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Introduction

Expander graphs are highly connected graphs which first appeared in con-
nexion with computer sciences: more precisely in constructing good networks
(it turned out that these object has been appeared earlier in a work of Kolo-
mogrov and Barzdin related to human brain). It is not hard to show that
expander graphs exist, but an explicit construction turned out to be a hard
problem. The first construction such graphs is due to Margulis, and uses
surprisingly deep tools from group theory and representation theory. More
recently the subject showed to have several other deep connections to num-
ber theory (Ramanujan’s conjectures, sieve methods and analytic number
theory), to group theory (property (τ), finite simple groups, the product
replacement algorithm), Riemannian geometry (the fundamental group of a
riemannian manifold). The most interesting point is that expander graphs (so
an object arising from computer science) can help in solving serious mathe-
matical problems (not only the converse!). This work is devoted to discussing
some aspects of the subject, mainly to show the richness of it. After intro-
ducing the main definitions and related notions, we give in the second part
an explicit construction of expander graphs based on Kazhdan property (T ).
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Chapter 1

Generalities on graphs

1.1 Basic definitions
Definition 1.1 A (simple) graph G is a pair (V,E), where V is a set and
E is a family of subsets of V all containing two elements.
Let G = (V,E) be a graph. The elements of V will be called the vertices of
G; we may denote V by V (G) if we want to keep track of G. The elements
of E will be termed the edges of G (we may write also E = E(G)). For
x, y ∈ V , we often write xy ∈ E or x ∼ y instead for {x, y} ∈ E(G), and we
say in this case that xy is an edge of G or also that the vertex x is adjacent
to y. We define δ(x) to be the set of all the vertices in G which are adjacent
to x, in other words

δ(x) = {y ∈ V | y ∼ x}.
The cardinality of δ(x) is known as the degree (or the valency) of x; we shall
denote it by d(x).

The graph G is said to be finite if V (G) is a finite set. In this case, G
could have at most

(
n
2

)
edges, where n = |V |. If G is finite, then d(x) is

finite for every vertex x of G. Note that we could have d(x) finite for vertex
x, without G being finite; in this case, G is termed locally finite.

In the sequel, we deal mainly with finite graphs, so, unless otherwise
stated, by a graph we mean a finite graph.

Every graph can be represented in the plan by associating a point (or a
labeled point) to each vertex, and joining two such points by an arc whenever
the corresponding vertices are adjacent. For instance, we have the following:
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(i) The complete graph Kn can be defined by taking V = V (Kn) to be any
set with n elements, and define an edge between any pair of distinct
vertices. Such a graph is characterized by the property d(x) = n − 1
for all x ∈ V . Obviously, we have E(Kn) =

(
n
2

)
. For instance, K20 can

be represented by

The complete graph K20.

(ii) We defined the cycle Cn to be the graph whose vertex set is Z/nZ, and
we join two vertices x and y whenever x = y + 1 or x = y − 1 (as
we shall see later, this is the Cayley graph defined on the cyclic group
Z/nZ by the generating set {1, n− 1}).

0

1

2

34
5

6

7

8
9 10

11

(iii) The Petersen graph:
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This graph is so important to the extent that a whole book has been
devoted to it!

Here are two basic nice general results on graphs.

Proposition 1.2 For every graph G = (V,E), we have∑
x∈V

d(x) = 2|E|

Proof. Let S = {(x, y) |xy ∈ E}. On the one hand, each edge xy ∈ E
induces exactly two elements (x, y) and (y, x) in S, hence |S| = 2|E|. On the
other hand, S can be partitioned as

S =
∐
x∈V
{x} × δ(x),

so
|S| =

∑
x∈V
|{x} × δ(x)| =

∑
x∈V

d(x);

the result follows.

Proposition 1.3 For every graph G with |V (G)| ≥ 2, there exist two
distinct vertices with the same degree.

Proof. We proceed by induction on n the number of vertices in G. Assume
n = 2, and put V (G) = {x, y}. If x and y are adjacent, then d(x) = 1 = d(y);
otherwise, d(x) = 0 = d(y); so, the claim is true in this case. Now, assume
the result holds for every graph with < n vertices. Let V (G) = {x1, . . . , xn},
and assume for a contradiction that d(x1) < . . . < d(xn). If d(x1) = 0, then
the graph G′ obtained from G by removing x1 has the same edges as G; it
follows by induction that there exist 2 ≤ i < j such that d(xi) = d(xj), a
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contradiction. Now, if d(x1) ≥ 1, , then d(x2) ≥ 2, . . . and so d(xn) ≥ n;
but xn could have at most n − 1 neighbors, a contradiction. This shows as
claimed that for some i 6= j, d(xi) = d(xj).

