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Abstract—a method for studies the steady-state deformation 

of induction motors is presented. The approach is based on the 
use of complex two-dimensional finite element solutions to 
calculate nodal displacements of the motor. Stator core 
displacements as complex term are calculated and designed. An 
application example is provided to demonstrate the influence of 
the magnetostriction phenomena on the stator core.  
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I. INTRODUCTION 

HE finite element analysis of steady-state operation of 
electrical machines under sinusoidal is, generally, made 

by classical harmonic analysis in term of complex variables. 
This analysis is valid only under the assumption of constant 
magnetic permeability; however, motor designers had to rely 
on relatively simple design rules and assumptions to model 
magnetostriction in rotating electrical machines. In most 
rotating machines, the stator and rotor are made of electrical 
steel, and the windings are installed in slots on these 
structures, the stator magnetic core is formed by stacking 
their electrical steel laminations (non-conducting part) with 
uniformly slots stamped in the inner circumference to 
accommodate the three distribution stator winding. 

Magnetostriction is one of a potential cause of noise and 
vibrations [1]. The mechanical deformation also cause 
changes in the air-gap and contributes to generation of 
harmonics and additional noises [2,3]. Magnetostriction is an 
even function [4,5], we can define an analytical model 
depend on the magnetic flux density and quasi-independent 
of applied mechanical stress, the magnetostriction material 
characteristic is a function of square of magnetic flux 
density. 

We propose to use the magnetic vector potential as a 
complex term due to the frequency domain; the method is 
then used to define the expression of the magnetic flux 
density also in complex term; then, we calculate the magnetic 
and magnetostriction forces from the expression of the 
magnetic flux density; finally, we calculate the vector of 
nodal displacements which have a two components in 
complex terms. 

The method developed in this paper is applied to calculate 
displacements of nodes under complex terms caused by 
influence of magnetic and magnetostriction forces in an all 
core of induction motor. 

II.  THE EXPRESSION OF THE MAGNETIC VECTOR 
POTENTIAL USING FREQUENCY DOMAIL 

Maxwell’s equations applied to a motor sufficiently long, 
so that the magnetic vector potential has only a component in 
the Oz direction are characterized in the motor by: 

 

( ) 0J
t

A
A S =−

∂
∂+×∇×∇ σν  (1) 

 
The following 2D field equation in the frequency domain 

is to be solved: 
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whereν  is the reluctivity of the material it is constant, ω  

is the pulsation of the frequency, σ  is the conductivity of 

the material and SJ  is the known source density. To solve 

(1); A is discretized by finite element and matrix system 
obtained is then solved to obtain the unknownA : 

 

[ ] { } { }JAS =⋅  (3) 

 

where[ ]S is the magnetic stiffness matrix and the right-

hand side vector of (3) contains the source terms resulting 
from applied currents density and an induced currents, the 
solution is the magnetic vector potential and it is written 
under complex term as the real and the imaginary parts: 
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The magnetic flux density is derived from the curl of the 

magnetic vector potential as: 
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The term of the magnetic flux density is also written under 

complex term as the real and the imaginary parts: 
 

)BIm(j)B(alReB ⋅+=  (6) 

 
This expression will be used in the expression of the 

deformation (displacement) and also to calculate the 
magnetic and magnetostriction forces in the next paragraph.  

III.  MODELLING OF MAGNETOSTRICTION USING 
NODAL FORCES 

Deformation of magnetostriction is an even function, so 
we can define an analytic model depend on the magnetic flux 
density and quasi-independent on the applied mechanical 
stress, the magneto-elastic model is built from the thermo-
dynamical approach as in [6], it is defined as 

 

( ) ( )2
BB ⋅= αε µ  (7) 

 
This last expression is written at the magnetic induction 

referential and from the expression of the elasto-static 
assumption from measurement data, where is a constant. 

