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NOTATIONS

Here below, we will define some notation that will be involved and used within

development of this thesis. Some others, will be defined at the mean time of its

usage.

ä RN denotes the Euclidean space of ordered N-tuplies of real numbers.

ä K a nonempty subset of X.

ä B(0, n) is the open ball of center 0 and radius n with B(0, n) = {x ∈ X : ‖xn‖ < n}.

ä B(0, n) is the close ball of center 0 and radius n with B(0, n) = {x ∈ X : ‖xn‖ ≤ n}.

ä S(0, n) is the sphere of center 0 and radius n with S(0, n) = {x ∈ X : ‖xn‖ = n}.

ä X real Hilbert space with scalar product (· , · ) and associated norm ‖· ‖.

ä X ′ the dual space of V .

ä→ strong convergence.

ä ϕ∞(v) = inf{lim infn−→∞
1
tn

(ϕ(tnvn)) : tn −→ +∞andvn
τ−→ v}

ä
∗
⇀ weak star convergence.
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INTRODUCTION

The equilibrium problem has been able to justify meny of problems them op-

timaztion, optimal control, fixed point problems, operation research, economics,

variational inequalities and other. The existence in equilibrium problems has

been studied in various directions by Blum-Oetti [6], Hadjisawas - Schaible[18]

and Bianchi - Schaible[8].

The main application considerdcin this paper is variational inqualities.

Variational inequality theory has been fastly developed since 1967 introduced

by Lions and Stampacchia [15] who successfully treated a coercive variational in-

equality. After the fundamental work of Lions and Stampacchia, the theory of

variational inequalities was studied by many researchers (e.g. Brezis [7], Browder

[12], and Lions [16] and others) and became an important subject in non-linear

analysis.

This work is organized as follows:

In the first chapter, we will recall essential tools for our study.

In the second chapter, we will study the existence, uniqueness the solutions of

elliptic variational inequalities first and second kinds.

In the third chapter, we will study the existence of the solutions of equilibrium

problem .
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In the last chapter, we will study the application of equilbrium problem theory

use a non coercive variational inequalitie first and second kibds .
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CHAPTER 1

PRELIMINARIES

This chapter recalls some basic notions and the main mathematical results of the

functional analysis which will be used throughout this work. Most of the results are

stated without proofs, as they are standard and can be found in many references.

1.1 FUNCTIONAL SPACES

1.1.1 Hausdorff space

Definition 1.1 : A Topological space X is said to be Haudorff (or sparated ) if anly

disinct point of X have neighbourhoods without common points ; or equivalently if:

(T2) Two distinct points always lie in disjoint open sets .

In literature, the Hausdorff space often called T2−space and axiom

(T2) Is said to be the separation axiom

Proposition 1.2 In a Hausdorff space the intersection of all closed neighbour-

hoods of point cotains the point alone . Hence , the singletons are closed.
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1.1. FUNCTIONAL SPACES CHAPTER 1.

Proof. See[9]

Definition 1.3 A topological space X is said to be Hausdorff or (T2) if any two

distinct points of X have neighbourhoods without common points; or equivalently

if two distinct points always lie in disjoint open sets.

Definition 1.4 A topological space X is said to be (T2) if, given two distinct points

of X, each lies in a neighborhood which does not contain the other point; or equiva-

lently if, for any two distinct points, each of them lies in an open subset which does

not contain the other point.

1.1.2 Hilbert spaces

Hermitian product:

Definition 1.5 Let X be vector space. A hermitian product φ(u, v) is sesqui-linear

form on X ×X with values inC, such that

φ(u, v) = φ(v, u) ∀u, v ∈ X (Hermitian).

φ(u, u) > 0 ∀u ∈ X (Positive).

φ(u, u) = 0 =⇒ u = 0 (Difinite).

Definition 1.6 A prehelbertian space is a vector space equipped with hermitian

product .

Scalor product:

Definition 1.7 Let X be a vector space. A scalar product (u, v) is bilinear aform

on X ×X with valuers in R, such that :

(i) Definite: (u, u) 6= 0 ∀u 6= 0 .

(ii) Symmetry: (u, v) = (v, u) ∀u, v ∈ X .
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1.1. FUNCTIONAL SPACES CHAPTER 1.

(iii) positivity: (u, u) ≥ 0 for u ≥ 0.

Theorem 1.8 (Cauchy-Schwarz Inequality)

Let recall a scalar product satisfies :

|(u, v)| ≤ (u, u)1/2(v, v)1/2

It is follows from the Cauchy-Schwarz inequality that the quantity:

‖u‖ = (u, u)1/2

Proposition 1.9 Let X be prehilbertian space quipped with scalar product, then

for all u, v ∈ X we have :

1. ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) (Parallelogram Identity)

2. If X be real:〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2) (Polarization Identity).

Proof. See [10]

Definition 1.10 A Hilbert space is a vector space X with a scalar product such

that X is complet for the norm‖.‖

In the follows ,X will always denote a Hilbert space.