The graph G = (V,E) is said to be bipartite, if there exists a partition of
the vertex set V = V1∪V2 so that no two vertices x, y in the same component
are adjacent, that is if x ∈ V1 (resp V2) then y ∈ V2 (resp V1). Every bipartite
graph could be constructed as follows: consider two disjoint (non empty and
finite) sets X and Y , and joint the elements of X to that of Y according to a
given rule (the resulting graph has V = X ∪Y as a vertex set). For instance,
we can joint every element of X to every element of Y ; the resulting graph is
the complete bipartite graph Kn,m, where n = |X| and m = |Y |. Of course
this notion can be generalized in an obvious way to that of n-partite graphs,
for every n ≥ 2!

Let x and y be two vertices in the graph G. A path of length n from x to
y is a sequence w = x0, . . . , xn of vertices of G such that xixi+1 ∈ E(G) for
every i ∈ {0, . . . , n− 1}. We define d(x, y), the distance between x and y, to
be the minimum of the n’s for which there is a path of length n from x to y
(if there is no path between x and y, we set d(x, y) =∞).

The graph G is said to be connected if for all distinct vertices x and y in
G we have d(x, y) < ∞ (this means that there exists a path between x and
y).
Definition 1.4 Let k be a positive integer. The graph G is said to be k-
regular, if d(x) = k for every x ∈ V (G)

1.2 Adjacency matrices and eigenvalues
For every given (finite) set X, we define l2(X) to be the set of all mappings
f : X → C. Hence, l2(X) is a vector space over under the operators

(f + g)(x) = f(x) + g(x),
(λf)(x) = λf(x),

for f, g ∈ l2(X), λ ∈ C and x ∈ X. Moreover, l2(X) can be viewed as a
Hilbert space where the scalar product is defined as

< f, g >=
∑
x∈X

f(x)g(x)
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for f, g ∈ l2(X)
Clearly, this product is linear in f , and < f, g >= < g, f >. Moreover

< f, f >≥ 0 and < f, f >= 0 if and only if f = 0. To see that this normed
space is complete, consider a Cauchy sequence in l2(X). That is, for all ε > 0
‖ fn − fm ‖< ε for n,m large enough.
(fn(x)) is a Cauchy sequence in C, and it follows that fn(x) is convergence,
say to f(x), Now we have f(x) = limn−→∞ fn(x). Now, we have to see that
‖ fn − f ‖−→ 0.
Let ε > 0 we have ‖ fn− f ‖2≤ |X|maxx∈X |fn(x)− f(x)|. For every x ∈ X,
∃Nx such that |fn(x)− f(x)| < ε for n ≥ Nx. Let N = maxx∈X .
So n ≥ Nx, |fn(x)− f(x)| < ε for all x ∈ X
. In particular: supx∈X |fn(x) − f(x)| < ε . ‖ fn − f ‖≤ |x|ε, so l2(x) is
Hilbert space .

For a graph G = (V,E), we shall be interested in the Hilbert spaces l2(V )
and l2(E).

Definition 1.5 Consider the map A : l2(V ) −→ l2(V ) where Af : V −→ V
is defined Af(x) = ∑

y∈δ(x) f(y) we call A the adjacency operator of G, and
we can defined the adjacency operator by

(Af)(x) =
∑
y∈V

Axyf(y)

Proposition 1.6 the adjacency operator A on G is a self adjacent linear
map ,that is to say A is a linear map ,and < Af, g >=< f,Ag >for all
f, g ∈ l2(V )

Proof. Clearly, it is a linear map. we proved < Af, g >=< f,Ag > .
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< Af, g > =
∑
x∈V

(
∑
y∈V

Axyf(y))g(x)

=
∑
x,y∈V

Axyf(y)g(x)

=
∑
x,y∈V

f(y)Axyg(x)

=
∑
x,y∈V

f(y)Axyg(x)

=
∑
y∈V

f(y)
∑
x∈V

Axyg(x)

=
∑
y∈V

f(y)(Ag)(y)

=< f,Ag >

the result follows.

Definition 1.7 Let λ ∈ C, we say that λ is an eigenvalue for the adjacency
operator A, if there exists f 6= 0 ∈ l2(V ) such that

Af = λf

The latter amounts to saying λ is eigenvalue of the adjacency operator asso-
ciated matrix (Axy)x,y∈V .

