## Volatility Modeling of Islamic Stock Indices Returns Using GARCH Models

Sahnoune Sid Ahmed<sup>1,\*</sup>, Benlaib Boubakeur<sup>2</sup> <sup>1</sup> Ecole Nationale de Statistique et d'Economie Appliquée, (Algeria) <sup>2</sup> Ecole Nationale de Statistique et d'Economie Appliquée, (Algeria)

**Received:** 03/04/2019 ; **Revised:** 13/10/2019 ; **Accepted:** 19/11/2019

**Summary:** The purpose of this study is to find the GARCH specification and innovations distribution combination which best models the returns volatility of four major Islamic equity indices DJIM, S&P500 SH, FTSE SWORLD.IS and MSCI ISWD. The conditionally heteroscedastic autoregressive models considered are GARCH, EGARCH, AGARCH, NARCH, NGARCH, GJR GARCH, APARCH and NGARCH whereas the distributions considered are the normal, student, cauchy, laplace, logistics and EVD distributions. The study of the statistical properties of the different return series confirms that GARCH models are the most suitable for modeling purposes. The results of the estimations suggest that the combinations offering the best volatility modeling are: NGARCH-Laplace for the DJIM, APGARCH-Laplace for the S&P500 SH, GJR GARCH-Logistics for the SWORLD.IS and GJR GARCH-Student for the MSCI ISWD.

**Keywords:** Islamic Equity Indices, Volatility, GARCH, Stylized Facts. **Jel Classification Codes :** C20, C58, G15.

# I- Introduction :

Financial assets volatility modeling plays a very important role in the field of both conventional and Islamic financial markets. Volatility modeling and forecasting are nonetheless difficult because examination of the financial return series reveals a set of common and independently observed statistical properties and in different markets. These properties are known as stylized facts and have been described by many empirical studies. (Mandelbrot, 1963) and (Pagan, 1996) have pointed out that the empirical distributions of most daily stock price series tend to have fat tails. (Cont, 2001) has highlighted the phenomenon of leverage effect, which states that changes in the returns of an asset are negatively correlated with changes in its volatility. (Ding & Granger, 1996) and (McMillan & Ruiz, 2009) have shown that volatility is not constant over time but tends to appear in clusters. The GARCH model of (Bollerslev, 1986) allows to take into account many of these stylized facts and was used extensively in the literature to model all sort of financial series. But being symmetrical, the GARCH model cannot capture the leverage effect. In addition, this model is less efficient than the more sophisticated GARCH models which were developed later (Hansen & Lunde, 2005). These models include the AGARCH model (Engle, 1990) which takes into account the asymmetrical effects of positive and negative innovations, the EGARCH model (Nelson, 1991) which could take into account the sign of the innovation and its magnitude and requires no constraint of non-negativity of the conditional variance, the NARCH model (Higgins & Bera, 1992) which gives the dynamic of the conditional standard deviation raised to a power to be estimated, the NGARCH model (Kisinbay, 2010) which is a generalization of the NARCH model, the GJR GARCH (Glosten, Jagannathan, & Runkle, 1993) which allows for asymmetrical response of volatility to innovations in the market, the NAGARCH model (Engle & Ng, 1993) in which the impact of a negative return shock is greater than a positive return shock of equal absolute magnitude, the APARCH model (Ding, Granger, & Engle, 1993) which nests several GARCH specifications. Studies such as (Alberg, Shalit, & Yosef, 2008) have shown that asymmetric models perform best for modeling equity indices. But the literature on modeling the volatility of Islamic equity indices returns is not as abundant as it is for conventional indices. (Chiadmi, 2015) showed that Islamic stock market indices also exhibited these statistical properties and that long-memory GARCH models were more suitable for capturing the phenomenon of persistence of volatility.

<sup>\*</sup> Corresponding author, e-mail: sid\_sahnoune@yahoo.fr

Volatility Modeling of Islamic Stock Indices Returns Using GARCH Models, (PP. 551-562) -

Nevertheless, the approach consisting in using distributions which fit the best the returns of Islamic stock market indices as a distribution of GARCH model innovations has not been explored. The purpose of this article is to find the best model-distribution combination for modeling the volatility of the four major global Islamic stock indices.

## **II– Methods and Materials:**

The mean equation of the returns is assumed to follow an ARMA (1,1) process:

$$\begin{aligned} r_t &= \varphi r_{t-1} + \theta \varepsilon_{t-1} + \varepsilon_t \\ \varepsilon_t &= Z_t \sigma_t \end{aligned}$$

The selected models for volatility modeling are GARCH, EGARCH, AGARCH, NARCH, NGARCH, GJR GARCH, NAGARCH and APARCH, all of order (1,1). Each model will be estimated using the distributions: normal, student, laplace, cauchy, logistics and EVD, for a total of 48 estimates for each series of return. First, Kolmogorov-Smironv test will be used to determine which distribution fits the best every return series and then based on AIC the best specification-distribution will be chosen for each series.

