
RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE 

MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE 

 

UNIVERSITÉ KASDI MERBAH – OUARGLA 

FACULTÉ DES MATHÉMATIQUES ET SCIENCES DE LA MATIÈRE 

DÉPARTEMENT DE PHYSIQUE 

 

THÈSE DE DOCTORAT EN SCIENCES 

SPECIALITÉ : PHYSIQUE 

OPTION : PHYSIQUE DES MATÉRIAUX 

Par : AYAT ZAHIA 

THÈME 

 

 

 

 

Soutenue le 04/07/2019 devant le jury composé de : 

 

Pr. Aïadi Kamel Eddine Université Kasdi Merbah Président 

Pr. Rhouma Ferhat Université El-Oued Examinateur 

Pr. Ouahab Abdelouahab Université Mohamed Khider Biskra Examinateur 

Dr. Bouderba Hichem Université Gharddia Examinateur 

Dr. Bentouila Omar Université Kasdi Merbah Examinateur 

Pr. Daoudi Bahmed Université Gharddia Invité 

Pr. Boukraa Aomar Université Kasdi Merbah Rapporteur 

 

N° d’ordre : ………….. 
N° de série : …………… 

SIMULATION DE PROPRIÉTÉS 

ÉLECTRONIQUES DANS DES HYDRURES 

METALLIQUES 



DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA 

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH 

 

UNIVERSITY OF KASDI MERBAH – OUARGLA 

FACULTY OF MATHEMATICS AND MATIER SCIENCES 

DEPARTMENT OF PHYSICS 

 

THESIS OF DOCTORATE OF SCIENCES 

SPECIALITY: PHYSICS 

MAJOR : MATERIALS PHYSICS 

by : ZAHIA AYAT  

THEME 

 

 

 

 

Discussed on 04/07/2019 

 

N° d’ordre : ………….. 
N° de série : …………… 

 

SIMULATION OF ELECTRONIC PROPERTIES 

IN METALLIC HYDRIDES 



i 

Acknowledgements 

 

 

Foremost, I wish to thank my thesis advisor Prof. Aomar Boukraa for all the 

encouragement and guidance over the past years and for providing me with an excellent 

chance to work and to complete this doctorate project at the “Laboratoire de Développement 

des Energies Nouvelles et Renouvelables dans les Zones Arides et Sahariennes (LENREZA)”, 

University of Kasdi Merbah Ouargla. 

I would also like to thank all my committee members including Prof. Kamel Eddine 

Aïadi, Prof. Ferhat Rhouma, Prof. Abdelouahab Ouahab, Dr. Hichem Bouderba, Dr. Omar 

Bentouila, and Prof. Bahmed Daoudi for their time and patience. 

At this point I want to thank Prof. Peter Vajda, Prof. Peter Hreze, Prof. Abdelhafid 

Kellou, Prof. Mohamed Tayeb Meftah, Dr. Saadi Berri, Dr. Youcef Bouhadda, Dr. Kamel 

Benyallou, and many others for their scientific support, help and advice. Without them, this 

work would not have been possible. 

Thanks to all my friends inside and outside the Kasdi Merbah University, all my 

colleagues, and all university workers, especially teachers. I would like to thank everyone 

who has guided and accompanied my way during the last years. 

Finally, I would like to thank my parents, my sisters, my brothers, and my family not 

only for supporting me during my whole life but most of all for providing me the freedom and 

encouragement to realize my own ideas. 

 

 

 

 

 

 

Thanks to all of you, Zahia Ayat 



ii 

 

CONTENTS 

 

 

Acknowledgments…………………………..……………………………………….…… i 

Contents…………………………………………………………………………………... ii 

List of Figures……...……………………………………………………………………... vi 

List of Tables……...……………………………………………………………………… x 

 

General Introduction 1 

References ………………………………………………………………………………… 6 

 

Chaper I 

Hydrides and metallic hydrides 
8 

 

I-I The hydrogen ………………………………………………….………………...…….. 9 

         I-I-1  Hydrogen safety ……………………………………………………………… 9 

         I-I-2  Hydrogen production …………………………...……………………………. 10 

         I-I-3  Hydrogen storage ……………………….……………………………………. 10 

                  I-I-3-1  Gaseous storage ….………………………………………...………… 11 

                  I-I-3-2  Liquid storage ….………………...………………………...………… 11 

                  I-I-3-3  Metal hydride storage ….………………......………………………… 12 

I-II The rare-earth hydrides .……………………………….……………………...……… 15 

         I-II-1 General characteristics of the rare-earth elements…………….......………...... 15 

                   I-II-1-1 Discovery and early history ……………………………………..…... 16 

                   I-II-1-2 Production …………………………………..……………………….. 16 

                   I-II-1-3 Electronic configurations …………………………...………………. 17 

                   I-II-1-4 Magnetic structure …………………………………………………... 19 

         I-II-2 General characteristics of the rare-earth hydrides …………………...……..... 22 

                   I-II-2-1 Gadolinium ……………………..………………………………. 26 

                   I-II-2-2 Terbium ………………………………....…………………………... 27 

I-III  Summary ………….………………….………………………………………..……. 28 

References ………………………………………………………………………………... 28 

 

 



CONTENTS 

iii 

 

Chaper II  

Overview on the theoretical framework 
32 

  

II-I  The Born-Oppenheimer approximation …………………………………….…….…. 32 

II-II  The Hartree-Fock Approximation ……………………….………...……......………. 33 

II-III  Outline of the Thomas–Fermi model ……………………….………….......………. 35 

II-IV  Density functional theory ……………………….…………..……….....….………. 36 

           II-IV-1  The Hohenberg-Kohn Theorems …………….……………………...…..... 37 

           II-IV-2  The Kohn-Sham (KS) formulations ……………………………….……... 39 

           II-IV-3  The exchange-correlation functionals ……………………………..……... 42 

                       II-IV-3-1  Local density approximation LDA ….…………………………. 42 

                       II-IV-3-2  Generalized gradient approximations GGA ….……………..….. 43 

                       II-IV-3-3  Hybrid Functionals ….………………………………..…..…..… 45 

          II-IV-4  The basis set …………………………….………………...………....……. 47 

                      II-IV-4-1  Augmented plane wave basis set (APW) ….…………...…..…… 48 

                      II-IV-4-2  linearized augmented plane wave basis set (LAPW) ………....… 49 

                      II-IV-4-3  linearized augmented plane wave with Local Orbitals basis set  

                                  (LAPW+LO) ……………………………………………………..… 
49 

                      II-IV-4-4  The `pure' APW+lo basis set …………………………...…….… 50 

                      II-IV-4-5  Full-Potential Linearized Augmented Plane wave Method (FP- 

                                   LAPW) …………………………………………...………...……… 
51 

          II-IV-5  Calculation code used ……………………………..……….......………..… 52 

                      II-IV-5-1  General remarks on WIEN2k ……………..………..…...….…… 53 

                      II-IV-5-2  Some applications of WIEN2k ………………………...……….. 53 

II-V  Summary ………………………….………………………………………..……….. 54 

References ………………………………………………………………………………… 54 

 

Chapter III 

Pure rare-earths R (R = Gd and Tb): 

structural, electronic, and magnetic properties 

57 

  

III-I  Non spin-polarize study ……………………………………………….……...…….. 57 

           III-I-1 Computational methods …………….……………………………..…...…... 57 

           III-I-2 Results and discussion ……….…….……………………………..…....…... 59 



CONTENTS 

iv 

                       III-I-2-1  Structural properties ………………..…………………………… 59 

                      III-I-2-2  Electronic properties ………………..…………………….……… 61 

III-II  Spin polarized study …………………………..……………………………………. 67 

           III-II-1 Spin polarized GGA and LSDA …………….………………………...…... 67 

                        III-II-1-1 Computational methods ………………………………….…….. 68 

                        III-II-1-2 Structural properties …………………..…………………..…..... 68 

                        III-II-1-3 Electronic properties ……………………………………….…... 70 

                        III-II-1-4 Magnetic properties …………………..………………….……... 78 

          III-II-2  GGA + U and LSDA + U study ………….………...………………...….... 79 

                        III-II-2-1 Computational methods ………………………………….…...... 79 

                        III-II-2-2 Structural properties ………………..…………………….…...... 80 

                        III-II-2-3 Electronic properties ……………………….…………….…...... 82 

                        III-II-2-4 Magnetic properties …………………..………………….……... 89 

III-III  Summary ………………………….………………………………………..……… 90 

References ………………………………………………………………………………… 91 

 

Chapter IV 

Rare-earth dihydrides RH2 (R = Gd, and Tb): 

structural, thermodynamic, and electronic properties 

93 

 

  

IV-I  Gadolinium dihydride GdH2 …………………..................................………………. 94 

           IV-I-1  Computational methods …………….…………………………..…......…... 94 

           IV-I-2  Results and discussion ……….…….…………………………….…...…... 94 

IV-II  Terbium dihydride TbH2 ………………………………………………………..…. 100 

           IV-II-1  Computational methods …………….…………………………..…..…...... 100 

           IV-II-2  Results and discussion ……….…….…………………………….…..…... 101 

                        IV-II-2-1  Ground state properties ………………...……………………… 101 

                        IV-II-2-2  Electronic properties ………………………….….…….....…… 102 

IV-III  Calculated total energy of H2 molecule ……………………………………....…… 107 

IV-IV  Thermodynamic properties ……………………………….…….………………… 108 

IV-V  Summary …………….…………….……………..…………………………..……. 110 

References ………………………………………………………………………………… 111 

 

 

 

 



CONTENTS 

v 

 

Chapter V 

Superstoichiometric rare -earth dihydrides RH2.25 (R=La and Gd) 

with I4/mmm space group: structural and electronic properties 

113 

 

  

V-I  Computational methods ……………...…….…………………………...…..…...…... 113 

V-II  Results and discussion ……….…………....……………………………..…...…...... 114 

         V-II-1  Equilibrium properties ……………..…………..…………………………… 114 

         V-II-2  Electronic properties ………………………..……..………………………... 116 

V-III  Summary ………………………….………………………………………..………. 124 

References ………………………………………………………………………………… 124 

 

Chapter VI 

Superstoichiometric rare-earth dihydrides RH2.25 (R=Gd and Tb) 

with  space group: structural and electronic properties 

126 

 

  

VI-I  Gadolinium superstoichiometric dihydride (without relaxation) GdH2.25 ……...…... 126 

           VI-I-1  Computational methods …………….…………………………..…......…... 126 

           VI-I-2  Results and discussion ……….…….………………………………....….... 127 

                       VI-I-2-1  Equilibrium properties ………………...……………...………… 127 

                      VI-I-2-2  Electronic properties ………………..…………………………… 129 

VI-II  Terbium superstoichiometric dihydride (with relaxation) TbH2.25 .....……………... 133 

           VI-II-1  Computational methods …………….……………...……………..…..…... 133 

           VI-II-2  Results and discussion ……….…….……………………...……..…..…... 133 

                         VI-II-2-1  Equilibrium properties ………………...……………………… 133 

                         VI-II-2-2  Electronic properties ………………..………………………… 138 

VI-III  Summary ………………………….………………………………………..……... 142 

References ………………………………………………………………………………… 142 

 

Summary and outlook 144 

 
 



vi 

 

LIST OF FIGURES 
 

No . Figure Title Page 

I-1 Energy demand according to the energy carriers over the last 200 years [4].…………..……… 8 

I-2 Fuel leak simulation [6].…………………………..……………………………………………. 9 

I-3 Stability of hydrides of pure elements. The higher the enthalpy of formation of the hydride, 

the more stable the hydride [19]………………………………………………………………... 13 

I-4 Reaction of a H2 molecule with a storage material: a) H2 molecule approaching the metal 

surface (hydrogen and metal). b) Interaction of the H2 molecule by Van der Waals forces 

(physisorption). c) Chemisorbed hydrogen after dissociation (Chemisorption). d) Occupation 

of subsurface sites and diffusion into bulk lattice sites. e) Solid solution (α -phase). f) Hydride 

(β -phase).………………………………………………………………………………………. 14 

I-5 This chart shows a history of rare earth element production, in metric tons of rare earth oxide 

equivalent, between 1950 and 2013 [34].………………………………………….…………… 16 

I-6 Global mine production of rare earth metals in different countries [36].……………………… 17 

I-7 Some of the magnetic phases of the heavey rare-earth metals. For each magnetic phase, the 

arrows represent the changing magnitudes and directions of the components of magnetic 

moments relative to the basal planes (circles) from one atomic plane to the next [39]…...…… 20 

I-8 Typical phase diagram of a trivalent R-H system………………………………………………. 23 

I-9 The (a) tetra- (T) and (b) octahedral (O) vacancies in fcc lattices…………..…………………. 23 
 

 
 

I-10 Superstructures of RH2.25 and RH2.50 [48]……………………….…………...………………… 24 
 

 

 

I-11 Octahedral H-superlattice in b-RH2.25 systems (the H-atoms on the T-sites are omitted, for 

clarity). The x-hydrogens form a Ni3Mo-type structure (DO22) giving a RH2.25 stoichiometry 

[95]………………………………………………………………………………………...…… 27 

I-12 Proposed magnetic structures for TbD2 [99]...…………………………………………………. 27 
 

 
 

II-1 Llewellyn Hilleth Thomas (1903–1992)………………………………….................................. 35 
 

 
 

II-2 Enrico Fermi (1901–1954)……………………………………………………………………... 35 
 

 
 

II-3 Walter Kohn receiving his Noble Prize from His Majesty the King at the Stockholm Concert 

Hall.………………………………………………...................................................................... 37 

II-4 Number of publications per year (1975–2014) on topics (“density functional” or “DFT”), 

according to the Web of Science Core Collection (February 2015). The inset shows data near 

1990 on an expanded scale. The number of publications depends on the precise search 

criteria, but the overall picture is unchanged [19]..……………………………………..……… 37 

II-5 Schematic of the DFT cycle: solving the Kohn-Sham equations self-consistently..................... 41 

II-6 Division of a unit cell in muffin tin regions and an interstitial region, for a case with two 

atoms [66]…………....................................................................................................................  48 

II-7 Muffin tin approximation……………………………………………………………….……… 51 

II-8 Full potential……………………………………………………………………………………. 51 

 
 

 



List of figures 

vii 

III-1 Calculated total energy curves for Gd as a function of volume in both GGA (a) and LDA (b), 

and as function of deviation from initial (c/a) ratio (%) in both GGA (c) and LDA (d) 

approximations.………………………………………………………………………………… 58 

III-2 Calculated total energy curves for Tb as a function of volume in both GGA (a) and LDA (b), 

and as function of deviation from initial (c/a) ratio (%) in both GGA (c) and LDA (d) 

approximations.………………………….................................................................................... 60 

III-3 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of Gd in the: a) GGA and b) LDA, the Fermi energy being at 0 eV.……………… 62 

III-4 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of Tb in the GGA and LDA, the Fermi energy being at 0 eV.…………………..… 64 

III-5 The calculated total and partial density of states for Gd in the GGA, the Fermi energy being at 

0 eV.…………………………………......................................................................................... 65 

III-6 The calculated total and partial density of states for Tb in the GGA, the Fermi energy being at 

0 eV.……………………………………………………………………………………………. 66 

III-7 Calculated total energy curves (spin polarized calculation) for Gd as a function of volume in 

both GGA (a) and LSDA (b), and as function of deviation from initial (c/a) ratio (%) in both 

GGA (c) and LSDA (d) approximations.………………………………………………………. 67 

III-8 Calculated total energy curves (spin polarized calculation) for Tb as a function of volume in 

both GGA (a) and LSDA (b), and as function of deviation from initial (c/a) ratio (%) in both 

GGA (c) and LSDA (d) approximations……….......................................................................... 69 

III-9 Spin dependant band structures for Gd in both spin polarized GGA and LSDA 

approximations…………………………………………………………………………………. 71 
 

 
 

III-10 Spin dependant band structures for Tb in both spin polarized GGA and LSDA 

approximations…………………………………………………………………………………. 72 
 

 
 

III-11 Spin dependant total and partial density of states for Gd in GGA approximations (spin 

polarized study), the Fermi energy being a 0 eV…....…………………………………..……… 74 

III-12 Spin dependant total and partial density of states for Gd in LSDA approximations, the Fermi 

energy being a 0 eV…....………………………………………………………………..……… 75 
 

 
 

III-13 Spin dependant total and partial density of states for Tb in: a) LSDA and b) GGA 

approximations, the Fermi energy being at 0 eV………………………………...…………….. 77 
 

 
 

III-14 Calculated total energy curves for Gd as a function of volume in both GGA+U (a) and 

LSDA+U (b), and as function of deviation from initial (c/a) ratio (%) in both GGA + U (c) 

and LSDA + U (d) approximations.……………………………………………………..……... 80 

III-15 Calculated total energy curves for Tb as a function of volume in both GGA+U (a) and 

LSDA+U (b), and as function of deviation from initial (c/a) ratio (%) in both GGA+U (c) and 

LSDA+U(d) approximations………………………………………………………………….... 81 

III-16 Calculated band structures for Gd in both approximations GGA+U and LSDA+U…………… 83 
 

 
 

III-17 Calculated band structures for Tb in GGA+U and LSDA+U approximations, the Fermi 

energy being at 0 eV…………………………………………………………..…....................... 84 
 

 
 

III-18 Spin dependant total and partial density of states for Gd in GGA+U approximations, the 

Fermi energy being at 0 eV…………………………………………………………………..… 86 



List of figures 

viii 

III-19 Spin dependant total and partial density of states for Gd in LSDA+U approximations, the 

Fermi energy being at 0 eV…………………………………………………………………..… 87 

III-20 Spin dependant total and partial density of states for Tb in LSDA+U and in GGA + U 

approximations. Spin up (  ) and down (   ) states are plotted separately above and below the 

thin horizontal zero line………………………………………………………………………… 88 

IV-1 The compound crystallises in the CaF2 fluorite type structure: the large spheres represent rare 

earth atoms ( 4) and small spheres hydrogen atoms occupying tetrahedral sites ( 8) (figure 

plotted with XCrysDen [4]).……………………………………………………………………. 93 

IV-2 Total-energy of GdH2 as a function of volume.………………………………………………... 94 
 

 
 

IV-3 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of GdH2, the Fermi energy being at 0 eV.…………………………………………. 96 

IV-4 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of GdH2 with ‘open core’ approach, the Fermi energy being at 0 eV.…………….. 96 

IV-5 Orbital-projected DOS’s for Gd in the GdH2.………………………………………………….. 98 
 

 
 

IV-6 Orbital-projected DOS’s for H2 in the GdH2.…………………………………………………... 99 
 

 

 

IV-7 The calculated total and partial density of states for GdH2.…………………………………..... 99 
 

 

 

IV-8 Total energy of TbH2 as a function of volume in both GGA and LDA approximations.……… 100 
 

 
 

 
 

 

IV-9 Calculated Density of states (right panel) and calculated electronic band structure along high-

symmetry directions (left panel) of TbH2 with GGA and LDA, the Fermi energy being at 0 

eV.…………………………………………………………………………………………..….. 103 

IV-10 Illustration of the splitting of the free ion and d orbitals in octahedral crystal field. Left side 

shows the d orbitals with different z angular momentum component, colour is the phase of the 

complex amplitude. Right side shows the low lying threefold degenerate t2g orbbitals and the 

higher energy eg orbitals [26].………………………………….................................................. 104 

IV-11 Calculated total and partial density of states for TbH2 in both GGA and LDA, the Fermi 

energy being at 0 eV....................................................................................... .............................. 105 
 

 
 

IV-12 The calculated partial density of states for TbH2 with GGA, the Fermi energy being at 0 

eV.…………………………………………………………………………………………..... 106 
 

 
 

IV-13 Calculated valence-electron-charge density contour (in electrons per Å3) of TbH2 in the (110) 

plane in (a) three (large values near the Tb atom are cut out) and (b) two dimensions..….. 107 

IV-14 Conventional unit cell for the H2………………………………………….……………………. 107 

V-1 Calculated total energy curves for LaH2.25 as a function of cell volume in the (a) LDA and (b) 

GGA approximations.………………………………………………………………………. 114 

V-2 Calculated total energy curves for GdH2.25 as a function of cell volume in the (a) LDA and (b) 

GGA approximations.………………………………………………………………………. 116 

V-3 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of LaH2.25 in the GGA and LDA, the Fermi energy being at 0 eV.……................... 117 

V-4 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of GdH2.25 in the GGA and LDA, the Fermi energy being at 0 eV........................... 118 

   



List of figures 

ix 

V-5 The calculated total density of states for La and partial DOS for the La-d in the GGA and in 

the LDA, the Fermi energy being at 0 eV.……………………………………………………... 120 

V-6 The calculated total density of states for Gd and partial DOS for the Gd-d in the GGA and in 

the LDA, the Fermi energy being at 0 eV.………....................................................................... 120 

V-7 The calculated total and partial density of states for LaH2.25 in the GGA and in the LDA, the 

Fermi energy being at 0 eV.……………..................................................................................... 121 

V-8 The calculated total and partial density of states for GdH2.25 in the GGA (right panel) and in 

the LDA (left panel), the Fermi energy being at 0 eV.…………………………………………. 122 

V-9 Calculated valence-electron-charge density contour (in electrons per Å3) of GdH2.25 in the 

(110) plane.……………………………………………………………………………………... 123 

VI-1 The compound crystallises in the CaF2 fluorite type structure: the large spheres represent rare 

earth atoms ( 4) and small spheres hydrogen atoms occupying tetrahedral sites ( 8) and the 

central octahedral site ( 1)……………………………………...……………………………... 127 

VI-2 Calculated total energy curves for GdH2.25 as a function of cell volume in the (a) LDA and (b) 

GGA approximations.…………………………………………………………………………... 128 

VI-3 Total density of states (right panel) and electronic band structure along high-symmetry 

directions (left panel) of GdH2.25 in the GGA and LDA, the Fermi energy being at 0 eV……... 130 

VI-4 The calculated total and partial density of states for GdH2.25 in the LDA (right panel) and in 

the GGA (right panel), the Fermi energy being at 0 eV.……………………………………… 131 

VI-5 Calculated valence-electron-charge density contour (in electrons per Å3) of GdH2.25 in the 

(110) plane.…............................................................................................................................... 132 

VI-6 The compound crystallizes in the CaF2 fluorite type structure: the large spheres represent rare 

earth atoms and small spheres hydrogen atoms occupying tetrahedral sites (H3) and the 

central octahedral site (H4)..………………...………………………………………………….. 134 

VI-7 Calculated total energy curves for TbH2.25 as a function of cell volume in the LDA 

approximation: (a) relaxed state, (c) unrelaxed state. In the GGA approximation: (b) relaxed 

state, (d) unrelaxed state.……………………………………………………………………….. 136 

VI-8 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of TbH2.25 in the GGA and LDA, the Fermi energy being at 0 eV.………………... 139 

VI-9 The calculated total and partial density of states for TbH2.25 in the GGA (right panel) and in 

the LDA (left panel), the Fermi energy being at 0 eV.…………………………………………. 141 

VI-10 Calculated valence-electron-charge density contour (in electrons per Å3) of TbH2.25 in the 

(110) plane.………....................................................................................................................... 141 

 



x 

 

LIST OF TABLES 
 

No. 

Table Title 
Page 

I-1 
Structural and electronic properties of the rare earth [39]………………………………...…… 18 

I-2 Hund’s rules ground-states and magnetic moments of the rare earth [42].……………..…….... 21 

I-3 Crystal structures of rare earth metals, adopted from Ref [60].……………………….……….. 25 

III-1 Equilibrium lattice parameters a0, c0 (in Å), bulk modulus B0 (in GPa), pressure derivative 

B0’, total energy (Ry) and cohesion energy Ecoh (eV) for Gd compared to experimental data 

and other works.…………………………………………........................................................... 59 

III-2 Equilibrium lattice parameters a0, c0 (in Å), bulk modulus B0 (in GPa), pressure derivative 

B0’, total energy (Ry) and cohesion energy Ecoh (eV) for Tb compared to experimental data 

and other works.……….….......................................................................................................... 61 

III-3 Fermi energy and density of states at the Fermi level for Gd……………………….................. 63 

III-4 Fermi energy and density of states at the Fermi level for Tb.……………………………….…. 63 

III-5 Equilibrium lattice parameters (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, 

total energy (Ry), and cohesive energy Ecoh (eV) for Gd obtained with GGA and LSDA 

calculations, compared to experimental data and other works.………………………………… 68 

III-6 Equilibrium lattice parameters a0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, 

total energy (Ry), and cohesive energy Ecoh (eV) for Tb obtained with GGA and LSDA 

calculations, compared to experimental data and other works..…………...…………………… 70 

III-7 Fermi energy and density of states at the Fermi level for Gd obtained with GGA and LSDA 

calculations..……………………………………………………………………………………. 76 

III-8 Fermi energy and density of states at the Fermi level for Tb obtained with GGA and LSDA 

calculations..………………………………………………………………………….………… 76 

III-9 Calculated total and partial magnetic moment (in  (Bohr Magneton)) of the Gd in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA and LSDA 

calculations, and compared to other..………………...………………………………………… 78 

III-10 Calculated total and partial magnetic moment (in  (Bohr Magneton)) of the Tb in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA and LSDA 

calculations, and compared to experiment..……………………….…………………………… 79 

III-11 Equilibrium lattice parameters a0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, 

and total energy (Ry), and cohesive energy Ecoh (eV) for Gd obtained with GGA+U and 

LSDA+U calculations, compared to experimental data and other works..…………………… 82 

III-12 Equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, and 

total energy (Ry), and cohesive energy Ecoh (eV) for Tb obtained with GGA+U and LSDA+U 

calculations, compared to experimental data and other works..……………..…………….…… 82 

III-13 Fermi energy and density of states at the Fermi level for Gd obtained with GGA+U and 

LSDA+U calculations..………………………………………………………...………………. 85 

III-14 Fermi energy and density of states at the Fermi level for Tb obtained with GGA+U and 

LSDA+U calculations..……………………………………………………………………….... 85 



List of tables 

xi 

III-15 Calculated total and partial magnetic moment (in B (Bohr Magneton)) of the Gd in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA +U, LSDA 

+U calculations...………………………………………………………………………………. 89 

III-16 Calculated total and partial magnetic moment (in  (Bohr Magneton)) of the Tb in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA +U, LSDA 

+U calculations.………………………………………………………………………………. 90 

IV-1 Equilibrium lattice constant a0, bulk modulus B0 (in GPa), pressure derivative B0’, and total 

energy compared to experimental data and other works for GdH2...…………………………. 95 

IV-2 Fermi energy and density of states at the Fermi level for GdH2 (our results Ref. 

[13]).….………………………………………………………………………..……………….. 95 

IV-3 Equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, and 

total energy (Ry) for TbH2 compared to experimental data and other works....……………… 102 

IV-4 
Fermi energy and density of states at the Fermi level for TbH2....…………..……………….... 105 

IV-5 Unrelaxed and relaxed positions of equivalent atoms for the H2 molecule in units of lattice 

parameters (a, b, c) for (x, y, z) coordinates, respectively, and total energy (Ry) with LDA 

and GGA approximations....……..…………………………………………………………….. 108 

IV-6 Calculated cohesive energy Ecoh (eV), binding energy Eb (H) (eV/atom), and formation 

energies (ΔHf) (kJ/mol H2) for GdH2 in GGA methods....……………………………………... 109 

IV-7 Calculated cohesive energy Ecoh (eV), binding energy Eb (H) (eV/atom), and formation 

energies (ΔHf) (kJ/mol H2) for TbH2 in both GGA and LDA methods....………………….. 110 

V-1 Calculated equilibrium lattice constant (a0, c0) (in Å), bulk modulus B0 (in GPa), and its first 

order pressure derivative B0’, of LaH2.25 for GGA and LDA compared to experimental data... 115 

V-2 Calculated equilibrium lattice constant (a0, c0) (in Å), bulk modulus B0 (in GPa), and its first 

order pressure derivative B0’, of GdH2.25 for GGA and LDA compared to experimental data... 116 

V-3 Calculated Fermi energy and density of states at the Fermi level for LaH2.25...…………..…… 119 

V-4 Calculated Fermi energy and density of states at the Fermi level for GdH2.25...……………….. 119 

VI-1 Calculated equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), its first order 

pressure derivative B0’, of GdH2.25 for GGA and LDA compared to other available data…….. 128 

VI-2 Fermi energy (in Ry) and density of states at the Fermi level (in states/Ry) for GdH2.25 (Ref. 

[9])......................................................................................................................................... 129 

VI-3 Unrelaxed and relaxed positions of equivalent atoms for the TbH2.25 structure (  space 

group) in units of lattice parameters (a, b, c) for (x, y, z) coordinates, respectively (present 

work in Ref. [29])...……………………………………………………………….……………. 134 

VI-4 Calculated equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), its first order 

pressure derivative B0’, and total energy (Ry), of TbH2.25 for GGA and LDA compared to 

other available data....…………………………………………………………………………. 137 

VI-5 Fermi energy (Ry) and density of states at the Fermi level (in states/Ry) for TbH2.25 in the 

two approaches GGA and LDA (present work in Ref. [28])....………………………………... 138 

 



1 

General introduction 

 

 

The environmental awareness in society has increased significantly over the last years 

and both climate and energy issues have become very important and engaging political topics. 

The major questions that are being discussed deal with how we can reduce the emission of 

greenhouse gases into the atmosphere and, in the long run, how we can reduce our 

dependence on fossil fuels which are the most widely used energy source today [1]. The fact 

that the fossil fuel supplies are depleting while the future energy demands are steadily 

increasing makes the research and development of clean energy systems that involve 

renewable energy more important and of bigger interest than ever before [2]. 

Today, many scientists and engineers, companies, governmental and non-

governmental agencies and even finance institutions are convinced that hydrogen’s physical 

and chemical advantages will make it an important synthetic fuel in the future. 

