

UNIVERSITE KASDI MERBAH OUARGLA Faculté de mathématiques et sciences des Matiére

DEPARTEMENT DES MATHEMATIQUES

MASTER

Spécialité : Mathématiques

Option : Modélisation et analyse numérique

Par : IMANE GUEN

Théme

MEF stabilisée pour le problème de contact entre une plaque de Kirchhoff et un obstacle élastique

Soutenu publiquement le : 15/04/2020

Devant le jury composé de :

Chacha Djamal Ahmed	Prof.	Université KASDI Merbah - Ouargla	Président
Bensayah Abdallah	M.C.A	. Université KASDI Merbah - Ouargla	Examinateur
Ghezal Abderrazek	M.C.A	. Université KASDI Merbah - Ouargla	Examinateur
Merabet Ismail	M.C.A	. Université KASDI Merbah - Ouargla	Rapporteur

DÉDICACES

Je dédie ce travail à :

Mes enseignants du cycle primaire jusqu'au cycle universitaire dont les conseils précieux m'ont guidé, qu'ils trouvent ici l'expression de ma reconnaissance.

En particulier : l'ensemble des enseignants de l'université Kasdi Merbah Ouargla.

Mes très chère parents «**Maammar** » et « **Leila** » qui ont oeuvré pour ma réussite, par leurs amours, ses soutiens, tous les sacrifies consentis et ses précieux conseils, pour toute ses assistances et sa présence dans ma vie.

> Mes frères : Mohamed abd elhadi Mes sœurs :, Ikram, Ibtissam Mes oncles, tantes, cousins et cousines. Mes camarades : Safa,Amina,Sammer,... Mes amies : Rima, Ibtissam,... et toutes.

REMERCIEMENT

Avant toute considération, je remercie le Grand Dieu le tout puissant qui, m'a aidé pour achever ce travail.

Je tiens tout a remercier premier lieu mon encadreur Monsieur **MERABET Ismail** de m'avoir proposé un des plus importants thèmes et pour sa continuité à me soutenir et à m'encourager. Je voudrai aussi le remercier pour sa gentillesse, sa disponibilité et du temps consacré à mon travail.

Je remercie également les membres du département de Mathématique et Informatique de m'avoir permis de travailler dans de bonnes conditions pendant la réalisation de mon travail, et tous **les enseignants** qui m'ont aidé pendant mon cursus, sans oublier leurs conseils précieux. J'exprime également ma gratitude aux membres du Jurys qui m'ont honoré en acceptant de juger ce travail.

Je remercie aussi toute personne de prés ou de loin a contribué à la finalisation de ce travail.

TABLE DES MATIÈRES

De	édica	tion	i
Re	emer	ciement	ii
No	otati	ons et Préliminaires	1
1	Mo	lèle de plaque kirchhoff	5
	1.1	Cinématique de la plaque et équation	
		constitutive	6
		1.1.1 Modèle bidimensionnel de plaques	9
		1.1.2 Problème de membrane	16
		1.1.3 Problème de flexion	17
	1.2	Formulation variationnelle (problème de	
		flexion des plaques) \ldots	20
2	Mo	lélisation mathématique du problème d'obstacle pour le bilaplacien	23
	2.1	Position du problème	23
		2.1.1 Problème de minimisation	24
	2.2	Les formulations variationnelles équivalentes	28

		2.2.1	La formulation variationnelle primale $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	28
		2.2.2	Le problème pénalisé	30
	2.3	La for	mulation variationnelle mixte	34
3	Арр 3.1	proxim La mé	ation du problème d'obstacle thode des éléments finis stabilisés	39 39
4	Test	ts num	ériques sous Freefem++	50
	4.1	Traiter	ment d'un exemple	52
5	Con	clusio	1	54

NOTATIONS

$$\blacktriangleright \nabla v = \operatorname{grad}(v) = \begin{pmatrix} \partial_x v \\ \partial_y v \end{pmatrix}$$
: Le gradient d'un vector 2D.

► (.,.) : Le produit scalaire et $\langle .,. \rangle$: Le produit de dualité.

$$\blacktriangleright H^m(\Omega) = \{ v \in L^2(\Omega) / \forall \alpha : |\alpha| \le m, \partial^{\alpha} v \in L^2(\Omega) \}.$$

$$\blacktriangleright H_0^1(\Omega) = \{ v \in H^1/v = 0 \text{ dans } \partial \Omega \}.$$

- $\blacktriangleright H^{-1}$: dual de l'espace H_0^1 .
- ► (.,.) : Le produit scalaire et $\langle .,. \rangle$: Le produit de dualité.

 $\blacktriangleright \mathcal{C}^k(\Omega)$: l'espace des fonctions k-fois continue, différentiable sur $\Omega.$

$$D^2 w : D^2 v = \sum_{i,j=1}^2 w_{x_i x_j} v_{x_i x_j} : \text{Le produit scalaire dans } \mathbb{R}^4.$$

$$|v|_{2, \omega} = \left(\sum_{|\alpha|=2} ||D^{\alpha}v||_{0,\omega}^2\right)^{1/2}.$$

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

$$[v] = v_- \mathbf{n}^- + v_+ \mathbf{n}^+.$$

$$\frac{\partial^2 v}{\partial n^2} = n \cdot (\nabla^2 v) n .$$

$$\blacktriangleright \left[\left[\frac{\partial v}{\partial n} \right] \right] = \left(\nabla v_+ + \nabla v_- \right) \cdot n$$

INTRODUCTION

Le type le plus simple des problèmes de contact est celui qui concerne le contact entre une membrane élastique et un obstacle (rigide ou élastique). Les problèmes de cette catégorie sont appelés "problèmes d'obstacle", ce genre des problèmes peut étre considéré, comme un problème de frontière libre. Plusieurs modèles physiques importants peuvent être reformulé comme un problème d'obstacle, par exemple : le problème de filtration d'un fluide, problème de l'écoulement, problème de Stefan,...etc, grâce à la non linéarité de problème d'obstacle, le calcule des solutions exactes ou approximatives peut être difficile, pour cela nous nous intéressons à présenter une approche primale-duale qui nous aide à résoudre le problème d'obstacle, Cette approche duale consiste à trouver une formulation mixte à l'aide de méthode de multiplicateur de Lagrange.

Pour le problème de flexion de plaque avec un obstacle élastique, nous nous référons à [5] et [8]. Maintenant on va étudier le problème d'obstacle dans quatre chapitres, dans le premier chapitre en présentant l'hypothèse du modèle de kirchhoff en plus nous utilisserons la théorie de Lax-Milgram pour réaliser l'existence et l'unicité de la solution. Ensuite dans le deuxième chapitre nous formulons le problème continu et aprés dans le troisième chapitre nous montrons sa stabilité et nous définissons la méthode des éléments finis stabilisés et établir une estimation de stabilité discrète ainsi que des estimations d'erreur a priori et a posteriori .

Finalement, il est difficile de trouver la solution analytique dans le cas général. C'est pour cela que nous programmons sous Freefem++ les schémas numériques développés dans les chapitres précédents, afin de valider les résultats théoriques. Chapitre 1

Modèle de plaque kirchhoff

Ce chapitre est basé sur la thèse [6]. Une nouvelle approche des méthodes mixtes pour les coques et les plaques Kirchhoff-Love .Par : Katharina Refetseder. Université Johannes Kepler de Linz (Allemagne) (2018).

La plaque est une structure plane à parois minces. Une dimension, dans notre cas x_3 , est significativement plus que les deux autres. dans la configuration non déformée est définie par

$$\Omega = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1, x_2) \in \omega, x_3 \in \left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right) \right\}$$

où $\omega \subset \mathbb{R}^2$ définit la surface médiane de la plaque et ε désigne l'épaisseur, que nous supposons pour que la simplicité soit constante. Dans les considérations suivantes, la plaque est soumise à des charges qui provoquent des déformations de flexion et membranaire. Avant de présenter le modèle de plaque Kirchhoff. A noter que le modèle de Kirchhoff, peut être déduit du modèle de Reissner-Mindlin. La comparaison entre les deux modèles était une question intéressante pour les chercheurs. En gros, pour des valeurs d'épaisseur très faibles, le modèle de Kirchhoff donne des résultats plus précis, tandis que le modèle Reissner est meilleur lorsque la plaque est modérément épaisse ou lorsque des singularités sont présentes.

