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Résumé

La sécurité des informations garantit que les utilisateurs autorisés les seuls peu-

vent accéder au contenu requis, ce qui implique la confidentialité des informations

échangées. La reconnaissance de l’identité d’une personne est un moyen de garantir

cet objectif. En effet, le très grand besoin de cette reconnaissance exige à l’homme de

mettre des moyens qui sont liées à des informations qu’un individu possède ou con-

nait. Cependant, pour contourner les limitations associées à de tels moyens, d’autres

moyens de sécurité ont été développés qui permet d’utiliser une information propre à

chaque personne. Cette nouvelle façon de reconnaissance est la biométrie.

La technologie biométrique a suscité une grande attention ces dernières années.

Dans les systèmes de sécurité biométriques, la reconnaissance de l’identité personnelle

dépend de leurs caractéristiques comportementales, biologiques ou physiques. Actuelle-

ment, certaine technologies biométriques sont développées et l’un des traits biométriques

les plus populaires est FKP (Finger-Knuckle-Print) en raison de sa convivialité et de

son faible coût. Cette thése présente une nouvelle approche dans laquelle l’apprentissage

en profondeur est appliqué pour créer un système biométrique multimodal basé sur des

images de modalités FKP qui extraient leurs caractéristiques par réseaux de PCANet

(Principal Component Analysis Network) et DCTNet (Discrete Cosine Transform Net-

work). Dans la structure proposée, PCA/DCT est utilisée pour apprendre des banques

de filtres en deux étapes, suivies d’histogrammes de hachage binaires simples et de blocs

pour la mise en cluster au niveau de vecteurs caractéristiques, qui est adoptée en tant

qu’entrée pour la classification. Ces classificateurs SVM (Support Vector Machine) et

KNN (K-Nearest Neighbor) sont utilisés pour les fonctionnalités PCANet et DCTNet,

respectivement. Pour améliorer les taux de reconnaissance, le système biométrique mul-

timodal a été généré par un schéma de fusion au niveau de score. En utilisant une base

de données FKP disponible, nous avons mené une série d’expériences d’identification

et les résultats obtenus montrent que la conception de notre système d’identification

permet d’obtenir un excellent taux de reconnaissance et une capacité anti-fraude élevée.
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Abstract

The security of information is ensuring that the only authorized users are able to ac-

cess the required contents, thereby entails confidentiality of exchange information. The

recognition of the person identity is one means to ensure this purpose. In fact, due

to the great need for such recognition, man has developed several ways that are related

to information’s that a person has or knows. However, to overcome the limitations

associated with such traditional means, other means of security has been developed that

allow obtaining the specific information of the person. It is the biometrics-based recog-

nition.

Biometric technology has attracted a great attention in recent years. In the biometric

security systems, the personal identity recognition depends on their behavioral, biolog-

ical or physical characteristics. Currently, a number of biometrics technologies are

developed and one of the most popular biometric trait is Finger-Knuckle-Print (FKP)

due to the user-friendly and the low cost. This thesis presents a new approach, where

the simple deep learning is applied to create a multi-modal biometric system based on

images of FKP modalities which extracted their features by Principal Component Anal-

ysis Network (PCANet) and Discrete Cosine Transform Network (DCTNet). In the

proposed structure, PCA or DCT is employed to learn two-stage of filter banks followed

by simple binary hashing and block histograms for clustering at feature vectors, which

is adopt as input for classification. Thus, the Support Vector Machine (SVM) and

K-Nearest Neighbor (KNN) classifiers are used for the PCANet and DCTNet features,

respectively. To improve the recognition rates, a multimodal biometric system based on

matching score level fusion scheme was generated. Using an available FKP database,

we conducted a series of identification experiments and the obtained results show that

the design of our identification system achieves an excellent recognition rate and having

a high anti-counterfeiting capability.
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Chapter 1

INTRODUCTION

T
he security of information is ensuring that the only authorized users are able to access

the required contents, thereby entails confidentiality of exchange information. It is es-

sentially provided by authentication user whereby an individual identity is verified through

traditional means such as: username and password, smart-cards, keys, etc. With increasing

adoption of technologies in the world, the conventional authentication methods no longer

comply with the stringent authentication requirements [1].

The problem of information security is the main concern of users in all organizations

and governments. For ensuring that, they focus their attention to create ways are able to

protect the contents available in digital media, especially. Content owners are losing billions

of dollars annually in revenue due to the illegal copying and sharing of information. In order

to address this growing problem, authentication systems are being deployed to regulate the

duplication and dissemination of content [2]. The critical component of this system is user

authentication which determines whether a certain individual is indeed authorized to access

the content available in a particular digital medium. In a generic cryptographic system, the

user authentication method is based on [2]:

• Using an acquaintance: The first way to verify or determined the identity of an indi-

vidual is based on the knowledges of the user “What user knows?” [2], these are usually

a password, PIN (Personal Identification Number), etc. For instance, most passwords

are so simple, that they can be easily guessed or broken by simple dictionary attacks.

Simple passwords are easy to guess and, thus, compromise security; complex pass-

words are difficult to remember and, thus, are expensive to maintain. Some users tend

to “store” complex passwords at easily accessible locations. Furthermore, most people

use the same password across different applications; an impostor upon determining a

single password can now access multiple applications. This type of security is used to

access online services, building, computer and network, etc.

1
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• Using a possession: The second way is based on the possession of a “What user has?”

[2] as a smart card, badge, document, key. However, for the token based method, these

physical elements can be easily used by other person or stolen, lost or falsified. So some

users are able to falsify the identity of the legitimate person and to trick a system.

• Using a biometric: In contrast to both of these methods, biometrics appears “What

user is?” to be a solution to overcome restrictions of conventional authentication meth-

ods and biometric authentication cannot be forgotten or lost [2]. Furthermore, in the

authentication process, providing biometrics to the system is the proof of the claimant’s

presence. Unlike the password or ATM card, a biometrics is more difficult to copy or

to falsify. Additionally, a biometrics can be combined with password or/and an ATM

card to form two or more authentication factors. By doing so, the authentication rate

can be further enhanced without having to replace these existing systems [1, 2].

Biometrics-based personal authentication systems have recently gained intensive research

interest due to the unreliability and inconvenience of traditional authentication systems. Bio-

metrics recently became a vital component of any effective person identification solutions as

biometric traits cannot be forged, shared, lost, duplicated, stolen or even forgotten [2, 3, 4].

The following table (Table. 1.1) presents comparison between different traditional authenti-

cation and biometric.

Methods Lost Steal Copy Forget

ID/Badge Yes Yes Yes Yes
U/Password Non Non Yes Yes
Key Yes Yes Yes Yes
Biometric Non Non Non Non

Table 1.1: Comparison between different traditional authentication and biometric.

1.1 Biometric Security

Biometric security is one of the best primary functions of security system which is based

on the measurement and statistical analysis of persons physical or behavioral characteris-

tics, such as face, fingerprint, hand geometry, iris, DNA, signature, voice, etc [5, 6], that

can be used for automated recognition. Biometric technologies offer several advantages over

traditional authentication schemes and they have more reliable characteristics than other

methods. One of the advantages of biometric methods is the requirement of the person to
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be presented at the time of authentication. Furthermore, it is difficult to attack biometric

systems because it requires more time, money, experience and it is unlikely for a user to

repudiate having accessed the content using biometrics. Thus, a biometrics based authenti-

cation scheme is a powerful alternative into security systems because has a several reasons

for uses such as [7]:

1. High security and difficult to fraud.

2. Comfort by replacing traditional methods.

3. Security and confidence of biometric authentication.

For instance, biometrics can be used in conjunction with passwords to enhance the security

offered by the authentication system. All biometric technologies differ according to security

level, social acceptability, reliability, cost, performance, etc. The most acceptable biometric

technologies are those extracted from hand due to their higher discriminatory which based

on the fact that each human hand is highly unique. In our days, the physical technology,

which has been attracting much attention, is the Finger-Knuckle-Print (FKP) modality [8].

In this modality, several features can be used such as structure and shape (e.g. length, width

and thickness, joints); characteristics of the skin surface such as creases and ridges in fingers.

There are several main factors which make a person’s FKP unique, among these factors, the

ease of the use as well as the rich texture information seems to be the most significant, which

makes the biometric system work with higher accuracy.

1.2 Objective and Contributions

Biometric is a potential technology powerful to meet the needs of privacy and security

of the public information. Indeed, among the methods found in the literature that are used

to the identification of people, those based on the finger. For several years, the fingerprint

has been key feature of identification systems. But recently, the identification based on the

Finger-Knuckle-Print (FKP) motivated a large number researchers. In fact, biometric sys-

tems based on the FKP, are accepted in access control applications. On the other hand, the

finger joint is better adapted in these cases, as these systems are now considered appropriate

because they do not cause users anxiety.

In pattern recognition system, feature extraction is the process by which key features

are selected or improved for the sample (generally sample is in form of image). In biomet-

rics systems, as one of pattern recognition applications, the feature extraction process is
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based on a set of algorithms; the method varies depending on the type of image characteris-

tics such as texture, line and shape. In recent years, high hopes were invested in biometrics

systems, mostly thanks to modern algorithms like machine learning and artificial intelligence.

An overview of recent publications of the last decade does not show much of works that

are based on deep learning feature extraction for recognition systems. Most of the systems

developed are based on the feature extraction of this modality, at the external level from

the finger image. However, these fingers can be combined to improve the performance of the

biometric system.

The objective of this thesis is realized a multimodal biometric system that uses a bio-

metric modalities of the finger joints. The main goal is trying to design a biometric system

based on new machine learning methods which are deep architectures. The major motiva-

tion behind this objective is the hierarchical learning structures of this method which have

powerful ingredients to create a more sophisticated identification system dedicated to image

classification, which could serve as a use to train and to adapt with different traits biomet-

rics. This work will be to provide answers to essential research questions, such as: To what

extent does image quality affect the image classifications generated by deep learning mod-

els? Are deep model architectures more robust than others classical methods against various

challenges? How should image descriptors be computed? Answers to those and similar ques-

tions are in our opinion crucial for a better understanding of deep learning-based biometric

recognition.

To achieve this goal, firstly, we choose a best classifier and fusion strategy. On the other

hand, we propose to use several methods of classification of the biometric characteristics

(algorithms) for each finger. In our work, we propose a multimodal biometric system, where

information from the different FKP modalities are fused through matching score level to

improve the identification rate. In this thesis, we propose a method to increase the perfor-

mance of a multimodal biometric security system. The main contribution lies in the efficient

consolidation of information obtained from using the deep learning processing for features

extraction. The detailed contributions of this thesis are summarized below:

• In this doctoral thesis, we develop a multimodal biometric system based on FKP bio-

metric traits to meet the recent extensive security requirements for high performance.

This system can alleviate most of the drawbacks associated with unimodal biometric

systems.

• The main feature of multimodal biometric system is information fusion that is, what

information needs to be consolidated and how? Thus, in this doctoral research, we



Chapter 1. INTRODUCTION 5

use match score level fusion which is relatively most successful approach to combine

multimodal biometric information.

• In order to increase the level of confidence, we employ PCA-Network and DCT-Network

architectures allow to extract deep features for biometric authentication. Further, more

improvement in terms of performance level and the outcomes can be obtained through

these methods.

• To demonstrate the advantages of proposed methodology over other multimodal bio-

metric systems, we test our system by the FKP database to compare the results with

various FKP recognition systems.

1.3 Organization of Thesis

The thesis has been structured as follows. Chapter 2 describes a general concepts, history

and applications of biometric and it also gives a detailed idea about the different biometric

technologies. After that, the description of biometric systems and the functionality principle

of each biometric system are presented. Expressing the performance of a biometric system

requires description of some parameters in this chapter. The end of chapter highlighted at

shortcomings and imperfections in biometric recognition system based on single source of

biometric information.

The Chapter 3 is devoted to the presentation of multimodal systems and the necessity of

them, moreover we present the principles data fusion and different scenarios of multimodal

biometric systems. In this chapter, the fusion strategies as well as the different levels of

fusion are described with give researches for that. This chapter also discusses on the design

issues which involved in multimodal system development process and challenges.

Chapter 4 describes the concept of biometric features, and different types of features

such as: textures, lines and shapes. Also, it gives a detailed idea about the feature extrac-

tion methods. Moreover, this chapter presents the description of classical and deep learning

methods as gives the principle challenges to developing of traditional algorithms to solve these

limitations of classical methods requires uses of deep learning and to benefit its strengths.

The last of chapter, we justify our choice to the simple deep learning methods and their

hierarchy structures, where can use for artificial intelligence applications.

FKP is the most common biometric identifier and it is used by most of the biometric

researchers for identity authentication. In Chapter 5, the proposed biometric methodology is

illustrated in system based on FKP technology. All different processes and proposed fusion
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strategy for our multimodal system are also described in more detail in this chapter.

The efficiency of the proposed biometric identification system were tested in Chapter 6.

For that, Chapter 6 shows the outcomes of the experiments performed on FKP database

frameworks. Also, this chapter include an experimental setup for selection of parameters

and adapt our algorithms. After that, the results of uni-modal and multimodal system are

presented. Through our experimental results and literature researches, we made comparative

studies between classical methods and deep learning methods, which can be demonstrated

the feasibility and effectiveness of our proposed biometric systems.

Finally, Chapter 7 summarizes the thesis and the contribution and presents some conclud-

ing remarks. Possible future directions of this research are also discussed in this chapter.



Chapter 2

BIOMETRICS TECHNOLOGIES

OVERVIEW

2.1 Biometrics Overview, History and Applications

B
iometric is derived from the Greek words, composed by two parts: “Bios” meaning

life and “metros” meaning measures [9], biometric system is defined as “a system which

automatically distinguishes and recognizes a person as individual and unique through a com-

bination of hardware and pattern recognition algorithms based on certain physiological or

behavioral characteristics that are inherent to that person” [10].

Using parts of the human body as a mean to identity authentication goes back to very

old times. It is reported two thousand years ago that in ancient Babylon, merchants sealed

deals with fingerprints on clay tablets to record their trading transactions [11]. The Chinese

in the 3rd century B.C. used thumbprints and fingerprints on clay tablets as signatures to

seal the official documents. While in the 14th century A.D., various official document papers

dated in Persia bore fingerprint impressions [12, 13].

A systematic and scientific basis for human identification started in the 19th century

when a French police officer, Alphonse Bertillon [14] invented a number of anthropomorphic

measurements, called Bertillonage, for identifying criminals. His system was built on the

assumption that the body of people do not change in basic characteristics. Bertillon’s sys-

tem involved measuring five primary measurements of body parts such as head length; head

breadth; length of the middle finger and the length from elbow to end of middle finger (see

Fig. 2.1). Afterward, every major heading was additionally classified into three categories of:

small, medium and large. The length of the little finger and the eye color were also recorded.

7
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Figure 2.1: Bertillonage or anthopometric measurements (from [14]).

Biometric system is essentially a pattern recognition system which makes a personal iden-

tification decision by measuring the specific physiological or behavioral characteristics. These

are usually presented by the user when comparing biometric features with the stored feature

of user. Biometric is a constantly growing technology which has been widely used in many

applications. It can help to make operations, transactions and everyday life both safer and

more convenient like what we see today. Biometrics have been extensively applied in various

fields not just to identify a criminal. According to International Biometric Group (IBG), the

biometrics worldwide market was expected to expand to a very high values by next years.

The usage of biometrics not only has been driven by the public sector, the private sector has

also increasingly shown its interest in such applications. These applications of biometrics are

illustrated in the Fig. 2.2 and can be divided into four main groups:

1. Government applications: The key application for biometric technology is helping

automatic control process such as national identity card, driver’s permit, passport,

border control, airports, etc.
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2. Justice/Law applications: Biometric technology and law enforcement have many

important identity management such as body identification, criminal investigation,

terrorist identification, etc.

3. Logical/Physical Access applications: Major area of biometric technology appli-

cation. Whether, it’s securing the apps on your smartphone, computer and network

access, or home, car, hotel, etc.

4. Commercial applications: Such as credit card, bank account, cell phone, medical

registry management, distance learning, etc.

Figure 2.2: The applications of biometrics.

2.2 Classification of Biometric Modalities

The goal of this section is to introduce the variety of different biometric traits, by dis-

cussing the principles of acquiring biometric information from humans, and enabling the

reader to identify these concepts for each of the traits introduced. Biometric modalities used

different scientific references for classified, and can be evaluated into two groups:

• Intrusive techniques: These techniques require physical contact with the individual to

recognition, such as fingerprints, palm prints or the hand geometry, etc.
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Face High Low Med High Low High Low
Finger print Med High High Med High Med High
Hand geometry Med Med Med High Med Med Med
Keystrokes Low Low Low Med Low Med Med
Hand veins Med Med Med Med Med Med High
Iris High High High Med High Low High
Retinal scan High High Med Low High Low High
Signature Low Low Low High Low High Low
Voice Med Low Low Med Low High Low
Facial thermograph High High Low High Med High High
Odor High High High Low Low Med Low
DNA High High High Low High Low Low
Gait Med Low Low High Low High Med
Ear Canal Med Med Low Med Med High Med

Table 2.1: Comparison of biometric technologies [3].

• Non intrusive techniques: These techniques do not require the cooperation of the indi-

vidual. Their application can be done remotely using sensors that do not require direct

contact with the user.

Further, we are pointed out that one of the basic challenges in research on biometrics is

finding adequate modalities, fulfilling the main aspects of ascertainability. There are seven

factors defined by Jain, Bolle, and Pankanti [15] that determine the suitability of a physical

or a behavioral trait to be used in a biometric application. From [3], the Table. 2.1 presents

a brief comparison of the physiological and behavioral biometric techniques based on these

seven factors described:

∗ Universality: each person accessing the application should possess the trait.

∗ Uniqueness: the given trait should be sufficiently different across individuals comprising

the population.

∗ Permanence: the characteristic should be sufficiently invariant with respect to the match-

ing criterion over a period of time.

∗ Collectability: the characteristic should be measured quantitatively.

∗ Performance: the recognition accuracy and the resources required to achieve that accu-

racy should meet the constraints imposed by the application.
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∗ Acceptability: individuals in the target population that will use the application should

be willing to present their biometric trait to the system.

∗ Circumvention: this reflects how easily the system can be fooled using fraudulent meth-

ods.

The choice of different biometric characteristics depends on that particular application

scenario. There exists three principles for obtaining information about personal traits for

measurement of biometrics.

2.2.1 Physiological Biometric

Figure 2.3: Various physiological biometric characteristics.

Physiological biometrics refer to physical measurements of the human body, including

face, fingerprint, hand-geometry, ear, iris, retina, DNA, palmprint, hand and finger vein etc.

The recognition system based on physiological characteristics has a relatively high accuracy.

In addition, the use of physiological biometrics introduce reliable identification since the body

characteristics are irreplaceable. Fig. 2.3 shows physiological biometric characteristics which

can be used in biometric systems for person authentication. Next we list some example of

those biometrics:
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a. Fingerprint Recognition:

Fingerprint recognition is the most widely used method of biometric authentication

[16]. The technology uses unique features from the fingerprint to develop the template.

These features are known as minutiae, which are a combination of ridge bifurcations

and ridge endings. The template only uses the information gathered describing the

minutiae of the fingerprint and not the entire image of the fingerprint [16]. This is

important to note because it is not possible to reconstruct an image of the fingerprint

from the information stored in the database.

There are advantages and disadvantages to a fingerprint biometric authentication

system. One advantage of fingerprint recognition is that it has a long history of use.

In relative terms, the use of fingerprints as an automated authentication tool is new

compared to the centuries of manual fingerprinting of individuals for identification.

Other advantages include factors such as the ability to use multiple fingers to scan for

a template, the fingerprint is permanent and it does not change patterns with age, it

is easy to use, and the sensors are inexpensive [11]. The disadvantages of fingerprint

recognition include issues with public perceptions about its use such as touching the

sensor will spread germs and the scanned image of the fingerprint could be reproduced

or used for criminal investigations [11]. Research has also been performed on print

quality in elderly individuals, which shows that as people grow older, there is a higher

rate of reject rates in sensor recognition.

b. Face Recognition:

Humans have been using facial recognition to identify each other as a part of daily

life for centuries. There are two categories of facial recognition: facial appearance

and facial geometry [16]. The method of facial appearance is also called the eigenface

method because it collects a number of face images that form a two dimensional gray-

scale image which in turn produces a biometric template. Facial geometry gathers

measurements of the face that do not change over time such as the distance between

the eyes, the length and width of the face. In contrast to fingerprint biometrics, there

is no contact made in facial recognition biometrics. The disadvantage of this type of

biometric is the condition of the environment while obtaining the sample can affect the

quality of the image poor lighting, camera quality, and obstructions on the face by the

individual requesting access can make a significant difference in the initial enrollment.

c. Hand and Finger Geometry:

Hand geometry recognition systems are based on a number of measurements taken

from the human hand, including its shape, size of palm, lengths and widths of the

fingers. The geometry of a hand and fingers is not very distinctive, and cannot be used

for systems requiring identification of an individual from a large population [15].
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d. DNA Recognition:

Among the various known types of biometric traits, deoxyribonucleic acid (DNA) is

the most reliable personal identification biometric trait. DNA is the genetic material

found in most organisms, including human beings, and remains unchanged during a

person’s life or even after the death. DNA based identification is the most accurate

biometric technology that never fails. DNA can be easily found in the blood, urine or

any other liquid that comes out from a human body. The results of a DNA test are

very fast and can be obtained within one to two hours. DNA is currently used mostly

in the forensic applications for person recognition.

e. Retina Recognition:

In the retinal scan technology retina of an individual is used for his/her identification.

Retina is the surface on the back of the eye that processes light entering through the

user. The basis of this technology is blood vessel pattern in the retina of the eye, which

forms a unique pattern. This blood vessel pattern in the retina of an individual can

be used as tamper proof personal identifier. The pattern of the blood vessels is unique

and stays the same for a lifetime. However, it requires about 12-15 seconds of careful

concentration to take a good scan. It is claimed to be the most secure biometric since

it is not easy to change or replicate the retinal vasculature [16].

f. Iris Recognition:

Iris recognition uses the pattern of the iris as a unique identifier. Although the

coloration of the iris is found to be genetic, the pattern of the iris results from the

development process of the eye during the prenatal stage of growth [11, 16]. A high

resolution digital camera is used as the sensor for acquiring the image of the iris. An

individual must line his or her eye up within a field of view in order to minimize

the amount of noise (i.e., eyelashes, eyelids) in the image. Just as with the facial

recognition biometric, there is no physical contact with a sensor. Noise such as eyelids,

eyelashes, and contact lenses can decrease the accuracy of the biometric. There is also

a negative public misperception that the eye is scanned with a light source, and that it

would damage the eye [11]. Although the automated technology is new and consumer

education is needed to reduce fears.

g. Ear Recognition:

Another biometric authentication technique is conducted which based on the recog-

nition of the unique shape and appearance of human being ear. Naturally, a person is

born with a visual shape of his/her ears. However, human ear is not subject to change

while a person’s growth and even aging [15]. It is based on matching the distance of

salient points on the pinna from a landmark location on the ear. The evidence from

study [15] supports the hypothesis that the ear contains unique physiological features.
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It has a dependable stability which increases its level of security as a proposed method

for the security identification/verification of individuals.

h. Palmprint Recognition:

The palms of human hands contain patterns of ridges and valleys much like the

fingerprints. The area of the palm is much larger than the area of a finger and as a

result, palmprints are expected to be even more distinctive than the fingerprints [17].

i. Hand and Finger Vein:

The pattern of heat radiated by the human body is a characteristic of an individual

and can be captured by an infrared camera [18].