Hydrogen is a clean energy carrier. It can be obtained in a sustainable way by means 

of electrolysis of water, with electricity produced from sources like sunlight, wind or 

hydraulic power. Hydrogen can be stored and then used in a stationary or mobile application. 

In the latter case it can be utilized in combination with an internal combustion engine or a fuel 

cell. 

Hydrogen storage is the main issue that needs to be solved before the technology can 

be implemented into key areas such as transport. However, neither storage of hydrogen as a 

compressed gas nor as a cryogenic liquid appears suitable and economical for most types of 

potential applications. In this respect hydrogen storage in the form of a metal hydride is a 

promising alternative with many attractive features [3, 4]. Over the past few decades, a major 

challenge which still persists is to identify optimal candidates for such hydrogen storage 

among intermetallic compounds. Rare-earth (R) alloys seem promising, owing to a high 

hydrogen capacity per volume unit and an ability to absorb hydrogen under moderate 

conditions of temperature and pressure [5], where the interstitial hydrogen atoms strongly 

modify the electronic structure and add interesting features [6]. The hydrogen absorption 

properties of these alloys are very much dependent on the constituents, and metal-hydrogen 

bonding interactions play a major role in the stability of the hydrides. 

The name rare earth has its origins in the history of the discovery of these elements. 

They are never found as free metals in the Earth’s crust and pure minerals of individual rare 

earths do not exist. They are found as oxides which have proved to be particularly difficult to 
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separate from each other, especially to 18th and 19th century chemists. The early Greeks 

defined earths as materials that could not be changed further by sources of heat, and these 

oxides seemed to fit that definition. The rare part of their name refers to the difficulty in 

obtaining the pure elements, and not to their relative abundance in the Earth’s crust; all of the 

rare–earth elements are actually more abundant than silver, and some are more abundant than 

lead. This also explains why the names of some of the rare–earth elements sound similar to 

each other — what was originally thought to be the earth of a single element was often found 

subsequently to be a mixture of two or more earths, requiring the hasty invention of more 

names derived from the original. 

In the case of rare-earth hydrides, many research studies, both experimental and 

theoretical, have been performed to investigate their interesting physical and chemical 

properties [6, 7]. General reviews of the properties of hydrogenated rare-earths have been 

recently given by Vajda [8, 9] and Schӧllhammer et al. [10]. 

Rare earth dihydrides keep the fluorite CaF2-type structure, where the hydrogen atoms 

occupy only the tetrahedral (T) sites [11] to give the pure (stoichiometric) dihydride RH2. By 

adding more hydrogen to the compound, octahedral (O) interstitial sites accommodate 

additional x-hydrogen to give the superstoichiometric dihydride RH2+x. 

In rare earth superstoichiometric dihydride systems RH2+x, it may be observed that the 

repulsion between the x octahedral hydrogen (Hoct) atoms may lead to their eventual ordering. 

For low enough temperatures and high enough concentrations of excess hydrogen (x ≥ 0.10), 

the order appeared to be long range, whereas the arrangement appeared to be short range 

ordered at small x values (x < 0.10) [12]. The lattice parameters of GdH2+x have been 

determined by X-ray diffraction (XRD) by Chiheb et al. [13] together with TbH2+x, DyH2+x 

and YH2+x materials, but without suggesting any type of structure. They observed that the unit 

cell parameter of GdH2+x decreases with increasing hydrogen content, a behavior similar to 

the one observed for LaH2+x, NdH2+x, CeH2+x and PrH2+x [14–16]. 

The selection of proper alloy compositions has to this point been somewhat 

speculative in nature based upon empirical experimentation. With the use of computational 

methods, material properties can be evaluated and optimized before the material is processed 

allowing an optimized structure to be realized quickly. This saves enormous time and efforts 

compared to experimentally assessing properties due to multiple changes in composition and 

structure. 

The theory of electrons has been a great challenge to physicists since the discovery of 

the electron in 1896 by Lorentz and Zeeman and also by Thomson in 1897. There was no big 

progress until the establishment of quantum mechanics in the 1920s. In the 1930s, band 
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theory for independent electrons was gradually elaborated, leading to the classification of 

materials into insulators, semiconductors, and metals, according to the number of electrons 

and filling of bands. Furthermore, in the 1930s, several methods were proposed which are still 

in use today, including the Hartree-Fock method, the augmented plane wave (APW) method 

(further developed in the 1950s), the orthogonalized plane wave (OPW) method, and the 

effective potential method (a forerunner of the pseudopotential method). Band structure 

calculations for high-symmetry simple metals (e.g. Na and Cu) and ionic solids (e.g. NaCl) 

were done in the 1930s and 1940s. Accurate band calculations for more difficult materials 

such as semiconductors were done in the early 1950s. Rapid developments in electronic 

structure calculations were made after the rise of density functional theory (DFT) in the 

1960s, based on the Hohenberg-Kohn theorem which states that all properties of these many-

body systems are completely determined by the ground state electronic charge density. 

Electronic structure calculations based on DFT were very limited owing to the unavailability 

of powerful computers from the 1960s to the early 1980s. The basic idea for DFT is that you 

do not need to know the motion of every interacting particle in a system, but only the density 

of valence electrons as a function of position is needed [17]. This theory is convenient 

because it is much simpler than solving the whole many body Hamiltonian, leading thus to 

much shorter computational times. With the rapid advancement in computer technology, 

especially after the new millennium, a single personal computer is able to carry out such 

calculations for small and medium systems (typically less than 100 atoms in one unit cell). In 

2001, Shimojo et al [18] were able to study a system of 110,592 atoms using DFT. Other 

applications included the study of sizeable biological molecules such as DNA [19] or the 

study of carbon nano-tubes [20]. Hence, due to the merit of Pierre C. Hohenberg, Walter 

Kohn, Lu Jeu Sham and many others, we nowadays have a very successful way to tackle this 

many-body problem in most cases. 

Other methods for electronic structure calculations include quantum Monte Carlo, the 

GW method, as well as some generalizations of DFT known as density functional 

perturbation theory (DFPT), time-dependent density functional theory (TD-DFT) which is an 

extension of DFT to treat time-dependent problems and excited states [21], etc. The field of 

electronic structure calculations is rapidly maturing in basic theory, new algorithms, 

computational methods and computational power. 

Modern DFT calculations for solids are determined by several technical choices: (i) 

The choice of a basis set to expand the Kohn-Sham eigenfunctions which is essentially 

between plane waves and localized basis functions. (ii) The interactions between the ionic 

core and the valence electrons can be described either by a full-potential approach or by a 
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pseudopotential. (iii) The method adopted for the determination of the eigenstates of the 

Kohn-Sham Hamiltonian. (iv) The description of the electron-electron interactions by 

choosing an appropriate exchange-correlation functional within the hierarchy of functionals 

proposed within DFT [22]. In those cases where DFT alone does not provide an adequate 

solution (strong electronic correlations, excited eigenstates, ... ), post-DFT corrections such as 

many-body perturbation theory [23, 24] or dynamical mean field theory [25, 26] may be used 

to ameliorate the DFT predictions. 

DFT does not solve all problems. Examples are strongly correlated materials (d- and f-

electron systems with narrow bands), excited states in semiconductors and insulators, and 

dispersion forces in rare-gas solids or molecular crystals. 

In DFT, the orbital-dependence of the exchange correlation energy is rather weak. In 

many cases, this is appropriate, but in systems with narrow d- or f-bands and localized 

orbitals, DFT fails to account for the strong Coulomb repulsion between electrons occupying 

these narrow bands, which lead to an enhanced exchange splitting between occupied and 

empty eigenstates. The DFT+U method attempts to cure this shortcoming by adding a 

Hubbard-type Coulomb repulsion to the DFT Hamiltonian. 

The DFT+U method is a semi-empirical approach, because the Hubbard parameter U 

is an adjustable parameter. However, is has been shown that if the Hubbard correction is 

applied to spin-polarized GGA calculations, good agreement for lattice parameters, magnetic 

moments, band gap and exchange splittings can be achieved with a single value of U. If, as 

often reported in the literature, the DFT+U is applied on the basis of non-spin polarized LDA 

or GGA results, a much larger value of U is required to reproduce the experimentally 

observed exchange splitting, spoiling the agreement for the lattice parameters and other 

volume-dependent quantities. To some extent, the DFT+U approach has been superseded by 

hybrid-functional calculations - however, it has still the advantage of a much lower 

computational effort. 

WIEN2k is one of the fastest and reliable simulation codes among all computational 

schemes. All the computational work presented on our lanthanide intermetallic compounds 

has been performed by using this code which embeds the framework of density functional 

theory. 

This thesis is organized as follows. 

In Chapter I we give a brief description of the key concepts of hydrogen storage, pure 

rare earths (in bulk) and their hydrides. 
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In Chapter II, we review the many-body problem of electrons and discuss density 

functional theory (DFT) with different approximations for the exchange correlation energy; 

we also review the WIEN2k code. 

Ab initio calculations of the properties of molecules and solids have become a 

common tool of solid state physics and quantum chemistry. Nevertheless open problems 

remain, the description of the 4f states of rare-earth (R) elements being one of them. The 4f-

states were sometimes treated as valence states [27-29] and at other times as core states [27, 

30, and 31]. For that, Chapter III is divided in two sections: in the first one, spin polarization 

is not taken into account and 4f-states are treated as core electrons; we used LDA and GGA 

parameterizations of the exchange-correlation functional to calculate the structural and 

electronic properties of the bulk rare earth R (R = Gd and Tb). In the second section, 4f-states 

are treated as valence electrons with spin polarization, a problem solved by means of LSDA 

and GGA; in addition, local Coulomb repulsions U are treated statically as in the LSDA+U 

and GGA+U approaches to obtain structural, electronic and magnetic properties of the bulk 

rare earths R (R = Gd and Tb) . 

Chapter IV contains the results of calculations of the equilibrium, electronic and 

thermodynamic properties of the rare earth dihydrides RH2 (R = Gd and Tb) computed using 

the WIEN2k program in both GGA and LDA approximations without taking the spin-

polarization into consideration, and with 4f-states treated as core electrons. 

The lattice structure of the terbium–deuterium system was investigated by André et al. 

[32] and Huang et al. [33] by neutron diffraction spectroscopy. These studies reported that the 

stoichiometric TbD2.25 orders in a DO22 configuration (Ni3Mo-type), where one (042) plane is 

totally occupied by octahedral D-atoms followed by three empty planes. In Chapter V, a first-

principles study was carried out to investigate the structural and electronic properties of 

LaH2.25 and GdH2.25 in the same tetragonal unit cell with GGA and LDA approximation 

without spin polarization and with 4f-states treated as core electrons. 

In 1998, Ellner et al. [34] determined the unit cell parameters of superstoichiometric 

gadolinium dihydride GdH2.25 by powder diffraction assuming a CaF2 structure. The same 

structure was used by Ao et al. (2012) to study the CeHx superstoichiometric dihydrides (x=2, 

2.25, 2.5, 2.75, 1) [35] and by Ao et al. [36] to study the PuHx superstoichiometric dihydrides 

(x=2, 2.25, 2.5, 2.75, 1). There are very few simulation works reported for GdHx (x=1, 2, 3), 

the last of which was done by Sudha Priyanga et al. [37] who investigated the structural, 

electronic, elastic and magnetic properties of the gadolinium hydride system. In the same year 

(2015), the same authors studied the structural, electronic, elastic and magnetic properties of 

the cerium and praseodymium hydrogen systems RHx (R = Ce, Pr with x = 2, 3) by using first 
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principles calculations [38]. Therefore, in the first section of Chapter VI, we present complete 

results of a detailed electronic structure calculation of the superstoichiometric GdH2.25 without 

investigating the magnetic properties (with 4f-states treated as core electrons), which is based 

on ab initio calculations at 0 K within density functional theory (DFT), using a full-potential 

linear augmented plane-wave (FP-LAPW) method as implemented in the WIEN2k code. In 

the second section of this Chapter VI, we investigate the electronic structure and the 

equilibrium properties of one of the less studied superstoichiometric TbH2.25. Applying two 

calculation methods of the density functional theory i.e. the general gradient approximation 

(GGA) and the local density approximation (LDA) without spin-polarization, with 4f-states 

treated as core electrons, we investigate the relaxed and the unrelaxed states. Finally we 

present a summary of this thesis and an outlook. 
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nergy can be stored in different forms: as mechanical energy (for example, potential 

energy or rotation energy of a flywheel), as electric or magnetic energy (capacitors 

and coils, respectively), as chemical energy of reactants and fuels (batteries, petrol 

or hydrogen), or as nuclear fuel (uranium or deuterium) (Fig. I-1). 

Hydrogen is expected to play an important role in a future energy economy based on 

environmentally clean sources and carriers. As a fuel of choice it is light weight, contains a 

high energy density and its combustion emits no harmful chemical by-products. Moreover, 

hydrogen is considered as a green energy, because it can be generated from renewable 

sources and is non-polluting [1-3]. Since the 1970s, hydrogen has been considered as a 

possible energy carrier for the storage of renewable energy. Hydrogen storage is one of the 

key technologies that should be developed to utilize hydrogen as a clean energy source. There 

are at least fifty metallic elements in the periodic table that can store hydrogen. 
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Fig. I-1 Energy demand according to the energy carriers over the last 200 years [4]. 

 

 
CHAPTER I 

Hydrides and metallic hydrides 
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I-I Hydrogen 

 

The hydrogen atom is most attractive because its electron (for charge neutrality) is 

accompanied by only one proton. Hydrogen thus has the best ratio of valence electrons to 

protons (and neutrons) of all the periodic table, and the energy gain per electron is very high. 

Hydrogen is not an energy “source”, that is to say, it is not a primary energy (like 

natural gas or crude oil), existing freely in nature. It is an energy carrier—a secondary form of 

energy that has to be manufactured (like electricity, which doesn’t exist freely in usable form 

either). Hydrogen can be generated from many primary sources—an advantage in itself, since 

it reduces the chances of creating a hydrogen cartel [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I-I-1 Hydrogen safety 

 

• Hydrogen is a much safer fuel than is generally believed. It can be used as safely as 

other gaseous and liquid fuels [7]. 

Fig. I-2 Fuel leak simulation [6]. 
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• In case of an accident, hydrogen has several very advantageous properties in 

comparison to conventional fuels. Hydrogen disperses very quickly into the 

surrounding atmosphere, whereas liquid fuels spread on level surfaces and burn much 

longer. In addition, hydrogen is non-toxic, hence wrecking of a hydrogen tanker does 

not cause an environmental catastrophe. 

• Although hydrogen is very flammable, quick dispersion makes it very rare for 

hydrogen to reach combustible concentration outdoors or in well-ventilated indoor 

spaces (Fig. I-2). 

• A common misconception is that hydrogen caused the Hindenburg disaster. In reality, 

the Hindenburg catastrophe shows that the air ship caught fire because of a highly 

flammable skin material and not because of the hydrogen gas it contained.  

 

I-I-2 Hydrogen production 

 

Hydrogen is the most abundant element on Earth, but less than 1% is present as 

molecular hydrogen gas H2. The overwhelming majority is chemically bound as H2O in water 

and some is bound to liquid or gaseous hydrocarbons. 

Once produced, hydrogen is a clean synthetic fuel: when burnt with oxygen, the only 

exhaust gas is water vapor. Whether hydrogen can be considered a clean form of energy on a 

global scale depends on the primary energy that is used to split water [8]. 

The clean way to produce hydrogen from water is to use sunlight in combination with 

photovoltaic cells and water electrolysis. 

Other forms of primary energy and other water-splitting processes are also used: the 

hydrogen consumed today as a chemical raw material (about 5×1010 kg per year worldwide) is 

to a large extent produced using fossil fuels by means of the reaction of hydrocarbon chains  

(–CH2–) with H2O at high temperatures, producing H2 and CO2. Direct thermal dissociation 

of H2O requires temperatures higher than 2000°C (> 900°C with a Pt/Ru catalyst). The 

chemical energy per mass of hydrogen (142 M J kg–1) is at least three times larger than that of 

other chemical fuels, for example, the equivalent value for liquid hydrocarbons is 47 M J kg–1 

[2]. 

 

I-I-3 Hydrogen storage 

 

Presently hydrogen can be stored in three forms; gaseous, liquid or as a solid 

combined with a metal hydride. The most suitable storage method is dependent upon safety 
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aspects, environmental issues, economic criteria and the end-use of hydrogen. These storage 

methods will be briefly described here. 

 

I-I-3-1 Gaseous storage 

 

The most commonly used and simplest method is to store hydrogen in its natural form 

as a gas. Storage of gaseous hydrogen is primarily limited by volume considerations as a 

result of hydrogen's low density, as even at high-pressure, very large volumes are required 

resulting in high material costs. Today gaseous hydrogen is stored predominantly in steel 

cylinders at a pressure of 150-200 bar and at an ambient temperature of approximately 25°C 

[9]. Significant amounts of hydrogen can also be stored within high-pressure storage tanks 

that can be situated above ground or underground which is similar to the storage of natural 

gas. The construction material properties in above ground storage impose limitations on the 

quantity of gaseous hydrogen that can be stored and storage can be accomplished at an 

increased pressure in an underground pressure tank or underwater tank. 

Gaseous hydrogen can be stored in high-pressure, low-weight carbon-fibre composite 

tanks operating at pressures of between 350 and 700 bar [10]. The advantage of the carbon-

fibre composite tank is its low weight. The cost of high-pressure compressed gas tanks is 

essentially dictated by the cost of the carbon fibers used for lightweight structural 

reinforcement. Efforts are under way to identify lower-cost carbon fibers that can meet the 

required high pressure and safety specifications for these tanks. However, lower-cost carbon 

fibers must still be capable of meeting tank thickness constraints in order to satisfy volumetric 

capacity targets. Thus, lowering costs without compromising weight and volume is a key 

challenge. Advances in compression technologies are also required to improve efficiencies 

and reduce the cost of producing high-pressure gas hydrogen [11]. In general, the carbon fiber 

cost represents 40-80% of the total tank cost, depending on whether low or high-performance 

fibers are used. 

 

I-I-3-2 Liquid storage 

 

Liquid hydrogen tanks can store more hydrogen in a given volume than compressed 

gas tanks. The density of liquid hydrogen is 0.070 kg/l, compared to 0.030 kg/l for 690 bar 

(104 psi) gas tanks [12]. Hydrogen stored in a liquid form is substantially more compressed 

than in gaseous form and superficially it appears an appealing means of energy storage but 
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there are various contributory negative factors. Primarily, the liquefaction requires a large 

expenditure of energy (from 25% to 45% of the stored energy is required to liquefy the H2) 

and secondly, through the use of insulation, liquid hydrogen must be continually kept at a low 

temperature of 20 K (-253°C) [13]. There are risks associated with this constant low 

temperature, due to the high expansion ratio of liquid hydrogen to gaseous hydrogen. If there 

was a warming of liquid hydrogen extremely high pressures could accumulate and result in 

damage or an explosion. Therefore Hydrogen boil-off must be minimized or eliminated 

because of cost, efficiency, range considerations, and safety when vehicles are parked in 

confined spaces. 

Liquid hydrogen must be stored in cryogenic tanks, which is a well-established 

technique. There are three ways that heat transfer occurs from the external air to the liquid 

hydrogen: conduction, convection and radiation. Heat transfer increases with external surface 

area therefore the majority of cryogenic tanks are spherical or cylindrical to minimize the 

surface area. Most liquid hydrogen storage tanks are also double walled tanks that are 

insulated with an evacuated layer of Perlite insulation. 

 

I-I-3-3 Metal hydride storage 

 

Another means of hydrogen storage is that of metal hydride storage, this method being 

a relatively new method. The metal-hydrogen bond offers the advantage of a very high 

volumetric hydrogen density under moderate pressures [14], which is up to 60% higher than 

that of liquid hydrogen [15]. The process is nearly reversible and can be expressed by the 

following equation [16]. 

 

      [I-1] 

 

Where M and H represent metal and hydrogen atoms, respectively. Note that x is the 

non-stoichiometric coefficient and  is the heat of formation. The sorption process is 

exothermic, i.e. the heat of formation is negative, when hydrogen is absorbed in and 

endothermic when hydrogen is desorbed from the alloy. 

Metal hydrides were first discovered in 1866 by Thomas Graham [17]. The first metal 

hydride discovered was palladium hydride (PdHx) [17, 18]. Although, there are at least fifty 

metallic elements in the periodic table that can store hydrogen as shown in Fig. I-3 (as 

adopted from Ref. [19]), only a handful of them are suitable for storage at moderate 

Absorption 
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temperatures and pressures. They have been established as excellent media for on-board or 

stationary hydrogen storage. The sole reason behind the superiority of metal hydrides as 

storage media over competing/existing technology is their ability to store large amounts of 

hydrogen at densities greater than cryogenically stored liquid hydrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hydrogen absorption mechanism in metals and alloys is schematically illustrated 

in Fig. I-4. Initially molecular hydrogen is physically adsorbed onto the surface of the 

material by van der Waals forces, as seen on the shaded area in the figure. The metallic 

surface catalyzes the dissociation of hydrogen molecules which in turn diffuse into the 

material in an atomic state. Hydride formation is commonly described as a two step process: 

(i) At low concentrations (low pressures) the hydrogen is dissolved in the crystal as a 

solid solution (α-phase). In this state the atoms occupy interstitial positions randomly which 

result in a slight expansion of the original host lattice. The expansion is locally somewhat 

larger over a certain volume from each hydrogen atom and makes the nearest vacant sites 

more favorable for other hydrogen atoms to occupy. 

(ii) As the hydrogen pressure, and consequently concentration, increases the 

interaction between hydrogen and metal atoms becomes more important and a more ordered 

phase starts to grow (β-phase). The formation of β-phases generally increases the host lattice 

substantially and the metal atoms often undergo major rearrangements which in some cases 

also may lead to stabilization of new crystal structures. However, the β-phase does not 

Fig. I-3 Stability of hydrides of pure elements. The higher the enthalpy of formation of the hydride, the more 

stable the hydride. [19]. 

Very stable hydride Unstable hydride 

H 

KJ/molH2 
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necessarily appear in every hydrogen accommodating material. Its existence depends on each 

unique system, i.e. the combination and arrangement of its component elements [20, 21]. 

The two-phase region ends at a critical temperature TC, above which the transition 

from α- to β-phase is continuous. 

The crystal structure also plays a critical role for the absorption properties. Stability of 

hydrides has been correlated with crystallographic factors such as the size of the interstices in 

the host lattice which must be 0.4 Å or larger [22], the distance between hydrogen atoms in 

stable hydrides is always more than 2.1 Å and they preferentially occupy the interstitial sites 

closest to the hydride forming element [23]. The nature of the chemical bond in these 

compounds is not very clear, but seems to be a crossover between metallic and ionic bonding. 

These compounds resemble their respective metals, since they exhibit high electronic 

(metallic) conductivity and usually have a dull metallic appearance. That is why they are 

commonly referred to as metallic hydrides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the transition metals, the rare earths (lanthanides) and the actinides hydrogen can 

form stable compounds as well (see Fig. I-3). Many of these compounds, (MHn), show large 

deviations from ideal stoichiometry (n = 1, 2, 3) and can exist as multiphase systems. The 

lattice structure is that of a typical metal with hydrogen atoms on the interstitial sites, and for 

this reason they are also called interstitial hydrides. This type of structure is limited to the 

compositions MH, MH2, and MH3, with the hydrogen atoms fitting into octahedral or 

Fig. I-4 Reaction of a H2 molecule with a storage material: a) H2 molecule approaching the metal 

surface (hydrogen and metal). b) Interaction of the H2 molecule by Van der Waals forces 

(Physisorption). c) Chemisorbed hydrogen after dissociation (Chemisorption). d) Occupation of 

subsurface sites and diffusion into bulk lattice sites. e) Solid solution (α -phase). f) Hydride (β -phase). 

a) b) 

e) d) f) 

c) 
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tetrahedral holes in the metal lattice, or a combination of the two. Hydrogen is located in the 

form of atoms, never molecules, on interstitial sites of the host metal lattice. The lattice 

expands during hydrogen sorption [24], often losing some of its high symmetry [2]. 

The applications of metal hydrides can be broadly classified into seven distinct 

categories, which are: 1) thermal systems, 2) energy systems, 3) actuation and sensing, 4) 

processing, 5) semiconductors, 6) biomimetic and biomedical systems, and 7) nuclear 

applications in addition to hydrogen storage [25]. 

 

I-II The rare-earth hydrides 

 

The rare-earth hydrides have received tremendous attention due to their potential 

application for hydrogen storage technology [26, 27], where they have an ability to absorb 

and store hydrogen under moderate conditions of temperature and pressure [28]. 

The study of hydrided pure rare earths constitutes the fundamental tool in order to 

understand the basics of the hydriding process, and a good starting point to extrapolate results 

to alloys. 

 

I-II-1 General characteristics of the rare-earth elements 

 

The rare earth elements (REs) represent a group of 17 chemical elements formed by 

15 lanthanides (La-Lu), yttrium (Y), and scandium (Sc). All these elements have similar 

physical and chemical properties, providing superb characteristics for a variety of modern 

applications, from batteries in hybrid cars and phosphors for illuminated screens on electronic 

devices to permanent magnets used in computer hard drives and wind turbines. 

Depending on the application, they are used independently or as a mixture, or as an 

addition to other chemical compounds and/or metal alloys. Sometimes these elements are 

referred to as ‘vitamins’ because of their exclusive properties and the fact that only minor 

quantities are needed to boost the performance of the final products. Despite the name ‘rare 

earth’, these elements are not particularly rare in their total crustal abundance, which exceeds 

such widely used elements as copper, zinc, nickel, and lead [29]. However, REs are scarce as 

a mineable resource. The limited availability of rare earth ores reflects a number of factors 

including the geological controls that affect not only their distribution but underlie technical 

mining and processing constraints. 

These elements are split into two subgroups, the light rare earth elements (LREs) from 

lanthanum to europium and the heavy rare earth elements (HREs), which include the rest of 
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lanthanide elements along with yttrium. Two elements are excluded from LRE/HRE 

classification: scandium, due to its unique properties and different occurrence (much smaller 

ionic radius) [30], and light lanthanide Promethium (Pm), due to its radioactivity. 

Rare earth elements are comparatively more abundant in the earth's crust than other 

commonly exploited elements but not in sufficient concentrations to make them easily 

exploitable. 

 

I-II-1-1 Discovery and early history 

 

Rare earth elements became known to the world with the discovery of the black 

mineral "Ytterbite" (renamed to Gadolinite in 1800) by Lieutenant Carl Axel Arrhenius in 

1787, at a quarry in the village of Ytterby, Sweden [31]. All the naturally occurring rare earths 

and all but one of all the rare earth elements had been discovered by the turn of the century 

and the discovery of the remaining one rare earth had to wait until the discovery of nuclear 

reactions. Rare earths are always found in varieties of minerals viz. silicates, halides, 

carbonates, phosphates, etc. but never found as pure metals [32, 33]. 

 

I-II-1-2 Production 

In the 1950s, South Africa, India, and Brazil had rare earth mines in operation. 

Further, from the 1960s to the 1980s, Mountain Pass in California became the largest global 

producer for the same up to 2002 when it closed. Thereafter, China began large scale 

production and exported rare earths at a cheaper rate (Fig. I-5). 

 

 

 

 

 

 

 

 

 

Currently, it is the worldwide producer of rare earth elements producing ~97% of the 

total world supply. But their incessantly increasing needs has compelled the Chinese 

government to drastically limit the export of rare earths to 35 × 106 kg (35,000 tons) while the 

Fig. I-5 This chart shows a history of rare earth element production, in metric tons (1 ton = 103 kg) of 

rare earth oxide equivalent, between 1950 and 2013 [34]. 
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yearly demand of other countries is estimated to have reached 80,000 tons in 2015, thus, 

threatening with a rare earth supply shortage [32, 35]. 

 

 

 

 

 

 

 

 

 

 

 

According to the U.S. Mineral Commodity Summaries of 2015 [36], the global mine 

production of rare earth metals (Fig. I-6) is 110 × 106 kg (110,000 metric tons) while the total 

reserves are estimated at 130 × 109 kg (130,000,000 metric tons). This restriction of supply is 

being met by the development of many new mining projects or reopening of old mines. 

Worldwide exploration for economically exploitable rare earth deposits as well as 

development of indigenous resources and technologies to meet the future requirements for 

rare earth metals is being encouraged. 

 

I-II-1-3 Electronic configurations 

 

Spanning the lanthanide series, their 4f shell is gradually filled. The electronic 

configuration of an isolated rare earth atom is usually [Xe] 6s2 5d0 4fn, where n depends on 

the atomic number. There are a few exceptions to this, namely Lanthanum, Gadolinium and 

Lutetium, who have one 5d electron and therefore one 4f electron less than expected [37]. For 

isolated atoms, the energy levels are truly discrete and filling the 4f shell is straightforward. 

However, when the atoms form a crystal, the orbitals start to hybridize with other orbitals, and 

the energy levels broaden into bands. For the crystalline phase of the lanthanides, one cannot 

any longer speak of the 6s energy level, instead the 6s, 6p and 5d orbitals hybridize and the 

energy levels broaden to form the [6s 6p 5d]-band. The 4f energy levels and this [spd]-band 

overlap and the consequence is that, for most lanthanides, one of the 4f electrons of the 

isolated atom, gets promoted to the [spd]-band in the crystalline phase. The reason for this is 

that the Coulomb energy to pay for adding an f electron is much higher than the kinetic energy 

Fig. I-6 Global mine production of rare earth metals in different countries [36]. 
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to pay for adding a delocalized [spd] electron. The outer electronic configuration of the 

lanthanides in the crystalline phase is therefore approximately [6s6p5d] 3 fn−1, where (n−1) 

denotes that there is one 4f electron less than in the bare atom. Moreover, to these electronic 

configurations there are a few exceptions. Europium and Ytterbium have only 2 instead of 3 

electrons in the [spd]-band, since in that way they have an f-shell which is empty, half-filled 

or full. 

