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Notations and conventions

The symbol The meaning
µ� ν µ is absoutly continuous with respect to ν
µ ⊥ ν µ is singular with respect to ν
x̄ the conjugate of the complex number x
1A the indecator function of the set A
B(R) the Borel σ−algebra on R

Lp(E, E , µ) or Lp(µ) Lp-space
iff if and only if
rv random variable
pdf probability densite function
df distribution function
gdf generalized distribution function
sp stochastic process

Mm,n(R) the set of all real-valued matrix of size m× n
Bm Brownian motion
d= equality in distribution

fBm fractional Brownian motion
Ac the complement of the set A

lim supn fn infn≥1 supk>n fn
lim infn fn supn≥1 infk≥n fn

f+ sup(f, 0)
f− − inf(f, 0)
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Abstract

In this work, we introduce the fractional Brownian motion with Hurst
parameter H > 1

2 , study the stochastic integral in Young sense and we
prove the existence and the uniqueness of the solution of stochastic differ-
ential equations driven by the corresponding noise.

Résumé

Dans ce travail, nous présentons le mouvement Brownien fractionnaire
avec paramètre de Hurst H > 1

2 , étudions l’intégrale stochastique dans le
sens de Young et nous démontrons l’existence et l’unicité de la solution de
l’équation différentielle stochastique entraînée par le bruit correspondant.
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Introduction

In his study of long-term storage capacity and design of reservoirs based on investiga-

tions of river water levels along the Nile, Hurst observed a phenomenon which is invariant

to changes in scale. Such a scale-invariant phenomenon was also observed in studies of

problems connected with traffic patterns of packet flows in high-speed data networks such

as the Internet.

In 1940 Kolmogorov introduced a class of self similar stochastic processes known as

fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) which is develloped

later by Mandelbrot, B. B. and Van Ness, J.W. [28].

The fBm can be considered as a generalisation of classical Brownian motion. In

particular, if H = 1
2 the fBm is reduced to the well known Brownian motion.

The fBm used for modeling of many situations, for example when describing

• Processes persistents (the case H > 1
2)

– The level of water in a river as a function of time.

– The temperatur at a specific place as a functio!n of time.

• Processes anti-persistents (the case H < 1
2)

– Financial turbulence ie: for example the empirical volatility of a stock.

2



Since fBm is not a semimartingal, it is not possible to extend the notion of the Itô

integral for developing stochastic integration with respect to fBm.

Moreover, almost all trajectories of fBm are of unbounded p-variation when p < 1
H
,

as a consequence Riemann-Stieltjes integral cannot be applied.

Several methods have been developed to overcome the problem of the integral with

respect to fBm. One of them can be used in the case when H > 1
2 , this method called

pathwise stochastic Young integration.

The integral with respect to fBm with Hurst parameter H > 1
2 is well defined as Young

integral under the condition α + β > 1 where the trajectories of fBm are α−Hölder

continuous of order α < H and the integrand function is β−Hölder continuous function

of order β > 0.

In this topic there is a study of the existence and the uniquness of the solution of

stochastic differential equations driven by fBm with Hurst parameterH > 1
2 (deterministic

differential equation) under some conditions of the forme

dx(t) = b(x(t))dt+ σ(x(t))dg(t). (1)

And Itô formula with respect to fBm with Hurst parameter H > 1
2 applied to Black-

Schols equation driven by fBm and we simulate the solution of this equation using R.

This work consists of five chapters and three appendices.

The first chapter is devoted to Riemann-Stieltjes integral based on Lebesgue-Stieltjes mea-

sure which has some important special cases of associated functions (increasing, derivable

and finite variation functions).

The second one is devoted to stochastic processes, some examples and its characterestics

(the law, the mean, the variance...), and a study of some special cases (Markovian, Gaus-

sian processes and Brownian motion).

The third chapter is devoted to fBm, it introduced first the existence and the construction

of fBm as a centered Gaussian process and a study of its important properties and we

make a simulation of fBm using volterra representation.

The fourth one is devoted to stochastic Young integral with respect to fBm with Hurst

parameter H > 1
2 , first it introduce Young integral in the general case for functions of

finite variation under some conditions and a study of the extension into stochastic pro-
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cesses of Hölder continuous trajectories.

The fifth one is devoted to the existence and uniquness of the solution of SDE driven by

fBm with Hurst parameter H > 1
2 based on deterministic case. Than it give Itô formula

with respect to fBm with Hurst parameter H > 1
2 applied on a simple example called

Black-Schols model and we make the simulation of its solution.

The first Appendix is devoted to general probability theory as random variables and its

characterestics. In particular there is a study of Gaussian random variables and random

vectors.

The second Appendix is devoted to some aspects of functional analysis; Hilbert spaces

and some mportant theorems of analysis.

The third Appendix is devoted to Riemann and Lebesgue integrals and comparison be-

tween them and an extension of Riemann integral called improper Riemann integral.
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Chapter 1

Riemann-Stieltjes Integral

In this chapter we assume that (E, E) is a measurable space ( see Appendix A.3).

1.1 Advanced in measure theory

1.1.1 Absolutly continuous and singular measures

Definition 1.1 (See [4]) Let µ and ν be two positive measures on (E, E). The measure

µ is said to be

• Absolutly continuous with respect to ν iff

ν(A) = 0⇒ µ(A) = 0, for all A ∈ E . (1.1)

In this case we write µ� ν.

• Singular with respect to ν if there exist a set B ∈ E such that

µ(B) = 0 and ν(Bc) = 0. (1.2)

In this case we write µ ⊥ ν.

Remark 1.2 If µ is singular with respect to ν then, ν is also singular with respect to µ.

5



Example 1.1.1 Let ν be the measure defined on (R,B(R)) as follow

ν(B) = #{x | x ∈ B ∩ Z}, for all B ∈ B(R). (1.3)

Then, for B = Z,

L(Z) = L(∪∞i=0{−i, i}) =
∞∑
i=0

L({−i, i}) = 0, (1.4)

and ν(Zc) = 0 (because Zc ∩ Z = φ), this implies that L ⊥ ν.

Proposition 1.3 Let µ1, µ2 and µ be σ−finite measures on (E, E),

• If µ1 ⊥ µ and µ2 ⊥ µ then, µ1 + µ2 ⊥ µ.

• If µ1 � µ and µ2 � µ then, µ1 + µ2 � µ.

• If µ1 � µ and µ1 ⊥ µ then, µ1 = 0.

Proof. See [36] p120.

1.1.2 Radon-Nikodym Theorem

Theorem 1.4 (See [26]) If µ and ν are two positive finite measures on (E, E) (see

Appendix A.6) and if ν � µ. Then there exist a unique function h ∈ L1(µ) such that

ν(A) =
∫
A
hdµ, for every A ∈ E . (1.5)

Proof. Set µ∗ = µ+ ν, then ν ≤ µ∗. For every positive measurable function K∫
Kdν ≤

∫
Kdµ∗. (1.6)

Define the linear operator Φ : L2(µ∗)→ R as follow

Φ(f) =
∫
E
fdν, (1.7)

this integral is well defined because L2(µ∗) ⊂ L1(µ∗) and we have∫
| f | dν ≤

∫
| f | dµ∗ <∞. (1.8)

Define < f, g >=
∫
E fgdν for all f, g ∈ L2(ν) as a scalar product on L2(ν). By using

Cauchy-Schwartz inequality see (D.3), we obtain

|< f, g >|≤
√
< f, f >

√
< g, g >. (1.9)

6



Then, for g ≡ 1, and because µ∗(E) <∞ we have

| Φ(f) | ≤
√∫

f 2dν

√∫
1dν,

≤
√∫

f 2dµ∗
√
µ∗(E), (1.10)

=
√
µ∗(E) ‖ f ‖L2(µ∗) .

The linear operatot Φ is bounded on L2(µ∗). Then, by usig Riesz representation see

(D.4); there exist a unique function g ∈ L2(µ∗) such that,

Φ(f) =
∫
E
fdν =

∫
E
fgdµ∗ =< f, g >L2(µ∗), (1.11)

for every f ∈ L2(µ∗).

In particular, for f = 1A for every A ∈ E

Φ(1A) =
∫
E
1Adν =

∫
E
g1Adµ

∗. (1.12)

Then,

ν(A) =
∫
A
gdµ∗. (1.13)

And ∫
E
fdν =

∫
E
fgdµ∗,

=
∫
E
fgdµ+

∫
E
fgdν, (1.14)

this implies that, ∫
E
f(1− g)dν =

∫
E
fgdµ. (1.15)

Assume that µ∗(A) 6= 0 for every A ∈ E then

0 < ν(A) ≤ µ∗(A) = µ(A) + ν(A), (1.16)

0 < 1
µ∗(A)

∫
A
gdµ∗ = ν(A)

µ∗(A) ≤ 1, (1.17)

this implies that g ∈ (0, 1].

Set A1 = {0 < g < 1}, fix n ≥ 1, let A ∈ E and let f = 1A∩A1(1 + g + ... + gn−1) then,

(1.15) implies that∫
1A∩A1(1 + g + ...+ gn−1)(1− g)dν =

∫
1A∩A2(1 + g + ...+ gn−1)gdµ, (1.18)

7



∫
A∩A1

(1− gn)dν =
∫
A∩A1

(g + g2 + ...+ gn)dµ,

When n tends to infinty and as limn→∞ g
n = 0 because 0 < g ≤ 1 we have

ν(A ∩ A1) =
∫
A∩A1

g

1− gdµ. (1.19)

Set h ≡ g
1−g and B = A ∩ A1 then,

ν(B) =
∫
B
hdµ, for all B ∈ E . (1.20)

By the definition of the integral in (1.20) for µ(A) = 0, A ∈ E we have ν � µ.

1.2 Preliminaries and definitions of Lebesgue-Stieltjes
measure

Definition 1.5 (See [19]) Let a, b ∈ R, let µ be a signed measure on (R,B(R)) and let

F : R→ R be a function of both increasing and decreasing components.

• F can be written as the difference between increasing component functions as follow

F = FI − (−FD), (1.21)

where FI and FD are the increasing and the decreasing component functions of F.

• Define the Lebesgue-Stieltjes measure associated with F over an open interval

of the form (a, b) as follow

µF
(
(a, b)

)
= µFI

(
(a, b)

)
− µ−FD

(
(a, b)

)
, (1.22)

where

µFI
(
(a, b)

)
= FI(b−)− FI(a+), (1.23)

µ−FD
(
(a, b)

)
= −FD(b−)− (−FD(a+)), (1.24)

FI(b−) = lim
x
<−→b

F (x), (1.25)

FI(a+) = lim
x
>−→a

F (x). (1.26)

and the same thing about −FD(b−) and −FD(a+).
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• Define the Lebesgue-Stieltjes measure associated with F over any arbitrary

set A ⊂ B(R) as the minimum of the sum of Lebesgue-Stieltjes measures defined by

open intervals cover the set A, that is;

µF (A) = inf{
∞∑
i=1

µFI (Ii) : A ⊂ ∪∞i=1Ii, Ii = (ai, bi), ai, bi ∈ R, i ∈ N}

− inf{
∞∑
i=1

µ−FD(Ii) : A ⊂ ∪∞i=1Ii, Ii = (ai, bi), ai, bi ∈ R, i ∈ N}. (1.27)

1.2.1 Special case: F is increasing

Consider the increasing function F : R→ R.

Properties 1.6 For every a, b ∈ R we have

µF
(
{a}

)
= µF (a+)− µF (a−). (1.28)

µF
(
(a, b]

)
= F (b+)− F (a+). (1.29)

In particular if F is continuous then, µF ({a}) = 0.

µF
(
[a, b)

)
= F (b−)− F (a−). (1.30)

µF
(
[a, b]

)
= F (b+)− F (a−). (1.31)

Proof. We have a = ∩∞i=1(a− 1
i
, a+ 1

i
) then,

µF ({a}) = inf{µF (Ii) : Ii = (a− 1
i
, a+ 1

i
), i ∈ N},

= inf{F
(
(a+ 1

i
)−
)
− F

(
(a− 1

i
)+
)
, i ∈ N}, (1.32)

= F (a+)− F (a−).

And by using (1.28) we have

µF
(
(a, b]

)
= µF

(
(a, b)

)
+ µF ({b}),

= F (b−)− F (a+) + F (b+)− F (b−), (1.33)

= F (b+)− F (a+).

We can prove the others by the same way.

9



Remark 1.7 • If F is continuous then,

µF
(
(a, b)

)
= F (b)− F (a), (1.34)

and

µF
(
(a, b)

)
= µF

(
(a, b]

)
= µF

(
[a, b)

)
= µF

(
[a, b]

)
. (1.35)

• In particular, if F (x) = x for every x ∈ R then, the Lebesgue-Stieltjes measure

associated with F is given by

µF
(
(a, b)

)
= F (b−)− F (a+),

= b− a, ∀a, b ∈ R, (1.36)

is the Lebesgue measure on R.

• If F is right-continuous then,

µF
(
(a, b)

)
= F (b−)− F (a), (1.37)

µF
(
[a, b)

)
= F (b−)− F (a−), (1.38)

µF
(
[a, b]

)
= F (b)− F (a−), (1.39)

µF
(
(a, b]

)
= F (b)− F (a). (1.40)

• If F is left-continuous then,

µF
(
(a, b)

)
= F (b)− F (a+), (1.41)

µF
(
[a, b)

)
= F (b)− F (a), (1.42)

µF
(
[a, b]

)
= F (b+)− F (a), (1.43)

µF
(
(a, b]

)
= F (b+)− F (a+). (1.44)

• The Lebesgue-Stieltjes measure of R is given by

µF
(
R
)

= F (+∞)− F (−∞), (1.45)

where

F (+∞) = lim
x→+∞

F (x), (1.46)

and

F (−∞) = lim
x→−∞

F (x). (1.47)
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1.3 Riemann-Stieltjes integral

Definition 1.8 (See [6]) Let a, b ∈ R, F,G : [a, b] → R be a bounded functions, P =

{x0 = a, ..., xn = b} be a partition of [a, b], ti ∈ [xi−1, xi] for all i = 1, ..., n and

µF ([xi−1, xi]) be the Lebesgue-Stieltjes measure associated with F.

• Define the Riemann-Stieltjes sum as follow

Sn =
n∑
i=1

G(ti)µF ([xi−1, xi]). (1.48)

If limn→∞ Sn is finite then, G is Riemann-Stieltjes integrable with respect to F,

this integral is denoted by
∫
GdF or

∫ b
a G(x)dF (x).

• Define the upper and the lower Riemann-Stieltjes sums of G with respect to F and

the partition P respectively as follow

S̄(G,F,P) =
n∑
i=1

Mi(G)µF ([xi−1, xi]), (1.49)

S(G,F,P) =
n∑
i=1

mi(G)µF ([xi−1, xi]), (1.50)

where Mi(G) = supx∈[xi−1,xi] G(x) and mi(G) = infx∈[xi−1,xi] G(x).

• Define S̄(G,F ) = limn→∞ S̄(G,F,P) and S(G,F ) = limn→∞ S(G,F,P). We say

that G is Riemann-Stieltjes integrable with respect to F if S̄(G,F ) and S(G,F )

exists and equals; ∫ b

a
GdF = S̄(G,F ) = S(G,F ). (1.51)

In particular, if G(x) = x then, Riemann-Stieltjes integral is the same as Riemann inte-

gral.

Properties 1.9 The important properties of Riemann-Stieltjes integral are

•
∫

(G1 +G2)dF =
∫
G1dF +

∫
G2dF,

•
∫
Gd(F1 + F2) =

∫
GdF1 +

∫
GdF2,

•
∫
kGdlF = kl

∫
GdF , for k, l ∈ R,
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• for a < b, the existence of one of the integrals
∫ b
a GdF and

∫ b
a FdG implies the

existence of the other. In this case, the equality
∫ b

a
G(x)dF (x) +

∫ b

a
F (x)dG(x) = [F (x)G(x)]ba, (1.52)

holds.

• For a < c < b,
∫ b
a GdF =

∫ c
a GdF +

∫ b
c GdF, note that the converse statement is not

true.

Example 1.3.1 Set

G(x) =
0 if − 1 ≤ x ≤ 0,

1 if 0 < x ≤ 1.
F (x) =

0 if − 1 ≤ x < 0,
1 if 0 ≤ x ≤ 1.

(1.53)

First, let’s calculate the integrals
∫ 0
−1GdF and

∫ 1
0 GdF .

Let P1 = {x0 = −1, ..., xn = 0} be a partition of [−1, 0], P2 = {y0 = 0, ..., ym = 1}

be a partition of [0, 1] and choose ti ∈ [xi−1, xi] for i = 1, ..., n and sj ∈ [yj−1, yj] for

j = 1, ...,m, ∫ 0

−1
GdF = lim

n→∞

n∑
i=1

G(ti)[F (xi)− F (xi−1)] = 0, (1.54)

∫ 1

0
GdF = lim

m→∞

m∑
j=1

G(sj)[F (yj)− F (yj−1)] = 0. (1.55)

But,
∫ 1
−1GdF doesn’t exist; let P = {a0 = −1, ..., ak−1, ak, ..., an = 1} be a partition of

[−1, 1] such that ak−1 < 0 < ak and let bi ∈ [ai−1, ai],

Sn =
n∑
i=1

G(bk)[F (ai)− F (ai−1)],

= G(bk)[F (ak)− F (ak−1)], (1.56)

= G(bk)(1− 0),

= G(bk).

if bk < 0 then, Sn = 0 and if bk > 0 then, Sn = 1. This implies that limn→∞ Sn doesn’t

exist.
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1.4 Some special cases of associated function

1.4.1 The case F is derivable

Proposition 1.10 (See [20]) Let a, b ∈ R and F,G : [a, b]→ R such that G is Riemann

integrable on [a, b]. If F is an increasing function on [a, b] and F ′ is defined and Riemann

integrable on [a, b] then,

• GF
′ is Riemann integrable over [a, b],

• G is Riemann-Stieltjes integrable with respect to F over [a, b] and
∫ b

a
G(x)dF (x) =

∫ b

a
G(x)F ′(x)dx. (1.57)

Proof.

• G and F ′ are Riemann integrable on [a, b] then, GF ′ is Riemann integrable on [a, b].

• Let P = {x0 = a, ..., xn = b} be a partition of [a, b] and ti ∈ [xi−1, xi] for i = 1, ..., n

then,

S̄(G,F,P)− S(G,F,P) =
n∑
i=1

[Mi(G)−mi(G)]µF ([xi−1, xi]). (1.58)

By using Mean value theorem

µF ([xi−1, xi]) = F (xi)− F (xi−1) = F
′(ti)(xi − xi−1). (1.59)

Then,

S̄(G,F,P)− S(G,F,P) =
n∑
i=1

[Mi(G)−mi(G)]F ′(ti)(xi − xi−1). (1.60)

Since F ′ is Riemann integrable over [a, b] then, F ′ is bounded the,

∃ k > 0 : F ′(x) ≤ k for all x ∈ [a, b]. (1.61)

Then,

S̄(G,F,P)− S(G,F,P) ≤ k
n∑
i=1

[Mi(G)−mi(G)](xi − xi−1). (1.62)
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Since G is Riemann integrable on [a, b] then, for every ε > 0 there exist a partition

Pε = {y0 = a, ..., ym = b} of [a, b] and δ = ε
k
such that

m∑
i=1

[Mi(G)−mi(G)](yi − yi−1) ≤ δ. (1.63)

From expression (1.62)

S̄(G,F,Pε)− S(G,F,Pε) ≤ k
m∑
i=1

[Mi(G)−mi(G)](yi − yi−1) ≤ kδ = ε. (1.64)

This implies that G is Riemann-Stieltjes integrable with respect to F.