2.2.2 Behavioral Biometric

Figure 2.4: Various behavioral biometric characteristics.

Behavioral characteristics are based on an action taken by a person. On the other hand,

behavioral biometrics are based on measurements and data derived from an action and in-

directly measure characteristics of the human body. Fig. 2.4 shows behavioral biometric

characteristics which can be used in biometric systems for person authentication. The fol-

lowing are the examples of biometric techniques based on behavioral characteristics:

a. Gait Recognition:

Is the way one walks and is a complex spatio-temporal biometric. Gait is not

supposed to be very distinctive, but is sufficiently discriminatory to allow verification

in some low-security applications [15].
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b. Signature Recognition:

The way a person signs his/her name is known to be a characteristic of that indi-

vidual. Signatures change over a period of time and are influenced by physical and

emotional conditions of the signatories [19].

c. Voice Recognition:

Voice recognition systems use the characteristics of the voice in order to recognize

a person. The behavioral part of the speech of a person changes over time due to age,

medical conditions, emotional state, etc. Therefore, voice is not very distinctive and

may not be appropriate for large-scale identification [20].

d. Keystroke Dynamics:

It is hypothesized that each person types on a keyboard in a characteristic way. It

is not unique to each individual but it offers sufficient discriminatory information to

permit identity verification [21].

2.2.3 Soft Biometric

Figure 2.5: Various soft biometric characteristics.

Soft biometric characteristics such as: gender, weight, height, color, ethnicity, age, scar,

eye color, marks and tattoo, etc; cannot provide reliable user recognition because they are not

distinctive and permanent. Recently, soft biometric traits are started to be used in person
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recognition along with some physiological or behavioral characteristics and can complement

the identity information provided by the primary biometric traits [2]. Fig. 2.5 shows soft

biometric characteristics which can be used in biometric systems for person authentication.

2.3 Biometric Systems and Functionalities

A biometric system is basically a pattern recognition system that can recognize a person

based on specific features by acquiring biometric data from an individual, extracting a feature

set from the acquired data, and comparing this feature set against the template feature set in

the database [3]. Thus, biometric system components can be divided into five main modules

according to their functionalities.

1. The sensor module: represents the interface between the user and the system acquires

the biometric data from an individual, through a variety of instruments based on the

type of biometrics such as: camera, fingerprint sensor, speaker, etc.

2. The feature extraction module: extracts features from the acquired biometric trait,

which ideally should be unique for each person. Also it includes quality assurance to

determine if the quality of the biometric is good enough to be used in the process. The

feature set obtained during enrollment is stored in the system database as a template.

3. Database unit: is important component for any biometric system where all the enrolled

biometric templates are being stored and where the templates are being retrieved from

in the authentication process.

4. The matching module: compares the newly acquired biometric template with the tem-

plate stored in the database and determine the degree of similarity/dissimilarity be-

tween the two feature sets.

5. The authentication decision: is taken at the decision module based on this degree of

similarity/dissimilarity and on decision rules determines either if the presented biomet-

ric is a genuine/impostor.

A biometric systems function through the enrolment and recognition phases. However, the

recognition can be used for identification and verification modes. Fig. 2.6 illustrates biometric

enrolment, biometric verification and identification processes in a biometric system.
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Figure 2.6: Biometrics Systems enrolment, verification and identification.

2.3.1 Enrollment Phase

Is an apprenticeship phase, which is used to create the reference database from biometric

characteristics of individuals. During this phase, the biometric characteristics are captured

by sensor then represented in signature forms, and finally stored in the database.

2.3.2 Recognition Phase

− Verification Mode:

Person verification answers the question, “Am I who I claim to be?” and is the pro-

cess of establishing the validity of a claimed identity by comparing a verification tem-

plate to an enrollment template [4]. Verification requires that an identity be claimed,

after which the individual’s enrollment template is located and compared with the

verification template. Thus the comparison needed for verification is termed as 1 × 1

comparison [22]. During verification, usually some knowledge about the identity (such

as ID) is given to the system along with the biometric identifier. This additional factor

uniquely presents an enrolled identity and extracted biometric features to the system

database and hence an associated biometric machine representation [23].
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− Identification Mode:

Biometric identification establishes a person’s identity by answering the question

“Whose biometric data is this?” by searching the entire templates in database. The

system conducts a 1 ×N comparison to establish an individual’s identity [3]. In [22],

the authors mentioned two types of identification systems: positive identification and

negative identification.

They define a positive identification systems as those systems which are designed to

find a match in a biometric authentication system to answer the question “Who am I?”

[22]. An example of a positive identification system would be an access control system

in an office setup to confirm that the employee is on the designated access list of the

office.

Negative identification [22] systems ensure that a person is not present in the

database. This can be used in benefits programs to prevent users from enrolling under

multiple identities.

2.4 Performance Evaluation of Biometric Systems

The performance of biometric systems is an important issue in high security applications.

Where, the matching between the stored template and the template constructed generates a

confidence score to verify whether they are an impostor or a genuine user.

2.4.1 Error Rates

For each type of decision, there are two possible outcomes, true or false. Therefore, there

are a total of four possible outcomes: a genuine is accepted (True Acceptance (TA)) or a

False Rejection (FR) occurred, and an impostor is rejected (True Rejection (TR)) or a False

Acceptation (FA) occurred [4]. Moreover, there is always overlap region between the score

distributions of the genuine user and impostor for a practical biometric system as shown in

Fig. 2.7. It causes the difficulty in classifying the claimant into the correct categories. In

evaluating the performance for any biometric based recognition system, there are mainly two

types of factors: False Acceptance Rate (FAR) and False Rejection Rate (FRR). A verifica-

tion threshold, T0 is needed in the overlap region as a reference to do the classification.

According to the distribution shown in Fig. 2.7, T0 is used to establish the security

level of a biometric systems. It can be seen that for those who obtain a similarity matching

score less than T0 will be classified as an impostor. If one is verified with the similarity

matching score higher or equals to the threshold, his (her) claimed identity will be accepted

as a genuine. A higher T0 represents a High-security level. Undoubtedly, less impostors will
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Figure 2.7: Distribution of curves impostor and genuine users.

get through verification but a genuine user with score less than T0 will also be rejected at the

same time. Conversely, by adjusting the threshold to a lower level will reduce the number of

the genuine users being falsely rejected. However, this will also cause an increase of falsely

accepted impostors. In brief, there is a trade-off between these two types of errors.

1. False Accept Rate (FAR): is defined as the probability of an impostor being accepted

as a genuine individual [4]. That is, in a biometric authentication system, the FAR is

computed as the rate of number of people is falsely accepted FA over the total number

of the impostor (NI) for a predefined threshold T0. This is denoted

FAR =
FA(T0)

NI
× 100%.

2. False Rejection Rate (FRR): is defined as the probability of a genuine individual

being rejected as an impostor [4]. That is, in a biometric authentication system, the

FRR is computed as the rate of number of people is falsely rejected FR over the total

number of total genuine user (NG) for a predefined threshold T0. The formula for the

FRR is denoted

FRR =
FR(T0)

NG
× 100%.

3. Genuine Accept Rate (GAR): is used to measure the accuracy of a biometric system

[4]. It is measured as the rate of number of people is genuinely accepted over the total

number of enrolled people for a predefined threshold. In other words, GAR can be
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obtained by subtracting the number of falsely rejected people from the total number

of genuine people. The GAR is denoted

GAR = 1− FRR(%).

4. Equal Error Rate (EER): is a point defines the trade-off between the false rejects

and the false acceptances, based on FAR and FRR. Thus, EER is a common way of

evaluating the performance of a biometric system where low value of EER is considered

to represent a biometric system with highly accurate performance. In general, the EER

is the value on FFR = FAR.

Other errors that may arise in a biometric system are Failure To Capture (FTC) and

Failure To Enrol (FTE). These two errors are crucial for live applications. The FTC error

takes place when the data acquisition unit is not capable to capture a satisfactory quality

of the biometric trait. Whilst, the error of FTE usually occurs when the user tries to enrol

in the recognition system are unsuccessful. All these factors are dependent on the decision

threshold T, and by varying decision threshold we can obtain a multiple operating points of

the system.

2.4.2 Performance Curves

Figure 2.8: ROC Curves.

The values of the performance metrics are usually plotted in different graphs or curves

to represent the recognition accuracy of the biometric system. The most commonly used

plotting curve is the Receiver Operating Characteristics (ROC) curve [24]. It is as shown in

Fig. 2.8, the ROC curve plots the GAR against FAR in a semi-logarithmic scale in biometrics

research field. Also can be represented the variation of the FRR as a function of FAR; this

graph graphically represents the performance of a verification or identification system. The

equality error rate (EER) squares at the intersection of the ROC curve with the first bisector.
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It is frequently used to give an overview of the performance of a system. It is observed that

the curve illustrates in the Fig. 2.8.

Another commonly used curve is Cumulative Match Characteristics (CMC) curve [25]

which is mainly used for closed set identification. The Fig. 2.9 illustrates an example for

CMC curve. This curve gives the percentage of people recognized according to a variable

called rank. This curve is associated by two criteria Rank of Perfect Rate (RPR) and Rank-

One Recognition (ROR); ROR represents the most commonly used measure but it is not

always sufficient. RPR which corresponds to ROR = 100% [26]. CMC curves show the

chance of a good system will start with a high identification rate for low ranks identities.

Figure 2.9: CMC Curve.

2.5 Single Biometric Systems Limitations

2.5.1 Overview

The majority of biometric systems use a single biometric trait such systems, are called

unibiometric systems. Regardless of significant advances in the latest years, there are still

several limitations derived from utilising one biometric trait. Nevertheless, single biometrics

performance in term of enrolment rate is not sufficient for larger population coverage. For

example, 2% of the population as reported in [27] failed to enroll to the fingerprint system

due to damaged fingerprints. Some other reasons of enrolment failures can be due to the fact

that they are born with less discriminative biometrics or because of physical body changes.

Fig. 2.10 show example of unimodal biometric system limitations.
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Figure 2.10: Example of unimodal biometric system limitations.

2.5.2 Limitations

The limitations of unimodal biometric systems are summarized in five elements as follows:

B Noisy Data Acquired by Sensor

The recognition rate of any biometric system is very sensitive to biometric sample quality

and noisy data can seriously reduce the overall accuracy of the system [28]. During enroll-

ment, the template quality deteriorates if the biometrics is not properly provided. This is as

a result of imperfect conditions or significant variation in the biometric itself. For example, a

poorly illuminated face image may cause to reject the sample, appearance of wrinkles due to

aging or presence of facial hair, presence of scars in a fingerprint, etc. The variations may be

due to improper interaction of the user with the sensor causing the sensor to less effectively

capture the biometrics. Also, to the use of different sensors during enrollment and verifi-

cation or change in the ambient environmental conditions. For instance, the speech/voice

biometrics uses the voice print or sound wave to extract the biometrics features. Ambient

noise might be integrated into the acoustic signal and cause significant negative impact on

the authentication results.

B Distinctiveness

The biometric characteristics extracted from different persons may be not distinctive,

and have large inter-class similarities used to represent these traits. While it is expected to

vary significantly across individuals. For case, identifying identical twins are failed in face

recognition system. Inter-user similarity refers to the overlap of the biometric samples from

the different individuals. In [3], the distinctiveness of the fingerprint is classified as high

whereas the hand geometry is classified as low. Usually, this limitation of distinctiveness

increases the errors of a biometric system.
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B Non-universality

The principle of universality is an essential condition in any efficient biometric recog-

nition. However, all biometric modalities are not really universal. The National Institute

of Standards and Technology (NIST) has reported that it is not possible to obtain a good

quality fingerprint from about 2% of the population (people with disabilities related to the

hand, people with oily or dry fingertips, etc.) [27]. Consequently, such people cannot be

sign up in a fingerprint verification system. Similarly, persons having those suffering from

eye abnormalities or diseases cannot provide good iris images for automatic recognition [29].

Hence, it is possible that some users do not possess that particular biometric characteristics.

B Sensitivity to Attacks

Many studies [30, 31] demonstrated that it is possible to spoof a number of fingerprint

authentication systems using simple techniques with molds made from range of materials

such as plastic, clay, silicon or gelatin. There are more spoofing examples given in [32] where

biometric systems using facial and iris recognition, are spoofed by using high resolution

digital images of face or iris. Moreover, behavioral biometric modalities are more susceptible

to this kind of attack.

B Intra-Class Variations

The biometric sample obtained from a user throughout the identification or verification

phase is not identical to the sample which was collected to generate the reference database

from the same user during the enrolment phase. This is known as the intra-class variations.

The above mentioned single biometrics restrictions result in errors such as the rejec-

tion of genuine user or the acceptance of impostor. These limitations of single biometrics

can be overcome by using multiple biometric modalities [33, 34, 35], this integration of more

evidence is a feasible way to enhance the biometrics performance.

2.6 Chapter Summary

Biometric is the automated method of recognizing a person which based on a physiological

or behavioral characteristic. Biometrics became a significant part of efficient person recog-

nition as biometric traits cannot be stolen, shared or even forgotten. Further, it has pointed

out that one of the basic challenges in biometrics research, is finding adequate modalities
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and fulfilling the seven main aspects of certainty. In this chapter, we focused on IT security

by discussing in more details about the three categories of biometric technologies physiology,

behavior and soft. Measurements of these different categories are called biometric modal-

ities, and formed the basis for techniques in various biometric domains. Here, we covered

architecture of a biometric system to achieve the objective of recognition. Biometric system

consists of both enrolment and recognition, generally includes sensors to be able to read

data out and software portion makes use of algorithms to enhance and recognize this data

to generate a template unique to the individual. Also, the performance metrics of biometric

systems is discussed in this chapter.

The majority of currently used biometric systems usually use a single biometric feature,

such systems are called unimodal systems. But biometric system based solely on a single

biometric suffers from several limitations such as noisy sensor data, intra-class and spoof at-

tacks, etc. It is generally believed that by integrating various biometrics into one system, the

limitations of unimodal systems can be alleviated, given that the several biometric sources

usually compensate for the weaknesses of a single biometric. Multimodal biometrics systems

are described in the next chapter.



Chapter 3

MULTIMODAL BIOMETRICS

FUSION

3.1 Introduction

T
he unimodal biometric system take a single source of information for authentication.

For that, it has various challenges such as lack of secrecy, non-universality of samples,

spoofing attacks on stored data, etc. Some of these challenges can be addressed and the

security of the resources and information can be further enhanced by employing a multimodal

biometric system. As the name depicts, multimodal biometric systems work on accepting

information from two or more biometric inputs take from the users for authentication. The

multimodal biometrics refers to the process which seeks to manage or coordinate the usage

of various biometric modalities in a manner that improves the process of data fusion and

perception, synergistically.

3.2 Necessity of Multimodal Biometric Systems

Multimodal biometric systems, provide an improved performance over unimodal systems

in their ability to authenticate a user. The advantages of multimodal biometric systems stem

from the fact that there are multiple sources of information. The most prominent implications

of this are increased and reliable recognition performance, fewer enrolment problems and

enhanced security [36, 81]. From these, it can be summarized that multimodal biometrics is

a preferred approach than the other scenarios to tackle single biometrics limitations by the

following reasons:

25
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3.2.1 Enhanced Security

Multimodal biometrics is more difficult to spoof because biometric traits have to be pre-

sented at the same time. The advantage of multimodal systems is that the impostor would

have to be able to spoof more than one biometric trait simultaneously, which would be sig-

nificantly more challenging. Further, some multimodal biometric systems employ challenge-

response [4] mechanism to fight against spoof attacks by asking the user to present a random

subset of traits at the point of acquisition. Multimodal biometric systems can also serve as a

fault tolerant system [4]. If any single trait is unavailable in a multimodal biometric system,

the system can still work with other available traits.

3.2.2 Fewer Enrolment Problems

Multimodal biometric systems address the problem of non-universality or the insufficient

coverage, it provides alternative biometric options for a claimant who is unable to provide

a specific biometrics. By this, the Failure to Enrol (FTE) rate can be significantly reduced

significantly [37]. Depending on the system design, many multimodal biometric systems can

perform matching even in the absence of one of the biometric samples. For example, in a fin-

gerprint and face based multimodal system, a person cannot enrol his fingerprint information

to the system, the system can still perform authentication using the facial characteristics of

that person.

3.2.3 Increased and Reliable Recognition Performance

As multimodal biometric systems use more biometric traits, hence each of those traits can

offer additional evidence about the authenticity of any identity. Therefore, higher informa-

tion gain can be achieved because have not any correlation among the sources biometrics.

In addition, the usability of the multimodal biometrics system is also better than the single

biometrics. For example, in a face and voice based multimodal biometric system, due to

ambient noise, if the voice signals cannot be accurately measured, the facial characteristics

may be used for authentication. Increased and reliable recognition performance of multi-

modal biometric systems is ability to effectively handle the interclass similarities, noisy or

poor data, etc.

3.3 Multimodal Biometric Fusion Scenarios

Multimodal biometric system can be based on one or more sources of the biometric data

obtainable from individual’s traits. The scenarios of multimodal system differ from system to
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system depending on the application requirements. Generally, the term multimodal biometric

system refers specifically to those biometric systems where multiple biometric modalities are

used [4]. But in reality, the term multibiometric is more generic and includes multimodal

systems and some other configurations using only one biometric modality with different

samples instances or algorithms [38]. According to Fig. 3.1, and based on the sources of

information, the author in [4] propose the following five possibilities to create multibiometric

systems:

Figure 3.1: The information sources of multimodal biometric system.

3.3.1 Multi-Sensors System

In these systems, one biometric trait are used for capturing by different sensors to extract

different representations from registered images. For example in [39], the face images of an

individual obtained using a thermal infrared camera and a visible light camera. It uses an

infrared camera because it’s robust against ambient lighting and other variations such as

facial hair, wrinkles and expression. It overcomes some limitations of the conventional visual

camera used for facial recognition.

3.3.2 Multi-Instances System

In these systems, multiple instances of the one biometric trait are used for the variations

that can occur within this modality with the same sensor several times. These systems are

cost efficient, as the same sensors or the same feature extraction and matching algorithm can
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be used. For example, a facial recognition system can capture different images of the face

with changes the positions of these images such as frontal, left and right profiles.

3.3.3 Multi-Algorithms System

These systems process different feature extraction and matching algorithms from a single

biometric trait captured through a single sensor. Then, the individual results from each

matcher are combined to obtain the final decision. For example, a texture-based algorithm

and minutiae based algorithm can operate on the same fingerprint image [3]. Furtherer, these

systems is cost effective but suffer with the poor quality of input data.

3.3.4 Multi-Samples System

These systems use only a single sensor but multiple samples of the same biometric trait.

An example of multiple samples is using left and right iris images for identity recognition.

However, its implementation costs will not be as high as a multibiometric systems.

3.3.5 Multi-Biometric System

These systems use more than one biometric modalities and combine the evidence presented

by different body traits for identification systems. The cost of these systems is high since

must be using multiple sensors to extract the biometric traits. Usually the identification

accuracy of these systems are proportional to the number of traits. Therefore, these scenarios

are more frequently used to improve unimodal biometrics performance. Nevertheless, these

multimodal biometric systems can be implemented to further enhance the usability and

performance. For example, a biometric recognition system based on combining face and ear

attributes would be considered a multimodal system.

3.3.6 Hybrid Systems

Hybrid systems concern other types of systems, they are composed of several scenar-

ios from those presented above. Therefore, hybrid systems combine information and have

advantages than previous systems. For example, a biometric system may use two iris match-

ing algorithms and three face matching algorithms in one face and iris based multimodal

biometric system.
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3.4 Multimodal Biometric Architecture

The next step after determining which biometric sources are to be integrated, is to build

the system architecture. As Fig. 3.2, any multimodal system can operate in one of three

different operational modes: serial, parallel or hierarchical mode [122, 123].

a. Parallel Mode

In this mode of operation, the information from multiple modalities is processed concur-

rently, independently and all at once. Then, the results are combined to make the final

classification decision [123] such as an authentication system based on fingerprint and face

recognition. So, if it would be operated in a parallel mode, the user had to present the two

traits in the same time for validation.

b. Serial Mode

This mode called cascade mode, each modality is examined before the next modality is

investigated. Therefore, multiple biometric traits do not have to be captured at the same

time. Furthermore, a decision could be obtained before acquiring the rest of traits. As a

result, the overall recognition duration can be decreased. For example, in authentication

system based on voice, fingerprint and iris traits. Initially the user uses the voice validation

unit, and if this fails fingerprint validation is applied. If the last validation is failed the iris

unit is required. The reward of such systems is that many users will enrol to the system

using single trait [123].

c. Hierarchical Mode

In this operational mode, individual classifiers are combined in a treelike structure. This

mode is preferred when a large number of classifiers are expected. Most of the current

multimodal biometric systems operate either in the serial mode or in the parallel mode. The

serial mode is computationally efficient, whereas the parallel mode is more accurate [123].

3.5 Multimodal Biometric Fusion Levels

According to [40], “Information fusion can be defined as an information process that

associates, correlates and combines data and information from single or multiple sensors or

sources to achieve refined estimates of parameters, characteristics, events and behaviors”.
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Figure 3.2: Architecture for several classifier combinations, from [123], (a) parallel, (b) serial, (c)
hierarchical.
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A good information fusion method allows minimizing the influence of unreliable sources

compared to reliable ones [41]. Since, multimodal biometric systems rely on the evidence

presented by multiple sources of biometric information, information fusion is essential for

processing of such information. In their research, Sanderson and Paliwal [42] categorized the

fusion methods into two broad categories: fusion before matching and fusion after matching.

Fusion before matching category contains sensor level fusion and feature level fusion, while

the fusion after matching contains match score level fusion and decision level fusion [82].

Fusion classification levels are illustrated in Fig. 3.3.

Figure 3.3: The block diagram of biometric fusion classification.

3.5.1 Fusion Pre-Matching

− Sensor Level Fusion

In this early stage of fusion, the raw data, derived from the biometric characteristic with

two or more sensors, is combined. Sensor level fusion is defined as “the consolidation of

evidence presented by multiple sources of raw data before they are subjected to feature ex-

traction” [4]. The fusion at the sensor is relatively little used because it requires homogeneity

between the biometric characteristics. Indeed, the sensor level fusion can be done on images

of multiple instances of the same biometric modality (images fingerprints obtained from sev-

eral cameras, or several instances of the same trait biometric obtained from a single sensor)

[43]. The resulting information from this initial level represent the richest source of infor-

mation, whilst the other levels contain a smaller amount of information. Among, the tricks

used is Discrete Wavelet Transform (DWT) algorithm, which is a good example of sensor

level fusion. For example, in [44], authors combined multiple instances of faces captured by
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using a single camera and by mosaicking method to obtain better recognition performance.

The Fig. 3.4 show an example of sensor level.

Figure 3.4: Process of fusion at the Sensor Level [45].

− Feature Level Fusion

Feature level fusion consists in combining different vectors of characteristics, that are

obtained from multiple data sources to create a new feature set to represent the individual.

The fusion of features extraction into one feature vector usually involves applying appropriate

feature normalization, selection and reduction techniques [4]. Certainly, the feature level is

much richer and exploits more useful information, fusion at feature level may be helpful for

integrating features of the same modality with multiple sensors. However, such fusion type

is not always feasible because finding relationship between the feature sets is difficult [4].