 

Table I-1 Structural and electronic properties of the rare earths [39]. 

Element  A 
Electronic configuration Crystal 

structure 

Lattice parameters 

Atomic Solid a (Å) c (Å) c/a 

Scandium Sc 45 3d14s2  hcp 3.309 5.268 1.592 

Yttrium Y 89 4d15s2  hcp 3.648 5.732 1.571 

Lanthanum La 139 5d16s2 [spd]3 dhcp 3.774 12.171 3.225 

Cerium Ce 140 4f25d06s2 4f1[spd]3 fcc 5.161 - - 

Praseodymium Pr 141 4f35d06s2 4f2[spd]3 dhcp 3.672 11.833 3.222 

Neodymium Nd 144 4f45d06s2 4f3[spd]3 dhcp 3.658 11.797 3.225 

Promethium Pm 145 4f55d06s2 4f4[spd]3 dhcp 3.65 11.65 3.19 

Samarium Sm 150 4f65d06s2 4f5[spd]3 rhom 3.629 26.207 7.222 

Europium Eu 152 4f75d06s2 4f7[spd]2 bcc 4.583 - - 

Gadolinium Gd 157 4f75d16s2 4f7[spd]3 hcp 3.634 5.781 1.591 

Terbium Tb 159 4f95d06s2 4f8[spd]3 hcp 3.606 5.697 1.580 

Dysprosium Dy 163 4f105d06s2 4f9[spd]3 hcp 3.592 5.650 1.573 

Holmium Ho 165 4f115d06s2 4f10[spd]3 hcp 3.578 5.618 1.570 

Erbium Er 167 4f125d06s2 4f11[spd]3 hcp 3.559 5.585 1.569 

Thulium Tm 169 
4f135d06s2 

4f12[spd]3 hcp 3.538 5.554 1.570 

Ytterbium Yb 173 4f145d06s2 4f14[spd]2 fcc 5.485 - - 

Lutetium Lu 175 4f145d16s2 4f14[spd]3 hcp 3.505 5.549 1.583 

 

The reason for this is that the Coulomb energy to pay when adding an f electron to 

obtain a half-filled of full shell is very small. These exceptions are called divalent elements, 

since they only have 2 electrons in the [spd] band. The other elements are called, as expected, 

trivalent. Thus, the number of the 5d electrons is higher in light rare-earth compounds and that 

increases the cohesion. Concurrently, the number of the 6s electrons decreases to maintain the 

trivalence. The valence state of the metallic elements is determined theoretically from the 

difference of the total energies calculated for the divalent and trivalent configurations [38]. In 
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the following Table I-2, the outer electronic configuration of the rare earths is given for both 

atomic and the crystalline phases, as well as their crystal structures and lattice constants. The 

metals Gd, Tb, Dy, Ho, Er, Tm and Lu (as given in Table I-2) all have the hexagonal close-

packed structure (hcp). Lanthanum, praseodymium and neodymium also have a hexagonal 

structure. Cerium, although it is face-centered cubic at room temperature, transforms to the 

hexagonal structure if the temperature is lowered to 263.15 K (-10°C) [18]. The c/a ratio of 

the rare-earth metals exhibiting the hexagonal structure is about 3.23 as compared to 1.58 for 

heavier metals having the hexagonal close-packed structural. Samarium has a unique 

rhombohedral structure which can also be indexed in the hexagonal system to give a c/a ratio 

of 7.25. The structures of europium and ytterbium would be expected to differ from those of 

the other rare-earth metals in view of the unusual stability of their 4f7 and 4f14 electronic 

configurations as discussed previously. 

 

I-II-1-4 Magnetic structure 

 

The 4f electrons determine the magnetic behavior of the rare earth metals. In the 

completed 4f subshell, the magnetic effects of different electrons cancel each other out, but in 

the incomplete 4f subshell, they do not. The exchange interactions between 4f electrons are 

indirect, mediated by 5d, 6s electrons. 

Some of the magnetic structures exhibited by the heavy rare–earth metals are shown 

schematically as a function of temperature in Fig. I-7. Whilst not presenting the subtlety of he 

spin alignments in some of the more exotic magnetic structures, it does show some of the 

diversity of the magnetic phases displayed by some of the metals in the rare–earth series. 

The magnetic moments of the rare–earth metals are dominated by the spin contribution 

from the highly localized 4f electrons, and are thus good examples of local–moment 

ferromagnets. As the 4f electron shell can accommodate 14 electrons, a half–filled shell has 

seven electrons with parallel spins (according to Hunds’ rule, the empirical rule in atomic 

physics that states that in general parallel spins are a lower–energy configuration than anti-

parallel spins). Thus, the 4f electrons contribute 7 μβ to the total magnetic moment of Gd 

(~ 7.6 μB) [39], and similarly large contributions to the total moments for the other magnetic 

rare–earth metals. In contrast to the situation with itinerant ferromagnets (based on the 

magnetic transition metals), the valence electrons contribute a small fraction of the overall 

magnetic moment per atom — in the case of Gd, the 5d 6s valence electrons contribute 0.6 

μB, less than 10% of the total moment [39]. 
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The magnetic structures of the rare–earth metals and many rare–earth–based 

compounds are well understood as the result of many decades of experimental study and the 

development of the local spin–density approximation in calculations of the valence electronic 

structures of solids. 

 

 

 

 

 

 

 

 

 

 

 

The existence of ferromagnetism at room temperature in gadolinium was reported and 

confirmed by Klemm and Bommer (1937) [40]. Much of the detailed studies on the magnetic 

behavior of the rare earth elements were carried out by the Ames group (Iowa, USA) in the 

1950s. 

Elucidation of the magnetic behavior of the rare earth metals, as has been the case with 

their many other properties, was greatly dependent on the availability of rare earth metals in 

high levels of purity and in special forms such as large single crystals [41]. 

For the heavy rare earth ions, spin-orbit coupling is much stronger than for 3d 

transition metals, due to the larger charge of the nucleus and the smaller mean radius of the 

valence orbitals. According to the Pauli Exclusion Principle, two electrons cannot have 

identical quantum numbers, thus the orbitals are gradually filled starting from the one with 

lowest energy. The effect of the Coulomb repulsion and the spin-orbit coupling on the energy 

of the orbitals are described by Hund’s rules. These rules for a partially filled subshell are the 

following: (1) the value of the sum of the electron spins on the subshell is maximal (S =Σ si), 

(2) the value of the sum of the orbital angular momentum is maximal (L =Σ li) and (3) if the 

subshell is less than half full the total angular momentum is J= |L−S|, if the subshell is more 

than half full then J = L + S. The third rule is the result of the spin-orbit coupling. Roughly 

speaking, L is always parallel to J, but S is antiparallel in the first half of the series and 

parallel in the second half. 

 

Fig. I-7 Some of the magnetic phases of the heavy rare-earth metals. For each magnetic phase, the arrows 

represent the changing magnitudes and directions of the components of magnetic moments relative to the 

basal planes (circles) from one atomic plane to the next. [39]. 
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Table I-2: Hund’s rules ground-states and magnetic moments of the rare earth [42]. 

Element ml  
Moments µJ 

(µB)  
-3 -2 -1 0 1 2 3 S L J 

La f0        0 0 0 0 

Ce f1 ↑       
 

3 
 

2.535 

Pr f2 ↑ ↑      1 5 4 3.578 

Nd f3 ↑ ↑ ↑     
 

6 
 

3.618 

Pm f4 ↑ ↑ ↑ ↑    2 6 4 2.683 

Sm f5 ↑ ↑ ↑ ↑ ↑   
 

5 
 

0.845 

Eu f7 ↑ ↑ ↑ ↑ ↑ ↑ ↑ 
 

0 
 

7.937 

Gd f7 ↑ ↑ ↑ ↑ ↑ ↑ ↑ 
 

0 
 

7.937 

Tb f8 ↑↓ ↑ ↑ ↑ ↑ ↑ ↑ 3 3 6 9.721 

Dy f9 ↑↓ ↑↓ ↑ ↑ ↑ ↑ ↑ 
 

5 
 

10.646 

Ho f10 ↑↓ ↑↓ ↑↓ ↑ ↑ ↑ ↑ 2 6 8 10.607 

Er f11 ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑ ↑ 
 

6 
 

9.581 

Tm f12 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑ 1 5 6 7.561 

Yb f14 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 0 0 0 0 

Lu f14 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 0 0 0 0 

 

The moments associated to the spin and orbital angular moments combine to give a 

total moment associated to the total angular momentum vector. The spin moment is:  

 

,        [I-1] 

 

with the gyromagnetic factor of the electronic spin  and the Bohr magneton . The 

magnitude of this moment is , where we used the 

property that the eigenvalue of  is . The magnitude of the orbital moment is: 

 

        [I-2] 
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which is also directed opposite to L. Note that the gyromagnetic factor for the orbital moment 

is , which is why it does not appear in Eq. [I-2]. 

The coupled moment as a function of the total angular momentum J can be written in a 

similar form 

      [I-3] 

 

where the Landé factor  has a more complicated form, due to the factor two in the spin 

moment that is not present in the orbital moment. The Landé factor is:  

 

      [I-4] 

 

As a summary, the Hund’s rules ground state and the corresponding magnetic 

moments are listed in Table I-3 for all rare earths. The (↑) and (↓) arrows indicate the ms 

occupation of the ml orbitals. 

 

I-II-2 General characteristics of the rare-earth hydrides 

 

Prior to 1950, the rare earth hydrides were usually referred to as solid solutions [43]. 

Shortly thereafter, several authors [44-46] applied the term “interstitial compounds” to these 

hydrides. 

Since that year, considerable evidence has been obtained for the existence of hydride 

phases of definite composition. These phases do not, in general, exhibit the whole number 

stoichiometry usually associated with chemical compounds. In addition, phases whose 

compositions can be varied over wide ranges exist for several of the rare earth metal-

hydrogen systems. 

The hydrides of lanthanides have been the subject of many investigations due to the 

fact that their physical properties can be tuned by changing the hydrogen concentration. 

The rare earths absorb hydrogen easily (exothermally) under favorable pressure and 

temperature (P, T) conditions and exhibit for these principally trivalent metals a phase 

diagram of the type presented in Fig. I-8. This phase diagram is characterized by broad 

existence ranges around the stoichiometric compositions: the hcp α-phase solid solution of the 

parent metal, the cubic β-phase dihydrides and hcp γ-phase trihydrides [47]. As shown in Fig. 

I-8, at low concentrations, hydrogen in R metals can be described as a lattice gas. The metal 
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lattice expands in proportion to the hydrogen concentration, while maintaining its structural 

and metallic properties (-RHx phase). 

At higher concentrations, stable 

dihydride (-RH2±x) and trihydride (-

RH3±x) phases are formed, the dihydride 

being a better metal than the elemental rare 

earth. This has been explained tentatively 

within the so-called hydridic model, where 

the electrons contributed by the hydrogen 

atoms form - together with the rare earth 

conduction electrons - deep lying bands 

below the Fermi level. 

 

 

 

 

 

 

 

 

The hydrogen atom incorporated in a hydride occupies an interstice surrounded by 

metal atoms in one of the following two modes: a tetrahedral structure (Fig. I-9-a) or an 

octahedral structure (Fig. I-9-b) (in either case, the apices of the structure are occupied by 

metal atoms). 

 

 

 

 

 

 

 

 

From Table I-4, all rare earth dihydrides have a cubic structure, except for EuH2 and 

YbH2, which are isostructural with CaH2 (orthorhombic structure) [49], although for RH2+x 

with ~ 0.25 < x ≤ 0.5 (Fig. I-10), the hydride ions are distorted from their ideal 

tetrahedral/octahedral positions and form an ordered superlattice [48]. The trihydrides of the 

light rare earth metals lanthanum and cerium are cubic (no  phase) and the trihydrides of the 

heavier rare earth metals, like GdH3 and TbH3, usually have hexagonal/trigonal structures 

[50-52]. This hexagonal structure starts to form at high values of x in RH2+x (Fig. I-8) (mixed 

phase) for the latter rare earth metals, but can only be obtained as a single phase at higher 

hydrogen contents, i.e. x ≈ 1 [53]. 

The composition ranges for these rare earth di- and trihydrides are listed in Table I-4, 

where one can note that the lower existence limit for the trihydrides seems to be close to x = 1 

Fig. I-9 The (a) tetrahedral (T) and (b) octahedral (O) vacancies in fcc lattices. 

a) b) 

R atom 
T 

R atom 
O 

Fig. I-8 Typical phase diagram of a trivalent R-H 

system. 
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for most rare earths, a fact confirmed by neutron diffraction studies on trihydrides in several R 

metal cases [54-56]. 

 

 

 

 

 

 

 

 

 

 

 

Vajda in Ref. [57] deduced some general observations: 

- An overall trend of decreasing lattice parameter with increasing atomic number; this is 

the well-known phenomenon of the "lanthanide contraction" where the gradual filling 

of the 4f-shell (with a net break at half filled Gd) leads to a reduced nuclear repulsion 

and smaller ionic radius. 

- When adding octahedral hydrogen atoms, x, into the stoichiometric dihydride RH2, 

giving RH2+x, one observes another decrease of the lattice parameter, which seems at 

first somewhat surprising, in view of the presence of additional interstitial impurity 

material. The reason for this is mainly electronic and related to the rather ionic nature 

of the Hoct interaction with the metal lattice. This effect as well as the trend for a 

decreasing extension of the pure-phase (decreasing xmax) have been attributed by 

Renaudin et al. [58] to an increasing competition between the energy gain due to R-H 

bond shortening and the energy loss due to repulsive H-H interactions. 

The magnetism of the rare-earth elements is characterized by their open 4f-shell electrons, 

which can give rise to large magnetic moments and to a multitude of fascinating phenomena 

caused by the competition between magnetic anisotropy and RKKY (Ruderman-Kittel-

Kasuya-Yosida) interactions on the one hand and the hydrogen sublattice (via the crystal 

field) on the other. Thus, the peculiar quasi-unidimensional chains of H–H pairs formed along 

the c-axis in the α-phase of some of the hcp rare earths (α*-RHx) affect different types of 

magnetic ordering in very different ways. This is demonstrated through the interactions with 

the conical ferromagnetism of Er on the one hand and the c-axis-oriented 3-4 ferromagnetism 

of Tm on the other, as well as with their c-axis-modulated sinusoidal magnetism. In the case 

Fig. I-10 Superstructures of RH2.25 and RH2.50 [48]. 
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of the β-RH2+x phase, the excess x-hydrogen occupying the octahedral sites of the CaF2-type 

dihydride lattice often order in a tetragonal sublattice of DO22 symmetry corresponding to 

stoichiometric RH2.25. This strongly modifies the various commensurate and incommensurate 

magnetic structures present, sometimes leading to their complete vanishing or to the 

appearance of short-range order [59]. 

 

Table I-3 Crystal structures of rare earth metals, adapted from Ref [60]. 

Metal hydride Structure Existence range (H/M) Reference 

LaH2 Cubic  [61,62] 

CeH2 Cubic  [61,62] 

PrH2 Cubic  [61,62] 

NdH2 Cubic 2-2.61 (2.87) [52] ([64]) 

NdH3 Hexagonal/Trigonal ~3 [52, 64] 

SmH2 Cubic 1.93-2.40 [64] 

SmH3 Hexagonal/Trigonal 2.59-3 [60, 65] 

EuH2 Orthorhombic  [49, 66] 

GdH2 Cubic 1.82-2.3 [67] 

GdH3 Hexagonal/Trigonal 2.85-3 [50] 

TbH2 Cubic 1.90-2.25 [68] 

TbH3 Hexagonal 2.81-3 [65] 

DyH2 Cubic 1.94-2.23 [69] 

DyH3 Hexagonal 2.86-3 [65] 

HoH2 Cubic 1.95-2.12 [64] 

HoH3 Hexagonal/Trigonal 2.95-3 [63] 

ErH2 Cubic 1.95-2.10 [64] 

ErH3 Hexagonal 2.82-3 [65] 

TmH2 Cubic 1.99-2.06 [64] 

TmH3 Hexagonal 2.76-3 [65] 

YbH2 Orthorhombic  [49] 

YbH2+x Cubic 2-2.55 [70] 

LuH2 Cubic 1.85-2.03 [64] 

LuH3 Hexagonal 2.78-3 [65] 

ScH2 Cubic  [66] 

YH2 Cubic 1.91-2.08 [64] 

YH3 Hexagonal 2.77-3 [65] 
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The research on hydrides of the rare earth elements has attracted much attention due to 

their interesting chemical, optical, electrical, and magnetic properties [71–74]. However, most 

of studies have focused on loose powders [75] and thin films [76–80], with much less 

attention being given to bulk polycrystalline hydrides materials. This is due to the difficulties 

encountered in the production of pure bulk polycrystalline materials, because of the high 

reactivity of rare earth metals and hydrogen-induced stress making bulk samples disintegrate 

into powders. Besides, in the synthesis process, the high temperatures required to density 

powders may produce hydrogen desorption that leads to the destruction of the original 

microstructures and phases because of the semiconductor–metal transition in these systems. 

The properties of bulk samples of hydrogenated rare-earths have been reviewed by Vajda 

[47]. 

 

I-II-2-1 Gadolinium 

 

Gadolinium (Gd) is one of the most attractive rare-earth (R) metals, because of its 

good electrical conductivity and large magnetic moment [81-85]. Commercial pure Gd metal 

is generally prepared by fusion electrolysis of its fluorides, with further refinement by 

Electron Beam Melting (EBM) in an inert atmosphere or by distillation in vacuum to obtain 

the cast metal. Upon distillation, the metallic impurities can be easily removed by 

evaporation, and their concentrations can be reduced to several mass ppm (parts per million) 

[86, 87]. However, it is of great difficulty to remove the non-metallic impurities, especially 

oxygen and nitrogen [88, 89], because of their strong affinity with Gd. Moreover, the reduced 

metals are vulnerable to contamination by gas traces in these processes. Therefore, 

commercial gadolinium often solidifies a large amount of non-metal impurities, dramatically 

undermining its physical and chemical properties. 

Additionally, Gadolinium (Gd) has an hcp crystallographic structure and the simplest 

magnetic structure of the rare earths because the 4f7 electrons have an isotropic L = 0 ground 

state, 8S7/2. The magnetic structure of bulk Gd has been extensively studied by neutron 

diffraction experiments [90] and by torque magnetometry [91] as reviewed by Jensen and 

Mackintosh [92]. It is ferromagnetic with a Curie temperature of 290 K and the residual 

magnetic anisotropy causes the moment to align preferentially along the c-axis just below TC. 

At lower temperature, the magnetic moments rotate towards the basal plane, reaching a 

maximum tilt angle of 60° at 180 K before decreasing to just below 30° at 4.2 K. 

Arons and Schweizer [93] have studied the magnetic properties of GdD2+x samples by 

susceptibility measurements and neutron diffraction. GdD1.93 is face centered cubic and 
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antiferromagnetic with a Néel temperature of 20 K although for x=0, a helical structure with a 

modulation wavevector along the [111] direction is observed. According to gadolinium–

hydrogen system depending on the hydrogen concentration, three phases can be acquired: (1) 

a metallic α phase (x<1) having an hcp structure; (2) a metallic β phase (1 < x < 2) with an 

fcc structure; (3) an hcp insulating γ phase (2<x<3). 

 

I-II-2-2 Terbium 

 

Terbium (Tb) is one of the heavy rare earth metals that has a hexagonal structure. The 

character of the terbium hydride could be changed from metallic in the solid solution, through 

even more metallic in a dihydride, to insulating or semimetallic in a trihydride [94]. 

The substoichiometry of the pure dihydride depended more on the metallurgical state 

of the specimen than on thermodynamics. Detailed neutron scattering studies on this system 

[95] have shown that the octahedral D-atoms were ordering for 0.1 < x < 0.25 in a DO22 

(space group I4/mmm) structure (Ni3Mo-type) such that every occupied (420)-plane was 

followed by three empty ones (Fig. I-11) corresponding to a stoichiometric composition of 

TbD2.25. Similar ordering manifestations were observed in most other β-RH2+x systems. 

 

 

 

 

 

 

 

 

 

 

The magnetic structure of terbium 

dideuteride has been described in three 

papers [96-98] in terms of three different 

(inconsistent) models. 

Neutron diffraction [99, 100] has 

shown that pure TbD2.00 exhibits two 

overlapping antiferromagnetic (AF) 

configurations (Fig. I-12). 

 

 

 

 

 

 

 

 

Fig. I-12 Proposed magnetic structures for TbD2 [99]. 

Fig. I-11 Octahedral H-superlattice in β-RH2.25 systems (the H-atoms on the T-sites are omitted, for 

clarity). The x-hydrogen form a Ni3Mo-type structure (DO22) giving a RH2.25 stoichiometry [95]. 
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One, Below T=16 K, commensurate with the lattice (with a magnetic unit cell four times 

bigger than the chemical unit cell) and modulated with a propagation vector ; the 

other, between 15 and 19 K (also called ‘intermediate’ structure), is incommensurate, with a 

slightly T-dependent propagation vector . 

 

I-III Summary 

 

This chapter has given an introduction to the potential applications for hydrogen 

storage and an overview of the different technologies available for storing hydrogen. Metallic 

and intermetallic hydrides can be used as hydrogen storage materials as they have several 

advantages. Rare-earth (R) alloys seem promising, owing to a high hydrogen capacity per 

volume unit and an ability to absorb hydrogen under moderate conditions of temperature and 

pressure, where the interstitial hydrogen atoms strongly modify the electronic structure and 

add interesting features. The hydrogen absorption properties of these alloys are very much 

dependent on the constituents, and metal-hydrogen bonding interactions play a major role in 

the stability of the hydrides. 
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he study at the quantum level of the electronic, magnetic and other properties 

of a periodic crystal is one of the traditional subjects of solid state physics. At 

present, a lot of theoretical schemes have been proposed to interpret 

experimental measurements, to predict new effects and to design new materials from first 

principle (or ab initio). A calculation is said to be ab initio if it starts from the basic equations 

of motion (Schrödinger or Dirac equation) without the use of any empirical parameters. 

Density-functional theory (DFT) is the method of choice for the ab initio description (i.e., 

based on the fundamental equations of quantum mechanics) of the ground-state properties of 

atoms, molecules, and periodic solids. In this chapter an introduction to DFT calculations 

and the basic concepts behind it will be given. 

 

II-I The Born-Oppenheimer approximation (or adiabatic approximation) 

 

The Hamiltonian of a many-body condensed-matter system with N electrons and M 

nuclei can be written as [1]: 
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The mass of the nucleus at iR


 is Mi with atomic number iZ , the electrons have mass me and 

are at ir


. πh 2  where h  is the Plank constant. 

The Hamiltonian in Eq. [II-1] is composed of five terms: the two first terms are the 

kinetic energy of the M nuclei and the N electrons, respectively. The Coulomb attraction 

between the electrons and nuclei is represented by term three, and the fourth and fifth terms 

describe respectively the interelectron and internuclear repulsion energies. 

In solid state physics, amongst other fields, one usually uses the Born-Oppenheimer 

approximation (or adiabatic approximation) (1927) [2], which is based on the observation that 

the masses of nuclei and electrons are orders of magnitude different. The nuclei are much 

heavier and therefore much slower than the electrons. One can hence ‘freeze’ them at fixed 

positions and assume the electrons to be in instantaneous equilibrium with them. In other 

T 
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words, only the electrons are kept as players in the many body problems. The kinetic energy 

of the nuclei can be neglected and the Coulomb repulsion between the nuclei can be 

considered constant. The Coulomb attraction that the nuclei exert on the electrons can now be 

described as a static external potential experienced by the electrons. 

The Hamiltonian for the electronic degrees of freedom becomes 

 

[II-2] 

where the indices i and j run over the different electrons. 

One can rewrite the Hamiltonian as 

VVTΗ ext
ˆˆˆˆ 

        
[II-3] 

The first term ( T̂ ) is the kinetic energy of the electrons. The second term ( extV̂ ) is the external 

potential that the electrons experience due to the nuclei (at their fixed positions). The last term 

(V̂ ) is the Coulomb repulsion between the electrons. 

It is precisely this last term which makes this problem still incredibly difficult to solve: 

all electrons interact with all electrons. Although this is still manageable for systems with a 

small amount of electrons, diagonalizing the Hamiltonian becomes quickly a problem when 

approaching macroscopic solids. However, that is precisely what one would like to do, since 

the eigenvalues of this Hamiltonian give the energy of the system and the eigenfunctions give 

the electron many-body wave functions. 

 

II-II The Hartree-Fock Approximation 

 

The earliest attempt to solve the Schrödinger equation of atomic systems was led by 

D. R. Hartree (1928) [3, 4]. He assumed that in a system of N electrons surrounding a fixed 

nucleus, each electron experiences a field due to the mean field (potential) of other (N −1) 

electrons and the nucleus. Hartree approximated the effect of many body interactions by the 

potential which arises from the (N−1) electrons distributed according to their own 

wavefunctions i  and solved the corresponding Schrödinger equation for the single electron 

orbitals i (N) of these wavefunctions represent the occupied states of the atom and 
2

i  

gives the magnitude of charge density of the i-th electron. The total charge density ( ρ ) of the 

atomic system will be given by summing the orbital densities over the occupied orbitals. 

Unlike the orbitals i , the electron density of an atomic or molecular system is an 

observable quantity, for example, in X-ray scattering experiments, ( ρ ) is related to the spatial 
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distribution of the electrons [5, 6]. Such an interpretation of ( ρ ) is natural and according to E. 

Schrödinger, electron density is the distribution of negative charge in real space [7, 8]. 

Let  rH


  (which can be derived from the trial function) be a many-electron wave 

function for non-interacting electrons called Hartree wave function and given by: 

        NNiH rrrr
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with the index i running over all electrons and each  ii r


  satisfies a one-electron 

Schrödinger equation with potential arising from average field of the other electrons (“self-

consistent field”). On using a variational argument, one arrives at the single-electron Hartree 

equation 
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where i  are Lagrange multipliers introduced to take into account the normalization of the 

single-electron wave functions i . The Hartree potential is defined as 
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Where r


 and r 


 are the electron positions. 

In the Hartree-Fock scheme, the simplest, yet physically sound approximation to the 

complicated many-electron wave function is utilized. It consists of approximating the N-

electron wave function by an antisymmetrized product of N one-electron wave functions 

 ii x  [9]. For simplicity, we shall neglect the spin of electrons and keep only the spatial 

degrees of freedom. For an arbitrary number of electrons, forming combinations of orbitals 

such as these can be achieved using the determinant of a matrix, the so-called Slater 

determinant: 

 

     

     

     
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N

xxx
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




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1

21

22221

11211



       [II-7] 

with  i  a set of orthonormal functions and 
N!

1
 is a normalization constant. 
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The Hartree-Fock approximation to the wavefunction is equivalent to a mean-field 

solution of Schrödinger's equation in which each electron moves within an average field due 

to the presence of all other electrons. 

In 1930, Hartree-Fock [10, 11] proposed a single-electron equation which can be 

written as: 

          rrrVrVrV
m

iiix
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Hext
r 

 












2

22

     [II-8] 

 

Where  rVext


 is the potential due to the nuclei and  rVx


 is the exchange potential. 

The central idea of the Hartree-Fock approach is that the energy obtained by any 

(normalized) trial wave function, different from the actual ground state wave function, is 

always an upper bound, i.e. higher than the actual ground state energy. If the trial function 

happens to be the desired ground state wave function, the energies are [12] 

 0EEtrial           [II-9] 

The Hartree-Fock scheme performs very well for atoms and molecules, and is 

therefore used a lot in quantum chemistry. 

An excellent source for an in-depth discussion of many aspects of the HF 

approximation and more sophisticated techniques related to it is the book by Szabo and 

Ostlund (on 1982) [13]. 

 

II-III Outline of the Thomas–Fermi model 
 

The Thomas-Fermi model, created 

independently by Llewellyn H. Thomas 

(Fig. II-1) [14] and E. Fermi (Fig. II-2) 

[15] around 1926, is a quantum mechanical 

theory for the electronic structure of a 

many-body system. In this method, they 

used the electron density  r


  as the basic 

variable instead of the wavefunction. The 

idea of the model is that, given a large 

atom with many electrons, one can 

approximately model it by a simple 

nonlinear problem for a specified charge  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II-1 : Llewellyn Hilleth Thomas (1903–1992) 

Fig. II-2 : Enrico Fermi (1901–1954). 
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density. In other words, this statistical model can be used to approximate the distribution of 

electrons in an atom. Based on the uniform electron gas, they proposed the following 

functional for the kinetic energy: 

 

       rdrρπrρTTF


 353223

10

3       [II-10] 

The Thomas-Fermi model is defined by the energy functional for the ground state 

energy of the system for a certain amount of electrons in the atom with a particular charge. 

The energy of an atom is obtained using the classical expression for the nuclear-electron 

attractive potential and the electron-electron repulsive potential: 
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The approximations used in the Thomas-Fermi-type approach are so crude that the 

theory suffers from many problems. The most serious one is that the theory fails to describe 

bonding between atoms, thus molecules and solids cannot be formed in this theory [16]. 

Although it is not good enough to describe electrons in matter, its concept to use electron 

density as the basic variable illustrates the way DFT works, which means that the Thomas–

Fermi theory and its extensions were the predecessors of modern density functional theory 

(DFT). 