#### GARCH

(Bollerslev, 1986) generalized the ARCH model and created the GARCH model whose dynamics of conditional volatility is given by:

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

This model makes the conditional variance dependent on its own lags in addition to lagged innovations.

#### EGARCH

The EGARCH model or Exponential GARCH was introduced by (Nelson, 1991), its conditional variance is given by:

$$\sigma_t^2 = exp(\omega + \gamma z_{t-1} + \alpha(|z_{t-1}| - E|z_{t-1}|) + \beta ln(\sigma_{t-1}^2))$$

Besides of taking into account the sign of the innovation and its magnitude, this model has the advantage to require no constraint to guarantee the non-negativity of the conditional variance and this by formalizing it in an exponential form.

#### AGARCH

The Asymmetric GARCH model introduced by (Engle, 1990), its conditional variance is specified as follows:

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \gamma \varepsilon_{t-1} + \beta \sigma_{t-1}^2$$

This model takes into account the asymmetrical effects of positive and negative innovations. If the coefficient  $\gamma$  is positive, then a positive shock induces a lower increase in volatility than a negative shock of the same magnitude.

#### NARCH

(Higgins & Bera, 1992) proposed the Nonlinear ARCH in which the conditional variance is specified as follows:



$$\sigma_t^{\delta} = \alpha_0 \sigma^2 + \alpha (\varepsilon_{t-1}^2)^{\delta}$$

This model gives the dynamic of the conditional standard deviation raised to the power  $\delta$  instead of using the conditional variance.

#### NGARCH

The original model of (Higgins & Bera, 1992) contained only ARCH lags but it can be generalized by including GARCH lags and hence becomes the following NGARCH model (Kışınbay, 2010):

$$\sigma_t^{\,\delta} = \omega + \alpha (\varepsilon_{t-1}^2)^{\delta} + \beta \sigma_{t-1}^{\,\delta}$$

The NGARCH model shares the same peculiarity as the NARCH model by modeling the conditional standard deviation raised to the power  $\delta$  instead of the conditional variance but also includes its lagged values.

#### **GJR GARCH**

(Glosten, Jagannathan, & Runkle, 1993) introduced a volatility model, the GJR GARCH that allowed for asymmetric effects. The general model is written as follows:

$$\sigma_t^2 = \omega + (\alpha + \gamma I_{t-1})\varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$
$$I_{t-i} = \begin{cases} 1 & \text{if } \varepsilon_{t-i} < 0\\ 0 & \text{if } \varepsilon_{t-i} \ge 0 \end{cases}$$

This model allows for asymmetric effects to be taken into account. It assumes that the parameters of the squared residuals depend on the sign of the shock. The main difference from the standard model is an additional variable in the conditional variance equation which equals to the product of a dummy variable and the squared innovations.

#### NAGARCH

The Nonlinear Asymmetric GARCH model was introduced by (Engle & Ng, 1993), its conditional variance is specified as follows:

$$\sigma_t^2 = \omega + \alpha (\varepsilon_{t-1} \sigma_{t-1}^{-1} + \gamma)^2 + \beta \sigma_{t-1}^2$$

The parameter  $\gamma$  captures the leverage effect; if  $\gamma = 0$ , then the model is symmetric, if  $\gamma > 0$ , a negative shock will result in a higher volatility increase.

### APARCH

(Ding, Granger, & Engle, 1993) introduced the Asymmetric Power ARCH model:

$$\sigma_t^{\delta} = \omega + \alpha (|\varepsilon_{t-1}| - \gamma \varepsilon_{t-1})^{\delta} + \beta \sigma_{t-1}^{\delta}$$

In this model, it is no longer assumed that the conditional variance is a linear function of squared errors. The parameter  $\gamma$  measures the leverage effect, the parameter  $\delta$  plays the role of a Box-Cox transformation of the conditional standard deviation (Laurent, 2004). The APARCH model encompasses a variety of other models based on the values of its coefficients (Bollerslev, 2009).

#### Data

The database used for this empirical study was acquired from quotes.wsj.com, and consists of daily closing prices of the Shariah S&P500, Dow Jones Islamic Market, SWORLD.IS, and MSCI ISWD indices. For each index, the starting date is the oldest date of availability until 31/12/2017, these periods are summarized in table 1.

- 553

The log returns were then computed using the formula:

$$R_t = ln\left(\frac{S_t}{S_{t-1}}\right)$$

With:  $R_t$ : The return of the financial asset at time t,  $S_t$ : The price of the financial asset at time t,  $S_{t-1}$ : The price of the financial asset at time t - 1, ln: Natural logarithm.