There are some difficulties if the feature sets originate from multiple biometric traits, when

feature vectors are heterogeneous. Moreover, the relationship between the feature spaces of

the joint biometrics may not be known exactly. In addition, concatenating two feature sets

or more may leads to the curse of dimensionality problem. For example, in many approaches

the given features might not be compatible due to differences in the nature of modalities, we

can concatenate them to form a single feature vector (See Fig. 3.5).
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Figure 3.5: Process of fusion at the Feature Level [45].

3.5.2 Fusion Post-Matching

− Match Score Level Fusion

This level is also known as measurement level. Fusion at this level is much more effective

than fusion at the decision level. Match score level fusion method consolidates matching

scores generated from different classifiers and can be applied to most of the multibiometric

scenarios. Matching score is a measure of similarity between features derived from a presented

sample and a stored template. Each unimodal biometric system measures and calculates its

own matching scores and these matching scores are fused to reach a final match/non match

decision(See Fig. 3.6).

As different matching scores from different algorithms may not share the same underlying

properties or the score range, score normalization is necessary in match score level fusion

methods. Min-max, decimal scaling, z-score, median, median absolute deviation, double sig-

moid, tanh-estimator are some examples of score normalization techniques. Normalization

process is costly in terms of time and choosing inappropriate normalization can lead to very

poor recognition accuracy.

For obtaining a single matching score, this fusion method applies arithmetic operations,

such as sum, subtraction, maximum, minimum, and median on to different matching scores.

As an example, the match scores generated by three different matchers for the face, finger-

print and hand modalities of a user may be combined via the simple sum rule in order to
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Figure 3.6: Process of fusion at the Match Score Level [45].

obtain a new match score which is then used to make the final decision [46]. In [47], the

advantages of fusion at matching score level are analyzed in several aspects:

• Matching score fusion does not affect the existing biometric systems, these unimodal

biometric systems can be easily combined into a multimodal biometric system given.

• The data from prior evaluations of single modal biometric systems can be reused. This

avoids live testing or re-running individual biometric algorithms.

• The matching scores contain the richest information with, it is much easier to access

and to combine the scores generated by the different matchers.

− Decision Level Fusion

Since the biometrics verification decision is only accept or reject, very limited information

is available for fusion at this level. Therefore, its performance is normally not comparable to

the feature and score level fusion. In this level, a separate authentication decision is made for

each biometric trait. These decisions are then combined into a final vote, as shown in Fig. 3.7.

Thus, fusion at such a level is the least powerful [45]. Methods proposed in the literature for

decision level fusion include AND and OR rules [48], majority voting [49], weighted majority

voting [50], Bayesian decision fusion [51], the Dempster-Shafer theory of evidence [51] and

behavior knowledge space [52].
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Figure 3.7: Process of fusion at the Decision Level [45].

3.6 Multimodal Biometric Fusion Research

Due to some problems associated with the unimodal biometric data, the use of multimodal

biometrics is a first choice solution [36]. The main objective of a multimodal biometric sys-

tem is to improve the recognition performance of the system and to make the system robust

over the limitations associated with unimodal biometric systems. Over the years, several

approaches have been proposed and developed for multimodal biometric authentication sys-

tem with different biometric traits and with different fusion mechanisms. The following

sub-sections discussed some of the research using different fusion methods for multimodal

biometric systems:

a. Research on Sensor Fusion

A multisensory multimodal biometric system fuses information presented by multiple

sources of raw data (image, video, sound, text, symbols etc.) at sensor level [4] and is ex-

pected to produce more accurate results than the system that integrate information at later

stages due to the availability of more information.

In 2003, Liu and Chen [44] propose a face mosaicking technique. This is a method for

combining two or more images of the same face. The authors used a 3D ellipsoidal model

to approximate human head images. Later, using geometric mapping, authors projected 2D

face images onto the ellipsoidal model and used CMU PIE database [124] and a patch based

probabilistic model for classification.
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Another key contribution in this area is the research reported in [125]. The authors

proposed an approach to combine information obtained from face and palmprint image us-

ing particle swarm optimization (PSO). The Kernel Direct Discriminant Analysis (KDDA)

and the nearest neighbor method are used for feature extraction and classification. Using

FRGC face database [126] and polyU palmprint database [127], the authors tested the recog-

nition performance with match score level fusion and with genetic algorithm applied on the

same set of databases.

b. Research on Feature Fusion

Feature level fusion consolidates information from multiple biometric feature sets of the

same individual. As the most features regarding the identity of a person is available at this

level, so feature level fusion is expected to perform better than other level fusion methods

[128]. However, there are some inherent drawbacks associated with this fusion method. The

feature spaces of different biometric traits may not be compatible and the feature level fusion

may lead to the “curse of dimensionality” problem by concatenating several features as one

[4]. Due to these drawbacks, the study on feature level fusion is seldom reported.

In 2004, Feng et al. [129] developed a system for face and palmprint using feature level

fusion technique. The authors used ORL face database and polyU palmprint database [127]

and employed concatenation method for feature fusion. Two feature extraction approaches

PCA and ICA to see which results in a better recognition performance were also investigated.

As noted by authors, ICA performed better than PCA in both monomodal and multimodal

validation framework.

In another attempt to develop a multimodal biometric system, in [130], Rattani et al.

proposed a multimodal biometric system combining face and fingerprint information at the

feature level. In their research, the authors extracted feature sets from face and fingerprint

images and then concatenated (after necessary normalization) them to obtain combined fea-

ture set for their system. The authors also employed dimensionality reduction method to

handle the problem of ”curse of dimensionality” and implemented several feature reduc-

tion techniques for the proposed system. In [131], the authors conducted experiments on

BANCA face database and a local fingerprint database to evaluate the recognition accuracy

with match score level fusion for the same set of database.
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c. Research on Match Score Fusion

Matching score fusion consolidates matching scores generated from different classifiers and

can be applied to most of the multibiometric scenarios because of its content of adequate

information to make genuine and impostor case distinguishable and because of the easy avail-

ability of the scores [132]. But to use a different matching scores from different classifiers,

normalization of these scores is required which can be a bottleneck of this system for the

time requirements. Also choosing inappropriate normalization technique can produce very

low recognition accuracy.

In 2003, a bimodal approach was proposed identification system based face, fingerprint

and hand geometry with a fusion method at the match score level (integrating the matching

scores of different classifiers and making a decision based on decision tree and linear dis-

criminant function) [46]. The MSU fingerprint database and a public domain face database

results showed that the system achieved higher recognition accuracy using match score level

fusion than when using any single biometric trait [133].

In 2005, Jain et al. proposed a multimodal approach for face, fingerprint and hand

geometry, with fusion at the score level [134]. The authors examined simple sum-rule, max-

rule and min-rule method of match score fusion with seven normalization techniques. The

final outcomes showed that all fusion approaches (except for the median MAD normalization

technique) exhibit better recognition performance than monomodal approaches [134].

d. Research on Decision Fusion

Decision level fusion method integrates the final decisions of single biometric matchers to

form a consolidated decision. The consolidated decision can be obtained by employing var-

ious techniques including “AND/OR”, majority voting, weighted majority voting, decision

table, Bayesian decision and Dempster-Shafer theory of evidence. Decision level fusion is too

rigid and comparatively less sophisticated than other fusion methods as it operates only on

binary information [4].

In 2000, Frischholz and Dieckmann developed a commercial multimodal approach, BioID,

for a model-based face classifier, a vector quantization (VQ)-based voice classifier and an

optical-flow-based lip movement classifier for verifying persons [135]. Weighted sum rule

and majority voting approaches of decision level fusion method were used for fusion. Their

experiments on 150 persons for three months demonstrated that the system can reduce the

FAR significantly.
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In another attempt in 2009, the research of Yu et al. [136] presented a multibiometric

approach which combines palmprint, fingerprint and finger geometry collected by a digital

camera at decision fusion level. Three decision fusion rules, including “AND” rule, “OR” rule

and majority voting, are employed to perform the fusion. Experimental results conducted on

a database of 86 hands (10 impressions per hand) showed that the proposed decision fusion

methods are effective. Among the three decision fusion methods, majority voting was more

accurate than the other two decision methods.

3.7 Challenges for Multimodal Biometric Systems

Although the development in the field of multimodal biometrics has received considerable

attention, there are several challenges that are associated with the multimodal biometric

system design process including source of information, choice of biometric traits, fusion

strategy and level of robustness and so on. Multibiometric systems are more expensive and

require more resources for computation and storage. They generally require additional time

for user enrollment, causing some inconvenience to the user. This difficulty is related to

many issues such as:

3.7.1 Multimodal Datasets

The development of multimodal systems is still limited because of the lack of consistent

multibiometrics databases. The main reason behind this lack of multimodal databases is

that contained a certain degree of difficulty and challenges in the data acquisition phase.

Moreover, most of the publicly available multimodal databases comprised of matching scores

obtained by a number of biometric approaches operating on particular modalities [3, 45].

Consequently, this does not allow additional research to be held on other types of fusion

levels other than the matching scores level. There are currently a few multimodal person

authentication databases that are reported in the literature, some examples are listed in

Table. 3.1.

Due to the difficulties in constructing multimodal databases, some researchers have as-

sumed that different biometric traits of the same person are statistically independent in order

to simplify the fusion algorithm design [46]. Experiments in multimodal biometrics have been

conducted on combining biometric trait of a user from a database with different biometric

trait of another user from another different database to generate virtual or so-called chimeric

databases [45].



Chapter 3. Multimodal Biometrics Fusion 39

Database Modalities

BANCA Face and speech
XM2VTS Face and speech
VidTIMIT Face and speech
BIOMET Face, speech, fingerprint, hand and signature
NIST Face and fingerprint
MYCT Fingerprint and signature
UND Face, ear profile and hand
FRGC Face modality captured using camera at different angles and

range sensors in different controlled/uncontrolled settings
IDIAP Score of XM2VTS database
MyIDea Face, speech, fingerprints, signature, handwriting,

palmprint and hand Geometry
BioSec Fingerprint, face, iris and voice

Table 3.1: List of available multimodal biometric databases, from [37].

3.7.2 Incompatibility of Information Resources

As one of the most important challenges of the multimodal biometric system is the in-

compatibility of the information resources, where the integration of biometric information in

early stages is thought to be more valuable, since the amount of information available to the

fusion process decreases as it moves from one level to the next level of fusion [2, 4, 53, 54].

Nevertheless, fusion at early stages such as sensor and feature levels is not always possible

due to the incompatibility of the gathered information. For example, in a multimodal bio-

metric system based on fusing face and voice print, it is not possible to fuse the raw images

of face with the voice signal.

3.7.3 Privacy and Acceptance

There is a number of serious privacy concerns raised concerning the implementation of

biometrics, due to the fact that biometric technologies have the potential to provide govern-

ments and organizations with increased power over individuals [55]. Privacy concerns are

related to data collection, unauthorized use of recorded information and improper access to

biometric records. As such, a trade-off between security concerns and privacy issues may be

necessary by enforcing data protection laws and standards through common legislation [55].

Nevertheless, Biometrics from the positive point of view provides valuable tools to implement

liable logs of system transactions [55].
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3.7.4 Optimum Design

The improvements in a multimodal biometric-based approach address key design ques-

tions. The main question is about the integration of modalities. This strongly depends upon

the application and the required level of security concerns [55]. This will also decides the

complexity in designing the authentication system. From [55], other design questions ought

to be asked such as, What are the best combinations of modalities? How do we choose a

best set of samples for a particular biometric? What is the smallest size sample set? Which

level fusion is appropriate? Which is the best fusion scenario and processing architecture?

What is expected performance? What is the cost involved in developing and deploying a

real-time system? A part from the above mentioned factors there are still open questions to

be addressed before deploying multimodal biometric system in a real time environment.

3.8 Chapter Summary

The development of biometric system is governed by the limitations of performance ef-

fectively and usability. The proposed approaches done to overcome these limitations which

are addressing many issues as are: information sources and fusion of information to design

multimodal biometric system. Multimodal biometric system is emerging as a current trend

which is capable of using, more than one source biometric traits (physiological or behavioral)

and allows to fuse the informations extracted from these biometric traits. In this chapter, we

have discussed an advantages and necessity of multimodal systems compared to unimodal

biometric systems, as well as the different scenarios involved in multimodal biometric system

development. Amongst the different scenarios, multiple biometric traits is preferred due to

the fact that biometric characteristics are inherently different, so more information gain can

be obtained compared to other scenarios. It further provides alternative biometrics entry

option. As a result, the system is more robust to adapt with a different operating ambiance

(e.g. dim light or noisy conditions) and to cover larger population. At the same time, mul-

timodal biometrics enhances the system usability and makes the spoof attack more difficult.

In this context, biometric sources are being integrated to build the system architecture,

where multimodal systems can operate through many architectures modes: serial, parallel

or hierarchical mode. Effective fusion of the biometrics information plays a key role for

biometrics system improvement. The biometrics information fusion attempts are performed

at four potential levels: sensor, feature, matching and decision levels. The sensor and the

feature levels are referred to as a fusion before matching while the matching score and the

decision levels are referred to as a fusion after matching. Vast majority of works focus on
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score level fusion. This is because of the balance between the complexity and richness of in-

formation. Furthermore, the challenges of multimodal biometric systems are also discussed

in this chapter where can be summarised as more expensive, choice of compatible biometric

traits, difficulty of fusion and robust of system design, etc.



Chapter 4

FEATURE EXTRACTION: FROM

CLASSICAL TO DEEP

LEARNING METHODS

4.1 Introduction

G
enerally , in a biometric recognition system and after having acquired the biometric

traits and preprocessing them, the feature extraction is performed. Feature extraction

is important factor for the success of the recognition and classification process, and should

be able to extract more information even under difficult conditions, such as: bad lighting,

noise and redundant data.

A feature is defined as an “interesting” part of an image, and is used as a starting point in

main primitives for algorithms. The features given by the extraction process can be used to

gain more statistical information by using parametric deep learning algorithms. This tech-

niques are a new framework for feature extraction which aim to represent deep local features

of biometric modalities. In this chapter, the effectiveness of the deep learning methods are

extensively examined by using several types of analysis and comparing them with those of

existing classical methods. The end result of feature extraction is a set of features, commonly

called a feature vector, which constitutes a representation of image.

42
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4.2 Biometric Feature Types

Biometric feature extraction is the process by which key features of the sample are selected

or enhanced. The feature is defined as a function of one or more measurements, each of which

specifies some quantifiable property of an object, and is computed such that it quantifies some

significant characteristics of the object. Typically, the process of feature extraction relies on

a set of algorithms; the method varies depending on the type of biometric features used.

According to the abstraction level, they can be divided into: Pixel-level, Local and Global

features. The most important types of general features which can be considered are:

4.2.1 Texture Features

Texture is one of the important characteristics used in identifying objects or regions of

interest in an image. Texture can be defined as superficial phenomenon of natural objects.

Texture does not occur over a point but it rather occurs over a region. Texture can be

analyzed by quantitative and qualitative analysis. According to quantitative analysis one of

the first descriptions given by the Tamura [146] proposed six textural properties and gave

descriptions common over all texture patterns. These are six different texture features given

by Tamura: Coarseness, Contrast, Directionality, Line-Likeness, Regularity and Roughness.

Texture is an important property of image and is a powerful regional descriptor that

helps in the retrieval process [147]. Texture, on its own does not have the capability of

finding similar images, but it can be used to classify textured images from non-textured ones

and then be combined with another visual attribute like color to make the retrieval more

effective [148]. Textural features are:

• Statistical measures: Entropy, Homogeneity and Contrast

• Wavelets

• Fractals

4.2.2 Line Features

Line features are usually correspond to the object contours or boundaries, also are one

of the basic elements of inerratic objects. These line features and principal lines identify

the length, position, depth and size of the various objects, which are an important clue for

vision perception and essential basis for image interpretation. In the image based geometric
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measurement, it is important for us to describe the acquired or interpret images by abstract-

ing and positioning line features in a high precision. Line features may not be sufficiently

distinctive to be a reliable identifier in themselves, but wrinkle features are highly distinctive

and not easily duplicated. There are varieties of features extraction methods, such as: Hough

Transform, Boundary Tracing and Curve Fitting, etc [149].

4.2.3 Shape Features

Visual features of objects are called the shape characteristics or visual features. Shape is

an important visual feature and one of the primitive feature for image content description.

Shape representation is mainly based on the shape features which are based on the boundary

plus region content, moment, etc. These representations can be used for matching shapes,

object recognition, or for making measurements of shapes. Shape content description cannot

be defined exactly because the measuring the similarity between shapes is difficult [150].

Therefore, two steps are essential in shape based image retrieval, they are: feature extraction

and similarity measurement between the extracted features. Shape descriptors can be divided

into two main categories:

1. Contour based methods which use the whole area of an object for shape description.

2. Region based methods which use local features as boundary segments.

The fourth type, which is also considered important in features classifications, can be

added. The color feature is one of the most widely used visual features in image classifi-

cation. Images characterized by color features, have many advantages such as: robustness,

effectiveness and computational simplicity.

4.3 Feature Extraction Methods

The all features can be coarsely classified into low-level features and high-level features.

Low-level features can be extracted directly from the original images, whereas high-level

feature extraction depends on low level features. A various methods of features extraction

can be used for biometric recognition, although these techniques, a recognition systems are

need to be robust to the different challenges in representation images area.

4.3.1 Classical Methods

In image processing literatures, the researchers have invested many classical methods for

features extraction process. Often, traditional methods depend on the quality of the images
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in their representation and are highly affected to noise, which reduces the efficiency of these

methods. In this section, we will mention only to two examples of traditional algorithms to

extract the feature, that our help to use in subsequent sections.

a. Principal Component Analysis (PCA)

The principal components analysis is unsupervised learning algorithm that provides a

means of compressing data. PCA learns a representation that has lower dimensionality than

the original input [140]. It also learns a representation whose elements have nonlinear cor-

relation with each other. This is a first step toward the criterion of learning representations

whose elements are statistically independent. To achieve full independence, a representa-

tion learning algorithm must also remove the nonlinear relationships between variables [140].

Thus, it can use PCA as a simple and effective dimensionality reduction method that pre-

serves as much of the information in the data as possible.

The PCA transform applied to a set of images, can be used to find the subspace that

is occupied by all of the images from the analyzed set. The methodology for calculating

principal component is given by the following method [140]:

• Let the training set of vectors of original data (each vector with dimension N)

X = [x1, x2, x3, ..., xN ] . (4.1)

• Compute the mean of original data of the set

X̌ =
1

N

N∑
i=1

xi. (4.2)

• Subtract the mean from each original data to generate the mean removed data

ϕi = xi − X̌. (4.3)

• Form the matrix using mean removed data of N ×N dimension

D = [ϕ1, ϕ2, ϕ3, ..., ϕN ] . (4.4)

• Compute the sample covariance matrix C, where

C =
1

N

N∑
n=1

ϕnϕ
T
n = DDT . (4.5)
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• Compute the eigen values of the covariance matrix and the eigen vectors of the eigen

values.

• Finally, keep only the eigen vectors corresponding to L largest eigen values, these

eigen values are called as principal components.

The process of obtaining a single subspace consists of finding the covariance matrix C

of the training set of ROI sub-images, and computing its eigen vectors. Each original ROI

sub-image can be projected into this subspace. The eigen vectors spanning the print-space

can be represented as images with the same dimensionality as the ROI sub-images used to

obtain these eigen vectors [151].

b. Discrete Cosine Transform (DCT)

The feature extraction principle is a transformation of image from spatial representation

to frequency representation by provide a value that is defined at each point. The recognition

is then carried with this new representation mode. Recently, the transformation by blocks

has emerged as a representation of image and has been widely applied in images processing

and pattern recognition, particularly. In the transformation by blocks, the image is subdi-

vided into many blocks (sub-images) to reduce data size, memory space and the computation

time. The most popular method for transformation by blocks is the 2D-Block based on DCT

(2D-BDCT) [151]. The DCT allows us to suppress some non-important data by to removing

the high frequencies of the image while keeping the important data represented by the low

frequencies.

The application of the DCT by block consists of subdividing the dimensions of image

H ×W , into size blocks (N × N), and transforming each block to obtain a block of coeffi-

cients at same size. Thus, the image f is split into Bij blocks, with: i ∈ {0, 1, ..., ηh − 1} , j ∈
{0, 1, ..., ηw − 1}.

Where ηh represents the number of horizontal blocks, ηw the number of vertical blocks,

and η number of total blocks [151]:

η blocks = ηh × ηw =

[
H

N
× W

N

]
. (4.6)

The 2D-DCT is defined by [151]

Fij (u, v) = α (u)α (v)

N−1∑
m=0

N−1∑
n=0

fij (n,m)ψ (n,m, u, v) , (4.7)
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where

ψ (n,m, u, v) = cos

[
(2n+ 1)uπ

2N

]
cos

[
(2m+ 1) vπ

2N

]
, (4.8)

with: u, v = 0, 1, ..., N − 1, Fij (u, v) are the DCT coefficients of blocks Bij , fij is the

intensity value of pixel of block Bij , and α (∗) is defined by:

α (γ) =


√

1
N si γ = 0,√
2
N si γ 6= 0.

(4.9)

The DCT makes possible to decompose the blocks into a matrix of coefficients that repre-

sents the influence of each frequency constituting the block. The first value is the equivalent

of average value of block. For the line, the different values correspond to the horizontal

frequencies contained in the block. For the column, the different values correspond to the

vertical frequencies contained in the block [151]. For block Bij , the DCT matrix of coeffi-

cients covers all frequency components of the block. These coefficients are organized to arrive

at the vector of characteristics that represents each block. The large amplitudes coefficients

are mainly located in the upper left corner of the DCT matrix. Consequently, the traversing

of the DCT matrix by zigzag from the upper left corner converts the block into one vector.

Fig. 4.1 shows the properties of the DCT coefficients of block 8 × 8, and the model called

zigzag [151].

Figure 4.1: The Model zigzag of block 8× 8.

The DC coefficient is defined

Fij (0, 0) = C0 =
1

N

N−1∑
m=0

N−1∑
n=0

fij (n,m) . (4.10)

The 63 remaining coefficients (AC coefficients) denote the intensity changes in the block.

Finally, the image is represented by the vector characteristics generated by the concatenation

of all the vectors characteristic of the blocks. However, the vector of each block Bij is
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represented by [151]

oij = [Fij (0, 0) , Fij (0, 1) , Fij (1, 0) ..., Fij (7, 7)]T = [C0, C1, C2, ..., C7]
T . (4.11)

The total DCT vector of the characteristics of the image is

VT = [o11, o12, o13, ..., oη] . (4.12)

As a method of feature extraction, DCT transforms the high dimension images (see

Fig. 4.2) into low dimension space, with the important features of the image, such as the

main lines and the crests, are kept.

Figure 4.2: Generation of features vectors based on the DCT [151].

4.3.2 Deep Learning Methods

Compared with the classical feature extraction methods, one of the foremost advantages

offered by the deep learning based feature extraction methods is flexibility and so its dis-

criminative [61, 62] because it is possible to use a higher level features into multiple levels of

representation to extract some discriminant information of the image trait. Hence, a lot of

feature extraction methods rely on deep learning techniques have been proposed in literature

[63, 85].

a. PCANet Feature Extraction

PCANet technique is one of simple deep learning techniques, this technique provides a

reliable solution to extract the majority of information in image which can be used in a

greater range of pattern recognition systems to discriminate the images. In contrast to other
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deep learning techniques, like Convolutional Neural Networks (CNN) [64, 79, 84] and Deep

Belief Networks (DBN) [65, 80], PCANet method offers some advantages such as their very

suitability for texture analysis as well as their simplicity (complexity relatively simple vis-a-

vis almost all deep learning techniques).