 

II-IV Density functional theory 

 

The quantum many body problem obtained after the first level approximation (Born-

Oppenheimer) is much simpler than the original one, but still far too difficult to solve 

(because everything interacts). A historically very important method is the Hartree-Fock (HF) 

method, described in many condensed matter textbooks. It performs very well for atoms and 

molecules, and is therefore used a lot in quantum chemistry. For solids it is less accurate, 

however. We will not treat HF, but explain a more modern and probably also more powerful 

method: Density Functional Theory (DFT). Although its history goes back to the early thirties 

of the 20th century, it is Pierre C. Hohenberg and Walter Kohn who came with a brilliant idea 

(in 1964) [17]. Roughly speaking, they stated that if you have the ground-state density of the 

particles in space and the interaction between the particles, you have in principle access to any 

property of the system. For this achievement, Walter Kohn (1923-2016) was awarded the 

Chemistry Noble Prize in 1998 for “his development of the density functional theory” [18]. 
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It is usually called a first principles method or an ab 

initio method, because it allows people to determine many 

properties of a condensed matter system by just giving some 

basic structural information without any adjustable 

parameter. 

It provides an alternative way to investigate 

condensed matter systems, other than the traditional 

experimental method and pure theoretical method based on 

quantum theory. It is becoming a useful tool used by both 

experimentalists and theorists to understand the 

characteristic properties of materials and to make specific 

predictions of experimentally observable phenomena for 

real materials and to design new materials. 

 

 

 

 

 

 

Electronic structure calculations based on density functional theory has become more 

and more popular in condensed matter physics, quantum chemistry and material science. 

Density functional theory is by far 

the most widely used approach for 

electronic structure calculations nowadays. 

Fig. II-4 shows the number of publications 

where the phrase “density functional 

theory” appears in the title or abstract 

(taken from the ISI Web of Science) [19]. 

The graph speaks for itself. 

There are a number of reviews and 

books [20-23] that proved to be good 

references for learning the fundamentals of 

DFT and electronic structure calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

II-IV-1 The Hohenberg-Kohn Theorems 

 

The Hohenberg-Kohn theorems [17] shift the attention from the wave function, 

depending on the position vectors of all electrons simultaneously, to the density, which 

depends only on one position vector. The traditional formulation of the two theorems of 

Hohenberg and Kohn is as follows (by considering a non-magnetic system with spin 

degeneracy): 

Fig. II-3 Walter Kohn receiving his 

Noble Prize from His Majesty the 

King at the Stockholm Concert Hall. 

Fig. II-4 Number of publications per year (1975–2014) 

on topics (“density functional” or “DFT”). The number 

of publications depends on the precise search criteria, 

but the overall picture is unchanged [19]. 
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Theorem 1 For any system of interacting particles (atom, molecule, solid) in an external 

potential Vext( r


), the potential Vext( r


) is determined uniquely, except for a constant, by the 

ground-state particle density 





rρ


0
. 

Corollary 1 Since the Hamiltonian is thus fully determined, except for a constant shift of the 

energy, it follows that the many-body wave functions for all states (ground and excited) are 

determined. Therefore all properties of the system are completely determined given only the 

ground-state density 





rρ


0
. 

Theorem 2 A universal functional of the energy E[n] in terms of the density 





rρ


0
 can be 

defined, valid for any external potential Vext( r


). For any particular Vext( r


), the exact ground-

state energy of the system is the global minimum value of this functional, and the density ρ(r


) 

that minimizes the functional is the exact ground-state density 





rρ


0
 [24, 25]. 

Corollary 2 The functional E[ρ] alone is sufficient to determine the exact ground-state 

energy and density. In general, excited states of the electrons must be determined by other 

means. 

The first Hohenberg–Kohn theorem 

is a uniqueness theorem which establishes 

a one-to-one mapping between the electron 

density and the external potential, i. e. the 

first Hohenberg-Kohn theorem closes the 

circle: from the ground-state density the 

external potential is uniquely defined 

(except for a constant shift) as illustrated in 

the right scheme outside: 

 

 

 

 

 

 

 

 

Starting from the external potential  rVext  the route to obtain the density is known 

from quantum mechanics: constructing the Hamiltionian ̂ , solving the Schrödinger equation 

and obtaining the wave functions 




 ri


, including the ground-state 





 r


0 , which gives the 

ground-state density 





rρ


0
. 

While the first Hohenberg-Kohn theorem claims that it is possible to find  rVext  

from 





rρ


0
, the second gives a clue how to find it. 

The second Hohenberg-Kohn theorem affirms the existence of a universal energy 

functional  ρΕtot . The total electronic energy functional  ρΕtot  can be written in the 

following form [17, 26]: 

 rVext  
Hohenberg-Kohn 

  




 rρ


0  

  




 r


0    




 ri


 ̂  
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        HKexttot FrdrrVρΕ 


       [II-12]
 

Where  HKF  is the Hohenberg-Kohn density functional. The exact ground state density of a 

system in a particular external potential  rVext


 is the density that minimizes  ρΕtot . The 

charge density ( ρ ) is the main variable in DFT. The functional  HKF  is independent of the 

external potential  rVext


 and is applicable to any arbitrary system. However, the form of the 

functional  HKF  is unknown a priori. 

The Hohenberg-Kohn functional can be divided into three terms [17, 27]: 

 

        xcHHK VVTF  0        [II-13]
 

 

Where  0T  is the kinetic energy of a non-interacting electron gas (auxiliary 

system),  HV , is the Hartree potential, which describes the Coulomb interaction of each 

electron in the system with the total electron density ( ρ ). This means that this term also 

contains the interaction of each electron with itself because each electron contributes to the 

total electron density.  xcV  is the exchange-correlation potential which accounts for self-

interactions within the electron gas. 

 

II-IV-2 The Kohn-Sham (KS) formulations 

 

The most widely used programs today are based on the Kohn-Sham’s formalism to the 

original density functional theory, which was published in1965 and which makes DFT 

calculations possible with even a single personal computer. In fact, this method is so widely 

used that many researchers simply say DFT when they really mean Kohn-Sham DFT (KS-

DFT) [28]. 

 

 

 

 

 

 

 

Combining the Hohenberg-Kohn theorems and the Kohn-Sham’s formalism, which 

are presented in the scheme below, has proven to be remarkably successful. In fact, shifting 

Kohn
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the attention from the wave functions to the ground-state density makes it easier to find useful 

approximations. 

The theorem of Kohn and Sham [29] can now be formulated as follows: 

iiiKSΗ  ˆ          [II-14] 

 r
i


  : single-particle wave function, 

i  : single-particle energy. 

The idea of The KS equations was to replace the original (interacting) many-body 

problem with an auxiliary independent particle system, specifically, it maps the original 

interacting system with real potential onto a fictitious non-interacting system whereby the 

electrons move within an effective Kohn-Sham single-particle potential. The many-body 

effects are approximated by a so-called exchange-correlation functional in the effective Kohn-

Sham single-particle potential. For the auxiliary independent-particle system, the auxiliary 

Hamiltonian is 

   
ext

xc
i

e

extxcHKS Vrd
rr

re

m
VVVT
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Η ˆ
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ˆˆˆˆ
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         [II-15] 

Where 0T̂   denotes the kinetic energy operator of an electron, 
HV̂  is the Hartree potential 

operator of an electron, xcV̂  is the exchange-correlation potential operator and xcΕ  the so-

called exchange-correlation energy which is defined by [30, 31]: 

 

        HHKxc VTFΕ  0            [II-16] 

From the ground-state density, the auxiliary potential  rVKS

ˆ  can, in principle, be 

constructed with the Hohenberg-Kohn theorems for a non-interacting system, and it is defined 

with the following expression: 

 

        [II-17] 

Kohn and Sham presented the following self-consistent equation to reach the 

minimization of the total energy of a many-electron system 
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The exact ground-state density  r


  of an N-electron system is 

       
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The KS equations [29] must be solved consistently because the effective KS potential 

(VKS) and the electron density  r


  are closely related. This is usually done numerically 

through some self-consistent iteration as shown in Fig. II-5. The process starts with an initial 

electron density, usually a superposition of atomic electron densities, then the effective KS 

potential (VKS) is calculated and the KS equation is solved with single particle eigenvalues and 

wavefunctions, a new electron density is then calculated from the wavefunctions. After this, a 

self-consistency condition is checked. This condition can be the change of total energy or 

electron density from the previous iteration or total force acting on atoms is less than some 

chosen small quantity, or a combination of these individual conditions. If self-consistency is 

not achieved, the calculated electron density will be mixed with electron density from 

previous iterations to obtain a new electron density. A new iteration will start with the new 

electron density. This process continues until self-consistency is reached. Afterwards, various 

quantities can be calculated including total energy, forces, stress, eigenvalues, electron density 

of states, band structure, etc.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By using independent-particle methods, the KS equations provide a way to obtain the 

exact density and energy of the ground state of a condensed matter system. 
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where: 

Estimation of the 

density 

Approximation VXC 

   
2

1

 


N

iKS

i
rr



 Kohn-Sham Non-interecting 

Self-consistent 

Hohenberg-Kohn Kohn-

Sham 

Schrödinger equation for 

non-interacting particles 

Fig. II-5 : Schematic of the DFT cycle : solving the Kohn-Sham equations self-consistently. 
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SPΗ̂  : the single-particle hamiltonian. 

 For the Hartree-Fock approximations : 

V̂  : the exchange operator, 

 rm


  : true one-electron (or single-particle) orbitals. Exchange is treated exactly, but 

correlation effects are not included at all. 

 For the DFT in the LDA approximation (also LSDA, GGA): 

V̂  : the exchange-correlation operator, 

 rm


  : mathematical single-particle orbitals. Exchange and correlation are treated but both 

approximately. 

The similarity between the Hartree-Fock and Kohn-Sham equations means that the 

same mathematical techniques can be used to solve them. Both sets of equations have to be 

solved self-consistently. In order to solve the equations, we need to find the expansion 

coefficients mC  in order to express m  in a given basis set {  r


 }: 

 rCmm


         [II-21] 

 

The expansion coefficients mC  are, via the Rayleigh-Ritz principle [32], determined from 

the secular equation: 

0 mmKS CS)ξ(Η          [II-22] 

KSΗ : Kohn-Sham Hamiltonian, 

S : Overlap matrix. 

 

II-IV-3 The exchange-correlation functionals 

 

The results so far are exact, provided that the functional form of  is known. The 

problem of determining the exact functional form of the universal Hohenberg-Kohn density 

functional is treated by the following approximations. 

 

II-IV-3-1 Local density approximation LDA 

 

In the local density approximation (LDA) [20, 24, 29, and 33], the contribution to the 

exchange-correlation energy from each infinitesimal volume in space, rd


, is taken to be the 

value it would have if the whole of space were filled with a homogeneous electron gas with 

the same density as is found in rd


, i.e. 
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         rdrρξrρrρΕ xc

LDA

xc


       [II-23] 

where xc  is the exchange-correlation energy per electron (particle) in a homogeneous 

(uniform) electron gas of density  r


  [34]. This energy per particle is weighted with the 

probability  r


  that there is an electron at this position. 

The exchange-correlation energy for the homogeneous electron gas has been 

calculated by Ceperley [35] and Alder [24] using Monte Carlo methods. In these methods, an 

electron gas containing virtually an infinite number of electrons is subjected to a positive 

background charge distribution in an infinite volume which leads to a constant electron 

density everywhere. 

The quantity   rxc


  can be further split into exchange and correlation 

contributions, 

        rrr cxxc


        [II-24] 

 

The exchange part, x , which represents the exchange energy of an electron in a 

uniform electron gas of a particular density, was originally derived by Slater and Dirac [36, 

37] in the late 1920's as: 

  3
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

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
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
r

x


        [II-25] 

 

II-IV-3-2 Generalized gradient approximations GGA 

 

An intuitive first step to improve the LDA functional is to make the exchange-

correlation contribution of every infinitesimal volume not only dependent on the local density 

in that volume, but also on the density in the neighboring volumes. In other words, the 

gradient of the density will play a role. The first attempts to include the gradients did not 

work very well, and especially for large gradients the expansions performed poorly. But later 

on, more elaborate ways of taking the gradient of the density (  r


 ) into account (for the 

non-homogeneity of the true electron density) were developed and so-called Generalized 

Gradient Approximation (GGA) [38]. 

Unlike LDA, there is no unique way to express   rxc


  in GGA and several GGA 

functionals exist [2]. Furthermore, many GGA functionals are fitted to a set of experimental 
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parameters, which deprives these functionals from their first-principles status. Thus, the 

exchange-correlation energy is given in the following form: 

 

          rdrρ,rρξrρrρΕ xc

GGA

xc


      [II-26] 

In practice,   rxc


  is usually split into its exchange and correlation contributions 

 

        rrr cxxc


        [II-27] 

The first one is based on a GGA exchange functional developed by Becke [39], which 

is abbreviated simply as B88 (or often just as B) 
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where 
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This functional has only one adjustable empirical parameter β. The value of β = 0.0042 was 

determined based on the best fit to the energies of six noble gas atoms (He through Rn) using 

HF orbitals, for that it is described as a semi-empirical functional. 

The correlation part of   rxc


  developed by Lee et al. [40], which is abbreviated 

simply as LYP 
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where 
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Perdew, Burke, and Ernzerhof (PBE) [38] presented a simplified construction of a 

simplified GGA for exchange and correlation in which all parameters are fundamental 

constants, which may be described as an ab-initio (non-empirical) functional. 

The GGA form for the exchange energy is simply 
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where  r


  is the electron density,  3431)3(2 s is the dimensionless reduced 

gradient,    ])3(4[3 3131  rLDA

x


 is the exchange energy density per particle for a 

uniform electron gas (UEG), and  sFx  is the exchange enhancement factor. The 

enhancement factor for the PBE [38] is 

   kskksFx )(11 2  

 

The parameters   and k  are set to 0.21951 and 0.804 respectively. 

In the GGA framework, the correlation energy (for a spin-unpolarized system) can be 

written as [41] 

      rd...tβrρξrρ
c

LDA

cc
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Where   rLDA

c


  is the correlation energy density per particle for a uniform electron gas 

(UEG), c  is a coefficient, and  6761)3(4 t is the appropriate reduced density 

gradient for correlation. The value of c  for the slowly varying high-density limit was 

obtained by Ma and Brueckner [42] 
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A somewhat different approach to obtain GGA's has been used by Langreth and Mehl 

[43], Perdew [44], and Perdew and Wang [45, 46]. 

 

II-IV-3-3 Hybrid Functionals 

 

Improvements in the development of better XC functionals mostly came from 

investigations of properties of the hypothetical exact XC functional [12]. Better XC 

functionals that are classified as meta-GGA [47] and hyper-GGA [48] functional 

approximately model the exact behavior. 

On the other hand, in DFT, the orbital-dependence of the exchange correlation energy 

is rather weak. In many cases, this is appropriate, but in systems with narrow 3d- bands 

(transition metal oxides) or 4f-bands (rare earth compounds) and localized orbitals, DFT fails 

to account for the strong Coulomb repulsion between electrons occupying these narrow bands, 

which lead to an enhanced exchange splitting between occupied and empty eigenstates. 
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The DFT+U method, originally proposed by Hubbard and Anderson [49], attempts to 

cure this defect by adding a Hubbard-type Coulomb repulsion to the DFT total energy 

Hamiltonian [50-54], while the rest of valence electrons are treated at the level of “standard” 

approximate DFT functionals. 

The effect of the added U is to first split the “correlated” orbitals and then to shift the 

occupied orbitals in the direction of lower energy and the unoccupied orbitals in the direction 

of higher energy. The obtained distance in energy (which is the total shift) has roughly the 

value of U [55]. 

In addition, the DFT+U method is a semi-empirical approach because the Hubbard 

parameter U, the free parameter, is not known and needs to be evaluated. This can be done by 

a comparison of calculated properties with experimental measurements or by constrained DFT 

calculations. 

In its general form, DFT+U may be thought of as the net contribution from (1) the 

standard DFT calculation ( DFTΕ ) within the LDA or GGA approximation, (2) the Hubbard 

term ( U ) that explicitly models the Coulomb energy associated with the localized atomic 

orbitals of interest (e.g., 3d and 4f electrons) which contains electron-electron interactions as 

modeled in the Hubbard Hamiltonian, and (3) removal of a double counting term ( dc ) that 

corresponds to a mean field description of these interactions obtained in the homogeneous 

electron gas limit with a standard DFT functional, 
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where   is the electronic density, and a

lmn  are the atomic-orbital occupations for the atom a  

(lm magnetic quantum numbers, σ is a spin index) experiencing the”Hubbard” term. 

The electron-electron Coulomb interaction energy U  is given a more general 

expression borrowed from the HF method [56]: 
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where U  is a Coulomb parameter [57]. As in the case of semi-empirical schemes such as the 

Hubbard model, the electron-electron repulsion operator is replaced by an operator 

representing screened electron-electron repulsion between electrons in the given shell. 

o Most commonly, the double counting term dc  is obtained as: 
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J  is exchange parameter [57], 
alN  is the total occupancy for a given site and alN  is the 

total occupancy for a given site and spin    
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And alU  is the effective electron-electron repulsion interaction parameter that may be 

calculated [58-62] or, more commonly, tuned [63-65] and is specific to each atom and subshell. 

o After all simplifications, Eq. [II-33] can be rewritten as follows [56]: 
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Using the definition of the atomic orbital occupations given in Eq. [II-36] and Eq. [II-

37], it is instructive to derive the Hubbard contribution to the KS potential. From the energy 

functional in Eq. [II-38] it is easy to obtain [66]: 
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eff

alU  is a key approximation often used in modern DFT+U practice, defined as: 

alal

eff

al JUU         [II-41] 

 

Eq. [II-39] shows that the Hubbard potential is repulsive for less than half-filled orbitals 

( 21<a

lmn ), and attractive for the others. That is, at its heart, as first proposed by Hubbard 

and Anderson, the U  discourages pairing of electrons, while the J  encourages it [67]. 

 

II-IV-4 The basis set 

 

In order to solve the Kohn-Sham equations, Eq. [II-18], numerically, one needs to 

calculate matrix elements of the Hamilton operator for a given basis set. While the choice of 
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plane waves as basis functions is very appealing, describing the rapid oscillations of the wave 

function close to the nucleus in a plane wave basis set is inefficient. 

This problem can be solved by 

dividing the unit cell into non overlapping 

atomic spheres “α” (centered at the atomic 

sites), the so-called muffin-tin spheres, and 

an interstitial region “I” (Fig. II-6) [66]. 

Different basis sets are used in 

these respective regions. The idea behind 

this lies in the fact that the inner region of 

an atom (the core) is shielded from outer  

 

 

 

 

 

 

 

 

 

regions and electrons behave as they would in a free atom, and therefore, could be described 

by atomic like functions. 

While in the outer region away from the core (where most chemistry happens), 

electrons are free, and plane waves provide a good description of their wavefunctions. 

 

II-IV-4-1 Augmented plane wave basis set (APW) 

 

Right from the beginning it has to be said that the APW-method itself is of no practical 

use any more today. But for didactical reasons it is advantageous to discuss APW first, before 

going to its successors, LAPW and APW+lo. 

The augmented plane wave (APW) approach, originally proposed by Slater [68, 69], 

uses a mixed basis set for I and MT regions (Fig. II-6). In the interstitial region, plane waves 

are used to represent the wave functions, while inside the MT-spheres the wave functions are 

expanded in terms of the solutions of the scalar relativistic Dirac equation, which is solved for 

a set of energy parameters and for the spherically symmetric component of the potential. The 

basis functions are labeled by the interstitial plane wave indices. Inside the MT-spheres the 

plane waves are replaced by a linear combination of the radial solutions of the scalar 

relativistic Dirac equation in such a way that the basis function is continuous at the MT-

sphere boundary. Hence, the APW basis functions are: 
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Fig.II-6 Division of a unit cell in muffin tin regions 

and an interstitial region, for a case with two atoms 

[66]. 
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where we denoted the radial solutions of the scalar relativistic Dirac equation for atom   by 


lu , rrr


  (see Fig. II-6) is the position vector with respect to the center of atom  . The 

coefficients Kk

lmA


,  are determined from the requirement that the wavefunctions have to be 

continuous at the boundary of the muffin-tin spheres. The  rΥ lm
ˆ  are spherical harmonics. 

Note that Ω  is the volume of the unit cell.  

Each plane wave is augmented by an atomic-like function in every atomic sphere and 

therefore called augmented plane wave method (APW). However, an energy-independent 

APW basis set like in Eq. [II-41] does not provide sufficient variational freedom. The use of 

an energy-dependent APW-basis set is possible but entails a nonlinear energy dependence of 

the Hamiltonian operator, which dramatically increases the complexity of the eigenvalue 

problem. 

 

II-IV-4-2 linearized augmented plane wave basis set (LAPW) 

 

In 1975, Andersen proposed [70] to linearize the non-linear eigenvalue problem in 

APW by using linear combinations of both the radial functions 
lu  and their derivatives 

lu  

with respect to energy (which may be computed from eigenvalues and corresponding partial 

charges (see e.g. Ref. [71])) in such a way that the basis function and its first derivative are 

continuous at the MT-sphere boundary. The resulting basis functions are called linearized 

augmented plane waves (LAPW) and are given by 
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The coefficients Kk

lmB


,  and Kk

lmA


,  are functions of K


 and chosen in such a way that 

this basis function matches (in value and slope) with each plane wave (PW) of the 

corresponding basis function for the interstitial region. More details can be found on this 

method in the literature [66, 34]. 

 

II-IV-4-3 linearized augmented plane wave with Local Orbitals basis set (LAPW+LO) 

 

States that leak out of the muffin tin sphere are called valence states. Valence states 

participate in chemical bonds, and these states are treated by LAPW. In order to describe 

semi-core states, the LAPW basis set may be supplemented with local orbitals (LOs) [72]. In 
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contrast to the LAPW basis functions defined in Eq. [II-43], a local orbital is zero everywhere 

in space with the exception of the interior of the MT sphere of that atom, hence its name local 

orbital (LO). A local orbital is defined as: 
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The coefficients LO

lmA , , LO,

lmB  and ,LO

lmC  are determined with the boundary condition such that 

LO vanishes in value and slope at the muffin-tin radius (zero in interstitial region and in MT 

sphere of other atom). The inclusion of LO’s makes the computation of matrix elements 

somewhat more difficult but one has a better model and saves computational time, since no 

semi-core states need to be calculated in separate LAPW run. 

The problem with the APW method was the energy dependence of the basis set. This 

energy dependence could be removed in the LAPW+LO method, at the cost of a somewhat 

larger basis set size (due to LAPW itself, and due to adding local orbitals.). 

 

II-IV-4-4 The `pure' APW+lo basis set 

 

Sjöstedt, Nordström and Singh (2000) [73] have shown that the standard LAPW 

method with the additional constraint on the plane waves (PWs) matching in value and slope 

the solution inside the sphere is not the most efficient way to linearize Slater’s APW method. 

It can be made much more efficient when one uses the standard APW basis, but with 

 
ll Εru ,  at a fixed energy 


lΕ  in order to keep the linear eigenvalue problem. One then 

adds a new local orbital (which is abbreviated to lo) to have enough variational flexibility in 

the radial basis functions. The resulting basis set is called APW+lo [74], whose basis set 

contains two kinds of functions. The first kind is APW’s, with a set of fixed energies 
lΕ ,1 : 
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The second kind is defined as: 
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This new lo (denoted with lower case to distinguish it from the LO given in Eq. [II-

44]) looks almost like the old “LAPW”-basis set, but here lo

lmA ,  and lo

lmB ,  do not depend on 

K


 and are determined by the requirement that “lo” is zero (in value and not in slope) at the 

sphere boundary and normalized. Though these basis functions have “kinks” at the sphere 

boundary due to discontinuity in their derivatives (slope), the total wavefunction is smooth 

and differentiable. 

 

II-IV-4-5 Full-Potential Linearized Augmented Plane wave Method (FP-LAPW) 

In the past, in the majority of 

applications of APW and LAPW methods, 

inside the muffin-tins, the potential is 

approximated to be spherically symmetric, 

and in many implementations the 

interstitial potential is set constant (Fig. II-

7). The restrictions to the potential are 

commonly called shape-approximations. 

The potential in the unit cell  rV  was 

typically approximated by 
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In the full-potential LAPW method (FP-LAPW) [75, 

76] there are no shape approximations in the interstitial 

region and inside the muffin-tin spheres (Fig. II-8). The 

potential and charge density are expanded (a) into lattice 

harmonics (inside each atomic sphere) and (b) as a Fourier 

series (in interstitial region) and thus they are completely 

general. 
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The charge density,  r , is represented in the same way as the potential: 

Fig. II-7 Muffin tin approximation. 

 

Fig. II-8 Full potential. 
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A local coordinate system for each atomic sphere is defined according to the point 

group symmetry of the corresponding atom to have the smallest number of “ lm ” values in the 

lattice harmonics expansion. In order to relate local and global coordinate systems of the unit 

cell, a rotation matrix is used. 

 

II-IV-5 Calculation code used 

 

Some of the widely used codes: 

• VASP (http://cms.mpi.univie.ac.at/vasp/) 

– Commercial, Plane-Wave Basis, Pseudopotentials  

• PWSCF (http://www.quantum-espresso.org/) 

– Free, Plane-Wave Basis, Pseudopotentials 

• CASTEP (http://ccpforge.cse.rl.ac.uk/gf/project/castep/) 

– Free in UK, licensed elsewhere, Plane-Wave Basis, Pseudopotentials  

• ABINIT (http://www.abinit.org/) 

– Free, Plane-Wave basis, Pseudopotentials 

• SIESTA (http://www.uam.es/depatamentos/ciencas/fismateriac/siesta) 

– Free, LCAO basis set, Pseudopotentials 

• WIEN2k (http://www.wien2k.at/) 

– Commercial (modest license fee), all-electron, augmented wave method. 

In this work we used the WIEN2k program package [77]. The major steps in the 

development during the last four decades were described in detail in a review [78] and 

previous articles [71, 79 and 80]. 

The computer code WIEN2k is used to study crystal properties on the atomic scale by 

employing the linearized-augmented-plane-wave (LAPW) method within density functional 

theory (DFT), the most precise schemes for solving the KS equations. The advantage of first-

principle (ab initio) methods lies in the fact that they can be carried out without knowing any 

experimental data. 

WIEN2k is written in FORTRAN 90 and requires a Unix/Linux operating system 

since the programs are linked together via C-shell scripts. 
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II-IV-5-1 General remarks on WIEN2k 

– Each “case”runs in his own directory: ./case 

– The “master input” is called: case.struct 

– Initialize a calculation: init_lapw 

– Run scf-cycle: run_lapw (runsp_lapw) 

– The “master output” is called: case.scf 

– One can run WIEN2k using any web browser and the w2web interface, but also at the 

command line of an xterm. 

 

II-IV-5-2 Some applications of WIEN2k 

i) Band structure and density of states (DOS) calculations 

The energy band structure and corresponding density of states are essential quantities that 

determine the electronic structure of a system. Their inspection provides information about 

conduction properties (metal, insulator or semiconductor) and gives insight into the chemical 

bonding. By looking at site decomposed partial densities of states one can find a hint for the 

strength of interactions between the orbitals of the constituting atoms. The band structure is 

also useful in connection with photoelectron spectra. 

ii) Electron densities 

The electron density is the key quantity in DFT. By taking its Fourier transform the static 

structure factors can be determined easily, and it can be compared with experimental X-ray 

diffraction data. 

iii) Total energy and phase transitions 

The relative stability of different phases can be computed by the total energy. With the 

knowledge of total energy, the relative stability of different phases can be computed by 

keeping as many parameters constant as possible in order to have a cancellation of systematic 

errors. In such cases it is possible to keep many parameters constant as possible in order to 

have a cancellation of systematic errors. These parameters for example, the atomic size of 

spheres, the plane-wave cut-off, the k-mesh, the DFT functional the treatment of relativity, 

etc. Because the energy differences are small, so a consistent treatment of the systems to be 

compared will help to minimize these computational effects. 

iv) Forces and structural optimization  

In cases where the atoms occupy general positions that are not fixed by the crystal symmetry, 

the knowledge of the forces acting on atoms helps in optimizing the structure parameters. 

Forces can be computed in WIEN2K and are crucial for such optimizations. 

v) Spectra 
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The photoelectron spectra, X-ray emission and absorption spectra can be calculated using 

partial densities of states and the transition probabilities between a valence and a core state. 

Such spectra provide useful information on local binding situations of the atom, whose core 

state is involved. Optical spectra and related quantities e.g. energy dependence of real and 

imaginary parts of the dielectric constant can be calculated from the electronic response which 

is further used to determine absorption coefficient, refractive index, electron energy loss 

spectrum and reflectivity by using the Kramers-Kroening relation [82]. 

 

II-V Summary 

 

To conclude, in this chapter we have presented a brief overview of Density functional 

theory (DFT). DFT is a quantum mechanical modelling method used in Physics and 

Chemistry to investigate the electronic structure of many-body systems, in particular atoms, 

molecules, and the condensed phases. An analytical solution of the many-electron Schrdinger 

equation is not available, and a numerical solution, while perfectly possible in theory, is 

effectively impossible in practice for more than a handful of electrons due to the finite speed 

and memory of computers. An approach to lower computational cost of molecular 

calculations can therefore be the use of a less complex base variable. The foundation for such 

an approach has been provided by Hohenberg and Kohn in 1964 when they proofed that the 

electron density, a variable only depending on 3 spatial variables, in principle contains all 

information about the ground state properties of a system. This also marked the birth of 

density functional theory (DFT). 

DFT has become very popular in recent years. This is justified based on the pragmatic 

observation that it is less computationally intensive than other methods with similar accuracy. 
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he heavy rare earth elements share a common outer electronic configuration, 

differing only in the number of inner 4f electrons they have . Based on the wealth of 

experimental information available for the rare-earths [1], it is by now established 

that the 4f shell has localized electron states, where band-dispersion effects are negligible. 