Returns are more frequently used instead of financial asset prices for modeling purposes, because financial returns can be assumed to be stationary over periods of time that are not too long (Posedel, 2005).

## **III- Results and discussion:**

Since 1963 and the work of Mandelbrot, many common statistical properties have been observed in many financial return series, regardless of their financial market. These properties are known as stylized facts. The figures 1,2,3 and 4 shows several stylized facts. Volatility is not constant over time and tends to appear in clusters; periods of high volatility tend to be followed by periods of high volatility and periods of low volatility tend to be followed by periods of low volatility. This is an indicator of the presence of memory in the process governing volatility. Moreover, the volatility resulting from a negative shock is greater than the volatility resulting from a positive shock of the same magnitude. This phenomenon is known as leverage effect. These findings support the choice using GARCH models to model volatility.

The distributions that best fit the returns of the different indices are all fat-tailed distributions, as shown in table 2. This clearly indicates that the normality assumption of returns must be rejected according to the Kolmogorov-Smirnov test for all series of returns with p-values < 0.05. This is also supported by the negative sign of the asymmetry coefficients which demonstrate that all empirical distributions are asymmetric with fatter left distribution tails, unlike a normal distribution which is symmetric. In addition, the kurtosis coefficients are far greater than 3, the kurtosis of a normal distribution, except for the case of the MSCI ISWD index which is lower (2.17). Table 3 shows which distribution is fitting the best the empirical distribution according to Kolmogorov-Smirnov test. It shows that the distributions offering the best fit are fat tailed distributions, namely the distribution of cauchy for the DJIM, laplace for the S&P500 SH and the SWORLD.IS and logistics for the MSCI ISWD which is consistent with the literature.

The results of the estimations of the different models associated to the different distributions of the study are summarized in tables 4,5,6 and 7. The GARCH specifications offering the best fit according to the Akaike information criterion are all asymmetrical. Namely NGARCH for the DJIM index with an AIC of -36836,94, APGARCH with an AIC of -11915,72, for the S&P500 SH index and GJR GARCH for the SWORLD.IS and MSCI ISWD indices with respectively an AIC of -17706,12 and-13596,96. The distributions offering the best adjustments are the laplace distribution for the DJIM and S&P500 SH index returns series, the logistics distribution for the SWORLD.IS and the student distribution for the MSCI ISWD index return series. These distributions don't match our findings regarding the best fitting distributions summarized in table 2 suggesting that there is no need to find the distribution performs less than an estimated distribution, it will perform better than a normal distribution. Another finding of our study is we cannot model the volatility of all the Islamic indices returns using a unique model but in return we can limit the set of models for this purpose to asymmetric models only.

## **IV- Conclusion:**

The statistical properties of a sample consisting of four major Islamic equity indices were highlighted, namely: non-normality of the empirical distribution of returns, heteroscedasticity,

clustering of volatility, leverage effect and persistence of volatility. These observations indicate that modeling volatility using GARCH models is appropriate since they take into account more or less of these stylized facts depending on the chosen GARCH specification. The used models are: GARCH, EGARCH, AGARCH, NARCH, NGARCH, GJR GARCH, NAGARCH and APARCH, all of order (1,1). The property of non-normality of the returns and more specifically the fat tails of the empirical distributions led us to use in addition to the normal distribution, the distributions of student, laplace, cauchy, logistic and EVD. Specification-distribution combinations offering the best modeling of the volatility of Islamic equity index returns, according to the smallest AIC are: NGARCH-Laplace for the DJIM, APGARCH-Laplace for the S&P500 SH, GJR GARCH-Logistics for the SWORLD.IS and GJR GARCH-Student for the MSCI ISWD. These results suggest that asymmetric GARCH models outperform symmetric GARCH models and the laplace and logistics distributions outperform the normal distribution and may even outperform the student distribution which remains more used in the literature than the other distributions mentioned above. Hence, it would be interesting to use these distributions for modeling the volatility of financial asset returns. An extension of this work would be to check whether the superiority of these distributions remains effective in periods of low volatility where extreme returns tend to appear less frequently.

## - Appendices:

| Indices    | Initial date | Final date |
|------------|--------------|------------|
| DJIM       | 25/05/1999   | 31/12/2017 |
| S&P 500 Sh | 22/05/2011   | 31/12/2017 |
| SWORLD.IS  | 29/10/2007   | 31/12/2017 |
| MSCI ISWD  | 28/09/2009   | 31/12/2017 |

Table (1): Study periods of each index

| The source: Rea | lized by ourselves |
|-----------------|--------------------|
|-----------------|--------------------|

| Index return | Skewness | Kurosis | K-S D | P-value  |
|--------------|----------|---------|-------|----------|
| DJIM         | -0,073   | 16,089  | 0,102 | < 0,0001 |
| S&P500 SH    | -0,667   | 6,865   | 0,078 | < 0,0001 |
| SWORLD.IS    | -0,411   | 9,839   | 0,105 | < 0,0001 |
| MSCI ISWD    | -0,166   | 2,170   | 0,047 | 0,000    |