• Now, let’s prove that
∫ b
a G(x)dF (x) =

∫ b
a G(x)F ′(x)dx. Since GF ′ is Riemann inte-

grable on [a, b] then, for ε > 0 choose a partition P = {x0 = a, ..., xn = b} of [a, b]

and ti ∈ [xi−1, xi] such that

|
n∑
i=1

(GF ′)(ti)(xi − xi−1)− l |< ε,

l − ε <
n∑
i=1

(GF ′)(ti)(xi − xi−1) < l + ε, (1.65)

where l =
∫ b
a G(x)F ′(x)dx. And

S̄(G,F,P) =
n∑
i=1

Mi(G)[F (xi)− F (xi−1)],

=
n∑
i=1

Mi(G)F ′(ti)(xi − xi−1), (1.66)

≥
n∑
i=1

G(ti)F
′(ti)(xi − xi−1).

Since F is increasing function then, F ′(x) ≥ 0 for every x ∈ [a, b] this implies that

S̄(G,F,P) > l − ε. (1.67)

Then, ∫ b

a
G(x)dF (x) ≥

∫ b

a
G(x)F ′(x)dx. (1.68)

By using the same way S(G,F,P) < l + ε this implies that,∫ b

a
G(x)dF (x) ≤

∫ b

a
G(x)F ′(x)dx. (1.69)

From (1.68) and (1.69) we have
∫ b
a G(x)dF (x) =

∫ b
a G(x)F ′(x)dx.

Which leads to the desired conclusion.
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1.4.2 The case F is of finite variation

Theorem 1.11 (See [40]) Let a, b ∈ R and F,G : [a, b]→ R. Assume that G is bounded

and F is of finite variation on [a, b]. Then,

|
∫ b

a
GdF |≤

∫ b

a
| G | dV ≤MV (b), (1.70)

where M = supx∈[a,b] | G(x) | and the function V (x) denoted the variation of F over [a, x].

In particular, if F (x) = x then,

|
∫ b

a
GdF |≤M(b− a). (1.71)

Proof. Let ε > 0 and P = {x0 = a, ..., xn = b} be a partition of [a, b] such that
∫ b

a
GdF − ε ≤

n∑
i=1

G(ti)[F (xi)− F (xi−1)], ti ∈ [xi−1, xi],

≤
n∑
i=1

G(ti)(V (xi)− V (xi−1)), (1.72)

then, ∫ b

a
GdF − ε ≤

∫ b

a
GdV, (1.73)

and because G is bounded we can write M = supx∈[a,b] | G(x) | then,
∫ b

a
GdF − ε ≤M

∫ b

a
dV, (1.74)

then,

|
∫ b

a
GdF |≤MV (b). (1.75)

In particular, if F (x) = x then V (b) = b− a.

Theorem 1.12 Let (Fn)n∈N be a sequence of functions of bounded variations on [a, b].

Assume that there exist a function F : [a, b]→ R such that, the variation of F −Fn tends

to 0 as n→∞ on [a, b] and

F (a) = Fn(a) = 0, for all n ∈ N. (1.76)

If G is continuous function on [a, b] then,

lim
n→∞

∫ b

a
G(x)dFn(x) =

∫ b

a
G(x)dF (x). (1.77)
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Proof. Let Vn(b) be the total variation of the function (F − Fn) on [a, b] and

M = sup
x∈[a,b]

| G(x) | (1.78)

By using Theorem 1.11

|
∫ b

a
G(x)d(F − Fn)(x) |≤MVn(b)→n→∞ 0. (1.79)

Then,

lim
n→∞

∫ b

a
G(x)dFn(x) =

∫ b

a
G(x)dF (x). (1.80)
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Chapter 2

Introduction to stochastic processes

Many practical applications of probability are concerned with stochastic process de-

scribes some phenomenon that evolves over time (process) and that involves a stochastic

(random) component.

This chapter give some basic definitions and properties of stochastic processes.

It will focus on some particular cases; Markovian, Gaussian processes and Brownian

motion.

In all the next we assume that (Ω,F , P ) is a probability space and (E, E) is a measurable

space.

2.1 Basic definitions and characteristics

Definition 2.1 ([7]) Let T be a non-empty set, a stochastic process (sp) X = {Xt}t∈T
is a collection of random variables Xt defined from (Ω,F ,P) to (E, E) indexed by the time

t in T, the set T can be either discrete for example T = N or continuous T = R+.

• for t ∈ T fixed, ω ∈ Ω 7→ Xt(ω) is a random variable on (Ω,F ,P).

• for ω ∈ Ω fixed, t ∈ T 7→ Xt(ω) is a function, called the trajectory of the process X.
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In this work we are interested in t ∈ R+

Example 2.1.1 ([24])Let Y be a random variable such that Y ∼ exp(λ), we can define

the stochastic process {Xt}t≥0 as follow

Xt = Y t, for all t ≥ 0. (2.1)

Example 2.1.2 ([22]) Let U ∼ U([0, 2π]), define the sp X = {Xt}t≥0 as follow; for

a ∈ R,

Xt(ω) = sin(at+ U(ω)). (2.2)

2.1.1 Characteristics of stochastic processes
Finite distribution and density

Definition 2.2 ([24]) Let X = {Xt}t∈T be a real valued sp, X can be characterized by its

finite-dimensional distribution. for all ti ∈ T, i ∈ {1, 2, ..., k} where k ∈ N

• The k-dimensional distribution of X is the joint distribution function of the

random vector (Xt1 , ..., Xtk);

F (x1, ..., xk; t1, ..., tk) = P [Xt1 ≤ x1, ..., Xtk ≤ xk]. (2.3)

• The k-dimensional density function of X (in the case partial the derivatives of

F exist) is

f(x1, ..., xk; t1, ..., tk) = ∂k

∂x1...∂xk
F (x1, ..., xk; t1, ..., tk). (2.4)

Example 2.1.3 We use the sp defined in Example 2.1.1. The k-dimensional distribution

function of the sp Xt is given by

F (x1, ..., xk; t1, ..., tk) = P
(
Xt1 ≤ x1, ..., Xtk ≤ xk

)
,

= P
(
t1Y ≤ x1, ..., tkY ≤ xk

)
,

= P
(
Y ≤ min

1≤i≤k

(xi
ti

))
, (2.5)

= 1− exp(−λ min
1≤i≤k

(xi
ti

)
).
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Mean, variance and covariance

Definition 2.3 ([24]) Let X = {Xt}t∈T be a real valued sp with finite second moments

• The mean of X at time t if it exists is denoted by mX(t)

mX(t) = E(Xt), (2.6)

• The variance of X at time t is given by

var(Xt) = E(X2
t )− (mX(t))2. (2.7)

• The covariance at times s, t ∈ T between Xs and Xt is given by

C(s, t) = cov(Xs, Xt),

= E[(Xs −mX(s))(Xt −mX(t))], (2.8)

= E(XsXt)−mX(s)mX(t).

Example 2.1.4 ([38]) Consider a random process whose realizations are defined as fol-

lows:

Xt = A e−λt (2.9)

for t ∈ R+, λ > 0 and A ∼ U([0.1]), the expectation and the variance of Xt at time t

respectively are:

E[Xt] = E(A e−λt) = e−λt E(A) = 1
2 e−λt. (2.10)

var(Xt) = var(Ae−λt) = e−2λtvar(A) = 1
12e

−2λt. (2.11)

The covariance at times s, t ≥ 0 is

cov(Xs, Xt) = E(XsXt)− E(Xs)E(Xt),

= e−λ(s+t)E(A2)− 1
4e
−λ(s+t), (2.12)

= 1
12e

−λ(s+t).
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Independent increments and stationarity

Definition 2.4 Let X = {Xt, t ∈ T} be a sp takes values in (E, E), for every n ∈ N and

every t1, ..., tn ∈ T, (0 ≤ t0 < t0 < t1 < ... < tn)

• The sp X is said to have independent increments, if Xt1 −Xt0 , ..., Xtn −Xtn−1

are independents.

• The sp X is stationary if for every τ > 0

P (Xt1+τ ∈ A1, ..., Xtn+τ ∈ An) = P (Xt1 ∈ A1, ..., Xtn ∈ An), (2.13)

where Ai ∈ E , ti ∈ T, τ + ti ∈ T for all i = 1, 2, ..., n, ∀n ∈ N.

Modification and indistinguishability

Definition 2.5 ([29]) Let X = (Xt)t∈T and Y = (Yt)t∈T be two sp defined from the same

probability spase (Ω,F , P ) with values in the same measurable space (E, E).

• We say that Y is a modification of X, if for each fixed t0, we have

P (ω ∈ Ω : Yt0(ω) = Xt0(ω)) = 1, (2.14)

• The sp Y is said to be indistinguishable from X if

P (ω ∈ Ω : for each t ∈ T, Yt(ω) = Xt(ω)) = 1, (2.15)

Continuity of trajectories

Definition 2.6 ([29]) Let X = {Xt}t∈T be a sp defined on (Ω,F , P ), if we have

P (ω ∈ Ω : t→ Xt(ω) is continuous over T ) = 1, (2.16)

we say that X has almost surly continuous trajectories.

Theorem 2.7 (Kolmogorov’s criterion for continuity) Let X = {Xt}t∈T be a real

valued sp defined on (Ω,F , P ). Assume that there exist three reals γ, c, ε > 0 such that,

for every s, t ∈ T

E(| Xt −Xs |γ) ≤ c | t− s |1+ε . (2.17)
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Then, there exist a modification Y of X whose trajectories are almost surly α−Hölder

continuous for every α ∈ (0, ε
γ
); this means that, for every ω ∈ Ω, there exist a constant

c > 0 such that for every s, t ∈ T

| Yt(ω)− Ys(ω) |≤ c | t− s |α . (2.18)

Proof. See [29] p 15-19.

Filteration and stopping time

Definition 2.8 ([25]) A filtration on (Ω,F ,P) is an increasing family (Ft)t≥0, of sub-

σ-algebras of F ; such that for every 0 ≤ s < t <∞ we have

F0 ⊂ Fs ⊂ Ft ⊂ F . (2.19)

We denoted by (Ω,F ,Ft,P) a filtred probability space.

Remark 2.9 We can think of Ft as the informations available to us at time t.

Definition 2.10 Let X = {Xt, t ∈ T} be a stochastic process defined on a filtred prob-

ability space (Ω,F ,Ft, P ) We say that (Xt) is Ft−adapted if Xt the rv at time t is

Ft−measurable for all t ∈ T .

Definition 2.11 The natural filtration of the sp X is the filtration generated by this

process, that is, the filtration FXt = σ{Xs, s ≤ t}; (the σ−algebra generated by all the

random variables Xs, for s ≤ t).

Definition 2.12 ([25]) Let (Ω,F , (Ft)t≥0, P ) be a filtred probability space. A random

variable T : Ω → R+ is a stopping time of the filtration (Ft)t≥0 if {T ≤ t} ∈ Ft, for

every t ≥ 0. The σ−algebra of the past before T is defined by

FT = {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft}, for all t ≥ 0. (2.20)

Example 2.1.5 Every constant is a stopping time defined on (Ω,F , P ) with respect to

any filtration (Ft)t≥0. Let T ≡ c where c is a constant we have here two cases

• If c ≤ t then, for every t ≥ 0, {T ≤ t} = {ω ∈ Ω : T (ω) ≤ t} = Ω ∈ Ft.

• If c > t then, {T ≤ t} = φ ∈ Ft.

This implies that T is Ft−stopping time.
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Martingale

Definition 2.13 An adapted sp X = {Xt}t≥0 defined on a filtered probability space

(Ω,F ,Ft, P ) such that, Xt is integrable for every t ≥ 0 is called

• martingale if, for every 0 ≤ s < t, E(Xt | Fs) = Xs.

• supermartingale if, for every 0 ≤ s < t, E(Xt | Fs) ≤ Xs.

• submartingale if, for every 0 ≤ s < t, E(Xt | Fs) ≥ Xs.

Continuous semimartingale

Definition 2.14 Let X = {Xt}t≥0 be a sp, X is called uniformly integrable if

• sup
t∈R+

E(| Xt |) <∞, and

• sup
t∈R+

E(Xt | 1{|Xt|>n})→ 0 as n→∞.

Definition 2.15 Let X = {Xt}t≥0 be a sp, we say that X is continuous local mar-

tingale if there exist an increasing sequence {τn}n∈N of stopping times satisfies τn →∞

as n→∞, such that, the sp {Xτn}n∈N is uniformly integrable martingale.

Definition 2.16 An adaptes sp {Xt}t≥0 is called finite variation process if all its

trajectories are finite variation functions on R+ ( See Definition D.17).

Definition 2.17 A sp {Xt}t≥0 is called continuous semimartingale if it can decom-

posed as

Xt = Mt + At, (2.21)

where {Mt}t≥0 is a continuous local martingale and {At}t≥0 is a finite variation process.

The p-variation of stochastic process

Definition 2.18 (See [5]) Let X = {Xt}t∈[0,T ] be a sp and let P = {t0 = 0, ..., tn = T}

be a partition of [0, T ].

• Define the p-variation of the sp X for p > 0 as follow

Vp = sup
P

n∑
i=1
| Xti −Xti−1 |p . (2.22)

22



• The sp X is of finite p-variation over [0, T ] if Vp is finite.

• In particular, if V1 <∞, (p = 1), the sp X is of finite variation over [0, T ].

• The index of p-variation of the sp X is defined as follow

IX = inf{p > 0 : Vp <∞}. (2.23)

2.2 Markovian stochastic processes

Definition 2.19 Let X = {X(t), t ≥ 0} be a stochastic process defined on a filtred

probability space (Ω,F , (Ft)t≥0,P) with values in (E, E), we say that X is a Markovian

process if, X is Ft-adapted and

P [X(t) ∈ A | Ft] = P [X(t) ∈ A | X(s)], (2.24)

for all s, t ≥ 0, s ≤ t and A ∈ E. The expression (2.24) is called Markov property.

Definition 2.20 Markov chain is a discrete-time Markovian stochastic process, and continuous-

time Markov chain is a discrete-state and continuous time Markovian stochastic process.

2.2.1 Special case: Continuous-time Markov chains

Definition 2.21 (See [24]) Let X = {X(t), t ≥ 0} be a continuous-time stochastic process

takes values in N. X is a continuous-time Markov chain if

P [X(t) = j | X(s) = i,X(r) = xr] = P [X(t) = j | X(s) = i] = Pij(t), (2.25)

for all 0 ≤ r < s < t, and all i, j, xr ∈ N.

The probabilities Pij(t) are called transition probabilities, and the matrix

P(t) =


P00(t) P01(t) P02(t) . . .
P10(t) P11(t) P12(t) . . .
P20(t) P21(t) P22(t) . . .

... ... ... . . .

 (2.26)

is called the transition probability matrix.

Remark 2.22 Assume that the Markov process {X(t), t ≥ 0} have stastionary or time-

homogeneous transition probability; this mean’s that (2.25) independent of s

P [X(t) = j | X(s) = i] = P [X(t− s) = j | X(0) = i] (2.27)
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2.3 Introduction to Gaussian stochastic processes

There are several types of stochastic processes that have found wide applications

because of their realistic physical modeling in addition to their simplicity. This subsec-

tion describe some of these important stochastic processes; called Gaussian stochastic

processes.

Definition 2.23 (See [39]) A real-valued stochastic process X = {Xt, t ∈ T} is Gaus-

sian if for any finite ordered sub-family {ti}ni=1 of T, the random vector X = (Xt1 , ..., Xtn)

is Gaussian (X ∼ N (mX , K)) (See Appendix B.1.4). The probability density of X is given

by

f(Xt1 ,...,Xtn )(x) = 1
(2π)n/2

√
|det(K)|

exp[−1
2(x−mX)TK−1(x−mX)], (2.28)

where mX = (m1, ...,mn)T is the mean vector of X defined as

mX = E(X) =


E(Xt1)
E(Xt2)

...
E(Xtn)

 (2.29)

and K is the n× n covariance matrix of X defined as

K =


var(Xt1) cov(Xt1 , Xt2) . . . cov(Xt1 , Xtn)

cor(Xt2 , Xt1) var(Xt2) . . . cov(Xt2 , Xtn)
... ... . . . ...

cor(Xtn , Xt1) cov(Xtn , Xt2) . . . var(Xtn)

 . (2.30)

The process X is centered if E(Xt) = 0,∀t ∈ T.

2.4 Brownian motion

2.4.1 Existence

Definition 2.24 (See [29]) A sp B = {Bt, t ∈ R+} take values in (R,B(R)) is called a

Brownian motion if it has continuous trajectories and satisfies;

1. B0 = 0,

2. B has stationary independent increments; for all times 0 ≤ t1 < ... < tn the random

variables Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1 are independents,
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3. If 0 ≤ s < t then,

(Bt −Bs) ∼ Bt−s ∼ N
(
(t− s)µ, (t− s)(σ2 − (t− s)µ2)

)
, (2.31)

where µ, σ are real constants, σ 6= 0, µ is called the drift and σ2 the variance.

Properties 2.25 If B = {Bt, t ≥ 0} is a Brownian motion with drift µ and variance σ2;

and 0 ≤ t1 < t2 < ... < tn then, cov(Bti , Btj) = E[(Bti − µti)(Btj − µtj)] = σ2 min(ti, tj).

From now we consider only normalized Brownian motion (µ = 0, σ2 = 1) or Wiener

process and refer to it briefly as Brownian motion.

To fulfill the construction of the Brownian motion, Le Gall J-F [42] first define a

Gaussian white noice. Then he define a stochastic process {Bt}t∈R+ for wich each term

is the image by this Gaussian white noice of the indicator function on [0, t]. And we

finally prove that this process has the desired properties. To start the construction of the

Brownian motion we need the following theorem

Theorem 2.26 Let µ be a probability measure on (R,B(R)), there exist a probability space

(Ω,F , P ) and a sequence Xi : (Ω,F , P ) → (R,B(R)) of independent random variables,

such that

µ(A) = P (Xi ∈ A) = P (X−1
i (A)), (2.32)

for all µ−measurable set A and i ∈ N. This means that µ is the law of Xi for all i.

Gaussian white noice

Definition 2.27 Let (Ω,F , P ) be a probability space, A subspace M ⊂ L2(Ω,F , P ) is

called Centered Gaussian space if it is contains only centered Gaussian real random

variables.

Definition 2.28 Let G be a centered Gaussian space, let (E, E) be a measurable space

and µ be a σ−finite measure on it. A Gaussian white noice of intensity µ is a linear

isometry G : L2(E, E , µ)→ G; such that

< G(f), G(g) >G=< f, g >L2(µ), (2.33)
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where G is a centered Gaussian space equipped with inner product

< XY >G= E(XY ) for all X, Y ∈ G. (2.34)

While the inner product on L2(E, E , µ) is

< f, g >L2(µ)=
∫
E
fgdµ, (2.35)

for all f, g ∈ L2(E, E , µ).