Since there are f electrons in the metal atoms, nonmagnetic (NM), and ferromagnetic 

(FM) states are all considered to obtain the ground-state properties of the rare earth 

compounds. 

In this Chapter, we have also focused our investigation on the structural, electronic 

and magnetic properties of rare earth gadolinium (Gd) and terbium (Tb), which have been 

investigated extensively using first-principles calculations and where f electrons are 

considered. A theoretical treatment of f electrons is sometimes arduous [2]. For that the 4f 

electrons are treated independently as core electrons in the former case (nonmagnetic) and as 

valence electrons in the latter case (ferromagnetic). 

 

III-I Non spin-polarized study 

 

III-I-1 Computational methods 

 

Our calculations are based on density functional theory (DFT) [3, 4]. The full potential 

linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2k 

package [5], which solves the Kohn-Sham equations self-consistently, was used for the 

calculations. The cutoff in the charge density Fourier expansion, Gmax, was taken to be 

20 Ry1/2, where 1 Ry = 13.60570 eV. 

Rare earths can be problematic for DFT calculations. We note that one can expect the 

existence of finite localized magnetic moments on the 4f electrons. This magnetic aspect has 

not been considered in our calculations in this section. It is known, indeed, that, in rare earths, 

T 

 
CHAPITER III 

Pure rare-earths R (R = Gd and Tb): 

structural, electronic, and magnetic 

properties 



Chapter III 

58 

the 4f electrons, being very close to the core, are expected to be chemically inert. This leads 

us to consider 4f electrons as atom-core electrons, i.e. they cannot hybridize with the other s, 

p, and d valence electrons anymore and are perfectly localized [6]. For these reasons, the 

contribution of the 4f electrons are removed from the valence bands, and are treated as those 

of core electrons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We used an energy of -8 Ry to separate core and valence states, while the Gd 

(5s25p65d16s2) and Tb (5s25p65d16s2) orbitals were treated as valence states (we did not treat 

the f orbitals of Gd and Tb as valence electrons but as core electrons). Exchange and 

correlation effects were treated within the density functional with the generalized-gradient 

Fig. III-1 Calculated total energy curves for Gd as a function of volume in both GGA (a) and LDA (b), and 

as function of deviation from initial (c/a) ratio (%) in both GGA (c) and LDA (d) approximations. 

deviation from initial (c/a) ratio (%) deviation from initial (c/a) ratio (%) 

LDA 

 

GGA 

 

d c 

LDA GGA 

 

a b 
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approximation of Perdew, Burke and Ernzerhof (GGA96) [7] and the local density 

approximation (LDA) [8]. The calculations were based on an optimized number of k-points of 

1000, without considering the spin polarization. The self-consistent calculations are 

considered to be converged only when the calculated energy changes by less than 0.1 mRy. 

 

III-I-2 Results and discussion 

 

III-I-2-1 Structural properties 

 

To calculate the ground state properties of R (R = Gd, and Tb) compounds, the total 

energies are calculated for different volumes around the equilibrium cell volume (V0) and the 

(c/a) ratios for both LDA and GGA approximations. The plot of calculated total energies 

versus reduced and enlarged volume for the Gd and Tb are given in Figs. III-1 and III-2 

respectively. 

 

Table III-1 Equilibrium lattice parameters a0, c0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, 

total energy (Ry) and cohesion energy Ecoh (eV) for Gd compared to experimental data and other works. 

 a0 c0 c0/a0 B0 B0’ Total energy Ecoh Reference 

LDA 3.5739 5.6838 1,5904 48.842 4.5562 -45090.660852 -10.0307 Present work 

 3.4785 5.5799 1.604 37.9    [9] 

GGA 3.6513 5.8070 1.5904 47.9890 4.0243 -45121.107131 -8.7921 Present work 

 3.6402 5.8258  1.600  36.7    [9] 

Exp.  

3.634 5.781 1.591     [10] 

3.595 5.785      [11] 

 

The calculated total energy is fitted to Murnaghan’s equation of state [12] to determine 

the ground state properties such as the equilibrium lattice constant (a0 and c0), the bulk 

modulus (B0), and its pressure derivative (B0′), total energy and cohesion energy. The 

calculated equilibrium parameters found using LDA and GGA-PBE approximations are given 

in Tables III-1 and III-2 for Gd and Tb respectively, which also contains experimental and 

theoretical data for comparison. It is worth noting that the value of (E0) using the LDA 

approximation is less than its value is using the GGA approximation. 
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We should emphasize that our calculated a-lattice constants, c-lattice constants and the 

(c/a) ratio show agreement with the experimental data and the previous theoretical results. 

However, it may be noted here that the LDA calculations for lattice parameters are 

underestimated by comparison to experimental results and GGA calculations are 

overestimated. Conversely for the bulk modulus, it is the GGA value which is lower than that 

of the LDA by 1.75% for Gd and by 19.87% for Tb as a result of the over-binding 

characteristic of LDA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, GGA overestimates the lattice parameter whereas it underestimates bulk 

modulus (B0) in comparison with LDA. These results are consistent with the general trends of 

the LDA and GGA approximations [9, 13 and 14]. 

deviation from initial (c/a) ratio (%) deviation from initial (c/a) ratio (%) 

LDA GGA 

 

a) b) 

LDA GGA 

 

c) d) 

Fig. III-2 Calculated total energy curves for Tb as a function of volume in both GGA (a) and LDA (b), 

and as function of deviation from initial (c/a) ratio (%) in both GGA (c) and LDA (d) approximations. 
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Table III-2 Equilibrium lattice parameters a0, c0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, 

total energy (Ry) and cohesion energy Ecoh (eV) for Tb compared to experimental data and other works. 

 a0 c0 c0/a0 B0 B0’ Total energy Ecoh Reference 

LDA 3.5782 5.6576 1.5811 51.9322 3.9799 -46844.746603 -9.9121 Present work 

 3.3669 5.4632 1.623 40.5    [9] 

GGA 3.6440 5.7616 1.5811 41.6120 5.8903 -46875.629846 -8.7017 Present work 

 3.5851 5.7809 1.612 27.5    [9] 

Exp.  3.606 5.697 1.580     [10] 

 

The cohesive energy, Ecoh, of a solid is defined as the minimum energy required for 

separating it into its constituent (neutral) atoms (or molecules, if we are dealing with a 

molecular solid) under conditions of temperature T → 0 K and pressure P = 1 atm: 

 

,     [III-1] 

 

where  is the total energy of the compound at the equilibrium lattice constant and  

is the atomic energies of the pure constituent atoms which is calculated using the same GGA 

/LDA framework. The cohesive energy values of Gd and Tb are also displayed in Tables III-

1 and III-2. From the latter, it is observed that the absolute values of cohesive energy of both 

compounds calculated by LDA are higher than those calculated by GGA due to the above-

mentioned over-binding effect. 

 

III-I-2-2 Electronic properties 

 

Band structures, densities of states, and partial electron densities have been employed 

in order to get a better understanding of the chemical bonding in these rare earth compounds. 

The calculated electronic band structures along the high symmetry directions in the 

Brillouin zone and corresponding total density of states for Gd and Tb with GGA and LDA 

approximations are shown in Figs. III-3 and III-4 respectively, from these figures, the R has 

a metallic character because of the absence of gap at the Fermi level in both GGA and LDA 

approximations. 

As we can see from Figs. III-3 and III-4, the calculated band structures of R with 

LDA are similar to those with GGA, but there are some differences as the valence bands 
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calculated by LDA are slightly larger than those calculated by GGA approximation for both 

compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III-3 Density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of Gd in: a) GGA and b) LDA; the Fermi energy is at 0 eV. 

a) 

b) 
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The total DOS of R (R=Gd, Tb) has similar features in both GGA and LDA (see Figs. 

III-3 and III-4) especially at the Fermi level. However, these figures show small but non 

negligible differences as the peaks in the GGA are slightly sharper and narrower than those of 

LDA. Also in LDA, the total DOS moves a little towards lower energies and the Fermi energy 

increases compared to GGA. 

The total electronic DOS along with the partial electronic DOS reveal all important 

features of band structures. 

The l-projected density of states (DOS) plots (Figs. III-5 and III-6) provides an even 

clearer picture of the elemental contributions to the electronic structure of R (R=Gd, Tb). 

Generally speaking, under crystal field effects (hcp symmetry) the orbital d consists of: d-z2, 

(d-xy, d-x2y2), and (d-xz, d-yz) states, and the orbital p consists of: p-z and (p-x, p-y). 

As one can see, those top valence states right below the Fermi level are predominantly 

R-5d states. The R-p states, however, also make a noticeable contribution where the 

contribution of s states is negligible. This suggests that d states of rare-earth atoms play 

dominant roles in the metallic nature of the two compounds. Note here that in our calculation 

all d-z2, dx2y2+Dxy, and dxz+Dyz states participate at Fermi energy in addition of 

participates of the hybridization with p-z and px+ py states. 

 

Table III-3 Fermi energy and density of states at the Fermi level for Gd. 

 Fermi energy (Ry) N(EF) (states/Ry) 

Gd (GGA) 0.40705 66.80 

Gd (LDA) 0.42586 63.83 

 

 

Table III-4 Fermi energy and density of states at the Fermi level for Tb. 

 Fermi energy (Ry) N(EF) (states/Ry) 

Tb (GGA) 0.34204 63.45 

Tb (LDA) 0.34763 62.04 
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GGA 

LDA 

Fig. III-4 Density of states (right panel) and electronic band structure along high-symmetry directions (left 

panel) of Tb in the GGA and LDA, the Fermi energy being at 0 eV. 



Pure rare-earth R (R=Gd, and Tb): structural, electronic, and magnetic properties 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the data in Tables III-3 and III-4, the density of states on the Fermi 

level N(EF) is not negligible and is smaller in LDA than in GGA because the latter causes an 

under-binding effect of the crystal (the crystal structure is more compact in LDA). In addition, 

it can be remarked that when the equilibrium lattice parameter decreases, the Fermi energy 

increases in both compounds. 

Fig. III-5: The calculated total and partial density of states for Gd in the GGA and in the LDA, the Fermi 

energy being at 0 eV. 

LDA 

GGA 
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Fig. III-6: The calculated total and partial density of states for Tb in the GGA and LDA, the Fermi energy 

being at 0 eV. 
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III-II Spin polarized study 

 

In this subsection we will analyze the influence of the polarization of spins. All LDA 

and GGA calculations reported above are done without spin polarized coupling. However, for 

the magnetic properties to which the 4f-electron contribution is crucial, magnetic coupling 

effects must be included. Note that the magnetic ground states of these compounds R (R=Gd, 

and Tb) are of a ferromagnetic type [15]. 

 

III-II-1 Spin polarized GGA and LSDA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deviation from initial (c/a) ratio (%) deviation from initial (c/a) ratio (%) 

Fig. III-7 Calculated total energy curves (spin polarized calculation) for Gd as a function of volume in 

both GGA (a) and LSDA (b), and as function of deviation from initial (c/a) ratio (%) in both GGA (c) and 

LSDA (d) approximations. 

 

LSDA GGA 

a) 

LSDA GGA 

d) c) 
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III-II-1-1 Computational details 

 

The presence of f-state electrons in these compounds inducing high electron 

correlations in these materials lead us to study these systems using spin local density 

approximation (LSDA) [16] and the PBE GGA exchange-correlation functional for the 

ferromagnetic state within a hexagonal structure, where the space group is P 63/mmc (No. 

194). 

The Kohn-Sham equations of the LSDA and GGA were also solved using the full 

potential linearized augmented plane-wave (FLAPW) method [17, 18] as implemented in the 

WIEN2k [6] code. It would be nice to describe the states (4f7 5s25p65d1 6s2) of Gd and (4f8 

5s25p65d1 6s2) of Tb as the valence states. The cutoff energy, which defines the separation of 

valence and core states, was chosen as -8 Ry. Taking a convergence energy of 10-4Ry, the 

number of k-point parameters were optimized to 1000 k-points. 

 

II-II-1-2 Structural properties 
 

The calculated lattice constants (a0, c0), bulk modulus (B0), the pressure derivative of 

bulk modulus (B0'), for Gd and Tb using spin polarized GGA and LSDA, are obtained 

according to Murnaghan’s equation of state [12] and by fitting the total energy to volume 

points. We also present the E−V relationship of the R (R=Gd, and Tb) in Figs. III-7 and III-

8. The cohesive energies of this compound are calculated from the difference between the 

total atomic energies of Gd and Tb atoms and the minimum energy of bulk Gd and Tb. 

 

Table III-5 Equilibrium lattice parameters a0 and c0 (in Å), bulk modulus B0 (in GPa), pressure derivative 

B0’, total energy (Ry), and cohesive energy Ecoh (eV) for Gd obtained with GGA and LSDA calculations, 

compared to experimental data and other works. 

 a0 c0 c/a B0 B0’ Total energy Ecoh Reference 

LSDA 3.5472 5.6414 1.5904 50.4138 3.7425 -45091.970790 -8.022 
Present 

work 

 3.62 5.80      [19] 

GGA 3.6228 5.7617 1.5904 48.6689 3.4152 -45122.212953 -6.8809 
Present 

work 

 3.502 5.727  49 4.01   [20] 

Exp. 3.595 5.785      [11] 
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The calculated ground state properties for Gd and Tb are listed in Tables III-5 and III-6 

respectively and are compared with the experimental and other available theoretical data. The 

cohesive energies of these compounds are also displayed in these Tables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Tables III-5 and III-6, it is found that the present calculations are in agreement 

with the experimental and other theoretical results. The calculated values of (c/a) are slightly 

less than the ideal value of . 

For lattice parameters the results of GGA method, however, are closer to the 

experimental results than the results obtained from LSDA approximation. It is also worth 

noting that the values within the LSDA method are underestimated, while the values within 

Fig. III-8 Calculated total energy curves (spin polarized calculation) for Tb as a function of volume in 

both GGA (a) and LSDA (b), and as function of deviation from initial (c/a) ratio (%) in both GGA (c) and 

LSDA (d) approximations. 

deviation from initial (c/a) ratio (%) deviation from initial (c/a) ratio (%) 

LSDA GGA 

 

a) b) 

LSDA GGA 

 

c) d) 
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GGA approximation are overestimated. In contrast, the value of the bulk modulus in LSDA is 

larger than that in GGA for both compounds. In addition from Table III-6 (for Gd), bulk 

modulus and its first-order derivative show good agreement with available literature values. 

 

 

The obtained ground state from optimization curves is used to calculate self-

consistently electronic and magnetic properties (densities of states, band structure, and 

magnetic moment) of the considered rare earths within the two approximations with a 

comparative context. 

 

III-II-1-3 Electronic properties 

 

The calculated spin-polarized band structures at the theoretical equilibrium lattice 

constant along high-symmetry directions of the first Brillouin zone with GGA and LSDA 

approximations of Gd and Tb compounds are shown in Figs. III-9 and III-10 respectively. 

In the GGA and LSDA (see Figs. III-9 and III-10), both valence bands and 

conduction bands cross the Fermi level and lead to its partial filling, thus both GGA and 

LSDA predict a metallic behavior for R (R=Gd, and Tb). 

Generally speaking, in compounds, the charge distribution due to anions surrounding 

the metal ion induces a static electric field, named ligand-field, or crystal field, which 

produces a splitting of the energy levels occupied by localized electrons. The angular part of 

the crystal field parameters reflects the influence of the spatial arrangement of the anions. The 

rare-earth 5d electron interacts strongly with the surrounding anions, making the 4f–5d 

excitation energy depend on the bonds. Owing to the crystal field, the energy difference 

between d orbitals varies; it increases with oxidation number. Inversely, the energies of the 4f 

orbitals are barely sensitive to the crystal field and the 4f orbital moments are not quenched by 

it. With regard to 4f energy levels in rare-earth ions, their crystal field splitting is generally 

not taken into account because it is much smaller than the splitting due to the spin–orbit 

Table III-6 Equilibrium lattice parameters a0 and c0 (in Å), bulk modulus B0 (in GPa), pressure derivative 

B0’, total energy (Ry), and cohesive energy Ecoh (eV) for Tb obtained with GGA and LSDA calculations, 

compared to experimental data and other works. 

 a0 c0 c/a B0 B0’ Total energy Ecoh Reference 

LSDA 3.5369 5.5923 1.5811 54.5295 4.6575 -46845.485778 -7.4401 Present 

work GGA 3.6099 5.7076 1.5432 44.4172 4.1519 -46876.430561 -8.7017 

Exp.  3.606 5.697 1.580     [10] 
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interaction (J), which is strong in many of the rare-earth compounds. Indeed, partly filled 4f 

orbital behave like localized magnetic moments [21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.III-9 Spin dependent band structures for Gd in both spin polarized GGA and LSDA approximations, 

the Fermi energy being at 0 eV. 
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Fig. III-10 Spin dependent band structures for Tb in both spin polarized GGA and LSDA approximations, the 

Fermi energy being at 0 eV. 
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Comparing the band structures of spin up states to that of spin down states for R 

(R=Gd, and Tb) (Figs. III-9 and III-10) in both approximations, we found that the band 

structures of spin up states shift towards bonding states at lower energies compared to that of 

spin down states. It is known that the 4f bands are generally very narrow, and significantly 

different from the bands dominated by s, p and d states. Therefore there exist strong on-site 

Coulomb repulsions between the highly localized f electrons [22, 23]. From Figs. III-9 and 

III-10, we see that the 4f bands in the band structures of spin up states are positioned above 

the bottom of the valence band while in the band structures of spin down states are positioned 

in the bottom of the conduction band. As we can see from Figs. III-9 and III-10, the band 

structures of R (R=Gd and Tb) in GGA are similar to those in LSDA. The major differences 

arise from the valence band of the majority spin (spin up) channel, where in Fig. III-9 (for 

Gd), along the Γ-M direction, the number of bands below EF are 5 in GGA while in LSDA 

they are 4 bands, and in Fig. III-10 (for Tb) the occupied 4f bands are split further due to 

spin–orbit coupling (as illustrated above), leading to better agreement with experiments [24] 

where the 4f bands in GGA are wider than those in LSDA. 

The spin polarized total and partial density of states DOSs for R (R=Gd, and Tb) in the 

GGA and LSDA are calculated to explain the origin of the electronic bands and reveal the 

contribution of different orbitals in the band structures. The total and partial densities of 

states, in which the spin-up and spin-down are indicated, are shown in Figs. III-11 and III-12 

for Gd and Fig. III-13 for Tb. The Fermi level set as 0 eV. From these figures it is seen that 

the metallic behavior in the majority spin (spin up) channel is dominated by only the d-states 

of the R (R=Gd, and Tb), whereas, in the minority spin (spin down) channel, it is mainly due 

to the contribution from R-d and f state electrons at the Fermi level. However, due to the 

highly localized character of the 4f-electrons, it is very unlikely that density of states can have 

a finite R-4f contribution at Fermi level and cross EF due to the underestimate of Coulomb 

repulsion of the 4f electrons in the both GGA and LSDA approximation. Further, the peaks in 

both the majority and minority spin channel of GGA are sharper when compared to the 

LSDA. 

We note also that the R-s and p states are located below the Fermi level in both 

majority and minority spin states; it is found that, in these rare earths, all components (D-z2, 

Dx2y2+Dxy, and Dxz+Dyz) of the d orbital contribute to the Fermi level in both channels. 

From the plot of total and partial density of states for the gadolinium (Gd) (Figs. III-

11 and III-12) calculated with GGA and LSDA approximations, it can be observed clearly in 

both approximations two sharp peaks in the 4f-projected density of states, one corresponding 

to the majority spin (spin up) channel and the other to the minority spin (spin down) channel. 



Chapter III 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III-11 Spin dependent total and partial density of states for Gd in GGA approximation (spin 

polarized study), the Fermi energy being at 0 eV. 
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It is found that in the majority spin (spin up) channel, the occupied Gd 4f states are 

inserted below the Fermi level around -4.7452 eV with GGA and around -4.5324 eV with 

LSDA, while in the minority spin (spin down) channel the unoccupied Gd 4f states are about 

0.5067 eV with GGA and about 0.5018 eV with LSDA above the Fermi level. Besides, one 

can immediately notice that the s, p and d states around the Fermi level of GGA shift slightly 

  

Fig. III-12 Spin dependent total and partial density of states for Gd in LSDA approximation, the Fermi 

energy being at 0 eV. 
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towards bonding states at lower energies compared to those of LSDA for both the majority 

and minority spin channel. 

It is noted that the total and partial density of states for terbium (Tb) calculated with 

LSDA are basically the same as those obtained with the GGA (Fig. III-13), even though the 

splitting and the sharpening of Tb-4f peaks are noticeably different. The Tb-4f peaks in the 

GGA are sharper and more split than that in the LSDA. In the case of spin up states (see Fig. 

III-13), the bottom of the valence band is occupied by the Tb-4f states in the range ~ -4.33358 

to -3.40839 eV with GGA and in the range ~ -4.27372 to -3.70227 eV with LSDA. At ~ -

2.15665 eV with GGA and at ~ -2.23285 eV with LSDA, the contribution of Tb-d state takes 

place. In the case of spin down states, the Tb-d peak appears at ~ -1.66685 eV with GGA and 

at ~ -1.82467 eV with LSDA, and the occupied Tb-4f states form a very narrow peak at about 

0.55117 eV with GGA and at about 0.70900 eV with LSDA below the Fermi level (because it 

is partially filled). While the unoccupied Tb-d and Tb-f states are situated above the Fermi 

level (conduction band). 

 

 

 

 

 

 

 

 

 

In Tables III-7 and III-8, we report the Fermi energy and density of states at the 

Fermi level for Gd and Tb in both approximations respectively (values are found in 

case.outputtdn and case.outputtup files (case is Gd or Tb)). 

 

 

Table III-7 Fermi energy and density of states at the Fermi level for Gd. 

 Fermi energy (Ry) 

N(EF) (states/Ry/spin) 

Spin down Spin up 

Gd (GGA) 0.41876 28.89 10.12 

Gd (LSDA) 0.43112 37.19 24.21 

Table III-8 Fermi energy and density of states at the Fermi level for Tb. 

 Fermi energy (Ry) 

N(EF) (states/Ry/spin) 

Spin down Spin up 

Tb (GGA) 0.34451 184.94 30.18 

Tb (LSDA) 0.35011 185.64 26.88 
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As seen in Tables III-7 and III-8, our density of states results at the Fermi level in the 

spin down states are higher than those in the spin up states within both approximations. The 

Fermi energy results in LSDA are higher than those in GGA. 

Fig. III-13 Spin dependent total and partial density of states for Tb in: a) LSDA and b) GGA 

approximations, the Fermi energy being at 0 eV. 
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III-II-1-4 Magnetic properties 

 

The rare earth materials have high magnetic moments and form a wide range of 

magnetic structures. 

Owing to its half-filled 4f shell, the gadolinium ion has orbital angular momentum 

L=0. Hence the effects of spin orbit coupling can be neglected in our calculations of 

gadolinium. For the terbium, however, the coupling of spin and orbital moments is important 

in obtaining estimates of their magnetic moments and magnetic ordering temperatures. 

Nonetheless, the type of magnetic order and magnetic ordering vector are determined by the s, 

p, and d conduction electrons, which are little affected by spin-orbit (J) coupling which all the 

heavy rare earths have in common. 

 

Table III-9 Calculated total and partial magnetic moment (in  (Bohr Magneton)) of the Gd in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA and LSDA calculations, 

and compared to others. 

 
Magnetic moment in 

interstitial 

Magnetic moment in 

Gd atom 

Spin Magnetic Moment 

in cell µtot 
Reference 

LSDA 0.59647 7.27662 15.14972 Present work 

GGA 0.73652 7.32661 15.38974 Present work 

Others  8.0  [20] 

  7.44  [25] 

  7.41  [26] 

Exp.  7.63  [27] 

 

The calculated magnetic moments, using GGA and LSDA, of the Gd and Tb, are 

reported in Tables III-9 and III-10 respectively. From these Tables, it can be remarked that 

the magnetic moment of the Gd and Tb atoms calculated by LSDA is a little smaller in 

comparison with that calculated by GGA. This small difference may be due to the difference 

in the lattice parameter values. 

Our results for the magnetic moment of the Gd atom (Table III-9) calculated by GGA 

and LSDA show reasonable agreement with the experimental data of 7.63  [27] and with 

the theoretical value  of 7.94  [28] and also the results of previous 

studies [20, 25, 26]. 
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It is clear from Table III-10 that our calculated magnetic moment of Tb is 

5.8601 with LSDA and 5.9516  with GGA, the latter being closer to the experimentally 

measured value [29]. 

 

Table III-10 Calculated total and partial magnetic moment (in  (Bohr Magneton)) of the Tb in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA and LSDA calculations, and 

compared to experiment. 

 
Magnetic moment in 

interstitial 

Magnetic moment 

in Tb atom 

Spin Magnetic Moment in 

cell µtot 
Reference 

LSDA 0.0167 5.8601 11.7369 Present work 

GGA 0.1251 5.9516 12.0284 Present work 

  5.83  [30] 

Exp.  6.5  [29] 

 

 

III-II-2 GGA+U and LDA+U study 

 

III-II-2-1 Computational details 

 

The total energy calculations are performed using the full potential linearized 

augmented plane wave (FP-LAPW) method [17, 18] as implemented in the Wien2k code [4]. 

The valence electron configurations are 4f7 5s2 5p6 5d1 6s2 for Gd and 4f8 5s2 5p6 5d1 6s2 for 

Tb atoms. It is well known that the conventional DFT calculations cannot describe the correct 

ground states energy levels for the systems containing open 3d (transition elements), 4f (rare 

earths) or 5f (actinides) shells because of the strong onsite Coulomb interactions in the shells. 

Hence, a DFT with a Hubbard parameter U (DFT+U) method can be used for the transition 

elements, rare earths [31–33] and actinides [34]. We applied the Hubbard parameter U 

correction to R (R=Gd, and Tb) 4f electrons in order to take account of their strong correlation 

effects [35, 36]. Although the chemical inertness of the 4f shell can be achieved in this way, 

by pushing occupied states to low energies and unoccupied states well above the Fermi level. 

The exchange correlation effects are treated using the GGA+U [37] and LSDA+U [38]. 

In our DFT+U calculations, we use U= 7.07 eV (Coulomb parameter) and J= 0.95 eV 

(exchange parameter) for Gd [39], and U=7.0 eV and J= 0.9 eV for Tb [40] (and put these 

values in the case.inorb file) in order to study the structural, electronic and magnetic 

properties of these materials. The self-consistent procedure was performed with 1000 k points 
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in the irreducible part of the Brillouin zone; self-consistency was achieved with a tolerance in 

the total energy of 0.1 mRy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III-II-2-2 Structural properties 

 

The volume corresponding to the minimum energy is the equilibrium volume (V0). 

These data are then fitted to Murnaghnan’s equation of state [12] to determine the bulk 

modulus (B0) and its first derivative (B0'). Figs. III-14 and III-15 show the variation of total 

energy with cell volume for both compound Gd and Tb, respectively. The results obtained are 

summarized in Tables III-11 and III-12, together with the experimental and other available 

theoretical values. The cohesive energies of these compounds displayed also in these Tables 

deviation from initial (c/a) ratio (%) deviation from initial (c/a) ratio (%) 

Fig. III-14 Calculated total energy curves for Gd as a function of volume in both GGA+U (a) and LSDA+ 

U (b), and as a function of deviation from initial (c/a) ratio (%) in both GGA+U (c) and LSDA+U (d) 

approximations. 

 

 

LDA+U GGA+U 

 

a) 

LDA+U 

 

GGA+U 

 

d) c) 
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are calculated from the difference between the total atomic energies of R (R= Gd, and Tb) 

atoms and the minimum energy of bulk compound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the data in Tables III-11 and III-12 of Gd and Tb respectively, we observe that 

LSDA+U underestimate and GGA+U overestimate the lattice parameter (a0 and c0) with 

respect to the experimental value, in agreement with the general behavior of these methods 

[42]. A small difference can also be seen in the magnitude of the energy, which means that it 

is sensitive to the approximations used in the calculation. 

As concerns bulk modulus (B0), the result from GGA+U is lower than that from 

LSDA+U, for both Gd and Tb, which results from the overbinding characteristic of LSDA+U 

Fig. III-15 Calculated total energy curves for Tb as a function of volume in both GGA+U (a) and LSDA+ U 

(b), and as a function of deviation from initial (c/a) ratio (%) in both GGA+U (c) and LSDA+U (d) 

approximations. 

 

deviation from initial (c/a) ratio (%) deviation from initial (c/a) ratio (%) 

LSDA+U GGA+U 

a) b) 

LSDA+U GGA+U 

c) d) 
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approximation. Furthermore, (B0) of standard DFT is higher than that of DFT+U for both 

systems. 

 

Table III-11 Equilibrium lattice parameters a0 and c0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, 

and total energy (Ry), and cohesive energy Ecoh (eV) for Gd obtained with GGA+U and LSDA+U calculations, 

compared to experimental data and other works. 

 a0 c0 c/a B0 B0’ Total energy Ecoh Reference 

LSDA+U 3.5721 5.6810 1.59038 49.3296 3.5077 -45091.942424 -9.3154 Present 

work GGA+U 3.6475 5.8009 1.59037 48.0048 3.0020 -45122.189166 -8.1126 

 3.599 5.776  40 3.98   [19] 

Exp.  
3.634 5.781 1.591     [10] 

3.595  5.785      [11] 

 

Table III-12 Equilibrium lattice constant a0 and c0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, 

and total energy (Ry) and cohesion energy Ecoh (eV) for Tb obtained with GGA+U and LSDA+U calculations, 

compared to experimental data and other works. 

 a0 c0 c/a B0 B0’ Total energy Ecoh Reference 

LSDA+U 3.5558 5.6222 1.5811 53.9273 2.9577 -46845.390122 -11.2868 Present 

work GGA+U 3.6379 5.7520 1.5811 42.0505 4.4803 -46876.353287 -10.4172 

Exp.  3.606 5.697 1.580     [10] 

 

It is little surprise that the calculated cohesive energies with GGA+U are smaller than 

those calculated with LSDA+U (by 19.784% for Gd and 14.509% for Tb). This is because the 

increase of the lattice parameter goes along with a decrease of the cohesion of the crystal. 