Table (2): Statistical properties and normality test

The source: Realized by ourselves using Xlstat

Table (3): Distribution fitting results

| Indices returns | Best fitted distribution |
|-----------------|--------------------------|
| DJIM            | Cauchy                   |
| S&P500 SH       | Laplace                  |
| SWORLD.IS       | Laplace                  |
| MSCI ISWD       | Logistics                |

The source: Realized by ourselves using Easyfit

| LLF      | AIC       | BIC       | Model     | Distribution |
|----------|-----------|-----------|-----------|--------------|
| 18425,47 | -36836,94 | -36790,94 | NGARCH    | Laplace      |
| 18397,80 | -36781,59 | -36735,59 | GJR GARCH | Laplace      |
| 18365,75 | -36719,51 | -36680,08 | APGARCH   | Laplace      |
| 18366,40 | -36718,80 | -36672,80 | AGARCH    | Laplace      |
| 18368,22 | -36720,44 | -36667,87 | GARCH     | Laplace      |
| 18348,88 | -36679,75 | -36620,60 | APGARCH   | Student      |
| 18302,12 | -36588,24 | -36535,66 | GJR GARCH | Student      |
| 18298,68 | -36581,35 | -36528,77 | APGARCH   | Logistics    |
| 18274,46 | -36534,92 | -36488,92 | GJR GARCH | Logistics    |
| 18262,21 | -36510,41 | -36464,41 | GARCH     | Student      |
| 18247,29 | -36478,57 | -36426,00 | AGARCH    | Student      |
| 18243,11 | -36470,23 | -36417,65 | NGARCH    | Student      |
| 18229,77 | -36447,54 | -36408,11 | GARCH     | Logistics    |
| 18223,16 | -36432,33 | -36386,32 | AGARCH    | Logistics    |
| 18113,28 | -36212,56 | -36166,55 | NGARCH    | Logistics    |
| 18064,05 | -36114,10 | -36068,10 | NAGARCH   | Logistics    |
| 18037,23 | -36060,45 | -36014,45 | NARCH     | Normal       |
| 18032,81 | -36051,62 | -36005,62 | GJR GARCH | Normal       |
| 18017,42 | -36020,83 | -35974,83 | AGARCH    | Normal       |
| 17977,41 | -35942,83 | -35903,40 | NGARCH    | Normal       |
| 17979,29 | -35944,59 | -35898,58 | GARCH     | Normal       |
| 17853,29 | -35692,58 | -35646,58 | GJR GARCH | Cauchy       |
| 17829,05 | -35646,11 | -35606,67 | GARCH     | Cauchy       |
| 17791,89 | -35569,79 | -35523,78 | NGARCH    | Cauchy       |
| 17717,51 | -35421,02 | -35375,02 | NARCH     | Laplace      |
| 17685,22 | -35354,44 | -35301,86 | APGARCH   | Cauchy       |
| 17674,73 | -35333,46 | -35280,89 | NARCH     | Student      |
| 17464,43 | -34914,86 | -34868,85 | NARCH     | Cauchy       |
| 17460,83 | -34907,67 | -34861,66 | AGARCH    | Cauchy       |
| 17399,60 | -34785,19 | -34739,19 | NARCH     | Logistics    |
| 17076,80 | -34139,60 | -34093,60 | NARCH     | EVD          |
| 17073,68 | -34133,35 | -34087,35 | EGARCH    | EVD          |
| 17015,87 | -34019,73 | -33980,30 | AGARCH    | EVD          |
| 17016,22 | -34018,44 | -33972,43 | GARCH     | EVD          |
| 16906,99 | -33799,98 | -33753,97 | GJR GARCH | EVD          |
| 16829,96 | -33643,92 | -33591,35 | APGARCH   | EVD          |
| 16818,89 | -33621,78 | -33569,21 | APGARCH   | Normal       |
| 16775,38 | -33536,76 | -33490,76 | NGARCH    | EVD          |
| 16509,03 | -33004,06 | -32958,06 | EGARCH    | Logistics    |
| 16406,60 | -32797,21 | -32744,63 | EGARCH    | Student      |
| 16212,38 | -32410,76 | -32364,75 | EGARCH    | Normal       |
| 15789,28 | -31564,56 | -31518,55 | EGARCH    | Cauchy       |
| 15669,71 | -31325,43 | -31279,42 | EGARCH    | Laplace      |

