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NOTATIONS

Here below, we will define some notation that will be involved and used within

development of this thesis. Some others, will be defined at the mean time of its

usage.

ä R denotes the Euclidean space of real numbers..

ä D(Ω) the space of infinitely smooth functions with a compact support in Ω.

ä V real Hilbert space with scalar product (· , · ) and associated norm ‖· ‖.

ä V ′ the dual space of V .

ä K closed, convex, non-empty subset of V.

ä→ strong convergence.

ä ↪→ Continous embedding.

ä ⇀ weak convergence.
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INTRODUCTION

In the last fifty years, variational inequalities have become a relevant tool in the

study of nonlinear problems in physics and mechanics.

Variational inequality theory has been fastly developed since 1967 introduced

by Lions and Stampacchia [14] who successfully treated a coercive variational in-

equality. After the fundamental work of Lions and Stampacchia, the theory of

variational inequalities was studied by many researchers (e.g. Brezis ([7], [11]),

Browder ([13], [12]), and others) .

In this memory, our subject focuses on study the existence and uniqueness of

the solution of the non coercive variational inequalities elliptic and parabolic.

This work is organized as follows:

In the first chapter, we will recall essential tools for our study.

In the second chapter, we will study the existence, uniqueness of the solutions

of elliptic and parabolic variational inequalities .

In the third chapter, we will study the existence, uniqueness of the solutions of

non coercive variational inequalities .
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CHAPTER 1

PRELIMINARIES

This chapter recalls some basic notions and the main mathematical results of the

functional analysis which will be used throughout this work. Most of the results are

stated without proofs, as they are standard and can be found in many references.

1.1 HILBERT SPACE

Hermitian product:

Definition 1.1 Let X be vector space. A hermitian product φ(u, v) is sesqui-linear

form on X ×X with valeus inC, such that

φ(u, v) = φ(v, u) ∀u, v ∈ X (Hermitian).

φ(u, u) > 0 ∀u ∈ X (Positive).

φ(u, u) = 0 =⇒ u = 0 (Difinite).

Definition 1.2 A prehelbertian space is a vector space equipped with hermitian

product .
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1.1. HILBERT SPACE CHAPTER 1.

Scalar product:

Definition 1.3 : A scalar praduct in a linear space X over R is a real valued

function of two points x and y in X, denoted as (x, y), having the following

properties:

(i) Bilinearity: For fixed y , (x, y) is a linear function of x ,for fixed x a

linear function of y .

(ii) Symmetry: (x, y) = (y, x) .

(iii) positivity: (x, x) ≥ 0 for x ≥ 0.

Proposition 1.4 (Cauchy-Schwarz inequality.) Let (H, (· , · )) be an inner prod-

uct space. Define ‖.‖ = (· , · ) 1
2 . Then, for every u, v ∈ H

|(u, v)| ≤ ‖u‖ ‖v‖ .

Proof. See [4].

Definition 1.5 :

A linear space withe a scalar product that is complete, with respect to the induced

norm is colled a hilbert space.
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1.1. HILBERT SPACE CHAPTER 1.

1.1.1 Lp(0,T,V) space:

An interval [0, T ] ⊂ R, T < ∞,and a Banach space V with a norm ‖.‖V we

designate by Lp(0, T, V ) the spaces of the function classes t −→ f(t),which are

measurable fromc [0, T ] −→ V for the measure dt and such as:

‖f‖Lp(0,T,V ) = (

∫ T

0

‖f‖pV dx)

1

2 < +∞ (p 6= +∞)

‖f‖L∞(0,T,V ) = sup
t∈[0,T ]

‖f(t)‖V < +∞

The spaces Lp(0,T,V) are Banach spaces for the first norm so p 6= ∞,and for

the second norm if p = ∞. If V is a Hilbert space equipped with a scalar prod-

uct (., .)V ,then the space Lp(0,T,V) is also a Hilbert space for the scalar product:

(f, g)L2(0,T,V ) =

∫ T

0

(f, g)V dx

1.1.2 Sobolev spaces:

Let p be a real number with 1 ≤ p ≤ ∞, ω is an open subset of Rn. The Sobolev

space Wm,p (Ω) is defined to be:

Wm,p (Ω) = {u ∈ Lp (Ω) | Dαu ∈ Lp (Ω) , |α| ≤ m} .

Where (Dαv) is the derivative in the sense of the distributions for all ) v ∈ Lp(Ω).

The space Wm,p (Ω) equipped with the norm

‖u‖Wm,p =
∑

0≤|α|≤m

‖Dαu‖p .

Definition 1.6 In the special case where p = 2, we define the Hilbert-Sobolev

space Hm (Ω) = Wm,2 (Ω)

for m ∈ N Hk (Ω) =
{
u ∈ L2 (Ω) | Dαu ∈ L2 (Ω) , |α| ≤ k

}
.

The space Hm (Ω) is equipped with the inner product

〈u, v〉Hm =
∑
|α|≤k

∫
Ω

DαuDαvdx,
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1.1. HILBERT SPACE CHAPTER 1.

and the norm

‖u‖Hm =
∑

0≤|α|≤m

‖Dαu‖2 .