Basic properties of eigenvalues
Let

λ0 ≥ λ1 ≥ .... ≥ λn−1

be the eigenvalues of A.

Proposition 1.8 let G be a finite k-regular graph with n vetices. Then

• λ0 = k ;

• |λi| ≤ k for 1 ≤ i ≤ n− 1 ;

Proof. we prove λ0 = k for f = 1 on V is an eigenfonction of A associated
the eigenvalue Af = λf ⇒ Af = λ and Af = ∑

y∈V Axyf(y) = k because G
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is k-regular graph.
So

λ = k

. Now,if λ is any eigenvalue, Then |λ| ≤ k.
Choose x ∈ V such that |f(x)| = maxy∈V |f(y)| .
Af = λf .If x ∈ V , then.

|λf(x)| = |(Af)(x)|
|λ||f(x)| = |Af(x)|
|λ||f(x)| = |

∑
y∈V

Axyf(y)|

|λ||f(x)| ≤
∑
y∈V
|Axy||f(y)|

|λ||f(x)| ≤ kmax
y∈V
|f(y)|

As f 6= 0, |f(x)| 6= 0 :
|λ| ≤ k

.

Proposition 1.9 Let G be a connected, k-regular graph on n vertices, the
following are equivalent:

(i) G is bipartite;

(ii) the spectrum of G is symmetric about 0;

(iii) λn−1 = k;

Proof. (i)⇒ (ii)
Assume that V = V+ ∪ V− is a bipartition of G.
We assume that f is an eigenfunction of A with associated eigenvalue λ.
Define g(x) = f(x) if x ∈ V+ and g(x) = −f(x) if x ∈ V−.
So (Ag)(x) = −λg(x) for every x ∈ V so the spectrum of G is symmetric.
(ii)⇒ (iii).
We have λ0 = k, λi ≤ k and the spectrum of G is a symmetric. So λn−1 = −k
(iii)⇒ (i).
Let f eigenfunction of A with eigenvalue −k. Let x ∈ V be such that
|f(x)| = maxy∈V f(y).
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f(x) = −(Af)(x)
k

= −
∑
y∈V

Axy
k
f(y) =

∑
y∈V

Axy
k

(−f(y))

. Therefore, f(x) = −f(y) for every y ∈ V . Such that Axy 6= 0, that is,
for every y adjacent to x, if a is vertex adjacent any such y, then f(a) =
−f(y) = f(x).
Define V+ = {y ∈ V, f(y) > 0} and V− = {y ∈ V, f(y) < 0},
because G is connected, this defines a bipartition of G; So the result.
Throughout; we denote by λ1(G) the eigenvalue of G which satisfies |λ| ≤
|λ1(G)| < k; we call the latter the second largest eigenvalue of G.

1.3 Expander graphs
Let G = (V,E) be a graph. For every pair (X, Y ) of disjoint subsets of V ,
we define E(X, Y ) to be the set of edges between X and Y , so

E(X, Y ) = {e ∈ E | ∃x ∈ X and ∃y ∈ Y with e = xy}.

Clearly, E(X, Y ) = E(Y,X), and E(X, Y ) reaches its maximal possible size
if every vertex in X is adjacent to every vertex in Y ; in this case |E(X, Y )| =
|X||Y |. Also, |E(X, Y )| = 0 if and only if X is isolated from Y .

Definition 1.10 Let G be a graph, let F ⊂ V .
The boundary of F , denoted by ∂F , it is defined to be the set of edges with
one end point in F and one end point in V�F . that is, ∂F the set of edges
connecting F to V�F .

Definition 1.11 For ε > 0, G is an ε-expander if for every subset F of V
with

|F | ≤ |V |2 = n

2 , |∂F | ≥ ε|F |

. ∂F is the boundary of F

Definition 1.12 Let (an) be a sequence of nonzero real numbres. We say
that (an) is bounded away from zero if there exists ε > 0 such that (an) ≥ ε
for all n.

9



Definition 1.13 (Expansion constant, Cheeger constant).
the expansion constant of a graph G is defined as

h(G) = min{|∂F |
|F |

/F ⊂ V, |F | ≤ |V |2 }

h(G) also is called a Cheeger constant.

Definition 1.14 Let k be a positive integer.
Let (Gn) be a sequence of k-regular graphs such that (Gn) −→∞ as n −→∞.
We say that (Gn) is an expander family if the sequence (h(Gn)) is bounded
away from zero (h(Gn) ≥ ε).