Projection onto a closed convex

Theorem 1.11 Let K ⊂ X be a nonempty closed convex set. then for every f ∈ X

there exists a unique element u ∈ K such that

‖f − g‖ = min‖f − v‖ = dist(f,K). (1.1)

Moreover, u is characterized by the property

u ∈ K and (f − u, v − u) ≤ 0 ∀v ∈ K. (1.2)
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1.2. GENERAL THEOREMS AND DEFINITIONS CHAPTER 1.

Notation.The above element u is called the projection of f onto K and is denoted

by

u = PKf.

Proof. See [10]

Proposition 1.12 Let K ⊂ X be a nonempty closed convex set. Then PK is a

contraction, i.e.,

‖PKx1 − PKx2‖ ≤ ‖x1 − x2‖ ∀x1, x2 ∈ X.

Proof. See [3]

1.2 GENERAL THEOREMS AND DEFINITIONS

Theorem 1.13 (Riesz representation theorem) Let X be a Hilbert space, for

all f ∈ X ′, there exists a unique element f̃ ∈ X such that

f(v) = (f̃ , v) ∀v ∈ V.

In addition, we have

‖f‖′X =
∥∥∥f̃∥∥∥

X
.

Proof. See [3].

Theorem 1.14 (Banach fixed-point theorem) Let (X, ‖· ‖) be a Banach space,

and let K be a nonempty closed subset of X. Suppose that the operator

T : K → K is a contraction, i.e. there exists a constant C ∈ [0, 1) such that

‖Tu− Tv‖X ≤ C ‖u− v‖X ∀u, v ∈ K.

Then T has a unique fixed point, Tu = u.

Proof. See [4].
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1.2. GENERAL THEOREMS AND DEFINITIONS CHAPTER 1.

Semi-continuous

Definition 1.15 Let f : X −→ R.

• f is upper semicontinuous (USC) iff for any y ∈ R, f−1((−∞; y)) is open

• f is lower semicontinuous (LSC) iff for any y ∈ R, f−1((y;∞)) is open.

Theorem 1.16 If (X, τ) is a topological space and f : X −→] −∞,+∞[ is a func-

tion, then if and only if (xα)α∈I being a convergent in X implies that f(limxα) ≤

lim inf f(xα).

Proof. See.

Monotonity

Let X be a topological space.

Definition 1.17 The bifunction f id said to be:

1. Monotone: if for each u, v ∈ K f(u, v) + f(v, u) ≤ 0 K ∈ X

2. Pseudomonotone: if u, v ∈ K and f(u, v) ≥ 0 impliesf(v, u) ≤ K ∈ X.

Hemi-continuou

Definition 1.18 Operator A : X −→ X is hemicontinuous if for all x, y ∈ X, the

application t −→ 〈A(u+ tv), u〉 continuous of R in R

Definition 1.19 A real function ϕ : K −→ R is said to be upper hemicontinuous, if

for each u, v ∈ K one has lim supt−→0 φ(u+ t(v − u)) ≤ φ(u.)

Or f is upper hemicontinuous (UHC) if, for each u, v, w ∈ K, the map t ∈ [0, 1] −→

f(tu+ (1− t)v, w) is upper semicontinuous.

Definition 1.20 Let X −→ RN , Y −→ RN , and φ : X −→ Y . φ is lower hemicon-

tinuous (LHC) at x0 ∈ X if anly x∗ ∈ X, any sequence xn ∈ X convergeng to x∗ and

any y∗ ∈ f(x∗) there exists yn ∈ f(xn) such that yn −→ y∗

8



1.2. GENERAL THEOREMS AND DEFINITIONS CHAPTER 1.

coercivitie

Definition 1.21 A form bilinear a : X×X −→ R colled coerciv, if c > 0 is a constant,

in such that a(x, x) ≥ c‖x‖2 for all x ∈ X.

Convexity

Definition 1.22 The functin f : X −→ R is said convex when:

∀x, y ∈ X ∀λ ∈ [0, 1] f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

f said strictly convex if ∀x, y ∈ X ∀λ ∈ [0, 1] f(λx + (1− λ)y) < λf(x) + (1−

λ)f(y).

Definition 1.23 A set C said convex if

∀x, y ∈ C ∀λ ∈ (0.1] λx+ (1− λ)y ∈ C.

Reflexive space

Definition 1.24 Let X be a reflexive Banach space. We call a linear operator

T : X → X ′ monotone if for all u and v in X

(Tu− Tv, u− v) ≥ 0.

9



CHAPTER 2

ELLIPTIC VARIATIONAL
INEQUALITIES

In this chapter, we shall restrict our attention to the study of the existence, unique-

ness of the solutions of elliptic variational inequalities.