Theorem 1.7 (Rellich-Kondrachov) Let Ω ⊂ Rn be a Lipschitz domain,

m ∈ N and 1 ≤ p ≤ ∞. Then, the following mappings are compact embeddings:

(i) Wm,p (Ω) ↪→ Lq (Ω) , 1 ≤ q ≤ p∗,
1

p∗
=

1

p
− m

d
, if m <

d

p
,

(ii) Wm,p (Ω) ↪→ Lq (Ω) , q ∈ [1,∞) , if m =
d

p
,

(iii) Wm,p (Ω) ↪→ C0
(
Ω̄
)
, if m >

d

p
.

Proof. See [2].
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1.2. GENERAL THEOREMS AND DEFINITIONS CHAPTER 1.

1.2 GENERAL THEOREMS AND DEFINITIONS

Definition 1.8 :

We call a bilinear form a : X×Y → R, X ⊂ Y.

(a) Weakly coercive:if there exists a constant αw > 0 such that :

a(v, v) > αw[[v]]2
X

for all v ∈ X

(b) symmetrically bounded: if there exists a constant γs <∝ such that :

a(v, w) 6 γs[[v]]X‖w‖X

for all v, w ∈ X

Definition 1.9 (Nec̃as-condition) :

We say that bilinear form a : X ×Y → R satisfies a Nec̃as-condition on U ⊆ Y

if there exists a βa > 0 such that :

sup
w∈U

a(v, w)

‖w‖Y
≥ βa‖v‖X ∀v ∈ X ∩U

sup
v∈X∩U

a(v, w) > 0 ∀w 6= 0, w ∈ U

Definition 1.10 (Gåarding inequalitie) :

We say that a bilinear form c : V×V→ R satisfies a Gåarding inequality , if

there exists αc > 0, λc ≥ 0 such that :

c(φ, φ) + λc‖φ‖2
H ≥ αc‖φ‖V

fof all φ ∈ V .
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1.2. GENERAL THEOREMS AND DEFINITIONS CHAPTER 1.

Theorem 1.11 (Riesz representation theorem) Let V be a Hilbert space, for

all f ∈ V ′, there exists a unique element f̃ ∈ V such that

f(v) = (f̃ , v) ∀v ∈ V.

In addition, we have

‖f‖′V =
∥∥∥f̃∥∥∥

V
.

Proof. See ([4]).

Theorem 1.12 (Banach fixed-point theorem) :

Let (V, ‖· ‖) be a Banach space, and let K be a nonempty closed subset of V .

Suppose that the operator

T : K → K is a contraction, i.e. there exists a constant C ∈ [0, 1) such that

‖Tu− Tv‖V ≤ C ‖u− v‖V ∀u, v ∈ K.

Then T has a unique fixed point u, i.e, Tu = u.

Proof. See ([3]).

Definition 1.13 :

Let V be a reflexive Banach space. We call a linear operator

T : V → V ′ monotone if for all u and v in V

〈Tu− Tv, u− v〉 ≥ 0.

Definition 1.14 Let X be a normed linear space and let X ′ denote its dual.

Let un, u ∈ X.

(i) We say that un converges strongly or converges in norm to u and

we write un → u if

lim
n→∞

‖u− un‖ = 0.
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1.2. GENERAL THEOREMS AND DEFINITIONS CHAPTER 1.

(ii) We say that un converges weakly to u and we write un ⇀ u if

∀µ ∈ X ′, lim
n→∞

〈un, µ〉 = 〈u, µ〉 .

Definition 1.15 :

A bilinear form a : V × V → R is said to be

(i) continuous if there is a constant γa such that

|a(u, v)| ≤ γa ‖u‖V ‖v‖V ∀u, v ∈ V,

(ii) (V -elliptic) if there is a constant αa > 0 such that

a(v, v) ≥ αa ‖v‖2
V ∀v ∈ V.

Semi-continuous

Definition 1.16 Let f : X −→ R.

• f is upper semicontinuous iff for any y ∈ R, f−1((−∞; y)) is open

• f is lower semicontinuous iff for any y ∈ R, f−1((y;∞)) is open.

Convexity

Definition 1.17 The functin f : X −→ R is said convex when:

∀x, y ∈ X ∀λ ∈ [0, 1] f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

f said strictly convex if ∀x, y ∈ X ∀λ ∈ [0, 1] f(λx+(1−λ)y) < λf(x)+(1−λ)f(y).

Definition 1.18 A set C said convex if

∀x, y ∈ C ∀λ ∈ (0.1] λx+ (1− λ)y ∈ C.

Continous embedding:

Definition 1.19 Let B1 and B2 be two Banach spaces, we say that B1 injects

continuously in B2 and we note B1 ↪→ B2 if:

- B1 ⊂ B2

-∃ c ≥ 0, ‖u‖B2 ≤ c‖u‖B1

9



CHAPTER 2

VARIATIONAL INEQUALITIES

In this chapter, we shall restrict our attention to the study of the existence and

uniqueness of the solutions of elliptic and parabolic variational inequalities .

2.1 ELLIPTIC VARIATIONAL INEQUALITIES

Definition 2.1 We call elliptic variational inequality any

inequality defined by: {
Find u ∈ K such that
a(u, v − u) ≥ 〈f, v − u〉 ∀v ∈ K

(2.1)

Existence And Uniqueness Results

Theorem 2.2 (STAMPACCHIA) If a(· , · ) : V × V 7→ R is

a bilinear, continuous and cœrcive form on a Hilbert space V , K a closed, convex,

non-empty subset of V, f ∈ V
′, then the problem (2.1) has one and only one solution.