The PCANet model [66] cascades many filter bank convolutions (extracted from input

image by PCA technique [67]) with an intermediate mean normalization step, followed by

two other steps which are the binary hashing and the histogram composition step. PCANet

algorithm can execute multiple stages of PCA filters to extract higher level feature vectors.

We give hereafter an example of two stages PCANet based feature extraction method (see

Fig. 4.3).

Figure 4.3: Example of the PCANet extracts features from an FKP image.

In the first stage, the filter banks are estimated by performing principal components

(PCA) technique over a set of vectors where each vector represents the k1×k1 points around

each pixel. Before performing this technique, the mean of each vector must be subtracted

from it (normalization process).

After applying PCA over the normalized vectors, a k1 · k1 × L1 retained, where L1 is

the primary eigen vectors. Next, each principal component (1 · ·L1) is a filter and may be

converted to k1 × k1 kernel which is convolved with the input image. So, using L1 vectors

(L1 convolution filter), we can convert the input image I into L1 output filtered images

Is1Fi
(x, y) = (I ∗ Fs1i )(x, y), (4.13)

where Is1Fi
(i ∈ [1 · ·L1]) denote the ith filtered image using the Fs1i filter for the first stage

and ∗ denotes the discrete convolution.

In the second stage, the same algorithm used in the first stage is iterated over each of the
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L1 output filtered images (IiF )

Is2Fij
(x, y) = (Is1Fi

∗ Fs2j )(x, y), (4.14)

where Is2Fij
(i ∈ [1 · ·L1] and j ∈ [1 · ·L2]) denote the jth filtered image using the Fs2j filter

(with size of k2 × k2) for the second stage.

If the number of filters in second stage equal to L2, the output of the last convolution

layer produce L1 · L2 output filtered images.

Subsequently, the finally outputs (Is2Fij
) are converted into binary format by using a Heav-

iside step function [68] which their value is one for positive entries and zero otherwise, this

step called binary hashing step.

IBij (x, y) =

1 if Is2Fij
(x, y) ≥ 0,

0 Otherwise,
(4.15)

where IBij is a binary image. After that, around each pixel, the vector of L2 binary bits is

viewed as a decimal number

IDi (x, y) =

L2∑
j=1

2j−1IBij (x, y), (4.16)

where IDi is an image whose every pixel is an integer in the range [0, 2L2−1].

Finally, the histograms of the obtained images are computed and then concatenated to

form a feature vector which represents the input image, this step called histogram composi-

tion. Thus, the feature vector of the input image I is then defined as:

υI = [υ1, υ2, · · ·υL1 ]. (4.17)

where υi denotes the histogram of the IDi image.

Lastly, it is important to note that in the PCANet technique it must choose the optimal

values of the PCANet parameters which are the number of stages (N), the filters sizes in

each stage (k1, k2, · · kN ) and the number of filters in each stage (L1, L2, · · LN ).

b. DCTNet Feature Extraction

PCANet was worken in various image classification tasks. In this thesis, we also used

a data-independence network, dubbed DCTNet for biometric recognition system in which

we adopt DCT as filter banks in place of PCA by the fact that 2D DCT basis is indeed a

good approximation for high ranked eigen vectors of PCA [152]. DCTNet adopts a similar

structure to PCANet except there is an extra layer at the histogram output for histogram
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normalization as shown in Fig. 4.4. The detail of each component is described below.

Figure 4.4: The block diagram of the DCTNet from [152].

∗ Convolution Layer

Assume that filter size of all stages have the same size k × k. Given an input image

Id of size m × n with D channels (multiple channel image or input from previous layer),

boundary of each channel d is zero padded with pad size (k − 1) /2 before convolution to

keep the size of output Opd same as Id. With a set of 2D-DCT basis selected as denoted [152]

W l
p ∈ Rk×k, p = 1, 2, 3, ..., Pl, (4.18)

where Pl is the number of filters at layer l, convolving each with Id yields

Odp =
{
Id ∗W l

p

}Pl

p=1
. (4.19)

The number of output of each layer is d · Pl. Cascading this layer can form a deeper

network. Since, there is no nonlinear operation between the previous convolution layer and

the next layer, DCT basis of each layer can be combined to form a flat single layer network.

The number of bases formed is:

Nbases =

L∏
i=1

Pi , (4.20)

where L represents the number of convolution layers for the sake of convenience without

storing large number of combined filters and to ease the binarization process.
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∗ Binarization and Block-wise Histograming

The last convolution layer of DCTNet forms D sets of real valued outputs. Each set

has a total of PL outputs where the outputs are the response of DCT filters. Binarization

is performed on each set separately by first binarizing the responses with threshold at zero

(value one for positive response, zero otherwise) which denoted by BIN(∗). Followed by

binarization, each binary string is encoded as a single integer number z:

z =

PL∑
p

2p−1BIN
(
Opd
)
, (4.21)

and forming an “image” for each set of dth output where each pixel has an integer range of[
0, 2PL−1

]
. Then, each of these D binarized “image” is partitioned into B non-overlapping

blocks. Histogram of each block denotes by: Hd
b , b = 1, 2, ..., B; d = 1, 2, ..., D with bin[

0, 2PL−1
]

is obtained as the input of histogram normalization layer.

It is also worth to mention that block-wise histogram not only encodes spatial infor-

mation [152], it also provides local translation invariance in the extracted features within

each blocks. The combination of binarization and block-wise histograming are expected to

be able to extract discriminative features.

∗ Histogram Tied Rank Normalization

The first stage of Tied Rank normalization uses tied rank principle that computes rank

of a given vector X which produces a vector X̄ that has a range from 1 to the length of X

where each element x̄i corresponds to the ascending order rank of xi. In case of ties, their

average rank is assigned to all ties which may produce a non-integer values. Given H as the

extracted block-wise histogram of a given face data, where

H =
{
Hd
b

}B,D
p=1,d=1

, (4.22)

each Hd
b is ranked with tied ranking without considering the bin with zero occurrence denoted

by H̄d
b . This is because bin with zero occurrences is not a sample in histogram, it should

be ignored in the ranking process. In order to make H̄d
b to be more evenly distributed, first

apply square root on H̄d
b forming

vdb =

√
H̄d
b . (4.23)

Follow by L2 norm normalization which follows the idea of intra-normalization uses to

obtain v̂db [152]. The final Tied Rank normalized histogram feature vector is constructed by
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Algorithm :

Input : Extracted block-wise histogram of an image: H.

Output : Tied Rank normalized histogram feature vector: V .

1. For each Hd
b compute tied rank without bin with zero occurrence yields H̄d

b

2. vdb =
√
H̄d
b .

3. Normalize vdb with L2 norm to obtain v̂db
4. Repeat step 1 to step 3 for b = 1, 2, ..., B; d = 1, 2, ..., D
5. Concatenate all v̂db to obtain the final output V

Table 4.1: Algorithm of Histogram Tied Rank Normalization

concatenating all v̂db :

V =
[
v̂11, v̂

1
2, v̂

1
3, ..., v̂

1
B, v̂

2
1, v̂

2
2, ..., v̂

D
B

]
. (4.24)

Finally, the dimension of the resulting Tied Rank normalized block-wise histogram vec-

tor is optionally compressed to obtain the final feature vector where the projection matrix is

learned. The pseudo code of histogram Tied Rank normalization is shown in Table. 4.1 [152].

4.4 Classical Methods Limitations

Feature extraction is the key factor that affects the performance of image classification.

Traditional feature extraction algorithms often use single feature and directly use the low-

level features, thus, these methods bring limitations. The existing classical methods mainly

have the following defects:

• The difficulty of feature extraction can increase due to noisy features. Noise in a dataset

is defined as “the error in the variance of a measured variable” which can result from

errors in measurements [153]. These algorithms tend to be affected by noisy data,

for that noise should be reduced as much as possible in order to avoid unnecessary

complexity in the models and improve the efficiency of the algorithms.

• In classical learning as the dimensionality of the data rises, the amount of data required

to provide a reliable analysis, and processing a large number of data involves high

computational cost [154]. When the dimensionality of a dataset grows significantly,

there is an increasing difficulty in the classification due to overfitting. An overfitted

model can mistake the important variance of data which can lead to classification

errors.
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For example, PCA does not select features, it just try to find linear combination of features

that are almost as informative as the initial features, but in smaller number. Obviously, it

is a dimensionality reduction method, because it’s used to find the principal components

of features. By contrast, it eliminates candidate features that are irrelevant, thereby using

classical PCA is often useless. For DCT, the performance is affected due to certain limitations

such as: The correlation between pixels of the neighboring blocks is ignored. It considers

only spatial correlation of the pixels inside the single 2-D block, additional time and effort

must be put to correct the scaling factor.

4.5 Deep Learning Varieties

4.5.1 Deep Learning Strengths

Deep learning is an architecture that can be easily adapted with a new problems of pattern

recognition. The advantages of deep learning are:

B No Need for Feature Engineering

Feature engineering is a process of the creation of feature extractors from raw data to

reduce the complexity of the data and make patterns more visible to learning algorithms to

work. In machine learning, most of the features need to be identified by a features extraction

methods, the performance depends on how accurately the features are selected and extracted.

But, one of deep learning’s main advantages is its capacity to execute feature engineering on

its own. The deep learning algorithms scan the data to search for features that correlate and

combine them to enable faster learning, thereby reduces the need for feature engineering,

one of the most time-consuming parts of machine learning practice. Besides, the neural

networks that a deep learning algorithm is made, can uncover new, more complex features

that traditional methods can miss. Deep learning algorithms do to learn high-level features

from data. This is a very distinctive part in deep learning and a major step ahead in the

high-level representation.

B The Efficient Performance

The most important strengths of deep learning is its efficient performance with the big

data. This is because deep learning algorithms need a large amount of data to understand

it perfectly. Fig. 4.5 summarizes this fact. On the other hand, deep learning algorithms can

be trained using different big data formats correctly that the quality of deep learning work

never diminishes despite of the raw data increases.
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Figure 4.5: The efficient performance of deep learning.

B Advanced Analysis and Problem Solving

While machine learning works only with labeled data, deep learning supports unsuper-

vised learning techniques that allow the system to become smarter in its own. The capacity

to determine the most important features allows deep learning to efficiently provide data

with concise and reliable analysis results.

When solving a problem using traditional learning algorithm, it is generally recommended

to break the problem down into different parts, solve them individually and combine them

to get the result. In contrast, deep learning allows processes cycle reduction and efficient

utilization of resources that can lead to the automation of tasks to solve the problem end-

to-end.

4.5.2 Deep Learning Weakness

One fact that cannot be ignored is that the techniques and applications of deep learning

play a more significant role in the success of biometrics recognition by focusing on more

powerful model architectures and better learning techniques. Based on comprehensive ex-

perimentation, we identify the weaknesses of the deep learning models, and present key

points:
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B Cost and Hardware

Deep learning algorithms heavily depend on high-end machines, contrary to traditional

machine learning algorithms, which can work on low-end machines. This is because the

requirements of deep learning algorithm is a simple but broad task which most of the com-

putation in the training process is large amount of matrix multiplication operations. Graphics

Processing Units (GPUs) use a parallel architecture, is very good at handling many sets of

simple instructions. Over time, GPUs started to show massive improvements over CPUs for

training models, these units are getting more expensive. Also, advances in data storage are

some of the major challenges of deep learning which means more and more memory hardware.

B Execution Time

Fortunately, Deep learning algorithms are becoming increasingly accurate, and are be-

coming more widely used. Deep learning is trainable neural networks that needs a lot of

training data. Usually, a deep learning algorithm takes a long time to train. This is because

there are so many parameters in a deep learning algorithm that training them, takes longer

than usual. For example, state of the art deep learning algorithm can takes about two weeks

to train completely. At test time, the time increases on increasing the size of testing data.

Although, this is not applicable on all deep learning algorithms, as some of them can have a

small testing times. In conclusion, the processing is difficult and expensive in terms of time

and expertise.

B Interpretability

In general, anything that requires interpreting or applying the scientific method, this is

out of reach for deep learning models. This factor is the main reason of think long before

its use. Classical algorithms give us crisp rules as to why it chose? or what it chose? So,

it is particularly easy to interpret the reasoning behind it. In contrast, the performance of

deep learning is quite excellent, but we don’t know: what there neurons were supposed to

model? What these layers of neurons were doing? And why it has given these parameters?

As a sequence, we fail to interpret the results.

4.6 Simple Deep Learning Methods

Image classification plays a very important significance in our life which is a process in-

cluding image processing, image segmentation, key feature extraction and matching identifi-

cation. During the rise of deep learning, feature extraction and classifier have been integrated
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to a learning framework which overcomes the difficulties of feature selection in traditional

methods. The idea of deep learning is to discover multiple levels of representation, with the

hope that a high-level features represent more abstract semantics of the data. But these

algorithms require a large amount of data with take more time and expensive machines as

noted in last sub-section (Section. 4.5.2).

According of these previous facts, we justify the use of simple deep learning algorithms

in Section. 4.3.2 as a compromise solution has the ability to learn deep feature representa-

tions of biometric modalities. Including the compatibly with our machine, because a training

more convolutional neural networks, when the iteration times increase, is difficult in order to

produce a good model by limited processing units and that requires more than more time.

Lastly, Annex D provides a detailed course in the general basis and important functions of

deep learning that will be applied in the image processing fields.

4.7 Chapter Summary

In this chapter, we started with a definition of what a biometric feature is, and presented

feature extraction tasks. The biometric feature types can be divided into three categories:

Texture features, Line and Shape Features; we described these categories and gave some

examples of each category. Then the classical feature extraction methods are described from

applied statistics algorithms with increased emphasis on the PCA and DCT. Comparing with

the classical methods, we discussed on the deep learning architectures and how the hierar-

chical brain structure can help to improve features engineering? For biometric systems, the

deep learning methods select and analyze deep features to easily finding patterns. Further-

more, we described a some factors of limitation in traditional methods to extract the features

and proving lack competency required. These limitations have motivated the development

of deep learning algorithms that overcome these obstacles.

Deep learning is an aspect of machine learning that is concerned with emulating the

data mining approach to gain certain types of pattern. Moreover, it applies a transformation

on its input data and uses to create a statistical model. Iterations continue until the model

has reached an acceptable level of accuracy. This chapter also presented a basic of deep

learning as strengths and weakness of deep learning algorithms, to estimate the use of deep

learning functions as make them popular approaches in the recent researches.



Chapter 5

PROPOSED FKP

RECOGNITION SYSTEM

5.1 Introduction

T
his chapter describes the design and implementation of FKP identification system using

deep learning in multimodal biometric based system. The deep learning technique is

subfield of machine learning research [56, 57] which applied learning algorithms to scan

multiple levels of representation to modeling complex relation within the data. Thus, it

identified high level features and concepts based on the lowest of them. Recently, deep

learning methods are known a great interesting in the field of classification and pattern

recognition. In general, a deep neural network algorithms consist on multiple trainable

stages stacked on top of each other [58], each stage generally comprises of convolutional

filter bank layer, a nonlinear processing is adopted for feature extraction as well as texture

patterns analysis and classified [83]. However, learning a network useful for classification

which critically depends on expertise of parameter tuning and some setting tricks [59]. Also,

this chapter discusses on the investment of the power of these algorithms in feature extraction

and fusion for multimodal biometric system based on FKP recognition.

5.2 Finger Knuckle Anatomy

Each finger has three joints. There are three bones in each finger called the proximal

phalanx, the middle phalanx and the distal phalanx. The first joint is where the finger joins

the hand, called the proximal phalanx [91]. The second joint is the proximal inter phalangeal

joint, or PIP joint. The last joint of the finger is called the distal inter phalangeal joint, or

58



Chapter 5. Proposed FKP Recognition System 59

DIP as shown in Fig. 5.1 (Source: Finger Joint Anatomy JointReplacement.com).

Figure 5.1: Illustration of finger knuckle.

Finger knuckle is the back surface of finger, it is also known as dorsum of the hand. The

inherent skin patterns of the outer surface around the phalange joint of one’s finger, has high

capability to discriminate completely different people. Such image pattern of finger knuckle

is unique for authentication. In FKP, features are center of phalangeal joint, U shaped line

around the middle phalanx, number of lines, length and spacing between lines. Knuckle

crease patterns and stray marks are means of photographic identification. Such features are

unique and can be used for identification. Extraction of options of knuckle for identification

is completely depends upon the user. Some of the researchers of science extracted the options

for authentication as shown in Fig. 5.2.

(a) (b)

Figure 5.2: Illustrations of finger knuckle anatomy, (a) Distal inter phalangeal joint and (b) Centre
of phalangeal joint.

FKP uses feature detection and matching techniques in its hard core design. It works sim-

ilar at almost authentication system. Fig. 5.3 shows the finger knuckle features. Biometrics

authentication must provide the security level, unattended system, spoofing and reliability

[91].
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Figure 5.3: Illustration of finger knuckle features.

5.3 Finger-Knuckle-Print (FKP) Recognition System

5.3.1 FKP Researches

Many authentication systems have been used widely in business-related and law enforce-

ment applications. The use of different biometric traits such as fingerprint, face, iris, ear,

palmprint, hand geometry and voice have been well studied [92]. Based on existing research

reports the skin pattern on the finger-knuckle is significantly rich in texture due to skin folds

and creases, and hence, can be considered as a biometric identifier [93]. The advantages of

using FKP include rich in texture features [94], easily accessible, contact-less image acqui-

sition, invariant to emotions and other behavioral aspects such as tiredness, stable features

[95] and acceptability in the society [96]. There are a lot of characteristics and advantages of

using FKP as biometric identifier [100], but limited work has been reported in the literature

[97].

Systems reported in literature have used global features, local features and their com-

binations [86] to represent FKP images. Many efforts have been made to build a FKP

system based on global features. FKP features are extracted using Principle Component

Analysis (PCA), Independent Component Analysis (ICA) and Linear Discriminant Analysis

(LDA) in [98]. These subspace analysis methods may be effective in face recognition but

they are not found to be effective to represent FKP [99]. FKP is transformed using Fourier

transform and the Band-Limited Phase Only Correlation (BLPOC) is employed to match

the FKP images [88].

Global feature gives the general appearance (holistic characteristics) of FKP which is

suitable for coarse level representation, while local feature provides more detailed informa-

tion from specific local region and is appropriate for finer representation [86]. There exist
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systems where local features of FKP are extracted by using Gabor filter based competitive

code, (CompCode) [88] combined orientation and magnitude information (ImCompCode

and MagCode) [87]. Further, in [90], orientation of random knuckle lines and crease points

(KnuckleCodes) of FKP which are determined using random transform are used as features.

In Damon L. Woodard and Patrick J. Flynn [93], FKP is represented by curvature based

shape index.

Morales et. al. have proposed a FKP based authentication system (OE-SIFT) using

Scale Invariant Feature Transform (SIFT) from orientation enhanced FKP. SIFT features of

FKP is matched using similarity threshold [101]. In [99], the authors proposed features which

are extracted using Fast Feature transform (MonogenicCode). Further, [86] has proposed a

verification system which is designed by fusing the global information extracted by BLPOC

[102] and the local information obtained by Compcode [88]. However, there does not exist

any system which is robust to scale and rotate.

5.3.2 FKP System Description

Figure 5.4: Block-diagram of the proposed unimodal biometric system.

In FKP the texture pattern is produced by the finger knuckle bending. It is highly

unique and makes the surface a distinctive biometric identifier. Like any other biometric

identifiers, FKPs are believed to have the critical properties of universality, uniqueness, and

permanence for personal recognition. Comparing to other existing biometric traits, finger

knuckle is one of the most popular traits in current research. In the proposed multimodal

system, we combine the FKP modalities to provide better performance and to improve the

security level. In Fig. 5.4, we show the block-diagram of the proposed biometric system

based on the FKP images. For enrollment phase, the feature vectors are extracted from

the all Region of Interest (ROI) sub-images [60] by deep learning network. After that, the

PCANet or DCTNet feature vectors will be as a training data used to create models based

on the SVM and KNN classifiers, respectively. Training data is a matrix where each column
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corresponds to a feature vector. In the second phase, devoted to the identification, the same

method is applied, on finger test image, for extract the feature vector, then it uses as an

input to matching process in order to find the person which own the same test finger.

5.4 Classification Stage

Regarding the classification algorithm, the most important thing is its capacity to discrim-

inate, based on the available information. SVM has been chosen since it proven advantages

in handling large scale classification tasks with good generalization performance. Addition-

ally, it has demonstrated superior results in various classification and pattern recognition

problems [139]. Furthermore, KNN has also been chosen as second classifier to provide a

large generalization about classification techniques especially with a big number of training

samples and a high number of input variables. In this section, we will give brief background

knowledge on SVM and KNN.

5.4.1 Overview of SVM

SVM has been recently proposed as a popular tool for solving many classification tasks

based on the statistical learning theory which invented by Vapnik [107]. For this purpose,

we use SVM to validate our approach, it is a good classification accuracy reported for many

pattern recognition problems. To achieve better generalization performance of the SVM,

original input space is mapped into a high-dimensional dot product space called the feature

space, and in the feature space the optimal hyperplane is determined. The optimal hyper-

plane is found by exploiting the optimization theory, and respecting insights provided by the

statistical learning theory.

B Linearly Separable

Given training vectors xi, i = 1, ..., N of length n and a vector y defined as follows

yi =

{
1 if xi in Class1,

−1 if xi in Class2.
(5.1)

The central idea of SVM is to define a separating hyperplane, so, the classification margin

between the two classes is as large as possible, where measured along a line perpendicular to

the hyperplane.
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The SVM training model finds the separating hyperplane which gives the maximum mar-

gin or distance between the parallel hyperplanes that are as far apart as possible while still

separating the data. These hyperplanes should satisfy the following constraints since the

wider margin can acquire the better generalization ability.

Figure 5.5: Linearly separable data.

In Fig. 5.5, two class’s stances could be separated by bold solid line. The test sample (the

circle) can be classified by based on the hyperplane. In this figure, the hyperplane that is

calculated from these training examples is given by the bold line, separated from the closest

training vectors by the distance d. The classification of an unknown sample is done by deter-

mining where the new instance falls at the hyperplane side. In this example, the prediction

for the unknown sample would be triangle.

So, we can define a canonical hyperplanes as follows [107]:{
H1 = wTx+ b = +1,

H2 = wTx+ b = −1.
(5.2)

In addition, all training samples xi satisfy{
wTx+ b > +1 for yi = +1,

wTx+ b 6 −1 for yi = −1.
(5.3)

For linearly separable data, any hyperplane g(x) = 0 can be written as

g (xi) = wTx+ b = 0, (5.4)

where w is an n-dimensional vector , b is the offset of the hyperplane from the origin and

x represents n-dimensional vector representing any point on the hyperpalne. The vector w
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and the scalar b determine the position of the separating hyperplane. The distance between

each of the canonical hyperplanes and the separating hyperplane is
1

|w|
. Now, maximizing

the separating margin is equivalent to maximizing the distance between the hyperplane H1

and H2. Hence, we can get the maximal width between them m = (x+ − x−) · w

‖w‖
=

2

‖w‖
.