Table (4): Estimations results DJIM

| 15486,15                                        | -30958,30 | -30912,30 | NAGARCH | EVD     |  |
|-------------------------------------------------|-----------|-----------|---------|---------|--|
| 11067,53                                        | -22119,05 | -22066,48 | NAGARCH | Student |  |
| 10588,63                                        | -21163,25 | -21117,25 | NAGARCH | Laplace |  |
| 9102,07                                         | -18190,14 | -18144,14 | NAGARCH | Cauchy  |  |
| 6652,33                                         | -13290,66 | -13244,65 | NAGARCH | Normal  |  |
| The second Dealing the second loss as in Medlah |           |           |         |         |  |

The source: Realized by ourselves using Matlab

Table (5): Estimations results S&P500 SH

|         | AIC       | BIC       | Modèle    | Distribution |
|---------|-----------|-----------|-----------|--------------|
| 5965,86 | -11915,72 | -11871,58 | APGARCH   | Laplace      |
| 5964,67 | -11915,34 | -11876,72 | AGARCH    | Laplace      |
| 5962,08 | -11908,15 | -11864,01 | AGARCH    | Student      |
| 5961,98 | -11909,95 | -11871,33 | GJR GARCH | Laplace      |
| 5957,97 | -11899,94 | -11855,79 | GJR GARCH | Student      |
| 5954,15 | -11894,30 | -11855,68 | NARCH     | Laplace      |
| 5952,74 | -11893,47 | -11860,36 | GARCH     | Laplace      |
| 5951,51 | -11889,03 | -11850,40 | EGARCH    | Laplace      |
| 5950,46 | -11884,92 | -11840,77 | NARCH     | Student      |
| 5948,96 | -11881,91 | -11837,77 | EGARCH    | Student      |
| 5948,82 | -11883,63 | -11845,01 | GARCH     | Student      |
| 5947,40 | -11880,80 | -11842,17 | NGARCH    | Laplace      |
| 5946,33 | -11876,66 | -11832,51 | NAGARCH   | Student      |
| 5941,79 | -11869,57 | -11830,95 | AGARCH    | Logistics    |
| 5938,19 | -11862,38 | -11823,76 | GJR GARCH | Logistics    |
| 5925,39 | -11836,78 | -11798,15 | EGARCH    | Logistics    |
| 5924,31 | -11836,63 | -11803,52 | GARCH     | Logistics    |
| 5921,49 | -11826,98 | -11782,83 | NGARCH    | Student      |
| 5920,87 | -11823,75 | -11774,08 | APGARCH   | Student      |
| 5847,23 | -11680,47 | -11641,84 | AGARCH    | Normal       |
| 5845,70 | -11677,40 | -11638,77 | GJR GARCH | Normal       |
| 5842,41 | -11668,81 | -11624,67 | APGARCH   | Normal       |
| 5839,82 | -11665,63 | -11627,01 | NARCH     | Logistics    |
| 5831,62 | -11649,24 | -11610,61 | EGARCH    | Normal       |
| 5830,84 | -11647,69 | -11609,06 | NARCH     | Normal       |
| 5827,54 | -11643,09 | -11609,98 | GARCH     | Normal       |
| 5795,39 | -11576,79 | -11538,16 | NGARCH    | Normal       |
| 5782,68 | -11551,35 | -11512,73 | AGARCH    | Cauchy       |
| 5782,02 | -11548,03 | -11503,89 | APGARCH   | Cauchy       |
| 5780,90 | -11547,81 | -11509,18 | GJR GARCH | Cauchy       |
| 5778,58 | -11543,15 | -11504,52 | NARCH     | Cauchy       |
| 5777,56 | -11543,12 | -11510,02 | GARCH     | Cauchy       |
| 5774,03 | -11534,05 | -11495,42 | NGARCH    | Cauchy       |
| 5770,96 | -11527,93 | -11489,30 | EGARCH    | Cauchy       |
| 5747,03 | -11480,07 | -11441,44 | AGARCH    | EVD          |
| 5741,46 | -11470,92 | -11437,81 | GARCH     | EVD          |
| 5736,88 | -11459,77 | -11421,14 | GJR GARCH | EVD          |
| 5735,61 | -11457,21 | -11418,59 | NARCH     | EVD          |
| 5696,93 | -11379,86 | -11341,24 | EGARCH    | EVD          |
|         |           |           |           |              |

| 5680,79 | -11345,57 | -11301,43 | APGARCH | EVD       |
|---------|-----------|-----------|---------|-----------|
| 5536,88 | -11059,75 | -11021,12 | NGARCH  | EVD       |
| 4727,05 | -9440,09  | -9401,47  | NGARCH  | Logistics |
| 3605,70 | -7195,39  | -7151,25  | APGARCH | Logistics |
| 3567,50 | -7121,01  | -7082,38  | NAGARCH | Laplace   |
| 2991,58 | -5969,16  | -5930,53  | NAGARCH | Logistics |
| 2830,51 | -5647,01  | -5608,39  | NAGARCH | Cauchy    |
| 2445,75 | -4877,50  | -4838,88  | NAGARCH | Normal    |
| 2124,53 | -4235,07  | -4196,44  | NAGARCH | EVD       |
| 701     | р         | 1' 1 1    | 1 '     | N.C. (1.1 |