Proof.

10



2.1. ELLIPTIC VARIATIONAL INEQUALITIES CHAPTER 2.

Existence:

Let A : V × V 7→ R such that :

a(u, v) = (Au, v) ∀u, v ∈ V

L(v) = (f, v), and (f, v) = (f̃ , v) ∀v ∈ V.

Then (2.1) become :

(Au, v − u) ≥ (f̃ , v − u)

(Au− f̃ , v − u) ≥ 0

Let u fixed V ,we definit:

{
(w + ρAu− ρf̃ − u,w − v) ≤ 0 ∀v ∈ K
u ∈ K, ρ > 0.

(2.2)

w is exist and unique,defined by: w = Pk(u, ρAu− ρf̃).

Consider the map T : V 7→ V definied by: Tu = w .

If T hase a fixed point u then u is a solution of (2.1) .

We show that T is a contraction i;e.

‖Tu1 − Tu2‖ ≤ c‖u1 − u2‖, with 0 6 c < 1.

Let w1 = Tu1 and w2 = Tu2 we have:

11



2.1. ELLIPTIC VARIATIONAL INEQUALITIES CHAPTER 2.

‖w1 − w2‖ = ‖Pk(u1 − ρAu1 + ρf̃)− Pk(u2 − ρAu2 + ρf̃)‖

≤ ‖u1 − u2 − (ρAu1 + ρAu2)‖ ≤ ‖(I − ρA)‖‖u1 − u2‖

Wa take : αρ = ‖I − ρA‖,

Then :

‖(I − ρA)v‖2 ≤ (1− 2αρ+ ρ2|A‖2)‖v‖2

Implies :

‖Tu1 − Tu2‖2 ≤ (1− 2αρ+ ρ2|A‖2)‖u1 − u2‖2

.

Then T is a contraction if 0 6 ρ <
2α

‖A‖
.

By taking ρ in this range we have a unique solution for the fixed point problem

which implies the existence of a solution for (2.1).

Uniqueness:

Let u1 and u2 be solutions of (2.1). We have then:

a(u1, v − u1) ≥ (f, v − u1) ∀v ∈ K, (2.3)

a(u2, v − u2) ≥ (f, v − u2) ∀v ∈ K. (2.4)

Choosing v = u2 in (2.3) and v = u1 in (2.4) and adding the corresponding

inequalities, we obtain:

a(u1 − u2, u1 − u2) ≤ 0, (2.5)

Using the coercivity of a(· , · ), we get

α ‖u1 − u2‖V ≤ 0,

which implies

u1 = u2.

12



2.2. PARABOLIC VARIATIONAL INEQUALITIES CHAPTER 2.

Remark 2.3 If K = V then the problem (2.1) reduce to the classical variational

equation 
Find u ∈ V such that

a (u, v) = L (v) ∀v ∈ V.

2.2 PARABOLIC VARIATIONAL INEQUALITIES

We study now existence and uniqueness of solutions of the a parabolic variationa

inequality.

We call parabolic variational inequality any inequality defined by :
Find u ∈ L2(0, T, V )
(u

′
(t) + Au(t)− f(t), v − u(t)) ≥ 0 ∀v ∈ K

suchthat u(t) ∈ K a; e.
u(0) = u0

(2.6)

Let V is hilbert space , V
′ his dual such that V ↪→ H ↪→ V

′
.

Theorem 2.4 If a(· , · ) : V × V 7→ R is

a bilinear, continuous and cœrcive form on a Hilbert space K a closed, convex, non-

empty subset of V, f ∈ L2(0, T, V
′
), then there exists one and only one solution u in

L2(0, T, V ) ∩C0([0, T ], H) of the problem [u
′
(t), v − u] + [Au, v − u] ≥ [f, v − u]

u(t), v(t) ∈ K a; e.
u(x, 0) = u0(x)

(2.7)

With [u
′
, v − u] =

∫ T
0

(u
′
(t), v(t)− u(t))dt

and [Au, v − u] =
∫ T

0
(Au(t), v(t)− u(t))dt ,[f, v − u] =

∫ T
0

(f, v(t)− u(t))dt.

Proof.

Existence: we apply Roth method([8])

The first step of the Roth method is divide the interval of time [0, T ] in equal

intervals ([ti−1, ti]) of h =
T

n
where i = 1, 2, ...n ti = ih.

For each i = 1, 2..., n we get a solution ui ∈ K of elliptic variationall inequality .

13



2.2. PARABOLIC VARIATIONAL INEQUALITIES CHAPTER 2.

〈ui − ui−1

h
− f, v − ui〉+ a(ui, v − ui) ≥ 0 ∀v ∈ K (2.8)

Where ui−1 ∈ K is known.