Now, we can formulate the learning problem of SVM to maximize the margin of task as

follows

minimize g (w) =
1

2
‖w‖2 . (5.5)

So, wTxi + b > +1,∀i.
This enable us to use the Lagrange formalism to obtain the primal form of the objective

function Lp , which is

minimize Lp (w, b, αi) =
1

2
‖w‖2 −

n∑
i=1

αi
(
yi
(
wTxi + b

)
− 1
)
, (5.6)

where αi : 1, ..., n;αi > 0 are the Lagrange multipliers.

Solving the minimization problem is equivalent to finding the values w, b, and αi > 0 that

minimize Lp. So, we initial differentiate Lp with respect to w and b. Then, by equating the

derivatives to zero, we get

∂Lp
∂b

= 0⇒
n∑
i=1

αiyi = 0, (5.7)

∂Lp
∂w

= 0⇒ w =
n∑
i=1

αiyixi, (5.8)

when differentiating with respect to b and w respectively. Taking these two equalities and

substituting into Lp yields the dual form of the Lagrangian. We want to maximize

Lp =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj , (5.9)

under the following
n∑
i=1

αiyi = 0, αi > 0. (5.10)

This optimization’s formula is expressed by using the inner product of the training samples

xi and the numbers of training samples n.

B Linearly Non-Separable

In the previous section, the SVM theory was introduced as an optimization problem,

under the assumption, the data are linearly separable. However, in many practical problems,

data is subject to noise or outliers, so it is impossible to draw linear boundaries between
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classes. Hence, in order to extend the support vector theory to solve imperfect separation,

positive slack variables is introduced ξi : 1, ..., n; ξi > 0 into the original constraints (see there

in [107]) along with an additional penalty value C for the points that cross the boundaries to

consider the misclassification errors. C is a regularization parameter used to decide a trade-

off between the training error and the margin. If C is chosen too small, it may cause the

problem of under-fitting of the training data. If C is too large, the algorithm may increase

the possibility of over-fitting. So, we have

minimze g (w, ξ) =
1

2
‖w‖2 + C

n∑
i=1

ξi , (5.11)

then

yi
(
wTxi + b

)
> 1− ξi , ξi > 0. (5.12)

The primal and dual forms of the Lagrangian are built as:

Lp =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj , (5.13)

and
n∑
i=1

αiyi = 0, 0 6 αi 6 C. (5.14)

B Kernel-Trick

Figure 5.6: Kernel trick for non-linearly separable data.

The initial optimal hyperplane algorithm proposed by Vapnik [107], was a linear classifier.

In [155], Boser et.al suggested a way to create a nonlinear classifiers by applying the kernel

trick to extend the linear learning machine to handle nonlinear cases (see Fig. 5.6). Kernel

function is essentially a weighted function designed for nonparametric function estimations.
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We aimed to maximize the margin of separation between patterns to have a better classifica-

tion result. The calculations can be simplified by converting the problem with Kuhn-Tucker

conditions into equivalent Lagrange dual problem.

With this mapping, the discriminant function is

g (xi) = wTΦ (x) + b. (5.15)

And the dual form of the Lagrangian becomes

Lp =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjΦ (xi)
T Φ (xj) , (5.16)

and
n∑
i=1

αiyi = 0, C > αi > 0. (5.17)

Overall, any positive semi-definite functions K (xr, xi) that satisfy mercer’s condition can

be a kernel functions. The function K (xr, xi) that returns a dot product of two mapped

patterns is called a kernel function. Different kernels can be selected to construct the SVM.

The most commonly used kernel functions are the polynomial, linear and Gaussian radial

basis kernel function (RBF).

• Linear kernel function:

K (xr, xi) =
(
xTi xj

)
. (5.18)

• Gaussian RBF:

K (xr, xi) = exp
(
−γ
∥∥xTi , xj∥∥2) , γ > 0. (5.19)

• Polynomial kernel function:

K (xr, xi) =
(
r + γxTi xj

)d
, γ > 0, (5.20)

where γ , r and d are kernel parameters.

5.4.2 Overview of K-Nearest Neighbor (KNN)

K-Nearest Neighbor (KNN) algorithm is one of the simplest classification algorithm and

the most used. KNN is a non-parametric and lazy learning algorithm which stores all avail-

able cases and classifies new cases based on a similarity measure. KNN has been used in

statistical estimation and pattern recognition [144].
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B KNN Algorithm

KNN algorithm is a type of supervised learning, where the distance measures are very

essential to find the similarity and dissimilarity between the classification data [145]. Simi-

larity is if two objects have a same measurement and dissimilarity is two objects are different.

The main aim of distance metric calculation is to find appropriate or similar distance as in

[145]:

• Euclidian Distance:

D =

√√√√ k∑
i=1

(xi − yi)2. (5.21)

• Chebychev Distance:

D = max
k∑
i=1

|xi − yi| . (5.22)

• Minkowski Distance:

D =

(
k∑
i=1

|xi − yi|q
) 1

q

. (5.23)

In the instance of categorical variables, the Hamming distance must be used. It also

brings up the issue of standardization of the numerical variables between 0 and 1 when there

is a mixture of numerical and categorical variables in the dataset:

DHamming =

k∑
i=1

|xi − yi| ,

{
x = y ⇒ D = 0,

x 6= y ⇒ D = 1.
(5.24)

The rule simply retains the entire training set during learning and assigns to each query

a class represented by the majority label of its k-nearest neighbors in the training set. The

Nearest Neighbor rule is the simplest form of KNN when K = 1. In this method, each sample

should be classified similarly to its surrounding samples. Therefore, if the classification of a

sample is unknown, then it could be predicted by considering the classification of its nearest

neighbor samples [144]. Fig. 5.7 shows that the KNN decision rule for K= 1 and K= 4 for a

set of samples divided into 2 classes. In the right of Fig. 5.7, an unknown sample is classified

by using only one known sample; in the left of Fig. 5.7, more than one known sample is

used. In the last case, the parameter K is set to 4, so the closest four samples are considered

for classifying the unknown one. Three of them belong to the same class, whereas only one

belongs to the other class. In both cases, the unknown sample is classified as belonging to

the class on the left [144].
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Figure 5.7: A example of the KNN decision rule (from [144]).

The KNN algorithm

for all the unknown samples UnSample(i)

for all the known samples Sample(j)

compute the distance between UnSamples(i) and Sample(j)

end for

find the k smallest distances locate the corresponding samples

Sample(j1),...,Sample(jk) assign UnSample(i) to the class which

appears more frequently

end for

B Advantages and Disadvantages

The KNN has several main advantages: simplicity, effectiveness, intuitiveness and com-

petitive classification performance in many domains. It is robust to noisy training data [144].

Despite of the above advantages, The KNN has a few limitations, which can have poor

run-time performance when the training set is large. It is very sensitive from the irrelevant or

redundant features because all features contribute to the similarity and to the classification.

Two other disadvantages of the method are the selection of the distance type and the high

computation cost [144].

5.4.3 Feature Classification

In our work, which based on the PCANet or DCTNet deep learning algorithms (FKP

biometric system), the SVM and KNN classifiers are used for the PCANet and DCTNet

features, respectively. For PCANet case, a SVM classifier is a supervised machine learning

algorithm [69], which can be used for both classification and regression challenges. However,
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it is receiving increasing attention and have shown superior performance in pattern recogni-

tion [70]. For that, we used a multiclass linear SVM operate on the extracted feature vector

for each image. The specific algorithm used was one-against-others support vector classifica-

tion. Thus, in this algorithm, binary SVMs are combined in one-against-others, each of the

binary SVMs separates a single class from all remaining classes (SVM-pairwise scheme) [71].

These classifiers are arranged in trees where each node represents a SVM.

In DCTNet case, a KNN classifier is a type of supervised learning algorithm, which can be

used to measure the similarity and dissimilarity between the FKP traits for our classification

process. It is important to note that in our scheme, two additional classifiers (Radial Ba-

sis Function (RBF) [72] and Random Forest Transform (RFT) [73] are tested and compared

with the multiclass SVM classifier. All these classifiers SVM, RBF and RFT will be provided

with more details in the Annex C.

5.5 Matching Stage and Normalization

5.5.1 Scores Normalization

Score normalization is a critical step in the design of a combination scheme of the score

level fusion. To address the problem of incomparable classifier output scores in different

combination classification systems, normalization methods are used to change the location

and scale parameters of the matching score distributions at the outputs of the individual

matchers. In such a way, various matching scores of different matchers are converted into a

common domain and can be combined later [134].

It is highly desirable that the normalization of the location and scale parameters of the

matching score distribution must be robust and efficient. Huber [137] defines robustness as

insensitivity to the optimal estimate when the distribution of the data is known. Huber also

argues even though many techniques can be used for score normalization, the challenging

work is to identify a technique that can be both robust and efficient.

∗ Objectives of Normalization

Generally, we give three important issues to be considered before combining scores:

• The scores in output the individual subsystems may be not homogeneous. For exam-

ple, one system can output a distance measure (dissimilarity) while another output a

measure of proximity (similarity).



Chapter 5. Proposed FKP Recognition System 70

• The outputs of individual systems are not necessarily included in the same interval.

• The scores in output subsystems may follow different statistical distributions.

So, normalization of scores is essential for transforming subsystems scores in a same

interval before fused them.

∗ Min-max Normalization

Normalization is a process that changes the different distance values in a common do-

main. Indeed, the normalization improves the performance of the biometric recognition

system. Many methods of normalization scores can be used such as: “Decimal scaling”, “Z-

score normalization”, “MAD normalization” and “Tanh-estimators” [138]. One of efficient

technique used in normalization process is the Min-Max technique which is the process of

transforming the different scores to value between 0 and 1 [75]. The lowest (min) value is set

to 0 and the highest (max) value is set to 1. This provides an easy way to compare values

that are measured using different scales of measure. Min-Max normalization is defined as

D̃ =
D̃−min(D̃)

max(D̃)−min(D̃)
, (5.25)

and D̃ = [d̃1, d̃2, d̃3, · · ·, d̃i], (5.26)

where D̃ denotes the normalized similarity/dissimilarity scores. However, these scores are

compared, and the highest score is selected. Therefore, the best score is d̃o and its equal to

d̃o = max
i

(D̃) with i ∈ [1 · · ·N ], (5.27)

where N denotes the number of references vectors in system database. Finally, this score is

used for making the decision in which a threshold To is used to regulates the system decision.

The system infers that pairs of biometric samples generating scores lower than or equal to

To, are mate pairs. Consequently, pairs of biometric samples generating scores higher than

To are non mate pairs.

5.5.2 Feature Matching

During the identification process, the characteristic of the test FKP image, corresponding

to each person, is analyzed by the deep learning algorithms. Then the similarity/dissimilarity

between two given feature vectors is computed. For that, the obtained feature vector should

enter a scores computing process.
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In the proposed PCANet system, the matching process is based on the classification

score. The SVM classifying a such observation (or feature vector) X by the signed distance

from X to the decision boundary ranging from −∞ to +∞ [74]. For a score joined to class C,

a positive score indicates that X is predicted to be in C, a negative score indicates otherwise.

The predicting score for the observation X into the positive class f(x), is the trained SVM

classification function

f(x) =
n∑
j=1

αjyjG(xj , x) + b, (5.28)

where (α1, α2, ..., αn, b) are the estimated SVM parameters, G(xj , x) is the dot product

in the predictor space between X and the support vectors and the sum includes the training

set observations. The score for predicting X into the negative class is f(x).

If G(xj , x) = x′jx (the linear kernel), then the score function reduces to

f(x) = (x/s)′β + b, (5.29)

where s is the kernel scale and β is the vector of fitted linear coefficients.

For the proposed DCTNet system, the matching process is based on Euclidean Distance.

When measuring the distance in the features matching step, we use the Euclidean distance

between test feature and model features in database. According to the Euclidean distance

formula, the distance d is given by

d =

√√√√ N∑
i=1

|x̃i − xi|, (5.30)

where X̃ is the vector of test, X is the vector in database and N is the size of vectors.

With the distance vector D = [d1, d2, ..., dM ], where M is the number of distances.

5.6 Biometric Modalities Combinations

Currently, fusion at the matching score level appears to be the most useful fusion level

because its good performance and simplicity [76]. In this stage, normalized matching scores

are fused to generate an output scores from different unimodal sub-systems, which are then

used for making the final decision. During our series of tests, four different fusion schemes

are experimented which are Sum-score, Min-score, Max-score and Weighted-score rules [77].

Thus, if the scalar d̃i represents the score of the ith sub-system and Fs represents the fusion

score. Therefore, Fs is given by
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1. Sum-score (SUM): Combining the scores by the sum consists to calculate Fs such

that

Fs =

k∑
i=1

d̃i. (5.31)

2. Min-score (MIN): In this technique, we assign to the score final (fused) the best

(minimum) score calculated by the different systems. Minimum is then defined by

Fs = min(d̃1, d̃2, · · ·, d̃k). (5.32)

3. Max-score (Max): In this technique, we assign to the score final (fused) the best

(maximum) score calculated by the different systems. Maximum is then defined by:

Fs = max(d̃1, d̃2 · ··, d̃k). (5.33)

4. Sum-weighting-score (WHT): The weighted sum of scores consists at the extension

of the sum of the scores. Indeed, the score of each system is weighted and based on the

error rate associated with it, based on performance individual system or its importance

in the multimodal system. The fusion of scores is calculated as follows

Fs =

k∑
i=1

wid̃i, (5.34)

with k is the number of combined biometric sub-systems and the weight of ith sub-

system, wi is defined as

wi =
1∑k
i=1

1
Ei

× 1

Ei
, (5.35)

where Ei denote the Equal Error Rate (EER) of each biometric sub-systems and∑k
i=1wi = 1.

5.7 Chapter Summary

In this chapter, the proposed FKP system based identification is having several advan-

tages, which is rich in texture features, easily accessible, invariant to emotions and other

behavioral aspects as tiredness, stable features and acceptability in the society. Also, we pre-

sented the methodology of the proposed multimodal biometric system and gave detailed ex-

planation of the various modules of this system; beginning by the implementation of PCANet

and DCTNet methods to extract the features from FKP traits. Moreover, these feature vec-

tors obtained are classified by SVM and KNN classifiers respectively, and stored in database

as templates.
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Lastly in this chapter, the fusion is performed at matching scores level by using sum

fusion rules. The proposed method has been successfully implemented for FKP authentica-

tion system based on deep learning descriptors and evaluated its performance by using the

universal FKP database. This eligibility can be confirmed further after reviewing the results

presented in the next chapter.



Chapter 6

EXPERIMENTATIONS AND

RESULTS

6.1 Introduction

B
iometric identification system can work into two modes, open-set identification and

closed-set identification. In our study, the proposed methods were tested through the

two modes. In open-set mode, the system indicates that the person presenting the acquired

biometric data is an enrolled person or not in the system database. In the closed-set mode, the

system select the identity of the person whose reference has the highest degree of similarity

with the acquired biometric data. In this chapter, the identification tests results are divided

into three parts. In the first part, a series of experiments were carried out to select the best

parameters of our deep learning algorithms (PCANet and DCTNet) as a number of layers,

a number and size of filters and block overlap percentage, yield the best performance. The

tests results in the second part are devoted to evaluate the performance of the unimodal

and multimodal biometric systems. Finally, the last part shows the comparative study

between classical and deep learning methods based on test results of identification systems

performance.

6.2 Database Description

The proposed biometric system investigates a personal authentication technique using

finger-knuckle-print (FKP) database from the Poly University [78]. In Annex B, a specific

data acquisition device is developed to capture the FKP images. The local convex direction

map of the FKP image is then extracted, based on which a coordinate system is defined

74
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to align the images and a region of interest (ROI) is cropped for feature extraction and

matching [60]. FKP ROI database is established to evaluate the performance and to choose

their appropriate parameters. In FKP ROI database, the person was asked to provide 12

image samples for each of Left Index Fingers LIF, Left Middle Fingers LMF, Right Index

Fingers RIF and Right Middle Fingers RMF. Therefore, 48 image samples from 4 finger

types were collected from each person. The Annex A provides a detailed explanation of the

FKP ROI database.

6.3 Experimental Setup

In the system-design process, three images are randomly selected of twelve images of each

person were used in the enrolment stage to create the system database; the remaining nine

images were used to evaluate the system performance. Thus, a total of 245025 comparisons

(database size equal to 165) were made. The genuine experiments were performed by com-

paring three test images with the corresponding class in the database in which 1485 genuine

scores were made. Similarly, nine images with each class, for impostor experiments, were

compared with all references in database which give 243540 impostor experiments. Thus,

an identification occurs when the biometric system attempts to determine the identity of

a person for that, a feature vector is extracted and compared with all the vectors in the

system database. The main objective of this part is to choose the best configuration of

the PCANet and DCTNet methods for the FKP biometric modalities. To choose the best

configuration, we need to examine the impact of each parameter on systems performance by

using LIF modality. To select the best parameters, it can be divided the identification tests

results into two sub-sections. Firstly, we present the performance of the unimodal biometric

systems based on PCANet technique in order to select the best performance. Subsequently,

in the last sub-section, the identification system performance based on DCTNet technique

are tested. As mentioned above, these tests are based on LIF modality, to adapt our deep

learning methods.

6.3.1 PCANet Parameters Selection

Most of algorithms in deep learning have a set of specific parameters because most of the

parameters are optional and preset to meet our specific needs. For that, we conducted a

series of experiments to select the best parameters of PCANet which give a minimum errors

rates. Thus, in our work, we directly choose the number of stages equal to two-stages. In the

first stage, we change every time the number of PCA filters from 1 to 3 with a fixed number

of PCA filters in second stage which equal to 2. The problem we are addressing is as follows:

we want to choose the number of [K1,K2] PCA filter and the block overlap percentage such
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that the EER is minimized. By varying the filter number from 1 to 3 in first stage and block

overlap percentage from 0% to 75%, which illustrated in Table. 6.1, the system performance

as a function of the number of PCA filters selection in each stage for various block overlap

percentage. The reason of presenting Table. 6.1 is to show how these parameters might have

an effect on the performance of our system. From this table, we observe that the identifica-

tion accuracy becomes very high at [3, 2] filter number (3 filters for first stage and 2 filters

for second stage), where it actually exceeds 98.788% (EER = 1.212%) and a strong decrease

in identification accuracy when we go to a lower size, it is important to note that, the filter

size used for this test is 5×5. Also, another series of tests is performed to select the optimum

filter size with their corresponding block overlap percentage. Thus, several sizes are tested

which are (3× 3, 5× 5, 7× 7, · · ·, 13× 13), and the given results are plotted in Fig. 6.1. From

this figure, it is very clear that a filter size equal to [13× 13] and an overlapped block equal

to 50%, are enough to achieve a good accuracy as a very lower EER equal to 0.919 %.

Overlapped blocks
Number Filters[1, 2] Number Filters[2, 2] Number Filters[3, 2]

To EER To EER To EER

0% 0.671 8.790 0.661 8.559 0.690 1.572

25% 0.653 8.228 0.652 7.867 0.671 1.641

50% 0.665 6.646 0.650 7.272 0.676 1.481

75% 0.639 5.583 0.644 6.060 0.692 1.212

Table 6.1: The PCANet parameters test results.

Figure 6.1: The PCANet parameters test results.

However, the results given in this part demonstrate that a filter number equal to 3 and
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2 in the first and second stage, respectively, a filter size of (13 × 13) and a block overlap,

percentage of 50% can offer better results in terms of system accuracy.

6.3.2 DCTNet Parameters Selection

As in PCANet parameters selection, the performance of DCTNet model depends on the

good tuning of deep learning parameters. DCTNet algorithm also has generic parameters,

such as: number of layers, number of filters and blocks size, etc. To select DCTNet algorithm

parameters, we need to a new series of experiments that provide required parameters for the

best performance. But these initialization procedures take more time and more expensive

cost. In our case and in view of the great similarity between the two methods, we directly

choose the same PCANet parameters for DCTNet method. Based on previous sub-section,

DCTNet parameters can be summaried in: the number of layers equal to 2 layers, the filters

number are [3, 2], 3 filters for first stage and 2 filters for second stage and the blocks size

equal to (13× 13). Therefore, we have decided to choose these parameters in the rest of our

study.

6.4 Biometric System Evaluation

6.4.1 Unimodal Systems Test Results

6.4.1.1 PCANet Based Biometric Systems

This sub-section describes the results of the proposed PCANet based identification uni-

modal system. When we use individually the information from four modalities LIF, LMF,

RIF and RMF of each person. Thus, we can see in Table. 6.2 the test results of PCANet

systems for all finger types.

Open-set: From this table, it’s clear that the LMF and RIF fingers offer better results in

terms of the EER. In this case, the identification system can achieve an EER of 0.673% at a

threshold T0 = 0.715 and T0 = 0.703 for LMF and RIF modalities, respectively. Also in this

table, we can observe the LIF modality gives EER = 0.919% at a threshold T0 = 0.705 for

LIF modality. Finally, in the case of using RMF modality, EER = 1.077% with T0 = 0.687.

So, the performance of our system is very acceptable compared with several state-of-art of

FKP based biometric identifier accuracies where we can justified by the efficiency of the

proposed method. The ROC curves for four fingers modalities are shown in Fig. 6.2.(a),

which plot the False Rejected Rate (FRR) against the False Accept Rate (FAR). The test

results indicate that the LMF and RIF modalities are very efficiency at the EER point and

their performances are equal. These modalities is better than the perform of the LIF and
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RMF modalities in terms of EER. In Fig. 6.2.(b), the ROC curves (Genuine Acceptance

Rate (GAR) against FAR) provide a more details for the performance of proposed unimodal

open-set identification systems.

MODALITIES
OPEN-SET IDENTIFICATION CLOSED-SET IDENTIFICATION

To EER ROR RPR

LIF 0.705 0.919 95.750 111

LMF 0.715 0.673 97.300 102

RIF 0.703 0.673 96.830 136

RMF 0.687 1.077 95.150 145

Table 6.2: Unimodal identification test results based on PCANet.

(a) (b) (c)

Figure 6.2: Unimodal open/closed-set identification test results for PCANet method. (a) The ROC
curves (FRR against FAR), (b) The ROC curves (GAR against FAR) and (c) The CMC curves.

Closed-set: At closed-set identification systems tests, we compare the performance of the

different fingers modalities to determine the best modality. The results for all fingers are also

presented in Table. 6.2. From analyzing this table, we can see that the Rank-One Recogni-

tion (ROR) is between 95.150% and 97.300%. So, the system can achieve higher accuracy at

the LMF modality compared with the other fingers modality which is produced a ROR equal

to 97.300% with a Rank of Perfect Recognition (RPR) of 102. The RIF followed by LIF

and RMF modalities can produce the ROR equal to 96.830% (RPR = 136), 95.750% (RPR

= 111) and 95.150% (RPR = 145), respectively. To summarize the closed-set identification

experiments, graphs showing the Cumulative Match Characteristics (CMC) curves using all

unimodal systems were generated in Fig. 6.2.(c). In conclusion, the obtained identification

rates of FKP modalities for PCANet system are very efficiency.



Chapter 6. Experimentations and Results 79

6.4.1.2 DCTNet Based Biometric Systems

Open-set: From four modalities LIF, LMF, RIF and RMF of persons, the DCTNet based

identification unimodal systems are obtain the results which described in Table. 6.3. In

general, this results are very acceptable that its given a low EER rates. In the LMF case,

the open-set identification system achieve better results with EER equal to 0.837% at a

threshold T0 = 0.232. Also according to the table, we can observe that the RIF modality

gives EER = 1.011% at a threshold T0 = 0.250 after that the use of LIF and RMF modalities

can produced an EER of 1.346% at T0 = 0.259 and EER of 1.711% at T0 = 0.307, respectively.