2.1 ELLIPTIC VARIATIONAL INEQUALITIES FIRST KIND

Definition 2.1 We call elliptic variational inequality of the first kind any

inequality defined by:{
Find u ∈ K such that
a(u, v − u) ≥< f, v − u > ∀v ∈ K

(2.1)

With a(., .) : X ×X −→ R

2.1.1 Existence And Uniqueness Results

Theorem 2.2 (Stampacchia) Let X be Hilbert space K nonempty convex subset

of X, f ∈ X ′ a(., .) : X ×X → R is a bilimear forme satisfeir :

10



2.1. ELLIPTIC VARIATIONAL INEQUALITIES FIRST KIND CHAPTER 2.

continuous : |a(u, v)| ≤ c‖u‖‖v‖

coercive : a(u, u) ≥ η‖v‖2 then the problem 2.5 has one only one solution .

Proof.

¶ Uniqueness:

Let u1 and u2 be solutions of (2.5). We have then:

a(u1, v − u1) ≥ 〈f, v − u1〉 ∀v ∈ K, (2.2)

a(u2, v − u2) ≥< f, v − u2 > ∀v ∈ K. (2.3)

Choosing v = u2 in 2.2 and v = u1 in 2.3 and adding the corresponding inequalities,

we obtain:

a(u1 − u2, u1 − u2) ≤ 0, (2.4)

by using the V -ellipticity of a(., .), we get:

α‖u1 − u2‖X ≤ 0.

Which implies

u1 = u2.

· Existence

Let a : X → X sach as a(., .) = (Au, v) Let u is fixed of X we define (w + ρAu −

ρf̃u, w − ρf̃) ≤ 0; ∀v ∈ K; w exist and unique , w = Pk(u, ρAu− ρf̃).

we define T : u→ w = Tu; if admits a fixed piont u then u is a solution of (2.5).

Just show T is contractor i.e ‖Tu1 − Tu2‖≤ c‖u1 − u2‖ with c < 1.

Let w1 = Tu1 and w2 = Tu2 one has :

‖w1 − w2‖ = ‖Pk(u1 − ρAu1 + ρf̃)− Pk(u2 − ρAu2 − f̃)‖

≤ ‖u1 − u2 − ρAu1 + ρAu2‖.

= ‖(I − ρA)(u1 − u2)‖.

11



2.2. ELLIPTIC VARIATIONAL INEQUALITIES SECOND KIND CHAPTER 2.

≤ ‖I − ρ‖‖u1 − u2‖.

we take δρ = ‖I − ρA‖.

∃ρ > 0 such as cρ < 1?

‖(I − ρA)v‖2 = 〈(I − ρA)v, (I − ρA)v〉

= 〈v − ρAv, v − ρAv〉

= 〈v, v〉 − 2ρ〈Av, v〉+ ρ2〈Av,Av〉.

= ‖v‖2 − 2ρa(v, v) + ρ2‖v‖2.

≤ ‖v‖2 − 2m‖v‖2 − ‖A‖2‖v‖2.

= (1− 2ρm+ ρ2‖A‖2)‖v‖2

So for ρ ∈ [0,
2m

‖A‖2
[ imply cρ < 1.

Then T is contractor accorrding to banach fixed piont theorem T has a fixed point

with implies the existence of a solution for (2.5).

Then (Au− f̃ , v − u) ≥ 0 =⇒ a(u, v − u) ≥ 〈f, v − u〉 ∀v ∈ K.

2.2 ELLIPTIC VARIATIONAL INEQUALITIES SECOND KIND

Definition 2.3 We call elliptic variational inequality of the first kind any

inequality defined by:{
Find u ∈ K such that
a(u, v − u) + j(v)− j(u) ≥< f, v − u > ∀v ∈ K

(2.5)

2.2.1 Existence And Uniqueness Results

Proposition 2.4 Let X a Hilbert space,K nenompty closed convex of X j : X −→ R

clean convex and lower sem-continuous a(., .) : V × V −→ R continuous bilinear

form and coercive , f ∈ X

12



2.2. ELLIPTIC VARIATIONAL INEQUALITIES SECOND KIND CHAPTER 2.

Then variational inequalitie{
find u ∈ K
a(u, v − u) + j(v) + j(u) ≥ (f, v − u) ∀v ∈ K

(2.6)

Has only one solution.

Proof.

¶ Uniqueness:

Let u1 and u2 be solutions of (2.5). We have then:

a(u1, v − u1) + j(v)− j(u1) ≥ (f, v − u1) ∀v ∈ K (2.7)

a(u2, v − u2) + j(v)− j(u2) ≥ (f, v − u2) ∀v ∈ K (2.8)

We seggest v = u2 then v = u1 respectively in (2.7) and (2.8) we find by summation

:

a(u1, u2 − u1) + a(u2, u1 − u2) ≥ (f, u2 − u1) + (f, u1 − u2)

α‖u1 − u2‖2 ≤ a(u1 − u2, u1 − u2) ≤ 0

=⇒ u1 = u2 hence the uniqueness.