1.1 CINÉMATIQUE DE LA PLAQUE ET ÉQUATION CONSTITUTIVE

L'invention de la théorie classique des plaques remonte à 1850 et est accréditée par Gustav Kirchhoff (1824-1887). Dans son modèle, le modèle de plaque de Kirchhoff, le champ de déplacement est basé sur les hypothèses cinématiques de Kirchhoff, qui se composent des trois parties suivantes :

- 1. Les lignes droites orthogonales à la surface moyenne (c'est-à-dire les normales transversales) dans la configuration non déformée restent droites pendant la déformation.
- 2. Les normales transversales restent non délatés pendant la déformation.
- 3. Les normales transversales tournent de telle sorte qu'elles restent orthogonales à la surface moyenne après la déformation.

FIGURE 1.1 – Hypothèse géométrique de Kirchhoff

Pour les plaques épaisses, cette théorie est trop restrictive, car il faut également tenir compte des déformations de cisaillement transversales. Les déformations de cisaillement transversales peuvent être comprises comme le glissement les unes sur les autres des surfaces parallèles à la surface moyenne. Ces effets ont été incorporés pour la première fois dans leurs modèles de plaques par Eric Reissner (1913-1996) en 1945 et par Raymond Mindlin (1906-1987) en 1951. L'idée était de considérer les rotations comme inconnues

FIGURE 1.2 – Une plaque déformée

supplémentaires à côté du déplacement de la surface moyenne. Cela signifie que la troisième des hypothèses de Kirchhoff a été abandonnée, ce qui a conduit aux hypothèses cinématiques de Reissner-Mindlin.

Les hypothèses cinématiques de Reissner-Mindlin impliquent la forme suivante du 3D déplacement $U = (U_i)$:

$$U_{\alpha}(x_1, x_2, x_3) = u_{\alpha}(x_1, x_2) - x_3 \theta_{\alpha}(x_1, x_2),$$

$$U_{3}(x_1, x_2, x_3) = u_{3}(x_1, x_2),$$
(1.1)

où $u = (u_i)$ désigne le déplacement de la surface moyenne de la plaque et $\theta = (\theta_\alpha)$ la rotation d'une normale transversale. Dans ce qui suit, nous nous référons à $\underline{u} = (u_\alpha)$ et u_3 comme partie dans le plan et transversale (verticale) du déplacement, respectivement. Tout au long , nous considérons les petits déplacements, c'est-à-dire l'analyse linéaire. Puis le déformation 3D $\mathbf{e}(\mathbf{U})$ est donné par ses composants

$$e_{ij}(U) = \frac{1}{2}(\partial_j U_i + \partial_i U_j)$$
 avec $\partial_i = \partial_{x_i}$

Pour le déplacement spécifique (1.1) on obtient

$$e_{\alpha\beta}(\mathbf{U}) = \frac{1}{2}(\partial_{\beta}u_{\alpha} + \partial_{\beta}u_{\alpha}) - x_{3}(\partial_{\beta}\theta_{\alpha} + \partial_{\alpha}\theta_{\beta}) = \varepsilon_{\alpha\beta}(\underline{u}) + x_{3}\kappa_{\alpha\beta}(\theta),$$

$$e_{\alpha3}(\mathbf{U}) = \frac{1}{2}(\partial_{\alpha}u_{3} - \theta_{\alpha}) = \gamma_{\alpha}(u_{3},\theta),$$
(1.2)

où

$$\varepsilon_{\alpha\beta}(\underline{u}) = \frac{1}{2}(\partial_{\beta}u_{\alpha} + \partial_{\alpha}u_{\beta}), \qquad \kappa_{\alpha\beta}(u_{3}) = \frac{1}{2}(\partial_{\beta}\theta_{\alpha} + \partial_{\alpha}\theta_{\beta}).$$
(1.3)

Les tenseurs $\varepsilon(\underline{u}), \kappa(\theta)$ et $\gamma(u_3, \theta)$ avec les composants introduits ci-dessus sont appelés respectivement déformation de la membrane, déformation en flexion et tenseur de déformation en cisaillement. La troisième partie des hypothèses cinématiques de Kirchhoff implique

$$\theta_{\alpha} = \partial_{\alpha} u_3 \tag{1.4}$$

comme nous pouvons le montrer dans le lemme suivant :

Lemme 1.1 La troisième hypothèse de Kirchhoff signifie que :

$$\theta = \nabla u_3$$

En effet, on note

Remarque 1.2 Les hypothèses de Kirchhoff réduisent le nombre de degrés de liberté de 5 (pour le modèle de Reissner-Mindlin) à 3, c'est-à-dire uniquement (u_1, u_2, u_3) représentent les inconnues.

Substitution de l'expression (1.4) pour la rotation en (1.1) mène à

$$e_{\alpha\beta}(\mathbf{U}) = \frac{1}{2}(\partial_{\beta}u_{\alpha} + \partial_{\beta}u_{\alpha}) - x_{3}\partial_{\alpha\beta}u_{3} = \varepsilon_{\alpha\beta}(\underline{u}) + x_{3}\kappa_{\alpha\beta}(u_{3}),$$

$$e_{\alpha3}(\mathbf{U}) = 0$$
(1.5)

avec le tenseur de déformation en flexion $\kappa(u_3)$ donné par

$$\kappa_{\alpha\beta}(u_3) = -\partial_{\alpha\beta}u_3. \tag{1.6}$$

Pour un matériau élastique linéaire homogène isotrope, la loi de Hooke prévoit les composants du tenseur 3D de contrainte σ

$$\sigma_{ij} = 2\mu e_{ij} + \lambda (e_{11} + e_{22} + e_{33})\delta_{ij}, \qquad (1.7)$$

avec les constantes λ et μ données par

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} \qquad \text{et} \qquad \mu = \frac{E}{2(1+\nu)}$$

si nous désignons le module de Young par E et le coefficient de Poisson par ν , comme d'habitude.

En appliquant l'hypothèse de contrainte plane $\sigma_{33} = 0$ on obtient

$$e_{33} = -\frac{\nu}{1-\nu}(e_{11}+e_{22}),$$

ce qui conduit à la équation constitutive 2D de l'état de contrainte plane

$$\sigma_{\alpha\beta} = \frac{E}{1+\nu} \left(e_{\alpha\beta} + \frac{\nu}{1-\nu} (e_{11} + e_{22}) \delta_{\alpha\beta} \right). \tag{1.8}$$

En bref, nous écrivons pour $\sigma_{2D} = (\sigma_{\alpha\beta})$ et $\mathbf{e}_{2D} = (e_{\alpha\beta})$

 $\sigma_{\rm 2D} = C \mathbf{e}_{\rm 2D}$

avec l'application du tenseur de matériau du quatrième ordre donné par

$$\mathcal{C}\mathbf{A} = \frac{E}{1+\nu} \left(\mathbf{A} + \frac{\nu}{1-\nu} tr(\mathbf{A})I \right) \text{ pour tous } \mathbf{A} \in \mathbb{R}^{2\times 2}, \tag{1.9}$$

où I est la matrice d'identité et tr est l'opérateur de trace pour les matrices. La théorie présentée ci-dessous est indépendante de la structure particulière du tenseur de matériau. Nous supposons seulement que le tenseur de matériau est symétrique et défini positif sur des matrices symétriques, c'est-à-dire,

$$\begin{aligned} \mathbf{CA} : \mathbf{B} = \mathbf{A} : \mathbf{CB} & \text{pour tous } \mathbf{A}, \mathbf{B} \in \mathbb{R}^{2 \times 2}_{\text{sym}} \\ \mathbf{CA} : \mathbf{A} > \mathbf{0} & \text{pour tous } \mathbf{0} \neq \mathbf{A} \in \mathbb{R}^{2 \times 2}_{\text{sym}} \end{aligned}$$

où $\mathbb{R}^{2\times 2}_{sym}$ désigne l'espace des matrices symétriques dans $\mathbb{R}^{2\times 2}$.en outre, $\lambda_{min}(\mathbf{C})$ et $\lambda_{max}(\mathbf{C})$ désignent respectivement la valeur propre minimale et maximale du tenseur de matériau, puis

 $\lambda_{min}(\mathcal{C})\mathbf{A}: \mathbf{A} \leq \mathcal{C}\mathbf{A}: \mathbf{A} \leq \lambda_{max}(\mathcal{C})\mathbf{A}: \mathbf{A} \text{ pour tous } \mathbf{A} \in \mathbb{R}^{2 \times 2}_{sym}$

1.1.1 Modèle bidimensionnel de plaques

Tout au long de cette section, toutes les fonctions sont supposées être suffisamment régulières.Nous considérons le problème d'élasticité linéaire standard dans le domaine $\Omega \subset \mathbb{R}^3$ avec bord \sum . La surface moyenne non déformée $\omega \subset \mathbb{R}^2$ est supposée à bord Lipchitzien Γ . On suppose que la frontière Γ est décomposée sous la forme

$$\Gamma = \nu_{\Gamma} \cup \varepsilon_{\Gamma} \text{ avec } \varepsilon_{\Gamma} = \bigcup_{k=1}^{K} E_k$$

où E_k , k = 1, 2, ..., K, sont les bords de Γ, considérés comme des segments ouverts éventuellement curvilignes et ν_{Γ} désigne l'ensemble des points anguleux dans Γ.Les bords sont numérotés consécutivement dans le sens antihoraire. Nous désignons le sommet au point de départ de \bar{E}_k par x_k où \bar{E}_k dénote la fermeture de E_k . Étant donné que nous considérons une courbe de limite fermée, l'indice k = 0 est dans la suite toujours identifié avec k = K.