Finally, the performance of our DCTNet system for all fingers modalities are shown in Fig.

6.3.(a), which plot the FRR against the FAR. The ROC curves in Fig. 6.3.(b), the plot of

GAR against FAR provide a clearly comparative between the performance of four fingers

modalities in DCTNet based unimodal open-set identification systems.

MODALITIES
OPEN-SET IDENTIFICATION CLOSED-SET IDENTIFICATION

To EER ROR RPR

LIF 0.259 1.346 93.131 106

LMF 0.232 0.837 96.026 101

RIF 0.250 1.011 95.420 155

RMF 0.307 1.711 94.074 114

Table 6.3: Unimodal identification test results based on DCTNet.

(a) (b) (c)

Figure 6.3: Unimodal open/closed-set identification test results for DCTNet method. (a) The ROC
curves (FRR against FAR), (b) The ROC curves (GAR against FAR) and (c) The CMC curves.

Closed-set: The performances of all different modalities are presented in Table. 6.3. At

closed-set identification tests, the results can provide that the ROR is between 93% and 96%.

So, the system can achieve a higher accuracy in the LMF modality compared with the other

fingers modalities, which is produced a ROR equal to 96.026% with a RPR equal to 101. As

the RIF modality gives the ROR = 95.420% and RPR = 155, followed by RMF and LIF
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modalities which can produce a ROR equal to 94.074% with RPR = 114 and ROR = 93.131%

with RPR = 106, respectively. To summarize the closed-set identification experiments, the

CMC curves in Fig. 6.3.(c) present the obtained identification rates for FKP modalities.

6.4.1.3 Comparative Study

In order to show the effectiveness of the deep learning methods, a comparison study is

performed based on two methods: PCANet and DCTNet algorithms. As everyone knows,

the deep learning algorithms contain two parts: feature extraction part and classification

part. Thus, in this comparison, PCANet and DCTNet as a feature extraction methods are

used, that can capture the information from the image texture and provide a very robustness

to effectively describe the image characteristics. But in same time, for PCANet method, we

change the SVM classifier in classification part by using two another classifiers: Radial Basis

Function (RBF) and Random Forest Tree (RFT), their obtained results are compared with

DCTNet method which are used KNN classifier. In the identification tests, these test results

are giving an idea about the better combination which will entirely depend at proposed pro-

cess. As such, the set of experiments tends to the performance of unimodal systems. The

objective of this section is to choose the best performance of unimodal system.

In open-set identification mode, the obtained results of the identification tests are given in

terms of EER. Table. 6.4 shows the baseline obtained results by using the four combination

algorithms. These results demonstrate the capability of deep learning methods to reduce

identification error rate. From this table, it is observed that the use of PCANet-SVM system

leads to reduce the lowest EER offered than the rest unimodal systems. However seen that,

the capability is considerably improved through the LMF modality (EER = 0.673% and T0

= 0.715). Regarding to the DCTNet-KNN combination of LMF unimodal system is also

provided a good results and close to the PCANet-SVM combination (EER = 0.837% and T0

= 0.232). On the other hand, it is observed that the use of rest systems produces limited

efficiency. As the LMF modality gives the performance (EER = 1.305%, T0 = 0.673) in

PCANet-RBF system and (EER = 1.547%, T0 = 0.509) in PCANet-RFT system.

In closed-set identification mode, the second mode of identification was tested for all

methods and the results are reported in Table. 6.4 to comparison. Similarly, it is clear that

the using of PCANet-SVM improves as big form the performance of our system, as compared

with the PCANet-RBF and PCANet-RFT systems. In the case of PCANet-SVM method,

a ROR equal to 97.30% with a lowest RPR equal to 102, which it is achieved by the ue

of LMF modality. Using PCANet-RBF method, ROR was 94.41% with RPR = 139 and
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PCANet-RFT method gives the result ROR = 92.12% and RPR = 147 for the LMF modal-

ity in database of 165 persons. In DCTNet-KNN case, the performance of LMF system is

the second in terms of efficiency through a ROR equal to 96.02% and RPR = 101. Based on

the results, it should be noted that absolutely, the system based on PCANet deep learning

method with SVM classifier is very efficiency than these another methods DCTNet-KNN,

PCANet-RBF and PCANet-RFT.

METHODS MODALITIES
OPEN-SET IDENTIFICATION CLOSED-SET IDENTIFICATION

To EER ROR RPR

PCANet-SVM LMF 0.715 0.673 97.30 102

DCTNet-KNN LMF 0.232 0.837 96.026 101

PCANet-RBF

LIF 0.628 2.626 90.90 157

LMF 0.673 1.305 94.41 139

RIF 0.788 3.636 85.25 152

RMF 0.733 3.271 88.28 133

PCANet-RFT

LIF 0.469 2.424 89.42 123

LMF 0.509 1.547 91.78 133

RIF 0.487 1.616 91.91 134

RMF 0.434 2.223 92.12 147

Table 6.4: Comparison study for unimodal identification test results.

6.4.2 Multimodal Systems Test Results

Recently, the research in the field of biometrics for identification purposes, has increasingly

investigated the use of multiple biometric modalities (multimodal biometrics). Multimodal

biometrics refers to the use of more than one biometric modality for person identification.

The multimodal systems are expected to be more reliable due to the presence of multiple

templates security. A number of these systems have been proposed and differ from one to

another in terms of their architecture, the number of modalities, the choice of modalities and

the methods used for the information fusion.

The objective of this sub-part is to evaluate and to improve the performance of the

unimodal biometric identification system by using multiple modalities information from the

different finger types. The important keys to improve the accuracy of multimodal biometric

system are the choice of fusion level as well as the technique deployed for data fusion. In our

work, we choose only the matching score level because it’s usually preferred as it’s relatively

easy and it can easily combine the scores presented by the different modalities. The idea

behind using fusion at matching score level is the possibility to combine the scores obtained

from different fingers modalities with a simple rules. The overall score is then sent to the

decision module for accepting or rejecting a person.
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6.4.2.1 Multi-Samples Biometric Systems

The Multi-Samples systems use multiple samples of the same biometric trait by only a

single sensor. For example, our multi-samples systems are using two fingers of the left hand

LIF-LMF, two fingers of the right hand RIF-RMF and four fingers LIF-LMF-RIF-RMF to

simplify, it’s noted ALL. Firstly, we present the performance of the multi-samples biometric

systems based on PCANet method in order to evaluate their performance. After that, we

give the performance of the multi-samples biometric systems based on DCTNet method.

a. PCANet Based Biometric Systems

COMBINATION
SUM MIN MAX WHT

To EER To EER To EER To EER

LIF-LMF 0.856 0.022 0.765 0.404 0.817 0.043 0.791 0.049

RIF-RMF 0.803 0.044 0.722 0.673 0.745 0.067 0.727 0.098

ALL 0.736 0.000 0.745 0.538 0.939 0.000 0.718 0.000

Table 6.5: PCANet Performance of the multimodal open-set identification system (fusion at match-
ing score level).

(a) (b) (c)

Figure 6.4: The ROC curves of PCANet for multimodal open-set identification test results (fusion
at matching score level). (a) The LIF-LMF combination, (b) The RIF-RMF combination and (c)

The ALL combination.

Open-set: Generally, the use of fusion process can improve the performance of system and

provide a better result than the best unimodal identification system. Thus, to find the bet-

ter performance of combinations with fusion rules, Table. 6.5 provides the results of open-set

identification mode. From this table, we can observe that the ALL combination with almost

any fusion rule (Sum, Wht and Max) reduces the EER to zero (100% improvement). But

in the Min case, EER was reduced only to 0.538% (' 80% improvement). In LIF-LMF and

RIF-RMF combinations, the EERs are very close (between 0.022% and 0.098%) in the cases
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of Sum, Wht and Max rules and (0.404% to 0.673%) into Min rule. The ROC curves in

Fig. 6.4.(a), Fig. 6.4.(b) and Fig. 6.4.(c) present a direct comparison of the obtained perfor-

mances by using four rules of fusion based on LIF-LMF, RIF-RMF and ALL combinations,

respectively. Thus, the combination of higher number of finger types give a considerable

improvement especially to using Sum, Wht and Max rules.

COMBINATION
SUM MIN MAX WHT

ROR RPR ROR RPR ROR RPR ROR RPR

LIF-LMF 99.73 10 97.84 73 99.66 7 99.79 16

RIF-RMF 99.59 12 96.90 123 99.32 9 99.46 22

ALL 100.00 1 98.11 86 100.00 1 100.00 1

Table 6.6: PCANet Performance of the multimodal closed-set identification system (fusion at match-
ing score level).

(a) (b) (c)

Figure 6.5: The CMC curves of PCANet for multimodal closed-set identification test results (fusion
at matching score level). (a) The LIF-LMF combination, (b) The RIF-RMF combination and (c)

The ALL combination.

Closed-set: To validate our idea, we have run other tests for the closed-set identification

mode. Table. 6.6 presents the results of different combinations and fusion rules to determine

the best combination as well as the best fusion rule. The experiments indicate that the iden-

tification rates ROR for the ALL combination, with Sum,Wht and Max rules, are greater

than the corresponding ones in unimodal system, so as ROR is given as 100.00% with lowest

RPR of 1 in both cases. In the Min rule, the system is provided ROR equal to 98.110%

with RPR equal to 86 but it always improve the performance. On the other hand, although

the fusion rules in the closed-set identification case, the results in LIF-LMF and RIF-RMF

combinations did not live up to higher performance such as the ALL combination. The rest

of results can be clearly seen in Table. 6.6. Also, the curves in Fig. 6.5 which plot the CMCs

curves for all cases, demonstrate the capability to reduce the closed-set identification error

rates by combining all fingers at the matching score level. Fig. 6.5.(a) presents compari-

son of the different rules fusion based on LIF-LMF combination and the same presentation



Chapter 6. Experimentations and Results 84

Fig. 6.5.(b), Fig. 6.5.(c) for RIF-RMF and ALL combinations, respectively.

b. DCTNet Based Biometric Systems

COMBINATION
SUM MIN MAX WHT

To EER To EER To EER To EER

LIF-LMF 0.170 0.067 0.182 0.140 0.263 1.010 0.199 0.106

RIF-RMF 0.212 0.134 0.258 0.202 0.263 1.144 0.209 0.252

ALL 0.159 0.001 0.158 0.012 0.258 0.929 0.193 0.001

Table 6.7: DCTNet Performance of the multimodal open-set identification system (fusion at match-
ing score level).

(a) (b) (c)

Figure 6.6: The ROC curves of DCTNet for multimodal open-set identification test results (fusion
at matching score level). (a) The LIF-LMF combination, (b) The RIF-RMF combination and (c)

The ALL combination.

Open-set: The use of DCTNet method provide genuine confirmation of efficacy of deep

learning methods, through the test results of open-set identification which are presented in

Table. 6.7. From this table, we can see that also the ALL combination with fusion rules

Sum and Wht reduce the EER to zero (0.001%). But in the Min and Max cases, EER

equal only to 0.012% and 0.929%, respectively. In LIF-LMF combination, the EERs are be-

tween 0.067% and 0.140% for the Sum, Wht and Min rules, and 1.010% into Max rule. For

RIF-RMF combination, the rest results can be observed in Table. 6.7. The ROC curves in

Fig. 6.6.(a), Fig. 6.6.(b) and Fig. 6.6.(c) present a direct comparison of the obtained perfor-

mances by using the all fusion rules based on LIF-LMF, RIF-RMF and ALL combinations,

respectively. Thus, the combination of All finger gives a considerable improvement especially

for using Sum and Whtrules.

Closed-set: For the closed-set identification mode, Table. 6.8 contains the results of dif-

ferent combinations and fusion rules in DCTNet based multimodal systems. From this table,
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COMBINATION
SUM MIN MAX WHT

ROR RPR ROR RPR ROR RPR ROR RPR

LIF-LMF 99.393 29 99.124 29 96.565 100 99.259 39

RIF-RMF 99.124 38 99.191 57 95.353 150 98.989 40

ALL 99.933 4 99.866 11 96.229 126 99.933 4

Table 6.8: DCTNet Performance of the multimodal closed-set identification system (fusion at match-
ing score level).

(a) (b) (c)

Figure 6.7: The CMC curves of DCTNet for multimodal closed-set identification test results (fusion
at matching score level). (a) The LIF-LMF combination, (b) The RIF-RMF combination and (c)

The ALL combination.

the ROR rate of ALL combination, with Sum and Wht rules, is greater than the rest systems,

as ROR equal to 99.933% with lowest RPR of 4 in both cases. In Min and Max rules, the

systems are provided ROR = 99.866% with RPR = 11 and ROR = 96.229% with RPR =

126, respectively. Furthermore, the fusion rules in LIF-LMF and RIF-RMF combinations

did not live up to higher performance such as the ALL combination. The rest results of

these combinations are shown in Table. 6.8. Finally, the CMCs curves plot the closed-set

identification error rates for all cases and demonstrate the efficient of the matching score

level. Where Fig. 6.7.(a) presents a comparison between the different rules fusion based on

LIF-LMF combination and the same presentation Fig. 6.7.(b), Fig. 6.7.(c) for RIF-RMF

and ALL combinations, respectively.

6.4.2.2 Multi-Algorithms Biometric Systems

The Multi-Algorithms systems process biometric trait by different feature extraction al-

gorithms. Then, the individual results from each matcher are combined to obtain the final

decision. From the proposed systems, multi-algorithms study is performed based on PCANet

and DCTNet algorithms through the focus of a best performance in the two methods. Fac-

tually, these PCANet and DCTNet algorithms operate on the same fusion of all fingers with
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same rules.

METHODS COMBINATION
SUM MIN MAX WHT

To EER To EER To EER To EER

PCANet-SVM ALL 0.736 0.000 0.745 0.538 0.939 0.000 0.718 0.000

DCTNet-KNN ALL 0.159 0.001 0.158 0.012 0.258 0.929 0.193 0.001

ROR RPR ROR RPR ROR RPR ROR RPR

PCANet-SVM ALL 100.00 1 98.11 86 100.00 1 100.00 1

DCTNet-KNN ALL 99.933 4 99.866 11 96.229 126 99.933 4

Table 6.9: Multi-Algorithms biometric systems test results.

Based on the presented results in the Table. 6.9, we can judge on the great affinity and

similarity of the excellent performance in two algorithms. For instance, the results obtained

in PCANet-SVM system are given a good rate EER = 0.000% that means a efficiency 100%

while the DCTNet-KNN is also provided a rate of efficiency equal to 99.99% (EER = 0.001%)

in open-set identification mode. Always in multimodal biometric systems, the results of Ta-

ble. 6.9 prove again that the power of deep learning methods by high recognition rates

in closed-set identification mode. In conclusion, the obtained identification rates of FKP

modalities for the proposed systems are very efficiency especially for talking about PCANet

algorithm.

6.4.2.3 Hybrid Biometric Systems

Hybrid systems are composed of several scenarios concern other types of biometric sys-

tems, therefore it has many advantages. Thus, our hybrid systems use a multiple FKP

modalities with several deep learning algorithms such as PCANet and DCTNet. The idea

is the same presented idea in the Section. 6.4.1.3, but the difference it concerns the type of

multimodal systems. For comparison, PCANet method using SVM, RBF and RFT classifiers

with DCTNet method and KNN classifier, produce the set of test results. Then it provides

an idea on a better combination of open-set and closed-set multimodal biometrics system.

At the matching score level fusion, it is possible to combine scores obtained from different

fingers modalities by using rules: Sum, Min, Max and Wht.

For open-set identification mode, the all combinations with fusion rules are presented as

EER in Table. 6.10. The results in this table show that the use of PCANet-SVM is bet-

ter than the PCANet-RBF and PCANet-RFT systems. Moreover, it is observed that the

PCANet-SVM in ALL combinations with fusion rules Sum, the Max and Wht successfully

reduces the EER to zero for the fused biometrics, which in this case is efficiency than several

previous works obtained by using FKP biometric. The use the RBF and RFT classifiers
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METHODS COMBINATIONS SUM MIN MAX WHT

PCANet-RBF

LIF-LMF 0.237 1.537 0.269 0.269

RIF-RMF 0.740 2.750 0.673 0.673

ALL 0.237 18.19 0.300 0.269

PCANet-RFT

LIF-LMF 0.202 0.606 0.538 0.202

RIF-RMF 0.269 0.657 0.595 0.336

ALL 0.002 0.353 0.213 0.002

PCANet-SVM ALL 0.000 0.538 0.000 0.000

DCTNet-KNN ALL 0.001 0.012 0.929 0.001

Table 6.10: Hybrid multimodal open-set identification test results.

provides a considerable improvement EER equal to 0.237% and 0.002% for the ALL combi-

nation at Sum rule, respectively. Regarding to the DCTNet-KNN method of ALL modalities

is also provided a good results and very close to the PCANet-SVM system. The Table. 6.10,

presents a direct comparison of the obtained results by using the combinations at matching

score level fusion.

METHODS COMBINATION
SUM MIN MAX WHT

ROR RPR ROR RPR ROR RPR ROR RPR

PCANet-RBF

LIF-LMF 98.58 50 95.42 157 97.77 32 98.51 88

RIF-RMF 96.76 116 90.30 146 95.48 120 96.70 118

ALL 98.58 50 91.91 157 97.77 32 98.51 88

PCANet-RFT

LIF-LMF 98.18 62 96.83 117 91.04 69 97.84 81

RIF-RMF 98.38 49 96.83 125 91.24 78 98.31 45

ALL 99.93 4 98.24 67 84.44 5 99.86 5

PCANet-SVM ALL 100.00 1 98.11 86 100.00 1 100.00 1

DCTNet-KNN ALL 99.99 4 99.86 11 96.22 126 99.99 4

Table 6.11: Hybrid multimodal closed-set identification test results.

For the closed-set identification mode, the test results are presented in Table. 6.11. As

the experimental results show in PCANet-SVM case, the identification rate provides a ROR

= 100% and RPR = 1 in the ALL combination for Sum, Max and Wht rules. Always,

PCANet-SVM case is better than the another PCANet-RBF and PCANet-RFT cases. On

the other hand, DCTNet-KNN method of ALL combination for Sum and Wht fusion rules

gave ROR equal to 99.99%, RPR = 4. Additionally, the PCANet-RFT is provided very effi-

ciency accuracy in this mode, the Sum rule for the ALL combination is provided ROR equal

to 99.93% with RPR equal to 4. As in PCANet-RBF case, the ALL combination provides

cogent performance such as ROR = 98.58% and RPR = 50 by using Sum rule. The rest

results can be presented in Table. 6.11 to do a comparison of different methods based on all

combinations of FKP modalities at matching score level fusion.
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6.5 Classical Vs Deep Learning Methods

Reference Comments EER[%] Recognition[%]

C
la

ss
ic

al
M

et
h

o
d

s

[87] L. Zhang Competitive code 1.48 98.52
[88] L. Zhang Competitive code-MagCode 1.09 98.91
[89] L. Zhang The Fourier transform and LGIC 0.35 99.65
[90] A. Kumar Score-Level fusion 1.39 98.61
[93] L. Damon Average fusion rule 5.50 94.50
[95] L. Zhang RieszCompCode 1.26 98.74
[98] A. Kumar The LDA for (PCA-ICA) features 1.95 98.05
[99] L. Zhang Gabor-CompCod 1.72 98.28
[100] A. Meraoumia The 2D-Block based DCT 0.20 99.80

D
L

M Our Proposed PCANet method 0.00 100.00
Our Proposed DCTNet method 0.00 100.00

Table 6.12: The comparison of our results with classical literature results.

Many authentication systems have been used widely in recognition applications. Based

on the research reports, the finger-knuckle is significantly rich in texture due to skin folds

and creases. The advantages of using FKP are the texture features, easily, contact-less image

acquisition and acceptability. These features and advantages make the using of FKP as pow-

erful biometric identifier. The researchers have made many efforts to build a FKP system

based on classical methods to features extraction and classification. This section presents a

comparison study between classical methods and deep learning methods. For more credibil-

ity, we have focused on researches that using the same FKP database which has used in our

proposed systems.

The Table. 6.12 shows the most obtained results from these literatures. For example,

in [98], the FKP features are extracted by using classical PCA, LDA and ICA methods,

however, the recognition rate have not been achieved just 98.05%. On the other hand, the

our system based on deep learning method (PCANet) achieved a perfect performance, the

recognition rate equal to 100%. For confirmation, [100] has proposed a identification system

which is designed a fusion of the features extracted by classical 2D-Block DCT method, the

recognition rate in this system is good (99.80%) but it did not rises to contest the high

performance of our system based on deep learning method (DCTNet). This excellence is due

to advantages of deep learning methods that which have feature engineering part. Moreover,

deep learning has a capacity to extract deep features and classified into high-level features

representation. Through the presented results, it is clearly shown that the proposed systems

of our thesis performed much better efficiency based at matching score fusion of the FKP

modalities.
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6.6 Chapter Summary

The proposed FKP modalities based multimodal system has been developed and its perfor-

mance has been evaluated at matching score fusion approaches. The tested database consists

FKP ROI images of 165 persons from the Hong Kong Polytechnic University (PolyU). The

quality of this database is good as the variation of the different finger images are very ac-

ceptable. From many experiments of the LIF modality, the different PCANet parameters

are tested to select the best authentication performance. These parameters are as: a filters

number equal to 3 and 2 in the first and second stage, respectively, a filter size of (13×13) and

a block overlap percentage of 50%. For DCTNet parameters, we directly decided to based on

these previous parameters because the DCTNet and PCANet methods have a great similarity.

Different obtained results from various experimentations have been illustrated by using

unimodal and multimodal identification systems. Depending on the results, the recognition

performance of the unimodal biometrics is slightly lower than the performance of the mul-

timodal biometrics. Further, The performance of the identification system is significantly

improved by using the fusion of all finger types and can give a GAR equal to 100% while

the unimodal identification give only a GAR equal to 97.300%. Thus, it’s clear that the

multimodal identification systems demonstrate the efficiency and give an excellent identifi-

cation rate and a higher accuracy. Further, from the FKP database, the performances of the

proposed PCANet and DCTNet based on matching score fusion rules can be summarized in

equal error rates (EER), which EER is the point in a ROC curve where the FAR and FRR

are equal, that these performances achieved a perfect rates (EER ' 0.00%).

Finally, this chapter presented a transparency comparison study between classical meth-

ods and competitive methods of deep learning. Depending to the results of our study, we can

say that the deep learning methods have unparalleled success in recognition systems because

these algorithms have strength architectures that allow the processing of detailed features

superior to existing state of the art techniques and these architectures prove the ability of

biometric security fields.



Chapter 7

CONCLUSIONS AND FUTURE

WORKS

T
he conclusions chapter provides the thesis summary, presents a achieved contributions

through this doctoral research and gives some possible future works in the research for

multimodal biometric fusion.

7.1 Thesis Summary

The work in this thesis can be summarised as follows:

The thesis starts by introduction about information’s security and biometrics’ importance

in our recent world. Biometric systems and challenges of these systems are also presented in

chapter 1. Then, we presented the desired objectives of our thesis. A very brief methodology

for the proposed multimodal biometric system is also presented in this chapter (Chapter 1).