· Existence

We define the auxiliary problem for u fixed in K and ρ > 0

{
Find w ∈ K
(w, v − w) + ρj(v)− ρj(w) ≥ −ρ(a(u, v − w)− (f, v − w)) + (u, v − w) ∀v ∈ K

(2.9)

The problem (2.9) has a unique solution (according to Weierstrass’s theorem)

Tρ : u 7−→ w w solution of the problem (2.9)we show that Tρ has a single fixed point.

Just show that Tρ is strictly contracting, i.e ‖Tρ(u1)− Tρ(u2)‖ ≤ C‖u1 − u2‖ ∀u1, u2 ∈

X, c < 1

‖w1 − w2‖ ≤ C‖u1 − u2‖ tq wi = Tρ(ui) , i = 1, 2

Then:

(w1, v − w1) + ρj(v)− ρj(w1) ≥ −ρa(u1, v − w1) + ρ(f, v − w1) + (u1, v − w1) (2.10)

13



2.2. ELLIPTIC VARIATIONAL INEQUALITIES SECOND KIND CHAPTER 2.

(w2, v − w2) + ρj(v)− ρj(w2) ≥ −ρa(u2, v − w2) + ρ(f, v − w2) + (u2, v − w2) (2.11)

We chose v = w2 and v = w1 respectively in (2.10) and (2.11) we obtain

−‖w1 − w2‖2 ≥ ρa(u1 − u2, w1 − w2)− (u1 − u2, w1 − w2)

=⇒ ‖w1 − w2‖2 ≤ −ρa(u1 − u2, w1 − w2) + (u1 − u2, w1 − w2)

using the Rize reprising theorem a(u, v) = (Au, v)

=⇒ ‖w1 − w2‖2 ≤ (−ρA(u1 − u2) + (u1 − u2), w1 − w2) ≤ ((−ρA+ I)(u1 − u2), w1 − w2)

≤ ‖−ρA+ I‖.‖u1 − u2‖‖w1 − w2‖

=⇒ ‖w1 − w2‖ ≤ ‖−ρA+ I‖.‖u1 − u2‖

Then ∃ρ > 0 tq ‖I − ρA‖ < 1

‖(I − ρA)v‖2 = (v − ρAv, v − ρAv) = (v, v)− 2ρ(Av, v) + ρ2(Av,Av)

≤ ‖v‖2 − 2ρ(Av, v) + ρ2‖Av‖2

Using coercivity (Av, v) ≥ α‖v‖2 =⇒ −2ρ(Av, v) ≤ −2ρα‖v‖2

then ‖(I − ρA)v‖2 ≤ ‖v‖2 − 2ρα‖v‖2 + ρ2‖A‖2.‖v‖2

≤ (1− 2ρα + ρ‖A‖2)‖v‖2

if ρ ∈
]
0,

2α

‖A‖2

]
=⇒ 1− 2αρ+ ρ2‖A‖2 < 1

=⇒ ‖I − ρA‖ < 1 then Tρ is strictly contracting =⇒ Tρ has a single fixed point

.

Tρu = u = w hence u checked the problem (2.6)

14



CHAPTER 3

EQUILIBRIUM PROBLEM

In this chapter, we will restrict our attention to the study of the existence of the so-

lutions of broblem equilibrium. Let X be a topological vector space, K a nonempty

subset of X and f a real function defined on K ×K . The equilibrium problem is

Find ū suvh that f(ū, v) ≥ 0 for each v ∈ K (3.1)

3.1 MAIN RESULT

Let X be a topological vector space, K a closed convex subset of X and f : K×K −→

R a function such that.

f(u, u) ≥ 0 for each u ∈ K (3.2)

Remark 3.1 The pseudomonotonicity of f and (3.2) implies that f(u, u) = 0.

Theorem 3.2 Let X be a Hausdorff topological vector space, letK be a nonempty

closed convex subset. Consider two real bifunctions ϕ and ψ defined on K ×K such

that:

15



3.1. MAIN RESULT CHAPTER 3.

(M1) For each x, y ∈ K, if ψ(x, y) ≤ 0, then ϕ(x, y) ≤ 0.

(M2) For each fixed x ∈ X, the function ϕ(x, .) is lower semicontinuous on every

compact subset of K.

(M3) For each finite subset A of K, one has supy∈conv(A) minx∈A ψ(x, y) ≤ 0

(M4) Compactness Assumption. There exists a compact convex subset C of K such

that either (i) or (ii) below holds:

(i) for all y ∈ K\C, there exists x ∈ C such that ϕ(x, y) > 0;

(ii) there exists x0 ∈ C such that, for all y ∈ K\C, ψ(x0, y) > 0.

Then, there exists equilibrium point ȳ ∈ C; i.e., ψ(x, ȳ) ≤ 0 for each x ∈ K. Further-

more, the set of solutions is compact.

Proof.

see [2].