Properties 2.29 For all f, g ∈ L2(E, E , µ), the main properties of Gaussian white noice

are

• E(G(f)) = 0.

• var(G(f)) =
∫
E f

2dµ.

• cov(G(f), G(g)) =
∫
E fgdµ.

Pre-Brownian motion

Definition 2.30 Let G be a Gaussian white noice whose intensity L is the Lebesgue

measure; such that G defined from L2(R,B(R),L) to a centered Gaussian space G. The

stochastic process {Bt}t∈R+ defined by

Bt = G(1[0,t]), (2.36)

is called Pre-Brownian motion.

Proposition 2.31 The pre-Brownian motion is a centered Gaussian process with covari-

ance

cov(Bs, Bt) = min(s, t) = s ∧ t, for all s, t ∈ R+. (2.37)

Proof. By definition {Bt}t≥0 is a centered Gaussian process. Moreover, for every s, t ≥ 0,

cov(Bs, Bt) = E(BsBt)

= E(G(1[0,s])G(1[0,t]))

=
∫
R
1[0,s]1[0,t]dL (2.38)

=
∫
R
1[0,s]∩[0,t]dL

= L([0, s] ∩ [0, t]) = min(s, t).
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Then we have cov(Bs, Bt) = s ∧ t.

Proposition 2.32 The pre-Brownian motion defined above verifies that for all finite

ordered sequence starting from zero; {ti}ni=0 ∈ R+, the rv

Bt0 , Bt1 −Bt0 , Bt2 −Bt1 , ..., Btn −Btn−1 , (2.39)

are idependents.

Proof. Let’s define A0 = {0}, A1 =]0, t1], A2 =]t1, t2], ..., An =]tn−1, tn]. Then,

A0, A1, ..., An is a finite disjoint collection of L−finite measure sets, so by the linearity of

G, Bti −Bti−1 = G(1[0,ti])−G(1[0,ti−1]) = G(1]ti−1,ti]), then

Bt0 = G(1A0), Bt1−Bt0 = G(1A1), Bt2−Bt1 = G(1A2), ..., Btn−Btn−1 = G(1An). (2.40)

Since G is isometry for all i, j = 1, ..., n (i 6= j),

E[(Bti −Bti−1)(Btj −Btj−1)] = E(G(1Ai)G(1Aj)),

=< 1Ai ,1Aj >L2(L),

=
∫
R
1Ai(x)1Aj(x)dL,

=
∫
R
1Ai∩Aj(x)dL, (2.41)

=
∫
Ai∩Aj

1dL,

= L(Ai ∩ Aj),

= L(φ) = 0.

Then the increaments Bt0 , Bt1 −Bt0 , ..., Btn −Btn−1 are independents.

Proposition 2.33 For 0 ≤ s < t, the increament (Bt −Bs) ∼ N (0, t− s).

Proof. Since G is linear isometry

var(Bt −Bs) = var(G(1[0,s])−G(1[0,t])),

= var(G(1]s,t])). (2.42)
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Recall that E(G(1]s,t])) = 0 because G(1]s,t]) ∈ G, then E(Bt −Bs) = 0.

var(Bt −Bs) = E([G(1]s,t])]2)

=< 1]s,t],1]s,t] >L2(L)

=
∫
R
12

]s,t]dL (2.43)

=
∫
R
1]s,t]dL

= L(]s, t])

= t− s.

Then (Bt −Bs) ∼ N (0, t− s).

Continuity of trajectories (Existence of Brownian motion)

Theorem 2.34 Brownian motion does exist.

Proof. To simplify the presentation, set T = [0, 1]. Le-Gall [42] prove that the pre-

Brownian motion has a modification that is almost surly α−Hölder continuous for fixed

α ∈ [0, ε
γ
]. We have for all s, t ∈ T, Bt−Bs ∼ N (0, t−s), by using Central limit theorem,

| t− s |−
1
2 (Bt −Bs) ∼ N (0, 1),

Bt −Bs ∼| t− s |1/2 N (0, 1). (2.44)

Since all the moments of the standard normal law are finite (see Appendix B.17), then

E(| Z |γ) <∞ for all 2 < γ <∞; where Z ∼ N (0, 1), define c = E(| Z |γ).

Since 2 < γ <∞, ε = γ
2 − 1 > 0 then γ

2 = 1 + ε.

E(| Bt −Bs |γ) = E(| t− s |
γ
2 | Z |γ)

= c | t− s |
γ
2 (2.45)

= c | t− s |1+ε .

So the Kolmogorov continuity criterion (see Theorem 2.7) are verefied, the hypothesis

are satisfied for all 2 < γ < ∞. For a fixed γ, we know that there exist an α−Hölder

continuous modification of order α ∈ (0, ε
γ
).

By using this result to every choice of α in a sequence (αn)n∈N →n→∞
ε
γ
, then (Bt)t≥0 is

continuous.
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2.4.2 Properties of Brownian motion
Markov property

Proposition 2.35 Let B = {Bt, t ≥ 0} be a Brownian motion. For fixed s ≥ 0 we have

At = Bt −Bs t ≥ 0, (2.46)

is a Markovian Brownian motion independent of σ(Br, r ≤ s).

Proof. It is known that B is centered Gaussian process with cov(Bs, Bt) = s ∧ t for

all s, t ≥ 0. Let G = σ(Bt, t ≥ 0) be a centered Gaussian space, for fixed s ≥ 0, let

Gr = σ(Br, 0 ≤ r < s) and Gu = σ(Bs+u −Bs, u ≥ 0) be two subspaces of G,

E[Br(Bs+u −Bs)] = r ∧ (s+ u)− r ∧ s = r − r = 0. (2.47)

Then, Gr and Gu are independents. In particular, the random variable (Bt − Bs) inde-

pendent of σ(Br, r ≤ s) for all t ≥ 0, then {At}t≥0 is Markovian Brownian motion.

Martingale

Theorem 2.36 A Brownian motion B = {Bt}t≥0 is a martingale with respect to the

filtration FBt = σ(Bt, t ≥ 0).

Proof.

• Since the filtration FBt is generated by the process B, and Bt ∼ N (0, t), then Bt is

FBt −adapted and integrable for all t.

• For every 0 ≤ s < t, Bs is FBs -measurable and

E(Bt | FBs ) = E(Bt −Bs +Bs | FBs ),

= E(Bt −Bs | FBs ) +Bs, (2.48)

= Bs.

Then B is FBt −martingale for all t.
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2.4.3 Simulation of Brownian motion

We simulated a Brownian motion ([10]), B = {Bt}t∈[0,T ] (see Section 2.4) verifying the

following conditions

ä B0 = 0,

ä for all times t0 = 0 < t1 < ... < tn, n ∈ N, we have Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1 are

independent and Bti −Bti−1 ∼ N (0, ti − ti−1), for all i = 1, ..., n, i.e

Bt1 ∼ N (0, t1),

Bt2 ∼ N (0, t1) +N (0, t2 − t1),
...

Btn ∼ N (0, tn−1) +N (0, tn − tn−1).

It is easy to see that

Btn ∼ N (0, t1) +N (0, t2 − t1) + ...+N (0, tn − tn−1). (2.49)

The steps of simulation are

F write a function Bm of time t,

F choose the partition P = {t0 = 0, ..., tn = t} of the interval [0, t] such that,

ti = ti

2n and ti − ti−1 = t

2n for i = 1, ..., n and n ∈ N (we choose n = 10),

F generate a vector C of 2n independent Normal random variables of mean zero

and variance equal to t

2n .

F create a new vector D of zero in his first component (B0 = 0) and the others

contain the cumutative sum of the vector C.

First, the simulation of some samples of n rv with R using the following comands;

Continuous laws
The law The comand in R

Normal N (µ, σ2) rnorm(n, µ, σ)
Exponential exp(λ) rexp(n, λ)
Gamma γ(a, s) rgamma(n, a, s)

Descrete laws
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The law The comand in R
Poisson P(λ) rpois(n, λ)

Binomial B(n, p) rbinom(n, k, p)
Uniform U([a, b]) runif(n, a, b)

# Simulation of Brownian motion
T < −1000
n < −10
a < −2∧n
time < −seq(0,T, length = a + 1)
#The step between any two consecutive times is 1/a
Bm < −function(t){
C < −rnorm(a, sd = sqrt(t/a))
D < −c(0, cumsum(C))
b < −length(D)
D[b]
}
#The value of the Brownian motion at time t = 0.25
Bm(0.25)

0.3304035

to get the trajectory of B we use this program

#The trajectory of a Brownian motion
m < −2000
t < −sequence(0,T, length = m + 1)
u < −numeric(m + 1)
for (i in 1 : m + 1){
u[i] < −Bm(t[i])
}
plot(t, u, xlab = ”t”, ylab = ”B(t)”, col = ”blue”, type = ”l”)
title(”Simulation of Brownian motion”)
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Chapter 3

Introduction to Fractional Brownian
motion

3.1 Preliminaries and definitions

Definition 3.1 ([31]) Let H ∈ [0, 1]. A stochastic process {BH
t }t≥0 is called fractional

Brownian motion (fBm) with Hurst parameter H, if it is a centered Gaussian process

has countinuous trajectories, this process satisfying the following conditions

• BH
0 = 0,

• cov
(
BH
t , B

H
s

)
= 1

2

(
t2H + s2H− | t− s |2H

)
, s, t ≥ 0.

Spetial case

For H = 1, we have B1
t = tB1

1 ;

var
(
B1
t − tB1

1

)
= E

[(
B1
t − tB1

1

)2]
,

= E
[(
B1
t

)2]
− 2tE

(
B1
tB

1
1

)
+ t2E

[(
B1

1

)2]
, (3.1)

= t2 − 2t
(1

2

)(
t2 + 1− (t− 1)2

)
+ t2,

= 0.
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Then, B1
t − tB1

1 ∼ N (0, 0), this implies that, B1
t = tB1

1 almost surly.

3.2 Existence of fractional Brownian motion

3.2.1 Existence

To prove the existence of fBm Nourdin [31] used the following theorem

Theorem 3.2 If K ∈ Mn(R) be a symetric positive matrix (see Definition B.25), then

there exists a centered Gaussian random vector admitting K as a covariance matrix.

Theorem 3.3 There exist a centered Gaussian stochastic process BH = {BH
t }t≥0 has

continuous trajectories whose covariance function is given by

KH(s, t) = 1
2

(
t2H + s2H− | t− s |2H

)
, for every s, t ≥ 0, (3.2)

if and only if H ∈ (0, 1].

Proof. Let’s show thatKH is a positive difinite matrix iffH ∈ (0, 1] that is;∑n
i=1 aiajKH(i, j) ≥

0, for all ai, aj ∈ R, i, j = 1, ..., n, ∀n ∈ N.

If H > 1 then, for n = 2 there exists a1 = −2, a2 = 1, t1 = 1 and t2 = 2 such that
2∑

i,j=1
aiajKH(i, j) = a2

1KH(1, 1) + 2a1a2KH(1, 2) + a2
2KH(2, 2),

= 4(1
2)(1 + 1) + 2(−2)(1

2)(1− 22H − 1) + 1
2(22H + 22H), (3.3)

= 4− 22H < 0.

As a consequence, KH is not positive definite matrix when H > 1.

Consider now the case H ∈ (0, 1], bu using the change of the variable v = u | x | in

the following integral∫ ∞
0

1− eu2x2

u1+2H du =
∫ ∞

0

1− e−v2

(| x |−1 v)1+2H | x |
−1 dv,

=| x |2H
∫ ∞

0

1− e−v2

v1+2H dv, (3.4)

set cH =
∫∞

0
1−e−u2

u1+2H du <∞ then,

| x |2H= 1
cH

∫ ∞
0

1− e−u2x2

u1+2H du. (3.5)
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Therefore, for any s, t ≥ 0,

s2H + t2H− | t− s |2H = 1
cH

∫ ∞
0

1− e−u2s2 + 1− e−u2t2 − 1 + e−u
2(t−s)2

u1+2H du, (3.6)

= 1
cH

∫ ∞
0

(1− e−u2t2)(1− e−u2s2)
u1+2H du+ 1

cH

∫ ∞
0

e−u
2(t2+s2)(e2u2st − 1)

u1+2H du,

Note that K1(s, t) = st for all s, t ≥ 0 then, for all n ≥ 1, t1, ..., tn ≥ 0 and a1, ..., an ∈ R
n∑

i,j=1
K1(titj)aiaj =

n∑
i,j=1

titjaiaj,

=
( n∑
i=1

tiai

)2
≥ 0. (3.7)

By using Taylor-Young theorem (see Theorem C.4) for a = 0, ex = ∑∞
n=0

xn

n! . Then,

1
2

n∑
i,j=1

(t2Hi + t2Hj − | ti − tj |2H)aiaj = 1
2cH

∫ ∞
0

∑n
i,j=1(1− e−u2t2i )(1− e−u2t2j )aiaj

u1+2H du

+ 1
2cH

∫ ∞
0

∑n
i,j=1

(
e−u

2t2i
∑∞
k=1

(2u2titj)k
k! e−u

2t2j

)
aiaj

u1+2H du,

= 1
2cH

∫ ∞
0

(∑n
i=1(1− e−u2t2i )ai

)2

u1+2H du

+ 1
2cH

∞∑
k=1

2k
k!

∫ ∞
0

(∑n
i=1 t

k
i e
−u2t2i ai

)2

u1−2k+2H du ≥ 0. (3.8)

That is, KH is positive definite matrix for H ∈ [0, 1].

3.2.2 Continuity of trajectories

To prove the continuity of trajectories of the fBm Nourdin [31] used the following

Proposition

Proposition 3.4 The stochastic process {BH
t }t≥0 has stationary increments that is;

{BH
t+h −BH

h }t≥0
d= {BH

t }t≥0, for all h > 0. (3.9)

Proof. We have BH
t ∼ N (0, t2H).

To prove the stasionarity it sufficient to calculat the variance

var
(
BH
t+h −BH

h

)
= E

[(
BH
t+h −BH

h

)2]
,

= var
(
BH
t+h

)
+ var

(
BH
h

)
− 2 cov

(
BH
t+h, B

H
t

)
, (3.10)

= (t+ h)2H + h2H −
(
h2H + (t+ h)2H − t2H

)
= t2H .
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And because E(BH
t+h −BH

h ) = 0 we have (BH
t+h −BH

h ) ∼ N (0, t2H) for all h > 0.

Proposition 3.5 The trajectories of BH are α−Hölder continuous for any α ∈ [0, H].

Proof. Let 0 < δ < H < 1. By using central limit theorem (see Theorem B.18)

BH
|t−s|√

| t− s |2H
∼ N (0, 1) ⇔ BH

|t−s| ∼| t− s |H N (0, 1), s, t ≥ 0. (3.11)

And like BH
1 ∼ N (0, 1),

BH
|t−s| ∼| t− s |H BH

1 . (3.12)

By using the stationarity of the increaments of BH see (3.9) i.e.

BH
δ+h −BH

h ∼ BH
δ , ∀δ, h ≥ 0, (3.13)

and for δ + h = t, h = s

BH
t −BH

s ∼ BH
|t−s|. (3.14)

Let’s apply the Kolmogorov’s criterion of continuity (see Theorem 2.7), i.e. From (3.14)

and (3.12),

E
[(
BH
t −BH

s

) 1
δ
]

= E
[(
BH
|t−s|

) 1
δ
]
,

= E
[(
| t− s |H BH

1

) 1
δ
]
, (3.15)

=| t− s |Hδ E
(

(BH
1 ) 1

δ

)
,

where the real parameters corresponding are

• γ = 1
δ
,

• c = E
(

(BH
1 ) 1

δ

)
<∞,

• ε = H
δ
− 1 > 0.

Thus, there exist a modification of BH whose trajectories are α−Hölder continuous of

order α ∈ [0, ε
γ
], i.e. α ∈ [0, H − δ].

Conclusion: Theorem 3.3 and Proposition 3.5 prove that the fBm does exist.
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3.3 Different representations of fractional Brownian
motion

In [28] Mandelbort and Van Ness obtained the following integral representation of the

fBm

BH
t = 1

Γ(H + 1
2)


∫ 0

−∞

[
(t− u)H− 1

2 − (−u)H− 1
2

]
dBu +

∫ t

0
(t− u)H− 1

2dBu

, (3.16)

where H ∈ (0, 1], {Bt}t≥0 is a Brownian motion and Γ represent the gamma function.

Recall that, for every α > 0, Γ(α) =
∫+∞

0 αxα−1e−xdx.

There are many representations of fBm (for more details see [31]) some of them are

the following;

3.3.1 Spectral representation

Proposition 3.6 Let H ∈ (0, 1) such that H 6= 1
2 . Any continuous modification of the sp

BH = {BH
t }t≥0 defined as follow

BH
t = 1

dH


∫ 0

−∞

1− cos(ut)
| u |H+ 1

2
dBu +

∫ ∞
0

sin(ut)
| u |H+ 1

2
dBu

, (3.17)

is a fractional Brownian motion with Hurst parameter H.

Where {Bt}t≥0 is a Brownian motion and

dH =
√

2
∫ ∞

0

1− cos(u)
u2H+1 du <∞. (3.18)

Definition 3.7 The expression (3.17) is called spectral representation of the fBm.

Lemma 3.8 Let f : R→ R, {Bt}t∈R be a Bm and a, b ∈ R then,

E
( ∫

R
f(u)dBu

)
= 0, (3.19)

E
[ ∫

R
f(u)dBu

∫
R
g(u)dBu

]
=
∫
R
f(u)g(u)du. (3.20)

Proof. (of Proposition 3.6) Nourdin [31] show that any continuous modification of BH

is a fBm with Hurst parameter H.

BH
0 = 1

dH

{ ∫ 0

−∞

1− 1
| u |H+ 1

2
+ 0

}
= 0. (3.21)

37



E(BH
t ) = 1

dH

{
E
[ ∫ 0

−∞

1− cos(ut)
| u |H+ 1

2
dBu

]
+ E

[ ∫ ∞
0

sin(ut)
| u |H+ 1

2
dBu

]}
= 0. (3.22)

For any 0 ≤ s < t, set f(u) = cos(us)− cos(ut)
| u |H+ 1

2
and g(u) = sin(ut)− sin(us)

| u |H+ 1
2

from

Lemma 3.8,

E[
∫ 0

−∞
f(u)dBu

∫ ∞
0

g(u)dBu] =
∫
R
f(u)1]−∞,0](u)g(u)1[0,∞[du,

=
∫
R
f(u)g(u)1{0}(u)du, (3.23)

=
∫ 0

0
f(u)g(u)du = 0.

