (g1, . . . , gn) ∈ Gn to the element w(g1, . . . , gn) of G obtained
by replacing each variable xi by gi in the expression of w. Denote by w(G) the image
of Gn by the previous map, and w∗(G) the subgroup generated by w(G). The word
w is said to be irreducible in G if for every proper subsets X1 and X2 of G so that
w(G) = X1 ∪X2, we have w∗(G) = 〈X1〉 or w∗(G) = 〈X2〉.

v



Chapter 1

Preliminaries

1.1 Basic definitions

Definition 1.1 We call a group every set G endowed with a map (a composition law)
(a, b) 7→ ab from G×G to G which satisfies the following axioms

(i) For all x, y, z ∈ G, we have (xy)z = x(yz). (Associativity)

(ii) There exists an element e ∈ G such that: xe = ex = x for all x ∈ G. (Identity
element)

(iii) For every x ∈ G, there exists an element x′ ∈ G so that xx′ = x′x = e. (Inverse)

Note that the identity element is uniquely determined, as if e′ ∈ G satisfies (ii), then
e′ = ee′ = e. In general, we shall denote the identity element of a group G by 1 if
the composition in G is written multiplicatively, and by 0 if the composition is written
additively. As usual, we use the additive notation in the case where the group G is
abelian, that is to say xy = yx for all x, y ∈ G. Similarly, the inverse of an element
x ∈ G is uniquely determined, for if x′, x′′ ∈ G satisfy (iii), then (x′x)x′′ = x′(xx′′); so
ex′′ = x′e, which means that x′′ = x′. We shall denote the inverse of x ∈ G by x−1

(resp. −x) if the composition is written multiplicatively (resp. additively).

Examples 1.2 1. The usual sets Z,Q,R and C are groups with usual addition.

1
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2. For any set E, the set P(E) of all parts of E forms a group under the symmetric
difference ∆; the latter is defined by A∆B = (A ∪ B) \ (A ∩ B) for A,B ⊆ E.
The identity element here is the empty set ∅, and the inverse of each element is
itself.

3. For any set X, the set SX = {ϕ : X → X |ϕ a bijective map} forms a group
under the usual composition of maps. We call SX the permutation group of X.

4. Let k be a field, and let Mn(k) denote the ring of n×n matrices with entries in k.
The invertible matrices in Mn(k) form a group GLn(k) that we call the general
linear group of dimension n over k. Note that the elements of GLn(k) could be
characterized by their determinants as follows

GLn(k) = {A ∈Mn(k) | detA 6= 0}.

The cardinality of a group G will be denoted by |G| and called as usual the order
of G. We say that G is finite if its order is finite, that is to say G contains only finitely
many elements. For x ∈ G, the order of x is defined to be the smallest positive integer
n such that xn = 1 (if no such n exists, we say that x has infinite order); the order of
x is denoted by o(x). If every element of G has finite order, we say that G is periodic
(or torsion group).

Definition 1.3 Let G be a group. A subgroup H of G is non-empty subset of G which
satisfies xy−1 ∈ H for all x, y ∈ H.

The above definition amounts to saying that 1 ∈ H, xy ∈ H and x−1 ∈ H whenever
x, y ∈ H. We write H ≤ G if H is a subgroup of G. If in addition, H 6= G, then we
say that H is proper subgroup of G, and we write H < G.

Examples 1.4 1. For all n ∈ N, the subset {nx |x ∈ Z} is a subgroup of the
additive group Z. Conversely, we can show easily that every subgroup of Z has
the form nZ for some non negative integer n.

2. If we consider the additive group Z6 = {0, 1, 2, 3, 4, 5} of integers modulo 6, then
H = {0, 2, 4} is a subgroup of Z6.

3. For a field k, the set SLn(k) = {A ∈ Mn(k) | detA = 1} is a subgroup of the
general linear group GLn(k); it is known as the special linear group of dimension
n over k.

Let G be a group. The intersection of any family of subgroups of G is likewise a
subgroup. Hence, if X ⊆ G, then the smallest subgroup containing X is the intersec-
tion of all the subgroups of G containing X. We call the latter the subgroup generated
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by X, and we denote it by 〈X〉. On can show that the elements of 〈X〉 are those of G
that have the form xε11 · · ·xεnn , where xi ∈ X and εi = ±1 (n runs over N).

For a subgroup H of a group G, and x ∈ G, the set xH = {xh |h ∈ H} (resp.
Hx = {hx |h ∈ H}) is called the left (resp. right) coset of x modulo H. We denote
the set of all these left (resp. right) cosets by G/H (resp. H\G). The cardinality of
G/H is called the index of H in G, and usually denoted by |G : H|. Note that the
map xH 7→ Hx−1 defines a bijection from G/H onto H\G, so |G : H| coincides with
the cardinality of H\G as well.

Definition 1.5 Let G and G′ be two groups and ψ : G → G′ be a map. We say that
ψ is a group homomorphism (or just a homomorphism) if ψ(xy) = ψ (x)ψ (y) for all
x, y ∈ G.

For instance, for every field k, the determinant det : GLn(k) → k× is a group homo-
morphism (k× is the group of invertible elements in k, which coincides with k \ {0} if
k is a field!).

Lemma 1.6 Let ψ : G→ G′ be a group homomorphism. Then

1. If e is the identity element of G and e′ is the identity element of G′ , then
ψ(e) = e′.

2. For x ∈ G, ψ(x−1) = (ψ(x))−1.

3. If H ≤ G, then ψ(H) is a subgroup of G′.

Proof.

1. We have ψ(e) = ψ(ee) = ψ(e)ψ(e), so ψ(e)(ψ(e))−1 = ψ(e), thus ψ(e) = e′.

2. For x ∈ G, as ψ(e) = e′, we have ψ(xx−1) = ψ(x)ψ(x−1) = e′, then ψ(x−1) =

((ψ(x))−1.

3. Let H ≤ G. We have ψ(e) = e′, so e′ ∈ ψ(H), thus ψ(H) 6= ∅. Also, if
x, y ∈ ψ(H), then there exist h1, h2 ∈ H such that x = ψ(h1) and y = ψ(h2).
Since ψ is a homomorphism, we have

xy−1 = ψ(h1)(ψ(h2))−1 = ψ(h1)ψ(h−1
2 ) = ψ(h1h

−1
2 ),

so xy−1 ∈ ψ(H), therefore ψ(H) ≤ G.

3
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Lemma 1.7 Let ψ : G → G′ be a homomorphism of group and X be a subset of G.
Then ψ(〈X〉) = 〈ψ(X)〉.

Proof. Let a ∈ 〈X〉, so there exist x1, . . . , xn ∈ X such that a = xε11 . . . xεnn .
Since ψ is a homomorphism, we have ψ(a) = ψ(xε11 . . . xεnn ) = ψ(xε11 ) . . . ψ(xεnn ) =

ψ(x1)ε1 . . . ψ(xn)εn , where ψ(xi) ∈ ψ(X), εi ∈ {1,−1}, and i ∈ {1, . . . , n}, so ψ(a) ∈
〈ψ(X)〉, thus ψ(〈X〉) ⊆ 〈ψ(X)〉. Conversely, as X ⊆ 〈X〉, we have ψ(X) ⊆ ψ(〈X〉),
and since ψ(〈X〉) is the smallest subgroup of G′ that contains ψ(X), then 〈ψ(X)〉 ⊆
ψ(〈X〉), therefor 〈ψ(X)〉 = ψ(〈X〉).