The first step was to give the definition of biometric which refers to an automatic recogni-

tion of a person based on his/her behavioral or physiological characteristics. Many biometric

traits used to build an authentication systems and are called biometric modalities. We

described these modalities in more details based on classification their as physiological, be-

havioral and soft. Further, we have pointed out to the architecture of a biometric system

and a functionalities of identification or authentication. Next, the performance metrics was

summarized to evaluate the biometric systems, as the limitations of single biometric systems

have been discussed with a various development issues (Chapter 2).

Multimodal biometrics alleviates many restrictions of single biometrics based on the use
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of more than one source biometric traits. Due to the lower correlation between the sources,

multimodal biometrics provides a maximum information gain for recognition systems. The

different scenarios of multimodal biometrics provide a various options for researchers to de-

sign identification applications, through a systematical methods play an important role in

improvement the performance of different combinations fusion methods and normalization

techniques. Furthermore, the challenges of multimodal biometric systems are also discussed

such as incompatible biometric traits, difficulty of system design and expensive cost (Chap-

ter 3).

In Chapter 4, we have introduced the basics of biometric features and these features

types. Moreover, we have presented a feature extraction methods that used in our thesis,

start up from classical algorithms to deep learning networks. Also in the same chapter, we

have given the motivated challenges to deep learning which can overcome the limitations

of traditional feature extraction methods. As the end of chapter presented an overview of

strengths and weakness of deep networks architectures.

The development procedures for the proposed FKP multimodal system have been illus-

trated in the Chapter 5. FKP is one of the most popular biometric modalities and has been

used for the proposed recognition system because it is highly unique and the texture pattern

make it a distinctly biometric identifier. In addition, this chapter presented the methodology

of the proposed multimodal biometric system based on deep learning methods which it use

the SVM and KNN. In this proposed system, a match score fusion is employed to improve

the performance of biometric system.

Outcomes of the various experimentations have been presented and discussed in Chap-

ter 6. The FKP dataset have been constructed from different fingers traits to evaluate the

recognition performances by using a EERs, ROC and CMC curves of different unimodal and

multimodal systems. Finally, based on our results, the comparative study between classical

methods and deep learning methods has been illustrated in the last of Chapter 6.

7.2 Contribution to Knowledge

This section highlights on the contributions of this research to the development of a

multimodal system and the critical security applications by using a simple deep learning

techniques at matching score level fusion.
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• In this doctoral thesis, we have fully developed and implemented a multimodal bio-

metric system. This multimodal biometric system can overcome drawbacks associated

with unimodal biometric systems.

• Several multimodal biometric systems have been developed with different biometric

traits and fusion approaches. We have used finger knuckle traits from the hand region

and using these traits allow the efficient and the convenient capturing of the biometric

data.

• The performance of the our proposed systems give a GAR equal to 97.300% in unimodal

identification. While by using the fusion of all finger are significantly improved the

performance with a GAR equal to 100%. This fusion has potential to be efficiently

used in different biometric application areas.

• We have developed a multimodal biometric system based on the FKP database that

has a very high potential to be employed in various security critical applications.

• Our experimental results justify the use of deep learning methods which can be repre-

sent a new good direction of images processing applications, in the future years.

7.3 Future Research Works

The outcomes of this research have been published and presented through important venue

Evolving Systems Journal and have benefitted both academic and enterprise applications.

There are some issues and open questions left for future research.

To construct a more complicated and more sophisticated filters possibly or deeper by

using more number of layers. Also, we will leave as future work to apply with a much larger

database or different biometric traits. A true multimodal database is very useful for devel-

oping a reliable and efficient security application. Due to the type of collected sample data,

the changes in the background and illumination are varied. True multimodal database with

the identical conditions can be employed for further performance analysis.

More research can be conducted to find the optimum deep learning algorithms for uni-

modal biometrics to enhance the overall performance of the multimodal system. The level

fusion scenarios (different fusion in different levels of the system) can be investigated to make

the system faster and significantly to reduce the error rate. These represent possible future

direction of research in this exciting and rich field.



Appendix A

FKP DATABASE

A.1 Overview

T
he development of an identification biometrics systems involves the use of a database

for the evaluation phase. During these last years, several databases, have been devel-

oped to evaluate the algorithms of biometric recognition. Thus, our experiment tests were

performed using the FKP Database from the Poly University (The Hong Kong Polytechnic

University) [78].

Among various kinds of biometric traits, hand based biometrics has been attracting con-

siderable attention. Recently, it is found that the finger-knuckle-print (FKP), which refers

to the inherent patterns of the outer surface around the phalangeal joint of one’s finger, is

highly unique and can serve as a distinctive biometric identifier. Abundant line-like textures

are contained in an FKP image. The Biometric Research Centre (UGC/CRC) at The Hong

Kong Polytechnic University has developed a real time FKP capture device (see Fig. A.1),

and has used it to construct a large-scale FKP database. To advance research and to provide

researchers working in the area of FKP recognition with a platform to compare the effective-

ness of various FKP recognition algorithms, they published their FKP database, making it

freely available for academic, noncommercial uses.

Figure A.1: FKP Capture Device.
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A.2 The PolyU FKP Database Description

FKP images were collected from 165 volunteers, including 125 males and 40 females.

Among them, 143 subjects were 20-30 years old and the others were 30-50 years old. We

collected samples in two separate sessions. In each session, the subject was asked to provide

6 images for each of the left index finger, the left middle finger, the right index finger,

and the right middle finger. Therefore, 48 images from 4 fingers were collected from each

subject. In total, the database contains 7920 images from 660 different fingers. The average

time interval between the first and the second sessions was about 25 days. The maximum

and minimum intervals were 96 days and 14 days, respectively. Each folder is named as

nnn − finger − type. nnn represents the identity of the person. In each folder, the first 6

images (01 to 06) were captured in the first session and the latter 6 images (07 to 12) were

captured in the second session. FKP ROI.zip provide the extracted ROI images using ROI

extraction algorithm described in [86].



Appendix B

FKP ROI EXTRACTION

B.1 Introduction

R
ecently , it has been noticed that the texture in the outer finger surface has the

potential to do personal authentication. This annex presents an algorithm for extraction

the region of interest (ROI) based on finger-knuckle-print (FKP), which refers to the inherent

skin pattern of the outer surface around the phalangeal joint of one’s finger [60, 87]. A

specially designed acquisition device is constructed to collect FKP images. In [86, 89], The

proposed system captures the image around the finger knuckle area of a finger directly, which

largely simplifies the following data preprocessing steps. Meanwhile, with such a design, the

size of the imaging system can be greatly reduced, which improves their applicability. Since

the finger knuckle will be slightly bend when it being imaged in the proposed system, the

inherent finger knuckle print patterns can be clearly captured and hence the unique features

of FKP can be better exploited.

B.2 FKP Acquisition Device

The FKP system is composed of an FKP image acquisition device and a data preprocessing

module. From [60, 86, 87], the device (referring to Fig. B.1.(a)) is composed of a finger

bracket, a ring LED light source, a lens, a CCD camera and a frame grabber. The captured

FKP image is imputed to the data preprocessing module, which comprises basic step: ROI

(region of interest) extraction. Refer to Fig. B.1.(a), a basal block and a triangular block

are used to fix the position of the finger joint [88]. The vertical view of the triangular block

is illustrated in Fig. B.1.(b). Fig. B.1.(c) shows a sample image acquired by the developed

device [60].
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(a) (b) (c)

Figure B.1: FKP image acquisition device. (a) Components of the acquisition device, (b) The
position of the finger and (c) A sample FKP image.

B.3 ROI Extraction

It is necessary to construct a local coordinate system for each FKP image. With such

a coordinate system, an ROI can be cropped from the original image for reliable feature

extraction. The detailed steps for setting up such a coordinate system are as follows [60, 88,

89]:

Step 1 determine the X−axis of the coordinate system. The bottom boundary of the finger

can be easily extracted by a Canny edge detector. Actually, this bottom boundary is

nearly consistent to all FKP images because all the fingers are put flatly on the basal

block in data acquisition. By fitting this boundary as a straight line, the X − axis of

the local coordinate system is determined.

Step 2 crop a sub-image IS . The left and right boundaries of IS are two fixed values

evaluated empirically. The top and bottom boundaries are estimated according to the

boundary of real fingers and they can be obtained by a Canny edge detector.

Step 3 Canny edge detection. Apply the Canny edge detector to IS to obtain the edge map

IE .

Step 4 convex direction coding for IE , define an ideal model for FKP “curves”. In this

model, an FKP “curve” is either convex leftward or convex rightward. the pixels are

coded on convex leftward curves as “1”, pixels on convex rightward curves as “−1”,

and the other pixels not on any curves as “0”.

Step 5 determine the Y − axis of the coordinate system. For an FKP image, “curves”

on the left part of phalangeal joint are mostly convex leftward and those on the right

part are mostly convex rightward. Meanwhile, “curves” in a small area around the
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phalangeal joint do not have obvious convex directions. Based on this observation, at

a horizontal position x (x represents the column) of an FKP image, the “convexity

magnitude” define as:

Figure B.2: Illustration for convex direction coding scheme.

Fig. B.2 illustrates this convex direction coding scheme and the pseudo codes are pre-

sented as follows:

Convex Direction Coding(IE)

Output:ICD (convex direction code map)

ymid = height of
IE
2

;

for each IE (i, j) :

if IE (i, j) = 0

ICD (i, j) = 0;

else if IE (i+ 1, j − 1) = 1 and IE (i+ 1, j + 1) = 1

ICD (i, j) = 0;

else if (IE (i+ 1, j − 1) = 1 and i 6 ymid) or (IE (i+ 1, j + 1) = 1 and i > ymid)

ICD (i, j) = 1;

else if (IE (i+ 1, j + 1) = 1 and i 6 ymid) or (IE (i+ 1, j − 1) = 1 and i > ymid)

ICD (i, j) = −1;

end if

end for

conMag (x) = abs

(∑
W

ICD

)
, (B.1)

where W is a window being symmetrical about the axis X = x. W is of the size

d× h, where h is the height of IS . The characteristic of the FKP image suggests that

conMag (x) will reach a minimum around the center of the phalangeal joint and this

position can be used to set the y − axis of the coordinate system. Let

x′0 = arg min (conMag (x)) , (B.2)
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then X = x′0 is set as the X − axis.

Step 6 crop the ROI image. Now that it has fixed the X − axis and Y − axis, the local co-

ordinate system can then be determined and the ROI sub-image IROI can be extracted

with a fixed size.

Figure B.3: An example of the extracted ROI image.

Fig. B.3 shows an example of the extracted ROI image.



Appendix C

MACHINE LEARNING

CLASSIFIERS

C.1 Introduction

M
achine Learning (ML) is an algorithm that is able to learn from data. Mitchell [103]

provides this definition “A computer program is said to learn from experiences with

respect to some class of tasks and performance measure , if its performance at tasks improves

with experience”. Machine learning allows us to tackle tasks that are too difficult to solve

with fixed programs written and designed by humans. From a scientific and philosophical

point of view, machine learning is interesting because the development of machine learning

requires developing our understanding of a principles intelligence. The learning process itself

is not the task, the learning is a means of attaining the ability to perform the task. For

example, if we want a robot to be able to walk, then walking is the task. We could program

the robot to learn to walk, or we could attempt directly to write a program that specifies

how to walk manually. The most of contents of this annex is a part of the work [140].

C.2 Machine Learning Tasks

Many kinds of tasks can be solved by machine learning. Some of the most common

machine learning tasks include the following:

99
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C.2.1 Classification

In this type of task, the computer program is asked to specify the categories which some

input belongs. To solve this task, the learning algorithm is usually asked to produce a func-

tion when, the model assigns an input described by a vector to a category identified by

numeric class. There are other variants of the classification task, where the outputs have a

probability of distribution over classes. An example of a classification task is faces recog-

nition [67], which can be used to an image classification of people and allow computers to

interact with their users.

Classification becomes more challenging if the inputs is missing. In order to solve the

classification task, the learning algorithm only has to define a single function mapping from

a vector input to a categorical output. The some of the inputs may be missing, rather than

providing a single classification function, the learning algorithm must learn a set of functions.

Each function corresponds to classifying x with a different subset of its inputs missing. This

kind of situation arises frequently in medical diagnosis, because many kinds of medical tests

are expensive or invasive.

C.2.2 Regression

In this type of task, the algorithm is asked to predict a numerical value given some input.

For that, this type of task is similar to classification, except that the format of output is

different. An example of a regression task is the prediction of the expected claim amount

that an insured person will make, or the prediction of future prices of securities. These kinds

of predictions are also used for algorithmic trading.

C.2.3 Clustering

In this type of task, the machine learning system is asked to cluster a subset of data which

are similar. Clustering also called unsupervised learning which is the process of dividing a

dataset into groups such that the members of each group are as similar (close) as possible

to one another, and different groups are as dissimilar (far) as possible from one another.

Clustering can uncover previously undetected relationships in a dataset. There are many

applications for cluster analysis such as in business and in biology, etc.
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C.2.4 Density estimation

In the density estimation problem, the machine learning algorithm is asked to learn a

function model, where can be interpreted as a probability density function (continuous) or

a probability mass function (discrete) on the space that the examples were drawn. To do

this, the algorithm needs to learn the structure of the data. It must knows, where examples

cluster tightly and where they are unlikely to occur? Most of the tasks require the learning

algorithm to at least implicitly capture the structure of the probability distribution.

The types of listed tasks are only intended to provide examples of most tasks for what

machine learning can do, not to define the all types of tasks. Of course, many other types

of tasks are possible such as: Transcription, Machine translation, Dimension reduction, De-

noising and matching, etc.

C.3 Machine Learning Categories

Machine learning algorithms can be categorized as unsupervised or supervised depend-

ing on the type of learning process. Unsupervised learning algorithms experience a dataset

containing many features, then learn the useful properties of the structure of this dataset.

But supervised learning algorithms experience a dataset containing features, but each exam-

ple is also associated with a label or target. The term supervised learning originates from

the view of the target y being provided by an instructor or teacher who shows the machine

learning system what do. In unsupervised learning, there is no instructor or teacher, and the

algorithm must learn to make sense of the data without this guide.

Almost, unsupervised learning involves a observing several examples of a random vec-

tor x, and attempting to implicitly or explicitly learn the probability distribution p (x), or

some interesting properties of that distribution, while supervised learning involves a observ-

ing several examples of a random vector x and an associated value or vector y, and learning

to predict y from x, usually by estimating p (y | x).

Unsupervised learning and supervised learning are not formally defined terms. The lines

between them are often blurred. Many machine learning technologies can be used to perform

both tasks. For example, the chain rule of probability states that for a vector x ∈ Rn, the

joint distribution can be decomposed as

p (x) =

n∏
i=1

p (xi | x1, · · ·, xi−1) . (C.1)
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This decomposition means that we can solve the ostensibly unsupervised problem of mod-

eling p (x) by splitting it into n supervised learning problems. Alternatively, we can solve the

supervised learning problem of learning p (y | x) by using traditional unsupervised learning

technologies to learn the joint distribution p (y, x) and inferring

p (y | x) =
p (x, y)∑
y′ p (x, y′)

, (C.2)

other variants of the learning model are possible. For example, in semi-supervised learning,

some examples include a supervision target but others do not. In multi-instance learning,

an entire collection of examples is labeled as containing or not containing an example of a

class, but the individual members of the collection are not labeled.

C.4 Overfitting and Underfitting

The central challenge in machine learning is that it must performs well on new inputs, not

just those on which the model was trained. This ability to perform is called generalization.

Typically, when training a machine learning model, it is can compute some error measure on

the training set called the training error, and we reduce this training error. What separates

machine learning from optimization is that we want the generalization error, also called the

test error, to be low as well. The generalization error is defined as the expected value of the

error on a new input.

Typically, when use a machine learning algorithm, we do not fix the parameters ahead

of time, then sample both datasets. We sample the training set, then use it to choose the

parameters to reduce training set error, then sample the test set. Under this process, the

expected test error is greater than or equal to the expected value of training error. The

factors determining how well a machine learning algorithm will perform are its ability to:

1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning: Underfit-

ting and Overfitting. Underfitting occurs when the model is not able to obtain a sufficiently

low error value on the training set. Overfitting occurs when the gap between the training

error and test error is too large.

We can control whether a model is more likely to overfit or underfit by altering its ca-

pacity [140]. Informally, a model’s capacity is its ability to fit a wide variety of functions.
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Models with low capacity may struggle to fit the training set. Models with high capacity can

overfit by memorizing properties of the training set that do not serve them well on the test set.

One way to control the capacity of a learning algorithm is by choosing its hypothesis

space, the set of functions that the learning algorithm is allowed to select as being the so-

lution. For example, the linear regression algorithm has the set of all linear functions of its

input as its hypothesis space. We can generalize linear regression to include polynomials,

rather than just linear functions, in its hypothesis space. Doing so increases the model’s

capacity.

C.5 Building a Machine Learning Algorithm

The machine learning algorithms can be described as particular instances of a combine

a specification of a dataset, a cost function, an optimization procedure and a model. For

example, the linear regression algorithm combines a dataset consisting of X and y, the cost

function is

J (w, b) = −EX,Y−P̂ datalog pmodel (y | x) , (C.3)

the model specification pmodel (y | x) = N
(
y, xTw + b, 1

)
, and, in most cases, the optimiza-

tion algorithm defined by solving for where the gradient of the cost is zero using the normal

equations.

By realizing that we can replace any of these components mostly independently from

the others, we can obtain a very wide variety of algorithms. The cost function typically

includes at least one term that causes the learning process to perform statistical estimation.

The most common cost function is the negative log-likelihood, so that minimizing the cost

function causes maximum likelihood estimation.

The cost function may also include additional terms, such as regularization terms. For

example, we can add weight decay to the linear regression cost function to obtain

J (w, b) = λ ‖w‖22 − EX,Y−P̂ datalog pmodel (y | x) . (C.4)

This still allows closed-form optimization.

If we change the model to be nonlinear, then most cost functions can no longer be

optimized in closed form. This requires us to choose an iterative numerical optimization

procedure, such as gradient descent.
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The recipe for constructing a learning algorithm by combining models, costs, and op-

timization algorithms supports both supervised and unsupervised learning. The linear re-

gression example shows how to support supervised learning. Unsupervised learning can be

supported by defining a dataset that contains only X and providing an appropriate unsuper-

vised cost and model. For example, we can obtain the first PCA vector by specifying that

our loss function is

J (w) = EX−P̂ data ‖x− r (x;w)‖22 , (C.5)

while our model is defined to have w with norm one and reconstruction function r (x) =

wTxw.

In some cases, the cost function may be a function that we cannot actually evaluate,

for computational reasons. In these cases, we can still approximately minimize it using iter-

ative numerical optimization so long as we have some way of approximating its gradients.

Most machine learning algorithms make use of this recipe, though it may not immediately

be obvious. If a machine learning algorithm seems especially unique or hand-designed, it can

usually be understood as using a special-case optimizer. Some models such as decision trees

or k-means require special-case optimizers because their cost functions have flat regions that

make them inappropriate for minimization by gradient-based optimizers. Recognizing that

most machine learning algorithms can be described using this recipe helps to see the different

algorithms as part of a taxonomy of methods for doing related tasks that work for similar

reasons, rather than as a long list of algorithms that each have separate justifications.

C.6 Machine Learning Classifiers

Machine learning techniques employ an inference principle named induction, in which gen-

eral conclusions are obtained from a particular set of examples. One of the main approaches

for induction is supervised learning [105]. In supervised learning, the knowledge about the

problem being modelled is presented by datasets composed of pairs in the form: input, de-

sired output [103]. In machine learning, classification is a supervised learning approach in

which the computer program learns from the data input given to it and then uses this learn-

ing to classify new observation [69]. A classifier is named model, predictor or hypothesis,

will be produced in a process named training. The obtained classifier can be regarded as a

function f , which receives an input x and provides an output prediction y [70, 104]. This

model also provides a description of the training data. This data set may simply be bi-class

or it may be multi-class too [71, 106]. There are different types of classifiers:

1. Linear Classifiers: Logistic Regression, Naive Bayes Classifier.
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2. Support Vector Machines SVM.

3. Decision Trees.

4. Boosted Trees.

5. Random Forest.

6. Nearest Neighbor.

Next sections present a brief introduction to the ML classifiers techniques used in this

work. Each technique employs a different approach to extract the features from raw data.

C.6.1 Support Vector Machines

Support Vector Machines (SVMs) are based on concepts from the Statistical Learning

Theory [107]. The main idea of SVM is to create an optimal hyperplane to classify the data

into two classes (positive and negative) and to maximize the distance between the hyperplane

separating the two classes and the closet data points to the hyperlane [109]. The optimal

hyperplane maximizes the separation margin between the two classes of training data, and

is defined by a fraction of the input data instances (called support vectors) close to the

hyperplane. SVMs have be a many advantages such as high accuracy and nice theoretical

guarantees regarding to overfitting [108]. With an appropriate kernel, they can work well

even in non-linear data separable of the base feature space [110]. Especially, the popular

problems in classification appear in the case of a very high-dimensional spaces. The distance

measurement between the data points in the high-dimensional space is defined by the kernel

function [111]. Given a dataset T composed of n pairs (xi, yi), in which

xi ∈ Rm and yi ∈ {−1,+1} , (C.6)

for a hyperplane, we have

w · Φ (x) + b = 0. (C.7)

This last able to separate the data in T with minimum error maximizing the margin of sep-

aration between the classes. In this equation, Φ represents a mapping function that maps

the data in T to a space of higher dimension, such that the classes become linearly separable.

In SVM training and predictions, the mapping function appears as dot products in the

form

Φ (xi) · Φ (yj) , (C.8)

which can be efficiently computed by Kernel functions, usually simpler than the mapping

function. Some of the most using of Kernel functions are the Gaussian or RBF (Radial-Basis

Function) functions [72]. SVMs have a good generalization ability. Besides, SVMs also stand

out for their robustness to high dimensional data. Their main deficiency concerns to the
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difficulty of interpreting the generated model and their sensibility to a proper parameter

tuning.

C.6.2 Radial Basis Function

B Radial Functions

Radial functions are a special class of functions [72]. Their characteristic feature is that

their response decreases (or increases) monotonically with distance from a central point. The

centre, the distance scale, and the precise shape of the radial function are parameters of the

model, all fixed if it is linear [113].

A typical radial function is the Gaussian which, in the case of a scalar input, is

h (x) = exp

(
−(x− c)2

r2

)
. (C.9)

Its parameters are its centre c and its radius r. Fig. C.1 illustrates a Gaussian RBF with

centre c = 0 and radius r = 1.

A Gaussian RBF monotonically decreases with distance from the centre. In contrast, a

multi-quadric RBF which, in the case of scalar input, is

h (x) =

√
r2 + (x− c)2

r
, (C.10)

monotonically increases with distance from the centre (see Fig. C.1) Gaussian-like RBFs are

local (give a significant response only in a neighbourhood near the centre) and are more

commonly used than multi-quadric type RBFs which have a global response. They are also

more biologically plausible because their response is finite.

B Radial Basis Function Networks

Radial functions are simply a class of functions. In principle, they could be employed

in any sort of model (linear or nonlinear) and any sort of network (single-layer or multi-

layer). However, radial basis function networks (RBF networks) have traditionally been

associated with radial functions in a single-layer network [112] such as shown in Fig. C.2.