Lemma 1 Suppose that:

(i) ψ(x, x) ≤ 0, for each x ∈ K;

(ii) for each y ∈ K, {x ∈ K : ψ(x, y) ≤ 0} is convex.

Then, Assumption (M3) is satisfied.

Theorem 3.3 Let x be a topological vector space, K a compact convex subset of X

and f : k −→ R be a real function. Suppose that

(i) f is pseudomonotone;

(ii) for each x ∈ K, f(., y) is upper hemicontinuous;

(iii) for each s ∈ K, f(x, .) is lower semicontinuous;

(iv) for each x, y, z ∈ K, f(x, y) ≤ 0 and f(x, z) ≤ 0 implies f(x, yt+ (1− t)z) ≤ 0 all

t ∈ (0, 1].

16



3.1. MAIN RESULT CHAPTER 3.

Then, there exists x̄ ∈ K such that f(x̄, y) ≥ 0 for all y ∈ K.

Proof. For each x, y ∈ K choose ϕ(x, y) = f(x, y) and also ψ(x, y) = −f(y, x). By

pserdomonotonicity of f one has for each x, y ∈ K if ψ(x, y) ≤ 0 then ϕ(x, y) ≤ 0.

A cause of (iii) and compacitness of K, for each fixed x ∈ X the fonction ϕ(x, y) is

lower semicontinuous and compactness assumption are satisfied . Assumptions (iv)

and f(x, x) = 0for all u ∈ K permit to realize (i) and (ii) of precedent Lemma and

consequently (M3) all condition of Theorem 1 verifiel thus, there existe ȳ ∈ K such

that f(ȳ, y) ≤ 0 for every x ∈ K. For this, let y ∈ K and consider, fort ∈ (0, 1),yt =

yt + (1 − t)ȳ. Since K is convex, then for each t ∈ (0, 1), f(yt, ȳ) ≤ 0. Assume that,

for somet0 ∈ (0, 1), we havef(yt0 , y) < 0. According to (iv), we obtain f(yt0 , yt0) < 0,

a contradiction. It follows that, for every t ∈ (0, 1), f(yt, y) ≥ 0. Letting t↘ 0, upper

hemicontinuity of f yields f(ȳ, y) ≥ 0; the proof is comlete.

Remark 3.4 The hypothesis (iv) above is weaker than the next similar conditions:

(iv’) Either (f(x, y) ≤ 0 and f(x, z) ≤ 0) or (f(x, y)0 < f(x, z) ≤ 0) implies f(x, yt +

(1− t)z) ≤ 0 all t ∈ (0, 1].

(iv”) f(x, y) < f(x, z) implis f(x, yt+ (1− t)z) ≤ f(x, y), f(x, .) is quasiconvex.

(iv”’) f(x, .) is semistrictly quasiconvex, i.e.,for each λ ∈ R, f(x, y) < λ and f(x, z) ≤ λ

implies f(x, ty + (1− t)z) < λ for all t ∈ (0, 1].

More precisely, one has (iv ")⇒ (iv ’)⇒ (iv) the other (iv ”’)⇒ (iv). Note that

assumption (iv’) and (iv”’) have been considered respectively in the recent paper [17].

In the sequel, we suppose that X is a normed space, endowed with a suitable topol-

ogy τ for which closed balls in (X, ‖.‖) are τ -compact, and K is τ -closed convex

subdet of X.

The equilibrium problem (3.1) is enriched by the addition of perturbations in its

initial formulation. Thus problem (3.1) can be seen as a borderline case of familly

of problem

find un ∈ Kn such that f(un, v) ≥ 0 for all v ∈ Kn (3.3)

17
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where K, represents perturbations. Here we set Kn = K
⋂
B̄(0, n) with B̄(0, n) =

{x ∈ X :‖ x ‖≤ 0}. If we consider Sn, the set of solutions of the problem (3.3), then

R({Sn}) denotes the associate recession set which is defined by

R({sn}) = {w ∈ K : ∃(np)p∈N ⊂ N, ∃np ∈ Sp such that ‖up‖ −→ +∞ and wp =

up
‖up‖ −→ w}

This recession set has been introduced recently in [16] by inspiring the cited work of

Tomarelli where the studied problem is a variational inequality.

For µ > 0, set

D({Sµ}) := {w ∈ K : ∀ n ∈ N ∀un ∈ Sn, un−µw ∈ K and f(v, un) ≥ f(v, un−µw) ∀v ∈ K}

3.2 EXISTENCE RESULTS

Theorem 3.5 suppose that

(i) the function f is pseudomonotone;

(ii) for each v ∈ K, f(., v) is upper hemicontinuous;

(iii) for each u ∈ K, f(u, .) is τ− lower semicontinuous;

(iv) for each u, v, w ∈ K, if f(u, v) ≤ 0 f(u,w) ≤ 0 then f(x, ty + (1 − t)z) < 0 for all

t ∈ (0, 1].