We build the Roth function un(x, t)

un(x, t) = ui−1(x) +
t− ti−1

h
(ui(x)− ui−1(x)); t ∈ [ti−1, ti]

To prove un(x, t) converges for a solution u(x, t) from the following parabolic

variational inequality:∫ T

0

(u
′
(t), v(t)−u(t))dt+

∫ T

0

a(u(t), v(t)−u(t))dt ≥
∫ T

0

(f, v(t)−u(t))dt ∀v ∈ K (2.9)

when n→∞ we establish some estimate necessary for j ≥ 2.

For i = j − 1 we take v = uj in inequality (2.8),and for i = j we take

〈uj−1 − uj−2

h
− f, uj − uj−1〉+ a(uj−1, uj − uj−1) ≥ 0 (2.10)

−〈uj − uj−1

h
− f, uj − uj−1〉+ a(uj, uj − uj−1) ≥ 0 (2.11)

Adding (2.10) and (2.11) we find:

1

h
‖uj − uj−1‖2 + a(uj − uj−1, uj − uj − 1) ≤ 1

h
〈uj−1 − uj−2, uj − uj−1〉 (2.12)

Applying the inequality of Cauchy-Schwarz and used inequality elementary 2ab ≤

a2 + b2 and coercivity of a(., .) we find

‖uj − uj−1‖2 + 2αh‖uj − uj−1‖2 ≤ ‖uj−1 − uj−2‖2 j ≥ 2 (2.13)

For that case j = 1,we choose v = u0 in (2.10) to get

1

h
‖u1 − u0‖2 + a(u1 − u0, u1 − u0) ≤ (f, u1 − u0) + a(u0, u1 − u0) (2.14)

then we find

1

h
‖u1 − u0‖2 + α‖u1 − u0‖2 ≤ (‖f‖+ ‖u0‖)‖u1 − u0‖ (2.15)

14



2.2. PARABOLIC VARIATIONAL INEQUALITIES CHAPTER 2.

So that, we have:

‖u1 − u0

h
‖ ≤ c

Combining this estimate with inequality (2.13) show that

‖ui − ui−1

h
‖ ≤ c i = 1, 2, ..., n (2.16)

for a conctant c which is independent of n we choose v = 0 in (2.10),we find

〈ui − ui−1

h
,−ui〉+ a(ui,−ui) ≥ (f,−ui)

Then we have

‖ui‖V ≤ c; i = 1, 2, ..., n (2.17)

It is an obligation to provide a uniform estimate of the derivative u
′
n since

u
′
n =

ui − ui−1

h
.

So (2.16) says that

‖u′

n‖ ≤ c for t ∈ [0, T ] (2.18)

Which is immediately gives the result of equi-continuity

|un(t)− un(τ)| ≤ c|t− τ | t, τ ∈ [0, T ]

We define ūn(t) as the step function

ūn(t) = ui for t ∈ [o, T ] (2.19)

By (2.17) ūn following converges weakly in V ,that we mark that ūn as well

(2.16) give |ūn(t) − un(t)| ≤ c

n
From where it is then that the weak limit of this

follows is u using that ‖u′
n‖ ≤ c for t ∈ [o, T ] in a similar way.

We see that u
′
n converges weakly to u

′ in L2(0, T,H).

In function of un and ūn ,inequality eliptic is:

〈u′

n(t), v(t)− ūn(t)〉+ a(ūn(t), v(t)− ūn(t)) ≥ 0 ∀v ∈ K (2.20)

15



2.2. PARABOLIC VARIATIONAL INEQUALITIES CHAPTER 2.

Which rubs off almost every where [0, T ] for arbitrary points τ1 and τ2 in [0, T ] we

integrated (2.20) from τ1, τ2 given∫ τ2

τ1

〈u′

n − f, v(t)− ūn(t)〉+ a(ūn(t), v(t)− ūn(t))dt ≥ 0 ∀v ∈ K

We take lim inf when n −→∞ this inequality we find∫ τ2

τ1

〈u′
(t)− f, v(t)− u(t)〉+ a(u(t), v(t)− u(t))dt ≥ ∀v ∈ K

when ūn −→ u and u
′
n −→ u

′
in L2(0, T,H) and the bilinear form a(., .) is

weakly Semi-continuous then u is solution of the variational problem (2.7).

Uniqueness:

It is impertant to introduce a notion of solution "weaker" than (2.7),which do not

involves u
′ let:

Φ = {v|v ∈ L2(0, T, V ); v
′ ∈ L2(0, T, V ); v(0) = u0; v(t) ∈ K/a; e.}

[v
′
, v− u] + [Au, v− u]− [f, v− u] = [u

′
, v− u] + [Au, v− u]− [f, v− u] + [v

′ − u′
, v− u].