The obtained ground state properties are used to calculate self-consistently electronic 

and magnetic properties of the compound. 

 

III-II-2-3 Electronic structure 

 

In order to understand the electronic structure of R (R=Gd, and Tb), the spin 

dependent band structure of the Gd and Tb is computed using GGA+U and LSDA+U 

exchange correlation and depicted in Figs. III-16 and III-17 respectively. It is found that both 

the minority and the majority spin channel exhibit metallic behavior because several bands 

cross the Fermi level. The fact is further confirmed by the atomic site projected densities of 
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states (PDOS) profiles in Figs. III-18 and III-19 for Gd and Fig. III-20 for Tb, which show a 

finite number of electrons at the Fermi level. 
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Fig. III-16 Calculated band structures for Gd in both approximations GGA+U and LSDA+U. 
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From Tables III-13 and III-14, it is also observed that the density of states at the 

Fermi level (N(EF)) is not negligible for both minority spin (spin down) electrons and 

LDA+U 

Spin Spin 

GGA+U 

Spin Spin 

Fig. III-17 Calculated band structures for Tb in GGA+U and LSDA+U approximations, the Fermi energy 

being at 0 eV. 
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majority spin (spin up) electrons within both approximations. We note that the Fermi energy 

in LSDA+U is higher than that in GGA+U for both compounds. 

 

Table III-13 Fermi energy and density of states at the Fermi level for Gd obtained with GGA+U 

and LSDA+U calculations. 

 Fermi energy (Ry) 

N(EF) (states/Ry/spin) 

Spin down Spin up 

Gd (GGA+U) 0.41637 15.55 10.43 

Gd (LSDA+U) 0.42950 16.56 7.13 

 

 

Table III-14 Fermi energy and density of states at the Fermi level for Tb obtained with GGA+U 

and LSDA+U calculations. 

 Fermi energy(Ry) 

N(EF) (states/Ry/spin) 

Spin down Spin up 

Tb (GGA+U) 0.34349 12.44 8.98 

Tb (LSDA+U) 0.34978 13.47 8.00 

 

For R (R=Gd, and Tb), the LSDA+U and GGA+U energy band structures illustrated in 

Figs. III-16 and III-17 are qualitatively similar. Indeed, the crossings of bands with the Fermi 

level are nearly the same in the two approximations, where the values of the Fermi energy are 

0.41637 Ry for Gd and 0.34349 Ry for Tb in GGA+U and a higher 0.42950 Ry and 0.34978 

Ry for Tb in LSDA+U for Gd (Tables III-13 and III-14). 

When we focus our attention to the M point (Figs. III-16 and III-17), we clearly see 

that the width of the valence band in LSDA+U is slightly higher than that in GGA+U in both 

compounds, as a consequence of the reduced lattice parameter. Indeed, from Figs. III-16 and 

III-17, it is seen that the 4f bands are very narrow, significantly different from the bands 

dominated by s, p and d states. Therefore, it can be concluded that there exist a strong on site 

Coulomb repulsions between the highly localized f electrons. The spin–orbit term may be 

ignored since the 4f shells are exactly half occupied for Gd, whereas with non-zero total 

orbital angular momentum, the spin–orbit term (J) may be significant for Tb where the 

occupied 4f bands are split further due to spin–orbit coupling, hence Fig. III-17 presents the 
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theoretical band structure of Tb that takes into account both the Hubbard U term and the spin–

orbit interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III-18 Spin dependent total and partial density of states for Gd in GGA+U approximation, the Fermi 

energy being at 0 eV. 
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The l-projected density of states (DOS) plot provides an even clearer picture of the 

elemental contributions to the electronic structure of Gd and Tb. Figs. III-18 and III-19 for 

Gd and Fig. III-20 for Tb show the spin dependant total density of states and the projected 

density of states calculated with GGA+U and LSDA+U for the Gd and Tb respectively. The 

Fig. III-19 Spin dependent total and partial density of states for Gd in LSDA+U approximation, the Fermi 

energy being at 0 eV. 
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valence band (VB) and conduction band (CB) around the Fermi level are primarily dominated 

by R-5d electrons in both spin (up and down), where all D-z2, Dx2y2+Dxy, and Dxz+Dyz 

electrons participate. The width of valence band in spin up states is slightly larger than that in 

spin down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III-20 Spin dependent total and partial density of states for Tb in LSDA+U and in GGA+U 

approximations. Spin up (  ) and down (   ) states are plotted separately above and below the thin horizontal 

zero line. The Fermi energy is at 0 eV. 
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For Gd (see Figs. III-18 and III-19), it is seen that in the valence band the 4f occupied 

states manifest themselves with a sharp peak (majority spin channel) at -8.11409 eV with 

GGA+U and at -7.99341 eV with LSDA+U below the Fermi energy, while the empty 4f states 

(minority spin channel) are well separated and can be found near 3.39642 eV with GGA+U 

and near 3.29941 eV with LSDA+U above EF. 

From Fig. III-20 for both approximations, we observe instead different peaks of the 

4f-projected density of states well below and well above the Fermi level. In spin up states, the 

4f levels are narrower than those in the spin down states. 

For both spin directions in this compound (Fig. III-20), just below the Fermi level, the 

peaks are formed due to Tb-d state electrons and also Tb-p state electrons which make a non-

negligible contribution. 

 

III-II-2-4 Magnetic properties 

 

The rare-earth metals have similar crystal structures, which arise from the electronic 

structure of the valence shells as the localized 4f shell is being filled [42-45]. In spite of this, 

their magnetic structures vary significantly [21]. This is directly related to the mechanism of 

the exchange interaction in these materials where the spin-polarized 4f wave functions of each 

atom do not overlap but are responsible for a large magnetic moment. In contrast, the s, p, and 

d electrons are delocalized and form bands. 

The calculated total and atom-resolved magnetic moments, using GGA+U and 

LSDA+U, of Gd and Tb, are summarized in Tables III-15 and III-16 respectively. 

 

Table III-15 Calculated total and partial magnetic moment (in B (Bohr Magneton)) of the Gd in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA+U and LSDA+U 

calculations and compared to others. 

 
Magnetic moment 

in interstitial 

Magnetic moment 

in Gd atom 

Spin Magnetic 

Moment in cell µtot 
Reference 

LSDA+U 0.68839 7.41937  15.52714  Present work 

GGA+U 0.77176  7.41404  15.59985  Present work 

Others  7.92  [20] 

Exp.  7.63  [27] 

Theo.  7.94  [28] 
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The present study shows that the total magnetic moment of the studied compounds 

originate from the exchange-splitting of the 4f states of the rare-earth, where it is equal to 

7.41  with GGA+U and to 7.42  with LSDA+U for Gd atom and equal to 6.52  with 

GGA+U and to 6.54  with LSDA+U for Tb atom. The results obtained with the LSDA+U 

method are slightly in better agreement with the experimental data compared to those 

calculated by the GGA+U method. The magnetic moments of the Gd and Tb atoms (Tables 

III-15 and III-16) are in agreement with the available data [46]. 

 

Table III-16 Calculated total and partial magnetic moment (in  (Bohr Magneton)) of the Tb in the 

ferromagnetic configuration (FM) for hexagonal structure, obtained with GGA+U and LSDA+U 

calculations and compared to others. 

 
Magnetic moment 

in interstitial 

Magnetic moment in 

Tb atom 

Spin Magnetic 

Moment in cell µtot 

Reference 

LSDA+U 0.36365 6.53567 13.43500 Present work 

GGA+U 0.44671 6.52331 13.49334 Present work 

Exp.  6.5  [29] 

Theo.  9.72  [47] 

 

 

III-III Summary 

 

The results of the calculations presented in this chapter show that in the pure rare 

earths R (R = Gd, and Tb) the LDA leads to an overbinding— smaller lattice constants and 

larger cohesive energies and bulk moduli—while the GGA results show a significant 

underbinding in both spin polarized and non-spin polarized studies. On the other hand, the 

GGA calculated lattice constants agree well with available experimental data. The absolute 

values of cohesive energy of the R (R = Gd, and Tb) calculated by LDA and by 

LSDA/LSDA+U in the spin polarization calculation are higher than those calculated by GGA 

and by GGA/GGA+U in the spin polarization calculation due to the overbinding effect. 

The calculations of band structures and densities of states clearly show that the pure R 

(R = Gd, Tb) in both spin polarized and non-spin polarized studies exhibit metallic behavior. 

In addition the calculated magnetic moment of the R (R = Gd, and Tb) show reasonable 

agreement with previous results in the literature. 
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ver the past few decades, a major challenge which still remains is to identify 

optimal intermetallic candidates for hydrogen storage. Rare earth (R) alloys are 

seen as promising materials, owing to high hydrogen capacity per volume unit and 

an ability to absorb hydrogen under moderate conditions of temperature and pressure  

[1], where the interstitial hydrogen atoms 

strongly modify the electronic structure 

and add interesting features [2]. 

Dihydrides are obtained from an 

exothermic reaction which forms stable 

compounds crystallizing in the cubic 

fluorite structure of the CaF2 type [3]. This 

crystal structure consists of two 

sublattices: the fcc sublattice of the R-

atoms, and that of the H-atoms occupying 

ideally all the tetrahedral interstices of the 

former. 

 

 

 

 

 

 

 

 

 

 

 

The aim of this chapter is to study theoretically the structural, electronic and 

thermodynamic properties of rare earth dihydrides RH2 (R = Gd and Tb) using first-

principles methods. No magnetic (no spin polarization) calculations are carried out in this 

chapter. 

O 

Fig. IV-1 The compound crystallizes in the 

CaF2 fluorite type structure: the large spheres 

represent rare earth atoms ( 4) and small 

spheres hydrogen atoms occupying tetrahedral 

sites ( 8) (figure plotted with XCrysDen [4]). 
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IV-I Gadolinium dihydride GdH2 

 

IV-I-1 Computational methods 

 

Our calculations are based on density functional theory (DFT) [5, 6]. In this work, the 

full potential linearized augmented plane wave (FP-LAPW) method as implemented in the 

WIEN2k package [7] was used for the calculations, in which the Kohn-Sham equations are 

solved self-consistently. In this method, electronic wave functions, the charge density and the 

crystal potential are expanded as spherical harmonics inside the non-overlapping atomic 

spheres of radius RMT, and as plane waves in the remaining space of the unit cell. The muffin-

tin radii (the atomic spheres radii), RMT, selected for Gd and H were 2.25 bohr and 1.8 bohr, 

respectively. We have chosen the basis set size Rmin
MT*Kmax = 9, where Rmin

MT is the smallest 

atomic sphere radius inside the cell and Kmax is a cutoff for the basis function wave vector. 

The cutoff in the charge density Fourier expansion, Gmax, was taken to be 20 Ry1/2. We also 

mention that the integrations over the Brillouin zone are performed up to 400 k-points in its 

irreducible wedge. We used an energy to separate core and valence states equal to -8 Ry. 

Exchange and correlation effects were treated within the density functional with the 

generalized-gradient approximation of Perdew, Burke and Ernzerhof (GGA96) [8]. We have 

taken a value of 5.3022 Å [9] as the actual lattice constant for the calculations. The self-

consistent calculations are considered to be converged only when the calculated energy 

changes by less than 0.1 mRy. 

 

IV-I-2 Results and discussion 

 

The ground-state structural 

parameters have been obtained by 

minimizing the total energy with respect to 

the volume. By fitting this total energy 

versus volume data to the non-linear 

Murnaghan equation of state [10], as 

shown in Fig. IV-2, we obtained the lattice 

 

 

 

 

 

 

 

 

constant, the value of the bulk modulus and its pressure derivative at equilibrium. The results 

are given in Table IV-1 along with earlier experimental and theoretical findings. Our 

Fig. IV-2 Total-energy of GdH2 as a function of 

volume. 
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calculated structural parameters show very good agreement with the available results [9, 11, 

and 12]. 

 

Table IV-1 Equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, and total 

energy (Ry) compared to experimental data and other works for GdH2. 

 a0 B0 B0’ Total energy Reference 

GGA 5.326 53.1873 4.0861 -22563.057167 

Present work 

[13] 

Exp. 5.296 (extrapolated to 0K)    [9] 

Experiment and 

Spin polarized DFT 

5.3    [11] 

Exp. 5.303    [12] 

 

We calculated the electronic band structures at the equilibrium lattice constant for 

different high-symmetry points in the Brillouin zone. 

The calculated band structure and total DOS of GdH2 are shown in Fig. IV-3, the 

dashed line indicating the Fermi level. Note that all the 7f electrons are found in a single 

unsplit peak at Fermi level thus missing the strong correlation between f electrons. This is not 

acceptable from the point of view of the electronic distribution. In order to circumvent this 

problem, DFT calculations going beyond the LDA/GGA scheme level can to some extent 

improve on the treatment of correlation: methods such as LDA+U, self-interaction correction 

(SIC) and open core calculations have been cited [14]. 

In this work, we used the less sophisticated ‘open core’ approach in which 

contributions of the 4f electrons are removed from the valence bands, a procedure equivalent 

to the LDA+U approximation where U = +∞ for the f electrons. These f electrons are treated 

as atomic electrons, i.e. they cannot hybridize with the other valence s, p, and d electrons 

anymore and are perfectly localized [15]. 

However, one can expect the existence of finite localized magnetic moments on the 4f 

electrons. This magnetic aspect has not been considered in our calculations. 

 

Table IV-2 Fermi energy and density of states at the Fermi level for GdH2 (our results Ref. [13]). 

 Fermi energy (Ry) N(EF) (states/Ry) 

GdH2 0.52165 13.3759 
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Fig. IV-3 Density of states (right panel) and electronic band structure along high-symmetry 

directions (left panel) of GdH2, the Fermi energy being at 0 eV. 
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Fig. IV-4 Density of states (right panel) and electronic band structure along high-symmetry 

directions (left panel) of GdH2 within the ‘open core’ approach, the Fermi energy being at 0 eV. 
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After applying the open core procedure, the calculation is iterated until convergence. 

This establishes the values of the Fermi energy (EF) and the density of states at the Fermi 

level N(EF) (Table IV-2). 

The band structure and total density of states calculated using the ‘open core’ 

treatment of GdH2 is shown in Fig. IV-4. The unit of density of states is state per eV and the 

energy is the electron volt. The energy origin in this figure indicates the Fermi level. 

Note that the only difference with the previous calculations is the shifting of the sharp 

peak due to 4f electrons above the Fermi energy. 

Fig. IV-4 shows qualitative agreement with calculations made by Gupta (1980) [1], 

Switendick (1971) [16], Misemer et al. (1982) [17] on rare-earth systems and a good 

agreement with the photoemission experiments by Koitzsch et al. (2004) [11] on this 

particular GdH2 system, and particularly with those of Fujimori et al. (1980) [18]. 

This figure indicates that only two new bands are added below the Fermi energy and 

above E=-7.6417eV. The new bands are a direct consequence of there being two hydrogen 

atoms in the unit cell and would not appear in structures with only one hydrogen atom in the 

unit cell, although the presence of the two low-lying metal-hydrogen bands is a feature 

common to all the fluorite-structure metal dihydrides [19]. These low-lying bands play an 

important role in the stability of the compound as was confirmed by ultraviolet (UV) 

photoemission experiments by Weaver et al. [20]. 

The width of the valence band is 5.3607 eV, which is much smaller than that of TiH2; 

this is due to the small H-H separation leading to the large H-H interaction in TiH2. This 

confirms that the valence band width is principally determined by the H-H interaction and 

therefore sensitive to the H-H distance [18]. 

In Fig. IV-4, two large peaks are found in the DOS of the first two bands, with the 

first peak centered at E=-4.7301 eV and the second higher peak at E=-3.9953 eV. These low-

lying bands are filled by four of the five valence electrons of this compound, the fifth valence 

electron filling the bottom of the metal 5d band [1, 16, 17, and 19]. In the same figure (band 

structure) more bands cross E=EF and therefore this compound must show a metallic 

behavior. This is confirmed by all the profiles of the DOS which show a finite number of 

electrons at the Fermi level. The latter lies 1.383 eV above the bottom of the 5d metal bands. 

In order to analyze the atomic interaction between a hydrogen atom and its different 

neighboring atoms, the total DOS has been decomposed into its partial (s, p, d and f) wave 

components around the H where each Gd site sits in the middle of a cube with eight 

tetrahedral sites at the corners. 
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In Figs. IV-5 and IV-6, we show 

the total DOS decomposition into 

components according to the value of the 

angular momentum (s: L=0; p: L=1; d: 

L=2; f: L=3) inside the MT (Muffin Tin) 

spheres of the Gd and of the hydrogen. 

From Fig. IV-6, one can clearly see 

that the two low-lying bands are largely 

formed by the s states of hydrogen. Indeed, 

the shape of the L=0 component of the 

DOS inside the hydrogen MT spheres has a 

structure of two peaks, and this shape is 

very similar to the total DOS. 

Cubic symmetry leads to the degeneracy of 

states of metallic quintuple states in triple 

(d-t2g) and double (d-eg) states [1]. 

Some d-t2g states, and, to a lesser 

extent, s and p states of the metal have 

been significantly affected by the 

interaction of metal-hydrogen (Me-H) 

(orbits of the hydrogen 1s), and are located 

at lower energies (the lowest point at Г), 

where the formation of this band poses the 

question of this bond’s ionicity; a charge-

transfer analysis points to an effective 

charge transfer away from the metal site to 

the tetrahedral hydrogen sites [17]. 

As noted above, it was shown that the 

hybridization is important in the low-lying 

bands which contain a contribution from 

the metal in addition to that of hydrogen 

(Fig. IV-7). 

Dihydrides cannot literally be 

considered purely ionic compounds [1], 
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Fig. IV-5 Orbital-projected DOS’s for Gd in 

GdH2. 



Rare-earth dihydrides RH2 (R = Gd and Tb): structural, thermodynamic, and electronic properties 

99 

 

even though the results show that hydrogen 

in tetrahedral sites is negatively charged 

[3]. The nature of bonding in this 

compound (and nearly all rare earth 

dihydrides) must be discussed in terms of 

interactions between metal d states and 

hydrogen 1s states [16]. 

The second electronic band (at Г 

and below the d bands) is formed by a 

combination of antibonding orbitals of the 

two states of the hydrogen 1s states in the 

unit cell. Fig. IV-5 shows the presence of s 

states of the metal on the negative energy 

side (E<EF) of the first two bands while the 

metal p states give an important 

contribution to the second peak observed 

below EF in the total DOS. On the other 

hand, the bottom of the conduction band is 

d-eg like; we can see that a moderate 

contribution of Gd-p states is present, 

against a very small contribution from Gd-

s states and H-s states near the Fermi level. 

An unoccupied 4f-electrons peak is 

localized in the region of the conduction 

band some electrons volts above the Fermi 

level (EF). This is an artifact due to the 

‘open core’ method used to make the 

calculation since it is known that the 4f-

electrons are located in the core of atoms 

and their states should not appear. 

Net depopulation of the metal 5d bands 

during hydrogenation, which is a common 

feature to most rare earth dihydrides, plays 

an important role in the magnetic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV-6 Orbital-projected DOS’s for H2 in GdH2. 
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Fig. IV-7 The calculated total and partial density of 

states for GdH2. 
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properties of these compounds.  

 

IV-II Terbium dihydride TbH2 

 

IV-II-1 Computational method 

 

First principles calculations based on the density functional theory were performed [5, 

6] using the full potential linearized augmented plane wave (FP-LAPW) method as 

implemented in the WIEN2k Package [7]. The cutoff in the charge density Fourier expansion, 

Gmax, was taken to be 20 Ry1/2, where 1 Ry= 13.60570 eV. We adopted the generalized 

gradient approximation (GGA) [8] of the Perdew, Burke and Ernzerhof (GGA96) functional 

and the local density approximation (LDA) [21] to describe the exchange–correlation 

interactions [22]. 

Rare earths can be problematic for DFT calculations. We note that one can expect the 

existence of finite localized magnetic moments on the 4f electrons. This magnetic aspect has 

not been considered in our calculations. It is known, indeed, that, in rare earths, the 4f 

electrons, being very close to the core, are expected to be chemically inert. This leads us to 

consider 4f electrons as atomic electrons, i.e. they cannot hybridize with the other valence s, 

p, and d electrons anymore and are perfectly localized [23]. For these reasons, the 

contribution of the 4f electrons are removed from the valence bands, and are treated as those 

of core electrons. It is known that in WIEN2k the core states feel only a spherical potential, 

are not split by crystal fields and do not contribute to it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV-8 Total energy of TbH2 as a function of volume in both GGA and LDA approximations. 

GGA LDA 
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We used an energy of -8 Ry to separate core and valence states, and the Tb 

(5s25p65d16s2) and H (1s1) orbitals were treated as valence states (we did not treat the f 

orbitals of Tb as valence electrons but as core electrons). The calculations were based on an 

optimized number of k-points of 1000, without considering the spin polarization. The 

calculations were considered converged for changes of the total energy smaller than 10-4 Ry 

between two consecutive iterations. 

 

IV-II-2 Results and discussion 

 

IV-II-2-1 Ground state properties 

 

The bulk modulus describes the resistance of the solid to the uniform volume 

deformation (i.e. hydrostatic pressure) and it is described by the following equation: 

 

      [IV-1] 

 

Here  is a hydrostatic pressure and  is a unit cell volume. It is possible to calculate 

bulk modulus by performing series of calculations as a function of the relative volume of the 

unit cell (ranging from −m% to m%). Such calculations provide the dependence of the total 

energy on the unit cell volume , which can be fit with a Murnaghan equation of state 

of the form [10, 24]: 

 

    [IV-2] 

 

Here Etot,0 and  are equilibrium total energy and volume, respectively, and  is the bulk 

modulus at the equilibrium (P=0). 

We obtained bulk modulus (B), derivative of bulk modulus (B′), equilibrium volume 

(V0) and the ground state energy (E0) of unit cell through volume optimizations as shown in 

Fig. IV-8 and listed in Table IV-3 together with the available data. Calculated E(V) data of 

TbH2 were fitted to the non-linear Murnagham equation of state [10]. 

There is good numerical agreement between experimental and calculated lattice 

constants. Moreover, our calculated lattice parameter of TbH2 is smaller than that of GdH2, 

which is in agreement with the experimental observation reported by Ref. [25]. 

It may be noted here that the lattice parameter LDA calculations underestimate 

experimental results by about 2.04% while GGA calculations overestimate them by about 
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1.07%. In addition, it can be found from Table IV-3 that the GGA lattice constant value is 

3.18 % larger than that obtained by LDA for TbH2. 

 

Furthermore, the bulk modulus of TbH2 when computed with LDA is higher than that 

of GGA, which is mainly due to the fact that the cell volume expands while computed with 

GGA. 

All physical properties are related to the total energy. For instance, the equilibrium 

lattice constant of a crystal is the lattice constant that minimizes the total energy. If the total 

energy is calculated, any physical property 

 

IV-II-2-2 Electronic properties 

 

Due to the periodicity of the lattice, the band structure is calculated for the first 

Brillouin zone only. The symmetry of the lattice allows the calculation of all possible non-

equivalent bands by selecting a one-dimensional path in this zone, which includes all the 

important high symmetry points. These points are marked by capital Greek and Latin letters 

and are shown on the band structure plots. 

The electronic band structure calculated in density functional theory is calculated from 

the electron density by solving Kohn-Sham equations and calculating the energy eigenvalues. 

The energy which corresponds to the highest occupied orbital is called Fermi level and 

is usually set to zero. The energy levels just below the Fermi level EF are called valence band 

as they correspond to the electrons which take part in the bond formation. The unoccupied 

states above EF are called conduction band. Another possibility for analyzing the electronic 

structure is to calculate the density of states (DOS), which is the number of electrons 

occupying the same energy level in the first Brillouin zone. 

 

Table IV-3 Equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), pressure derivative B0’, and 

total energy (Ry) for TbH2 compared to experimental data and other works. 

 method a0 B0 B0’ Total energy Reference 

TbH2 

GGA 5.2993 59.9989 1.9613 -23440.304180 Present work [25] 

LDA 5.1360 67.2194 4.0944 -23424.830688 Present work 

Exp. 5.2430    [9] 

GdH2 
GGA 5.326 53.1873 4.0861 -22563.0572 [13] 

Exp. 5.296    [9] 
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Fig. IV-9 Calculated density of states (right panel) and calculated electronic band structure along high-

symmetry directions (left panel) of TbH2 with GGA and LDA, the Fermi energy being at 0 eV. 

GGA 
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The calculated band structure and the total density of states for TbH2 in both GGA and 

LDA approximations are depicted in Fig. IV-9, where EF is set at 0 eV. It can be clearly seen 

that this dihydride shows metallic features with a non negligible amount of electrons 

traversing the Fermi level (see Table IV-4). However the calculated density of states at the 

Fermi level N(EF) with LDA becomes smaller than that calculated with GGA. The overall 

band profiles for both approximations are almost similar to each other. 

Comparing the GGA-calculated band structure of TbH2 to that with LDA (Fig. IV-9), 

we find that the LDA-calculated band structure downshifts slightly to lower energies 

compared to that with GGA, hence the Fermi energy in LDA is slightly larger than that in 

GGA (Table IV-4). 

The calculated total DOS of TbH2 in both GGA and LDA approximations (Fig. IV-9) 

also exhibits a metallic nature due to the presence of some amount of localized DOS across 

the Fermi energy. Hence, our calculations show that TbH2 is metallic, in agreement with 

electrical resistivity measurement interpretations [26]. 

It can be seen clearly from Fig. IV-9 that the total DOS in both approximations behave 

similarly in both the position and shape of the peaks, but with some noticeable changes. 

The total density of states describes the distribution of energies for all electrons in the 

system, while the partial DOS shows the energy distribution of the electrons of a particular 

atom and its orbital (s, p, d). 

Generally speaking, under crystal 

field effects the orbital d consists of: , 

, ,  and  states. If the 

material or solid has symmetry (symmetry 

here refers to the atomic environment's 

symmetry, not the orbital's), the orbital d 

splits into the two groups eg and t2g. The 

 and  orbitals are collectively 

called the eg orbitals, whereas the , , 

and  orbitals are called the t2g orbitals 

(Fig. IV-10). 

The total and partial density of states of 

TbH2 calculated in GGA and LDA are 

shown in Fig. IV-11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV-10 Illustration of the splitting of a free ion’s d 

orbitals in an octahedral crystal field. Left side shows 

the d orbitals with different z angular momentum 

component, color is the phase of the complex 

amplitude. Right side shows the low lying threefold 

degenerate t2g orbitals and the higher energy twofold 

degenerate eg orbitals [27]. 
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Table IV-4: Fermi energy and density of states at the Fermi level for TbH2. 

 Fermi energy (Ry) N(EF) (states/Ry) 

GGA 0.52341 10.30 

LDA 0.55723 9.79 

 

The fact is further confirmed by the atomic site projected densities of states (PDOS) 

profiles in Fig. IV-11, which shows a finite number of electrons at the Fermi level, the metal 

character of TbH2 mainly comes from the d electrons and p electrons of the Tb atom, while 

the f electrons of Tb have almost no contribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV-11 Calculated total and partial density of states for TbH2 in both GGA and LDA approximations, 

the Fermi energy being at 0 eV. 



Chapter IV 

106 

It can be clearly seen from this figure that the valence band (VB) and conduction band 

(CB) around the Fermi level are primarily dominated by Tb-d electrons, whereas 

contributions from H-s electrons are negligible. In the conduction band, the main 

contributions are due to the unoccupied states of Tb-5d, where the unoccupied bottom of the 

conduction band is due to the d-t2g states peak of Tb and the occupied levels just below EF 

are dominated by d-eg states of Tb (the Fermi level lies 1.71636 eV above the bottom of the 

5d-eg metal bands). 

The valence band of TbH2 is formed with Tb-d and H-s states (as displayed in Fig. IV-

12) with a non negligible Tb-p contribution. 

The bottom of the valence band is 

occupied primarily by the Tb-d-t2g and H-

s states in the range ~ -6 to ~ -2 eV. H-s 

states only contribute to the states of the 

two lower bands. The main hybridization 

interactions between Tb-5d-t2g and H-s 

orbitals are shown by similarities in the 

position and shape of the peaks in their 

respective projected DOS. The presence of 

the hybridization effects reveals that there 

are certain covalent bonds in TbH2. 

 

 

 

 

 

 

 

 

 

 

 

The interpretation of the chemical bonding is further substantiated by the analysis of 

the valence-electron-charge density along the representative (110) plane in the fcc CaF2-type 

crystal as shown in Fig. IV-13. The charge density around Tb and H atoms are all near 

spherically distributed with a slight deformation towards the directions to their respective 

nearest-neighboring atoms and there are clear covalent bridges between Tb and Htet atoms. 

Evidently, considerable charge accumulates in the bonding regions of Tb and Htet atoms, 

which strengthens the view that TbH2 has a certain covalent character. 

Another point of interest is the existence of a little charge in the interstitial regions 

away from the bonds which gives a metallic character to this compound, confirming therefore 

our DOS analysis, and a similar behaviour reported in Ref. [28] (in other rare earth 

dihydrides). 