Moreover, the function

(
cos(ut)− cos(us)

)2

u2H+1 is even then,

E
[(
BH
t −BH

s

)2]
= 1
d2
H

E
[( ∫ 0

−∞

cos(us)− cos(ut)
| u |H+ 1

2
dBu +

∫ ∞
0

sin(ut)− sin(us)
| u |H+ 1

2
dBu

)2]
,

= 1
d2
H

[ ∫ 0

−∞

(
cos(ut)− cos(us)

)2

u2H+1 du+
∫ ∞

0

(
sin(ut)− sin(us)

)2

u2H+1 du

+ 2
∫ 0

0

(
cos(us)− cos(ut)

)(
sin(ut)− sin(us)

)
u2H+1 du

]
,

= 1
d2
H

∫ ∞
0

(
cos(ut)− cos(us)

)2
+
(
sin(ut)− sin(us)

)2

u2H+1 du, (3.24)

= 2
d2
H

∫ ∞
0

1−
(
cos(ut)cos(us) + sin(ut)sin(us)

)
u2H+1 du,

= 2
d2
H

∫ ∞
0

1− cos
(
u(t− s)

)
u2H+1 du, (set v = u(t− s)),

= 2(t− s)2H

d2
H

∫ ∞
0

1− cos(v)
v2H+1 dv,

= (t− s)2H .

Then,

var(BH
t ) = E[(BH

t )2] = t2H . (3.25)

By using BH
0 = 0 and for any 0 ≤ s < t

E
(
BH
s B

H
t

)
= 1

2

(
E
[(
BH
s −BH

0

)2]
+ E

[(
BH
t −BH

0

)2]
− E

[(
BH
t −BH

s

)2])
,

= 1
2

(
s2H + t2H − (t− s)2H

)
. (3.26)

Conclusion:
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• B0 = 0,

• BH
t ∼ N (0, t2H), t ∈ [0, T ],

• E(BH
t B

H
s ) = 1

2(t2H + s2H− | t− s |2H), s, t ∈ [0, T ],

this means that any modification of BH
t is a fBm.

3.3.2 Time representation

Proposition 3.9 Let H ∈ (0, 1) such that H 6= 1
2 . Any continuous modification of the sp

BH = {BH
t }t≥0 defined as follow

BH
t = 1

cH


∫ 0

−∞

[
(t− u)H− 1

2 − (−u)H− 1
2

]
dBu +

∫ t

0
(t− u)H− 1

2dBu

, (3.27)

is a fractional Brownian motion with Hurst parameter H.

Where {Bt}t≥0 is a Brownian motion and

cH =
√

1
2H +

∫ +∞

0

(
(1 + u)H− 1

2 − uH− 1
2
)2
du <∞. (3.28)

Proof. See [31] p13.

Definition 3.10 The expression (3.27) is called time representation of the fBm.

3.3.3 Volterra representation

Proposition 3.11 Let H ∈ (0, 1) such that H 6= 1
2 . Any continuous modification of the

sp BH = {BH
t }t≥0 defined as follow

BH
t =

∫ t

0
KH(t, s)dBs, (3.29)

is a fractional Brownian motion with Hurst parameter H.

Where {Bt}t≥0 is a Brownian motion and for 0 < s < t,

KH(t, s) =



√√√√ H(2H − 1)∫ 1
0 (1− x)1−2HxH−

3
2dx

s
1
2−H

∫ t
s (u− s)H− 3

2uH−
1
2du if H > 1

2 ,√√√√ 2H
(1− 2H)

∫ 1
0 (1− x)−2HxH−

1
2dx

×
[(

t
s

)H− 1
2
(
t− s

)H− 1
2 −

(
H − 1

2
)
s

1
2−H

∫ t
s u

H− 3
2
(
u− s

)H− 1
2du

]
, if H <

1
2 .

Proof. See [31] p16.

Definition 3.12 The expression (3.29) is called volterra representation of the fBm.
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3.4 Properties of fBm and comparison with Bm

In this Section we assume that B = {BH
t }t∈[0,T ] is a fBm with Hurst parameter

H ∈ (0, 1).

3.4.1 Self-similarity

Definition 3.13 Let X = {Xt}t≥0 be a real-valued stochastic process X is self-similar

if for every a > 0 there exist b > 0 such that, the two sp {Xat}t≥0 and {bXt}t≥0 have the

same finite-dimensional distribution and

{Xat}t≥0
d= {bXt}t≥0. (3.30)

Definition 3.14 For b = aH , X is a self-similar process with index H.

Proposition 3.15 The fBm B is a self-similar process with index H. i.e.

∀ a > 0, ∃ b = aH : {a−HBH
at}t≥0

d= {BH
t }t≥0. (3.31)

Proof. The sp {a−HBH
at}t≥0 is centered Gaussian process and

var
(
a−HBH

at

)
= a−2H

2

(
2(at)2H

)
= t2H . (3.32)

Then a−HBH
at ∼ N (0, t2H).

3.4.2 Non differentiability of trajectories

Proposition 3.16 ([28]) The trajectories of a fBm BH = {BH
t }t≥0 with Hurst parameter

H ∈ (0, 1) defined on (Ω,F , P ) are nowhere differentiable. Moreover, for every t0 ∈

[0,∞[,

P

 lim sup
t→t0

∣∣∣∣∣B
H
t (ω)−BH

t0 (ω)
t− t0

∣∣∣∣∣ =∞
 = 1, for every ω ∈ Ω. (3.33)

Proof. Mandelbrot, B. B. and Van Ness, J.W [28] consider the sp

Rt,t0(ω) =
BH
t (ω)−BH

t0 (ω)
t− t0

. (3.34)

By using the stationarity of BH and the expression (3.12),

Rt,t0(ω) d= (t− t0)H−1BH
1 (ω). (3.35)
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Now, consider the event,

At(ω) =
s ≥ 0 : sup

0≤s≤t

∣∣∣∣∣BH
s (ω)
s

∣∣∣∣∣ > M

, where M > 0 and s = t− t0. (3.36)

For any sequence {tn}n∈N decrease to 0,

Atn+1(ω) ⊂ Atn(ω). (3.37)

By using (3.34) and (3.35)
∣∣∣∣∣B

H
tn(ω)
tn

∣∣∣∣∣ > M

 =
tH−1

n | BH
1 (ω) |> M

 =
 | BH

1 (ω) |> t1−Hn M

. (3.38)

And because the sequense {tn}n∈N is decrease to 0

P (Atn) ≥ P

 | BH
1 (ω) |> t1−Hn M


→n→∞ 1. (3.39)

As limn→∞ P (Atn) = 1, then lims→0+

∣∣∣BHs (ω)
s

∣∣∣ = +∞ and

P

 lim sup
t→t0

∣∣∣∣∣B
H
t (ω)−BH

t0 (ω)
t− t0

∣∣∣∣∣ =∞
 = 1. (3.40)

This implies that, the trajectories of BH are not differentiable in probability.

3.4.3 Correlation between two increments

Proposition 3.17 ([5]) Let BH = {BH
t }t≥0, be a fractional Brownian motion then,

• If H = 1
2 then, BH is a Bm have uncorrelated increments (independents).

• If H 6= 1
2 then, the increments of BH are correlated (dependents).

Proof. ForH 6= 1
2 , Biagini F., Øksendal B. Hu Y. and Zhang T [5] calculate the covariance

between BH
t+h − BH

t and BH
s+h − BH

s , for all s, t, h ≥ 0 such that, s < s + h < t < t + h

and t− s = nh for n ∈ N;

cov
(
BH
t+h −BH

t , B
H
s+h −BH

s

)
= E

[(
BH
t+h −BH

t

)(
BH
s+h −BH

s

)]
,

= E
(
BH
t+hB

H
s+h

)
− E

(
BH
t+hB

H
s

)
− E

(
BH
t B

H
s+h

)
+ E

(
BH
t B

H
s

)
,

= 1
2

[
− (nh)2H + (nh+ h)2H + (nh− h)2H − (nh)2H

]
,

(3.41)

= h2H

2

[
(n+ 1)2H + (n− 1)2H − 2n2H

]
.
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Then the increments BH
t+h −BH

t and BH
s+h −BH

s are correlated.

In particular, when n = 1

cov
(
BH
t+2h −BH

t+h, B
H
t+h −BH

t

)
= h2H

(
22H−1 − 1

)
. (3.42)

Then, the increments BH
t+2h −BH

t+h and BH
t+h −BH

t are

• positively correlated if H >
1
2 , because h

2H
(

22H−1 − 1
)
> 0.

• negatively correlated if H <
1
2 , because h

2H
(

22H−1 − 1
)
< 0.

3.4.4 Long-range dependence

Definition 3.18 ([5]) Let X = {Xt}t≥0 be a sp, we say that, X exhibits long-range

dependence if for every t ≥ 0,

lim
n→∞

cov(Xt, Xt+n)
cn−α

= 1, (3.43)

such that c, α ∈ (0, 1] and n ∈ N. In this case, the dependence between Xt and Xt+n

decays slowly as n tends to infinity and,
∞∑
n=1
| cov(Xt, Xt+n) |=∞. (3.44)

Properties 3.19 The increments of a fBm BH = {BH
t }t≥0 have long-range dependence

if and only if H > 1
2 .

Proof. For every t ≥ 0 and n ∈ N

ρH(n) = cov
(
BH
t −BH

t−1, B
H
t+n −BH

t+n−1

)
,

= E
(
BH
t B

H
t+n

)
− E

(
BH
t B

H
t+n−1

)
− E

(
BH
t−1B

H
t+n

)
+ E

(
BH
t−1B

H
t+n−1

)
, (3.45)

= 1
2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)
.
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By using the Hospital rule (see Appendix B; Proposition C.1)

lim
n→∞

ρH(n)
n2H−2 = 1

2 lim
n→∞

(n+ 1)2H + (n− 1)2H − 2n2H

n2H−2 ,

= 1
2 lim
n→∞

(1 + 1
n
)2H + (1− 1

n
)2H − 2

n−2 , (3.46)

= 1
2 lim
y→0

(1 + y)2H + (1− y)2H − 2
y2 ,

= 1
2 lim
y→0

2H(2H − 1)(1 + y)2H−2 + 2H(2H − 1)(1− y)2H−2

2 ,

= H(2H − 1).

Then,

lim
n→∞

ρH(n)
H(2H − 1)n2H−2 = 1. (3.47)

Moreover,

• for H > 1
2 ,
∑∞
n=1 ρH(n) =∞. In fact;

∞∑
n=1

ρH(n) = H(2H − 1)
∞∑
n=1

1
n2−2H =∞, (because 2− 2H < 1). (3.48)

• for H < 1
2 ,
∑∞
n=1 ρH(n) <∞. In fact;

∞∑
n=1

ρH(n) = H(2H − 1)
∞∑
n=1

1
n2−2H <∞, (because 2− 2H > 1). (3.49)

Then, the increments of BH exhibits long-range dependence if and only if H > 1
2 .

3.4.5 The p-variation of the fBm

Theorem 3.20 ([37]) Let H ∈ (0, 1) and BH = {BH
t }t∈[0,1] be a fBm with Hurst param-

eter H. Consider the p-variation of BH defined as

Vp
d= lim
n→∞

Vn,p, (3.50)

where

Vn,p =
2n∑
i=1
| BH

i
2n
−BH

i−1
2n
|p . (3.51)

Then

Vp =


0 if p > 1

H
,

E
(
| BH

1 |p
)

if p = 1
H
,

+∞ if p < 1
H
.

(3.52)
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Remark 3.21 Because of the Hölder continuity of the trajectories of BH , it is sufficient

to study the p-variation over an interval of the form [0, 1], [1, 2], ... instead of all R+.

Proof. Here there are three cases;

• If p > 1
H

then, limn→∞
Vn,p

2n(1−pH) = +∞.

• If p < 1
H

then, limn→∞ 2n(pH−1)Vn,p = 0.

• If p = 1
H

then, consider the sequences of random variables {Yn,p}n∈N∗ and {Zn,p}n∈N∗

such that

Yn,p = 2n(pH−1)
2n∑
i=1
| BH

i
2n
−BH

i−1
2n
|p, (3.53)

and

Zn,p = 2−n
2n∑
i=1
| BH

i −BH
i−1 |p . (3.54)

By using the self-simularity of BH (see expression (3.31); we choose a = 2−n)

BH
i

2n

d= 2−nHBH
i . (3.55)

Then, by using (3.55)

Yn,p
d= 2n(PH−1)

2n∑
i=1
| BH

i
2n
−BH

i−1
2n
|p,

d= 2n(PH−1)
2n∑
i=1
| 2−nH(BH

i −BH
i−1) |p,

d= 2n(pH−1)
2n∑
i=1

2−npH | BH
i −BH

i−1 |p, (3.56)

d= 2−n
2n∑
i=1
| BH

i −BH
i−1 |p,

d= Zn,p.

By using the stationary of the increments of BH

E(Zn,p) = 2−n
2n∑
i=1

E
[
| BH

i −BH
i−1 |p

]
,

= 2−n
2n∑
i=1

E
[
| BH

1 |p
]
, (3.57)

= 2−n2nE
[
| BH

1 |p
]
,

= E
[
| BH

1 |p
]

= c.
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This implies that

Zn,p →d c and Yn,p →d c. (3.58)

Then

2n(pH−1)Vn,p →d c. (3.59)

3.4.6 The fBm is not a semimartingale

Theorem 3.22 Let X = {Xt}t≥0 be a sp. If X is a semimartingale then,

(i) Vn,2 = ∑2n
i=1

(
X i

2n
−X i−1

2n

)2
→n→∞ V2 <∞.

(ii) If Vn,2 →n→∞ 0 then, sup1≤i≤2n
∑2n
i=1 | X i

2n
−X i−1

2n
|<∞.

Theorem 3.23 Let H ∈ (0, 1) \ {1
2}. The fBm BH = {BH

t }t≥0 with Hurst parameter H

is not a semimartingale.

Proof. Suppose that BH is a semi martingale then,

• If H < 1
2 then, Theorem 3.20 yields that

2n∑
i=1

(
BH

i
2n
−BH

i−1
2n

)2
→n→∞ ∞. (3.60)

So, condition (i) in Theorem 3.22 fails, this implies that BH is not a semimartingale.

• If H > 1
2 then, Theorem 3.20 yields that

2n∑
i=1

(
BH

i
2n
−BH

i−1
2n

)2
→n→∞ 0. (3.61)

Now, choose 1 < p < 1
H
, by using Theorem 3.20

2n∑
i=1
| BH

i
2n
−BH

i−1
22
|p→n→∞ ∞. (3.62)

Moreover, because of the Hölder continuity of the trajectories of BH on [0,1]

sup
1≤i≤2n

| BH
i

2n
−BH

i−1
2n
|p−1→n→∞ 0. (3.63)

45



By using the inequality
2n∑
i=1
| BH

i
2n
−BH

i−1
2n
|p≤ sup

1≤i≤2n
| BH

i
2n
−BH

i−1
2n
|p−1 ×

2n∑
i=1
| BH

i
2n
−BH

i−1
2n
| . (3.64)

Then,
2n∑
i=1
| BH

i
2n
−BH

i−1
2n
|→n→∞ ∞. (3.65)

This is a contraduction with condition (ii) in Theorem 3.22, then BH is not a

semimartingale.

3.4.7 The fBm is not Markovian

Theorem 3.24 (Gaussian Markov processes) ([18]) Let T ⊂ R and X = {Xt}t∈T
be a Gaussian process. Then X is Markovian if and only if, for all s, t, u ∈ T such that

s < t < u

K(s, u) = K(s, t)K(t, u)
K(t, t) , (3.66)

where K(s, t) = cov(Xs, Xt).

Proof. See [18] p19.

Theorem 3.25 If H ∈ (0, 1) \ {1
2} then, the fractional Brownian motion BH = {BH

t }t≥0

with Hurst parameter H is not Markovian.

Proof. Assume that BH is Markovian then, by using Theorem 3.24 that is; for all

s, t, u ≥ 0 such that, s < t < u,

K(s, u) = K(s, t)K(t, u)
K(t, t) , where K(s, t) = cov(BH

s , B
H
t ). (3.67)

Set s = 1, t = 2 and u = 3 then,

K(1, 3)K(2, 2)−K(1, 2)K(2, 3) = 0,

1
2
(
1 + 32H − 22H

)
22H − 1

4
(
1 + 22H − 1

)(
22H + 32H − 1

)
= 0,

32H − 3.22H + 3 = 0. (3.68)

The solutions of the equation (3.68) are H = 1
2 or H = 1.

But H ∈ [0, 1[\{1
2} then, B

H is not Markovian.
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3.4.8 Comparison between fBm and Bm

The fractional Brownian motion BH is a generalization of Brownian motion, both of

them have stationary increments, they have α−Hölder continuous trajectories and their

trajectories are nowhere differentiable.