La plaque 3D est encastrée sur la partie $\sum_c = \Gamma_c \times (-\varepsilon/2, \varepsilon/2)$, simplement appuyée sur une partie $\sum_s = \Gamma_s \times (-\varepsilon/2, \varepsilon/2)$, et libre sur une partie $\sum_f = \Gamma_f \times (-\varepsilon/2, \varepsilon/2)$, avec $\Gamma = \Gamma_c \cup \Gamma_s \cup \Gamma_f$ sont 2 à 2 disjoints. Γ_c, Γ_s et Γ_f , et Nous supposons que chaque arête $E \in \varepsilon_{\Gamma}$ est contenue exactement dans l'un des ensembles $\Gamma_c, \Gamma_s, \Gamma_f$, et que les arêtes sont maximales dans le sens où deux bords avec le même type de condition aux limites ne se rencontrent pas à un angle de π . Nous supposons qu'aucune condition aux limites cinématiques pour le déplacement n'est prescrite sur les faces supérieure et inférieure de Ω . Des forces de traction $\mathbf{g} = (g_i)$ sont prescrites sur toute la frontière \sum , et des forces volumiques $\mathbf{f} = (f_i)$ sont données dans Ω .

Ainsi, l'énergie totale du problème d'élasticité s'écrit comme suit :

$$J(\mathbf{U}) = \frac{1}{2} \int_{\Omega} \sigma(\mathbf{U}) : \mathbf{e}(\mathbf{U}) dx - \int_{\Omega} f \cdot \mathbf{U} dx - \int_{\Sigma} g \cdot \mathbf{U} d\Gamma,$$

où la première partie est l'énergie de déformation correspondant au déplacement \mathbf{U} , le deuxième terme décrit est l'énergie potentielle liée aux forces volumiques f, et la troisième partie est l'énergie résultant des tractions prescrites sur le bord.

Le déplacement $\mathbf{U} = (\underline{\mathbf{U}}, U_3)$ est alors obtenu en minimisant l'énergie $J(\mathbf{U})$ par rapport à l'espace des déplacements cinématiquement admissibles $\mathbf{U} = (\underline{\mathbf{U}}, U_3)$ satisfaisant les conditions aux limites cinématiques

$$\underline{\mathbf{U}} = \underline{\hat{\mathbf{U}}} \qquad U_3 = \hat{U}_3 \text{sur } \sum_c,$$

$$\underline{U}_t = \underline{\hat{U}}_t \qquad U_3 = \hat{U}_3 \text{ sur } \sum_s^c.$$
 (1.10)

pour fonctionnelle J

$$J(\mathbf{U} + \mathbf{V}) = J(\mathbf{U}) + \left\langle J'(\mathbf{U}), V \right\rangle + \circ(\|V\|)$$

donc

$$\begin{split} J(\mathbf{U} + \mathbf{V}) &= \frac{1}{2} \int_{\Omega} C(e(U+V) : e(U+V)) dx - \int_{\Omega} f(U+V) dx - \int_{\Sigma} g(U+V) d\Gamma \\ &= \frac{1}{2} \int_{\Omega} Ce(U) : e(U) dx + \int_{\Omega} Ce(U) : e(V) dx + \frac{1}{2} \int_{\Omega} Ce(V) : e(V) dx - \int_{\Omega} f.U dx \\ &- \int_{\Omega} f.V dx - \int_{\Sigma} g.U d\Gamma - \int_{\Sigma} g.V d\Gamma \\ J(\mathbf{U} + \mathbf{V}) &= J(U) + \int_{\Omega} Ce(U) : e(V) dx - \int_{\Omega} f \cdot V dx - \int_{\Sigma} g \cdot V d\Gamma + \circ(||V||) \end{split}$$

 donc

$$\left\langle J'(U), V \right\rangle = \int_{\Omega} Ce(U) : e(V)dx - \int_{\Omega} f V dx - \int_{\Sigma} g V d\Gamma$$

Remarque 1.3 La fonctionnelle $J: W_0^{1,p}(\omega) \to \mathbb{R}$ est définie par :

$$J(U) = \frac{1}{2} \int_{\Omega} \sigma_{ij}(U) : e_{ij}(U) dx - \int_{\Omega} f U dx - \int_{\Sigma} g U d\Gamma$$

admet un point critique U solution à B(U) = f donc $\nabla J(U) = 0$.

Cela revient à résoudre la formulation variationnelle : trouver $\mathbf{U} = (\underline{\mathbf{U}}, U_3)$ satisfaisant les conditions aux limites cinématiques (1.10) tel que

$$\int_{\Omega} \sigma_{ij}(U) : e_{ij}(V)dx = \int_{\Omega} f.Vdx + \int_{\Sigma} g.Vd\Gamma$$
(1.11)

pour tous V satisfait les conditions aux limite homogènes

Lemme 1.4 (première inégalité de Korn) Soit Ω un domaine borné de \mathbb{R}^n , alors,

$$\forall u \in H_0^1(\Omega)$$
 $\|\nabla u\|_{0,\Omega}^2 \le 2 \|e(u)\|_{0,\Omega}^2$ (1.12)

Lemme 1.5 (deuxième inégalité de Korn)Soit Ω un domaine borné de \mathbb{R}^n , alors,

$$\forall u \in H^{1}(\Omega) \qquad \exists C(\Omega) > 0 \qquad \|u\|_{1,\Omega} \le C(\|u\|_{0,\Omega} + \|e(u)\|_{0,\Omega}) \tag{1.13}$$

Lemme 1.6 (Lax-Milgram) Soit V un espace de Hilbert avec la norme $\|\cdot\|_V$ et produit scalaire $(.,.)_V$ et supposons que a est une forme bilinéaire et L est une forme linéaire qui satisfait :

1. a est continue, c'est-à-dire.

 $\exists C > 0 tel que \qquad \forall (u, v) \in V \times V, \qquad |a(u, v)| \le C \|u\|_V \|v\|_V$

2. a est coercive (V-elliptique), c'est-à-dire

$$\exists \alpha > 0, \ tel \ que \qquad \qquad \forall u \in V \qquad \qquad a(u, u) \ge \alpha \left\| u \right\|_{V}^{2}$$

3. L(v) est continu, c'est-à-dire

$$\exists \gamma > 0 tel \ que \ , \qquad \qquad \forall v \in V \qquad \qquad |L(v)| \leq \gamma \, \|v\|_V$$

 $alors \ il \ y \ a \ une \ fonction \ unique \ u \in V \ tel \ que \ a(u,v) = L(v) \quad \forall v \in V,$

Considérons les espaces

$$V_{KL} = \{ v \in V \qquad e_{i3}(v) = 0 \}$$
$$V_H = \{ (\varphi_1, \varphi_2) \in (H^1(\omega))^2 \qquad \varphi_\alpha|_{\Gamma_c} = 0 \}$$
$$V_3 = \{ \varphi_3 \in H^2(\omega) \qquad \varphi_3|_{\Gamma_c} = \partial \varphi_3|_{\Gamma_c} = 0 \}$$

L'utilisation de la représentation des déformations (1.5), qui est une conséquence d'hypothèses cinématiques et de l'équation constitutive de l'état de contrainte plane (1.8) , la formulation variation nelle (1.11)devient en effectuant une intégration explicite par rapport à x_3 :

trouver $\mathbf{u} = (\underline{\mathbf{u}}, u_3)$ satisfaisant aux conditions aux limites essentielles

$$\underline{\mathbf{u}} = \underline{\hat{\mathbf{u}}}, \quad u_3 = \hat{u}_3, \partial_n u_3 = \hat{\theta}_n \quad \text{sur } \Gamma_c, \\
\underline{u}_t = \underline{\hat{u}}_t, \quad u_3 = \hat{u}_3 \quad \text{sur } \Gamma_s.$$
(1.14)

tel que

$$\int_{\Omega} \sigma(u) : e(v) dx = \int_{\Omega} f \cdot v dx + \int_{\Sigma} g \cdot v d\Gamma$$