Equation (7) is then written by introducing (6) in the last 
expression under complex term as: 
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The real and the imaginary parts of the deformation of 

magnetostriction are: 
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Because of the magnetic field density is not parallel to the 

x-axis; we can change the referential of the magnetic 

induction into the global referential ( )z,y,x,o  by using 

Euler’s angles, so we can write (8) in the last referential as: 
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where: 
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where RB  is an expression depends of real and imaginary 

parts of the magnetic flux density B . 
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where IB an expression is also depends of real and 

imaginary parts of the magnetic flux density B ; andϕ is the 

angle between the two referential (Euler’s angle). 
The model of magnetostriction is based on constitutive 

laws, which present the interaction between magnetic and 
elastic properties, the general Hooke’s law is written as 

 

( ) ( )( )BC,B µεεεγ −⋅=  (14) 

 
In this expression, γ  is the stress tensor,C is the elasticity 

matrix,ε is the elastic strain tensor and µε is the 
deformation of magnetostriction tensor. 

We need to the expression of deformation, its expression 
is written as: 
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Where U  is the nodal displacement vector who has two 

components xU  and yU . 

The mechanical problem is based on this expression in 
static case: 
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( ) Fdiv −=γ  (16) 

 
where F is the vector of the total forces that applied on 

the material (e.g. magnetic and magnetostriction forces, 
external applied force). 

To solve (16); U  is discretized by finite element and 
matrix system obtained is then solved to obtain the 
unknownU : 

 

[ ] { } { }FUK =⋅  (17) 

 

where [ ]K  is the mechanic stiffness matrix and the right-

hand side vector of (17) contains the magnetic force magF , 

the magnetostriction force µF  and the external forces extF  
if we needed.  

The mechanical stiffness matrix is given as in [7]: 
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The magnetostriction forces equation µF is written as: 
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whereDN a matrix is contains a derivation of the shape 

function and P is a permutation matrix. 

The vector of magnetic forcemagF is based on local 
application of the virtual work principle [8,9]. These models 
of forces have been calculated on each node as the derivative 
of the magnetic energy with respect to the displacement 
when the magnetic flux is constant. 

The solution of the mechanical problem (17) is the 
displacement vector U  and it is written under complex term 
as the real and the imaginary parts: 

 

)UIm(j)U(alReU ⋅+=  (20) 

 
Finally, we need to solve the magneto-mechanical 

problem, where the solved variables are the nodal values of 
magnetic vector potential and the nodal values of the 
displacement in x and y directions: 
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IV.  APPLICATION AND RESULTS 

We apply this numerical model to 2D example, it consists 
of designing an electric motor that is cage induction motor 
having two pole pairs (Table I) where analysed, the stator 
core is a Fe-Si material. Simulation is consists of analysing 
the influence of deformations (displacements of nodes) 
between stator iron and rotor. Boundary conditions are set to 
solve the problem; the outer boundary of the machine is 
fixed, so the magnetic vector potentials are nulls at the outer 
diameter of stator. For elastic problem, only the left and right 
points of side are considered fixed but the rotor is free to 
move in the x and y directions.  

The mechanical property of the magnetostriction material 
is considered isotropic; the considered elastic problem is 
nonlinear as the deformation depends on the square of B , it 

takes this equation 26 B10 ⋅= −µε for both real and 
imaginary parts, this curve fellow the expected behaviour of 
Fe-Si material. 

TABLE I 
PARAMETERS OF THE MOTOR USED FOR THE DESIGN 

 

Parameter  Value 

Pole pairs 2 
Outer Diameter of Stator 151 mm 
Outer Diameter of Rotor 110 mm 
Number of Nodes in Mesh 8279 
Number of Elements in Mesh 16480 
Conductivity of slot 5.9x107 S/m 
Young’s Modulus 270 GPa 
Poisson’s Ratio 0.3 

 

The magnetic vector potential and the displacement vector 
are discretized using nodal elements in 2D case as in Fig.1. 
The magnetic potential vector, the nodal forces due to 
electromagnetism and magnetostriction forces as well as the 
displacements of each node of the mesh geometry are 
calculated as a complex terms. 

 
Fig. 1. Mesh of electric motor 

The distributions of magnetic potential are shown in Fig. 2 
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for the real part and also for the imaginary part. We notice 
that lines of the magnetic vector potential in real part are 
enclosed behind the air-gap its values are comprises between 
- 0.00014 A/m and 0.00014 A/m. We remark also that lines 

of the magnetic vector potential in imaginary part are 
enclosed across the air-gap and crying a poles, its values are 
comprises between - 0.0055 A/m and 0.0055 A/m.