The source: Realized by ourselves using Matlab

Table (6): Estimations results SWORLD.IS

|         | ( )       |           |           |              |
|---------|-----------|-----------|-----------|--------------|
| LLF     | AIC       | BIC       | Model     | Distribution |
| 8860,45 | -17704,89 | -17658,03 | GJR GARCH | Student      |
| 8860,06 | -17706,12 | -17665,11 | GJR GARCH | Logistics    |
| 8858,90 | -17703,79 | -17662,79 | AGARCH    | Logistics    |
| 8857,90 | -17699,79 | -17652,93 | AGARCH    | Student      |
| 8855,16 | -17694,31 | -17647,46 | EGARCH    | Student      |
| 8847,12 | -17680,24 | -17639,23 | EGARCH    | Logistics    |
| 8832,15 | -17648,29 | -17601,43 | APGARCH   | Logistics    |
| 8830,00 | -17644,01 | -17597,15 | NARCH     | Student      |
| 8829,72 | -17647,44 | -17612,30 | GARCH     | Logistics    |
| 8828,94 | -17643,87 | -17602,87 | GARCH     | Student      |
| 8828,59 | -17643,17 | -17602,17 | GJR GARCH | Laplace      |
| 8819,44 | -17624,88 | -17583,87 | EGARCH    | Laplace      |
| 8813,28 | -17608,56 | -17555,85 | APGARCH   | Student      |
| 8811,24 | -17608,47 | -17567,47 | GJR GARCH | Normal       |
| 8811,08 | -17606,17 | -17559,31 | APGARCH   | Laplace      |
| 8807,53 | -17601,06 | -17560,06 | EGARCH    | Normal       |
| 8806,88 | -17599,76 | -17558,75 | NARCH     | Laplace      |
| 8805,94 | -17599,88 | -17564,74 | GARCH     | Laplace      |
| 8794,92 | -17575,83 | -17534,83 | AGARCH    | Normal       |
| 8792,15 | -17570,30 | -17529,30 | AGARCH    | Laplace      |
| 8789,29 | -17562,59 | -17515,73 | APGARCH   | Normal       |
| 8778,13 | -17544,26 | -17509,11 | GARCH     | Normal       |
| 8770,53 | -17525,06 | -17478,20 | NGARCH    | Student      |
| 8763,89 | -17513,77 | -17472,77 | NGARCH    | Logistics    |
| 8760,44 | -17506,88 | -17465,88 | NGARCH    | Laplace      |
| 8756,65 | -17499,31 | -17458,30 | NARCH     | Normal       |
| 8682,00 | -17350,00 | -17309,00 | NAGARCH   | Normal       |
| 8634,91 | -17255,83 | -17214,82 | GJR GARCH | EVD          |
| 8627,40 | -17240,80 | -17199,80 | NARCH     | EVD          |
| 8626,89 | -17239,79 | -17198,79 | AGARCH    | EVD          |
| 8626,88 | -17241,76 | -17206,61 | GARCH     | EVD          |
| 8622,95 | -17231,90 | -17190,90 | NARCH     | Logistics    |
| 8606,11 | -17198,23 | -17157,22 | EGARCH    | EVD          |
| 8536,83 | -17059,67 | -17018,66 | GJR GARCH | Cauchy       |
| 8533,81 | -17053,61 | -17012,61 | AGARCH    | Cauchy       |
|         |           |           |           |              |

| 8527,58 | -17041,17                                       | -17000,16 | EGARCH  | Cauchy    |  |  |
|---------|-------------------------------------------------|-----------|---------|-----------|--|--|
| 8520,05 | -17028,09                                       | -16992,95 | GARCH   | Cauchy    |  |  |
| 8499,65 | -16985,29                                       | -16944,29 | NAGARCH | Cauchy    |  |  |
| 8427,41 | -16838,81                                       | -16791,95 | APGARCH | Cauchy    |  |  |
| 8410,43 | -16806,86                                       | -16765,86 | NGARCH  | Normal    |  |  |
| 8407,98 | -16801,96                                       | -16760,96 | NARCH   | Cauchy    |  |  |
| 8401,83 | -16789,65                                       | -16748,65 | NGARCH  | Cauchy    |  |  |
| 8370,82 | -16725,64                                       | -16678,78 | APGARCH | EVD       |  |  |
| 7295,22 | -14576,44                                       | -14535,44 | NGARCH  | EVD       |  |  |
| 4978,28 | -9942,55                                        | -9901,55  | NAGARCH | EVD       |  |  |
| 4869,72 | -9725,45                                        | -9684,44  | NAGARCH | Laplace   |  |  |
| 3597,78 | -7179,55                                        | -7132,69  | NAGARCH | Student   |  |  |
| 2556,94 | -5099,87                                        | -5058,87  | NAGARCH | Logistics |  |  |
| T1-     | The second Decking diagram share as in a Mattal |           |         |           |  |  |