Let G be a graph.Give the multist of edges of G an orbitary orientation.
That is, for each e ∈ E, label one end point e+ and the other end point e−.
We call e− the origin of e, and e+ the extremity of e.
We first define a finite analogue of the gradient operator.
Let d : l2(V )→ l2(E) be defined for each f ∈ l2(V ) as

(df)(e) = f(e+)− f(e−).

We now define a finite analogue of the divergence operator.Let d∗ : l2(E)→
l2(V ) be defined for each f ∈ l2(E) as

(d∗f)(v) =
∑

e∈E,v=e+

f(e)−
∑

e∈E,v=e−
f(e).

Definition 1.15 Let G be a k-regular graph, and adjacency operator A. we
define the Laplacien operator by ∆ = k.Id− A and we also define

< ∆f, f >=
∑
e∈E
|f(e+)− f(e−)|2 =‖df‖2.

Theorem 1.16 Let G = (V,E) be a connected k-regular graph; and λ1 be
the second largest eigenvalue of G. Then

k − λ1

2 ≤ h(G) ≤
√

2k(k − λ1).
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Proof. We begin with the first inequality. Let e+, e− and f is a function on
V with ∑x∈V f(x) = 0, we have

‖df‖2 =< df, df >=< ∆f, f >≥ (k − λ1)‖f‖2 (1.1)

we apply this to a carefully chosen function. Fix a subset F of V and set

f(x) =

|V-F|, if x ∈ V ;
-|F|, if x ∈ V r F .

So

df(e) =

0, if e connects two vertices either in F or in V r F ;
±|V |, if e connects a vertex in F with a vertex in V r F .

Hence, ‖df‖2 = |V |2|∂F |, by (1.1), |V |2|∂F | ≥ (k−λ1)|F ||V rF ||V |. Hence,
|∂F |
|F |
≥ (k − λ1) |V r F |

|V |
.

If we assume |F | ≤ |V |2 , we get |∂F |
|F |

≥ (k − λ1)
2 ; hence, by definition

h(G) ≥ (k − λ1)
2 .

The second inequality, you can to see its proof in

Definition 1.17 If G is a connected k−regular graph, then k − λ1(G) is
called the spectral gap of G.

Corollary 1.18 Let (Gm)m≥1 be a family of finite, connected, k−regular
graphs,such that |Vm| → ∞ as m → ∞. The family (Gm)m≥1 is a family of
expanders if and only if there exists ε > 0, such that k − λ1(Gm) ≥ ε for
every m ≥ 1.

Proof.
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Chapter 2

Construction of expander
graphs

2.1 Some representation theory

Definition 2.1 Let Γ be a finite group. A representation of G′ is a group
homomorphism ρ : G′ −→ GL(V ) where V is finite dimensional vector space
over C. We define the degree of ρ to be the dimension of V as a vector space
over C.
Definition 2.2 Let ρ : G′ −→ GL(V ) be a representation of a group G′. If
in addition V has an inner product <,> such that

< ρ(g)v, ρ(g)w >=< v,w >

for all g ∈ G′ and v, w ∈ V, then we say that ρ is unitary representation with
respect to <,>, we say that <,> is G′−invariant if < g.v, g.w >=< v,w >
for all g ∈ G′ and v, w ∈ V. (g.v = ρ(g)(v) is an action of G′ on V ).
Example 2.1.1 : Let G′ be a finite group. Recall that l2(G′) = {f : G′ −→
C}. The complex vector space l2(G′) can be made into a representation of G′

via the right regular representation, R : G′ −→ GL(l2(G′)), defined by
(R(γ)f)(g) = f(gγ),

for all f ∈ l2(G′) and γ, g ∈ G′ .
If f, h ∈ l2(G′) and γ ∈ G′ , then
< R(γ)f,R(γ)h >=

∑
g∈G′

(R(γ)f)(g)(R(γ)h)(g) =
∑
g∈G′

f(gγ)h(gγ) =
∑
g∈G′

f(x)h(x) =< f, h >

12



Definition 2.3 Let G′ be a finite group. A matrix representation of G′ is a
group homomorphism π : G′ −→ GL(n,C). The degree of π is n.
We say that π : G′ −→ GL(n,C). is a unitary matrix representation of G′ if
π(g) is a unitary matrix for all g ∈ G′ .

Definition 2.4 Let G′ be a finite group and ρ : G′ −→ GL(V ) a represen-
tation of G′ .
We say that a subspace W of V is a G−invariant subspace, or subrepresen-
tation of V, if ρ(g)(w) ∈ W for all g ∈ G′ and w ∈ W.
The G−invariant subspace 0 and V are called the trivial subrepresentation
of V. We say that V is reducible if it contains a non trivial G−invariant
subspace W. Otherwise, we say that V is irreducible, or that V is an irrep.