(v) (Compactness condition) for each w ∈ R({Sn}) with {un} and {wn} the asso-

ciate sequences, one has wn −→ w in norm;

(vi) (Compatibility condition) for each w ∈ R({Sn}) there exists µ > 0 such that

w ∈ Dµ({sn})

Then the equilibrium problem (3.1) has at least one solution.

18
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Proof. We first observe that for each positive integer n the solution set Sn is

nonempty and contained in B̄(0, n), this follows immediately from Theorem 1

Let us consider a selection {un} ⊂ K, with un ∈ sn; then ‖un‖ ≤ n One has to

distinguish two possible cases.

(a) in the first case, suppose that for some p ∈ N one has up ∈ B(0, p) with B =

{up ∈ X : ‖up‖ < p}. Let v ∈ K, then there exists λ ∈ (0, 1] such that

λv − (1 − λ)up ∈ K because K convex implies up + λ(v − up) ∈ Kp. As up ∈ Sp,

then f(up, up + λ(v − up)) ≥ 0,

soppose that f(up, v) < 0. Using f(up, up) = 0 and the assumption (iv) one has

f(up, up + λ(v − up)) < 0 absurd. Thus f(up, v) ≥ 0 for each v ∈ K. Therefore,

up is a solution of (3.1).

(b) In the second case, suppose that for each n ∈ N one has un ∈ S(0, n) with {x ∈

X : ‖un‖ = n}. Using the closed ballB(0, l) is τ−compact and wn = ( 1
n
un) ∈

B(0, 1) , there is a subsequence also denoted {un} such that wn
τ−→ w; hence

w ∈ R({Sn}). According to the sumpption (v) and (vi) imply that wn −→ w in

norm and for each n ∈ N

we have un − µw ∈ K andf(v, un) ≥ f(v, un − µw) for all v ∈ K̊

On the other hand, for n ∈ N large enough

‖un − µw‖ = ‖un −
µ

n
+ µwn − µw,

≤ (1− µ

n
)‖un‖+ µ‖wn − w‖,

≤ ‖un‖ − µ(1− ‖wn − w‖),

≤ ‖un‖.

Therefore un − µw ∈ K with ‖un − µw‖ < n

Since un ∈ Sn then for each v ∈ Knf(un, v) ≥ 0. Using pseudomonotonicity of

the function f , we obtain for every v ∈ Kn

f(v, un − µw) ≤ f(v, un) ≤ 0 (3.4)
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For t ∈ (0, 1] and v ∈ Kn, set vt = tv + (1 − t)(un − µw). Suppose that there

exists t0 ∈ (0, 1] such that f(vt0 , v) < 0, then by taking v = vt0 in (1), we obtain

f(vt0 , un − µw) < 0. Hence by assumption (iv) we deduce that f(vt0 , vt0) < 0

which contradicts (3.2). Thus for each t ∈ (0, 1], f(vt0 , v) ≥ 0

From upper hemicontinuity of f(., v), we deduce that

f(un − µ, v) ≥ lim sup
t−→0

f(vt, v) ≥ 0 for each v ∈ kn (3.5)

Therefore ūn = un − µw ∈ Sn and ‖ūn‖ < n, which leads to a contradiction.

Hence the proof is complete.
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CHAPTER 4

APPLICATION OF EQUILIBRIUM
PROBLEM THEORY ON NON

COERCIVE VARIATIONAL
INEQUALITIES

Let X is reflexive banach space endowed withc its weak topology τ = σ(X,X∗)

,variational inequality problem

Find ū ∈ K such that 〈Aū, v − ū〉+ ϕ(v)− ϕ(ū) ≥ 0 for each v ∈ K (4.1)

4.1 MAIN RESULT

(a) K is a closed convex of X

(b) ϕ : X −→ R
⋃
{+∞} is a lower semicontinuous and convex function, with

dom(ϕ) := {x ∈ X : ϕ(x) < +∞} = K

On the operator A : K −→ X ′ let us consider the following assumptions:
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(c) A is an upper hemicontinuous operator, i.e., for each u, v, w ∈ K one has

lim sup
t−→0

〈A(tu+ (1− t)v), w〉 ≤ 〈A(v), w〉

(d) A is monotone on K; i.e., for all u, v ∈ K〈Au− Av, u− v〉 ≤ 0

(e) A is pseudomonotone on K,i.e.,

for allu, v ∈ K〈Av, u− v〉 ≥ 0 implies 〈Au, u− v〉 ≥ 0

For an arbitrary v0 ∈ K,let us consider ϕ∞(v) = supt>0(
1
t
)(ϕ(v0 + tv) − ϕ(v0)) the

recession function associated to ϕ, and by K∞ :=
⋂
t>0 t(K − v0) the recession cone

of K. We can be writ for each v ∈ X

ϕ∞(v) = inf{lim inf
n−→∞

1

tn
(ϕ(tnvn)) : tn −→ +∞ and vn

τ−→ v}

And for each x0 ∈ X

K∞ = {x ∈ X : ∃tn −→ +∞,∃ xn
t
⇀ x with x0 + tnxn ∈ K}

On addition we will impose the following recession conditions upon the data ϕ and