 

 

 

 

Fig. IV-12 Calculated partial density of states for 

TbH2 with GGA, the Fermi energy being at 0 eV. 
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IV-III Calculation of the total energy of the H2 molecule 

 

The total energy of H2 is obtained 

by taking a relatively large cubic unit cell, 

approximately 10x10x10 Angstrom units 

(i.e. a=b=c=10 Å) containing one H2 

molecule in its center as shown in Fig. IV-

14 (plotted using Xcrysden [4]). In this 

way one simulates the gaseous state of H2 

at ambient conditions. 

 

 

 

 

 

 

 

 

 

 

Fig. IV-14 Conventional unit cell for H2. 

Fig. IV-13 Calculated valence-electron-charge density contour (in electron per Å3) of TbH2 in the 

(110) plane in (a) three (large values near the Tb atom are cut out) and (b) two dimensions. 
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H H 
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Tb Tb Tb 
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The total energy of the hydrogen molecule was calculated using the same code as used 

previously with an optimized number of k-points of 100. The geometry was instead 

considered converged, when all atomic force components are smaller than 1. Relaxed 

positions are reported as displacements (in units of lattice parameters) from ideal positions. 

Analysis of the forces shows that the forces (from case.scf file) on the hydrogen atoms 

are zero in the x and y directions, but nonzero in the z direction. The results for H2 obtained 

before (unrelaxed state) and after (relaxed state) the geometrical optimization of the internal 

variables with both GGA and LDA approximations are tabulated in Table IV-5 together with 

other available data. 

 

 

The calculated total energies of the hydrogen molecule are very close to the value 

obtained by others, for both cases using the initial or relaxed structures. The calculated total 

energies are slightly overestimated in the GGA than that in the LDA calculations. As 

expected, the total energies calculated by relaxing the structure are slightly larger than those 

of the initial unrelaxed structure. 

 

IV-IV Thermodynamic properties 

 

In principle, theoretical evaluation of the hydride stability can be made directly from 

the total energy of the alloys involved in the hydrogenation reaction. 

 

      (IV-1) 

Table IV-5 Unrelaxed and relaxed positions of equivalent atoms for the H2 molecule in units of lattice parameters (a, b, c) 

for (x, y, z) coordinates, respectively, and total energy (Ry) with LDA and GGA approximations. 

 Method 

Positions 

Energy Reference 

x y z 

Unrelaxed 
LDA 0.50 0.50 0.50 0.50 0.537 0.463 -2.26925128 

Present 
work 

GGA 0.50 0.50 0.50 0.50 0.537 0.463 -2.32754445 

Relaxed 
LDA 0.50 0.50 0.50 0.50 0.53837127 0.46162873 -2.27014894 

GGA 0.50 0.50 0.50 0.50 0.53755349 0.46244651 -2.32772272 

Others 

       -2.324803 [29] 

       -2.320 [30] 

       -2.32806871 [31] 
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We define  as the heat of formation for the chemical reaction (IV-1) as follows: 

 

    [IV-3] 

 

where ,             and  are the total energies of RH2, R and H2, respectively. The  

taken in this calculation was calculated previously using GGA and LDA approximations 

(relaxed state). 

To get more insight into the stability of the RH2, we calculated the cohesive energy 

 (R = Gd, and Tb) and the average binding energy per H atom . The 

cohesive energy  and the average binding energy per H atom  [32] of RH2 

are expressed as: 

 

    [IV-4] 

 

 

    [IV-5] 

 

Tables IV-6 and IV-7 include the WIEN2k calculations of ,  and 

 that are used to understand the stability of RH2 (R = Gd, and Tb) with the two 

approximations. From Table IV-6, it is observed that, for TbH2, the LDA calculation gives a 

much larger formation energy compared to the GGA approximation. 

 

Table IV-6 Calculated cohesive energy Ecoh (eV), binding energy Eb (eV/atom), and heat of formation 

(ΔHf) (kJ/mol H2) for GdH2 in GGA methods. 

 method Ecoh Eb(H) ΔHf Reference 

GdH2 
GGA -13.938559292 -4.77125715 -270.5016586 Present work 

other   -196 [33] 

 

Additionally, our calculated value of  for RH2 is in qualitative agreement with 

Andreasen’s results [34] (as it is situated in the experimental interval values for heats of 

formation of rare earth metal hydrides), also, it is found that the GdH2 and TbH2 have 

negative heats of formation, which suggests that these dihydrides can be easily synthesized at 

ambient condition. 

On the other hand, the cohesive energy and average binding energy per H atom of 

TbH2 in the GGA is less than that in the LDA by 8.568% and by 5.543% respectively. This 
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makes the value of cohesive energy and average binding energy per H atom decrease with 

increasing cell parameter. 

 

Table IV-7 Calculated cohesive energy Ecoh (eV), binding energy Eb (H) (eV/atom), and heat of 

formation (ΔHf) (kJ/mol H2) for TbH2 in both GGA and LDA methods. 

 method Ecoh Eb(H) ΔHf Reference 

TbH2 

GGA -13.290380707 -4.469775698 -212.335202917 
Present work 

LDA -14.407427294 -4.725686906 -268.643842203 

others   -213 [33] 

 

 

IV-V Summary 

 

In this chapter, we studied the structural, electronic, and thermodynamic properties for 

stoichiometric dihydrides, viz. -GdH2 and -TbH2. Calculations performed using an ab initio 

FP-LAPW method as implemented in the WIEN2k code have led to the following 

conclusions: 

– The lattice parameter LDA calculations underestimate experimental results while 

GGA calculations overestimate them. In addition, the GGA calculated lattice constants 

agree well with available experimental data. 

– The nature of bonding in the rare-earth dihydrides RH2 (R = Gd, Tb) must be 

discussed in terms of interaction between metal d states and hydrogen 1s-states. 

– The position and width of the low-lying bands depend quite sensitively on the type of 

rare earth considered. 

– The low-lying bands found in these dihydrides are not composed uniquely of hydrogen 

s states but rather show a strong hybridization with metal d- and also metal s- and p-

states. 

– The Fermi energy EF falls at a level where most of the electronic states are rare-earth 

5d conduction states. 

– The Hs-state has no contribution near the Fermi level. 

– LDA leads to an overestimation of cohesion and formation heats. 

– It is found that the GdH2 and TbH2 have negative heats of formation, which suggests 

that these dihydrides can be easily synthesized at ambient conditions. 

– The value of cohesive energy and average binding energy per H atom decrease with 

increasing cell parameter. 
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tructural and electronic properties of superstoichiometric LaH2.25 and GdH2.25 in a 

tetragonal structure will be presented in this chapter. The calculations are based 

on ab initio calculations at 0 K within density functional theory (DFT), using a 

full-potential linear augmented plane-wave (FP-LAPW) method with both GGA and LDA 

approximations as implemented in the WIEN2k code. 

 

V-I Computational method 

 

Reliability of the scheme of the calculations is crucial for scientific investigations 

particularly for uncommon quantum many body systems. Microscopic study of a typical solid 

material, containing approximately 1023 atoms per cm3, is a quantum many-body problem. 

DFT [1, 2] based first-principles methods are intensively used to investigate microscopically 

the fundamental properties of solid materials. Here we use the FP-LAPW method embodied in 

the WIEN2k computational package [3] which is now considered as one of the most accurate 

DFT approaches. The cutoff in the charge density Fourier expansion, Gmax, was taken to be 

20 Ry1/2. 

Rare earths can be problematic for DFT calculations. We note that one can expect the 

existence of finite localized magnetic moments on the 4f electrons. This magnetic aspect has 

not been considered in our calculations. It is known, indeed, that, in rare earths, the 4f 

electrons, being very close to the core, are expected to be chemically inert. This leads us to 

consider 4f electrons as atom-core electrons, i.e. they cannot hybridize with the other s, p, and 

d valence electrons anymore and are perfectly localized [4]. For these reasons, the 

contribution of the 4f electrons are removed from the valence bands, and are treated as those 

of core electrons. 

S 
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The core states energy was separated from the valence states, at -8.0 Ry, while the Gd 

(5s25p65d16s2), La (5s25p65d16s2) and H (1s1) orbitals were treated as valence states (we did 

not treat the f orbitals of Gd as valence electrons but as core electrons). Exchange and 

correlation effects were treated within the density functional with the generalized-gradient 

approximation of Perdew, Burke and Ernzerhof (GGA96) [5] and the local density 

approximation (LDA) [6]. The calculations were based on an optimized number of k-points of 

1000, without considering the spin polarization. The self-consistent convergence criteria of 

total energy calculations of the system are achieved when the total energy is stabilized within 

10−4 Ry. 

 

 

 

 

 

 

 

 

 

 

 

 

V-II Results and discussion 

 

V-II-1 Equilibrium properties 

 

For the present investigation, we have used a 1x1x2 supercell of LaH2.25 and GdH2.25 

conventional unit cell for the tetragonal structure, where its space group is I4/mmm (No. 139). 

The simulated unit cell is optimized for total energy (E) as a function of volume (V). Then the 

obtained total energies are inserted into Murnaghan’s equation of state [7] to find the ground 

state structural parameters. We present the E(V) relationship of the LaH2.25 and GdH2.25 for 

both LDA and GGA approximations in Figs. V-1 (a) and (b) and in Figs. V-2 (a) and (b) 

respectively. We extract the lattice parameter, the value of the bulk modulus, and its first 

order pressure derivative. The results data are listed in Table V-1 and Table V-2 together 

with previous experimental and theoretical findings. There are no experimental data for the 

bulk modulus available for this material and there is no direct ab initio theoretical information 

Fig. V-1 Calculated total energy curves for LaH2.25 as a function of cell volume in the (a) LDA and (b) 

GGA approximations. 

 

GGA LDA 

 

a) b) 
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available for LaH2.25 and GdH2.25 related to the effects of interstitial H atoms on their local 

atomic environment in this structure. 

 

Table V-1 Calculated equilibrium lattice constant (a0, c0) (in Å), bulk modulus B0 (in GPa), its first order 

pressure derivative B0’, and total energy (Ry) of LaH2.25 for GGA and LDA approximations compared to 

experimental and theoretical data. 

 Method a0 c0 B0 B0’ Total energy Reference 

LaH2.25 
GGA 5.6202 11.3528 63.4083 4.4141 -67992.324225 Present 

work LDA 5.5131 11.1364 75.5138 4.3108 -67941.036465 

LaD2.25 Exp. (at 17 K) 5.6174(1) 11.3054(3)    [8] 

LaH2.25  5.6082 11.2879    [9] 

LaH2 Exp. 5.6698     [10] 

ErH1.95 Exp.   67±3 9 fixed  [11] 

ErH2.091 Exp.   73±4 8 fixed  [11] 

 

Our calculated lattice parameters for LaH2.25 and GdH2.25 are in excellent agreement 

with the other theoretical and available experimental data; see Tables V-1 and V-2. 

The GGA equilibrium lattice parameter (a0 and c0) for LaH2.25 and GdH2.25, from 

Tables V-1 and V-2, slightly overestimates the experimental value, while the LDA value is 

clearly smaller than the experimental one. Conversely for the bulk modulus, it is the GGA 

value which is lower than that of the LDA as a result of the known over-binding characteristic 

of LDA. Hence, GGA overestimates lattice parameters whereas it underestimates bulk moduli 

(B0) in comparison with LDA, a feature also observed in several similar systems in other 

simulation works [12]. 

Moreover, our calculated lattice parameter of GdH2.25 in GGA is smaller than that of 

GdH2 in both GGA and GGA+U methods reported by Sudha Priyanga et al. [13], which is in 

agreement with the observed experimental trend as reviewed by Vajda [10]. 

Furthermore, in GGA, the bulk modulus value of and GdH2.25 is larger than that of and GdH2; 

this behaviour is similar to that found experimentally in the ErH2+x system (as shown in Table 

V-1 and V-2) [11] and theoretically by using GGA+U+SO (SO stands for spin-orbit coupling) 

calculations in the PuH2+x system [17] and by using the GGA method in the ScH2+x, YH2+x, 

LaH2+x and LuH2+x systems [18]. Moreover, we found that the value of the lattice parameter 

decreases with increasing excess hydrogen (x) in the GdH2+x system as found by a 

pseudopotential method plus LDA with a plane-wave basis in the YH2+x system [19], by 
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LDA+U calculations in the CeH2+x system [20], and by GGA+U+SO calculations in the PuH2+x 

system [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table V-2 Calculated equilibrium lattice constant (a0, c0) (in Å), bulk modulus B0 (in GPa), its first order 

pressure derivative B0’, and total energy (Ry) of GdH2.25 for GGA and LDA approximations compared to 

experimental data. 

 Method a0 c0 B0 B0’ Total Energy Reference 

GdH2.25 

GGA 5.301 10.6025 61.3046 5.7555 -90253.409203 
Present work 

[14] LDA 5.147 10.294 75.3761 2.0918 -90192.893632 

Exp. 5.2926     [15] 

GdH2 GGA 5.326  53.1873 4.0861 -22563.057167 
Present work 

[16] 

ErH1.95 Exp.   67±3 9 fixed  [11] 

ErH2.091 Exp.   73±4 8 fixed  [11] 

 

 

V-II-2 Electronic properties 

 

The calculated electronic band structures at the equilibrium lattice constant for different high-

symmetry points in the Brillouin zone and the total density of states DOS of LaH2.25 and 

GdH2.25 in GGA and LDA at 0 K are shown in Figs. V-3 and V-4 respectively, where the 

dashed line at zero eV indicates the Fermi energy. 

Fig. V-2. Calculated total energy curves for GdH2.25 as a function of cell volume in the (a) LDA and (b) 

GGA approximations. 

 

GGA 

  

LDA 

 

b) a) 
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Fig. V-3 Density of states (right panel) and electronic band structure along high-symmetry directions (left 

panel) of LaH2.25 in the GGA and LDA, the Fermi energy being at 0 eV. 
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Fig. V-4 Density of states (right panel) and electronic band structure along high-symmetry directions (left 

panel) of GdH2.25 in the GGA and LDA, the Fermi energy being at 0 eV. 
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Clearly, in both figures, several bands cross the Fermi level (EF), confirming that 

LaH2.25 and GdH2.25 possesses a metallic ground-state (the density of states on the Fermi level  

N(EF) is not negligible as seen in Tables V-3 and V-4), in agreement with electrical resistivity 

measurement interpretations [10]. 

 

Table V-3 Calculated Fermi energy and density of states at the Fermi level for LaH2.25. 

 Fermi energy (Ry) N(EF) (states/Ry) 

LaH225 (GGA) 0.57078 40.75 

LaH225 (LDA) 0.58848 38.64 

 

The LDA and GGA energy band structures are qualitatively similar. Indeed, the 

crossings of bands with the Fermi level are nearly the same in the two approximations, where 

the values of the Fermi energy in LDA are higher than those in GGA for both dihydrides (as 

seen in Tables V-3 and V-4). Another significant feature of the band structures in Figs. V-3 

and V-4 is the different positions of the valence bands (at Γ), where, in the LDA, these shift 

towards higher energies at the top of the valence band, and towards lower energies at the 

bottom of the valence band. 

 

Table V-4 Calculated Fermi energy and density of states at the Fermi level for GdH2.25 (present 

work Ref. [14]). 

 Fermi energy (Ry) N(EF) (states/Ry) 

GdH225 (GGA) 0.42622 38.44 

GdH225 (LDA) 0.50009 36.85 

 

The total DOS of LaH2.25 and GdH2.25 has similar features in both GGA and LDA (see 

Figs. V-3 and V-4) especially at the Fermi level. However, these figures show small but non 

negligible differences as the peaks in the GGA are fairly sharper and narrower than those in 

LDA, and the total DOS in LDA moves a little towards lower energies compared to GGA. 

From Figs. V-5 and V-6, it is seen that the total DOS of LaH2.25 and GdH2.25 is almost 

dominated by the 5d partial DOS. The partial density of states (PDOS) of RH2.25 (R = La, and 

Gd) in both approximations GGA and LDA are shown in Figs. V-7 and V-8. 
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We can begin this analysis from the situation at the Fermi level. It can be seen clearly 

that the hydrogen in both interstitial sites (tetrahedral Htet and octahedral Hoct), and both R-s 

and R-p (R = La, and Gd), do not contribute significantly at the Fermi level, which means that 

they are essentially not involved in conduction properties. In contrast, the R (R = La, and Gd) 

d electrons represent the majority contribution at EF. 

From the atomic site projected densities of states (PDOS) profiles in Fig. V-7, it is 

shown further that the upper part of the valence band from -6.86788 eV to -2.05147 eV of 

GGA and from -6.91822 eV to -1.91133 eV of LDA contains H 1s states (in both tetrahedral 

Fig. V-5 The calculated total density of states for La and partial DOS for the La-d in the GGA and in the 

LDA, the Fermi energy being at 0 eV. 

Fig. V-6 The calculated total density of states for Gd and partial DOS for the Gd-d in the GGA and in the LDA, 

the Fermi energy being at 0 eV. 
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and octahedral sites), La 5p, 5d and 5s states. While the most prominent unoccupied energy 

bands in the lowest energy domain of the conduction band are composed of p and d states 

from La. The 4f-lanthanum unoccupied states manifest themselves with a sharp band structure 

from 1.21390 eV of GGA and from 1.29962 eV of LDA above the Fermi energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. V-7 The calculated total and partial density of states for LaH2.25 in the GGA and in the LDA, the Fermi 

energy being at 0 eV. 
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In Fig. V-8, it is convenient to divide the DOS into several regions: region I (-8.44458 

to -1.58725 eV) of GGA and (-8.65451 to -1.60671 eV) of LDA with a major contribution 

from Gd d states and both H 1s orbitals and much smaller contributions from Gd s and p 

orbitals; region II (-1.58725 eV to EF) of GGA and (-1.60671 eV to EF) of LDA with very few 

Gd-p and Gd-d states; region III (above EF in the lowest energy domain of the conduction 

band) with unoccupied s, p and d states from Gd and s from H in octahedral sites (Hoct). 

Fig. V-8 The calculated total and partial density of states for GdH2.25 in the GGA (right panel) and in the LDA 

(left panel), the Fermi energy being at 0 eV. 
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It is interesting to note that a hybridization exists between R (R = La and Gd) and Htet 

atoms as shown in Figs. V-7 and V-8, which leads to an appreciable covalent component in 

the R-H bond. On the other hand, hybridization between R (R = La and Gd) and Hoct atoms is 

much weaker, indicating a degree of ionic character in this bond, which is mainly due to the 

longer R-Hoct distance (2.6516 Å with GGA and 2.5735 Å with LDA for R = Gd, 2.8101 Å 

with GGA and 2.7565 Å with LDA for R = La). A minimal atomic bonding distance 

(2.2963 Å with GGA and 2.2287 Å with LDA of R = Gd, and 2.4417 Å with GGA and 2.3952 

Å with LDA of R = La) exists between R and Htet atoms. Therefore, the R-H bonds in LaH2.25 

and GdH2.25 have a mixed (covalent-ionic) character as is found in several metal hydrides [21-

23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To gain an insight into the metal–hydrogen bonding of the RH2.25 system, we plot the 

charge-density in the (110) plane of GdH2.25 as shown in Fig. V-9. The eight H atoms lined 

out in the map occupy the tetrahedral interstices (Htet). Appreciable charge is distributed in the 

outer space of Gd and tetrahedral H atoms. To some extent, there is a buildup of charge in the 

bonding regions between the different atoms. Therefore, their bonding has some covalence, 

which agrees well with the hybridization analysis. 

In addition, as shown in Fig. V-9, we have drawn five H atoms occupying octahedral 

interstices (Hoct). The charge density is rather low around Gd and octahedral H atoms in the 

interstices. Notice that almost little charge accumulates in the bonding regions of Gd and 

Fig. V-9 Calculated valence-electron-charge density contours (in electrons per Å3) of GdH2.25  

in the (110) plane. 

Gd Gd Gd 

Gd Gd Gd 

Hoct 

Htet Htet 
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octahedral H atoms, and there is little charge for them to share. Most of the valence electrons 

of Gd are firmly bound up around their atoms, and the localization reflects the main feature of 

the ionic chemical bonds. Therefore, the bonding of Gd and octahedral H atoms has ionic 

character. Apparently, besides the covalent bonds, there are remarkable ionic bonds in the 

GdH2.25 system. 

 

V-III Summary 

 

This work was aimed at establishing a clearer picture of electronic structure and 

equilibrium properties for rare earth superstoichiometric dihydrides (LaH2.25 and GdH2.25) 

with I4/mmm space group. Calculations were performed using an ab initio FP-LAPW method 

in the local density approximation (LDA) and generalized gradient approximation (GGA) for 

exchange correlation as implemented in WIEN2k code. In GGA, the calculated lattice 

constant is larger and bulk modulus is smaller compared to LDA results. On the other hand, 

the calculated lattice constant with GGA agrees well with available experimental data. As far 

as we know, there are no bulk modulus data for the considered crystal structure. Electronic 

band structure and DOS, which were calculated and presented, clearly show that LaH2.25 and 

GdH2.25 exhibit metallic behaviour. The total DOS in GGA and LDA shows important 

differences in the vicinity of valence band, where GGA presents a tendency for under-binding 

in this material. In addition, the value of DOS at the Fermi level (N(EF)) in GGA is larger than 

that in LDA. The DOS analysis shows that the Fermi energy (EF) falls at a level where most 

of the electronic states are rare-earth 5d conduction states, while negligible contribution of 

both (tetrahedral Htet and octahedral Hoct ) interstitial H s states is observed at EF. 

The d states of R (La and Gd) atoms are the main contributors to bonding states in 

valence bands, whereas p and s states have a smaller role. It is found that hybridization exists 

between s electronic orbital of both interstitial H atoms and d electronic orbitals of R. This 

hybridization implies that there is a mixture of covalent (R–Htet) and ionic (R–Hoct) bonds. 
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n the first section of this chapter, we shall present complete results of a detailed 

electronic structure calculation of the superstoichiometric GdH2.25 ( mPm3 ) without 

investigating the magnetic properties (caused by the half occupied 4f states), which is 

based on ab initio calculations at 0K within density functional theory (DFT), using a full-

potential linear augmented plane-wave (FP-LAPW) method as implemented in the WIEN2k 

code. 

In the second section, we shall present complete results of a detailed electronic 

structure calculation of the superstoichiometric compound TbH2.25, based on ab initio 

calculations at 0K within density functional theory (DFT). In addition, we shall look for the 

role of local atomic relaxation inside the unit cell using both GGA and LDA approximations. 

 

VI-I Gadolinium superstoichiometric dihydride (without relaxation) GdH2.25 

 

VI-I-1 Computational methods 

 

Our calculations are based on density functional theory (DFT) [1, 2]. In this work, the 

full potential linearized augmented plane wave (FP-LAPW) method as implemented in the 

WIEN2k package [3], which solves the Kohn-Sham equations self-consistently, was used for 

the calculations. In this method, the electronic wave functions, the charge density and the 

crystal potential are expanded as spherical harmonics inside the non-overlapping atomic 

spheres of radius RMT, and as plane waves in the remaining space of the unit cell. The cutoff 

in the charge density Fourier expansion, GMAX, was taken to be 20 Ry1/2. 

Rare earths can be problematic for DFT calculations. We note that one can expect the 

existence of finite localized magnetic moments on the 4f electrons. This magnetic aspect has 

not been considered in our calculations. It is known, indeed, that, in rare earths, the 4f 

I 
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electrons, being very close to the core, are expected to be chemically inert. This leads us to 

consider 4f electrons as atomic electrons, i.e. they cannot hybridize with the other valence s, 

p, and d electrons anymore and are perfectly localized [4]. For these reasons, the contribution 

of the 4f electrons is removed from the valence bands, and is treated as that of core electrons. 

It is known that in WIEN2k the core states feel only a spherical potential, are not split by 

crystal fields and do not contribute to it. 

We used an energy of -8 Ry to separate core and valence states, and the Gd 

(5s25p65d16s2) and H (1s1) orbitals were treated as valence states. Exchange and correlation 

effects were treated within the density functional with the generalized-gradient approximation 

of Perdew, Burke and Ernzerhof (GGA 96) [5] and the local density approximation (LDA) 

[6]. The calculations were based on an optimized number of k-points of 1000, without 

considering the spin polarization. The self-consistent calculations are considered to be 

converged only when the calculated energy changes by less than 0.1 mRy. 

 

VI-I-2 Results and discussion 

 

VI-I-2-1 Equilibrium properties 

 

The space group of GdH2.25 is 

chosen to be mPm3  (No. 221), whose 

structure is plotted in Fig. IV-1 (by using 

Xcrysden [7]).  

The ground-state structural parameters 

have been obtained by fitting the total 

energy E versus volume V data to the non-

linear Murnagham equation of state [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We present the E(V) relationship of the GdH2.25 for both LDA and GGA 

approximations in Figs. VI-2 (a) and (b) respectively. 

We extracted the lattice parameter, the value of the bulk modulus, and its first order 

pressure derivative. The results data are listed in Table VI-1 together with previous findings 

on GdH2+x and on another rare-earth hydride. There are no experimental data for the bulk 

modulus available for this material and there is no direct ab initio theoretical information 

available for GdH2.25 related to the effects of interstitial H atoms on their local atomic 

environment. 

 

Fig. VI-1 The compound crystallises in the 

CaF2 fluorite type structure: the large spheres 

represent rare earth atoms (4) and small 

spheres hydrogen atoms occupying tetrahedral 

sites (8) and the central octahedral site (1). 
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The GGA equilibrium lattice parameter (a0), from Table VI-1, slightly overestimates 

the experimental value by 0.28%, while the LDA value is clearly smaller than the 

experimental one by 2.6%. Conversely, for the bulk modulus, it is the GGA value which is 

lower than that of the LDA by 22.2% as a result of the over-binding characteristic of LDA. 

Hence, GGA overestimates the lattice parameter whereas it underestimates bulk modulus (B0) 

in comparison with LDA, a feature also observed in several similar systems in other 

simulation works [13]. Moreover, our calculated lattice parameter of GdH2.25 in GGA is 

smaller than that of GdH2 in both GGA and GGA+U methods reported by Sudha Priyanga et 

al. [14], which is in agreement with the experimental observation reported by Ref. [15]. 

In addition, one can see a difference in the magnitude of the total energy (see Table 

VI-1), which means that it is sensitive to the approximations used in the calculation. 

Furthermore, in GGA, bulk modulus value of GdH2.25 is larger than that of GdH2. This 

Table VI-1 Calculated equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), its first order 

pressure derivative B0’, of GdH2.25 for GGA and LDA compared to other available data. 

 Method a0 B0 B0’ Total energy Reference 

GdH2.25 

GGA 5.299 62.4385 3.0152 -90253.409898 

Present work [9] 
LDA 5.143 80.3544 3.1906 -90192.894529 

GdH2.26 (6) Exp. 5.284    [10] 

GdH2 GGA 5.326 53.1873 4.0861  [11] 

ErH1.95 Exp.  67±3 9 fixed  [12] 

ErH2.091 Exp.  73±4 8 fixed  [12] 

Fig. VI-2 Calculated total energy curves for GdH2.25 as a function of cell volume in the (a) LDA and (b) 

GGA approximations. 

 

a) b) 



Superstoichiometric rare-earth dihydrides RH2.25 (R = Gd and Tb) with  space group: structural and electronic properties 

129 

behaviour is similar to that found experimentally in the ErHx system [12] (as shown in Table 

VI-1) and theoretically by using GGA+U+SO (SO stands for spin-orbit coupling) calculations 

in the PuHx system [16] and by using GGA method in the ScHx, YHx, LaHx and LuHx 

systems [17]. In contrast, we found that the value of the lattice parameter decreases with 

increasing excess hydrogen (x) in the GdHx system as found by a pseudopotential method and 

the local-density-functional approximation with a plane-wave basis in the YHx system (1994) 

[18], by LDA+U calculations in the CeHx system (2012) [19], and by GGA+U+SO 

calculations in the PuHx system (2013) [16], where x=2, 2.25. 

 

VI-I-2-2 Electronic properties 

 

The calculated electronic band structures at the equilibrium lattice constant for 

different high-symmetry points in the Brillouin zone and the total density of states DOS 

(measured in one state per unit cell per electron-Volt) of GdH2.25 in GGA and LDA at 0K are 

shown in Fig. VI-3, where the dashed line at zero eV indicates the Fermi energy. 

Clearly, in both figures, several bands cross the Fermi level (EF), confirming that 

GdH2.25 possesses a metallic ground-state (the density of states on the Fermi level N (EF) is 

not negligible as seen in Table VI-2), in agreement with electrical resistivity measurement 

interpretations [5]. The LDA and GGA energy band structures are qualitatively similar. 

Table VI-2 Fermi energy (in Ry) and density of states at the Fermi level (in states/Ry) for GdH2.25 (Ref. [9]). 

 

Fermi 

energy N(EF) Ns(EF) Np(EF) Nd(EF) Nd-eg(EF) Nd-t2g(EF) NHtet-s(EF) NHoct-s(EF) 

GGA 0.46639 40.30 0.00 0.29 2.97 2.69 0.28 0.06 0.12 

LDA 0.50542 37.82 0.00 0.33 3.02 2.71 0.31 0.05 0.10 

 

Indeed, the crossings of bands with the Fermi level are nearly the same in the two 

approximations, where the values of the Fermi energy is 0.46639 Ry in GGA and a higher 

0.50542 Ry in LDA (as seen in Table VI-2). Another significant feature of the band structures 

in Fig. VI-3 is the different positions of the valence bands (at Γ), where, in the LDA, these 

shift towards the higher-energy region in the valence band top, and towards the lower energy 

region in the valence band bottom, and a clearer splitting between the valence bands, which 

indicates increase in the bandwidth. This is a consequence of the reduction in lattice 

parameter (a) [14]. 