Lemma 2.5 Let ρ : G′ −→ GL(V ) be a representation of a finite group G′ .
Then there exists a G−invariant inner product on V.

Proof. Let B = [v1, ...., vn] be any ordered basis for V. Define an inner
product V as follows. Given two vectors

v = a1v1 + a2v2 + ....+ anvnand w = b1v1 + ....+ bnvn,

define < v,w >= a1b1 + .... + anbn, ρ may not be unitary with respect to
this inner product. We use <,> to define another inner product on V with
respect to which ρ is unitary. For any v, w ∈ V let

< v,w >
′=

∑
g∈G′

< ρ(g)(v), ρ(g)(w) > .

ρ is unitary with respect to <,>

Definition 2.6 Let H be a Hilbert space over C. The unitary group on H
denoted U(H) is the subgroup of GL(H) formed by the surjective operators
that satisfy < Tu, Tv >=< u, v >, for all u, v ∈ H.

Definition 2.7 A unitary representation of a topological group G′ on a hilbert
space H is a group homomorphism π : G′ −→ U(H) which is strongly con-
tinuous.

Lemma 2.8 Let π : G′ −→ U(H) be a strongly continuous unitary repre-
sentation. Then the map G′ ×H −→ H : (g, ξ) −→ π(g)ξ is continuous.
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Proof. Let g0 ∈ G
′
, ξ0 ∈ H and ε > 0. Since each π(g) ∈ U(H) is an

isometry, if ‖ ξ − ξ0 ‖≤
ε

2 then ‖π(g)ξ − π(g)ξ0‖ <
ε

2 . By the continuity of
g −→ π(g)ξ0, there is an open neighborhood g0 ∈ U such that for all g ∈ U
we have ‖ π(g)ξ0 − π(g0)ξ0 ‖<

ε

2 .

We have that if (g, ξ) ∈ U × B(ξ0,
ξ

2) then ‖ π(g)ξ − π(g0)ξ0 ‖< ε. Thus the
map G′ ×H −→ H : (g, ξ) −→ π(g)ξ is continuous.

2.2 Kazhdan’s property (T)
Definition 2.9 (invariant vectors)
Let π : G′ −→ U(H) be a strongly continuous unitary representation of a
locally compact group G′ . For a given ε > 0 and K ⊆ G

′
, we say that a unit

vector ξ ∈ H is (ε,K)−invariant if

sup{‖π(g)ξ − ξ‖ : g ∈ K} < ε.

Finally, we say that π has non-zero invariant vectors if there exists η ∈ H
with η 6= 0 such that π(g)η = η for all g ∈ G′ .
We could require that

sup{‖π(g)ξ − ξ‖ : g ∈ K} < ε‖ξ‖.

Lemma 2.10 If ξ ∈ H is (ε, k)−invariant, then it is (ε,K ⋃
K−1)−invariant.

Proof. For each g ∈ K, since π(g−1) is an isometry we have

‖π(g)ξ − ξ‖ = ‖π(g−1)(π(g)ξ − ξ)‖ = ‖π(g−1)ξ − ξ‖.

Lemma 2.11 Suppose that ξ ∈ H is (ε,K)−invariant. Let n ∈ N, and

Kn = {k1....kn/k1, ..., kn ∈ K}.

Then ξ is (nε,Kn)−invariant.
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Proof. Let δ = sup{‖π(g)ξ − ξ‖ : g ∈ K} < ε.
For k = k1....kn ∈ Kn we have by the triangle inequality that

‖π(k)ξ − ξ‖ ≤ ‖π(k1...kn)ξ + π(k1...kn−1)ξ‖+ ‖π(k1...kn−1)ξ − ξ‖
= ‖π(k1...kn−1)(π(kn)ξ − ξ)‖+ ‖π(k1...kn−1)ξ − ξ‖
= ‖π(kn)ξ − ξ‖+ ‖π(k1...kn−1)ξ − ξ‖
≤ δ + ‖π(k1...kn−1)ξ − ξ‖,

by induction we get ‖π(k)ξ − ξ‖ ≤ nδ, the vector η is (nε,Kn)−invariant

Definition 2.12 Let G′ be a topological group. A subset H of G′ is a Kazh-
dan set if there exists ε > 0 with the following property: every unitary repre-
sentation (π,H) of G′ which has (H, ε)−invariant vector also has a non-zero
invariant vector.
ε > 0 is called a Kazhdan constant for G′ and H, and (H, ε) is called a
Kazhdan pair for G′ .
The group G′ has Kazhdan’s property (T). Or is a Kazhdan group, if G′ has
a compact Kazhdan set.