A:

(f) For each w ∈ R({Sn}) one has δ∗R(A)(−w) + ϕ∞(−w) ≤ 0 where δ∗R(A)(w) :=

supζ∈R(A)〈ζ, w〉 and R(A) +
⋃
u∈K Au is the range of A

(g) if tn −→ +∞, wn −→τ w, tnwn ∈ K and for each v ∈ Kϕ∞(w) + lim sup <

A(tnwn), wn − t−1n v >≤ 0 then wn −→ w in norm

4.2 EXISTENCE RESULT FOR VARIATIONAL INEQUATION

Our existence result for the (4.1) is stated below:
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4.2.1 Case ϕ 6= 0

Theorem 4.1 Suppose that standing asssumption (a),(b),(c),(d),(f) and (g)hold .Then

the (4.1) admits at last one solution

Proof. We shall apply Theorem (3.5) to f defined for each u, v ∈ K by

f(u, v) = 〈Au, v − u〉+ ϕ(v)− ϕ(v)

• One has f(u, v) = 〈Au, v − u〉+ ϕ(v)− ϕ(u) ≥ 0,

=⇒ 〈Au− Av + Av, u− v〉+ ϕ(v)− ϕ(u) ≥ 0,

=⇒ 〈Au− Av, v − u〉 ≥ 〈Av, u− v〉+ ϕ(v)− ϕ(u) ≥ 0,

Since A is monoton−〈Au− Av, v − u〉 ≤ 0;

=⇒ 0 ≤ 〈Au− Av, v − u〉 ≤ 〈Av, u− v〉 − ϕ(u)− ϕ(a),

=⇒ f(v, u) ≤ 0,

Then f is pseudomonoton.

• f is upper hemicontinuous because A is upper hemicontinuous and ϕ is con-

vex, then

lim supt−→0 f(tu+(1−t)v, w) = lim supt−→0(〈A(tu+(1−t)v), w〉+ϕ(w)−ϕ(tu+(1−t)v)),

≤ lim supt−→0〈A(tu+ (1− t)v), w〉+ ϕ(w)− lim supt−→0 ϕ(tu+ (1− t)v),

≤ 〈Av,w〉+ ϕ(w)− ϕ(v).

• f is τ -lower semicontinuous because f−1(u, (v,+∞)) is open

• For each u, vandw ∈ K , if f(u, v) ≥ 0 and f(u,w) < 0 then f(u, tv+(1− t)w) < 0

for all t ∈ (0, 1)] because:

f(u, tv + (1− t)w) = 〈Au, (tv + (1− t)w)− u〉+ ϕ(tv + (1− t)w)− ϕ(u),

Since ϕ is convex, ≤ t〈Au, v〉+ (1− t)〈Au,w〉+ tϕ(v) + (1− t)ϕ(w)

Because f(u, v) ≤ 0 and f(u,w) < 0,

f(u, tv + (1− t)w) ≤ t〈Au, v〉+ (1− t)〈Au,w〉+ tϕ(v) + (1− t)ϕ(w) < 0.

Then f(u, tv + (1− t)w) < 0
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The assumptions (i),(ii), (iii) abd (iv) ars immadiatr .

For (v) consider w ∈ R({sn}) and the associate sequence {un} with un ∈ Sn, tn =

‖un‖ −→ +∞ and wn = (1/tn)un −→τ w. Let v ∈ K ,then for un ∈ Nlarge enough one

has v ∈ Kn = K ∩ B̄(0, n). As un ∈ Sn, then f(un, v) = f(tnwn, v) ≥ 0, hence

ϕ(tnwn)− ϕ(v)

tn
+ 〈A(tnwn), wn − t−1n v〉 ≤ 0

Passsing to the limit , we obtain

ϕ∞ + lim
n−→+∞

sup〈A(tnwn), wn − t−1n v〉 ≤ 0

Using condition (g) one has wn −→ w in norm; thus the condition (v) is realized

Now we see that (iv) is realized for µ = 1. To confirm this , let us achieve then

−w ∈ dom(ϕ∞) ∩K∞. Fix v ∈ K. Sinceun ∈ Sn and un − w ∈ K, on has :

f(v, un − w) = 〈Av, un − w − v〉+ ϕ(un − w)− ϕ(v)

= 〈Av, un − v〉 − 〈Av,w〉+ ϕ(un − w)− ϕ(v)

= (〈Av, un − v〉+ ϕ(un)− ϕ(v))− 〈Av,w〉+ ϕ(un − w)− ϕ(un)

≤ f(v, un)− 〈Av,w〉+ ϕ(un − w)− ϕ(un).