Le membre à gauche s'écrit :

$$\begin{split} \int_{\Omega} \sigma(u) : e(v) dx. &= \int_{\Omega} \left(2\mu \cdot e_{\alpha\beta}(u) + \lambda \cdot e_{\alpha\alpha}(u) \cdot \delta_{\alpha\beta} \right) e_{\alpha\beta}(v) dx. \\ &= \int_{\Omega} \left[2\mu e_{\alpha\beta}(u) : e_{\alpha\beta}(v) + \lambda \cdot e_{\alpha\alpha}(u) : e_{\beta\beta}(v) \right] dx. \\ &= \int_{\omega} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} \left[2\mu (\varepsilon_{\alpha\beta}(u) + x_3 \kappa_{\alpha\beta}(u)) (\varepsilon_{\alpha\beta}(v) + x_3 \kappa_{\alpha\beta}(v)) \right] \\ &+ \lambda (\varepsilon_{\alpha\alpha}(u) + x_3 \kappa_{\alpha\alpha}(u)) (\varepsilon_{\beta\beta}(v) + x_3 \kappa_{\beta\beta}(v)) \right] dx_3 d\underline{x}. \\ &= \int_{\omega} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} \left[2\mu (\varepsilon_{\alpha\beta}(u) \cdot \varepsilon_{\alpha\beta}(v) + x_3 \kappa_{\alpha\beta}(u) \cdot \varepsilon_{\alpha\beta}(v) \\ &+ \varepsilon_{\alpha\beta}(u) \cdot x_3 \kappa_{\alpha\beta}(v) + x_3^2 \kappa_{\alpha\beta}(u) \cdot \kappa_{\alpha\beta}(v)) \right] dx_3 d\underline{x}. \\ &+ \int_{\omega} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} \left[\lambda (\varepsilon_{\alpha\alpha}(u) \cdot \varepsilon_{\beta\beta}(v) + x_3 \kappa_{\alpha\alpha}(u) \cdot \varepsilon_{\beta\beta}(v) + \varepsilon_{\alpha\alpha}(u) \cdot x_3 \kappa_{\beta\beta}(v) \\ &+ x_3^2 \kappa_{\alpha\alpha}(u) \cdot \kappa_{\beta\beta}(v)) \right] dx_3 d\underline{x}. \end{split}$$

Le membre à droite

$$\begin{split} &\int_{\Omega} f \cdot v dx + \int_{\Sigma} g \cdot v d\Gamma. \\ &= \int_{\omega} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} (f_{\alpha}(\underline{v} - x_{3} \nabla v_{3}) + f_{3} \cdot v_{3}) dx_{3} d\underline{x} + \int_{\Gamma_{c} \cup \Gamma_{f} \cup \Gamma_{s}} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} (g_{\alpha}(\underline{v} - x_{3} \nabla v_{3}) + g_{3} \cdot v_{3}) dx_{3} ds. \\ &= \int_{\omega} \left[\underline{v} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} f_{\alpha} dx_{3} - \nabla v_{3} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} x_{3} \cdot f_{\alpha} dx_{3} + \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} f_{3} dx_{3} v_{3}) \right] d\underline{x} \\ &+ \int_{\Gamma_{f}} \left[\underline{v} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} g_{\alpha} dx_{3} - \nabla v_{3} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} x_{3} \cdot g_{\alpha} dx_{3} + v_{3} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} g_{3} dx_{3} \right] ds \\ &+ \int_{\Gamma_{s}} \left[\underline{v} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} g_{\alpha} dx_{3} - \nabla v_{3} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} x_{3} \cdot g_{\alpha} dx_{3} \right] d\underline{x}. \end{split}$$

de telle sorte que la formulation variationnelle

$$\int_{\omega} \left(\varepsilon C \varepsilon(\underline{u}) : \varepsilon(\underline{v}) + \frac{\varepsilon^3}{12} C \kappa(u_3) : \kappa(v_3) \right) dx = \int_{\omega} \left(\underline{\hat{f}} \cdot \underline{v} - \hat{c} \cdot \nabla v_3 + \hat{f}_3 \cdot v_3 \right) dx \quad (1.15)$$
$$+ \int_{\Gamma_s} \left(\hat{N}_n v_n - \hat{M}_n \partial_n v_3 \right) ds$$
$$+ \int_{\Gamma_f} \left(\mathbf{\hat{N}} \cdot \underline{v} - \mathbf{\hat{M}} \cdot \nabla v_3 + \mathbf{\hat{Q}} v_3 \right) ds.$$

pour tous $\mathbf{v} = (\underline{\mathbf{v}}, v_3)$ satisfaisant les conditions aux limites homgènes. Ici les forces appliquées $\mathbf{\hat{f}} = (\mathbf{\hat{f}}, \hat{f}_3)$ et couples $\mathbf{\hat{c}} = (\hat{c}_{\alpha})$ sont donnés par

$$\hat{f}_{\alpha} = \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} f_{\alpha} dx_3 + \langle g_{\alpha} \rangle , \quad \hat{f}_3 = \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} f_3 dx_3 + \langle g_3 \rangle , \quad \hat{c}_{\alpha} = \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} f_{\alpha} x_3 dx_3 + \langle g_{\alpha} x_3 \rangle ,$$

avec l'opérateur $\langle \cdot \rangle$ est défini par

$$\langle a(x_1, x_2, x_3) \rangle = a(x_1, x_2, \frac{-\varepsilon}{2}) + a(x_1, x_2, \frac{\varepsilon}{2}),$$

et les forces au bord $\hat{\mathbf{N}} = (\hat{N}_{\alpha}), \hat{Q}$ et moments $\hat{\mathbf{M}} = (\hat{M}_{\alpha})$ sont donnés par

$$\hat{N}_{\alpha} = \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} g_{\alpha} dx_3, \quad \hat{Q} = \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} g_3 dx_3, \quad \hat{M}_{\alpha} = \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} g_{\alpha} x_3 dx_3.$$

La formulation variationnelle est de trouver $u \in V$ tel que

$$a(u,v) = L(v) \qquad \forall v \in V, \tag{1.16}$$

où

$$\begin{split} a(u,v) &= \int_{\omega} \left(\varepsilon C \varepsilon(\underline{u}) : \varepsilon(\underline{v}) + \frac{\varepsilon^3}{12} C \kappa(u_3) : \kappa(v_3) \right) dx \\ L(v) &= \int_{\omega} \left(\underline{\hat{f}} \cdot \underline{v} - \hat{c} \cdot \nabla v_3 + \hat{f}_3 \cdot v_3 \right) dx \\ &+ \int_{\Gamma_s} \left(\hat{N}_n v_n - \hat{M}_n \partial_n v_3 \right) ds \\ &+ \int_{\Gamma_f} \left(\mathbf{\hat{N}}_n \cdot v_n - \mathbf{\hat{M}}_n \cdot \nabla v_3 + \hat{Q} v_3 \right) ds \end{split}$$

pour l'existence et l'unicité de la solution, nous utilisons la théorie de Lax-Milgram . a est bilinéaire et continue,

Pour vérifier la continuité de a, nous utilisons l'inégalité de Cauchy-Schwarz

$$\begin{aligned} a(u,v) &= \int_{\omega} \left(\varepsilon C \varepsilon(\underline{u}) : \varepsilon(\underline{v}) + \frac{\varepsilon^3}{12} C \kappa(u_3) : \kappa(v_3) \right) dx &\leq C \left(\|\varepsilon(u)\|_{L^2} \|\varepsilon(v)\|_{L^2} + \|\kappa(u)\|_V \|\kappa(v)\|_V \right) \\ &\leq 2C \|e(u)\|_V \|e(v)\|_V \\ &\leq 2C \left(\|e(u)\|_{L^2} + \|u\|_{L^2} \right) \left(\|e(v)\|_{L^2} + \|v\|_{L^2} \right) \\ &\leq C \|u\|_{H^1} \|v\|_{H^1} \end{aligned}$$

a est coercive (elliptique dans V)

Pour vérifier l'ellipticité dans V, nous utilisons l'inégalité de Korn

$$\begin{aligned} a(u,u) &= \int_{\omega} \left(\varepsilon C \varepsilon(\underline{u}) : \varepsilon(\underline{u}) + \frac{\varepsilon^3}{12} C \kappa(u_3) : \kappa(u_3) \right) dx \geq \int_{\omega} \left(\varepsilon C \varepsilon(\underline{u}) : \varepsilon(\underline{u}) \right) dx \\ &= C \left\| \varepsilon(u) \right\|_{L^2}^2 \geq \|u\|_{H^1}^2 \end{aligned}$$

L (v) est linéaire et continue.