Remark 2.13 Let G′ be a topological group G
′
. For a compact subset H

and a unitary representation (π,H) of G′ , we define the Kazhdan constant
associated to H and π as the following non-negative constant:

K(G′ , H, π) = inf{max
x∈H
‖π(x)ξ − ξ‖ : ξ ∈ H, ‖ξ‖ = 1}.

We also define the constant

K(G′ , H) = inf
π
K(G′ , H, π).

Definition 2.14 (Property T)
A locally compact group G′ has property the property (T), or is a Kazhdan
group, if any unitary representation of G′ which has an almost invariant
vector has a non-zero invariant vector, that is to say, if for some ξ ∈ H and
some ε > 0,

sup
x∈H
‖ π(x)ξ − ξ ‖< ε ‖ ξ ‖

then there exists 0 6= v ∈ H so that π(x)(v) = v for all x ∈ H.Where H is
compact subset in G′
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Definition 2.15 A group G′ is amenable if it has a left-invariant mean (that
is a map µ : P(G) → [0,+∞] such that µ(S ∩ T ) = µ(S) + µ(T ) whenever
S and T are disjoint, and µ(gS) = µ(S) for all g ∈ G). The essentialy-
bounded measurable functions on G′ such that Λ(g.f) = Λ(f) for all g ∈
G′, f ∈ L∞(G′)

Theorem 2.16 Every abelian groups is amenable.

Proof.
See [15]

Proposition 2.17 Let G′ be a topological group. The pair (G′ ,
√

2) is a
Kazhdan pair, that is, if a unitary representation (π,H) of G′ has a unit
vector ξ such that

sup
x∈G′
‖π(x)ξ − ξ‖ <

√
2,

the π has a non-zero invariant vector. In particular, every compact group
has property (T).

Proof. Let C be the closed convex hall of the subset π(G′)ξ of H. Let η0
be the unique element in C with minimal norm, that is, ‖η0‖ = min{‖η‖ :
η ∈ C}. As C is G′−invariant, η0 is G′−invariant. We claim that η0 6= 0.
Indeed, set 2 =

√
2 − supx∈G′ ‖π(x)ξ − ξ‖ > 0. For every x ∈ G′ , we have

2− 2Re < π(x)ξ, ξ >= ‖π(x)ξ − ξ‖2 ≤ (
√

2− ε)2.

Hence, Re < π(x)ξ, ξ >≥ 2− (
√

2− ε)2

2 = ε(2
√

2− ε)
2 > 0. This implies

that
Re < η, ξ >≥ ε(2

√
2− ε)
2 .

Theorem 2.18 For a locally compact group G′ is amenable and has property
(T) if and only if G′is compact.

Proof. If G′ is compact group, then G
′ has property (T) by the previous

proposition, and is amenable.
Conversely, assume that the locally compact group G′ is amenable and has
property (T).
Since G′ is amenable, λG′ almost has invariant vectors. Hence, λG′ has non-
zero invariant vector. This implies that G′ is compact.
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Example 2.2.1 The groups Rn and Zn do not have property (T).

Theorem 2.19 Let G′1 and G
′
2 ba a topological groups, and let ϕ : G′1 −→ G

′
2

be a continuous homomorphism with dense image. If G′1 has property (T),
then G′2 has property (T).
In particular, property (T) is inherited by quotients: if G′1 has property (T),
then so does G′1�N for every closed normal subgroup N of G′1.

Proof. Let (H1, ε) be a Kazhdan pair forG′1, withH1 is compact. ThenH2 =
ϕ(H1) is a compact subset of G′2, and we claim that (H2, ε) is a Kazdhan pair
for G′2. Indeed, let ϕ a unitary representation of G′2 with a (H2, ε)−invariant
vector ξ. Then π◦ϕ is unitary representation of G′1, and ξ is (H1, ε)−invariant
for π ◦ϕ(G′1) = π(ϕ(G′1)). Since ϕ(G′1) is dense in G′2 and since π is strongly
continuous, ξ is invariant under π(G′2)

Example 2.2.2 GL(n,R) does not have property (T). This is because det :
GL(n,R) −→ R∗ is a surjective map onto a non-compact abelian group.

Definition 2.20 (Haar measure) A left-invariant Borel regular measure on
a locally compact group is called Haar measure.