Let G and G′ be two groups. A homomorphism ψ : G→ G′ is an epimorphism if it
is surjective, and a monomorphism if it is injective. We say that ψ is an isomorphism
if it bijective; in other words, ψ is an isomorphism if it is a monomorphism and an
epimorphism. A homomorphism from G to itself is called an endomorphism; we denote
the set of endomorphisms of G by End(G). Clearly, the latter is a monoid under the
comoposition of maps for which the map 1G : x 7→ x is the identity element. The
isomorphisms from G onto itself are called the automorphisms of G, we denote their
set by Aut(G). Clearly, Aut(G) is the group of invertible elements in the monoid
End(G). One can view, alternatively, Aut(G) as a subgroup of the symmetric group
SG (the permutation group on G).

Definition 1.8 Let G be a group. A subgroup H of G is normal if xHx−1 ⊆ H for all
x ∈ G.

For every homomorphism ψ : G → G′, we define the kernel of ψ by kerψ = {x ∈
G |ψ(x) = 1}. It follows at once that kerψ is a normal subgroup of G. In fact, every
normal subgroup of G arises as the kernel of some homomorphism.

We write H E G if H normal in G, and H C G if H normal subgroup proper of
G. Note that H E G if, and only if, Hx = xH for all x ∈ G. In general, we define
the normalizer of H ≤ G, denoted by NG(H), as {x ∈ G |xHx−1 = H}. It follows
immediately that NG(H) is a subgroup of G, and H E NG(H). Clearly, in order that
H should be normal in G, it is necessary and sufficient that NG(H) = G.

Assume H E G. Then obviously G/H = H\G. One check immediately that the
operation (xH)(yH) := xyH, is a well defined group law on G/H. This group is
known as the quotient group of G by H. Moreover, the canonical map π : G→ G/H,
π(x) = xH is a an epimorphism.

Every homomorphism ψ : G → G′ induces a monomorphism ψ̃ : G/ kerψ → G′,
where ψ̃(x̄) = ψ(x) (that is ψ̃ ◦ π = ψ, where π denotes the canonical epimorphism

4
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G → G/ kerψ). One deduces immediately a canonical isomorphism G/ kerψ ∼= ψ(G)

(this is known as the first isomorphism theorem).
Every g ∈ G defines an automorphism τg : G → G where xτg = g−1xg, for all

x ∈ G. The map τ : G→ Aut(G) is a group homomorphism; the image of τ is denoted
by Inn(G) and called the group of inner automorphisms of G; the kernel of τ is called
the center of G and denoted by Z(G), thus Z(G) = {x ∈ G |xy = yx, ∀y ∈ G}. By
the first isomorphism theorem, G/Z(G) ∼= Inn(G).

Let H ≤ G. We say that H is characteristic in G if it is invariant by all the
automorphisms of G, that is to say xσ ∈ H for all x ∈ H and all σ ∈ Aut(G). We
say that H is fully invariant if it is invariant by all the endomorphisms of G, that is
to say xθ ∈ H for all x ∈ H and every endomorphism θ of G. Observe that every
fully invariant subgroup is characteristic, and every characteristic subgroup is normal
(as the normal subgroups are exactly the subgroups that are invariant under Inn(G));
being characteristic or fully invariant are transitive relations on the set of subgroups
of G (contrary to normality!).

1.2 Groups acting on groups

Definition 1.9 Let A and G two groups. We say that G is an A-group if we are given
a map (action) (x, a) 7→ xa from G× A to G, which satisfies the following properties:

1. (xa)b = xab;

2. (x)1 = x;

3. (xy)a = xaya;

For all x, y ∈ G and a, b ∈ A.

For example, for A = G, the map G × A → G defined by (x, a) 7→ a−1xa is an
action of G on itself. Indeed, if x, y, a, b ∈ G, then

xab = (ab)−1x(ab) = b−1a−1xab = b−1(xa)b = (xa)b,

x1 = 1−1x1 = x,

and
(xy)a = a−1(xy)a = a−1xaa−1ya = xaya,

as asserted.

Proposition 1.10 Let G and A be two groups. Giving an A-group structure on G is
equivalent to giving a group homomorphism ρ : A→ Aut(G).

5
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Proof. If a group homomorphism ρ : A → Aut(G) is given, then the map defined by
(x, a) 7→ xρ(a) satisfies the conditions above. Conversely, assume that A acts on G by
(x, a) 7→ xa. For every a ∈ A, define a map ρ(a) : G→ G by xρ(a) = xa for all x ∈ G.
First, we claim that ρ(a) ∈ Aut(G). Indeed, if x ∈ G, then xρ(a)ρ(a−1) = (xa)a

−1
=

xaa
−1

= x1 = x, that is ρ(a)ρ(a−1) = 1G; similarly, we have ρ(a−1)ρ(a) = 1G; thus ρ(a)

is bijective. Moreover, if x, y ∈ G, then (xy)ρ(a) = (xy)a = xaya = xρ(a)yρ(a), which
proves the first claim. Now, we have a well defined map ρ : A → Aut(G), a 7→ ρ(a).
We have only to show that ρ is a group homomorphism. Let a, b ∈ A and x ∈ G. We
have xρ(ab) = xab = (xa)b = (xρ(a))ρ(b) = xρ(a)ρ(b), so ρ(ab) = ρ(a)ρ(b); which completes
the proof.

Let A and G be two groups, and assume that A acts on G.

- For x ∈ G, the orbit of x with respect to A, denoted by Ox, is the subset of G formed
by the all elements xa where a ∈ A. If G is finite, then |G| =

∑
x∈G
|Ox| such that

every x present only one orbit.

- For x ∈ G, the stabilizer of x in A (or the centralizer of x in A) is the set {a ∈
A |xa = x}, denoted by CA(x). We define CA(G) as

⋂
x∈GCA(x). It follows that

CA(G) is the kernel of the homomorphism associated to the action of A on G, in
particular CA(G) is normal in A.

- For a ∈ A, CG(a) = {x ∈ G |xa = x} is the set of fixed elements of G by a (we
call it also the centralizer of a in G). It is straightforward to see that CG(a) is a
subgroup of G.

- If B ⊆ A, we define CG(B) = {x ∈ G |xb = x, for all b ∈ B}, so CG(B) =⋂
b∈B CG(b), and CG(B) is subgroup of G .

- The action of A on G is trivial if xa = x for all x ∈ G and all a ∈ A, that is to
say CA(G) = A (so the associated homomorphism is trivial). The action of A
on G is faithful, if the associated homomorphism is injective, in other words, if
CA(G) = 1.

1.3 Semi-direct product

Definition 1.11 Let A,G be two groups and let ρ : A→ Aut(G) be a group homomor-
phism. The semi-direct product A n G is the group defined as follows: the underlying
set of AnG is the Cartesian A×G, and the product of (a, x), (b, y) ∈ A×G is

(a, x)(b, y) = (ab, xby).

6



CHAPTER 1. PRELIMINARIES U.K.O

Proposition 1.12 The semi-direct product AnG is a group.

Proof.