             

Fig. 2. Distributions of the real part (left) and imaginary part (right) of the magnetic potential in the studied induction motor 

               

Fig. 3. Distributions by arrows of nodal forces due to real part (left) and imaginary part (right) of the total forces in stator 

             

Fig. 4. Distributions by arrows of nodal forces due to real part (left) and imaginary part (right) of only the magnetostriction forces in stator 
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Fig. 5. Distributions of real part (left) and imaginary part (right) of displacements due to both electromagnetism and magnetostriction in all 
motor cores 

        

Fig. 6. Nodal displacements due to real part (left) and imaginary part (right) of total displacements 

               

Fig. 7. Nodal displacements of stator's teeth 
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The 3rd comment is that from Fig. 2 the value of the real 
part of the magnetic vector potential is less than that of the 
imaginary part. 

From Fig. 3, the total forces cause the stator core to stretch 
to the inner for the two components of the forces; in this 
figure, we present both magnetic and magnetostriction forces 
but these later is note appears clearly, the magnetic forces 
(large arrows) are dominated.  

The magnetostriction forces are calculated only from 
right-hand side vector of (21) and presented by arrows in 
Fig. 4; the magnetostriction forces cause the stator core to 
shrink, from Fig. 4 it appears clearly a volume forces (little 
arrows) that are original from magnetostriction phenomena. 
The high values of magnetostriction forces are situated at the 
outer diameter of stator and slots successively.  

The modulus of nodal displacements in real and imaginary 
parts is presented as in Fig. 5; Order of nodal displacements 
is low compared to that of in static case as in [3], because of 
the decrease of current vector in equation (3). 

Fig.6 shows the variations of the real and imaginary 
components of the displacements with the radius of the 
motor by several angles, the choice of angles by a step of 

o10  is done so that the curves passed through the center of 
the stator’s teeth. These angles varied between ox axis and 
oy too; so at the first quarter of electrical motor. It is clear 
for the two components (real and imaginary parts) of 
displacement that the later has a high value for the 

angle o60=θ . 
Displacement’s order is also low if it compared to the 

geometry of the motor (e.g. radius of motor) but it is 
significant at the region of air-gap as in Fig.6. Air-gap is 
situated between x = 0.110 m and x = 0.111 m; near and 
beyond of x = 0.1 m, a heavy change at the degree of nodal 
displacements in its real and imaginary parts is observed, 
what mean that these later are interesting in this region (e.g. 
study of vibration and noises in electric motor).  

Original and displaced structures (before and after 
deformation) for the two components, real and imaginary 
parts, are presented in Fig.7. The choice of a tooth is made 
that has a great displacement. The nodal displacement after 

deformation is amplified by a factor of 51050 ⋅. for the real 

part of displacement and by a factor of 61031 ⋅. for the 
imaginary part of displacement.  

The contribution of magnetostriction and magnetic forces 
in iron tends to expand the shape of the motor to the inner of 
the stator and to the outer of the rotor 

I. CONCLUSION 

In this paper, we showed the method to estimate the 
deformation of the induction motor with distributed of nodal 
displacement using 2D FEM and using complex terms with 
frequency domain resolution of the magnetic vector 

potential. Through the numerical results, it is easy to 
understand the acoustic in the induction motor. 

Magnetic force in a motor core air gap creates a 
deformation in stator teeth with the mode shape equal to the 
pole number of the stator winding. Numerical computations 
provide coherent results but an experimental confirmation is 
not yet available.  

In this analysis, equation of displacement is written in 
static case, the inverse effect of magnetostriction, the thermal 
deformation and the rotary motion of the rotor are not taking 
into account.  

The best analysis is to take into account the general system 
equation for a mechanical structure who takes into account 
the mass matrix, the damping matrix and the mechanical 
stiffness matrix. Also, the best analysis of induction motor is 
to resolve the coupled magneto-thermo-mechanical problem 
who takes into account the general deformation but 
complicate experimental curves are requirement.  
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