

Stochastic differential equations driven by fractional Brownian motion with Hurst parameter $\frac{1}{2} \leq H < 1$

TOUHAMI RADIA* DEBBI LATIFA: Supervisor

Departement of Mathematics and Material Sciences Kasdi Merbah University Ouargla 30000, Algeria National Polytechnic School touhamiradia300gmail.com

Apstract

In this work we will introduce the fractional Brownian motion with Hurst parameter $H > \frac{1}{2}$, study the stochastic integral in Young sense and the existence and uniqueness of the solution of stochastic differential equations driven by this process.

Results waited

In this work we have

- Introduced and studied the properties of the fractional Brownian Motion,
- Defined the Young integral and applied it to the integral with respect to fBm with Hurst parameter $H > \frac{1}{2}$.

Keywords: fractional Brownian motion (fBm), Young integral, Stochastic Differential Equation (SDE).

Introduction

The fBm B^H with Hurst parameter $H \in (0,1)$ is a stochastic process introduced by Kolmogorov 1940, it is used for modeling of many situations, for example when describing

- Processes persistents (the case $H > \frac{1}{2}$)
- The level of water in a river as a function of time.
- The temperatur at a specific place as a function of time.
- Processes anti-persistents (the case $H < \frac{1}{2}$)
- Financial turbulence ie: for example the empirical volatility of a stock.

In particular, if $H = \frac{1}{2}$ the fBm is reduced to the well known Brownian motion. We consider the problem of a stochastic differential equations driven by fBm with Hurst parameter $H > \frac{1}{2}$.

Preliminaries and definitions of fBm

Definition

The fBm $B^H = \{B_t^H\}_{t \in [0,T]}$ with Hurst parameter $H \in (0,1)$ is a centered Gaussian stochastic process started from zero whose covariance function is given by

 $E(B_s^H B_t^H) = \frac{1}{2} \Big(s^{2H} + t^{2H} - |t - s|^{2H} \Big), \text{ for every } s, t \in [0, T].$

There are many representations of fBm one of them is called Spectral representation, it is given by

$$B_t^H = \frac{1}{d_H} \left\{ \int_{-\infty}^0 \frac{1 - \cos(ut)}{\mid u \mid^{H + \frac{1}{2}}} dB_u + \int_0^\infty \frac{\sin(ut)}{\mid u \mid^{H + \frac{1}{2}}} dB_u \right\}$$

• Poved of the existence and the uniqueness of the solution of SDE (0.1) driven by fractional Brownian Motion.

Stochastic Young integral with respect to fBm with Hurst parameter $H > \frac{1}{2}$

- The fBm with Hurst parameter $H \in (0,1) \setminus \frac{1}{2}$ is not a semimartingale then, we can't apply Itô stochastic calculus theory based on semimartingale.
- The p-variation of fBm are of unbounded variation if $p < \frac{1}{H}$ this implies that, almost all paths of fBm are of unbounded variation then, the Riemann-Stieltjes integral is not valid here.
- In 1936, Young proved that $\int f dg$ exist as a Riemann-Stieltjes integral if for $p, q \ge 0$ we have $\frac{1}{p} + \frac{1}{q} > 1$, f has finite p-variation and g has finite q-variation.

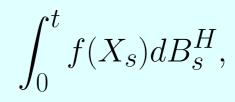
Definition

Let E be a non-empty set and $\alpha > 0$, define $C^{\alpha}(E)$ the space of all α -Hölder continuous functions on E.

Young's integral generalizes the class of Riemann-Stieltjes integrable functions to Hölder continuous functions in the following sens.

Theorem

Let $X = \{X_t\}_{t \in [0,T]}$ be a stochastic process, f be a real valued function, $\alpha, \beta \in (0,1)$, $H \in (\frac{1}{2}, 1)$ and $B^H = \{B_t^H\}_{t \in [0,T]} \in C^{\alpha}([0,T])$. If $f \circ X \in C^{\beta}([0,T])$ such that $\alpha + \beta > 1$. Then, the stochastic Young integral of f with respect to B^H defined as follow



exist for every $t \in [0, T]$.

where $\{B_t\}_{t>0}$ is a Brownian motion and

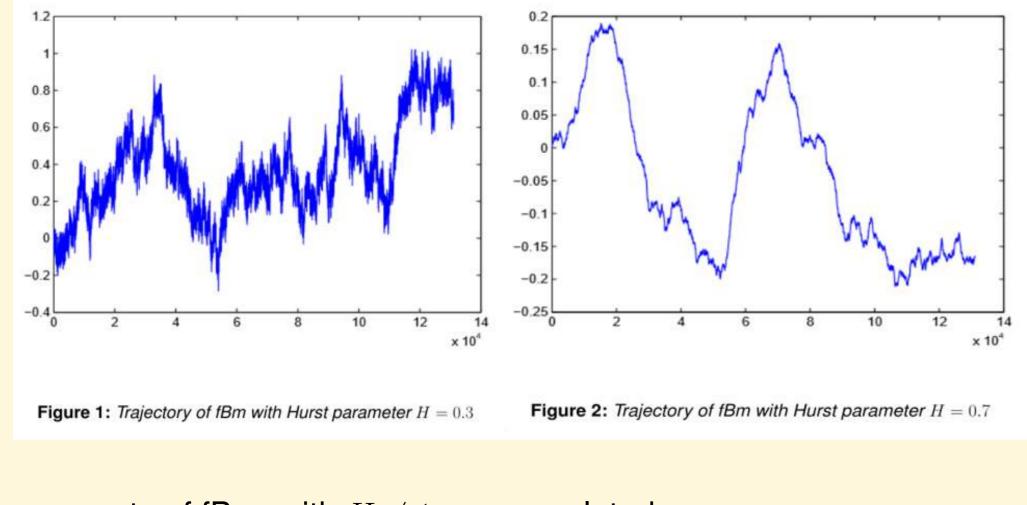
$$d_{H} = \sqrt{2\int_{0}^{\infty}\frac{1-\cos(u)}{u^{2H+1}}du} < \infty$$

Properties

Some of the important properties of fBm are:

• Regularity: the trajectories of fBm are α -Hölder continuous of order $\alpha < H$ and nowhere differentiable.