An RBF network is nonlinear if the basis functions can move or change size or if there is

more than one hidden layer. Some focus on single-layer networks with functions which are

fixed in position and size. They use a nonlinear optimisation but only for the regularisation
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Figure C.1: Gaussian (left) and multi-quadric RBF.

parameters and the optimal subset of basis functions [72]. That are employed in explicitly

nonlinear networks.

Figure C.2: The traditional radial basis function network.

C.6.3 Random Forests Trees

B RFT Description

Random Forests Trees (RFT) are combinations of tree predictors [73, 114], which is a

flexible, easy machine learning algorithm that produces, even without hyper-parameter tun-

ing. It is also one of the most used algorithms, because its simplicity and the fact that it can

be used for both classification and regression tasks. RFT is a supervised learning algorithm
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and from its name, it creates a random forest. This forest is an set of Decision Trees trained

with the ”bagging” method [115]. The general idea of the bagging method is a combination

of learning models increases the overall result. In reality, RFT is a collection of Decision

Trees but there are some differences. Decision tree is formulate some set of rules, which will

be used to make the predictions by a training dataset input. In comparison, the RFT algo-

rithm randomly selects observations and features to build several decision trees and averages

the results. Another difference is that decision trees might suffer from overfitting. Random

Forest prevents overfitting [108, 116] by creating random subsets of the features and building

smaller trees using these subsets, afterwards, it combines the sub-trees.

B Advantages and Limitations

An advantages of random forest are that it can be used for both regression and classifi-

cation tasks [118] and that it’s easy to view the relative importance of the input features.

RFT is also considered as a very easy to use algorithm, because its default hyper-parameters

produce a good prediction. One of the big problems in machine learning is overfitting, but a

random forest classifier won’t overfit the model because there are enough trees in the forest

[119, 120].

The main limitation of RFT is that a large number of trees can make the algorithm to

slow and ineffective for real-time predictions. In general, these algorithms are fast to train,

but quite slow to create predictions once they are trained. A more accurate prediction re-

quires more trees, which results a slower model. In most real-world applications, the random

forest algorithm is fast enough, but there can certainly be a situations where run-time per-

formance is important and other approaches would be preferred. And of course, RFT is a

predictive modeling tool and not a descriptive tool [121]. That means, if you are looking for

a description of the relationships in your data, other approaches would be preferred.

B RFT Algorithm

RFT classifier is one of the big accurate learning algorithms as it produces a best clas-

sifiers for many data sets and it runs efficiently on big databases also it gives estimates of

what variables are important in the classification [117]. RFT is composed of some number

of decision trees. Each tree is built as follows:

1. Let the number of training objects be ntree, and the number of features in vector be F.

2. Training set for each tree is built by choosing n times with replacement from all avail-

able training objects.

3. Number f << F is an amount of features on which are randomly chosen for each node

to do the decision.
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4. Each tree is built to the largest extent possible.

5. Each tree gives a classification, which is called voting for that class. The forest chooses

the class having the most votes.

The random forests tree algorithm (for both classification and regression) is as follows:

Algorithm : The random forests tree.

1. For b = 1 to B :

(a) Draw a bootstrap sample Z∗ of size N from training data.

(a) Grow a RFT Tb to the bootstrapped data, by recursively repeating the following

steps for each terminal node of the tree, until the minimum node size nmin is reached.

i. Select m variable at random from the P variables.

ii. Pich the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x:

Regression: fBrf (x) =
1

B

B∑
b=1

Tb (x).

Classification: Let Cb (x) be the class prediction of the bth RFT, then:

Cb (x) = vote majority {Cb (x)}B1 .



Appendix D

DEEP LEARNING AND

MODERN PRACTICE

D.1 Introduction

D
eep learning is a specific kind of machine learning, that a person must has a solid

overview on the basis of machine learning to understand the deep learning. For that,

this chapter provides a brief course in the most important principles that will be applied

throughout the deep learning applications.

D.2 Deep Learning Networks

D.2.1 Definitions

Deep learning has various closely related definitions or high-level descriptions [142]:

“Deep Learning is a new area of Machine Learning research, which has been introduced

as a sub-field within machine learning that is based on algorithms for learning multiple levels

of representation in order to model complex relationships among data. Higher-level features

and concepts are thus defined in terms of lower-level ones, and the same lower-level concepts

can help to define many higher-level concepts. Such a hierarchy of features is called a deep

architecture. Most of these models are based on unsupervised learning of representations.”

We can provide another definition of deep learning which is:

110
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“Deep learning is a set of algorithms in machine learning that attempt to learn in multi-

ple levels, corresponding to different levels of abstraction. It typically uses artificial neural

networks. The levels in these learned statistical models correspond to distinct levels of con-

cepts, where higher-level concepts are defined from lower-level ones, and the same lower-level

concepts can help to define many higher-level concepts. Deep learning is part of a broader

family of machine learning methods based on learning representations.”

D.2.2 Classes of Deep Learning

Deep learning refers to a rather wide class of machine learning techniques and architec-

tures, with the characteristic to use many layers of non-linear information processing that

are hierarchical in nature. Depending on how the architectures and techniques are intended

for use, it can broadly categorize this deep learning networks area into three major classes

[142]:

• Deep networks for unsupervised or generative learning, which are intended to

capture high-order correlation of the observed or visible data for pattern analysis or

synthesis purposes when no information about target class labels is available. Unsu-

pervised feature or representation learning in the literature refers to this category of

the deep networks. In the generative mode, may also be intended to characterize joint

statistical distributions of the visible data and their associated classes when available

and being treated as part of the visible data. In the latter case, the use of Bayes rule

can turn this type of generative networks into a discriminative one for learning.

• Deep networks for supervised learning, which are intended to directly provide

discriminative power for pattern classification purposes, often by characterizing the

posterior distributions of classes conditioned on the visible data. Target label data are

always available in direct or indirect forms for such supervised learning. They are also

called discriminative deep networks.

• Hybrid deep networks, where the goal is discrimination which is assisted, often in a

significant way, with the outcomes of generative or unsupervised deep networks. This

can be accomplished by better optimization and regularization of the deep networks.

The goal can also be accomplished when discriminative criteria for supervised learning

are used to estimate the parameters in any of the deep generative or unsupervised deep

networks.
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D.2.3 Basic Deep Learning Terminologies.

The family of deep learning methods have been growing increasingly richer, encompassing

those of neural networks, hierarchical probabilistic models, and a variety of unsupervised and

supervised feature learning algorithms. Below, we review representative work in each of the

above three categories, where several basic definitions are summarized [142]:

• Deep Belief Network (DBN): probabilistic generative models composed of multiple

layers of stochastic, hidden variables. The top two layers have undirected, symmetric

connections between them. The lower layers receive top-down, directed connections

from the layer above.

• Boltzmann Machine (BM): a network of symmetrically connected, neuron-like units

that make stochastic decisions about whether to be on or off.

• Restricted Boltzmann Machine (RBM): a special type of BM consisting a layer

of visible units and a layer of hidden units with no visible-visible or hidden-hidden

connections.

• Deep Neural Network (DNN): a multilayer perceptron with many hidden layers,

whose weights are fully connected and are often initialized by using either an unsuper-

vised or a supervised training technique.

• Deep Autoencoder: a discriminative DNN whose output targets are the data input

itself rather than class labels; hence an unsupervised learning model. When trained

with a denoising criterion, a deep autoencoder is also a generative model.

• Distributed Representation: an internal representation of the observed data in such

a way that they are modeled as being explained by the interactions of many hidden

factors. A particular factor learned from configurations of other factors can often

generalize well to new configurations. Distributed representations naturally occur in

a connection neural network, where a concept is represented by a pattern of activity

across a number of units and where at the same time a unit typically contributes

too many concepts. One key advantage of such many-to-many correspondence is that

they provide robustness in representing the internal structure of the data in terms

of graceful degradation and damage resistance. Another key advantage is that they

facilitate generalizations of concepts and relations.
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D.3 Challenges Motivating Deep Learning [140]

The machine learning algorithms described in previous annex work very well on a wide

variety of important tasks. However, they have not succeeded to solve the central problems

in artificial intelligence (AI). The development of deep learning was motivated by the failure

of traditional algorithms to generalize well on such AI tasks.

This section is the challenges of traditional machine learning to generalizing at new ex-

amples more difficult when working with high-dimensional data, and how the mechanisms

used are insufficient to learn complicated functions in high-dimensional spaces, also often

impose high computational costs. Deep learning was designed to overcome these and other

obstacles.

D.3.1 The Curse of Dimensionality

Many machine learning problems become exceedingly difficult when the number of dimen-

sions in the data is high. This phenomenon is known as “the curse of dimensionality”. Of

particular concern is that the number of possible distinct configurations of a set of variables

increases exponentially as the number of variables increases.

Figure D.1: The number of relevant dimensions of the data increases (from left to right).

Fig. D.1: As the number of relevant dimensions of the data increases (from left to right),

the number of configurations of interest may grow exponentially. In this one-dimensional

example (Left), we have one variable for which we only care to distinguish 10 regions of

interest. With enough examples falling within each of these regions (each region corresponds

to a cell in the illustration), learning algorithms can easily generalize correctly. A straight-

forward way to generalize is to estimate the value of the target function within each region
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(and possibly interpolate between neighboring regions). With 2 dimensions (Center), it is

more difficult to distinguish 10 different values of each variable. We need to keep track of

up to 10 × 10 = 100 regions, and we need at least that many examples to cover all those

regions. With 3 dimensions (Right), this grows to 103 = 1000 regions and at least that many

examples. For d dimensions and v values to be distinguished along each axis, we seem to

need O
(
vd
)

regions and examples.

One challenge posed by the curse of dimensionality is a statistical challenge. As illustrated

in Fig. D.1, a statistical challenge arises because the number of possible configurations of x is

much larger than the number of training examples. To understand the issue, we consider that

the input space is organized into a grid, like in the figure. We can describe low-dimensional

space with a low number of grid cells that are occupied by the data.

To generalizing a new data point, we can usually tell what to do simply by inspecting

the training examples that lie in the same cell as the new input. For example, if estimating

the probability density at some point x, we can just return the number of training examples

in the same unit volume cell as x, divided by the total number of training examples. If we

wish to classify an example, we can return the most common class of training examples in

the same cell. If we are doing regression we can average the target values observed over the

examples in that cell. In high-dimensional spaces the number of configurations is huge, much

larger than our number of examples, a typical grid cell has no training example associated

with it. Many traditional machine learning algorithms simply assume that the output at a

new point should be approximately the same as the output at the nearest training point.

D.3.2 Manifold Learning

An important concept underlying many ideas in machine learning is a manifold. A mani-

fold is a connected region. Mathematically, it is a set of points associated with a neighborhood

around each point. From any given point, the manifold locally appears to be a Euclidean

space. In everyday life, we experience the surface of the world as a 2-D plane, but in fact, it

is a spherical manifold in 3-D space.

The definition of a neighborhood surrounding each point implies the existence of trans-

formations that can be applied to move on the manifold from one position to a neighboring

one. Although there is a formal mathematical meaning to the term “manifold”, in machine

learning it tends to be used more loosely to designate a connected set of points that can be

approximated well by considering only a small number of degrees of freedom, or dimensions.

Each dimension corresponds to a local direction of variation. See Fig. D.2 for an example of
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training data lying near a one-dimensional manifold embedded in two dimensional space. In

the context of machine learning, we allow the dimensionality of the manifold to vary from

one point to another. This often happens when a manifold intersects itself.

Figure D.2: Data sampled from a distribution in a two-dimensional space that is actually concen-
trated near a one-dimensional manifold, like a twisted string. The solid line indicates the underlying

manifold that the learner should infer [140].

Many machine learning problems seem hopeless if we expect the machine learning al-

gorithm to learn functions with interesting variations across all of Rn. Manifold learning

algorithms surmount this obstacle by assuming that most of Rn consists of invalid inputs,

and that interesting inputs occur only along a collection of manifolds containing a small

subset of points, with interesting variations in the output of the learned function occurring

only along directions that lie on the manifold, or with interesting variations happening only

when we move from one manifold to another.

Manifold learning was introduced in the case of continuous-valued data and the unsu-

pervised learning setting, although this probability concentration idea can be generalized to

both discrete data and the supervised learning setting: the key assumption remains that

probability mass is highly concentrated. The assumption that the data lies along a low-

dimensional manifold may not always be correct or useful. In the context of AI tasks, such

as those that involve processing images, sounds, or text, the manifold assumption is at least

approximately correct. The evidence in favor of this assumption consists of two categories

of observations:

1. The first observation in favor of the manifold hypothesis is that the probability distribu-

tion over images, text strings, and sounds that occur in real life is highly concentrated.
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Uniform noise essentially never resembles structured inputs. Concentrated probability

distributions are not sufficient to show that the data lies on a reasonably small number

of manifolds. We must also establish that the examples we encounter are connected to

each other by other examples, with each example surrounded by other highly similar

examples that may be reached by applying transformations to traverse the manifold.

2. The second observation in favor of the manifold hypothesis is that we can imagine such

neighborhoods and transformations. In the case of images, we can certainly think of

many possible transformations that allow us to trace out a manifold in image space:

we can gradually dim or brighten the lights, gradually move or rotate objects in the

image, gradually alter the colors on the surfaces of objects, etc.

When the data lies on a low-dimensional manifold, it can be most natural for machine

learning algorithms to represent the data in terms of coordinates on the manifold, rather

than in terms of coordinates in Rn. In everyday life, we can think of roads as 1-D manifolds

embedded in 3-D space. We give directions to specific addresses in terms of address numbers

along these 1-D roads, not in terms of coordinates in 3-D space. Extracting these manifold

coordinates is challenging, but holds the promise to improve many machine learning algo-

rithms. This general principle is applied in many contexts. Fig. D.3 shows the manifold

structure of a dataset consisting of faces.

Figure D.3: Training examples from the Multiview Face Dataset for which the subjects were asked
to move in such a way as to cover the two-dimensional manifold corresponding to two angles of

rotation [140].
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D.3.3 Local Constancy and Smoothness Regularization

In order to generalize, machine learning algorithms need to be guided by prior beliefs

about what kind of function they should learn. Among the most widely used of these im-

plicit “priors” is the smoothness or local constancy prior. This prior states that the function

we learn should not change very much within a small region.

Many simpler algorithms rely exclusively on this prior to generalize, and as a result they

fail to scale to the statistical challenges involved in solving AI tasks. Throughout this, deep

learning introduces additional (explicit and implicit) priors in order to reduce the general-

ization error on sophisticated tasks. There are many different ways to implicitly or explicitly

express a prior belief that the learned function should be smooth or locally constant. All of

these different methods are designed to encourage the learning process to learn a function

f∗ that satisfies the condition

f∗ (x) ≈ f∗ (x+ ε) , (D.1)

for most configurations x and small change ε. In other words, if we know a good answer for

an input x (for example, if x is a labeled training example) then that answer is probably

good in the neighborhood of x. If we have several good answers in some neighborhood we

would combine them (by some form of averaging or interpolation) to produce an answer that

agrees with as many of them as much as possible.

An example of the local constancy approach is the k-nearest neighbors family of learning

algorithms. These predictors are literally constant over each region containing all the points

x that have the same set of k nearest neighbors in the training set. For k = 1, the number

of distinguishable regions cannot be more than the number of training examples. While the

k-nearest neighbors algorithm copies the output from nearby training examples, most kernel

machines interpolate between training set outputs associated with nearby training examples.

An important class of kernels is the family of local kernels where k (u, v) is large when u = v

and decreases as u and v grow farther apart from each other. A local kernel can be thought

of as a similarity function that performs template matching, by measuring how closely a test

example x resembles each training example xi. Much of the modern motivation for deep

learning is derived from studying the limitations of local template matching and how deep

models are able to succeed in cases where local template matching fails [141].

The smoothness assumption and the associated non-parametric learning algorithms work

extremely well so long as there are enough examples for the learning algorithm to observe

high points on most peaks and low points on most valleys of the true underlying function

to be learned. This is generally true when the function to be learned is smooth enough and
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varies in few enough dimensions. In high dimensions, even a very smooth function can change

smoothly but in a different way along each dimension. If the function additionally behaves

differently in different regions, it can become extremely complicated to describe with a set

of training examples.

B AI tasks have structure that is much too complex to be limited of simple specified

properties such as periodicity. So, we want learning algorithms that embody more general

purpose assumptions. Many different deep learning algorithms provide implicit or explicit

assumptions that are reasonable for a broad range of AI tasks in order to capture the ad-

vantages. The core idea in deep learning is that we assume that the data was generated by

the composition of factors or features, potentially at multiple levels in a hierarchy. Many

other similarly generic assumptions can further improve deep learning algorithms. These

assumptions allow a big gain in the relationship between the number of examples and the

number of regions that can be distinguished. The exponential advantages conferred by the

use of deep learning representations overcome the exponential challenges posed such as: the

curse of dimensionality, manifold and local constancy, etc.

D.4 Structure of Deep Network

Human brain is a very powerful machine where we see multiple images every second and

process them without realizing how the processing is done, but that is not the case with

machines. A human’s brain neuronal activity is incredibly complex and simulating it at a

100% ratio is impossible with current technology. Achieving just a 10 % simulation rate,

it was impossible that the supercomputers run this limited simulations in the past. This is

because, the act of neurons network (crucial for every activity that happens in the brain )

requires more power than today’s hardware (show Fig. D.4).

But, these recent developments and the increased capacity of processing units, as well

as the recent advances in machine learning, signal processing and the increasing volume of

information used in training have allowed the spread of a deep learning algorithms which are

basically inspired by the brain. The network seen in Fig. D.5, is a neural network made of

interconnected neurons.

D.5 Convolutional Neural Networks (CNNs)

A convolutional neural networks (CNNs) are a class of deep learning, most of this networks

commonly applied to analyzing visual imagery. CNNs are very similar to ordinary neural
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Figure D.4: The neurons in a human brain’s.

Figure D.5: A example of deep neural network.

networks, they are made up of neurons that have learnable weights and biases. Each neuron

receives some inputs, performs a dot product and optionally follows it with a non-linearity

[64]. Convolutional Neural Networks (CNNs) are a specific form of neural networks that

explicitly assume the inputs to the network be structured samples, such as audio signals or

image pixels which can be filtered [84]. These architectures typically focus on the solutions

for computer vision applications, like classification, localization and segmentation of images

and videos.

D.5.1 Architecture of CNNs

Neural Networks receive an input, and transform it through a series of hidden layers.

Each hidden layer is made up of a set of neurons, where each neuron is fully connected to
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all neurons in the previous layer, and where neurons in a single layer function completely

independently and do not share any connections. The last fully-connected layer is called the

“output layer” and in classification settings it represents the class scores.

In image processing, every image is an arrangement of dots (a pixel) arranged in a special

order. If you change the order or the color of a pixel, the image would change as well. The

machine will basically break this image into a matrix of pixels and store the color code for

each pixel at the representative location. Supervised learning based deep image recogni-

tion CNN architectures are composed of multiple convolutional stages stacked [84] on top

of each other to learn hierarchical visual features as captured in Fig. D.6. Regularization

approaches such as stochastic pooling, dropout, data augmentation have been used to en-

hance the recognition accuracy [78]. Recently, the faster convergence of these architectures

is attributed to the inclusion of Rectified Linear Units (ReLU) nonlinearity into each of the

layer with weights.

Figure D.6: Learning hierarchy of image features in CNN architecture.

D.5.2 The Convolution Layer

To prevent the networks from having too many parameters, the fully-connected layers are

replaced by convolutional layers in a neural networks, leading to CNN models. In convolu-

tional layers (CONV), the hidden neurons are replaced with convolutional filters. Instead of

solving of neuron weights, we solve with a family of filters, each filter having its own weights.



Deep Learning and Modern Practice 121

The convolutional layers arrange the neurons in a 3D fashion using the height, width and

depth for the signal being processed. In the depth dimension, the CONV layer is analogous

to a filtered signal used for digital image processing, where each filtered signal came from a

learned filter, whose weights shall be learned during the training process. Fig. D.7 shows a

fully-connected conventional neural networks [143].

Figure D.7: A conventional neural networks [143].

• The Concept of Stride and Padding

The filter or the weight matrix, was moving across the entire image moving one pixel at

a time. We can define it like a hyperparameter, as to how we would want the weight matrix

to move across the image. If the weight matrix moves 1 pixel at a time, we call it as a stride

of 1 (see Fig. D.8). Let’s see how a stride of 2 would look like [143].

Figure D.8: Example of stride and padding with out zero..
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Padding with a greater value of zero is a helpful method to preserve the information on

the borders of the image from vanishing through multiple convolutions. It also preserves

the spatial dimensions of the output from the convolutional layers, often called the output

volume. Padding the input image with zeros across it solves this problem for us. We can

also add more than one layer of zeros around the image in case of higher stride values (see

Fig. D.9). As you can see that the size of image keeps on reducing as we increase the stride

value [143].

Figure D.9: Example of stride and padding with zero.

• Multiple Filters and Activation Map

One thing to keep in mind is that the depth dimension of the weight would be a same as

the depth dimension of the input image. The weight extends to the entire depth of the input

image. Therefore, convolution with a single weight matrix would result into a convolved out-

put with a single depth dimension. In most cases, instead of a single filter (weight matrix),

we have multiple filters of the same dimensions applied together [143].

The output from the each filter is stacked together forming the depth dimension of the

convolved image. Suppose, we have an input image of size 32×32×3 and we apply 10 filters

of size 5× 5× 3 with valid padding. The output would have the dimensions as 28× 28× 10

(see Fig. D.10).

D.5.3 The Pooling Layer

Sometimes when the images are too large, we would need to reduce the number of trainable

parameters. It is then desired to periodically introduce pooling layers between subsequent
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Figure D.10: Example of activation map stacked.

convolution layers. Pooling is done for the sole purpose of reducing the spatial size of the

image. Pooling is done independently on each depth dimension, therefore the depth of the

image remains unchanged. The most common form of pooling layer generally applied is the

max pooling (see Fig. D.11). Similarly, other forms of pooling can also be applied like average

pooling or the L2 norm pooling [143].

Figure D.11: Example of max pooling.

For output dimensions, It might be getting a little confusing to understand the input

and output dimensions at the end of each convolution layer. Three hyper-parameter would

control the size of output volume [143].

• The number of filters: the depth of the output volume will be equal to the number of

filter applied. it had stacked the output from each filter to form an activation map.

The depth of the activation map will be equal to the number of filters.

• Stride: when it has a stride of one, we move across and down a single pixel. With

higher stride values, we move a large number of pixels at a time and hence produce

smaller output volumes.
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• Zero padding: this helps us to preserve the size of the input image. If a single zero

padding is added, a single stride filter movement would retain the size of the original

image.

We can apply a simple formula to calculate the output dimensions. The spatial size of

the output image can be calculated as:
(w − f + 2p)

s
+ 1. Here, W is the input volume size,

F is the size of the filter, P is the number of padding applied and S is the number of strides.

D.5.4 The Output layer

After multiple layers of convolution and padding, it would need the output in the form

of a class. The convolution and pooling layers would only be able to extract features and

reduce the number of parameters from the original images. However, to generate the final

output, it needs to apply a fully connected layer to generate an output equal to the number

of classes we need [143]. It becomes tough to reach that number with just the convolution

layers. Convolution layers generate activation maps that the output need these maps for

classification of images. The output layer has a loss function like categorical cross-entropy

to compute the error in prediction. Once the forward pass is complete the back propagation

begins to update the weight and biases for error and loss reduction.
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