But, fBm whenever H 6= 1
2 , behaves very differently then Bm (when H = 1

2). There

are two properties of importance in which fBm differs from Bm; fBm does not have

independent increaments and it is not a semimartingale but, this properties inherent in

Bm.
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3.5 Simulation of fBm with Hurst parameter H > 1
2

using R

To simulate fBm with Hurst parameter H > 1
2 , we use Proposition 3.11:

BH
t =

∫ t

0
KH(t, s)dBs, (3.69)

where B = {Bt}t∈[0,T ] is a Bm and,

KH(t, s) =
√√√√ H(2H − 1)∫ 1

0 (1− x)1−2HxH−
3
2dx

s
1
2−H

∫ t

s
(u− s)H− 3

2uH−
1
2du. (3.70)

3.5.1 Simulation of the function KH(t, s)

We simulate KH(t, s) according to the following sens:

• Step 1: we starting with the function I(H) =
∫ 1
0 (1− x)1−2HxH−

3
2dx

I < −function(H){
f < −function(x){
(1− x)∧(1− 2 ∗ H) ∗ x∧(H− 3/2)
}
integrate(f, 0, 1) $value
}
#for example for H = 0.6, H = 0.7, H = 0.8 and H = 0.9 we have
I(0.6)
I(0.7)
I(0.8)
I(0.9)
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• Step 2: we simulate the function J(H, t, s) =
∫ t
s (u− s)H− 3

2uH−
1
2du

J < −function(H, t, s){
h < −function(u){
(u− s)∧(H− 3/2) ∗ u∧(H− 1/2)
}
integrate(h, s, t) $value
}
#for example for H = 0.9, H = 0.7, H = 0.8, H = 0.9, and for t = 2, s = 1 we have
J(0.9, 2, 1)
J(0.6, 2, 1)
J(0.7, 2, 1)
J(0.8, 2, 1)
J(0.9, 2, 1)

• Step 3: we simulate the function KH(t, s) as follow

K < −function(H, t, s){
sqrt(H ∗ (2 ∗ H− 1)/I(H)) ∗ s∧(1/2− H) ∗ J(H, t, s)
}
#for example for H = 0.6, H = 0.7, H = 0.8, H = 0.9, and for t = 2, s = 1 we have
K(0.6, 2, 1)
K(0.7, 2, 1)
K(0.8, 2, 1)
K(0.9, 2, 1)
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3.5.2 Simulation of fBm with Hurst parameter H > 1
2

We use Itô integral of KH(t, s) with respect to Bm B = {Bt}t∈[0,T ] (see Section 2.4.3) to

simulate fBm BH = {BH
t }t∈[0,T ] in the following sens

• Step 1: we simulate fBm as a function of t and H;

#Simulation of fractional Brownian motion as a function of t and H
w < −numeric(a)
fBm < −function(t,H){
w[1] < −0
for (i in 2 : a){
w[i] < −K(H, t, (t/a) ∗ (i− 1)) ∗ (Bm(t/a ∗ i)− Bm((t/a) ∗ (i− 1)))
}
sum(w)
}

• Step 2: we draw a trajectory of BH for a fixed value of H for example H = 0.7

#The graph of a trajectory of fBm with Hurst parameter H = 0.7
T = 1000
m < −2000
t < −seq(0,T, length = m + 1)
z < −numeric(m + 1)
for (i in 1 : m + 1){
z[i] < −fBm(t[i], 0.7)
}
plot(t, z, xlab = ”t”, ylab = ”(B∧H)(t)”, col = ”red”, type = ”l”)
title(”Simulation of fractional Brownian motion with Hurst parameter H = 0.6”)

The repetition of this program for some values of H (H = 0.7, H = 0.8 andH = 0.9)

give
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• Step 3: we draw the trajectories of fBm for some different fixed values of H

#Simulation of the paths of fBm for some different fixed values of H
T < −500
m < −1000
t < −seq(0,T, length = m + 1)
#we choose a value of H for example H = 0.9, H = 0.8, H = 0.7 and H = 0.6
w < −numeric(m + 1)
for (i in 1 : m + 1){
w[i] < −fBm(t[i], 0.9)
}
plot(t,w, xlab = ”t”, ylab = ”(BH)(t)”, col = ”red”, type = ”l”)
z < −numeric(m + 1)
for (i in 1 : m + 1){
z[i] < −fBm(t[i], 0.8)
}
lines(t, z, xlab = ”t”, ylab = ”(BH)(t)”, col = ”blue”, type = ”l”)
p < −numeric(m + 1)
for (i in 1 : m + 1){
p[i] < −fBm(t[i], 0.7)
}
lines(t, p, xlab = ”t”, ylab = ”(BH)(t)”, col = ”green”, type = ”l”)
q < −numeric(m + 1)
for (i in 1 : m + 1){
q[i] < −fBm(t[i], 0.6)
}
lines(t, q, xlab = ”t”, ylab = ”(BH)(t)”, col = ”magenta”, type = ”l”)
title(”Simulation of the paths of fBm for some fixed values of H”)
legend(0,T, c(”H = 0.9”, ”H = 0.8”, ”H = 0.7”, ”H = 0.6”),
col = c(”red”, ”blue”, ”green”, ”magenta”), lwd = c(4, 4))
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• Step 4: we add a path of Bm to the previous program

u < −numeric(m + 1)
for(i in 1 : m + 1){
u[i] < −B(t[i])
}
lines(t, u, xlab = ”t”, ylab = ”B(t)”, col = ”yellow”, type = ”l”)
title(”Simulation of the paths of fBm for some fixed values of H with Bm”)
legend(0,T, c(”H = 0.9”, ”H = 0.8”, ”H = 0.7”, ”H = 0.6”, ”Bm”),
col = c(”red”, ”blue”, ”green”, ”magenta”, ”yellow”), lwd = c(5, 5))
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• Step 5: to get the graph of BH as a function of time t and H we do the following

– we make two sequences of the same size contain the values of t and H,

– we make a matrix z has the values of BH
t .

– we make the graph of z with respect to t and H.

#The graph of fBm with Hurst parameter H > 1/2 as a function of t and H
T < −20
m < −60
y < −seq(0.501, 0.9996, length = m + 1)
s < −length(t)
z < −matrix(0, nrow = s, ncol = s)
for(i in1 : s){
for(j in1 : s){
z[i, j] < −fBm(t[i], y[j])
}
}
persp(t, y, z, theta = 55, phi = 30, expand = 0.6,
col = ”cyan”,
xlab = ”t”,
ylab = ”H”,
zlab = ”fBm(t,H)”,
main = ”Simulation of fBm with Hurst parameter H > 1/2 as a
function with respect to time t and H”,
ticktype = ”detailed”,
shade = 0.5, lphi = 50, ltheta = 100)
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Chapter 4

Young integral and application on
integrals with respect to fractional

Brownian motion with Hurst
parameter H > 1

2

4.1 Problems of pathwise and Itô stochastic integrals

There are some problems about the integral with respect to fBm with Hurst parameter

H > 1
2 which are the following

• The fBm with Hurst parameter H ∈ (0, 1) \ 1
2 is not a semimartingale see Theorem

3.23 then, the theory of Itô stochastic calculus based on semimartingal cannot be

applied here.

• It is known that the Riemann-Stieltjes integral exist if the integrand is continuous

and the integrator is of bounded variation. But Theorem 3.20 show that the p-

variation of the paths of the fBm is unbounded if p < 1
H

this implies that almost

all paths of the fBm are of unbounded variation then, Riemann-Stieltjes integral is

not valid.
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4.2 Stochastic Young integral (Pathwise Young inte-
gral)

The integral with respect to nonsemimartingale stochastic processes of unbounded p-

variation is a vertion of integration called Pathwise Young integral i.e. the integral path

by path ω by ω.

Let (Ω,F , P ) be a probability space.

Definition 4.1 Let f, g : [a, b]→ R, p, q > 0 and P = {x0 = a, ..., xn = b} be a partition

of [a, b]. We say that f is Young integrable with respect to g if the following conditions

are verified

• f and g have no common discontinuity points.

• for 1
p

+ 1
q
> 1 the functions f and g are of finite p and q variation respectively.

And we define the Young integral of f with respect to g by
∫ b

a
fdg = lim

n→∞

n∑
i=1

f(xi−1)(g(xi)− g(xi−1)). (4.1)

Definition 4.2 Let X = {Xt}t∈[0,T ] and Y = {Yt}t∈[0,T ] be a sp defined on (Ω,F , P ), for

every ω ∈ Ω we say that

• X is pathwise integrable with respect to Y if for every ω ∈ Ω the function t 7→

Xt(ω) is Riemann-Stieltjes integrable with respect to the function t 7→ Yt(ω).

• X is pathwise Young integrable with respect to Y if for every ω ∈ Ω the function

t 7→ Xt(ω) is Young integrable with respect to the function t 7→ Yt(ω).

Definition 4.3 Let T > 0, let X = {Xt}t∈[0,T ] and Y = {Yt}t∈[0,T ] be a stochastic pro-

cesses defined on a probability space (Ω,F , P ) such that

• the trajectories Xt(ω) and Yt(ω) have no common discontinuity points for each fixed

ω ∈ Ω,

• for p, q > 0, X is of finite p-variation and Y is of finite q-variation with 1
p

+ 1
q
> 1,
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let µ : Ω× → R̄ be a random measure defined by

µ(ω, (s, t)) = Yt−(ω)− Ys+(ω), s, t ∈ [0, t], (4.2)

and let P = {t0 = 0, ..., tn = t}, n ∈ N be a partition of [0, t] for all t ∈ [0, T ].

Define the stochastic Young integral of Xt(ω) with respect to Yt(ω) for each fixed

ω ∈ Ω as follow

It =
∫ t

0
Xs(ω)dYs(ω) = lim

n→∞

n∑
i=1

Xti−1(ω)µ(ω, (ti−1, ti)), (4.3)

and we write I =
∫
XdY, where I = {It}t∈[0,T ].

4.3 Stochastic Young integral with respect to fBm
with Hurst parameter H > 1

2

Young’s integral generalizes the class of Riemann-Stieltjes integrable functions to

Hölder continuous functions as follow,

Theorem 4.4 (see [31]) Let α, β > 0 and let f, g : [a, b] → R. If f ∈ Cα([a, b]) and

g ∈ Cβ([a, b]) such that α + β > 1 and g
′ exists. Then, f is Young inegrable with

respect to g and ∫ b

a
f(x)dg(x) =

∫ b

a
f(x)g′(x)dx. (4.4)

Theorem 4.5 (see [30]) Let X = {Xt}t∈[0,T ] be a sp, α, β ∈ (0, 1), H ∈ (1
2 , 1), BH =

{BH
t }t∈[0,T ] be a fBm verifying BH ∈ Cα([0, T ]) and f be a real valued function.

If f ◦X ∈ Cβ([0, T ]) such that α + β > 1. Then, the stochastic Young integral of f with

respect to BH defined as follow
∫ t

0
f(Xs)dBH

s = lim
n→∞

n∑
i=1

f(Xti−1)
(
BH
ti
−BH

ti−1

)
,

exist for every t ∈ [0, T ] where P = {t0 = 0, ..., tn = t} is a partition of [0, T ].

Proof. By using the Hölder continuity of BH and f ◦X we have for every t ∈ [0, T ] and

every u, v ∈ [0, t] there exists α, β > 0 such that

| BH
u −BH

v |≤ Cα | u− v |α, (4.5)
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| f(Xu)− f(Xv) |≤ Cβ | u− v |β, (4.6)

where Cα and Cβ are the Hölder constants of BH and f ◦X respectively.

Let P = {t0 = 0, ..., tn = t} be a partition of [0, t], and let Pmax = max1≤i≤n | ti−ti−1 |

and Q = {s0 = ti−1, ..., sm = ti} be a partition of [ti−1, ti] then,∣∣∣∣∣
∫ t

0
f(Xs)dBH

s −
n∑
i=1

f(Xti−1)
(
BH
ti
−BH

ti−1

)∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

[ ∫ ti

ti−1
f(Xs)dBH

s − f(Xti−1)(BH
ti
−BH

ti−1
)
]∣∣∣∣∣ ,

=
∣∣∣∣∣
n∑
i=1

[ ∫ ti

ti−1

(
f(Xs)− f(Xti−1)

)
dBH

s

]∣∣∣∣∣ ,
=

n∑
i=1

∣∣∣∣∣∣
∞∑
j=1

(f(Xsj−1)− f(Xti−1))(BH
sj
−BH

sj−1
)
∣∣∣∣∣∣ ,

≤
n∑
i=1

∣∣∣∣∣∣
∞∑
j=1

(f(Xsj)− f(Xsj−1))(BH
sj
−BH

sj−1
)
∣∣∣∣∣∣ ,

≤
n∑
i=1
| [f(Xti)− f(Xti−1)][BH

ti
−BH

ti−1
] |,

≤ CαCβ
n∑
i=1
| ti − ti−1 |α+β,

≤ CαCβ
n∑
i=1
| ti − ti−1 |

(
Pmax

)α+β−1
,

= CαCβ
(
Pmax

)α+β−1
(b− a). (4.7)

By using the condition α + β > 1, limn→∞
(
Pmax

)α+β−1
= 0 this implies that f ◦ X is

Young integrable with respect to BH .

Remark 4.6 The expression (4.4) can proved by using the same idea of the proof of

Proposition 1.10.

Properties 4.7 ([43]) Let T, α, β > 0, H ∈ (1
2 , 1), BH = {BH

t }t∈[0,T ] be a fBm verifying

BH ∈ Cα([0, T ]) and F : R→ R such that F ∈ C 1(R).

If F ′ ◦BH ∈ Cβ([0, T ]) such that α + β > 1. Then,∫ t

t0
F
′(BH

s )dBH
s = F (BH

t )− F (BH
t0 ), for every t0 ∈ [0, T ]. (4.8)

Proof. Let P = {t0, t1, ..., tn = t}, n ∈ N be a partition of [t0, t].

By using Mean value theorem (see Theorem C.2) for F i.e. for every ti−1 < ti there exist

tc ∈ R such that

F (BH
tx )− F (BH

ty ) = F
′(Btc)(BH

tx −B
H
ty ), tx, ty ∈ [0, T ]. (4.9)
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F (BH
t )− F (BH

t0 ) =
n∑
i=1

F (BH
ti

)− F (BH
ti−1

),

=
n∑
i=1

F
′(BH

tc )(BH
ti
−BH

ti−1
). (4.10)

As n tends to infinity ∫ t

t0
F
′(BH

s )dBH
s = F (BH

t )− F (BH
t0 ). (4.11)

The fBm BH with Hurst parameter H > 1
2 is of unbounded p variation (the case when

p < 1
H

see Theorem 3.20).

Proposition 4.8 (see [13]) Let BH = {BH
t }t∈[0,T ] be a fBm with Hurst parameter H ∈

(1
2 , 1) and let X = {Xt}t∈[0,T ] be a sp with finite q variation such that q < 1

1−H .

If X and BH have no common discontinuity points then, X is Young integrable with

respect to BH that is, ∫ t

0
XsdB

H
s , (4.12)

exist for every t ∈ [0, T ].

Proof.

• Y and BH have no common discontinuity points,

• p < 1
H

then, 1
p

+ 1
q
> 1.

This implies that Young-Lóeve inequality (see Theorem 3.20) is verifying then, X is Young

integrable with respect to BH .
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Chapter 5

Stochastic differential equations
driven by fractional Brownian

motion with Hurst parameter H > 1
2

5.1 Introduction to stochastic differential equations
driven by fractional Brownian motion with Hurst
parameter H > 1

2

The equation obtained by allowing randomness in the coefficients of an ordinary dif-

ferential equation is called stochastic differential equation (SDE). It is clear that

any solution of a SDE must involve some randomness.

For example (see [32]); the price Xt at time of her asset on the open market varies

according to a stochastic differential equation of the type

dXt

dt
= rXt + αXt ·+ξ, (5.1)

where r, α are known constants and ξ is a noise.

In the study of SDE driven by fBm {BH
t }t∈[0,T ] the noise in equation (5.1) can be
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replaced by dBH
t

dt
; the resulting equation is

dXt

dt
= b(t,Xt) + σ(t,Xt)

dBH
t

dt
, t ∈ [0, T ]. (5.2)

where b, σ : [0, T ]× R→ R and the solution of this equation exist and unique.

Definition 5.1 Let BH = {BH
t }t∈[0,T ] be a fBm with Hurst parameter H > 1

2 and

{Xt}t∈[0,T ] be a stochastic process

Define the stochastic differential equation (SDE) driven by fractional Brownian motion

BH as follow dXt = b(t,Xt)dt+ σ(t,Xt)dBH
t , for every t ∈ [0, T ],

X0 = ξ,
(5.3)

or equivalently to the integral equation

Xt = ξ +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBH

s , (5.4)

where b, σ : [0, T ]× R→ R and the formula in (5.4) has sens.

The sp {Xt}t∈[0,T ] called the solution of the SDE (5.4).

Definition 5.2 The SDE (5.3) called homogenuous stochastic differential equa-

tion if the coefficients b and σ are independents of time, i.e.

b(t,Xt) = b(Xt) and σ(t,Xt) = σ(Xt). (5.5)

5.2 Existence and uniqueness theorem

To prove the existence and the unicity of the solution of stochastic differential equations

driven by fractional Brownian motion with Hurst parameter H > 1
2 Nourdin [31] study

the deterministic case

dx(t) = b(x(t))dt+ σ(x(t))dg(t), (5.6)

of the homogenuous SDE driven by fBm

dXt = b(Xt)dt+ σ(Xt)dBH
t . (5.7)
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Theorem 5.3 ([31]) Let Φ : R2 → R and f, g : R → R such that Φ ∈ C 2(R2) and

f, g ∈ C 1(R).

If f, g ∈ Cα such that α ∈ (1
2 , 1]. Then,

∫ .

0

∂Φ
∂f

(f(u), g(u))df(u) and
∫ .

0

∂Φ
∂g

(f(u), g(u))dg(u), (5.8)

are well-defined as Young integrals and we have,

Φ(f(t), g(t)) = Φ(f(0), g(0)) +
∫ t

0

∂Φ
∂f

(f(u), g(u))df(u) +
∫ t

0

∂Φ
∂g

(f(u), g(u))dg(u). (5.9)

Proof. By applying Mean value theorem (see Theorem C.2) on the functions f and

g, i.e. f, g ∈ C 1(R), we get ∀x, y ∈ R, ∃C1, C2 ∈]x, y[ such that

| f(x)− f(y) |= f
′(C1) | x− y |, (5.10)

and

| g(x)− g(y) |= g
′(C2) | x− y | . (5.11)

Using the α-Hölder continuity of f and g i.e. ∃α,Cα > 0 such that ∀x, y ∈ R,

| f(x)− f(y) |≤ Cα | x− y |α, (5.12)

and

| g(x)− g(y) |≤ Cα | x− y |α . (5.13)

Because Φ ∈ C 2(R2), and by using Chain theorem (see Theorem C.6); for every u ∈ R,

d
(
∂Φ
∂f

)
du

=
d
(
∂Φ
∂f

)
∂f

df

du
+
d
(
∂Φ
∂f

)
∂g

dg

du
,

= ∂2Φ
∂f 2 f

′(u) + ∂2Φ
∂g∂f

g
′(u). (5.14)
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By using the Mean value theorem on either the function u 7→ ∂Φ
∂f

(f(u), g(u)) or the

function u 7→ ∂Φ
∂g

(f(u), g(u)) we have, ∂Φ
∂f
∈ C 1(R2), ∀x, y ∈ R: ∃C ∈]x, y[ such that

| ∂Φ
∂f

(f(x), g(x))− ∂Φ
∂f

(f(y), g(y)) | =
d
(
∂Φ
∂f

)
du

(f(C), g(C)) | x− y |,

=
[
∂2Φ
∂f 2 (f(C), g(C))f ′(C) + ∂2Φ

∂g∂f
(f(C), g(C))g′(C)

]
× | x− y |,

=| x− y |
[
∂2Φ
∂f 2 (f(C), g(C)) | f(x)− f(y) |

| x− y |

+ ∂2Φ
∂g∂f

(f(C), g(C)) | g(x)− g(y) |
| x− y |

]
,

≤
[
∂2Φ
∂f 2 (f(C), g(C))Cα | x− y |α

+ ∂2Φ
∂g∂f

(f(C), g(C))Cα | x− y |α
]
. (5.15)

Then,

| ∂Φ
∂f

(f(x), g(x))− ∂Φ
∂f

(f(y), g(y)) |≤ C∗α | x− y |, (5.16)

where C∗α = Cα

(
∂2Φ
∂f 2 (f(C), g(C)) + ∂2Φ

∂g∂f
(f(C), g(C))

)
.

Then, the function u 7→ ∂Φ
∂f

(f(u), g(u)) is α−Hölder continuous.

Note that the same way can be used to prove that the function u 7→ ∂Φ
∂g

(f(u), g(u)) is

α−Hölder continuous.

This implies that the integrals
∫ .

0
∂Φ
∂f

(f(u), g(u))df(u) and
∫ .
0
∂Φ
∂g

(f(u), g(u))dg(u) are well

defined as Young integrals (because 2α > 1).

Moreover, by using Chain theorem
dΦ
du

= ∂Φ
∂f

df

du
+ ∂Φ
∂g

dg

du
. (5.17)

Or,

dΦ = ∂Φ
∂f

df + ∂Φ
∂g

dg. (5.18)

Then,

Φ(f(t), g(t)) = Φ(f(0), g(0)) +
∫ t

0

∂Φ
∂f

(f(u), g(u))df(u) +
∫ t

0

∂Φ
∂g

(f(u), g(u))dg(u). (5.19)

Which leads to the desired conclusion.
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Theorem 5.4 (Existence and uniquness) (Nourdin [31]-Biagini, Øksendal and

others [5])

Let g : [0, T ]→ R, σ, b : R→ R such that, g ∈ C 1([0, T ]), g ∈ Cα([0, T ]), α > 0,

σ ∈ Cβ(R), β > 0 and α + β > 1.