Definition 2.21 (Lattice) Let G′ ba a locally compact group with Haar mea-
sure µ. A lattice in G′ is a discrete subgroup H < G

′ with finite covolume, that
is, such that the quotient space G′�H admits a finite volume G−invariant
measure. We write µ(G′�H) <∞.

Theorem 2.22 Let H be a lattice in a locally compact group G
′
. Suppose

that G′ has property (T). Then H has property (T) also.

Corollary 2.23 Any lattice in a Kazhdan group G′ is finitely generated.

2.3 Cayley graphs and property τ

Let G′ be a group, and let S be a non empty, finite subset of G′. We assume
that S is symmetric; that is S = S−1.

Definition 2.24 The Cayley graph Cay(G′, S) is the graph whose vertices
are the elements of G′ and there is an edge between x, y ∈ G′ if there exists
s ∈ S so that x = ys.
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Proposition 2.25 Let Cay(G′, S) be a Cayley graph; set |S| = k.

1. Cay(G′, S) is a simple, k−regular,

2. Cay(G′, S) has no loop if and only if 1 /∈ S.

3. Cay(G′, S) is connected if and only ifS generates G′.

Proof.

1. The adjacency matrix of Cay(G′, S) is

Axy =

1 if there exists s ∈ S, y = xs;
0 otherwise.

From this it is clear that Cay(G′, S) is simple and k−regular.

2. This result is obvious.

3.

Cay(G′, S) is connected⇔ ∃ a walk from each g ∈ G′ to 1

⇔ ∃sg,1, .....sg,k(g) ∈ S such that g =
k(g)∏
i=1

sg,i

⇔ G′ =< S >

Consider a Cayley graph Cay(G′, S) with the adjacency operator. Let f ∈
l2(G′), and let R be the right regular representation of G′ . Then

(Af)(x) =
∑
γ∈G′

f(xγ) =
∑
γ∈G′

(R(γ)f)(x).

Proposition 2.26 Let G′ be a finite group, and A the adjacency operator of
Cay(G′, S). If π1, ...., πk is a complete set of inequivalent matrix irrep of G′,
then A = d1Mπ1 ⊕ ....⊕ dkMφk

, where di is the dimension ofπi.

ππ =
∑
γ∈G′

π(γ).
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Proof. Let R be the regular representation of G′ . Then,first, we use theo-
rem.Let G′ be a finite group. Then there are only finitely many irreps of G′ ,
up to equivalence. Suppose that V1, ....Vn form a complete list of inequivalent
irreducible representations of G′ . Let di = dim(Vi) then l2(G′) is orthogo-
nally equivalent to d1V1 ⊕ .... ⊕ dnVn. Moreover, |G′| = d2

1 + .... + d2
n. And,

we have
A =

∑
γ∈G′

(R(γ)) ≈
∑
γ∈G′

(d1π1(γ)⊕ ....⊕ dkπk(γ)).

Corollary 2.27 Let G′ be a finite group and let S, S ′ be a symmetries in
G
′ such that S ⊂ S

′
. Let X = Cay(G′ , S) and X

′ = Cay(G′ , S ′). then
|S| − λ1(X) ≤ |S ′| − λ1(X ′).

Proof. Let A and A′ be the adjacency operator for X and X ′ , respectively.R
is unitary with respect to the standard inner product on l2(G′). If f ∈ l2(G′)
satisfies ‖f‖ = 1, then by the Cauchy-Schwarz inequality we have |v <
R(γ)f, f > | ≤ ‖R(γ)f‖‖f‖ = ‖f‖2 = 1 for all γ ∈ S ′ . Also if γ = γ−1, then
< R(γ)f, f >=< f,R(γ) >= < R(γ)f, f >, so < R(γ)f, f > is real.
For any γ, we have < R(γ)f, f > + < R(γ−1)f, f >=< f,R(γ−1)f > + <
f,R(γ)f >= < R(γ)f, f > + < R(γ−1)f, f >, so is real.
Let f ∈ l2(G′ ,R), we have

|S|− < Af, f > = |S| −
∑
γ∈S

< R(γ)f, f >

=
∑
γ∈S

(1− < R(γ)f, f >)

≤
∑
γ′∈S′

(1− < R(γ′)f, f >)

= |S ′| −
∑
γ′∈S′

(1− < R(γ′)f, f >)

= |S ′ |− < A
′
f, f >

therefore,
|S| − λ1(X) ≤ |S ′| − λ1(X ′).
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Definition 2.28 We say that G′ has the property (τ) with respect to a family
L = {Ni} for subgroups of G′ (G′ has τ(L) for short) if the trivial represen-
tation is isolated!. We say that G′ has property (τ) if it has this property with
respect to the family of all finite index subgroups.