The total DOS of GdH2.25 has similar features in both GGA and LDA (see Fig. VI-4) 

especially at the Fermi level. However, these figures show small but non negligible 
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differences as the peaks in the GGA are fairly sharper and narrower than those of LDA, and 

the total DOS in LDA moves a little towards the lower energy region compared to GGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. VI-3 Total density of states (right panel) and electronic band structure along high-symmetry 

directions (left panel) of GdH2.25 in the GGA and LDA, the Fermi energy being at 0 eV. 
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In order to analyze the atomic interaction between a hydrogen atom and its different 

neighboring atoms, the total DOS has been decomposed into its partial-wave (s, p, and d) 

components around the H. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total DOS decomposition into components according to the value of the angular 

momentum (s: L=0; p: L=1; d: L=2) inside the MT spheres of the metal and of the hydrogen 

as shown in Fig VI-4, where the left and the right columns correspond respectively to the 

GGA and LDA computations. It may be seen that the total DOS of GdH2.25 is almost 

composed by that of Gd atoms, which is itself dominated by the 5d partial DOS. 

Fig. VI-4 The calculated total and partial density of states for GdH2.25 in the LDA (right panel) and in the 

GGA (left panel), the Fermi energy being at 0 eV. 
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We can actually begin this analysis from the position at the Fermi level. It can be seen 

clearly in Table VI-2 that the hydrogen in both interstitial sites (tetrahedral Htet and 

octahedral Hoct), and both d-t2g and p from Gd, do not contribute significantly at the Fermi 

level, which means that they are essentially not involved in conduction properties. In contrast, 

the Gd d-eg electrons represent the majority contribution at EF. 

It is convenient to divide the DOS into regions: 

o region I (-8.495 to -1.475 eV) of GGA and (-8.727 to -1.5432 eV) of LDA with a 

major contribution of Gd d-t2g states and both H 1s orbitals and much smaller 

contributions of Gd s and p; 

o region II (-1.475 eV to EF) of GGA and (-1.543 eV to EF) of LDA with Gd d-eg states 

and very few Gd p states; 

o region III (above EF in the lowest energy domain of the conduction band) with 

unoccupied s, p and d states from Gd and s from H in octahedral sites (Hoct). 

It is interesting to note that a strong hybridization exists between Gd d-t2g and Htet atoms 

(in region I) as shown in Fig. VI-4, which leads to an appreciable covalent component in the 

Gd-H bond (in the direction [111]). On the other hand, hybridization between Gd and Hoct 

atoms is much weaker, indicating a degree of ionic character in this bond, which is mainly 

due to the longer Gd-Hoct distance (2.6495 Å of GGA and 2.5710 Å of LDA). The minimal 

atomic bonding distance (2.2945 Å of GGA and 2.2266 Å of LDA) exists between Gd and 

Htet atoms. Therefore, the Gd-H bonds in GdH2.25 have a mixed (covalent-ionic) character as 

is found in several metal hydrides [18, 20, and 21]. 

 

 

 

 

 

 

 

 

 

 

We now turn our attention to the analysis of valence electron-charge density. The 

charge density in the (110) plane is displayed in Fig.VI-5 which is similar for that found by 

Ao et al. (2012) [19] and by Ao et al. (2013) [16] for CeH2.25 and PuH2.25 respectively. It is 

observed that appreciable charge density exists in the outer regions of Gd and Htet atoms with 

Fig. VI-5 Calculated valence-electron-charge density contour (in electrons per Å3) of GdH2.25 in the 

(110) plane. 

Gd 
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Gd Gd Gd 
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a slight deformation in the direction of these nearst-neighboring atoms. This feature indicates 

that the bonding between Gd and Htet atoms is certainly covalent, a fact confirmed by the 

hybridization analysis. At the same time, it is clear that very little electronic charge is shared 

between Gd and Hoct, where most of the valence electrons of Hoct are tightly bound around 

their atoms and this implies that the bond has some ionic character (is much weaker). Another 

point of interest is the existence of a little charge in the interstitial regions away from the 

bonds, which gives a metallic character to this compound, confirming therefore our DOS 

analysis. 

 

VI-II Terbium superstoichiometric dihydride (with relaxation) TbH2.25 

 

VI-II-1 Computational method 

 

Density functional theory calculations were performed using the WIEN2k package [3] 

with the full potential linearized augmented plane wave (FP-LAPW) method. The 

generalized-gradient approximation of Perdew, Burke, and Ernzerhof (GGA 96) [5] and the 

local density approximation (LDA) [6] were adopted to describe the exchange and correlation 

effects. The cut-off energy, which defines the separation energy between core and valence 

states, was taken to be -8 Ry, while the Tb (5s25p65d16s2) and H (1s1) orbitals were treated as 

valence states. We did not treat the f orbitals of Tb as valence electrons but as core electrons 

because, in rare earths, the 4f electrons, being very close to the core, are expected to be 

chemically inert, i.e. they cannot hybridize with the other s, p, and d valence electrons 

anymore and are perfectly localized [4]. Self-consistency is obtained using an optimized value 

of 1000 k-points in the irreducible Brillouin zone (IBZ), without considering the spin 

polarization. All atoms were fully relaxed until the forces were less than 0.01 eV/Å. The self-

consistent calculations are considered to be converged only when the total energy of the 

system changes by less than 10-4 Ry. 

 

VI-II-2 Results and discussion 

 

VI-II-2-1 Equilibrium properties 

 

The conventional unit cell for the superstoichiometric dihydride TbH2.25 with mPm3  

space group (No. 221) is shown in Fig. VI-6 (by using Xcrysden [7]). 
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Table VI-3 summarizes the results for TbH2.25 obtained before (unrelaxed state) and 

after (relaxed state) the geometrical optimization of the internal variables with both GGA and 

LDA approximations. We can see that the atomic positions after relaxation calculated with 

GGA are closer to the ideal atomic positions than those calculated with LDA. 

 

 

 

 

 

 

 

 

 

Table VI-3 Unrelaxed and relaxed positions of equivalent atoms for the TbH2.25 structure ( mPm3 space 

group) in units of lattice parameters (a, b, c) for (x, y, z) coordinates, respectively (present work in Ref. [28]). 

  Tb1 Tb2 H3 H4 

  LDA GGA LDA GGA LDA GGA LDA GGA 

Unrelaxed x 0.00 0.00 0.50 

0.50 

0.00 

0.50 

0.50 

0.00 

0.25 

0.75 

0.75 

0.25 

0.25 

0.75 

0.25 

0.75 

0.25 

0.75 

0.75 

0.25 

0.25 

0.75 

0.25 

0.75 

0.50 0.50 

y 0.00 0.00 0.50 

0.00 

0.50 

0.50 

0.00 

0.50 

0.25 

0.25 

0.75 

0.75 

0.75 

0.75 

0.25 

0.25 

0.25 

0.25 

0.75 

0.75 

0.75 

0.75 

0.25 

0.25 

0.50 0.50 

z 0.00 0.00 0.00 

0.50 

0.50 

0.00 

0.50 

0.50 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.50 0.50 

Tb1 

Tb2 
Tb2 

Tb2 

Tb1 

Tb1 

Tb1 
Tb1 

Tb1 

Tb2 

Tb1 

Tb1 

H3 H3 
H3 

H3 H3 
H3 H3 

H3 

H4 

Fig. VI-6 The compound crystallizes in the CaF2 fluorite type structure: the large spheres represent rare earth 

atoms and small spheres hydrogen atoms occupying tetrahedral sites (H3) and the central octahedral site (H4). 
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0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

Relaxed x 0.00 0.00 0.50 

0.50 

0.00 

0.50 

0.50 

0.00 

0.24445753 

0.75554247 

0.75554247 

0.24445769 

0.24445769 

0.75554247 

0.24445769 

0.75554247 

0.24925265 

0.7507435 

0.7507435 

0.24925265 

0.24925265 

0.7507435 

0.24925265 

0.7507435 

0.50 0.50 

y 0.00 0.00 0.50 

0.00 

0.50 

0.50 

0.00 

0.50 

0.24445769 

0.24445769 

0.75554231 

0.75554247 

0.75554247 

0.75523367 

0.24445769 

0.24445769 

0.24925265 

0.24925265 

0.7507435 

0.7507435 

0.7507435 

0.7507435 

0.24925265 

0.24925265 

0.50 0.50 

z 0.00 0.00 0.00 

0.50 

0.50 

0.00 

0.50 

0.50 

0.24445769 

0.24445769 

0.24445769 

0.24445769 

0.75554231 

0.75554231 

0.75554247 

0.75554231 

0.24925265 

0.24925265 

0.24925265 

0.24925265 

0.7507435 

0.7507435 

0.7507435 

0.7507435 

0.50 0.50 

 

The total energy versus volume is fitted by the non-linear Murnaghan equation of state 

[8]. Under relaxation, the energy vs. volume curves of TbH2.25 for both LDA and GGA 

approximations are shown in Figs. VI-7 (a) and (b) respectively, whereas those for the 

unrelaxed states are plotted in Figs. VI-7 (c) and (d). From this fit, we can obtain the 

equilibrium lattice parameter (a0), the bulk modulus (B0), its first order pressure derivative 

(B0’), and the total energy (E0). The calculated structural parameters of TbH2.25 before and 

after the relaxation are reported in Table VI-4 together with other available data. It can be 

seen that this relaxation lowers the total energy as expected. To the best of our knowledge, the 

experimental or theoretical bulk moduli of this material have not been reported and there is no 

direct ab initio theoretical information available for TbH2.25 related to the effects of interstitial 
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H atoms on their local atomic environment. Our calculated values can thereby be considered 

as a prediction for future investigations. 

We find that the structure of TbH2.25 is stabilized by local atomic relaxations in both 

approximations, in agreement with previous first-principles computational work in other 

hydrides [22-24]. Thus, the energy gain (the absolute value of relaxed minus unrelaxed 

minimum energy) after internal coordinate relaxation is 0.0131 eV/cell (0.964 mRy) within 

GGA and 0.0364 eV/cell (2.673mRy) within LDA approximation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is easily seen from Table VI-4 that the equilibrium lattice parameter after relaxation 

is in better agreement with the experimental value in both approximations, but the GGA 

equilibrium lattice parameter (a0) value is closest to the experimental value and is smaller 

than that for the calculated lattice parameters of TbH2 and GdH2.25. This concords with 

experimental observations reported by Ref. [15], as it is know that a0 decreases with 

d) 

GGA 

c) 

LDA 

b) 

GGA 

a) 

LDA 

Fig. VI-7 Calculated total energy curves for TbH2.25 as a function of cell volume in the LDA 

approximation: (a) relaxed state, (c) unrelaxed state, and in the GGA approximation: (b) relaxed state, (d) 

unrelaxed state. 
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increasing octahedral hydrogen content x [13, 25-27] and also with increasing rare earth 

atomic number. As a general rule, Hoct atom addition leads to lattice contraction whereas Htet 

atoms lead to lattice expansion [17]. The LDA value is clearly smaller than the experimental 

one, indicating the occurrence of over-binding in this latter method. This shows that GGA is 

the most reliable for optimized lattice constants. 

 

Conversely, for the bulk modulus in both relaxed and unrelaxed states, it is the GGA 

value which is lower than that of the LDA as a result of the over-binding characteristic of 

LDA. Furthermore, in both GGA and LDA approximations, the bulk modulus value of 

TbH2.25 is larger than that of TbH2; this behaviour is similar to that found experimentally in 

the ErHx system (as shown in Table VI-4) [12] and theoretically by Refs. [9, 16, 17]. 

Hence, in both relaxed and unrelaxed states, GGA overestimates the lattice parameter 

whereas it underestimates bulk modulus (B0) in comparison with LDA, a feature also 

observed in several similar systems in other simulation works [13]. It may be concluded that 

the GGA, with or without relaxation, compares favorably with LDA. 

Table VI-4 Calculated equilibrium lattice constant a0 (in Å), bulk modulus B0 (in GPa), its first order pressure 

derivative B0’, and total energy (Ry), of TbH2.25 for GGA and LDA compared to other available data. 

 
Metho

d 
 a0 B0 B0’ Total energy Reference 

TbH2.25 

GGA 
Unrelaxed 5.2558 61.631 3.526 -93762.408612 

Present work [28] 
Relaxed 5.2548 61.7312 4.8942 -93762.409576 

LDA 
Unrelaxed 5.1032 72.5047 2.6947 -93700.517516 

Relaxed 5.1056 72.3416 3.5847 -93700.520189 

TbH2.24 Exp.  5.2308    [15] 

TbH2 GGA  5.2993 59.9989 1.9613 -23440.304180 Present work [28] 

 LDA  5.1360 67.2194 4.0944 -23424.830688 Present work 

GdH2.25 

GGA Unrelaxed 5.299 62.4385 3.0152 -90253.409898 

Present work [9] 
LDA Unrelaxed 5.143 80.3544 3.1906 -90192.894529 

GdH2.26 (6) Exp.  5.284    [10] 

GdH2 GGA  5.326 53.1873 4.0861 -22563.057167 Present work [11] 

ErH1.95 Exp.   67±3 9 fixed  [12] 

ErH2.091 Exp.   73±4 8 fixed  [12] 
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VI-II-2-2 Electronic properties 

 

From the last section, we find that with both approximations the relaxed structure of 

TbH2.25 is more stable and the relaxed equilibrium lattice parameter agrees better with the 

experimental value. For this reason, all figures presented in this section are for the relaxed 

state. 

The calculated electronic band structures at the equilibrium lattice constant for 

different high-symmetry points in the Brillouin zone and the total density of states DOS 

(measured in states per electron-Volt) of TbH2.25 in GGA and LDA at 0K are shown in Fig. 

VI-8, where the line at zero eV indicates the Fermi energy. 

In Fig. VI-8, it is clear that TbH2.25 possesses a metallic ground state because several 

bands cross the Fermi level (EF), in agreement with electrical resistivity measurement 

interpretations [15]. In both approximations, the energy band structures are qualitatively 

similar. Indeed, the crossings of bands with the Fermi level are nearly the same, where in the 

relaxed state the values of the Fermi energy are 0.56402 Ry in GGA and a higher 0.59989 Ry 

in LDA (as seen in Table VI-5). Another significant feature of the band structures in the two 

approximations is the different positions of the valence bands (at Γ), where, in the LDA, these 

shift towards higher energies at the top of the valence band, and towards lower energies at the 

bottom of the valence band. All of these indicate a slight increase in the bandwidth, as a 

consequence of the reduced lattice parameter. 

We now turn our attention to the calculated total density of states of TbH2.25, which 

has similar features in both GGA and LDA (see Fig. VI-8) especially at the Fermi level. 

However, these figures show small but non negligible differences as the peaks in the GGA are  

 

 

 

Table VI-5 Fermi energy (Ry) and density of states at the Fermi level (in states/Ry) for TbH2.25 in the two 

approaches GGA and LDA (present work Ref. [28]). 

  
Fermi 

energy 
N(EF) NTb1-tot (EF) NTb1-d(EF) 

NTb2-tot 

(EF) 
NTb2-d(EF) 

NHtet-s 

(EF) 

NHoct-s 

(EF) 

GGA 

Unrelaxed 
0.56297 39.69 0.00 0.17 2.14 1.93 0.08 0.16 

Relaxed 
0.56402 39.80 0.00 0.17 2.13 1.92 0.08 0.16 

LDA 

Unrelaxed 
0.60011 37.21 0.00 0.20 2.18 1.95 0.07 0.14 

Relaxed 
0.59989 37.87 0.00 0.19 2.13 1.91 0.07 0.13 
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Fig. VI-8 total density of states (right panel) and electronic band structure along high-symmetry directions 

(left panel) of TbH2.25 in the GGA and LDA, the Fermi energy being at 0 eV. 

LDA 
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fairly sharper and narrower than those of LDA, and the total DOS in LDA moves a 

little towards lower energies compared to GGA. Therefore, it is concluded that the width of 

the valence states in LDA is increased due to the lattice contraction. 

The present study shows that the density of states on the Fermi level N(EF) in both 

relaxed and unrelaxed states is not negligible as seen in Table VI-5 and is smaller in LDA 

than in GGA because the latter causes an under-binding effect of the crystal, thus the crystal 

structure is more compact in LDA. 

Also from Table VI-5, it can be remarked that when the equilibrium lattice parameter 

decreases, the Fermi energy increases in both approximations. 

In order to explain the chemical bonding in TbH2.25, we have calculated total and 

partial density of states (PDOS) as shown in Fig. VI-9. 

From Fig. VI-9, the conduction band is mainly dominated by unoccupied s, p and d 

states from terbium and s from hydrogen in octahedral sites (Hoct). The Fermi level is 

completely dominated by the d-eg states of terbium. The upper valence states situated between 

-1.96 eV and EF in GGA and -1.93 eV and EF in LDA are dominated by the Tb d-eg states. 

Whilst it can be seen that in low energy levels ranging between -8.71 eV and -1.96 eV in GGA 

and between -8.90 and -1.93 eV in LDA, TbH2.25 dihydride exhibits hybridization mainly 

between Tb d-t2g states and both H 1s orbitals, implying directional (covalent) bonding in Tb 

d-t2g-Htet (bonding distance is 2.2672 Å in GGA and 2.1653 Å in LDA) and a degree of ionic 

character in Tb d-t2g- Hoct (bonding distance is 2.6258 Å in GGA and 2.5537 Å in LDA). 

This can be clearly understood from the electronic charge density contours along a 

(110) plane as shown in Fig. VI-10. The charge density was presented only for the GGA 

method because it is similar to that of the LDA method with an insignificant difference. In 

Fig. VI-10, it is clear that appreciable charge density exists in the outer regions of Tb and Htet 

atoms with a slight deformation in the direction of these nearest-neighbouring atoms. This 

feature confirms that the bonding between Tb and Htet atoms is certainly covalent, a fact 

confirmed by the hybridization analysis. At the same time, it is clear that very little electronic 

charge is shared between Tb and Hoct, where most of the valence electrons of Hoct are tightly 

bound around their atoms and this implies that the bond has some ionic character (the electron 

density is much weaker in the middle of the bond). Therefore, the Tb-H bonds in TbH2.25 have 

a mixed (covalent-ionic) character as is found in several metal hydrides [9, 16, 19-21, 29]. 

Another point of interest is the existence of little charges in the interstitial regions away from 

the bonds, which gives a metallic character to this compound. 
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Fig. VI-9 The calculated total and partial density of states for TbH2.25 in the LDA (right panel) and in the 

GGA (left panel), the Fermi energy being at 0 eV. 

Fig. VI-10 Calculated valence-electron-charge density contour (in electrons per Å3) of TbH2.25 in the (110) 

plane. 
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VI-III Summary 

 

To summarize, we have shown that in the generalized gradient approximation (GGA) 

the lattice constant is larger and the bulk modulus is smaller as compared to the local density 

approximation (LDA) results. On the other hand, the calculated lattice constant with the GGA 

agrees well with available experimental data. For TbH2.25, the atomic positions under 

relaxation calculated with the GGA are closer to the center of the ideal atomic positions than 

those calculated with the LDA. The equilibrium lattice parameter under relaxation is in better 

agreement with the experimental values in both approximations, the GGA value being the 

best. There were no bulk modulus data, to our best knowledge, for the considered materials. 

We also calculated and presented the electronic band structure and density of states, 

which clearly showed that the superstoichiometric rare earth dihydrides RH2.25 (R = Gd and 

Tb) with mPm3  space group exhibited metallic behaviour. The GGA presented a tendency 

for underbinding in this material. The DOS analysis showed that the Fermi energy (EF) fell at 

a level where most of the electronic states were rare-earth 5d-eg conduction states, while 

negligible contribution from both interstitial H s-states was observed at EF. The d states of the 

R (R=Gd and Tb) atoms were the main contributors to bonding states in the valence bands, 

whereas p and s states had a smaller role. It was found that hybridization existed between the 

s electronic orbital of both interstitial H atoms and the d-t2g electronic orbitals of R (R=Gd 

and Tb). This hybridization implies that there is a mixture of covalent (R–Htet) and ionic (R–

Hoct) bonds, a fact confirmed by the charge density analysis. 
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Summary and Outlook 

 

 

n this thesis, ab-initio calculations were performed with the WIEN2k code (at 0 K) to 

investigate structural and electronic properties for R (R = Gd and Tb), RH2 (R = Gd and 

Tb), and RH2.25 (R = La, Gd and Tb) using the FP-LAPW method in the local density 

approximation (LDA) and the generalized gradient approximation (GGA) for the exchange 

correlation of the non spin-polarized study. LSDA/LSDA+U and GGA/GGA+U for the 

exchange correlation of a spin-polarized study was also used for the pure R (R = Gd and Tb). 

In addition, the magnetic properties of R and thermodynamic properties of RH2 are also 

investigated. 

The results of the calculations presented in this thesis illustrate that in the pure rare earths 

R, rare earth dihydrides and superstoichiometric dihydrides, the LDA leads to an 

overbinding— smaller lattice constants and larger cohesive energies and bulk moduli — 

while the GGA results show a significant underbinding in both spin polarized and non-spin 

polarized study. On the other hand, the GGA calculated lattice constants agree well with 

available experimental data. The absolute values of cohesive energy of the R (R = Gd, and 

Tb) calculated by LDA (LSDA/LSDA+U in the spin polarization calculation) are higher than 

those calculated by GGA (GGA/GGA+U in the spin polarization calculation) due to the 

overbinding effect. 

The calculations of band structures and densities of states clearly show that the pure R 

(R = Gd, Tb) in both spin polarized and non-spin polarized study, dihydrides RH2 and 

superstoichiometric dihydrides RH2.25 in both the tetragonal structure (R = La and Gd) and in 

the cubic structure (R = Gd and Tb) exhibit metallic behavior. In addition the calculated 

magnetic moment of the R (R = Gd, and Tb) show reasonable agreement with previous results 

in the literature. 

 For rare-earth dihydrides RH2 (R = Gd, Tb): 

– The nature of bonding in the rare-earth dihydrides RH2 (R = Gd, Tb) must be 

discussed in terms of interaction between metal d states and hydrogen 1s-states. The 

position and width of the low-lying bands depend quite sensitively on the type of rare 

earth considered. 

– The low-lying bands found in these dihydrides are not composed uniquely of hydrogen 

s states but rather show a strong hybridization with metal d- and also metal s- and p-

states. 

I 
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– LDA leads to an overestimation of cohesion and formation energy. 

– It is found that the GdH2 and TbH2 have negative heats of formation, which suggests 

that these dihydrides can be easily synthesized at ambient condition. 

– The values of cohesive energy and average binding energy per H atom decrease with 

increasing cell parameter. 

– The Fermi energy EF falls at a level where most of the electronic states are rare-earth 

5d conduction states. 

– The Hs-state has no contribution near the Fermi level. 

 For rare earth superstoichiometric dihydrides (LaH2.25 and GdH2.25) with I4/mmm 

space group: 

The total DOS in GGA and LDA shows important differences in the vicinity of 

valence band, where GGA presents a tendency for underbinding in this material. In addition, 

the value of DOS at the Fermi level (N(EF)) in GGA is larger than that in LDA. The DOS 

analysis shows that the Fermi energy (EF) falls at a level where most of the electronic states 

are rare-earth 5d conduction states, while negligible contributions from both (tetrahedral Htet 

and octahedral Hoct ) interstitial Hs states are observed at EF. 

The d states of R (La and Gd) atoms are the main contributors to bonding states in 

valence bands, whereas p and s states have a smaller role. It is found that hybridization exists 

between s electronic orbitals of both interstitial H atoms and d electronic orbitals of R. This 

hybridization implies that there is a mixture of covalent (R–Htet) and ionic (R–Hoct) bonds. 

 For rare earth superstoichiometric dihydrides (GdH2.25 and TbH2.25) with mPm3  space 

group: 

a) GdH2.25: 

The DOS analysis shows that the Fermi energy (EF) falls at a level where most of the 

electronic states were rare earth 5d-eg conduction states, while negligible contribution of both 

interstitial H s-states was observed at EF. 

The d states of the Gd d-t2g atoms were the main contributors to bonding states in the 

valence bands, whereas p and s states had a smaller role. It was found that hybridization 

existed between the s electronic orbital of both interstitial H atoms and the d-t2g electronic 

orbitals of Gd. This hybridization implies that there was a mixture of covalent (Gd–Htet) and 

ionic (Gd–Hoct) bonds, which was confirmed by the charge density analysis.  

b) TbH2.25: 

The atomic positions under relaxation calculated with the GGA are closer to the center 

of the ideal atomic positions than those calculated with the LDA. The structure of TbH2.25 is 
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stabilized by local atomic relaxations. The equilibrium lattice parameter under relaxation is in 

better agreement with the experimental value in both approximations, the GGA value being 

the best. The bulk modulus is determined by fitting the energy vs. cell volume curve to the 

Murnaghan equation of state. Under relaxation, the GGA value is smaller by 14.67% than that 

of the LDA. In addition, we propose new results concerning the not yet measured bulk 

modulus of this system. The electronic band structure, the density of states and electronic 

charge density confirm the metallic character of TbH2.25. The total density of states in both 

approximations shows important differences in the vicinity of the valence band, where, in 

both the relaxed and unrelaxed states, the GGA presents a tendency for underbinding in this 

material. Atomic relaxation shows that the Fermi energy changes in all cases are inversely 

proportional to those of the equilibrium lattice parameter. The electronic charge density has 

been plotted and shows a covalent character for the Tb-Htet bonds and an ionic character for 

the Tb-Hoct bonds. 

For future work, we would like to carry on more research on the rare earth hydrides 

and calculate their other physical properties such as lattice dynamics (phonon), magnetism, 

optics, thermodynamics and mechanics. 

 

 

 



 ملخص
 

لدراسة الخصائص البنيوية و الالكترونية للعناصر الترابية  WIEN2k استعملنا برنامج المحاكاة، هذه الأطروحةفي 
ات يدو ثنائيات هيدر )R=Gd et Tb( 2RH ات العناصر الترابية النادرةيدلثنائيات هيدر ،)R )Tb ,R=Gd النادرة

 زمرة التناظر و ذي )I4/mmm )Gd ,R=La ذي زمرة التناظرفوق القياسية  2.25RH العناصر الترابية النادرة

  )Tb ,R=Gd( باستعمال نظرية دالية الكثافة في قاعدة أمواج مستوية مزادة  ،في حالة عدم استقطاب السبين

. بهذه الطريقة قمنا بتحديد (LDA) وتقريب الكثافة المحلية (GGA)و خطية مع كمون كامل في تقريب التدرج المعمم 
كثافات الحالات و بنى عصابات الطاقة في هذه المركبات. بالإضافة إلى دراسة  ،معاملات الإنضغاطية ،لثوابت البلوريةا

نادرة. في حالة استقطاب  ترابية عناصرات ليدالترموديناميكية لثنائيات الهيدرو الخصائص  Rالمغناطيسية لـ  الخصائص
الالكترونية و  ،قمنا بدراسة الخصائص البنيوية ،GGA+Uو  LSDA، GGA، LSDA+U اتتقريب السبين و باستعمال

النتائج المتحصل عليها كانت متوافقة مع النتائج التجريبية و النظرية  .(R=Gd, Tb) المغناطيسية للعناصر الترابية النادرة
 المتوفرة حول هذه المركبات.

 

 .WIEN2k ،الخصائص الالكترونية ،(DFTالكثافة )نظرية دالية  ،لترابيات النادرةا اتيدهيدر : كلمات مفتاحية
 

Résumé 
 

Dans cette thèse, nous avons utilisé le code de simulation WIEN2k pour étudier les propriétés structurales 

et électroniques de terres rares R (R=Gd et Tb), des dihydrures de terres rares RH2 (R=Gd et Tb) et des 
dihydrures superstoechiométriques de terres rares RH2.25 avec un groupe d'espace I4/mmm (R=La et Gd) et 

avec un groupe d'espace  (R=Gd et Tb) dans le cas d’un spin non polarisé, en utilisant la théorie de 

la fonctionnelle de densité (DFT) dans une base d'ondes planes augmentées et linéarisées, avec un 
potentiel (FP-LAPW) dans l'approximation de gradient généralisé (GGA) et dans l'approximation de 

densité locale (LDA). Les paramètres de maille, les modules de compressibilité, les densités d'états et les 

structures de bande d'énergie dans ces composés ont ainsi été déterminés. En outre, les propriétés 
magnétiques de R et les propriétés thermodynamiques de RH2 sont étudiées. Dans le cas du spin polarisé, 

nous étudions les propriétés structurelles, électroniques et magnétiques de la terre rare pure R (R=Gd et 

Tb) en utilisant les approximations LSDA, GGA, LSDA+U et GGA+U. Les résultats obtenus sont en 

accord avec la littérature et les résultats expérimentaux disponibles. 
 

Mots-clés : hydrures de terres rares, théorie de la fonctionnelle de densité, propriétés électroniques, 

WIEN2k. 
 

Abstract 
 

In this thesis, we used the WIEN2k code to study the structural and electronic properties for pure rare 

earths R (R=Gd and Tb), rare earth dihydrides RH2 (R=Gd and Tb) and superstoichiometric rare earth 

dihydrides RH2.25 with I4/mmm space group (R=La and Gd) and with  space group (R=Gd and Tb) 

in the case of non-polarized spins, using the density functional theory (DFT) in the full-potential 
linearized augmented plane wave (FP-LAPW) basis in the generalized gradient approximation (GGA) and 

in the local density approximation (LDA). Lattice parameters, bulk moduli, density of states and energy 

band structures in these compounds have been determined. Besides, the magnetic properties of R and 
thermodynamic properties of RH2 are studied. In the case of spin polarization and using LSDA, GGA, 

LSDA+U and GGA+U approximations, we investigate the structural, electronic and magnetic properties 

of pure rare earths R (R=Gd and Tb). The results are found to agree with the literature and available 

experimental data. 
 

Keywords: rare-earth hydrides, density functional theory, electronic properties, WIEN2k. 

 