Assume that

(H1) σ is bounded and of class C 2(R) (see Appendix D.16),

(H2) σ
′ and σ′′ are uniform bounded operators ( see Appendix D.19),

(H3) b is Lipschitz function (see Appendix D.13),

(H4) for every k > 0 there exists some constants Ak > 0 depends on k such that

| σ′(Φ(x, y1))− σ′(Φ(x, y2)) |≤ Ak | y1 − y2 |, ∀ | x |, | y1 |, | y2 |≤ k, (5.20)

(H5) there exists B0, L0 > 0 such that

| b(Φ(x, y)) |≤ L0 | y | +B0, ∀x, y ∈ R. (5.21)

Then, the SDE (5.6) admits a unique solution given by

x(t) = Φ(g(t), y(t)), t ∈ [0, T ], (5.22)

for a suitable function Φ : R2 → R, Φ ∈ C 2(R2) and a function y : [0, T ]→ R which solve

an ordinary differential equation (see Appendix C.8).

Proof. Let Φ : R2 → R be the solution of the ODE
∂Φ
∂x

= σ ◦ Φ,
Φ(0, y) = y.

(5.23)

Then,

∂2Φ
∂y∂x

(x, y) = ∂

∂y
[σ(Φ(x, y))],

= ∂Φ
∂y
· σ′(Φ(x, y)). (5.24)
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By using the assumption (H1) : σ ∈ C 2(R), and by applying Schwartz theorem (see

Appendix Theorem C.7) as follow

∂2Φ
∂x∂y

= ∂2Φ
∂y∂x

. (5.25)

Then, from (5.23) 
∂2Φ
∂x∂y

= ∂Φ
∂y
· σ′ ◦ Φ,

∂Φ
∂y

(0, y) = 1.
(5.26)

So that,
∂

∂x
(∂Φ
∂y

)(x, y)− σ′(Φ(x, y))∂Φ
∂y

(x, y) = 0 (5.27)

This equation (5.27) is a linear partial differential equation with respect to x then, its

solution has the form
∂Φ
∂y

(x, y) = ce
∫ x

0 σ
′ (Φ(u,y))du, (5.28)

where c is a constant.

By using the initial condition
(
∂Φ
∂y

(0, y) = 1
)

∂Φ
∂y

(0, y) = ce0 = 1 then, c = 1. (5.29)

So, the special solution of (5.27) is given by

∂Φ
∂y

(x, y) = e
∫ x

0 σ
′ (Φ(u,y))du. (5.30)

By using the assumption (H2) : σ′ is a uniform bounded operator (see Appendix D.19)

then,

∃A > 0 : ‖σ′‖ ≤ A. (5.31)

This implies that,

∂Φ
∂y

(x, y) ≤ e
∫ x

0 Adu,

≤ eA|x|. (5.32)

Then, ∀y1, y2 ∈ R, y1 < y2, the integral of (5.32) with respect to y gives

| Φ(x, y1)− Φ(x, y2) |≤ eA|x| | y1 − y2 | . (5.33)
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By using the assumption (H3) : b is Lipschitz function i.e.

∃Lb > 0 : ∀x, y1, y2 ∈ R : | b(Φ(x, y1))− b(Φ(x, y2)) | ≤ Lb | Φ(x, y1)− Φ(x, y2) |,

≤ eA|x|Lb | y1 − y2 | . (5.34)

Moreover, by applying Mean value theorem (see Appendix Theorem C.2) on the function

h(u) = eu i.e. ∀u1, u2 ∈ R, h is continuous and derivable over ]u1, u2[ then, ∃c ∈]u1, u2[:

| h(u1)− h(u2) |= h
′(c) | u1 − u2 | . (5.35)

It is clear that c ≤| u1 | + | u2 | then,

| eu1 − eu2 | = ec | u1 − u2 |,

≤ e|u1|+|u2| | u1 − u2 | . (5.36)

From the definition of the norm of σ′ (see Appendix (D.13)) and (5.31)

∀x, y ∈ R : ‖σ′‖ = sup
Φ(x,y) 6=0

‖ σ′(Φ(x, y)) ‖
Φ(x, y) ≤ A. (5.37)

Then,

| σ′(Φ(x, y)) |≤ A | Φ(x, y) |, (5.38)

so, ∀y1, y2 ∈ R the integral with respect to y over ]y1, y2[ gives

| σ′(Φ(x, y1))− σ′(Φ(x, y2)) |≤ A | Φ(x, y1)− Φ(x, y2) | . (5.39)

By using (5.36), (5.32), (5.39) and (5.33)

| e−
∫ x

0 σ
′ (Φ(u,y1))du − e−

∫ x
0 σ
′ (Φ(u,y2))du | ≤ e|

∫ x
0 σ
′ (Φ(u,y1))du|+|

∫ x
0 σ
′ (Φ(u,y2))du|

×
∫ |x|

0
| σ′(Φ(u, y1))du− σ′(Φ(u, y2))du |,

≤ Ae2A|x|
∫ |x|

0
| Φ(u, y1)− Φ(u, y2) | du,

≤ Ae2A|x|
∫ |x|

0
eA|x| | y1 − y2 | du, (5.40)

= A | x | e3A|x| | y1 − y2 | .

Let f, g : R2 → R, set Ψ(x, y) = f(x, y)g(x, y) then, ∀x, y1, y2 ∈ R

| Ψ(x, y1)−Ψ(x, y2) | =| f(x, y1)g(x, y1)− f(x, y2)g(x, y2) |,

=|
(
f(x, y1)− f(x, y2)

)
g(x, y1) +

(
g(x, y1)− g(x, y2)

)
f(x, y2) |,

≤| g(x, y1) || f(x, y1)− f(x, y2) | + | f(x, y2) || g(x, y1)− g(x, y2) | .
(5.41)
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By using assumption (H4) we have: ∃B0, L0 > 0 such that

| b(Φ(x, y2)) |≤ L0 | y | +B0, ∀x, y2 ∈ R. (5.42)

By using the uniform bounded of σ′

| σ′(Φ(x, y1)) |≤ A, ∀y1 ∈ R. (5.43)

For Ψ(x, y) = b(Φ(x, y))e−
∫ x

0 σ
′ (Φ(u,y))du and from (5.41), (5.34) and (5.40)

| Ψ(x, y1)−Ψ(x, y2) | ≤ e−
∫ |x|

0 AdueA|x|Lb | y1 − y2 | +(L0 | y | +B0)A | x | e3A|x| | y1 − y2 |,

≤| y1 − y2 | (Lb + A | k | e3A|k|(L0 | k | +B0)), (5.44)

then, for a constants Mk depends on k and satisfying

Mk = Lb + A | k | e3A|k|(L0 | k | +B0), (5.45)

the function Ψ satisfy local Lipschitz condition

| Ψ(x, y1)−Ψ(x, y2) |≤Mk | y1 − y2 |, ∀ | x |, | y1 |, | y2 |≤ k, (5.46)

using assumption (H5) and the uniform bound of σ′

| Ψ(x, y) | =| b(Φ(x, y)) | e−
∫ x

0 σ
′ (Φ(u,y))du

≤ (L0 | y | +B0)e−A|k|, ∀ | x |≤ k, y ∈ R, (5.47)

which confirms the linear grow condition of Ψ with respect to y;

| Ψ(x, y) |≤ Jk | y | +Kk, ∀y ∈ R, ∀ | x |≤ k. (5.48)

where Jk = L0e
−A|k| and Kk = B0e

−A|k|.

From (5.46) and (5.48) the ordinary differential equationy
′(t) = Ψ(g(t), y(t)),
y(0) = x(0),

(5.49)

admits a unique solution y : [0, T ]→ R.

Then, there exist x : [0, T ]→ R be the function defined by (5.22) satisfy the ordinary

differential equation (5.6) in the following sens,

by using Φ ∈ C 2(R2), g, y ∈ C 1([0, T ]), Theorem 5.3 and from (5.23) and (5.30) i.e.

∂Φ
∂g

= σ(Φ) and
∂Φ
∂y

(g(t), y(t)) = e
∫ g(t)

0 σ
′ (Φ(g(u),y(u)))dg(u). (5.50)
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And from (5.49) and Ψ(g(t), y(t)) = b(Φ(g(t), y(t)))e−
∫ g(t)

0 σ
′ (Φ(g(u),y(u)))du,

Φ(g(t), y(t)) = Φ(g(0), y(0)) +
∫ t

0

∂Φ
∂g

(g(u), y(u))dg(u) +
∫ t

0

∂Φ
∂y

(g(u), y(u))dy(u),

= Φ(g(0), y(0)) +
∫ t

0
(σ ◦ Φ)(g(u), y(u))dg(u)

+
∫ t

0
e
∫ g(t)

0 σ
′ (Φ(g(u),y(u)))duΨ(g(u), y(u))du. (5.51)

Then,

x(t) = x(0) +
∫ t

0
b(x(u))du+

∫ t

0
σ(x(u))dg(u). (5.52)

Let Z : [0, T ]→ R such that

Z(t) = Φ(−g(t), x(t)), (5.53)

where x is verifying the equation (5.52).

Assume that Z verifying the following conditions

σ(x(t)) = σ(Z(t))e−
∫ g(t)

0 σ
′ (Φ(−g(u),x(t)))dg(u), (5.54)

and

b(x(t)) = b(Φ(g(t), Z(t)))e−
∫ g(t)

0 [σ′ (Φ(−g(u),x(t)))+σ′ (Φ(g(u),Z(t)))]dg(u). (5.55)

Then, by using (5.9) from Theorem 5.3

dZ(t) = ∂Φ
∂g

(−g(t), x(t))dg(t) + ∂Φ
∂x

(−g(t), x(t))dx(t). (5.56)

From (5.50),

− ∂Φ
∂(−g)(−g(t), x(t)) = −σ(Φ(−g(t), x(t))), (5.57)

and
∂Φ
∂x

(−g(t), x(t)) = e
∫ g(t)

0 σ
′ (Φ(−g(u),x(t)))dg(u). (5.58)

By using (5.52) and from the conditions (5.54)− (5.55),

dZ(t) = −σ(Φ(−g(t), x(t)))dg(t) + e
∫ g(t)

0 σ
′ (Φ(−g(u),x(t)))dg(u)

×
[
b(x(t))dt+ σ(x(t))dg(t)

]
, (5.59)

=
[
− σ(Φ(−g(t), x(t))) + σ(x(t))e

∫ g(t)
0 σ

′ (Φ(−g(u),x(t)))dg(u)
]
dg(t)

+ b(x(t))e
∫ g(t)

0 σ
′ (Φ(−g(u),x(t)))dg(u)dt,

= b(Φ(g(t), Z(t)))e−
∫ g(t)

0 Φ(g(u),Z(t))dg(u)dt. (5.60)
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Then dZ(t) = Ψ(g(t), Z(t))dt,
Z(0) = x(0).

(5.61)

By using the uniquness argument in the ordinary differential equation (5.49),

Z(t) = y(t), for all t ∈ [0, T ]. (5.62)

This means y(t) = Φ(−g(t), x(t)) is a unique solution of (5.49).

This implies that x(t) = Φ(g(t), y(t)) is a unique solution of (5.52).

5.3 Itô formula with respect to fBm with Hurst pa-
rameter H > 1

2

Theorem 5.5 (see [14]) Let (Ω,F , P ) be a probability space, H ∈ (1
2 , 1) and BH =

{BH
t }t∈[0,T ] be a fBm, let {Xt}t∈[0,T ], {bt}t∈[0,T ] and {σt}t∈[0,T ] be a stochastic processes.

Consider for any [t0, t] ⊂ [0, T ] the integral form of SDE driven by BH ,

Xt = Xt0 +
∫ t

t0
bτdτ +

∫ t

t0
στdB

H
τ . (5.63)

Assume that

• bt(ω) is integrable over [t0, t] for each ω ∈ Ω,

• the integral
∫ t
t0
σsdB

H
s exists in the sens of Young,

• the function Ut = U(t, x) : [0, T ] × R → R for all x ∈ R, has continuous partial

derivatives ∂U
∂t

, ∂U
∂x

and ∂2U

∂x2 such that

sup
0≤t≤T

E(| Ut |2) <∞, (5.64)

sup
0≤t≤T

E(| ∂U
∂t

(t, x) |2) <∞, (5.65)

sup
0≤t≤T

E(| ∂U
∂x

(t, x) |2) <∞, (5.66)

sup
0≤t≤T

E(| ∂
2U

∂x2 (t, x) |2) <∞, (5.67)

sup
0≤t≤T

E(| bt |2) <∞, (5.68)

sup
0≤t≤T

E(| σt |2) <∞. (5.69)
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If for any 0 < t ≤ T ∫ t

0
σs
∂U

∂x
(s,Xs)dBH

s , (5.70)

exists in the sens of Young.

Then

dUt = {∂U
∂t

(t,Xt) + bt
∂U

∂x
(t,Xt)}dt+ σt

∂U

∂x
(t,Xt)dBH

t . (5.71)

Or equivalently,

Ut = U0 +
∫ t

t0
{∂U
∂s

(s,Xs) + bs
∂U

∂x
(s,Xs)}ds+

∫ t

t0
σs
∂U

∂x
(s,Xs)dBH

s . (5.72)

Lemma 5.6 Let (Ω,F , P ) be a probability space, {bt}t∈[0,T ] and {σt}t∈[0,T ] be a sp verifying

the conditions of Theorem 5.5. Then, for any s, t ∈ [0, T ] we have∫ t

s
bτdτ +

∫ t

s
στdB

H
τ = bs(t− s) + σs(BH

t −BH
s ) + ◦L2(P )(| t− s |), (5.73)

where ◦L2(P )(| t− s |) satisfy

[E(| ◦L2(P )(| t− s |) |2)] 1
2 = ◦(| t− s |). (5.74)

Proof. See [14] p 446.

Proof. (of Theorem 5.5) let [t0, t] be any interval of [0, T ] and P = {t0, t1, ..., tn = t},

n ∈ N, be a partition of [t0, t] and let j = 0, ..., n− 1.

Set

M tj = tj+1 − tj, (5.75)

M xj = Xtj+1 −Xtj , (5.76)

M BH
j = BH

tj+1
−BH

tj
, (5.77)

M Uj = U(tj+1, Xtj+1)− U(tj, Xtj). (5.78)

Then,

Ut − Ut0 = U(t,Xt)− U(t0, Xt0) = lim
n→∞

n−1∑
j=0

M Uj. (5.79)

By using Taylor-Young theorem C.4 and because (dt)2 = dBH
t dt = 0,

M Uj = U(tj+1, Xtj+1)− U(tj, Xtj),

= ∂U

∂t
(tj+1, Xtj+1) M tj + ∂U

∂x
(tj+1, Xtj+1) M xj + 1

2
∂2U

∂x2 (tj+1, Xtj+1)(M xj)2. (5.80)
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• First,

lim
n→∞

n+1∑
j=0

∂U

∂t
(tj+1, Xtj+1) M tj =

∫ t

t0

∂U

∂τ
(τ,Xτ )dτ. (5.81)

• By using (5.63) and Lemma 5.6

M xj = Xtj+1 −Xtj ,

=
∫ tj+1

tj
bτdτ +

∫ tj+1

tj
στdB

H
τ , (5.82)

= btj M tj + σtj M BH
j + ◦L2(P )(|M tj |), (5.83)

where

[E(| ◦L2(P )(|M tj |) |2)] 1
2 = ◦(|M tj |). (5.84)

Therefore, by using (5.66),

lim
n→∞

n−1∑
j=0

∂U

∂x
(tj, Xtj) M xj = lim

n→∞

n−1∑
j=0

{
∂U

∂x
(tj+1, Xtj+1)[btj M tj + σtj M BH

j ]
}

=
∫ t

t0
bτ
∂U

∂x
(τ,Xτ )dτ +

∫ t

t0
στ
∂U

∂x
(τ,Xτ )dBH

τ , (5.85)

=
∫ t

t0

∂U

∂x
(τ,Xτ )

{
bτdτ + στdB

H
τ

}
.

• From Lemma 5.6, (5.68) and (5.69),

(M xj)2 = (Xtj+1 −Xtj)2,

=
[ ∫ tj+1

tj
bτdτ +

∫ tj+1

tj
στdB

H
τ

]2
, (5.86)

=
[
btj M tj + σtj M BH

j + ◦L2(P )(|M tj |)
]2
,

= (σtj)2(M BH
j )2 + ◦L2(P )(|M tj |).

And

E[(M BH
j )2] = E[(BH

tj+1
−BH

tj
)2],

= E[(BH
tj+1

)2 − 2BH
tj
BH
tj+1

+ (BH
tj

)2], (5.87)

= t2Hj+1 − (t2Hj + t2Hj+1− | tj+1 − tj |2H) + t2Hj

=|M tj |2,

= ◦L2(P )(|M tj |).

Then,

(M xj)2 = ◦(|M tj |) (5.88)
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From (5.80), (5.81), (5.85) and (5.88),

Ut − U0 =
∫ t

t0

{
∂U

∂τ
(τ,Xτ ) + bτ

∂U

∂x
(τ,Xτ )

}
dτ +

∫ t

t0
bτ
∂U

∂x
(τ,Xτ )dBH

τ . (5.89)

Which leads to the desired conclusion.

5.4 Stochastic Black-Schols equation driven by frac-
tional Brownian motion with Hurst parameter
H > 1

2

5.4.1 The existence and unicity of the solution

Definition 5.7 (See [14]) Let H ∈ (1
2 , 1) and BH = {BH

t }t∈[0,T ] be a fBm with Hurst

parameter H. We define the stochastic Black-Schols equation as followdSt = µStdt+ σ1StdB
H
t ,

Xt0 = A,
(5.90)

where µ, σ1 > 0 and A be a positive rv.

Theorem 5.8 The stochastic Black-Schols equation (5.90) admits a unique solution is

given by

St = St0 exp{µ(t− t0) + σ1(BH
t −BH

t0 )}. (5.91)

Proof.

• Existence and unicity of the solution: Set

b(St) = µSt and σ(St) = σ1St. (5.92)

– First, let’s prove that σ is Young integrable with respect to BH .

the fBm BH is α-Hölder continuous of order α < H.

| σ(x)− σ(y) | =| σ1x− σ1y |,

=| σ1 || x− y |, ∀x, y ∈ R. (5.93)

Then, σ is β−Hölder continuous of order β = 1, this implies that∫ t

0
σ(Su)dBH

u , (5.94)

is well defined as Young integral (because α + β > 1).
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– For a constant L =| σ1 | the function σ is Lipschitz.

– Now, let’s prove that b is satisfy grow condition,

| b(x) | =| µx |,

≤| µ || x |, ∀x ∈ R. (5.95)

Then, the SDE (5.90) admits a unique solution.