Pour vérifier la continuité, nous utilisons l'inégalité de Cauchy-Schwarz et le théorème de trace

$$\begin{split} L(v) &= \int_{\omega} \left(\underline{\hat{f}} \cdot \underline{v} - \hat{c} \cdot \nabla v_{3} + \hat{f}_{3} \cdot v_{3} \right) dx \\ &+ \int_{\Gamma_{s}} \left(\hat{N}_{n} v_{n} - \hat{M}_{n} \partial_{n} v_{3} \right) ds \\ &+ \int_{\Gamma_{f}} \left(\mathbf{\hat{N}} \cdot \underline{v} - \mathbf{\hat{M}} \cdot \nabla v_{3} + \hat{Q} v_{3} \right) ds \\ &\leq \left\| \underline{\hat{f}} \right\|_{L^{2}(\omega)} \| \underline{v} \|_{L^{2}(\omega)} + \| \hat{c} \|_{L^{2}(\omega)} \| \nabla v_{3} \|_{L^{2}(\omega)} + \left\| \hat{f}_{3} \right\|_{L^{2}(\omega)} \| v_{3} \|_{L^{2}(\omega)} \\ &+ \left\| \hat{N}_{n} \right\|_{L^{2}(\Gamma_{s})} \| \underline{v}_{n} \|_{L^{2}(\Gamma_{s})} + \left\| \hat{M}_{n} \right\|_{L^{2}(\Gamma_{s})} \| \partial_{n} v_{3} \|_{L^{2}(\Gamma_{s})} \\ &+ \left\| \mathbf{\hat{N}} \right\|_{L^{2}(\Gamma_{f})} \| \underline{v} \|_{L^{2}(\Gamma_{f})} + \left\| \mathbf{\hat{M}} \right\|_{L^{2}(\Gamma_{f})} \| \nabla v_{3} \|_{L^{2}(\Gamma_{f})} + \left\| \hat{Q} \right\|_{L^{2}(\Gamma_{f})} \| v_{3} \|_{L^{2}(\Gamma_{f})} (\text{Cauchy-Schwarz}) \\ &\leq C' \| \underline{v} \|_{H^{1}(\omega)} + C'' \| v_{3} \|_{H^{2}(\omega)} + \left\| \mathbf{\hat{M}} \right\|_{L^{2}(\Gamma_{f})} \| \nabla v_{3} \|_{L^{2}(\Gamma_{f})} \\ &+ \left\| \mathbf{\hat{M}}_{n} \right\|_{L^{2}(\Gamma_{s})} \| \partial_{n} v_{3} \|_{L^{2}(\Gamma_{s})} \\ &\leq C_{1} \| \underline{v} \|_{L^{2}(\omega)} + C_{2} \| v_{3} \|_{L^{2}(\Gamma_{f})} \\ (\text{inégalité de trace normel)} \end{split}$$

Le problème variationnel (1.15) se dissocie en deux problèmes indépendants :

1.1.2 Problème de membrane

Trouver $\underline{\mathbf{u}} = (u_{\alpha})$ satisfaisant aux conditions aux limites essentielles

$$\underline{u} = \underline{\hat{u}} \qquad \text{sur} \qquad \Gamma_c$$
$$\underline{u}_t = \underline{\hat{u}}_t \qquad \text{sur} \qquad \Gamma_s$$

tel que

$$\int_{\omega} \varepsilon C \varepsilon(\underline{u}) : \varepsilon(\underline{v}) dx = \int_{\omega} \underline{\hat{f}} \cdot \underline{v} dx + \int_{\Gamma_s} \hat{N}_n \underline{v}_n ds + \int_{\Gamma_f} \hat{N} \cdot \underline{v} ds$$
(1.17)

pour tous $\underline{v} = (v_{\alpha})$ satisfaisant

1.1.3 Problème de flexion

Trouver u_3 satisfaisant aux conditions aux limites essentielles

$$u_{3} = \hat{u}_{3}, \partial_{n}u_{3} = \hat{\theta}_{n} \qquad \text{sur } \Gamma_{c},$$
$$u_{3} = \hat{u}_{3} \qquad \text{sur} \Gamma_{s}$$

tel que

$$\int_{\omega} \frac{\varepsilon^{3}}{12} C\kappa(u_{3}) : \kappa(v_{3}) dx$$

$$= \int_{\omega} \left(\hat{f}_{3} v_{3} - \hat{\mathbf{c}} \cdot \nabla v_{3} \right) dx - \int_{\Gamma_{s}} \hat{M}_{n} \partial_{n} v_{3} ds$$

$$+ \int_{\Gamma_{f}} \left(\hat{\mathbf{Q}} v_{3} - \hat{\mathbf{M}} \cdot \nabla v_{3} \right) ds, \qquad (1.18)$$

pour tous v_3 satisfaisant la contrepartie homogène des conditions aux limites essentielles. la formulation variationnelle du problème de membrane n'implique que des dérivés du premier ordre et la formulation variationnelle du problème de flexion implique des dérivés du second ordre, car la déformation de flexion est définie par $\kappa(u_3) = -\nabla^2 u_3$,voir (1.6). Le problème de la membrane peut être résolu (indépendamment) en utilisant des techniques standard pour les problèmes de second ordre. Par conséquent, nous limitons nos considérations ci-après au problème de flexion des plaques pour le déplacement transversal u_3 , comme c'est la seule inconnue, nous éliminons l'indice et écrivons simplement u pour le reste de ce chapitre.

Nous dérivons la formulation forte du problème de flexion (1.15).Pour cela nous définissons le tenseur de moment de flexion **M**,qui est liée à la déformation de flexion à travers l'équation constitutive

$$\mathbf{M} = \frac{\varepsilon^3}{12} \mathcal{C}\kappa(u) = -\frac{\varepsilon^3}{12} \mathcal{C}\nabla^2 u.$$

L'intégration par parties à deux reprises du membre de gauche de (1.18) fournit

$$-\int_{\omega} \mathbf{M} : \nabla^2 v dx = \int_{\omega} \operatorname{Div} \mathbf{M} \cdot \nabla v ds - \int_{\Gamma} (\mathbf{M} \mathbf{n}) \cdot v ds$$
$$= -\int_{\omega} (\operatorname{div} \operatorname{Div} \mathbf{M}) v dx + \int_{\Gamma} (\operatorname{Div} \mathbf{M} \cdot \mathbf{n}) v ds - \int_{\Gamma} (\mathbf{M} \mathbf{n}) \cdot \nabla v ds.$$

L'utilisation de la représentation $\nabla v = (\partial_n v) \mathbf{n} + (\partial_t v) \mathbf{t}$ implique

$$\int_{\Gamma} (\mathbf{Mn}) \cdot \nabla v ds = \int_{\Gamma} (M_{nn} \partial_n v + M_{nt} \partial_t v) ds.$$

Dans l'étape suivante, nous effectuons l'intégration par parties le long de la frontière dans la direction tangentielle . Pour cela ainsi que pour une utilisation ultérieure, nous définissons d'abord les notations suivantes :

Définition 1.7 avec les notations introduites au début du chapitre nous définissons la restriction d'une fonction f au bord d'une arête E_{k-1} par

$$f|_{\partial E_{k-1}} = f(x_k) - f(x_{k-1})$$
 pour $k = 1, 2, ..., K$ (1.19)

et le saut au point d'angle x_k par

$$[[f]]_{x_k} = f(x_k^-) - f(x_k^+) \qquad pour \quad k = 1, 2, ..., K,$$
(1.20)

avec les limites unilatérales données par

$$f(x_k^-) = \lim_{\varepsilon \to 0} f(x_k - \varepsilon \mathbf{t}_{k-1}) \quad et \quad f(x_k^+) = \lim_{\varepsilon \to 0} f(x_k + \varepsilon \mathbf{t}_k),$$

où \mathbf{t}_{k-1} et \mathbf{t}_k sont les vecteurs tangents sur les bords E_{k-1} et E_k , respectivement, dans le cas d'une frontière polygonale et d'une adaptation appropriée pour les frontières courbes.

Ensuite, nous obtenons

$$\int_{\Gamma} (\mathbf{Mn}) \cdot \nabla v ds = \int_{\Gamma} (M_{nn} \partial_n v - \partial_t M_{nt} v) ds + \sum_{E \in \varepsilon_{\Gamma}} (M_{nt} v(x))|_{\partial E}$$
$$= \int_{\Gamma} (M_{nn} \partial_n v - \partial_t M_{nt} v) ds + \sum_{x \in \nu_{\Gamma}} \llbracket M_{nt} \rrbracket_x v(x).$$

On aboutit à

$$-\int_{\omega} \mathbf{M} : \nabla^2 v dx = + \int_{\omega} (\operatorname{div} \operatorname{Div} \mathbf{M}) v dx + \int_{\Gamma_f} (\partial_t M_{nt} + \operatorname{Div} \mathbf{M} \cdot \mathbf{n}) v ds - \int_{\Gamma_s \cup \Gamma_f} M_{nn} \partial_n v ds - \sum_{x \in \nu_{\Gamma,f}} \llbracket M_{nt} \rrbracket_x v(x),$$

où nous incorporons les conditions aux limites de v. Notons que $\nu_{\Gamma,f}$ désigne l'ensemble des points d'angle dont les deux arêtes adjacentes appartiennent à Γ_f .