1. Associativity. Let (a, x), (b, y) and (c, z) ∈ AnG we have

((a, x)(b, y))(c, z) =(ab, xby)(c, z)

=((ab)c, (xby)cz)

=(a(bc), xbc(ycz))

=(a, x)(bc, ycz)

=(a, x)((b, y), (c, z)).

2. (1, 1) is the identity element of AnG. Indeed, for (a, x) ∈ AnG we have

(a, x)(1, 1) = (a1, x11) = (a, x),

and
(1, 1)(a, x) = (1a, 1ax) = (a, x).

3. The inverse element of (a, x) ∈ AnG is (a−1, (xa
−1

)−1), as

(a, x)(a−1, (xa
−1

)−1) = (aa−1, xa
−1

(xa
−1

)−1) = (1, 1),

and

(a−1, (xa
−1

)−1)(a, x) =(a−1a, ((xa
−1

)−1)ax)

=(1, ((x−1)a
−1

)ax)

=(1, 1).

Let ρ : A → Aut(G) be a group homomorphism from A to Aut(G). Then the
mappings

ϕ : G→ AnG with x 7→ (1, x).

ϕ̃ : A→ AnG with x 7→ (x, 1).

are monomorphisms. Indeed, for x, y ∈ G, we have ϕ(xy) = (1, xy). On the other
hand,

ϕ(x)ϕ(y) = (1, x)(1, y) = (1, x1y) = (1, xy).

So ϕ(xy) = ϕ(x)ϕ(y). Moreover, if ϕ(x) = (1, 1), then (1, x) = (1, 1), so x = 1. Thus
kerϕ = 1, which means that ϕ is a monomorphism. We see that ϕ̃ in a similar way.

7
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It follows that we can identify G to {1} × G, and A to A× {1} in the semi-direct
product A n G. Observe that G is normal in A n G. Indeed, if (a, x) ∈ A n G and
(1, g) ∈ {1} ×G, then

(a, x)−1(1, g)(a, x) =(a−1, (xa
−1

)−1)(1, g)(a, x)

=(a−11, ((xa
−1

)−1)1g)(a, x)

=(a−1a, (((xa
−1

)−1g)ax)

=(1, x−1gax)).

As x−1gax ∈ G, (1, x−1gax) ∈ {1} ×G, the claim follows.

Definition 1.13 Let G be a group, and H and K two subgroups of G. Then G is called
an (internal) semi-direct product of H and K if H EG, H ∩K = 1 and G = HK.

For example, the symmetric group S3 is a semi-direct product of the subgroup
H = {1, (123), (132)} and the subgroup K = {1, (12)}.

Proposition 1.14 Assume that G is the internal semi-direct product of H and K.
Then G ∼= K n H, where the action of K on H is defined by inner automorphisms:
(h, k) 7→ hk = k−1hk.

Proof. Suppose that G is the internal semi-direct product of H and K, so G = K×H
and K ∩H = 1. We define a map:

ϕ : K nH → G

(k, h) 7→ kh

Clearly, ϕ is well defined. First, prove that ϕ is a homomorphism, let (k, h), (k′, h′) ∈
K nH

ϕ((k, h)(k′, h′)) = ϕ(kk′, hk
′
h′) = kk′hk

′
h′ =kk′(k′−1hk′)h′

=kk′k′−1hk′h′

=khk′h′

=ϕ(k, h)ϕ(k′, h′).

Now, we claim that ϕ is a bijective. Indeed, we have by definition G = K × H,
so for all x ∈ G there exist k ∈ K and h ∈ H such that x = kh, it follows that G is
surjective. Also, for (k, h) ∈ kerϕ, so ϕ(k, h) = kh = 1, then k = h−1 ∈ K ∩H = 1, so
h = k = 1, hence kerϕ = {(1, 1)}, thus ϕ is injective. The proof is complete.

8
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1.4 Commutators

Let G be a group. For every x, y ∈ G we define the commutator of x and y by
[x, y] = x−1y−1xy.
Note that xy = yx[x, y], so x and y commute if and only if [x, y] = 1. We write xy to
denote y−1xy, hence

[x, y] = x−1xy.

For all x, y, z ∈ G, the following identities hold:

[x, y]−1 = [y, x] (1.1)

[xy, z] = [x, z]y[y, z] (1.2)

[x, yz] = [x, z][x, y]z (1.3)

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (1.4)

The last one is known as the Hall-Witt identity; observe the similarly between this
identity and the Jacoby Identity for Lie algebras (the second and the third identity are
similar to bilinearity!).

If X1, X2 two subsets of G, we define the commutator [X1, X2] to be the subgroup of
G generated by the elements [x1, x2], where x1 ∈ X1 and x2 ∈ X2. For x1, x2, x3 three
elements of G, we define the commutator [x1, x2, x3] by [[x1, x2], x3], and for X1, X2, X3

three subsets of G, we define the commutator [X1, X2, X3] to be the subgroup of G
generated by the elements [x, y], where x ∈ [X1, X2] and y ∈ X3, so [X1, X2, X3] =

[[X1, X2], X3]. More generally, for n > 2, we define

[x1, . . . , xn] = [[x1, . . . , xn−1], xn] (the left normed commutator),

and similarly for subsets.
Now, let us prove the commutators identities. Let x, y, z ∈ G, then Observe that

xy = yx[x, y], so
(xy)−1yx[x, y] = y−1x−1yx[x, y] = 1,

thus [y, x][x, y] = 1 this means that [x, y]−1 = [y, x]. In addition,

[xy, z] = (xy)−1z−1(xy)z = y−1x−1z−1xyz

= y−1x−1z−1x(zz−1)yz

= y−1(x−1z−1xz)z−1yz

= y−1(x−1z−1xz)(yy−1)z−1yz

= y−1(x−1z−1xz)y(y−1z−1yz)

= [x, z]y[y, z].

9
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Moreover, by equality (1.1) and (1.2), we have

[z, xy] = [xy, z]−1 = ([x, z]y[y, z])−1 = [y, z]−1([x, z]y)−1,

so [z, xy] = [z, y][z, x]y, also [xy, z] = [x, z]y[y, z]. Finally, to prove the Hall-Witt
identity let us calculate the first factor [x, y−1, z]y by using (1.1)

[x, y−1, z]y = [[x, y−1], z]y = y−1[[x, y−1], z]y

= y−1[x, y−1]−1z−1[x, y−1]zy

= y−1[y−1, x]z−1[x, y−1]zy

= y−1yx−1y−1xz−1x−1yxy−1zy

= x−1y−1xz−1x−1yxy−1zy.

Let u = x−1y−1xz−1x−1, and let v (resp. w ) be the element obtained from u (resp. v)
by replacing x by y and y by z and z by x. So v = y−1z−1yx−1y−1 and we have

v−1 = yxy−1zy,

thus
[x, y−1, z]y = uv−1,

it follows that
[y, z−1, x]z = vw−1,

[z, x−1, y]x = wu−1,

therefor
[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = uv−1vw−1wu−1 = 1,

which completes the proof.

Lemma 1.15 Let G be a group, N EG, and suppose that H and K two subgroups of
G. Write G = G/N , so that H and K are the images of H and K in G under the
canonical homomorphism ψ : G→ G. Then [H,K] = [H,K].