And we have [u
′
, v − u] + [Au, v − u] − [f, v − u] ≥ 0 according to (2.7) and [v

′ −

u
′
, v − u] ≥ 0 because :

[v
′ − u′

, v − u] =

∫ T

0

(v
′ − u′

, v − u)dt =

∫ T

0

d

2dt
(v − u, v − u)dt =

∫ T

0

d

2dt
‖v − u‖2

=
1

2
‖(v − u)(T )‖2 − 1

2
‖(v − u)(0)‖2 =

1

2
|v(T )− u(T )|2H ≥ 0

Then

[v
′
, v − u] + [Au, v − u]− [f, v − u] ≥ 0 ∀v ∈ Φ (2.21)

Finally we are led to the following precise problem

{
Find u ∈ L2(0, T, V )
such that[v

′
, v − u] + [Au, v − u] ≥ [f, v − u] ∀v ∈ Φ u(t) ∈ K

(2.22)

If u1 and u2 two solutions ,then{
[v

′
, v − u1] + [Au1, v − u1] ≥ [f, v − u1] ∀v ∈ Φ

[v
′
, v − u2] + [Au2, v − u2] ≥ [f, v − u2] ∀v ∈ Φ

(2.23)
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We suggest

w =
u1 + u2

2

And we introduce w solution of{
w

′
n + nwn = nw

wn(0) = u0
(2.24)

The solution of (2.24) is the following We have

w
′
n + nwn = nw ⇒ w

′
n = −nwn + nw ⇐⇒

{
y

′
= −ny + b

y(0) = y0

So the solution is of the form wn(t) = α exp−nt +w ;and we have

wn(0) = α + w = u0 then α = u0 + w

From where wn(t) = (u0 − w) exp−nt +w

wn ∈ φ ,we can take v = wn in each of the equation (2.23) we find

{
[w

′
n, wn − u1] + [Au1, wn − u1] ≥ [f, wn − u1] ∀wn ∈ Φ

[w
′

n, wn − u2] + [Au2, wn − u2] ≥ [f, wn − u2] ∀wn ∈ Φ
(2.25)

By summation we find

[w
′

n, 2wn − u1 − u2] + [Au1, wn − u1] + [Au2, wn − u2] ≥ [f, 2wn − u1 − u2]

=⇒

[2w
′

n, 2(wn − (
u1 − u2

2
))] + [Au1, wn − u1] + [Au2, wn − u2] ≥ [f, 2(wn − (

u1 + u2

2
))]

=⇒

2[w
′

n, wn − w] + [Au1, wn − u1] + [Au2, wn − u2] ≥ 2[f, wn − w] (2.26)

But by (2.24) we have

[w
′

n, wn − w] = − 1

n
[w

′

n, w
′

n] ≤ 0

then (2.26) =⇒

[Au1, wn − u1] + [Au2, wn − u2] ≥ 2[f, wn − w] (2.27)

17
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When n −→∞ in (2.27) we have

[Au1, w − u1] + [Au2, w − u2] ≥ 0

i;e.

[Au1,
u1 + u2

2
− u1] + [Au2,

u1 + u2

2
− u2] ≥ 0

So we find
1

2
[Au1 − Au2, u1 − u2] ≥ 0

=⇒

[Au2 − Au1, u2 − u1] ≤ 0

=⇒

α‖u1 − u2‖2 ≤ [A(u1 − u2), u1 − u2] ≤ 0

=⇒ u1 = u2 hence the uniqueness.
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CHAPTER 3

ON NON COERCIVE VARIATONAL
INEQUALITES

In this chapter, we will restrict our attention to the study of the existence, unique-

ness and stability of the solutions of variational inequalities.

3.1 ELLIPTIC VARIATIONAL INEQUALITY

Let X and Y be two separable hilbert space, X ↪→ Y dense, and K ⊂ Y is

closed convex set.

We call variational inequality any inequality defined by:

u ∈ K ∩X : a(u, v − u) ≥ f(v − u) ∀v ∈ K (3.1)

Regularization:

It is a standardtechnique in analysis of non-coercive problems to define a regular-

ized bilinear form aε(., .) that is coercive and then to cosider the limit as ε −→ 0.

19
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In order to do so, let |.|X be a sominorm on X induced by some inner prudect

((.))X on X,i.e;

((v, v))X = |v‖2
X , ((v, w))X ≤ |v|X |w|X for v, w ∈ X,

Then, we assume that the norms on X and Y are related as

‖v‖2
X = |v|2X + ‖v‖2

Y , v ∈ X (3.2)

For ε > 0, we define a coercive regularization,

aε(v, w) := ε((v, w))X + a(v, w), v, w ∈ X as well as the norm

‖v‖2
ε := ε|v|2X + ‖v‖2

Y , v ∈ X. (3.3)

In particular we have that ‖.‖ε equals ‖.‖X for ε = 1 and ‖v‖ε −→

‖v‖Y as ε −→ 0, v ∈ X.

Remark 3.1 Let a, b, ε, γ ≥ 0. Then, we have for all 0 ≤ ε ≤ 1 that εa + γb ≤

γ̃
√
εa2 + b2 with γ̃ :=

√
2 max{1, γ}. In fact by ε ≤ 1 we get (εa + γb)2 =

ε2a2 + 2εγab+ γ2b2 ≤ 2(ε2a2 + γ2b2) ≤ 2 max{1, γ2}(εa2 + b2).

Proposition 3.2 We will introduce properties on a(., .). The first piece is addi-

tional seminormon X denoted by [.]X induced by a scalar prudct [., .]X such

that

[v, v]X = [v]2X , [v, w]X ≤ [v]X [w]X , v, w ∈ X

as well as

∃ C > 0 : [v]X ≤ C‖v‖X , v ∈ X

Next,we consider a stronger norm in X:

‖|v‖|2X := |v|2X + [v]2X + ‖v‖2
Y = |v|2X + [[v]]2

X .

i.e; [[v]]2
X := [v]2X + ‖v‖2

Y .