Par intégration par parties du terme impliquant \hat{c} du côté droit dans (1.18) et encore en utilisant la représentation $\nabla v = (\partial_n v)\mathbf{n} + (\partial_t v)\mathbf{t}$ et l'intégration par parties le long de la frontière que nous obtenons

$$\begin{split} &\int_{\omega} (\hat{f}_{3}v - \hat{c} \cdot \nabla v) dx - \int_{\Gamma_{s}} \hat{M}_{n} \partial_{n} v ds + \int_{\Gamma_{f}} (\hat{Q}v - \hat{\mathbf{M}} \cdot \nabla v) ds \\ &= \int_{\omega} (\hat{f}_{3} + \operatorname{div} \hat{c}) v dx - \int_{\Gamma_{s} \cup \Gamma_{f}} \hat{M}_{n} \partial_{n} v ds + \int_{\Gamma_{f}} ((\hat{Q} - \hat{c}_{n})v - \hat{M}_{t} \partial_{t} v) ds \\ &= \int_{\omega} (\hat{f}_{3} + \operatorname{div} \hat{c}) v dx - \int_{\Gamma_{s} \cup \Gamma_{f}} \hat{M}_{n} \partial_{n} v ds + \int_{\Gamma_{f}} (\hat{Q} + \partial_{t} \hat{M}_{t} - \hat{c}_{n}) v ds \\ &- \sum_{x \in \nu_{\Gamma,f}} \llbracket \hat{M}_{t} \rrbracket_{x} v(x). \end{split}$$

En résumé, nous obtenons

$$\int_{\omega} \left(-(\operatorname{div} \operatorname{Div} \mathbf{M}) - (\hat{f}_{3} + \operatorname{div} \hat{c}) \right) v dx - \int_{\Gamma_{s} \cup \Gamma_{f}} (M_{nn} - \hat{M}_{n}) \partial_{n} v ds + \int_{\Gamma_{f}} \left((\partial_{t} M_{nt} + \operatorname{Div} \mathbf{M} \cdot \mathbf{n}) - \hat{V}_{n} \right) v ds - \sum_{x \in \nu_{\Gamma,f}} (\llbracket M_{nt} \rrbracket_{x} - \llbracket \hat{M}_{t} \rrbracket_{x}) v(x) = 0$$

avec $\hat{V}_n = \partial_t \hat{M}_t + \hat{Q} - \hat{c}_n.$

La procédure pour déduire la formulation forte consiste à considérer d'abord les fonctions de test v qui s'annulent à la frontière Γ ,qui conduit à

$$-\operatorname{div}\operatorname{Div}\mathbf{M} = \hat{f}_3 + \operatorname{div}\hat{c} \operatorname{dans} \omega.$$

Afin d'obtenir les conditions aux limites naturelles, nous considérons dans un premier temps les fonctions de test v avec v = 0 et dérivée normale arbitraire $\partial_n v$, ce qui conduit à la condition aux limites suivante pour la composante normale-normale de **M** :

$$M_{nn} = \hat{M}_n \qquad \text{sur } \Gamma_s \cup \Gamma_f.$$

Ensuite, nous considérons les fonctions de test v avec v(x) = 0 pour tout $x \in \nu_{\Gamma,f}$, ce qui conduit à la condition aux limites de la force de cisaillement de Kirchhoff

$$\partial_t M_{nt} + \operatorname{Div} \mathbf{M} \cdot \mathbf{n} = \hat{V}_n \qquad \operatorname{sur} \, \Gamma_f.$$

Enfin, en utilisant cela v(x) peut être choisi arbitrairement dans les coins $x \in \nu_{\Gamma,f}$ on en déduit les conditions de coin

$$\llbracket M_{nt} \rrbracket_x = \llbracket \hat{M}_t \rrbracket_x \qquad \text{pour tout} x \in \nu_{\Gamma, f}.$$

En résumé, la forme forte du problème de flexion des plaques (1.18) s'écrit comme

$$-\operatorname{div}\operatorname{Div}\mathbf{M} = \hat{f}_3 + \operatorname{div}\hat{c} \qquad \operatorname{dans}\,\omega, \qquad \operatorname{avec}\mathbf{M} = -\frac{\varepsilon^3}{12}\mathcal{C}\nabla^2 u \qquad (1.21)$$

avec les conditions aux limites

$$u = \hat{u}_{3}, \qquad \partial_{n}u = \theta_{n} \qquad \text{sur } \Gamma_{c},$$

$$u = \hat{u}_{3}, \qquad M_{nn} = \hat{M}_{n} \qquad \text{sur } \Gamma_{s}, \qquad (1.22)$$

$$M_{nn} = \hat{M}_{n}, \qquad \partial_{t}M_{nt} + \text{Div}\mathbf{M} \cdot \mathbf{n} = \hat{V}_{n} \text{ sur } \Gamma_{f},$$

avec $\hat{V}_n = \partial_t \hat{M}_t + \hat{Q} - \hat{c}_n$, et les conditions de coin

$$\llbracket M_{nt} \rrbracket_x = \llbracket \hat{M}_t \rrbracket_x \qquad \text{pour tout } x \in \nu_{\Gamma, f}, \tag{1.23}$$

où $\nu_{\Gamma,f}$ désigne l'ensemble des points d'angle dont les deux arêtes adjacentes appartiennent à Γ_f .

1.2 FORMULATION VARIATIONNELLE (PROBLÈME DE FLEXION DES PLAQUES)

Jusqu'à présent, nous avons supposé que toutes les fonctions étaient suffisamment lisses. Dans cette section, nous expliquons mathématiquement précisément ce que l'on entend par le terme lissage. Pour ce faire, nous équipons la formulation variationnelle du problème de flexion des plaques d'espaces fonctionnels appropriés.

Ensuite, la formulation variationnelle (primale) du problème de flexion des plaques dérivée de (1.18)devient : trouver $u \in W_g$ tel que

$$\int_{\omega} \hat{c} \nabla^2 u : \nabla^2 v dx = \left\langle \hat{F}, v \right\rangle \text{ pour tout } v \in W_0$$
(1.24)

avec le membre de droite

$$\left\langle \hat{F}, v \right\rangle = \left\langle F, v \right\rangle - \int_{\Gamma_s \cup \Gamma_f} \hat{M}_n \partial_n v ds + \int_{\Gamma_f} \hat{V}_n v ds - \sum_{x \in \nu_{\Gamma,f}} \hat{R}_x v(x), \tag{1.25}$$

où

$$\langle F, v \rangle = \int_{\omega} f v dx \text{ avec } f = \hat{f}_3 + \operatorname{div} \hat{\mathbf{c}},$$
$$V_n = \partial_t \hat{M}_t + \hat{Q} - \hat{c}_n,$$
$$R_x = [\![\hat{M}_t]\!]_x.$$

L'application du tenseur de matériau modifié $\hat{\mathcal{C}} = \frac{\varepsilon^3}{12}\mathcal{C}$ est donné par

$$\hat{\mathcal{C}}\mathbf{A} = D\left(\mathbf{A} + \frac{\nu}{1-\nu}tr(\mathbf{A})I\right)$$
 pour tout $\mathbf{A} \in \mathbb{R}^{2\times 2}$ (1.26)

avec

$$D = \frac{\varepsilon^3}{12} \frac{E}{1-\nu}$$

Ici, les espaces fonctionnels sont donnés par

$$W_0 = \left\{ v \in H^2(\omega) : v = 0, \partial_n v = 0 \text{ sur } \Gamma_c, v = 0 \text{ sur } \Gamma_s \right\},$$
(1.27)

$$W_g = \left\{ v \in H^2(\omega) : v = \hat{u}_3, \partial_n v = \hat{\theta}_n \text{ sur } \Gamma_c, v = \hat{u}_3 \text{ sur } \Gamma_s \right\}$$
(1.28)

avec norme associée $||v||_W = ||v||_2$. Pour les autres considérations, nous faisons les hypothèses suivantes sur les données aux bords : Nous considérons $\hat{M}_n \in L^2(\Gamma_s \cup \Gamma_f)$ et $\hat{V}_n = L^2(\Gamma_f)$, sachant bien qu'en utilisant des produits de dualité appropriés, ces exigences peuvent être affaiblies. De plus, nous supposons qu'il existe une extension $\bar{u} \in H^2(\omega)$ des données aux bords \hat{u}_3 et $\hat{\theta}_n$ tel que $\bar{u} = u_3$ sur $\Gamma_s \cup \Gamma_f$ et $\partial_n \bar{u} = \hat{\theta}_n$ sur Γ_c c'est à dire,

$$W_g = \bar{u} + W_0.$$
 (1.29)