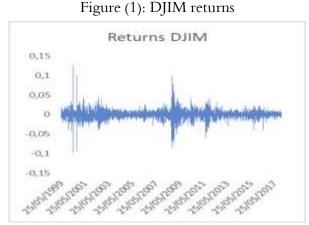
The source: Realized by ourselves using Matlab

| LLF     | AIC       | BIC       | Model     | Distribution |
|---------|-----------|-----------|-----------|--------------|
| 6806,48 | -13596,96 | -13552,09 | GJR GARCH | Student      |
| 6806,38 | -13596,76 | -13551,90 | AGARCH    | Student      |
| 6803,84 | -13593,68 | -13554,42 | GJR GARCH | Logistics    |
| 6803,28 | -13592,55 | -13553,29 | AGARCH    | Logistics    |
| 6799,30 | -13582,61 | -13537,74 | EGARCH    | Student      |
| 6793,32 | -13572,63 | -13533,37 | EGARCH    | Logistics    |
| 6791,13 | -13568,26 | -13529,00 | GJR GARCH | Normal       |
| 6791,02 | -13566,03 | -13521,16 | NARCH     | Student      |
| 6789,04 | -13564,08 | -13524,82 | NARCH     | Logistics    |
| 6789,02 | -13564,04 | -13524,78 | GARCH     | Student      |
| 6788,20 | -13564,39 | -13530,74 | GARCH     | Logistics    |
| 6787,30 | -13560,60 | -13521,34 | AGARCH    | Normal       |
| 6778,46 | -13538,93 | -13488,45 | APGARCH   | Student      |
| 6777,32 | -13540,63 | -13501,37 | NGARCH    | Logistics    |
| 6776,53 | -13537,06 | -13492,19 | NGARCH    | Student      |
| 6774,35 | -13532,71 | -13487,84 | APGARCH   | Normal       |
| 6773,72 | -13533,44 | -13494,19 | EGARCH    | Normal       |
| 6771,13 | -13530,27 | -13496,62 | GARCH     | Normal       |
| 6769,70 | -13523,40 | -13478,54 | APGARCH   | Logistics    |
| 6767,04 | -13520,07 | -13480,81 | NARCH     | Normal       |
| 6755,36 | -13496,73 | -13457,47 | NGARCH    | Normal       |
| 6749,76 | -13485,52 | -13446,26 | AGARCH    | Laplace      |
| 6748,86 | -13483,72 | -13444,46 | GJR GARCH | Laplace      |
| 6742,59 | -13469,18 | -13424,31 | APGARCH   | Laplace      |
| 6741,28 | -13468,55 | -13429,29 | NARCH     | Laplace      |
| 6741,24 | -13470,48 | -13436,83 | GARCH     | Laplace      |
| 6740,24 | -13466,47 | -13427,22 | NAGARCH   | Laplace      |
| 6738,73 | -13463,46 | -13424,20 | EGARCH    | Laplace      |
| 6734,29 | -13454,58 | -13415,32 | NGARCH    | Laplace      |
| 6579,79 | -13143,57 | -13098,70 | NAGARCH   | Student      |
| 6558,49 | -13102,97 | -13063,71 | GJR GARCH | EVD          |

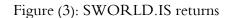
| Volatility Modeling of Islamic | Stock Indices Returns Using GARCH Models,  | (PP. 551-562)- |
|--------------------------------|--------------------------------------------|----------------|
| volutinty woodening of islamic | block malees Retains esing of ment models, | (11.331.302)   |