• The solution:

dSt = µStdt+ σ1StdB
H
t (5.96)

for St 6= 0
dSt
St

= µdt+ σ1dB
H
t . (5.97)

Set Yt = ln(St) then, St = eYt ,

dYt = µdt+ σ1dB
H
t

(5.98)

by using Itô formula (5.71) on St

dSt = µ eYtdt+ σ1e
YtdBH

t , (5.99)

eYtdYt = µeYtdt+ σ1e
YtdBH

t , (5.100)

dYt = µdt+ σ1dB
H
t , (5.101)

then,

Yt = Yt0 + µ(t− t0) + σ1(BH
t −BH

t0 ), (5.102)

for St0 6= 0

ln
(
St
St0

)
= µ(t− t0) + σ1(BH

t −BH
t0 ), (5.103)

then,

St = St0exp{µ(t− t0) + σ1(BH
t −BH

t0 )} (5.104)

Which leads to the desired conclusion.
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5.4.2 Simulation of the solution of Black-Schols equation driven
by fBm with Hurst parameter H > 1

2

In this section we make the simulation of the solution of Black-Schols equation driven by

fBm BH = {BH
t }t∈[0,T ] see (5.90) for t0 = 0;

St = Aexp(
{
µt+ σBH

t

}
), (5.105)

where A is a positive rv, µ and σ are constants.

Now, we choose A ∼ exp(2/3), µ = 1 and σ = 1/2 and we write the program in R as

follow

#Simulation of the solution of Black− Schols equation
#we choose H = 0.7
H < −0.7
A < −abs(rexp(1, 2/3))
mu < −1
sigma < −1/2
S < −function(t){
A ∗ exp(mu ∗ t + sigma ∗ fBm(t,H))
}
#For example if t = 2.25 we have
S(2.25)

the result is

26.66974

The graph of the solution St as a function of time t

q < −numeric(m + 1) for(iin1 : m + 1){
q[i] < −S(t[i])
}
plot(t, q, xlab = ”t”, ylab = ”S(t)”, col = ”violet”, type = ”b”)
title(”Simulation of the solution of Black− Schols equation driven by fBm
with Hurst parameter H = 0.7”)

To get the graph of the solution as a function of time t and H we do the following
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S < −function(t,H){
A ∗ exp(mu ∗ t + sigma ∗ fBm(t,H))
}
y < −seq(0.52, 0.97, length = m + 1)
s < −length(t)
z < −matrix(0, nrow = s, ncol = s)
for(iin1 : s){
for(jin1 : s){
z[i, j] < −S(t[i], y[j])
}
}
persp(t, y, z, theta = 55, phi = 30, expand = 0.6,
col = ”violet”,
xlab = ”t”,
ylab = ”H”,
zlab = ”S(t,H)”,
main = ”Simulation of the solution of Black− Schols equation driven by fBm
as a function of time t and H for T = 30”,
ticktype = ”detailed”,
shade = 0.5, lphi = 50, ltheta = 100)
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Appendix A

Riemann and Lebesgue integrals

This appendix introduce the measure theory and Lebesgue integral and some impor-

tant properties and comparison between them.

A.1 Measures

A.1.1 Preliminaries and definitions

Definition A.1 ([12]) Let E be a non-empty set and E be a non-empty set of collection

of subset of E. We say that E is a σ-algebra on E if it satisfies the following conditions:

(a) φ,E ∈ E ,

(b) stable for countable infinite union: ∀(Ai)i∈N ⊂ E ⇒ ∪∞i=1Ai ∈ E,

(c) stable by passage to the complement: ∀A ∈ E ⇒ Ac ∈ E .

The elements of E are called measurable sets.

Remark A.2 If in condition (b) the union is finite then E is called an algebra on E.

Definition A.3 A measurable space is a pair (E, E), where E is a non-empty set and

E is a σ−algebra on E.
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Definition A.4 A Signed measure on (E, E) is an application µ : E → R̄, such that

i) µ(φ) = 0, and

ii) for any countable collection {Ej} of pairwise disjoint sets in E ,

µ(∪jEj) =
∑
j

µ(Ej). (A.1)

Definition A.5 Let µ be a signed measure on (E, E), we say that

• The measure µ is finite if µ(E) <∞.

• The measure µ is σ−finite if we can write E as countable union of finite measure

sets {Ai} ∈ E are pairwise disjoints; E = ∪iAi with µ(Ai) <∞.

Remark A.6 If µ : E → R̄+ then, µ is called positive measure.

Definition A.7 A measure space is a triplet (E, E , µ), where (E, E) is a measurable

space and µ is a signed measure on it.

A.1.2 Some special cases
Lebesgue measure

Definition A.8 A measure L on (R,B(R)) is called Lebesgue measure on R if for

every interval A ∈ R we have L(A) is the length of this interval.

Since the Lebesgue measure of a single point is defined to be zero, we also have for all

a,b∈ R̄ : L(]a, b[) = L(]a, b]) = L([a, b[) = b− a.

In order to extend the Lebesgue measure to Rd, it will be convenient to define the Cartesian

product.

Definition A.9 The Cartesian product of a set of intervals [ai, bi] ⊂ R, i = 1, ..., d,

is

A = [a1, b1]× ...× [ad, bd] =
d∏
i=1

[ai, bi], (A.2)

the Cartesian product of intervals on R is a rectangle on R2 and a hyper-rectangle on

Rd (d > 2).
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Definition A.10 The Lebesgue measure on Rd is an application ν : B(Rd) → R̄+,

such that for A = ∏d
i=1[ai, bi] ⊂ B(Rd),

ν(A) =
d∏
i=1

(bi − ai), (A.3)

which is the hyper-volume of the corresponding hyper-rectangle on Rd.

Probability space

Definition A.11 Let Ω be a non-empty set and F is a σ−algebra on Ω.

A positive measure P on (Ω,F) is called probability measure if

P(Ω) = 1. (A.4)

The triplet (Ω,F ,P) called probability space.

A.2 Real and complex measurable functions

Definition A.12 We define a function f : (E, E)→ F such that F = R or F = C.

• If F = R, we say that f is real E−measurable function if the inverse image of

the interval [α,∞[ under f is a measurable set for any real number α;

f−1([α,∞[) = {x ∈ E : f(x) ≥ α} ∈ E , for every α ∈ R. (A.5)

• If F = C, we can write f = Re(f) + iIm(f), if Re(f) and Im(f) are two real

E−measurable functions then f is called complex E−measurable function.

Proposition A.13 Let f, g : (E, E)→ R be real E−measurable functions, for all x ∈ E,

let a ∈ R, then we have

• {x ∈ E : f(x) > g(x)} is E−measurable set.

• f + a, f + g, fg and | f |a are real E−measurable functions.

• f+ = sup(f, 0) and f− = − inf(f, 0) are real E−measurable functions.

• f = f+ − f−, f+, f− ≥ 0 and | f |= f+ + f−.
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Proposition A.14 Let fn : (E, E)→ R be a sequence of real E−measurable functions.

• We have supn fn, infn fn, lim supn fn and lim infn fn are real E−measurable func-

tions.

• If (fn)n∈N converging to f : (E, E)→ R then, f is a real E−measurable function.

A.3 Riemann integral

Definition A.15 Let [a, b] ⊂ R, A partition of [a, b] is a finite set of numbers P =

{x0, x1, ..., xn} form an increasing sequence in [a, b] that devise this interval into n subin-

terval such that,

x0 = a, xn = b and xi−1 < xi for i = 1, ..., n. (A.6)

The mesh of the partition P is the length of the largest subinterval;

µmax(P) = max{xi − xi−1 : i = 1, ..., n}. (A.7)

Definition A.16 Let f : [a, b] → R, P = {x0, ..., xn} be a partition of [a, b] and ti ∈

[xi−1, xi] for each i = 1, ..., n.

We define the Riemann sum with respect to the partition P and the set of sampling

points {ti}ni=1 by

S(f,P , {ti}ni=1) =
n∑
i=1

f(ti)(xi − xi−1), (A.8)

Definition A.17 A function f : [a, b] → R is Riemann integrable over [a, b] if there

is a real number l such that, for any partition P of [a, b] and ti ∈ [xi−1, xi], i = 1, ..., n.

We have ∫ b

a
f(t)dt = lim

n→∞
S(f,P , {ti}ni=1) = l. (A.9)

Proposition A.18 If f, g : [a, b]→ R are continuous then, they are Riemann integrables

and,

•
∫ b
a f(x)dx ≥ 0.

• f is bounded and the value of the integral
∫ b
a f(x)dx is unique.
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• αf + βg is Riemann integrable and
∫ b

a
(αf + βg)(x)dx = α

∫ b

a
f(x)dx+ β

∫ b

a
g(x)dx, where α, β ∈ R. (A.10)

• Suppose that f(x) ≤ g(x) for all x ∈ [a, b]. Then,
∫ b
a f(x)dx ≤

∫ b
a g(x)dx.

• If c ∈ [a, b] then, ∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx. (A.11)

A.4 Lebesgue Integral

A.4.1 Lebesgue integral of a simple function

Definition A.19 Let A ⊆ R, a bounded measurable function ϕ : A→ R ⊂ B(A) is called

simple function if the values of f are countable.

• Assume that the values of ϕ are {a1, ..., an} on the sets Ai = {x : ϕ(x) = ai}, i =

1, ..., n. Then, the canonical form of ϕ is

ϕ(x) =
n∑
i=1

ai1Ai . (A.12)

• We define the Lebesgue integral of ϕ by
∫
A
ϕ =

∫
A
ϕ(x)dx =

n∑
i=1

aiL(Ai), (A.13)

where L(Ai) is the Lebesgue measure of Ai, i = 1, ..., n.

A.4.2 Lebesgue integral of a measurable function

Theorem A.20 Let A ⊆ R, if f : A → R is a measurable function then, there existe a

sequence of simple functions (ϕn)n∈N that converge to f. Moreover, if there is M > 0 :

| f(x) |≤M for all x ∈ A, (A.14)

then, | ϕn(x) |≤M for all x ∈ A and n ∈ N.

Definition A.21 Let A ⊆ R and let f : A→ R be a bounded measurable function.
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• If f is positif then, we define the Lebesgue integral of f over A by∫
A
f(x)dx = sup

ϕ≤f

∫
A
ϕ(x)dx, (A.15)

where the supremum is taken over all simple functions ϕ for which ϕ(x) ≤ f(x) for

all x ∈ A.

• If f is real then, f is Lebesgue integrable if both
∫
A f

+(x)dx and
∫
A f
−(x)dx are

finite, and we define the integral as follow∫
A
f(x)dx =

∫
A
f+(x)dx−

∫
A
f−(x)dx. (A.16)

• If f is complex then, f is Lebesgue integrable if both∫
A
Re+(f)(x)dx,

∫
A
Re−(f)(x)dx,

∫
A
Im+(f)(x)dx and

∫
A
Im−(f)(x)dx are finite.

(A.17)

And we define the integral of f over A by∫
A
f(x)dx =

∫
A
Re+(f)(x)dx−

∫
A
Re−(f)(x)dx+i

( ∫
A
Im+(f)(x)dx−

∫
A
Im−(f)(x)dx

)
.

(A.18)

Proposition A.22 Let A ⊆ R, let f, g, h : A → R be a measurable functions and L(A)

be the Lebesgue measure of A,

• f is Lebesgue integrable if, and only if | f | is Lebesgue integrable, and we have

|
∫
A
f(x)dx |≤

∫
A
| f(x) | dx. (A.19)

• if L(A) = 0 then, f is Lebesgue integrable and
∫
A f = 0.

• If | f |≤ g and g is Lebesgue integrable then, f is Lebesgue integrable.

• If h ≤ f ≤ g and g and h are Lebesgue integrables then, f is Lebesgue integrable.

Theorem A.23 (Monotone Convergence Theorem) Let A ⊆ R and (ϕn)n∈N be

an increasing sequence of positif simple functions that converge to a measurable function

f : A→ R. Then, ∫
A
f = lim

n→∞

∫
A
ϕn. (A.20)
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Corollary A.24 Let A ⊆ R and let (fn)n∈N be a sequence of positif measurable functions

defined on A then, ∫
A

∑
n

fn =
∑
n

∫
A
fn. (A.21)

Theorem A.25 (Dominated Convergence Theorem) Let A ⊆ R and {fn}n∈N be

a sequence of measurable functions defined on A. If {fn}n∈N converge to a measurable

function f and there exist a Lebesgue integrable function g such that, | fn(x) |≤ g(x) for

all n ∈ N and every x ∈ A. Then, f is Lebesgue integrable and we have
∫
A
f = lim

n→∞

∫
A
fn, and lim

n→∞

∫
A
| f − fn |= 0. (A.22)

A.5 Comparison between Riemann and Lebesgue in-
tegrals

Theorem A.26 Let A ⊆ R. If f : A → R is a measurable funtion which is Riemann

integrable. Then, f is Lebesgue integrable and the two integrals are equals.

Properties A.27 The Lebesgue measure of Q equal to zero.

Proof. Let L be the Lebesgue measure on R then,

L(Q) = L
(
∪a∈Z, b∈Z∗ {

a

b
}
)

=
∑

a∈Z, b∈Z∗
L
(
{a
b
}
)

= 0. (A.23)

Then L(Q) = 0.

Example A.5.1 Define the Dirichlet function f : [0, 1]→ R by

f(x) =
1 if x ∈ Q,

0 otherwise.
(A.24)

• Clearly that the function f is bounded and measurabl and hence Lebesgue inte-

grable; ∫ 1

0
f(x)dx = 1 L(Q ∩ [0, 1]) + 0 L([0, 1] \Q) = 0. (A.25)

• But, f is not Riemann integrable; let P = {x0, ..., xn} be a partition of [0, 1]. In

every subinterval [xi−1, xi] there exist a rational number qi and an irrational number
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pi for all i = 1, ..., n. Thus,

S(f,P , {qi}ni=1) =
n∑
i=1

f(qi)(xi − xi−1),

=
n∑
i=1

1(xi − xi−1) = 1. (A.26)

While,

S(f,P , {pi}ni=1) =
n∑
i=1

f(pi)(xi − xi−1),

=
n∑
i=1

0(xi − xi−1) = 0. (A.27)

So, always there exist a set of simpling points so that the corresponding Riemann

sum equals 0, and another set so that the corresponding Riemann sum equals 1.

Then f is not Riemann integrable.

A.6 Extensions of Riemann integral (improper inte-
gral)

Definition A.28 Let a, b ∈ R, f : (a, b)→ R and c ∈ (a, b),

• Assume that f is Riemann integrable on every subinterval [c, b] (f is bounded on [c, b]

but not necessarily on all [a, b]). If limc→a+
∫ b
c f exist then, we define the Cauchy-

Riemann integral of f over [a, b] as follow∫ b

a
f(x)dx = lim

c→a+

∫ b

c
f(x)dx. (A.28)

• Assume that f is Riemann integrable over every subinterval [a, c]. If limc→b−
∫ c
a f

exist then, we define the Cauchy-Riemann integral of f over [a, b] as follow∫ b

a
f = lim

c→b−

∫ c

a
f. (A.29)

Now, assume that f is defined on an unbounded interval such as [a,∞[.

Definition A.29 let a ∈ R and f : [a,∞[→ R. f is said to be Cauchy-Riemann

integrable over [a,∞[ if

• f is Riemann integrable over [a, b] for every b > a and,
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• limb→∞
∫ b
a f exist.

So, define the Cauchy-Riemann integral of f over [a,∞[ as follow
∫ ∞
a

f = lim
b→∞

∫ b

a
f. (A.30)

A similar definition is made for functions defined on ]−∞, b].

Example A.6.1 Let p ∈ R and define f : [1,∞[→ R by f(t) = tp,

• For p 6= −1 we have
∫ b
1 f(t)dt = bp+1−1

p+1 then, f is Cauchy-Riemann integrable

if and only if, p < −1 and,
∫ ∞

1
f = lim

b→∞

∫ b

1
f(t)dt = − 1

p+ 1 , (A.31)

• For p = −1 we have
∫ b

1 f(t)dt = ln(b) then, f is not Cauchy-Riemann inte-

grable.

Definition A.30 Let f : R → R, if both
∫ a
−∞ f and

∫∞
a f are exists for a ∈ R then, f is

Cauchy-Riemann integrable and,
∫
R
f =

∫ a

−∞
f +

∫ ∞
a

f. (A.32)

Remark A.31 For more details about this appendix (proofs of the theorems and the

propositions) see [23].
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Appendix B

Gaussian random variables

Definition B.1 Let A be a non-empty set we denoted by σ(A) the small σ−algebra con-

tain A. We say that σ(A) is the σ−algebra generated by A.

Definition B.2 A Borel σ−algebra on R is the σ-algebra generated by the open inter-

vales of R; it is denoted by B(R).

B.1 One and multidimensional Random variables

B.1.1 One dimensional random variable

Definition B.3 We say that f : (Ω,F) → (E, E) is a measurable application if

f−1(E) ⊂ F .

Definition B.4 ([38]) A random variable X take values in (E, E) is a measurable

application from (Ω,F ,P) to (E, E), i.e. ∀A ∈ E,

X−1(A) = {X ∈ A} = {ω ∈ Ω : X(ω) ∈ A} ∈ F . (B.1)

When X takes values in (R,B(R)) then it is called real random variable.
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B.1.2 Characteristics of random variables
The law of a random variable

Definition B.5 ([21]) The law of a real random variable X is the probability measure µ

on (R,B(R)) defined by µ(A) = P [X−1(A)], for all A ∈ B(R).

Definition B.6 The distribution function of a real random variable X is defined as

FX(x) = µ(]−∞, x]) = P
(
X−1(]−∞, x])

)
= P (X ≤ x). (B.2)

Definition B.7 If the rv X takes values in a finite or a countable space, we say that X is

a discrete random variable. And if X takes an uncountably infinite number of values,

then it is called continuous random variable.

Properties B.8 Let X be a continuous rv with distribution function F then,

• F is increasing function on R.

• F is right-continuous function.

• limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

Definition B.9 The probability mass function of a discrete rv X is defined by

PX(xk) = P (X = xk), ∀xk ∈ E. (B.3)

The probability mass function has two basic properties:

(i) PX(x) ≥ 0 for all x in the state space.

(ii) ∑x PX(x) = 1.

Definition B.10 The probability density function of the continuous rv X is defined

(at all points where the derivative exist) by

fX(x) = F
′

X(x), for x ∈ E. (B.4)

We can compute probabilities by evaluating definite integrals

P (a ≤ X ≤ b) =
∫ b

a
f(t)dt = FX(b)− FX(a). (B.5)

The density function has two basic properties:
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(i) fx(x) ≥ 0, for all x in the state space.

(ii)
∫
R fX(x)dx = 1.

Expectations

Definition B.11 Let X be a continuous rv defined on (Ω,F , P ). Since it is F−measurable,

its integral with respect to P makes sense to talk about. That integral is called the expec-

tations or the mean of X and is denoted by any of the following

E(X) =
∫

Ω
P (dω)X(ω) =

∫
Ω
XdP. (B.6)

The expected value E(X) exists if and only if the integral is finished.

Define the nth moment of X by E(Xn), for all n > 0.

Properties B.12 Let X be a continuous rv and g be a function with respect to X then,

• E[g(X)] =
∫
R g(x)f(x)dx, where f is the pdf of X.

• If g(X) = aX + b, a, b ∈ R we have E(aX + b) = aE(X) + b.