Proposition 2.29 Let S be a finite generating set of G′ and L = {Ni} as
before. The following two assertions are equivalent:

i) G′ has property (τ).

ii) The graphs Cay(G′/Ni, S) from a family of expanders i,e.

h(Cay(G′/Ni, S)) ≥ ε

Proof. there exists ε > 0 such that any unitary representation of G′ with
a (ε, S)-invariant vector has a non-zero invariant vector. when expressed in
the contra positive, this means that if a unitary representation π : G′ −→
U(H) does not have a non-zero invariant vector, then no unit vector is (ε, S)-
invariant, and thus each ξ ∈ H satisfies

sup{‖π(s)ξ − ξ‖ : s ∈ S} ≥ ε‖ξ‖.

As S is finite, for all ξ ∈ H there exists s ∈ S such that

‖π(s)ξ − ξ‖ ≥ ε‖ξ‖.

Fix a particular, Ni and Si, and let Vi = G
′�Ni. Consider the representation

of G′ on H = l2(Vi) defined by (g.f)(x) = f(xg) for all f ∈ l2(Vi); x ∈ Vi.
Since Vi is a discrete, if a function f ∈ H is invariant, then

(g.f)(Ni) = f(Ni.g)

for all g ∈ G′ , where e ∈ Vi is the identity. Then action of G′ on Vi by right
multiplication is transitive, so we can make the argument Nig any element
of Vi. Thus f is constant.
So we consider the subspace

H0 = {f : Vi −→ C/
∑
x∈Vi

f(x) = 0}.

The only constant function f ∈ H0 is zero.
Thus the unitary representation π : G′ −→ U(H0) given by the right action
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of G′ on Vi does not have non-zero invariant vectors.
Now let Vi = A tB where |A| ≤ |B|, and write a = |A| and b = |B|.
The characteristic function of A in H0 is

fA(x) =

b, if x ∈ A−a, if x ∈ B.

By the discussion above, since (ε, S) is a Kazhdan pair for G′ , there is some
s ∈ S such that

‖s.fA − fA‖ ≥ ε‖fA‖.
We can easily evaluate both sides of this inequality. Since

(s.fA)(x) =

b if xs ∈ A−a if xs ∈ B.

We see that

(s.fA − fA)(x) =


a+ b if x ∈ B and xs ∈ A
−a− b if x ∈ A and xs ∈ B
0 otherwise.

Let ES(A,B) denote the set of edges between A and B that are due to the
generator s. Then

Es(A,B) = |{x ∈ B�xs ∈ A}
⋃
{x ∈ A�xs ∈ B}|,

or half that in the case that s2 = 1. In either case, we have that

|Es(A,B)| ≥ 1
2‖s.fA − fA‖

2�(a+ b)2.

One the other hand, ‖fA‖2 = |A|b2 + |B|a2 = ab(a+ b). So,

|E(A,B)| ≥ 1
2ES(A,B)ε2ab(a+ b)�(a+ b)2

= ε2

2 ab(a+ b).

Since we assumed |A| ≤ |B|, we have b

(a+ b) ≥
1
2 ,so this gives

|E(A,B)|
min{|A|, |B|} ≥

ε2

4 .
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As the partition V = A tB was arbitrary, we can conclude that

h(Cay(Vi, Si)) ≥
ε2

4 .
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Abstract.  This dissertation treats the notion of 
expander graphs; these are highly connected  graphs 
which  appeared first in computer sciences in connexion 
with constructing good networks, but stem in fact from  
deep pure mathematics. We focus on their construction 
via the Kazdan property (T). 
 
Résumé.  Ce mémoire traite la notion de graphes 
expanseurs; ceux-ci sont des graphes fortement 
connexes qui apparaissaient d'abord en informatique en 
connexion avec la construction des réseaux, mais sont 
en fait  intimement liés à la mathématique la plus pure 
et profonde.  On  adopte la construction de ces objets 
par la propriété (T) de Kazdhan. 
 
المذكرة مفهوم المتسعات، هذه الأخيرة هي بيانات جد تتناول هذه   ملخص .

  نشاء الشبكات، و لكنات اولا في علوم الحاسوب مرتبطة بمتصلة ظهر

  سنتناول بناء   مجردة وعميقة. في الحقيقة من مفاهيم رياضية جد تتجذر

      باستخدام  ىرية تمثيلات الزمر او بعبارة أخرالمتسعات من باب نظ

نخاصية كاجدا  
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