We will also use dual (semi)norms defined as

[[f ]]X′ := sup
v∈X

f(v)

[[v]]X
and ‖|f‖|X′ := sup

v∈X

f(v)

‖|v‖|X
.

20
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We take ‖|v‖|X ≤
√

1 + C2‖v‖X , w ∈ X.

In fact,we have ‖|v‖|2X = |v|2X + [v]2X + ‖v‖2
Y ≤ |v|2X + C2‖v|2X + |v‖2

Y = (1 + C2)‖v‖2
X ,

recalling (3.2).Similary,we get

‖v‖X ≤ ε−1/2
√

1 + C2‖v‖ε, w ∈ X, 0 < ε < 1.

Since ‖v‖X ≤ ‖|v‖|X = (‖v‖2
X + [[v]]2

X)1/2, the norms ‖.‖X and ‖|v‖|X are equivalent

on X.

Next, we modify ‖.‖ε as given in (3.3)by

‖|v‖|2ε := ε|v|2X + [v]2X + ‖v‖2
Y = ε|v|2X + [[v]]2

X = ‖v‖2
ε + [v]2X .

Corollary 3.3 Let a : X × Y → R be bounded, symmetrically bounded and

0 ≤ ε ≤ 1.Then we have for all v, w ∈ X:

(i) aε(v, w) ≤ γ+
s ‖|v‖|X ‖|w‖|ε with γ+

s :=
√

2 max{1, γs}.

in addition a(., .) is weakly coercive,we have

(ii) aε(v, v) ≥ min{1, αw} ‖|v‖|2ε ,

(iii) aε(v, v) ≥ min{αw, ε} ‖|v‖|X .

Proof. Let w, v ∈ X,then aε(v, w) = ε((v, w))X + a(v, w)

(i) aε(v, w) ≤ ε|v|X |w|X+γs[[v]]X ‖|w‖|X ≤ ‖|v‖|X (ε|w|X+‖w‖x) ≤
√

2 max{1, γs} ‖|v‖|X ‖|w‖|ε

(ii) aε(v, v) = ε((v, v))X + a(v, v) ≥ ε|v|2X + αw[[v]]2
X

we have ‖|v‖|2ε = ε|v|2X + [[v]]2
X ,then
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aε(v, v) ≥ min{1, αw} ‖|v‖|2ε

(iii) aε(v, v) ≥ ε|v|2X + αw[[v]]2
X ≥ min{ε, αw} ‖|v‖|2X

Proposition 3.4 Let a(., .) be symmetrically bounded, then we have

aε(v, w) ≤ γ+
s ‖|v‖|ε ‖|w‖|X .

Proof. We have v, w ∈ X, then ,we use bounded the ((., .))X and symmetrically

bounded of the a(., .),we find

aε(v, w) = ε((v, w))X + a(v, w) ≤ ε|x|X |w|X + γs[[v]]X ‖|w‖|X

≤ ‖|w‖|X (ε|v|X + [[v]]X) ≤
√

2 max{1, γs} ‖|v‖|ε ‖|w‖|X
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3.2 EXISTENCE , UNIQUENESS AND STABILITY

Lemma 1 Let a(., .) be bounded and assume that a(v, v) > αa;Y ‖v‖2
Y holds for

all v ∈ X Then the regularized variational inequality

uε ∈ X ∩K : aε(uε, v − uε) > f(v − uε) ∀v ∈ X ∩K (3.4)

has a unique solution for all ε > 0.

with aε(u, v) = ε((u, v))X + a(u, v), ((v, v))X = |v|2X .

Proof. Let uε ∈ Kε = K ∩X ⊂ Y

Then we show aε(., .) is;

bounded:by boundedness of a(., .) we have aε bounded.

Coercivity:we have a(., .) is coercive and [v]2X > 0 then aε is coercive on Y ×Y .

By theorem the Stampachia,existe a unique solution of (3.4) .

Lemma 2 Let X,Y be Hilbert spaces with X being densely and continuously

embedded into Y and a: X×Y → R be a bounded bilinear form that satisfies

an inf-sup condition

βa = inf
v∈X

sup
w∈Y

a(v, w)

‖v‖X‖w‖Y
> 0.

then for :

βa,ε = inf
v∈V

sup
x∈X

a(v, x)

‖v‖V ‖x‖ε
.

We have that limε→0 βa,ε = βa.

Proof. See ([1])

Corollary 3.5 Let a(., .) be bounded, symmetrically bounded and weakly coer-

cive.then the unique solution uε ∈ X of (3.4) satisfies

‖uε‖ε≤
‖f‖X′

α−w
+ (

γ+
s

α−w
+ 1)dist‖.‖X (0, K) (3.5)

where α−w = min{1, αw}
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Proof. We get v ∈ K ∩X that :

α−w‖v − uε‖2
ε≤ aε(v − uε, v − uε)

= aε(v, v − uε)− aε(uε, v − uε) ≤ aε(v, v − uε) + f(v − uε) ≤‖v − uε‖(γ+
s ‖v‖X+‖f‖′ε)

Using triangle inequality and taking v ∈ K proves the result.