Proof. For h ∈ H and k ∈ K, note that ψ([h, k]) = [h̄, k̄], so [h, k] = [h̄, k̄]. Take X =

{[h, k] |h ∈ H, k ∈ K} in lemma 1.7, and we have 〈X〉 = [H,K] and 〈ψ(X)〉 = [H,K],
so ψ([H,K]) = [ψ(H), ψ(K)], thus [H,K] = [H,K].

Theorem 1.16 Let X, Y and Z be three subgroups of a group G, and suppose [X, Y, Z] =

1 and [Y, Z,X] = 1. Then [Z,X, Y ] = 1.

10
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Proof. We want to show that [Z,X, Y ] = 1, or equivalently every element of [Z,X]

commutes with every element of Y .
Let x ∈ X, y ∈ Y and z ∈ Z, we have [[x, y−1], z]y[[y, z−1], x]z[[z, x−1], y]x = 1,

and as [[x, y−1], z] ∈ [X, Y, Z] = 1 and [[y, z−1], x] ∈ [Y, Z,X] = 1, so [[x, y−1], z] =

[[y, z−1], x] = 1, it follows that [[z, x−1], y]x = 1, moreover [[z, x], y] = 1, therefore
[Z,X, Y ] = 1.

Corollary 1.17 (Three Subgroups Lemma) Let X, Y, Z be three subgroups of a group
G and NEG. If N contains two of the sbgroups [X, Y, Z], [Y, Z,X] and [Z,X, Y ], then
it contains the third.

Proof. WriteG = G/N , and note that [X, Y ] = [X,Y ]. Then [X,Y , Z] = [[X,Y ], Z] =

[[X, Y ], Z] = [X, Y, Z] = 1 since [X, Y, Z] ⊆ N . Similarly, [Y , Z,X] = 1. By the previ-
ous theorem, then 1 = [Z,X, Y ] = [Y, Z,X], thus [Y, Z,X] ⊆ N .

Let A and G be two groups. Recall that A acts on G if we have a group homomor-
phism ρ : A → Aut(G). For a ∈ A and x ∈ G, we denote ρ(a)(x) simply by xa, and
we set

[x, a] = x−1xa.

Observe that the commutator [x, a] is just the usual commutator of x and a in the
semi-direct product AnG.

Definition 1.18 A subgroup H of a group G to be A-invariant if Ha ⊆ H for all
a ∈ A.

Lemma 1.19 Let G be an A-group and H is an A-invariant subgroup of G, then [H,A]

is normal A-invariant subgroup of H.

Proof. Suppose thatH is an A-invariant subgroup ofG. Let a ∈ A and x ∈ H, for each
b ∈ A, we have [x, a]b = [xb, a], and obviously xb ∈ H, it follows that [x, a]b ∈ [H,A],
thus [H,A] is an A-invariant. Also, if y ∈ H, then

[xy, a] = [x, a]y[y, a],

so that
[x, a]y = [y, a]−1[xy, a] ∈ [H,A],

thus [H,A] EH.

11



Chapter 2

Deaconescu’s results on
commutators

Lemma 2.1 Let G be a group and H,K two subgroups of G. If G = H ∪ K, then
G = H or G = K.

Proof. Assume that G * H and G * K, then there exist x, y ∈ G such that
x /∈ H and y /∈ K, and of course x ∈ K and y ∈ H. As xy ∈ H ∪K, we have xy ∈ H
or xy ∈ K. If xy ∈ H, then x ∈ H, a contradiction. If xy ∈ K, then y ∈ K, a
contradiction. So certainly, G ⊆ H or G ⊆ K.

2.1 Three Lemmas on Commutators (a paper of M. Dea-
conescu)

Let G be a group, A ≤ Aut(G), and let L(G,A) = {[x, a] |x ∈ G, a ∈ A}, with
[x, a] = x−1xa.

Lemma 2.2 Let G be a group, A ≤ Aut(G), and H,K be normal A-invariant sub-
groups of G. If L(G,A) ⊆ H ∪K , then L(G,A) ⊆ H or L(G,A) ⊆ K.

Proof. Let A1 = {a ∈ A | [x, a] ∈ H, ∀x ∈ G} and A2 = {a ∈ A | [x, a] ∈ K, ∀x ∈ G}.
Assume that L(G,A) * H and L(G,A) * K so A1 < A and A2 < A by lemma 2.1
A1 ∪ A2 < A.
Let a ∈ A \ (A1 ∪ A2), that is a ∈ A \ A1 and a ∈ A \ A2 so ∃x, y ∈ G : [x, a] /∈

12
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H and [y, a] /∈ K, thus [x, a] ∈ K and [y, a] ∈ H. Observe that [xy, a] = [x, a]y[y, a] ∈
L(G,A) in particular [xy, a] ∈ H ∪K these implie that [xy, a] ∈ H or that [xy, a] ∈ K.
If [xy, a] ∈ H, then [x, a]y ∈ H. As H E G, so [x, a] ∈ H, hence a contradiction.
Similarly, if [xy, a] ∈ K, then [y, a] ∈ H, hence a contradiction.
So certainly, L(G,A) lies in one of H and K.

Lemma 2.3 Let G be a periodic group, A ≤ Aut(G), and H,K two subgroups of G.
If L(G,A) ⊆ H ∪K, then

i) either H or K is A-invariant;

ii) L(G,A) ⊆ coreA(H) ∪ coreA(K), where coreA(H) =
⋂
a∈AH

a.

Proof. Let N1 = {a ∈ A |Ha ⊆ H} and N2 = {a ∈ A |Ka ⊆ K}. Assume that
neither H and K are A-invariant, then N1 < A and N2 < A, hence N1 ∪ N2 < A.
Let a ∈ A \ (N1 ∪ N2), so ∃h ∈ H and k ∈ K such that [h, a] /∈ H and [k, a] /∈ K

but as L(G,A) ⊆ H ∪ K, we have [h, a] ∈ K and [k, a] ∈ H. Observe that [hk, a] =

[h, a]k[k, a] ∈ L(G,A) so [hk, a] ∈ H ∪K it follows [hk, a] ∈ H or [hk, a] ∈ K.
If [hk, a] ∈ K, then [k, a] ∈ K, hence a contradiction.
If [hk, a] ∈ H, then [h, a]k ∈ H. By induction, if [(hk)m, a] ∈ H for some integer
m > 1, then [(hk)mh, a] = [(hk)m, a]h[h, a]. If the later lies in H, then [h, a] ∈ H, a
contradiction. Hence [(hk)mh, a] ∈ K.
Now [(hk)m+1, a] = [(hk)mh, a]k[k, a] if this element lies in K, then certainly [k, a] ∈ K,
a contradiction. So [(hk)m+1, a] ∈ H. Thus

[(hk)n, a] ∈ H, ∀n ∈ N (2.1)

[(hk)n, a] ∈ K, ∀n ∈ N (2.2)

As G periodic, there exist n ∈ N such that (hk)n = 1.
We have 1 = [(hk)n, a] = [(hk)n−1hk, a] = [(hk)n−1h, a]k[k, a] and [(hk)n, a] ∈ K, so
[k, a] ∈ K, a contradiction.

