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Apstract

Results waited

In this work we will introduce the fractional Brownian motion with Hurst parameter H > 1,
study the stochastic integral in Young sense and the existence and uniqueness of the so-
lution of stochastic differential equations driven by this process.
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Introduction

The fBm B! with Hurst parameter H € (0,1) is a stochastic process introduced by
Kolmogorov 1940, it is used for modeling of many situations, for example when describing

e Processes persistents (the case H > J)

— The level of water in a river as a function of time.
— The temperatur at a specific place as a function of time.

e Processes anti-persistents (the case H < 3)
— Financial turbulence ie: for example the empirical volatility of a stock.

In particular, if H = 3 the fBm is reduced to the well known Brownian motion.
We consider the problem of a stochastic differential equations driven by fBm with Hurst
parameter H > 1.
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Preliminaries and definitions of fBm

The fBm BY = {B{'},cj 7 with Hurst parameter H € (0,1) is a centered Gaussian
stochastic process started from zero whose covariance function is given by
1
E(Bfo[) = 5(32}[ + 2 [t —s \QH ), for every s, t € [0,T].

There are many representations of fBm one of them is called Spectral representation,

it is given by
1 V1 t > sin(ut
BtH:_ / COS(U{)dBqu/ sin(u >1dBu |
A | J-oo |u|HT2 0 |ul|ftz

where {B;}>( is a Brownian motion and

Some of the important properties of fBm are:
e Reqgularity: the trajectories of fBm are a-Holder continuous of order @ < H and
nowhere differentiable.

The figures below show the regularity difference between the paths of fBm in the
case when H < 1 and the case when H > }
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Figure 1: Trajectory of fBm with Hurst parameter H = (1.3 Figure 2: Trajectory of fBm with Hurst parameter If = 0.7

e The increments of fBm, with H # 1, are correlated.
e The fBm has long-range dependence for H > % thatis, > 2, pg(n) = oo, where

H H H H
pH(n) = COv (Bt — By 1, By — BH—n—l)'

e The fBm, with H # 3, is not Markovian.

e The fBm, with  # 1, is not a semimartingale.
e The p-variation (p > 0) of fBm on |0, 1] is given by:

1

V=S E(BIP) ifp=+,
+00 of p < %,
where
Vp o ’nh%mOO Vnp;
and
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In this work we have

e Introduced and studied the properties of the fractional Brownian Motion,

e Defined the Young integral and applied it to the integral with respect to fBm with Hurst
parameter H > 1.

e Poved of the existence and the uniqueness of the solution of SDE (0.1) driven by frac-
tional Brownian Motion.

Stochastic Young integral with respect to fBm with Hurst parameter H > %

e The fBm with Hurst parameter H € (0, 1) \ 5 Is not a semimartingale then, we can’t apply
1t0 stochastic calculus theory based on semimartingale.

e The p-variation of fBm are of unbounded variation if p < % this implies that, almost all
paths of fBm are of unbounded variation then, the Riemann-Stieltjes integral is not valid
nere.

e In 1936, Young proved that [ fdg exist as a Riemann-Stieltjes integral if for p,q > 0 we
nave ]% +% > 1, f has finite p-variation and ¢ has finite g-variation.

Let £/ be a non-empty set and a > 0, define C'*(E) the space of all a-Holder continuous
functions on FE.

Young'’s integral generalizes the class of Riemann-Stieltjes integrable functions to Holder
continuous functions in the following sens.

Let X = {Xi},¢0,77 be a stochastic process, f be a real valued function, «, 5 € (0, 1),
H € (3,1) and BY = {B{'},¢o 77 € C*(0, T)).

If foX e CP(J0,T]) such that o + 8 > 1. Then, the stochastic Young integral of f with
respect to B defined as follow

/ f(xaBt
0

exist for every t € [0, T].

Exestence and unicity

Let X = {Xi}cp077 be a stochastic process, Z : 2 — R be a random variable and

b,o : Ry x R — R. The stochastic differential equation driven by fBm B* with Hurst
parameter H < (4, 1) is defined as follow

H
X {b(t,Xt)dtJra(t,Xt)dBt | 0.1)

Fo=17

The stochastic process X is a solution of the SDE (0.1) if it satisfies
t t
Xt = Z+/ b(s,XS)d3+/ o(s, Xs)dBY
0 0

for every t € [0, 7.

Now, we will prove the Theorem of the existence and unicity of the solution of (0.1).
Theorem (Existence and unicity)

letl < H<1,8€(1-H, H) T >0, BHbeameandb o :R. xR — R. We assume
that o€ C'(Ry xR)and b, o, at and - are globally Lipschitz in ¢ and z. Then, the SDE
(0.1) has a unique solution in C”([0, T ])

Theorem (Ito formula with respect to fBm)

et Uy = U(t,z) : [0,7] x R — R has continuous partial derivatives %({, %g nd 32

f {attiep )y {0thiepm and {Xi}iepo ) be a stochastic processes such that for any
to,t] C [O T] we have

o supo<r<r B Us [2), supocyer B(| Gt 2) [P), supocrr B(] Gt ) ),
supg<¢<7 H(| %Tg(t,a:) %), supg<i<7 E(] at |?) and supg<;<7 E(| b |?) are finites.
e a;(w) is Riemann-Stieltjes integrable on [, t] for each w € ;

e the integral f(f bsd B! exist in the sens of Young.

Then,
oU aU

oU
ot (t, X¢) + @:1:

(1, X;)dBY .

dU; = { (t,Xt)}dt I et
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