3.2.1 Existence

Theorem 3.6 Let a : X × Y → R be bounded,symmetrically bounded,weakly

coercive and satisfy a Necas-condition on Y for X ↪→ Y dense.then for given f ∈

Y
′ ,

the unique solution uε of

uε ∈ K ∩X : aε(uε, v − uε) ≥ f(v − uε) ∀v ∈ K ∩X

weakly converge to u ∈ X as ε→ 0 which solve (3.1)

Proof. From corollary (3.5) we have:

‖|uε‖|ε ≤
‖f‖X′

α−w
+ (

γ+
s

α−w
+ 1)dist‖|.|‖(0.K)

which implies ‖|uε‖|ε ≤ k1 ,with k1 independent of ε.

we use lemma(2) with ε replaced by δ . X is closed to their exist w ∈ X

whith:

βa,δ‖w‖δ‖uε‖X ≤ a(uε, w) ≤ γs[[uε]]X ‖|w‖|X ≤ γs ‖|uε‖|ε ‖|w‖|X ≤ γsk1|‖w‖|X

We have

‖|w‖|X ≤ ε−
1
2

√
1 + c2‖w‖ε 0 < ε < 1.

then

βa,δ‖w‖δ‖uε‖X ≤ γsk1δ
−1/2
√

1 + c2‖w‖δ= k2(δ)‖w‖δ.
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Implies

‖uε‖X≤
k2(δ)

βa,δ
.

Hence (uε)ε>0 is bounded in X ,and X is reflixive then ∃ u ∈ X such

that uε ⇀ u as ε→ 0 ,hence u ∈ X ∩K.

Finally we show that u solves (3.1).

From (3.4)we get

aε(uε, v)− f(v − uε) ≥ aε(uε, uε)

we have aε(uε, v)→ a(u, v) for all v ∈ X as ε→ 0

and hence

a(u, v)− f(v − u) ≥ lim inf
ε−→0

a(uε, uε) ≥ a(u, v)

which is equivalent to (3.1).

Now we proove u ∈ K ∩X :

we have K ∩X is closed convex ,and uε ⇀ u then u ∈ K ∩X,

is an exicte a soloution of (3.1).

3.2.2 Uniqueness

We hase u1, u2 ∈ X are tow solutions of (3.1) ,then

αa‖u1−u2‖2
X ≤ a(u1−u2, u1−u2) = a(u1, u1−u2)+a(u2, u2−u1) ≤ f(u1−u2)+f(u2−u1) = 0.

Which implies

‖u1 − u2‖X= 0

Hence u1 = u2.

3.2.3 Stability

Theorem 3.7 Let u ∈ K solve (3.1).If a : X×Y → R is bounded and satisfies

a Necas condition on Y , we have:

‖u‖X ≤
1

βa
‖f‖Y ′ + (

γa
βa

+ 1)dist‖.‖X (0.K) (3.6)
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Proof. We have φ ∈ K . Then we use Neacas condition, (1.1) and the boundedness

of a(., .) to obtain:

βa‖u− φ‖X≤ sup
v∈Y

a(φ− u, v)

‖v‖Y
= sup

v∈Y

a(φ− u, v − u)

‖v − u‖X

= sup
v∈Y

a(φ, v − u)− a(u, v − u)

‖v − u‖Y
≤ sup

v∈Y

a(φ, v − u)− f(v − u)

‖v − u‖Y
≤ sup

v∈Y

(γa‖φ‖X+‖f‖Y ′ )‖v − u‖Y
‖v − u‖Y

= γa‖φ‖X+‖f‖Y ′ .

Using triangle inequality

βa‖u− φ‖X≤ βa(‖u‖X+‖φ‖X)

and taking φ ∈ K implies

‖u‖X≤
1

βa
‖f‖Y ′ + (

γa
βa

+ 1)dist‖.‖X (0.K).
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3.3 SPACE-TIME FORMULATION OF PARABOLIC VARIATIONAL
INEQUALITIES

3.3.1 Space-Time Variational Formulation

We recall space-time formulations of parabolic initial value problems and then gen-

eralize to variational inequalities.

Spaces:

Let V ↪→ H ↪→ V
′ be a hilbert spaces and I = (0, T ) , T ≥ 0 .

The spaces (V,H) and V
′ arise from the spatial variational formulation of a

parabolic problem.We denote by :

% = sup
φ∈V

‖φ‖H
‖φ‖V

(3.7)

For the space-time variational formulation, we require the notion of Bochner spaces

for any normed space U .

Choose:

X = {v ∈ L2(I;V ) : v̇ ∈ L2(I;V
′
), v(0) = 0} Y = L2(I;V ) i;e ., X ↪→ Y dense.

Note that X ↪→ C(̄I; H) so that v(0) and v(T ) are well-defined in H .

Thene : ‖v‖Y := ‖v‖L2(I;V ) , [[v]]2
X := ‖v‖2

H + ‖v(T )‖2
H ,‖|v‖|2X := [[v]]2

X + ‖v̇‖Y ′ ; v ∈

X, and we keep these norms.The norm in X , even though equivalent to the

standard norm .

FORMS:

Now, we detail the variational formulation.

Let c : V ×V→ R be the bilinear form .

We start by aparabolic initial value problem (PIVP) that reads for given f(t) ∈

V
′
, t ∈ I.