• If g(X) = 1A(X) then, E(1A(X)) = P (A).

Variances, Laplace and Fourier transforms

Definition B.13 Let X be a rv taking values in R and having the distribution µ. We

denoted by E(Xn) the nth moment of X. In particular, E(X) is called mean of X.

Assuming that E(X) = m is finite, the nth moment of (X−m) is called the nth centered

moment of X. In particular, E(X−m)2 is called the variance of X, and we shall denote

it by var(X); note that

var(X) = E(X −m)2 = E(X2)− E2(X). (B.7)

Assuming that X is positive, for r ∈ R+, the random variable erX takes values in the

interval [0,1], and its expectation

ϕX(r) = E(erX) =
∫
R+
µ(dx)erx. (B.8)
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The resulting function r→ ϕX(r) from R+ into [0,1] is called the Laplace transform of

the distribution µ.

Suppose that X takes values in R, for r in R, eirX = cos(rX) + isin(rX) we obtain

ΦX(r) = E(eirX) =
∫
R
µ(dx)eirx =

∫
R
µ(dx)cos(rx) + i

∫
R
µ(dx)sin(rx). (B.9)

The resulting complex-valued function r→ ΦX(r) from R into C. is called the Fourier

transform of the distribution µ, or the characteristic function of the random variable

X.

Important continuous random variables

Uniform distribution ([24]) Let X be a rv if it’s pdf is constant in [a,b] and

fX(x) = 1
b− a

1{a≤X≤b}, (B.10)

then X has uniform distribution and we note X ∼ U [a, b], with E(X) = a+b
2 , var(X) =

(b−a)2

12 .

Exponential distribution Let X be a rv and λ > 0 if it’s pdf has the form

fX(x) = λe−λx1{X≥0}, (B.11)

then X have exponential distribution with parameter λ, and we note X ∼ Exp(λ), with

E(X) = 1
λ
, var(X) = 1

λ2 .

Gamma distribution with parameters α > 0 and λ > 0, (X ∼ γ(α, λ)):

fX(x) = λα

Γ(α)e
−λxxα−11{x≥0}, where Γ(α) =

∫ +∞

0
tα−1e−tdt, (Γ(α) = (α− 1)! if α ∈ N),

(B.12)

with E(X) = α

λ
, var(X) = α

λ2 .

Γ is called the gamma function.

B.1.3 Gaussian random variable and characterestic

Definition B.14 ([27]) A real random variable X is called Gaussian or normal random

variable with mean m and variance σ2. If its pdf has the form:

fX(x) = 1
σ
√

2π
exp

(
− (x−m)2

2σ2

)
(B.13)
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where m ∈ R, σ > 0, and we note Xv N (m,σ2).

The df of the Gaussian random variable X is

FX(x) = 1
σ
√

2π

∫ x

−∞
exp

(
− (t−m)2

2σ2

)
dt (B.14)

Properties B.15 • The characteristic function and Laplace transform of X are given

by

ΦX(r) = E(eirX) = exp
(
imr − σ2r2

2

)
, for all r ∈ R

ϕ(r) = E(erX) = exp
(
mr + σ2r2

2

)
, for all r ∈ R+. (B.15)

• If Y = aX + b where X ∼ N (m,σ2), then Y ∼ N (am+ b, a2σ2).

• If Y = X1 + X2 where Xi ∼ N (mi, σ
2
i ), i = 1, 2. And X1, X2 are independents.

Then Y ∼ N (m1 +m2, σ
2
1 + σ2

2).

Remark B.16 In the particular case where m = 0 and σ2 = 1 the random variable X is

called a standard Gaussian random variable for which the usual symbol is Z.

Lemma B.17 Let Z ∼ N (0, 1) for m ∈ N we have

E(Zm) =
0 if m odd,

2−m/2 m!
(m/2)! if m even.

(B.16)

Proof.

• If m is odd then E(Zm) =
∫
R z

mfZ(z)dz =
∫∞
0 zmfZ(z)dz = 0, because zm is odd

function.

• If m is even then, by usin part integration,

E(Zm) =
∫
R
zmfZ(z)dz,

= 1√
2π

∫
R
zm−1(ze− z

2
2 )dz, (B.17)

= (m− 1)E(Zm−2).
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Since E(Z0) = 1, the recursive expression can be written as

E(Zm) = (m− 1)(m− 3)...(3)(1),

= m!∏
i=2,4,...,m i

,

= m!∏m/2
i=1 2i

, (B.18)

= m!
2m/2(m/2)! ,

then, if m is even, E(Zm) = m!
2m/2(m/2)! .

Theorem B.18 (Central limit theorem) Let {Xi}ni=1 be iid random variables withe

mean a and variance b, Let Sn = ∑n
i=1Xi if Z = Sn−na√

nb
. Then Z ∼ N (0, 1).

B.1.4 Miltidimensional random variables and characteristics
Preliminaries and definitions

Definition B.19 Abstract elements are elements whose nature is not specified, a collec-

tion of these abstract elements called an abstract set.

Definition B.20 An abstract probability space is a triplet (Ω,F , P ), where

• Ω is an abstract set,

• F is a σ−algebra on Ω,

• P is a probability measure on (Ω,F).

Definition B.21 A random vector X = (X1, X2, ..., Xn) is a measurable application

from an abstract probability space (Ω,F , P ) to (Rn,B(Rn));

X : (Ω,F , P ) −→ (Rn,B(Rn))
ω 7−→ X(ω) = (X1(ω), ..., Xn(ω)).

where B(Rn) is the Borel σ−algebra i.e. the σ−algebra generated by the open subsets of

Rn.
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Miltidimensional distribution

Definition B.22 Let X = (X1, ..., Xn) be a random vector takes values in (Rn,B(Rn)), n ∈

N and A =]−∞, x1]× ...×]−∞, xn] ⊂ Rn. The joint distribution function of X is

defined by

F (x1, ..., xn) = P ((X1, ..., Xn) ∈ A),

= P (X1 ≤ x1, ..., X ≤ xn), (B.19)

= P (∩ni=1{Xi ≤ xi}).

The random vector X is called absolutely continuous if there exists a joint density

function f such that

F (x1, ..., xn) =
∫ x1

−∞
...
∫ xn

−∞
f(t1, ..., tn)dt1...dtn. (B.20)

Example B.1.1 (n = 2) If the random vector (X1, X2) have the joint probability density

f(x1, x2) =
e−(x1+x2), x1, x2 ≥ 0,

0 otherwise.
(B.21)

Then, the joint distribution function of (X1, X2) is

F (x1, x2) =
∫ x1

−∞

∫ x2

−∞
f(t1, t2)dt1dt2

=
∫ x1

0

∫ x2

0
e−(t1+t2)dt1dt2 (B.22)

=
∫ x1

0
e−t1dt1

∫ x2

0
e−t2dt2,

= (1− e−x1)(1− e−x2).

So that,

F (x1, x2) =
(1− e−x1)(1− e−x2) x1, x2 ≥ 0

0 otherwise.
(B.23)

Independent random variables and conditional expectations between rv

Definition B.23 Let (X, Y ) be a random vector defined from (Ω,F , P ) to (R2,B(R2)),

we say that X and Y are independents if

• FX,Y (x, y) = P (X ≤ x, Y ≤ y) = FX(x)FY (y), x, y ∈ R or,
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• ϕX+Y (r) = E(er(X+Y )) = E(erX)E(erY ), r ≥ 0.

The conditional distribution function and the conditional density function of

X given Y = y are defined respectively as follow

FX|Y (x | y) =
∫ x
−∞ fX,Y (t, y)dt

fY (Y ) and fX|Y (x | y) = fX,Y (x, y)
fY (y) . (B.24)

We define the conditional expectation of X given Y = y by

E(X | Y = y) =
∫
R
xfX|Y (x | y)dx. (B.25)

Gaussian random vectors

Definition B.24 Let X = (X1, X2, ..., Xn) be a random vector. If Y = ∑n
i=1 νiXi is

a normal random variable for every ν ∈ Rn (see Appendix B.14). Then X is called

Gaussian random vector.

Definition B.25 Let X = (X1, ..., Xn) be a Gaussian random vetor, the mean of X is

given by

mX = E(X) = (E(X1), ..., E(Xn)). (B.26)

And if all components of X have finite second moments, then the variance-covariance

matrix of X is given by

K = (cov(Xi, Xj))1≤i,j≤n· (B.27)

Note that K is a symetric and a positive definite matrix, i.e

• K(i, j) = K(j, i); (cov(Xi, Xj) = cov(Xj, Xi)), for all i, j = 1, ..., n.

• ∑n
i,j=1 aiajK(i, j) ≥ 0, ai, aj ∈ R for all i, j = 1, ..., n.

Properties B.26 Let X be an n-dimensional Gaussian random vector X ∼ N (mX , K)

his important properties are:

1. If all random variables X1, ..., Xn are uncorrelated so that K(i, j) = 0 for i 6= j,

then they are also independent.

2. If Υ : Rn → Rm is a linear application, then Υ(X) is also a Gaussian random

vector.
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3. Let A ∈Mp,n(R), The vector Y = AX is Gaussian Y ∼ N (AmX , AK
TA).

Theorem B.27 A random vector X define on (Rn,B(Rn)) is Gaussian if and only if his

characteristic function has the form

ΦX(ν) = exp
(
iνTmX −

1
2ν

TKν
)
∀ν ∈ Rn, (B.28)

where mX is the mean of X, and K is the variance-covariance matrix of X.

Proof. See [33] p23.
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Appendix C

Elementary notions of analysis

Proposition C.1 (The Hospital rule) Let f, g : R→ R be a C 1(R) functions.

If

lim
x→0

f(x)
g(x) = ε(x)

δ(x) , (C.1)

where limx→0 ε(x) = 0 and limx→0 δ(x) = 0.

Or

lim
x→0

f(x)
g(x) = +∞

+∞ . (C.2)

Then,

lim
x→0

f(x)
g(x) = lim

x→0

f
′(x)
g′(x) . (C.3)

Theorem C.2 (Mean value theorem) Let a, b ∈ R and F : [a, b]→ R be a continuous

function on [a, b] which is derivable on ]a, b[ then, there exist c ∈]a, b[ such that

F
′(c) = F (b)− F (a)

b− a
. (C.4)

Lemma C.3 ([42]) Let {an}n∈N and {bn}n∈N be an increasing sequences, for p, q > 0

there exist an index 0 < k ≤ n such that

• | akbk |≤
(

1
n

∑n
i=1 | ai |p

) 1
p
(

1
n

∑n
i=1 | bi |q

) 1
q

.
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• Hölder inequality If r = 1
p

+ 1
q
> 1 then,

n∑
i=1
| aibi |≤ An

( n∑
i=1
| ai |p

) 1
p
( 1
n

n∑
i=1
| bi |q

) 1
q

, (C.5)

where An = ∑n
i=1 i

−r.

Proof. See [42] p251.

Theorem C.4 (Taylor-Young (One dimensional case)) Let a, b ∈ R, f : [a, b]→ R

be n-times differentiable on (a, b) and x0 ∈ (a, b).

The nth − order limit developement of f in the neibor of x0 is given by

f(x) = f(x0) + f
′(x0)(x− x0) + f

′′(x0)
2! (x− x0)2 + ...+ f (n)(x0)

n! (x− x0)n + (x− x0)n
n! ε(x),

(C.6)

where ε is a real function defined on (a, b) and limx→x0 ε(x) = 0.

Theorem C.5 (Taylor-Young (Two dimensional case)) Let I ⊂ R2 and f : I → R,

the 2nd − order limit developement of f in the neibor of (x0, y0) ∈ I, is given by

f(x, y) = f(x0, y0) + ∂f

∂x
(x0, y0)(x− x0) + ∂f

∂y
(x0, y0)(y − y0)

+ 1
2

[
∂2f

∂x2 (x0, y0)(x− x0)2 + 2 ∂2f

∂x∂y
(x0, y0)(x− x0)(y − y0)

+ ∂2f

∂y2 (x0, y0)(y − y0)2
]

+ ◦
(
ε(x, y)

)
, (C.7)

where lim(x,y)→(x0,y0) ε(x, y) = 0.

Theorem C.6 (Chain theorem) Let Φ : R2 → R, f, g : R→ R such that Φ ∈ C 2(R2)

and f, g ∈ C 1(R).

Set z = Φ(f, g) then we have,

dz

dt
= dz

∂f

df

dt
+ dz

∂g

dg

dt
. (C.8)

Theorem C.7 (Schwartz) Let U be an open set of R2, if the function f : U → R in

C 2(U) then,

∀(x, y) ∈ U : ∂2f

∂x∂y
(x, y) = ∂2f

∂y∂x
(x, y). (C.9)

95



Definition C.8 Let u : R → R and F : Rn+2 → R. Define an Ordinary differential

equations (ODE) as follow

F (x, u(x), u′(x), ..., un(x)) = 0, (C.10)

Definition C.9 A Partial differential equations (PDE) is an equation involving

partial derivatives.

Example C.0.1 Let u : R2 → R and F : R8 → R. Define a PDE as follow

F (x, y, u(x, y), ∂u
∂x

(x, y), ∂u
∂y

(x, y), ∂
2u

∂x2 (x, y), ∂
2u

∂x∂y
(x, y), ∂

2u

∂y2 (x, y)) = 0. (C.11)
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Appendix D

Some concepts from functional
analysis

Let H be a vectorial space on the field K such that K = R or K = C.

Definition D.1 We call norm all application (denoted by ‖ . ‖) such that, ∀x, y ∈ H

and ∀α ∈ K we have

• ‖ x ‖= 0⇔ x = 0,

• ‖ αx ‖=| α |‖ x ‖,

• ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ .

Definition D.2 The couple (H, ‖ . ‖) is called a normed space.

Definition D.3 The inner product or scalar product is defined as follow < ., . >:

H → K such that,

• < x, x >≥ 0, < x, x >= 0⇔ x = 0,

• < αx+ y, z >= α < x, z > + < y, z >,

• < x, y >= < x, y >.
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Definition D.4 The couple (H,< ., . >) is called pre-Hilbertian space.

Definition D.5 The application ‖ . ‖: H → R defined as follow

‖ x ‖=
√
< x, x >, (D.1)

is the norm on H generated by the scalar product.

Definition D.6 The sequence {Un}n∈N is said to be Cauchy sequence if

∀ε > 0,∃Nε ≥ 1 : ∀n,m ≥ Nε, ‖ Un − Um ‖< ε. (D.2)

Definition D.7 A normed space (H, ‖ . ‖) is said to be complet with respect to his norm

if every Cauchy sequence on this normed space is convergent on it.

Definition D.8 A normed space is called Banach space if it is complet with respect to

his norm.

Definition D.9 The pre-Hilbertian space (H,< ., . >), or simply we write H, is called

Hilbertian if it is a Banach space with respect to the norm generated by the scalar product;

see (D.1).

Theorem D.10 (Cauchy-Schwartz inequality) Let H be any Hilbert space then, ∀x, y ∈

H we have

|< x, y >|≤
√
< x, x >

√
< y, y > ≤‖ x ‖‖ y ‖ . (D.3)

Proof. See [1] p259.

Theorem D.11 (Riesz representation) Let H be a a Hilbert space, if T : H → R is

a bounded linear operator then, there exists a unique element y ∈ H such that T can be

represented as follow

T (x) =< x, y >, for every x ∈ H. (D.4)

Proof. See [1] p299.
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Definition D.12 (Linear isometry) Let (V,< ·, · >V ) and (W,< ·, · >W ) be two Hilbert

spaces. A linear map L : V → W is called linear isometry if

< L(x), L(y) >W=< x, y >V , (D.5)

for all x, y ∈ V .

Definition D.13 (Lipschitz function) Let A ⊂ R, a fnction f : A → R is Lipschitz

continuous function on A if there exist L > 0 (called Lipschitz constant of f on A)

such that

| f(x)− f(y) |≤ L | x− y |, ∀x, y ∈ A. (D.6)

Definition D.14 The function f is calledGlobally Lipschitz if f is Lipschitz continuous

function on all the space R.

Definition D.15 (Hölder continuity) A function f : R → R is said to be α−Hölder

continuous of order α > 0 at x if there exist ε, c > 0 (the number c is called Hölder

constant of f) such that

| f(x)− f(y) |≤ c | x− y |α, (D.7)

with | x− y |< ε, for every y > 0.

Definition D.16 Let E be non-empty set and α > 0, we define

Cα(E) = {f : E → R : f is α− Hölder continuous function on E}. (D.8)

Definition D.17 (p-variation) Let a, b ∈ R, f : [a, b] → R, p > 0 and P = {x0 =

a, ..., xn = b} be a partition of [a, b]. We defined the p-variation of f over [a, b] as follow

Vp = sup
P

n∑
i=1
| f(xi)− f(xi−1) |p . (D.9)

If Vp <∞ then, we say that the function f is of finite p-variation on [a, b].

Example D.0.1 Let a, b ∈ R, the function F : [a, b]→ R defined by F (x) = x is of finite

variation on [a, b]; for any partition P = {x0 = a, ..., xn = b},
n∑
i=1
| F (xi)− F (xi−1) |=

n∑
i=1
| xi − xi−1 |= b− a <∞. (D.10)
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Theorem D.18 Let F,G be two finctions of finite variation on [a, b],

(1) F is bounded on [a, b].

(2) F is of finite variation on every subinterval of [a, b].

(3) Every function of finite variation is the difference between two increasing functions.

Definition D.19 (Operators) see(2) The operators are a kind of functions defined from

functional space to another functional space.

Let E,F be two normed spaces on R. An operator T : E → F is

• linear if the following condition is verifying

∀f, g ∈ E,∀α, β ∈ R : T (αf + βg) = αT (f) + βT (g). (D.11)

• bounded if there exist c > 0 such that

∀f ∈ E : ‖T (f)‖F ≤ c ‖ f ‖E . (D.12)

• uniformly bounded if there exist c > 0 (c called the uniform bound of T) such

that

∀f ∈ E : ‖ T ‖= sup
f 6=0

‖ T (f) ‖F
‖ f ‖E

=≤ c, (D.13)

or equivalent to say

∀g ∈ E : ‖ T ‖= sup
‖g‖E=1

‖ T (g) ‖F≤ c. (D.14)

Definition D.20 (Riemann series) Define the Riemann series as follow
∞∑
n=1

1
nα
, n ∈ N and α > 0. (D.15)

Proposition D.21 The Riemann series (D.15) is convergent iff α > 1.
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Conclusion

Praise be to Allaah, who succeeded in providing this research, and here are the last
drops in this work, The topic was talking about Stochastic Differential Equations driven
by fractional Brownian motion with Hurst parameter H > 1

2 and Young integral We have
made every effort to make this research come out in this format. We hope that God will
be a fun and interesting journey, as well as hope that you have elevated the degrees of
mind thought, where this effort was not a small effort, and we do not claim perfection
The perfection of God Almighty only, and we have made all the effort for this research, if
we succeed it is God Almighty and if we fail it ourselves, and we are enough honor to try,
and finally we hope that this research has won your admiration. May God bless him and
give a lot of recognition to our first teacher and our beloved Prophet Muhammad peace
be upon him best.
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