To prove the second part, by the first step, we may assume (without loss of general-
ity) thatH is A-invariant. We have L(G,A) ⊆ H∪K, and L(G,A) is A-invariant subset
of G so L(G,A) = (L(G,A))a ⊆ (H ∪ K)a for all a ∈ A, thus L(G,A) ⊆ (Ha ∪ Ka)

for all a ∈ A. Since H is an A-invariant, we have L(G,A) ⊆ H ∪ Ka for all
a ∈ A. Hence L(G,A) ⊆

⋂
a∈A(H ∪ Ka). As

⋂
a∈A (H ∪Ka) = H ∪

(⋂
a∈AK

a
)
,

so L(G,A) ⊆ H ∪ coreA(K) but H = coreA(H), the claim follows.

Lemma 2.4 Let G be a finite group, A ≤ Aut(G), and H,K are A-invariant subgroups
of G. We denote tA(G/H) the number of orbits of A in the set G/H then

|G| ≥ |H|tA(G/H) + |K|tA|G/K| − |H ∩K|tA(G/H ∩K) (2.3)

13
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and the equality holds in (2.3) if and only if L(G,A) ⊆ H ∪K.

Proof. For g ∈ G, let m(g) = |{(x, a) ∈ G × A | [x, a] = g}| and note that m(g) 6=
0⇔ g ∈ L(G,A). For S subset of G (S 6= ∅), one defines m(S) =

∑
s∈S
m(s) and let also

m(∅) = 0. Observe that

m(G) = m(L(G,A)) = |G||A| (2.4)

and that
m(S) = m(G)⇔ L(G,A) ⊆ S (2.5)

Indeed, set L = L(G,A)and let Y = {(x, a) ∈ G × A | [x, a] ∈ L}. We have for any
pair (x, a) ∈ G × A, [x, a] ∈ L so m(Y ) = |G||A|. As Y ⊆ L ⊆ G, then m(Y ) 6

m(L) 6 m(G) but we have m(Y ) = |G||A| and |G||A| 6 m(L) 6 m(G) 6 |G||A| so
m(L) = m(G) = |G||A|.

To see (2.5), observe that if m(S) = m(G) = |G||A|, then as m(S) =
∑
s∈S
m(s) we

have m(s) > 1 for every s ∈ S. Thus every element of L(G,A) is involved in S, that
is L(G,A) ⊆ S.
Conversely, if L ⊆ S ⊆ G, then m(G) = m(L) 6 m(S) 6 m(G) so m(G) = m(S). Let
E be an A-invariant subgroup of G, and consider the set G/E of the left cosets of E
in G. We have an obvious action of A on G/E defined by

A×G/E → G/E

(a, x̄) 7→ xa

To see that latter is well-defined, let a ∈ A and x, y ∈ G. If x̄ = ȳ, then x−1y ∈ E,
since E is an A-invariant, (x−1y)a ∈ E. Hence (x−1)aya ∈ E so (xa)−1ya ∈ E. This
means that xa = ya, as desired.

For x̄ ∈ G/E, the orbit of x̄ is Ox̄ = {xa | a ∈ A}. We have [x, a] = x−1xa =

x−1xa, so x−1Ox = {[x, a] | a ∈ A} and it follows that |Ox̄| = |{[x, a] | a ∈ A}|. Let
S = {(a, x̄) ∈ A×G/E | [x, a] ∈ E} and observe that S = {(a, x̄) ∈ A×G/E | x̄a = x̄}.
We have S =

∐
x̄∈G/E

CA(x̄)× {x̄}, so |S| =
∑

x̄∈G/E
|CA(x̄)| =

∑
O

∑̄
x∈O
|CA(x̄)|, where O runs

over the set of A-orbits G/E. As |CA(x̄)| remains fixed when x̄ runs over a given orbit,
we have |CA(x̄)||O| = |A|. Therefor, |S| = |A|tA(G/E) (note that the latter is just the
famous Cauchy-Frobenus Lemma). Observe that x, y having the same class modulo E
[x̄, a] ∈ E if and only if [ȳ, a] ∈ E.

Let S ′ = {(a, x) ∈ A × G | [x, a] ∈ E}. Observe that S ′ =
∐

x̄∈G/E
{(a, y) ∈ A ×

{x̄} | [y, a] ∈ E}. But, [y, a] ∈ E for some y ∈ x̄, then this holds for all the other

14



CHAPTER 2. DEACONESCU’S RESULTS ON COMMUTATORS U.K.O

elements of x̄ thus |S ′| =
∑
|{(a, x̄) ∈ A×G/E | [x̄, a] ∈ E}|× |E| so |S ′| = |E||S| this

implies |S| = |S
′|
|E|

=
m(E)

|E|
= |A|tA(G/E) so m(E) = |E||A|tA(G/E).

The map g 7→ m(g) is measure on G which depends on the choice of A. As H,K are
A-invariant then H∩K is an A-invariant. Indeed, we have H∩K ⊆ H and H∩K ⊆ k,
so for all a ∈ A, (H∩K)a ⊆ Ha = H and (H∩H)a ⊆ Ka = K, thus (H∩K)a ⊆ H∩K
this implies H ∩K is an A-invariant. We have H ∪K ⊆ G, so

|A||G| = m(G) ≥ m(H ∪K) = m(H) +m(K)−m(H ∩K).

As H,K and H ∩K are A-invariant then

|A||G| = m(G) > |H||A|tA(G/H) + |K||A|tA(G/K)− |H ∩K||A|tA(G/(H ∩K)),

by canceling on |A| we obtain

|G| > |H|tA(G/H) + |K|tA(G/K)− |H ∩K|tA(G/(H ∩K)).

By the equality (2.5), the equality holds in (2.3) if, and only if, m(G) = m(H ∪K) i.e
if and only if L(G,A) ⊆ H ∪K.

2.2 Further results

Corollary 2.5 Let G be a group, H and K two subgroups of G such that H or K is
normal in G. We set C = L(G, Inn(G)). If C ⊆ H ∪K, then C ⊆ H or C ⊆ K.

Proof. We let A = Inn(G) in lemma 2.3. Observe that the hypothesis implies that
H or K is A-invariant, so by lemma 2.3 ii) we have C ⊆ coreG(H) ∪ coreG(K). Since
coreG(H) and coreG(K) are normal in G ( and so A-invariant). We have by lemma 2.2
C ⊆ coreG(H) or C ⊆ coreG(K), but we have coreG(H) ⊆ H and coreG(K) ⊆ K, so
C ⊆ H or C ⊆ K.

Remark 2.6 Let C = L(G, Inn(G)). Assume G periodic group, H,K ≤ G and if
C ⊆ H ∪K, then C ⊆ H or C ⊆ K. Indeed, by lemma 2.3 i), certainly one of H or
K is normal (taking A = Inn(G)), and by lemma 2.3 ii), C ⊆ coreG(H) ∪ coreG(K).
But since coreG(H) and coreG(K) are normal (so A-invariant), we have by lemma 2.2
C ⊆ coreG(H) andC ⊆ coreG(K). The result follows.

In particular if G is periodic we can eliminate one of the A-invariance conditions
in lemma 2.2.
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Corollary 2.7 Let G be a periodic group, H,K two subgroups of G, and Inn(G) ≤
A ≤ Aut(G). L(G,A) ⊆ H ∪K if and only if L(G,A) ⊆ H or L(G,A) ⊆ K.