The figures below show the regularity difference between the paths of fBm in the case when $H < \frac{1}{2}$ and the case when $H > \frac{1}{2}$



• The increments of fBm, with $H \neq 1$, are correlated.

• The fBm has long-range dependence for $H > \frac{1}{2}$, that is, $\sum_{n=1}^{\infty} \rho_H(n) = \infty$, where

 $\rho_H(n) = cov \left(B_t^H - B_{t-1}^H, B_{t+n}^H - B_{t+n-1}^H \right).$

Exestence and unicity

Definition

Let $X = {X_t}_{t \in [0,T]}$ be a stochastic process, $Z : \Omega \to \mathbb{R}$ be a random variable and $b, \sigma : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$. The stochastic differential equation driven by fBm B^H with Hurst parameter $H \in (\frac{1}{2}, 1)$ is defined as follow

$$X_{t} = \begin{cases} b(t, X_{t})dt + \sigma(t, X_{t})dB_{t}^{H}, \\ X_{0} = Z. \end{cases}$$
(0.1)

The stochastic process X is a solution of the SDE (0.1) if it satisfies

 $X_t = Z + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s^H,$

for every $t \in [0, T]$.

Now, we will prove the Theorem of the existence and unicity of the solution of (0.1).

Theorem (Existence and unicity)

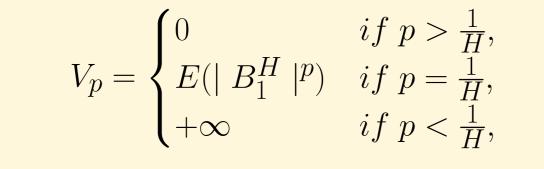
Let $\frac{1}{2} < H < 1$, $\beta \in (1 - H, H)$, T > 0, B^H be a fBm and $b, \sigma : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$. We assume that $\sigma \in C^1(\mathbb{R}_+ \times \mathbb{R})$ and $b, \sigma, \frac{\partial \sigma}{\partial t}$ and $\frac{\partial \sigma}{\partial x}$ are globally Lipschitz in t and x. Then, the SDE (0.1) has a unique solution in $C^{\beta}([0,T])$.

Theorem (Itô formula with respect to fBm)

Let $U_t = U(t, x) : [0, T] \times \mathbb{R} \to \mathbb{R}$ has continuous partial derivatives $\frac{\partial U}{\partial t}$, $\frac{\partial U}{\partial x}$ and $\frac{\partial^2 U}{\partial x^2}$. If $\{a_t\}_{t \in [0,T]}$, $\{b_t\}_{t \in [0,T]}$ and $\{X_t\}_{t \in [0,T]}$ be a stochastic processes such that for any $[t_0,t] \subset [0,T]$ we have

• $\sup_{0 \le t \le T} E(|U_t|^2)$, $\sup_{0 \le t \le T} E(|\frac{\partial U}{\partial t}(t,x)|^2)$, $\sup_{0 \le t \le T} E(|\frac{\partial U}{\partial x}(t,x)|^2)$, $\sup_{0 \le t \le T} E(|\frac{\partial^2 U}{\partial x^2}(t,x)|^2), \ \sup_{0 \le t \le T} E(|a_t|^2) \text{ and } \sup_{0 \le t \le T} E(|b_t|^2) \text{ are finites.}$ • $a_t(\omega)$ is Riemann-Stieltjes integrable on $[t_0, t]$ for each $\omega \in \Omega$; • the integral $\int_0^t b_s dB_s^H$ exist in the sens of Young.

• The fBm, with $H \neq \frac{1}{2}$, is not Markovian. • The fBm, with $H \neq \frac{1}{2}$, is not a semimartingale. • The p-variation (p > 0) of fBm on [0, 1] is given by:



 $V_p = \lim_{n \to \infty} V_{n,p},$

 $V_{n,p} = \sum_{i=1}^{2^{n}} \left| B_{\frac{i}{2^{n}}}^{H} - B_{\frac{i-1}{2^{n}}}^{H} \right|^{p}.$

where

and

References

 $dU_t = \left\{\frac{\partial U}{\partial t}(t, X_t) + a_t \frac{\partial U}{\partial r}(t, X_t)\right\} dt + b_t \frac{\partial U}{\partial r}(t, X_t) dB_t^H.$

[1] Ayache A. From fractional Brownian motion to multifractional Brownian motion. USTL (Lille university) 2010.

[2] Biagini F., Øksendal B. Hu Y. and Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. Springer 2008.

[3] Dai W. and Heyde C.C. Itô's formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stoch. Anal. 9 439-448. 1996.

[4] Nourdin I. Selected aspects of fractional Brownian motion. Bocconi & Springer 2012. [5] Zhe C. On pathwise stochastic integration of processes with unbounded power varia*tion.* Doctoral dissertations, Aalto University 2016.

Mastriales 2019. Mastriales 2019. Mastriales 2019. Mastriales 2019. Mastriales 2019. Mastriales 2019.

Then,