〈u̇(t), v(t)〉V ′ + c(u(t), v(t)) = 〈f(t), v(t)〉V ′×V ∀v(t) ∈ V (3.8)
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u(0) = 0 in H. (3.9)

Next, we define space-time bilinear forms

[u, v] =

∫
I

〈u(t), v(t)〉V ′×V dt

C[u, v] =

∫
I

c(u(t), v(t))dt

and we finally obtain the variational formulation

u ∈ X : a(u, v) = f(v) ∀v ∈ Y (3.10)

wher a(u, v) = [u̇, v] + C[u, v] as well as f(v) = [f, v].

Theorem 3.8 Let c : V ×V→ R be a bounded bilinear form satisfie a Gåarding

inequality . Then problem (3.10) have a unique solution

3.3.2 Parabolic Variational Inequalities:

Given a closed convex subset K ⊂ Y = L2(I;V ) i.e K(t) ⊆ V fort ∈ I.

Consider the parabolic variational inequality,which reads:

Find u ∈ H1(I;H) ∩ C(Ī;V ) such that u(t) ∈ K(t) and :

(u̇(t), v(t)− u(t))H + c(u(t), v(t)− u(t)) ≥ (f(t), v(t))V ′×V ∀v(t) ∈ K(t) (3.11)

u(0) = 0 in H. (3.12)

when a strong solution exists. The space-time variational formulation now reads:

a(u, v − u) ≥ f(v − u) ∀v ∈ K (3.13)

Whith a(., .) and f(.) given by :

a(u, v − u) = [u̇, v − u] + C[u, v − u] as well as f(v) = [f, v].
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Proposition 3.9 If the bilinear form c(., .) is bounded and satisfies a Gåarding

inequality, such that

αc − λc%2 > 0

Then the bilinear form a(., .) is bounded, symetrically bounded and weakly

coercive .

Proof. We show that a(., .) is bounded .

We have v ∈ X ,w ∈ Y ,then:

a(v, w) = [v̇, w] + c[v, w]

By boundedness the c and chauchy-Schwarz inequality ,we find .

a(v, w) ≤ ‖v̇‖Y ′‖w‖Y + γc‖v‖Y ‖w‖Y ≤ max{1, γc}‖v‖X‖w‖Y .

Which prove the boundedness.

For the weak coercivity ,we apply the Gåarding inequality for some v ∈ X (recall

v(0) = 0 )

a(v, v) = [v̇, v] + c[v, v] =
1

2
‖v(T )‖2

H =

∫ T

0

c(v(t), v(t))dt

≥ 1

2
‖v(T )‖2

H +

∫ T

0

(αc‖v(t)‖2
V − λc‖v(t)‖2

H)dt

≥ 1

2
‖v(T )‖2

H + (αc − λc%2)‖v(t)‖2
Y
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≥ min{1

2
, (αc − λc%2)}[[v]]2

X

Hence a(., .) is weakly coercive with constant αw := min{1
2
, (αc − λc%2)}1/2.

Finally ,integration by parts recalling that :

v(0) = 0 in H for v ∈ X yields for v, w ∈ X that :

a(v, w) = (v(t), w(t))H−(v(0), w(0))H−[v, ẇ]+c[v, w] ≤ ‖v(T )‖H‖w(T )‖H+‖v‖Y ‖ẇ‖Y ′+γc‖v‖Y ‖w‖Y

≤ γs[[v]]X ‖|w‖|X

With γs := max{1, γc}.

Implies a is symmetrically bounded.

Corollary 3.10 If the assumptions of Proposition (3.9) holds, the space-time varia-

tional inequality (3.13), hase a solution which is unique.
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CONCLUSION

In this memory,we study elliptic and parabolic variational inequalities with a

possibly non-coercive bilinear form.

We reached this by study the existence, uniquenesse and stability of the so-

lutions of non-coercive elliptic variational inequalities by regularization methods

,and study existence and uniquenesse of the solutions of non-coercive parabolic

variational inequalities.

For the expectations, it would be interesting to find a existence and uniqueness

of:

+ elliptic and parabolic non coercive variational inequalities of the second kind.

+ Hyperbolic non coercive variational inequalities of the first kind.

+ Non coercive variational inequalities a operatur non lineare
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 الملخص:

العمل بدراسة المتراجحات المتباينة الشبيهة القطع المكافئ و بيضاوي الشكل من الصنف  هذا لقد قمنا في

  الاول مع احتمال شكل خطي غير قسري .و دراسة وجود و وحدانية الحل باستعمال نظرية التوازن .

المتباينة,نظرية التنظيم . المتراجحة  :الكلمات المفتاحية  

Abstract : 

In this work  ,we  stady elliptic and paraboiic variational inequalities  with a possibly 

non-coercive bilinear form .and stady existence and uniqueness of  solution  of  non 

coercive variational inequalitiess by regularization method . 

Keywords : Inequalitie variational , regularization method . 

Résumé : 

Dans ce travail ,nous étudions les inéqualities variationnelles elliptiques et paraboliques 

avec une forme bilinéare probablemen non-coercive. Et étudier l’existence et l’unicité de 

la solution des inéqualities variationnelles non coercivites par la méthode de 

régularisation.  

Mots clés :  inéqualities variationnelles , régularisation méthode .  

 

 

 