Proof. It is clear that if L(G,A) ⊆ H orL(G,A) ⊆ K, then L(G,A) ⊆ H ∪K.
Conversely, By lemma 2.3 ii), L(G,A) ⊆ coreA(H) ∪ coreA(K). But since coreA(H)

and coreA(K) are A-invariant (so they are normal), we have by lemma 2.2, L(G,A) ⊆
coreA(H) or L(G,A) ⊆ coreA(K). Since coreA(H) ⊆ H and coreA(K) ⊆ K so
L(G,A) ⊆ H or L(G,A) ⊆ K.

Corollary 2.8 Let G be a finite group, Inn(G) ≤ A ≤ Aut(G) and H,K be A-
invariant subgroups of G. L(G,A) ⊆ H ∪K if and only if

tA(G/(H ∩K)) = |H/(H ∩K)|tA(G/H),

or
tA(G/(H ∩K)) = |K/(H ∩K)|tA(G/K).

Such that tA(G/H) is the number of orbits of A in the set G/H.

Proof. By lemma 2.4, L(G,A) ⊆ H ∪K if and only if

|G| = |H|tA(G/H) + |K|tA(G/K)− |H ∩K|tA(G/(H ∩K)) (2.6)

and by corollary 2.7 we have L(G,A) ⊆ H∪K if and only if L(G,A) ⊆ H or L(G,A) ⊆
K, so if L(G,A) ⊆ H, then |G| = |H|tA(G/H), thus tA(G/H) = |G/H|. So the
equality in (2.6) hold

|K|tA(G/K) = |H ∩K|tA(G/(H ∩K)),

so
tA(G/(H ∩K)) = |K/(H ∩K)|tA(G/K).

If L(G,A) ⊆ K, then tA(G/K) = |G/K| so the equality in (2.6) holds |H|tA(G/H) =

|H ∩K|tA(G/(H ∩K)) that implie tA(G/(H ∩K)) = |H/(H ∩K)|tA(G/H).

Corollary 2.9 Let G be a periodic group, A ≤ Aut(G), HEG and KEG. If L(G,A) ⊆
H ∪K, then L(G,A) ⊆ H or L(G,A) ⊆ K.

Proof. By lemma 2.3 ii), L(G,A) ⊆ coreA(H) ∪ coreA(K), since coreA(H) and
coreA(K) are A-invariant (so they are normal). Apply now lemma 2.2, L(G,A) ⊆
coreA(H) or L(G,A) ⊆ coreA(K), but we have coreA(H) ⊆ H and coreA(K) ⊆ K so
L(G,A) ⊆ H or L(G,A) ⊆ K.
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Corollary 2.10 Let G be a finite group, H,K two subgroups of G and A ≤ Aut(G).
Set X = coreA(H) and Y = coreA(K). L(G,A) ⊆ H ∪ K if and only if |G| =

|X|tA(G/X) + |Y |tA(G/Y )− |X ∩ Y |tA(G/(X ∩ Y )).

Proof. As G is finite, it is periodic, so by lemma 2.3, L(G,A) ⊆ H ∪ K this implie
L(G,A) ⊆ coreA(H) ∪ coreA(K), so L(G,A) ⊆ X ∪ Y . Since X, Y are A-invariant
subgroups of G, the result follows at once from lemma 2.4.

Remark 2.11 Let G be a finite group, A ≤ Aut(G) of odd prime order p, and F =

CG(A) the set of all fixed points of A in G. It is well known that |G| =
∑
i

|Oxi | and

we have |Oxi| = |A : CA(xi)| and observe that |Oxi | = 1 if and only if xi ∈ F so

|G| = |F |+ p(tA(G)− |F |) hence tA(G) = |F |+ |G| − |F |
p

.

If tA(G) is odd, then |G| is odd. Indeed, since tA(G) = |F | + |G| − |F |
p

we have

|G| = (tA(G) − |F |)p + |F | = (1 − p)|F | + ptA(G) so |G| ≡ ptA(G)mod 2 so |G| and
tA(G) are both even or odd so tA(G) is odd if and only if |G| is odd. So if one is ready
to apply the deep odd order theorem of Feit and Thompson, it follows that G solvable
(or soluble).

Corollary 2.12 Let G be a finite group, and A ≤ Aut(G) such that tA(G) is odd. If H
is a normal subgroup of G and H ≤ CG(A), then either H has odd order or Z(H) 6= 1.

Proof. Let CG(H) denote the centralizer of H in G, so the center of H in G is
Z(H) = {x ∈ H | [x, h] = x−1xh = 1, ∀h ∈ H} = H ∩ CG(H). As H ≤ CG(A), H
fixed by A so CG(H) is A-invariant, so [A,H,G] = 1 and as H E G, [H,G,A] = 1.
By proposition 1.17, [G,A,H] = 1 so [G,A] commutes with H hence [G,A] ⊆ CG(H).
In particular L(G,A) ⊆ CG(H). Thus L(G,A) ⊆ H ∪ CG(H), and if ones takes in
corollary 2.8 K = CG(H) one obtains that tA(G/Z(H)) = |H/Z(H)|tA(G/H).
If Z(H) = 1, then tA(G) = |H|tA(G/H) so |H| divides tA(G). Since tA(G) is odd, we
have H is odd order, as asserted.

Remark 2.13 1. The results above are valid if when replaces the subgroup A ≤
Aut(G) with a group A that acts on G via automorphism.

2. The normality condition in corollary 2.12 is a bit irritating, it could be replaced
by the requirement that the number tA(NG(H)) of orbits of A in the A-invariant
subgroup NG(H) of G is odd (in this way one obtains a local version of corollary
2.12). Indeed, as in the proof of corollary 2.12, we have

|H/Z(H)|tA(NG(H)/H) = tA
(
NG(H)/Z(H)

)
.
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If Z(H) = 1, then tA(NG(H)) = |H|tA(NG(H)/H). So tA(NG(H)) ≡ 0 mod |H|.
Hence tA(NG(H)) and |H| are both even or both odd. As tA(NG(H)) is odd, |H|
is odd.

For X = coreG(CG(A)), as in the proof of corollary 2.12 one takes H = X

we obtain |X| is odd by applying the Odd Order Theorem it follows that X is
solvable.

3. The measure g 7→ m(g) introduced in the proof of lemma 2.3 can be used to obtain
a more general conditional identity. Indeed, if G be a finite group, A ≤ Aut(G)

and H1, H2, · · · , Hn are A-invariant subgroups of G, the inclusion-exclusion prin-
cipal gives an inequality similar to (2.3). The equality occurs if and only if
L(G,A) is contained in the union of the mentioned A-invariant subgroups.
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Chapter 3

Generalizations of Deaconescu’s
results

3.1 Free groups

Definition 3.1 Let S be a set and let G be a group. A free group on S is a group FS
together with a map i : S → FS such that φ : S → G is a map, there exist a unique
group homomorphism φ̃ : FS → G which satisfies φ̃ ◦ i = φ, where the diagram of the
form

FS

S G

φ̃i

φ

commute (here i : S → FS is the inclusion of S into FS).
The above universal property characterizes free groups up to isomorphism.

Theorem 3.2 There exist a free group for every non-empty set S.

Proof. Let us give a sketch of the proof.