Dans toute la suite $L^2(\omega)$ et $H^m(\omega)$ désignent les espaces standard de fonctions de Lebesgue et Sobolev sur ω avec les normes correspondantes $\|.\|_0$ et $\|.\|_m$ pour les entiers positifs *m*.Pour les fonctions sur Γ nous utilisons $L^2(\Gamma)$ et $H^{\frac{1}{2}}(\Gamma)$ pour désigner l'espace de Lebesgue et l'espace de trace de $H^1(\omega)$ avec les normes correspondantes $\|.\|_{0,\Gamma}$ et $\|.\|_{\frac{1}{2},\Gamma}$. en outre, $H^1_{0,\Gamma'}(\omega)$ désigne l'espace des fonctions définies dans $H^1(\omega)$ qui s'annulent sur une partie Γ' de Γ . le produit scalaire sur ω et Γ' sont toujours désignés par (.,.) et $(.,.)_{\Gamma'}$,respectivement, qu'il soit utilisé pour des fonctions scalaires, vectorielles ou matricielles. Chapitre 2 -

MODÉLISATION MATHÉMATIQUE DU PROBLÈME D'OBSTACLE POUR LE BILAPLACIEN

2.1 **POSITION DU PROBLÈME**

On définit le problème d'obstacle et la solution u(x; y) qui représente un petit déplacement transversal la surface moyenne d'une plaque de Kirchhoff $\Omega \subset \mathbb{R}^2$ fixée le long de sa frontière $\partial \Omega$, soumise à une force $f \in H^{-1}$ et se pose sur un obstacle élastique $\psi(x, y) \leq 0$.

Notons par P(v) l'energie potentielle et $\ell(v)$ est l'energie des forces extérieurs. On obtient :

$$P(v) = \frac{1}{2}a(v,v) + \frac{1}{2\varepsilon} \int_{\Omega} (v-\psi)_{-}^{2} dx.$$
 (2.1)

$$\ell(v) = \int_{\Omega} f v dx. \tag{2.2}$$

L'énergie totale est donnée :

$$J(v) = P(v) - l(v)$$

La fonction de déplacement u est ainsi obtenue en minimisant l'energie, à savoir.

FIGURE 2.1 – La déformation d'une membrane avec l'obstacle

2.1.1 Problème de minimisation

Soit $\Omega \subset \mathbb{R}^2$ un ouvert borné régulier, $f \in L^2(\Omega)$ et $\psi \in C^2(\overline{\Omega}), \psi < 0$ sur $\partial\Omega$. Nous nous intéressons au problème de minimisation suivant :

$$u = \operatorname*{arg\,min}_{v \in K} \left[\frac{1}{2} a(v,v) + \frac{1}{2\varepsilon} \int_{\Omega} (v-\psi)_{-}^{2} dx - \ell(v) \right] = \operatorname*{arg\,min}_{v \in K} \left[J_{\varepsilon}(v) \right], \tag{2.3}$$

où

$$V := H_0^2(\Omega), \quad (v - \psi)_- = \min(0, v - \psi)$$
$$a(w, v) := \int_{\Omega} D^2 w : D^2 v \, dx, \qquad D^2 w : D^2 v = \sum_{i,j=1}^2 w_{x_i x_j} v_{x_i x_j}$$
$$\ell(v) := \int_{\Omega} f v \, dx$$

Proposition

- 1. J_{ε} est propre ¹.
- 2. J_{ε} est convexe
- 3. J_{ε} satisfait :

$$\lim J_{\varepsilon}(v) = \infty \quad \text{quand } \|v\|_{2,\Omega} \to \infty$$

Preuve.

1. j_{ε} propre

on pose
$$\alpha = \inf J(v) \quad \forall \ v \in K$$
 donc $\alpha < +\infty$, $\alpha \in [-\infty, +\infty[$
 $\exists \ v_k \in K$, $J(v_k) \le \alpha + \frac{1}{k}$ telque
 $\lim_{k \to \infty} J(v_k) < \alpha$, $\alpha \le J(v_k)$, $\alpha \le \lim_{k \to \infty} J(v_k)$
donc
 $\lim_{k \to \infty} J(v_k) = \alpha$

2. J_{ε} **convexe**

on a :

$$J_{\varepsilon}(v) = J(v) + F_{\varepsilon}(v)$$

telque

$$J(v) = \frac{1}{2}a(v,v) - \langle F, v \rangle$$
$$F_{\varepsilon}(v) = \frac{1}{\varepsilon} \int_{\varepsilon} (v-\psi)^2_{-} dx$$

et on a

$$\langle \nabla J_{\varepsilon}(u^{\varepsilon}), w \rangle = \langle \nabla J(u^{\varepsilon}), w \rangle + \langle \nabla F_{\varepsilon}(u^{\varepsilon}), w \rangle$$

telque

$$\langle \nabla J(v), w \rangle = a(u, w) - \langle f, w \rangle$$

 $\langle \nabla F_{\varepsilon}(u^{\varepsilon}), w \rangle = \frac{1}{\varepsilon} \int_{w} (u - \psi)_{-} w dx$

¹propre i.e., $(j(v) \neq -\infty, \forall v \text{ et } Dom(J) \neq \emptyset)$

Donc

$$\langle \nabla J_{\varepsilon}(u^{\varepsilon}), w \rangle = a(u, w) - \langle f, w \rangle + \frac{1}{\varepsilon} \int_{w} (u - \psi)_{-} w dx$$

on a

$$J_{\varepsilon} \quad convexe \quad \longleftrightarrow \quad <\nabla J_{\varepsilon}(u^{\varepsilon}) - \nabla J_{\varepsilon}(v), u^{\varepsilon} - v > \geq 0$$

telque

$$<\nabla J_{\varepsilon}(u^{\varepsilon}) - \nabla J_{\varepsilon}(v), u^{\varepsilon} - v > = a(u^{\varepsilon} - v, u^{\varepsilon} - v) + \frac{1}{\varepsilon} \int_{w} (Bu^{\varepsilon} - Bv)(u^{\varepsilon} - v)$$

il faut motrer que $(Bu^{\varepsilon} - Bv, u^{\varepsilon} - v) \ge 0$:

$$(Bu^{\varepsilon} - Bv, u^{\varepsilon} - v) \geq 0 *$$

$$< v - pv - u + pu, v - u > \geq 0 **$$

$$< v - u, v - u > \geq < pv - pu, v - u >$$

on a :

$$\langle v - pv, pv - pu \rangle \geq 0$$

et on a

$$\langle v - pv, pu - pv \rangle \geq 0$$

 $\langle pu - v, pv - pu \rangle \geq 0$

de ${\state{*}}$ et ${\state{*}}$ on obtient :

$$\langle v - pv + pu - u, pv - pu \rangle \geq 0$$

$$\langle Bv - Bu, pv - pu \rangle \geq 0$$

$$\langle Bv - Bu, Bv - Bu \rangle \geq 0$$

$$\langle Bv - Bu, v - u \rangle \geq 0 \quad \exists! \ u^{\varepsilon} \in V$$

Théorème 2.1 K est un ensemble convexe fermé, a(., .) forme bilinéaire, symétrique, continue et coercive donc le problème(2.3) admet une solution unique .

Preuve. l'existence et l'unicité sont déjà démontrés dans la preuve précédente , voir $(\ref{eq:reuve})$ preuve (2.1.1)

2.2 Les formulations variationnelles équivalentes

2.2.1 La formulation variationnelle primale

Pour déterminer les propriétés de la solution du problème d'obstacle on peut reformuler le problème (2.3) comme inéquation variationnelle.

Définition 2.2 On appelle inéquation variationnelle elliptique de 1^{er} espace tout inéquation sous la forme :

$$\begin{cases} Trouver \ u \in K := \{ v \in V \quad v \ge \psi \} \ tel \ que \\ a(u, v - u) \ge \ell(v - u), \quad \forall v \in K \end{cases}$$
(2.4)

telque le problem d'obstacle consiste à la résolution de l'inéquation variationnelle (2.4).