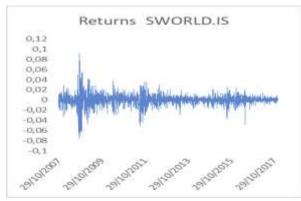
| 6558,02 | -13102,04 | -13062,78 | AGARCH    | EVD       |
|---------|-----------|-----------|-----------|-----------|
| 6557,58 | -13103,16 | -13069,51 | GARCH     | EVD       |
| 6539,38 | -13064,77 | -13025,51 | EGARCH    | EVD       |
| 6506,36 | -12998,72 | -12959,46 | AGARCH    | Cauchy    |
| 6502,70 | -12991,40 | -12952,15 | GJR GARCH | Cauchy    |
| 6499,70 | -12987,41 | -12953,76 | GARCH     | Cauchy    |
| 6497,90 | -12981,81 | -12942,55 | NAGARCH   | Cauchy    |
| 6497,25 | -12980,50 | -12941,24 | EGARCH    | Cauchy    |
| 6497,08 | -12978,17 | -12933,30 | APGARCH   | Cauchy    |
| 6477,66 | -12941,33 | -12902,07 | NARCH     | EVD       |
| 6471,81 | -12929,62 | -12890,36 | NGARCH    | Cauchy    |
| 6471,19 | -12928,38 | -12889,12 | NARCH     | Cauchy    |
| 6428,18 | -12840,36 | -12795,49 | APGARCH   | EVD       |
| 6180,77 | -12347,54 | -12308,28 | NGARCH    | EVD       |
| 4028,24 | -8042,49  | -8003,23  | NAGARCH   | Normal    |
| 2571,04 | -5128,08  | -5088,83  | NAGARCH   | EVD       |
| 1912,20 | -3810,40  | -3771,14  | NAGARCH   | Logistics |
|         | _         |           |           |           |

The source: Realized by ourselves using Matlab

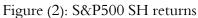


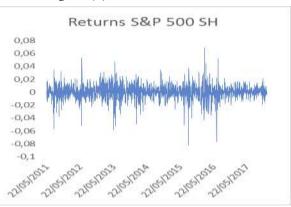
The source: Realized by ourselves based on quotes.wsj.com





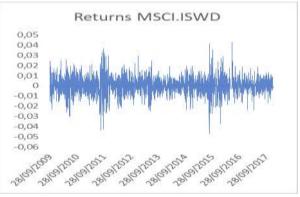
The source: Realized by ourselves based on quotes.wsj.com





The source: Realized by ourselves based on quotes.wsj.com

Figure (4): MSCI.ISWD returns



The source: Realized by ourselves based on quotes.wsj.com

## **Referrals and references:**

- 1. Mandelbrot, B. (1963). The Variation Of Certain Speculative Prices. *The Journal of Business*, 36(4), 394-419.
- 2. Pagan, A. (1996). The econometrics of financial markets. *Journal of empirical finance*, *3*(1), 15-102.
- 3. Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1:2, 223-236.
- 4. Ding, Z., & Granger, C. W. (1996). Modeling volatility persistence of speculative returns: a new approach. *Journal of econometrics*, 73(1), 185-215.
- 5. McMillan, D. G., & Ruiz, I. (2009). Volatility persistence, long memory and time-varying unconditional mean: Evidence from 10 equity indices. *The Quarterly Review of Economics and Finance*, 49(2), 578-595.
- 6. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. *Journal of* econometrics, 31(3), 307-327.
- 7. Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH(1,1)? *Journal of Applied Econometrics*, 20(7), 873-889. doi:doi:10.1002/jae.800
- 8. Chiadmi, M. S. (2015). Volatility of Islamic stock indexes in the context of the financial crisis. Thèse de doctorat, Ecole Mohammadia d'Ingénieurs.
- 9. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. *Econometrica: Journal of the Econometric Society*, 347-370.
- 10. Engle, R. F. (1990). Stock volatility and the crash of '87: Discussion. The Review of Financial Studies, 3(1), 103-106.
- Higgins, M. L., & Bera, A. K. (1992). A class of nonlinear ARCH models. International Economic Review, 137-158.
- 12. Kışınbay, T. (2010). Predictive ability of asymmetric volatility models at medium-term horizons. *Applied Economics*, 42(30), 3813-3829.
- 13. Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. *The journal of finance, 48*(5), 1779-1801.
- 14. Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. *The journal of finance, 48*(5), 1749-1778.
- 15. Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. *Journal of empirical finance*, 1(1), 83-106.
- 16. Laurent, S. (2004). Analytical derivates of the APARCH model. Computational Economics, 24(1), 51-57.
- 17. Bollerslev, T. (2009). *Glossary to ARCH (GARCH)*. Paper presented at the Volatility and Time Series Econometrics: Essays in Honour of Robert F. Engle.

Volatility Modeling of Islamic Stock Indices Returns Using GARCH Models, (PP. 551-562)

- 18. Posedel, P. (2005). Properties and estimation of GARCH (1, 1) model. *Metodoloski zvezki*, 2(2), 243.
- 19. Alberg, D., Shalit, H., & Yosef, R. (2008). *Estimating stock market volatility using asymmetric GARCH models*. Applied Financial Economics, 18(15), 1201-1208.

## How to cite this article by the APA method:

Sahnoune SidAhmed, Benlaib Boubakeur (2019), Volatility Modeling of Islamic Stock Indices Returns Using GARCH Models, El-Bahith Review, Volume 19 (Number 01), Algeria: Kasdi Marbah University Ouargla, pp. 551-562.

## - 562 -