• We call word on the set S all finite sequence w = x1x2 · · ·xn of elements of S∪S−1

for n ∈ N, where S−1 = {s−1 | s ∈ S} (i.e S−1 is just a set of the formal inverses
of the elements of S). The number n we call it the length of w. There exist a
unique word of length 0 denoted by 1 and we call it the empty word.
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Let u = x1x2 · · ·xn and v = y1y2 · · · ym two words. The product uv is defined
as uv = x1x2 · · ·xny1y2 · · · ym of the length n + m. Note that, for all word
w1 = 1w = w.

For w = x1x2 · · ·xl, ẃ = x́1 · · · x́m, ´́w = ´́x1 · · · ´́xn three words, we can see easy
(wẃ) ´́w = w(ẃ ´́w), so the set of all words on S∪S−1 together with a map (w, ẃ) 7→
wẃ is a monoid of the identity element 1.

• Let M be a monoid; in other words, M is the set of all words on S ∪S−1. Define
an equivalence relation on M by setting w ∼ ẃ if w can be obtained from ẃ by
adding or deleting sub-words of the form ss−1 or s−1s with s ∈ S.

• We define FS to be the quotient of M by the relation above. If we have two
classes [u], [v] of words, then we define their product as usually by [u][v] = [uv].
The canonical maps from S to FS is defined by s 7→ [s].

Definition 3.3 Let FS be a free group on a set S. Then the cardinality of S is called
the rank of FS.

Remark 3.4 1. It is worth noting that for two subsets S and Ś, we have FS ∼= FŚ

if and only if S and Ś have the same cardinality.

2. In particular every positive integer n defines a unique free group Fn, which we
call the free group on n generators.

3.2 A first generalization: consistency with respect
to a given map

Let G be a group, and f : Gn → G be a map. If E1, . . . , En are subsets of G, then we
denote by f(E1, . . . , En) the image of E1× · · ·×En by f . The second question consid-
ered in Deaconescu’s paper suggests to consider the following more general problem:
let G be a group, H, K and E1, . . . , En be subgroups of G. What conditions on G, H
and K ensure that f(E1, . . . , En) lies H or K provided that f(E1, . . . , En) ⊆ H ∪K?.
The map considered by M. Deaconescu is just the commutator map f : G2 → G,
f(x, y) = [x, y] for x, y ∈ G.

Before all, let us introduce a convenient notation. For −→g = (g1, . . . , gn−1) ∈ Gn−1,
i ∈ {1, . . . , n}, and x ∈ G, we denote the element f(g1, . . . , gi−1, x, gi+1, . . . , gn−1)
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simply by f i(x,−→g ). For H ≤ G, we set

f−i−→g (H) = {x ∈ G | f i(x,−→g ) ∈ H}.

Definition 3.5 We say that a subgroup H ≤ G is right f -consistent if for all i ∈
{1, . . . , n}, −→g ∈ Gn−1, we have f i(1,−→g ) ∈ H and for all x, y ∈ G, the fact that
f i(x,−→g ) ∈ H implies the following:

(i) f i(x−1,−→g ) ∈ H;

(ii) f i(xy,−→g ) · f i(y,−→g )−1 ∈ H, or f i(y,−→g )−1 · f i(xy,−→g ) ∈ H.

Above, we can put y on the left of x; this yields a notion that may be called left f -
consistence. In the sequel we use the term "f -consistent" to indicate that the related
subgroup is f -consistent (on the right or on the left).

Remark 3.6 We can replace the condition f i(1,−→g ) ∈ H by requiring f−i−→g (H) 6= ∅
for all i ∈ {1, . . . , n} and −→g ∈ Gn−1. Indeed, let i ∈ {1, . . . , n} and −→g ∈ Gn−1, if
f i(1,−→g ) ∈ H, then 1 ∈ f−i−→g (H), thus f−i−→g (H) 6= ∅.

If the map f is just the commutator, then f(g1, g2) = 1 if one of the gi’s is 1, then the
property (i) follows immediately from (ii). Indeed, in property (ii) take y = x−1,
so [1, g2][x−1, g2]−1 ∈ H and [g1, 1][g1, x

−1]−1 ∈ H (or [x−1, g2]−1[1, g2] ∈ H and
[g1, 1][g1, x

−1]−1 ∈ H respectively). Since [1, g2] = [g1, 1] = 1, we have [x−1, g2]−1 ∈ H
and [g1, x

−1]−1 ∈ H therefor [x−1, g2] ∈ H and [g1, x
−1] ∈ H.

Note also that ifH is f -consistent, then f−i−→g (H) is a subgroup of G, for all −→g ∈ Gn−1

and all i ∈ {1, . . . , n}. Indeed, fix i ∈ {1, . . . , n}, −→g ∈ Gn−1, and set f−i−→g (H) =

K. As f i(1,−→g ) ∈ H, we have 1 ∈ K. Also, if x, y ∈ K, then f i(x,−→g ) ∈ H and
f i(y,−→g ) ∈ H, and since H is f -consistent, we have f i(xy,−→g ) · f i(y,−→g )−1 ∈ H it
follows that f i(xy,−→g ) ∈ H, thus xy ∈ K. Moreover, as f i(1,−→g ) ∈ H and f i(xx−1,−→g )·
f i(x−1,−→g )−1 ∈ H, we have f i(x−1,−→g ) ∈ H hence x−1 ∈ K.

It follows in particular that for every S ⊆ Gn−1,

f−i(H) :=
⋂
−→g ∈S

f−i−→g (H)

is a subgroup of G ( the intersection of a family of subgroups of G it is also subgroup
of G).

Examples 3.7 1. Every H ≤ G is f -consistent for f(x) = x.
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2. For f(g1, g2) = [g1, g2] = g−1
1 g−1

2 g1g2, every H C G is f -consistent. Indeed, let
g1, g2 ∈ G, i = 1, 2, and x, y ∈ G. Clearly, [1, g2] = [g1, 1] = 1 so they lie in H.
Assume now that [x, g2] ∈ H; since [x−1, g2] = ([x, g2]x

−1)−1, and HCG, we have
[x−1, g2] ∈ H. Similarly, if [g1, x] ∈ H then [g1, x

−1] ∈ H. Also, we have

[xy, g2][y, g2]−1 = [x, g2]y[y, g][y, g]−1 = [x, g2]y,

and H C G, so if [x, g2] ∈ H, then [xy, g2][y, g2]−1 ∈ H. In a similar way, one
sees that [g1, x] ∈ H implies [g1, xy][g1, y]−1 ∈ H. Thus H is (right) f -consistent.

The following is a sort of generalization of the first result in the aforementioned
paper.

Proposition 3.8 Let G be a group, H, K and E1, . . . , En be subgroups of G such that
H and K are f -consistent. If f(E1, . . . , En) ⊆ H ∪K, then f(E1, . . . , En) lies in H or
K.

A useful fact for the proof is that the union of two proper subgroups of some global
group is always proper in the latter.

Proof. Assume the conclusion is false. We shall construct an element (x1, . . . , xn) ∈
n∏
i=1

Ei so that f(x1, . . . , xn) does not lie in H∪K, hence a contradiction. For X = H,K,

define
C1(X) = {x ∈ E1 | f(x,E2, . . . , En) ⊆ X}.