Frome (f) one has δ∗R(A)(w) := supζ∈R(A)〈ζ, w〉 then

supζ∈R(A)〈ζ,−w〉 ≤ 〈ζ,−w〉 ∀ζ ∈ R(A)

=⇒ 〈ζ,−w〉 ≤ 〈Av,−w〉 ∀f ∈ K

=⇒ supv∈K〈Av,−w〉 ≤ −ϕ∞(−w)

−〈Av,w〉 ≤ −ϕ∞(−w) ∀v ∈ K

We deduce that−〈Av,w〉 ≤ −ϕ∞(−w). by observing ϕ∞(−w) ≥ ϕ(un−w)−ϕ(un),

we obtain f(v, un − w) ≤ f(v, un) for each v ∈ K.This concludes the proof.

4.2.2 Case ϕ = 0
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Theorem 4.2 Assume that ϕ = 0 and assumotion (a),(b),(c),(d),(e),(f)and (g) hold

.Then the (4.1) has at least solution

Proof. We shall apply Theorem (3.5) to f define for each u, v ∈ K by

f(u, v) = 〈Au, v − u〉

• f is pseudomonoton, because A is pseudomonoton.

• A is upper hemicontinuous on u, because A is upper hemicontinuous.

• f is τ -lower semicontinuous because f−1(u, (v,+∞)) is open

• For each u, v and w ∈ K , if f(u, v) ≥ 0 and f(u,w) < 0 then f(u, tv+(1−t)w) < 0

for all t ∈ (0, 1)] because:

f(u, tv + (1− t)w) = 〈Au, (tv + (1− t)w)− u〉,

Since f(u, v) ≤ 0 and f(u,w) < 0,

f(u, tv + (1− t)w) ≤ t〈Au, v〉+ (1− t)〈Au,w〉 < 0.

Then f(u, tv + (1− t)w) < 0

The assumptions (i),(ii), (iii) and (iv) are immediatr .

For (v) consider w ∈ R({sn}) and the associate sequence {un} with un ∈ Sn, tn =

‖un‖ −→ +∞ and wn = (1/tn)un
τ
⇀ w. Let v ∈ K ,then for un ∈ N large enough one

has v ∈ Kn = K ∩B(0, n). As un ∈ Sn, then f(un, v) = f(tnwn, v) ≥ 0, hence

〈A(tnwn), wn − t−1n v〉 ≤ 0

Passsing to the limit , we obtain

lim
n−→+∞

sup〈A(tnwn), wn − t−1n v〉 ≤ 0

Using condition (g) one has wn −→ w in norm; thus the condition (v) is satisfied

Let us show now that (iv) is satisfied for µ = 1.To see this , let us achieve then
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−w ∈ {0} ∩K∞. Fix v ∈ K. Since un ∈ Sn and un − w ∈ K, on has :

f(v, un − w) = 〈Av, un − w − v〉

= 〈Av, un − v〉 − 〈Av,w〉

= (〈Av, un − v〉 − 〈Av,w〉

≤ f(v, un)− 〈Av,w〉.

From (f) one has δ∗R(A)(w) := supζ∈R(A)〈ζ, w〉 then

supζ∈R(A)〈ζ,−w〉 ≤ 〈ζ,−w〉 ∀ζ ∈ R(A)

=⇒ 〈ζ,−w〉 ≤ 〈Av,−w〉 ∀f ∈ K

=⇒ supv∈K〈Av,−w〉 ≤ 0 −〈Av,w〉 ≤ 0 ∀v ∈ K

We deduce that−〈Av,w〉 ≤ 0.We obtain f(v, un−w) ≤ f(v, un) for each v ∈ K.This

concludes the proof.
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CONCLUSION

In this work, we have established existence result of variational inequalities non

coercive solution by using application of equilibrium problem.

Despite this analysis, the subject of application of equilibrium problem theory on

non coercive variational inequalities remains open to wide research and perspec-

tive such as:

- application of equilibrium problem theory on non coercive quasi-variational in-

equalities .

- application of equilibrium problem theory on non coercive parabolique varia-

tional inequalities.
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 الملخص:

بالقطع الناقص من الصنف الأول و الثاني  بإثبات وجود حل للمتراجحات المتباينة لقد قمنا في عملنا هذا 

 الغير إضراري عن طريق تطبيق مشاكل التوازن.

 المتراجحات المتباينة بالقطع الناقص من الصنف الاول، مشاكل التوازن  :الكلمات المفتاحية

  والثاني، التطبيق ، الاضطراري

Abstract : 

In this work  we  applied equilibrium problem theory to demonstrate the existence of on 

non coercive elliptic variational inequalities first and  second kind solution  

Keywords : elliptic variational inequalities of first and  second kind, coercive,  

equilibrium problem, application. 

Résumé : 

Dans ce travail on applique théorie du  problème  d’équilibre pour  démontrer 

l’existence de solution d’elliptique inéquation variationnelle  non coécrive première  et 

deuxième espace   

Mots clés : elliptique inéquation variationnelle  première  et deuxième espace, 

coécrive,  problème  d’équilibre, application  
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