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Apstract

In this work we will introduce the fractional Brownian motion with Hurst parameter H > 1
2,

study the stochastic integral in Young sense and the existence and uniqueness of the so-
lution of stochastic differential equations driven by this process.
Keywords: fractional Brownian motion (fBm), Young integral, Stochastic Differential Equa-
tion (SDE).

Introduction
The fBm BH with Hurst parameter H ∈ (0, 1) is a stochastic process introduced by

Kolmogorov 1940, it is used for modeling of many situations, for example when describing
• Processes persistents (the case H > 1

2)
– The level of water in a river as a function of time.
– The temperatur at a specific place as a function of time.
• Processes anti-persistents (the case H < 1

2)
– Financial turbulence ie: for example the empirical volatility of a stock.

In particular, if H = 1
2 the fBm is reduced to the well known Brownian motion.

We consider the problem of a stochastic differential equations driven by fBm with Hurst
parameter H > 1

2.

Preliminaries and definitions of fBm
Definition

The fBm BH = {BHt }t∈[0,T ] with Hurst parameter H ∈ (0, 1) is a centered Gaussian
stochastic process started from zero whose covariance function is given by

E(BHs B
H
t ) =

1

2

(
s2H + t2H− | t− s |2H

)
, for every s, t ∈ [0, T ].

There are many representations of fBm one of them is called Spectral representation,
it is given by

BHt =
1

dH

{∫ 0

−∞

1− cos(ut)
| u |H+1

2

dBu +

∫ ∞
0

sin(ut)

| u |H+1
2

dBu

}
,

where {Bt}t≥0 is a Brownian motion and

dH =

√
2

∫ ∞
0

1− cos(u)

u2H+1
du <∞.

Properties
Some of the important properties of fBm are:
•Regularity: the trajectories of fBm are α-Hölder continuous of order α < H and

nowhere differentiable.
The figures below show the regularity difference between the paths of fBm in the
case when H < 1

2 and the case when H > 1
2

• The increments of fBm, with H 6= 1, are correlated.
• The fBm has long-range dependence for H > 1

2, that is,
∑∞
n=1 ρH(n) =∞, where

ρH(n) = cov
(
BHt −BHt−1, B

H
t+n −BHt+n−1

)
.

• The fBm, with H 6= 1
2, is not Markovian.

• The fBm, with H 6= 1
2, is not a semimartingale.

• The p-variation (p > 0) of fBm on [0, 1] is given by:

Vp =


0 if p > 1

H ,

E(| BH1 |
p) if p = 1

H ,

+∞ if p < 1
H ,

where
Vp = lim

n→∞
Vn,p,

and

Vn,p =

2n∑
i=1

∣∣∣BHi
2n
−BHi−1

2n

∣∣∣p .

Results waited
In this work we have
• Introduced and studied the properties of the fractional Brownian Motion,
•Defined the Young integral and applied it to the integral with respect to fBm with Hurst

parameter H > 1
2.

• Poved of the existence and the uniqueness of the solution of SDE (0.1) driven by frac-
tional Brownian Motion.

Stochastic Young integral with respect to fBm with Hurst parameter H > 1
2

• The fBm with Hurst parameter H ∈ (0, 1)\ 1
2 is not a semimartingale then, we can’t apply

Itô stochastic calculus theory based on semimartingale.
• The p-variation of fBm are of unbounded variation if p < 1

H this implies that, almost all
paths of fBm are of unbounded variation then, the Riemann-Stieltjes integral is not valid
here.
• In 1936, Young proved that

∫
fdg exist as a Riemann-Stieltjes integral if for p, q ≥ 0 we

have 1
p + 1

q > 1, f has finite p-variation and g has finite q-variation.

Definition
Let E be a non-empty set and α > 0, define Cα(E) the space of all α-Hölder continuous
functions on E.

Young’s integral generalizes the class of Riemann-Stieltjes integrable functions to Hölder
continuous functions in the following sens.

Theorem
Let X = {Xt}t∈[0,T ] be a stochastic process, f be a real valued function, α, β ∈ (0, 1),

H ∈ (1
2, 1) and BH = {BHt }t∈[0,T ] ∈ Cα([0, T ]).

If f ◦X ∈ Cβ([0, T ]) such that α + β > 1. Then, the stochastic Young integral of f with
respect to BH defined as follow ∫ t

0
f (Xs)dB

H
s ,

exist for every t ∈ [0, T ].

Exestence and unicity

Definition
Let X = {Xt}t∈[0,T ] be a stochastic process, Z : Ω → R be a random variable and
b, σ : R+ × R → R. The stochastic differential equation driven by fBm BH with Hurst
parameter H ∈ (1

2, 1) is defined as follow

dXt =

{
b(t,Xt)dt + σ(t,Xt)dB

H
t ,

X0 = Z.
(0.1)

The stochastic process X is a solution of the SDE (0.1) if it satisfies

Xt = Z +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dB

H
s ,

for every t ∈ [0, T ].

Now, we will prove the Theorem of the existence and unicity of the solution of (0.1).
Theorem (Existence and unicity)

Let 1
2 < H < 1, β ∈ (1−H,H), T > 0, BH be a fBm and b, σ : R+×R→ R. We assume

that σ ∈ C1(R+×R) and b, σ, ∂σ∂t and ∂σ
∂x are globally Lipschitz in t and x. Then, the SDE

(0.1) has a unique solution in Cβ([0, T ]).

Theorem (Itô formula with respect to fBm)

Let Ut = U(t, x) : [0, T ] × R → R has continuous partial derivatives ∂U
∂t ,

∂U
∂x and ∂2U

∂x2
.

If {at}t∈[0,T ], {bt}t∈[0,T ] and {Xt}t∈[0,T ] be a stochastic processes such that for any
[t0, t] ⊂ [0, T ] we have

• sup0≤t≤T E(| Ut |2), sup0≤t≤T E(| ∂U∂t (t, x) |2), sup0≤t≤T E(| ∂U∂x (t, x) |2),

sup0≤t≤T E(| ∂
2U
∂x2

(t, x) |2), sup0≤t≤T E(| at |2) and sup0≤t≤T E(| bt |2) are finites.
• at(ω) is Riemann-Stieltjes integrable on [t0, t] for each ω ∈ Ω;

• the integral
∫ t

0 bsdB
H
s exist in the sens of Young.

Then,

dUt =
{∂U
∂t

(t,Xt) + at
∂U

∂x
(t,Xt)

}
dt + bt

∂U

∂x
(t,Xt)dB

H
t .
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