(i.e C1(X) is the set of all elements of E1 such that f(x, g2, . . . , gn) ∈ X with (g2, . . . , gn) ∈
E2× . . .×En). So C1(X) =

⋂
−→g f

−1
−→g (X), where −→g = (x, g2, . . . , gn) and gi ∈ Ei for ev-

ery i ≥ 2. As X is f -consistent, f−1
−→g (X) is a subgroup of E1, thus C1(X) is a subgroup

of E1. Moreover, by assumption we have C1(X) < E1, so C1(H)∪C1(K) < E1; there-
fore we can pick an element x1 ∈ E1 such that f(x1, E2, . . . , En) * X, for X = H,K.
By induction, if we have already constructed x1 ∈ E1, . . ., xi−1 ∈ Ei−1 such that
f(x1, . . . , xi−1, Ei, . . . , En) * X, for X = H,K, then define

Ci(X) = {x ∈ Ei | f(x1, . . . , xi−1, x, Ei+1, . . . , En) ⊆ X}.

Again, Ci(X) =
⋂
−→g f

−i
−→g (X), where −→g = (x1, . . . , xi−1, gi+1, . . . , gn) and gj ∈ Ej for

j ≥ i+1. Since X is f -consistent, we have Ci(X) is a subgroup of Ei, and the previous
step guarantees that Ci(X) < Ei, so Ci(H)∪Ci(K) is proper in Ei; hence there exists
xi ∈ Ei such that f(x1, . . . , xi−1, xi, Ei+1, . . . , En) lies in neither H nor K. For i = n,
we obtain the desired element (x1, . . . , xn); this completes the proof.

Corollary 3.9 Let G be a group, H, K and E1, . . . , En be subgroups of G such that H
andK are f -consistent. If f(E1, . . . , En) lies in H∪K, then the subgroup 〈f(E1, . . . , En)〉
lies in H or K.
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Remark 3.10 1. The conclusion of Prop. 3.8, holds under the weaker condition
that H and K are f -consistent only with respect to E1, . . . , En; that is we require
that each gi lies only in Ei for each i, and x, y lies in the appropriate Ei.

2. Lemma 2.2, follows by working in the global group AnG, and taking f = [x, y],
E1 = G and E2 = A. The assumption that H and K are normal in G and
A-invariant amounts to saying that they are normal in A n G, so both of them
are f -consistent as we already mentioned.

3. For f(x) = x, we cover the obvious case: if a subgroup E lies in H ∪K, then it
certainly lies in one of H or K.

3.3 A second generalization: irreducible words on groups

Here we present some incomplete thoughts.
as we mentioned in introduction, a word w is said to be irreducible in G if for every

proper subsets X1 and X2 of G so that w(G) = X1 ∪ X2, we have w∗(G) = 〈X1〉 or
w∗(G) = 〈X2〉.

This definition amounts to saying that if H,K ≤ G and w(G) ⊆ H ∪ K, then
w∗(G) ⊆ H or w∗(G) ⊆ K. Indeed, let X1 = w(G) ∩ H and X2 = w(G) ∩ K so
w(G) = X1 ∪X2. We have w∗(G) = 〈X1〉 = 〈w(G) ∩H〉 and w(G)∩H ⊆ H, and thus
w∗(G) ⊆ H. Or w∗(G) = 〈X2〉, thus 〈w(G) ∩K〉 ⊆ K so w∗(G) ⊆ K.

The work of Deaconescu deals with the word w = x−1y−1xy. His forgoing mentioned
result can be rephrased by saying that w = x−1y−1xy is irreducible in every periodic
group; in other words, M.Deaconescu proved that the word w = [x, y] is irreducible on
every periodic group.

Claim 1 Is the commutators irreducible in every group G?

3.3.1 Irreducibility and construction of groups

Claim 2 Let w be a word. If w is irreducible in a group G, then it is irreducible in
every subgroup H of G?

Corollary 3.11 If w is irreducible in all free groups, then it is absolutely irreducible.

Lemma 3.12 Let w be a word, G a group and N E G. If w is irreducible in G, then
it is irreducible in G/N .
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Proof. Note that w(G) = w(G). Assume w(G) = X1 ∪ X2 with X1 = X1/N and
X2 = X2/N , then w(G) ⊆ (X1 ∪ X2)N . In particular w(G) ⊆ (X1N) ∪ (X2N), so
w∗(G) = 〈X1N〉 if and only if 〈X1N〉 /N =

〈
X1

〉
= w∗(G) or w∗(G) = 〈X2N〉, so

〈X2N〉 = w∗(G) = w∗(G), thus
〈
X2

〉
= w∗(G).

3.3.2 Irreducibility and filtration

Definition 3.13 Let G be a group we call a filtration of G every descending sequence
(Gn)n≥1 of normal subgroups of G, which satisfies ∩

n≥1
Gn = 1.

Definition 3.14 Let I = (I;�) denote a directed partially ordered set or directed
poset, that is, I is a set with a binary relation � satisfying the following conditions:

(a) i � i for i ∈ I;

(b) i � j and j � k imply i � k for i, j, k ∈ I;

(c) i � j and j � i imply i = j for i, j ∈ I;

(d) if i, j ∈ I, there exists some k ∈ I such that i, j � k.

An inverse or projective system of groups over I, consists of a collection {Xi | i ∈ I} of
topological groups indexed by I, and a collection of continuous group homomorphisms
ϕij : Xi → Xj, defined whenever i � j, such that the diagrams of the form

Xj

Xi Xk

ϕikϕij

ϕjk

commute whenever i, j, k ∈ I and i � j � k. In addition we assume that ϕii is the
identity mapping idXi

on Xi. We shall denote such a system by {Xi, ϕij, I}, or by
{Xi, ϕij} if the index set I is clearly understood.

Let Y be a group , {Xi, ϕij, I} an inverse system of a groups over a directed poset
I, and let ψi : Y → Xi be a continuous group homomorphism for each i ∈ I. These
mappings ψi are said to be compatible if ϕijψi = ψj whenever j � i. One says that a
group X together with compatible continuous homomorphisms ϕi : X → Xi (i ∈ I) is
an inverse limit or a projective limit of the inverse system {Xi, ϕij, I} if the following
universal property is satisfied:

X

Y Xi

ϕiψ

ψi
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whenever Y is a group and ψi : Y → Xi (i ∈ I) is a set of compatible continuous
homomorphisms, then there is a unique continuous homomorphism ϕ : Y → X such
that ϕiψ = ψi for all i ∈ I. We say that ψ is "induced" or "determined" by the
compatible homomorphisms ψi. The maps ϕi : X → Xi are called projections. The
projection maps ϕi are not necessarily surjections. If {Xi, ϕij, I} is an inverse system,
we shall denote its inverse limit by X = lim←−

i∈I
Xi.
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Abstract

Our aim in this work is to analyze M.Deaconescu’s results on commutators
and to generalize some of these results, and we introduce the idea of irreducible
words on groups.

Key Words: commutators, automorphism, orbit, fixed points, free groups.

Résumé

Notre objectif dans ce travail est d’analyser les résultats de M.Deaconescu et
généraliser certains de ces résultats et nous présentions l’idée des mots irréduc-
tibles sur les groupes.

Mots-clés : commutateurs, automorphisme, orbite, points fixes, groupes libres.
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