Théorème 2.3 (Stampachia) Soient V un espace de Hilbert, et $K \subset V$ sous espace non vide, fermé et convexe, a(.,.) une forme bilinéaire continue et coercive sur $V \times V$ et $f \in V'(l$ 'espace dual de V) tel que :

$$a(u, v - u) \ge \langle F, v - u \rangle \quad \forall v \in K$$

$$(2.5)$$

alors (2.5) admet une solution unique. En plus Si u_1, u_2 sont des solutions au problème (2.5) avec côté droit correspondant $F_1, F_2 \in V'$, alors l'estimation de la stabilité suivante est vérifiée :

$$||u_1 - u_2|| \le \frac{1}{\alpha} ||F_2 - F_1||$$

Preuve. voir [2]

Dans cette section on va présenter l'existence et l'unicité pour la solution d'une inéquation variationnelle elliptique .

Théorème 2.4 Si $a(.,.): V \times V \longrightarrow \mathbb{R}$ est une forme bilinéaire continue et coercive sur un espace vectoriel V, l (.) $\longrightarrow V$ est une forme linéaire sur V et K est un sous ensemble convexe non vide de V, alors l'inéquation variationnelle (2.4) admet une solution unique. **Preuve.** l'ensemble K est convexe et fermé. La forme $a : H_0^2(\Omega) \times H_0^2(\Omega) \to \mathbb{R} : \text{est} :$

- 1. bilinéaire, symétrique : (évident),
- 2. continue (par l'inégalité de Cauchy-Schwarz) :

$$|a(u,v)| = |\int_{\Omega} \Delta u \Delta v \, dx| \le ||\Delta u||_{L^{2}(\Omega)} ||\Delta v||_{L^{2}(\Omega)} \le ||u||_{H^{2}_{0}} ||v||_{H^{2}_{0}}.$$

3. coercive dans $H_0^2(\Omega)$:

$$a(u, u) = \int_{\Omega} |\Delta u|^2 \, dx = \frac{1}{2} \int_{\Omega} |\Delta u|^2 \, dx + \frac{1}{2} |\Delta u|^2 \, dx$$

par inégalité de Ponicarré : $\|u\|_0^2 \leq \gamma \|\Delta u\|_0^2 ~~\forall u \in H^2_0(\Omega)$

donc :

$$a(u,u) \ge \frac{1}{2} \int_{\Omega} |\Delta u|^2 + c ||u||_0^2$$
$$\ge c' ||\Delta u||_1^2 \quad \forall \ u \in H_0^2(\Omega)$$

où : $c = \frac{1}{\gamma}$, c'= min $(\frac{1}{2}, \frac{1}{2c})$ sont des constantes positives. De plus, il est claire que F est linéaire continue ,donc l'existence et l'unicité de la solution $u \in K$ sont obtenues.

Proposition 2.5 Le problème de minimisation (2.3) est équivalent à l'inéquation variationnelle (2.4).

2.2.2 Le problème pénalisé

Soient a(.,.) forme bilinéaire continue de $V \times V$ dans \mathbb{R}^2 , et <.,.> le produit scalaire. Et $f \in \mathbb{R}^2$ est un paramètre de pénalisation positif. On considér le problème pénalisé suivante :

$$\begin{cases} \text{Trouver } u_{\varepsilon} \in V \text{ tel que} \\ a(u_{\varepsilon}, v) + \frac{1}{\varepsilon}((u_{\varepsilon} - \psi)_{-}, v) = \ell(v), \quad \forall v \in V. \end{cases}$$
(2.6)

Maintenant nous donnerons l'existence et l'unicité de solution du problème pénalisé.

Théorème 2.6 on a :

- 1. le problème (2.6) admet une solution unique.
- 2. $\{u_{\varepsilon}, |\varepsilon > 0\}$ est uniformément borné.
- 3. $\beta_{\varepsilon}(u_{\varepsilon}) = (u_{\varepsilon} \psi)_{-} \to 0 \text{ lorsque } \varepsilon \to 0.$
- 4. $u_{\varepsilon} \rightarrow u \quad o\hat{u} \quad u \quad est \ solution \ du \ problème :$

$$\begin{cases} Trouver \ u \in K := \{ v \in V \quad v \ge \psi \} \ tel \ que \\ a(u, v - u) \ge \ell(v - u), \quad \forall v \in K \end{cases}$$
(2.7)

Preuve.

1. L'existence : Maintenant en utilisant le théorème (3.1.4) pour prouver l'existence d'une solution à ce problème $\forall u \in V$

$$-\triangle^2 u_{\varepsilon} + \frac{1}{\varepsilon}\beta u_{\varepsilon} = f$$
$$-\triangle^2 u_{\varepsilon} = F(u_{\varepsilon})$$

on pose $F(u_{\varepsilon}) = f - \frac{1}{\varepsilon} \beta u_{\varepsilon}$ et $(F(u_{\varepsilon}) - F(w), u_{\varepsilon} - w) \leq 0 \quad \forall \quad u_{\varepsilon}, w \in V$ avec F décroissant. Soit $T: V \longrightarrow V$ application continue, on pose encore $T(v) = (-\Delta^2)^{-1}(f(v))$. Donc $v \in H_0^1(\Omega)$ puisque $F(v) \in L^2(\Omega)$ et L'application $(-\Delta)^{-1}$ est continue de $L^2(\Omega)$ dans $H_0^1(\Omega)$ tel que

$$-\triangle^2(Tv) = F(v).$$

Notons que par le théorème de Rellich, l'injection est compacte et que par conséquent, T transforme les bornés de V en ensembles relativement compacts de V , puisque l'image d'un compact par une application continue est un compact. Pour appliquer le théorème de Schauder, L'ensemble C est un convexe fermé de V . Nous prenons ici

$$C = (v \in H^1_0(\Omega); \|v\|_{H^1_0(\Omega)} \le M)$$

où M est une constante à choisir. De plus, c'est un fermé de V . En effet, si $v_n \in C$ converge vers v, alors v_n est bornée dans $H_0^1(\Omega)$ et contient donc une sous-suite v_{nk} qui converge faiblement vers un élément de $H_0^1(\Omega)$. De plus, la semi-continuité inférieure séquentielle faible de la norme implique que

$$||v||_{H_0^1(\Omega)} \le \lim_{nk \to +\infty} \inf ||v_{nk}||_{H_0^1(\Omega)} \le M.$$

C'est-à-dire $v \in C$. Par conséquent, C est compact dans V . Nous allons choisir la constante M, nous provenons $TC \subset C$: Tel que $\forall w \in V$

$$\int_{\Omega} \triangle(Tv) \triangle w dx = \int_{\Omega} F(v) w dx$$

Pour w = Tv dans l'équation précédente, il vient :

$$\int_{\Omega} |\Delta(Tv)|^2 dx = \int_{\Omega} F(v) Tv dx$$

On utilise l'inégalité de Poincaré Donc

$$||Tv||_{H^1_0(\Omega)}$$

Pour assurer que $T(C) \subset C$, alors par application du le théorème de point fixe de Schauder

$$Tv = v, \quad \forall v \in C$$

Alors on a l'existence d'une solution .

L'unicité : $\forall v \in V$

$$-\triangle^2 u_{\varepsilon} + \frac{1}{\varepsilon}\beta u_{\varepsilon} = f$$
$$-\triangle^2 u_{\varepsilon} = F(u_{\varepsilon})$$

Soit $u_{\varepsilon 1}$ et $u_{\varepsilon 2}$ les deux solutions. Nous utilisons la formule de Green

$$\int_{\Omega} \triangle u_{\varepsilon_1} \triangle v_1 dx = \int_{\Omega} F(u_{\varepsilon_1}) v_1 dx \quad \forall v_1 \in V$$
$$\int_{\Omega} \triangle u_{\varepsilon_2} \triangle v_2 dx = \int_{\Omega} F(u_{\varepsilon_1}) v_2 dx \quad \forall v_2 \in V$$

On pose $v_1=u_{\varepsilon 1}-u_{\varepsilon 2}\;\;,\;\;v_2=u_{\varepsilon 2}-u_{\varepsilon 1}$ additionnons les deux équations. On trouve :

$$\int_{\Omega} (\triangle (u_{\varepsilon 1} - u_{\varepsilon 2}))^2 dx = \int_{\Omega} F(u_{\varepsilon 1} - u_{\varepsilon 2})(u_{\varepsilon 1} - u_{\varepsilon 2}) dx \le 0 \quad \forall v_2 \in V$$

On l'inégalité de Poincaré $||u_{\varepsilon 1} - u_{\varepsilon 2}||_V \longrightarrow u_{\varepsilon 1} - u_{\varepsilon 2} = 0$ donc l'unicité

2. $\{u_{\varepsilon}, |\varepsilon>0\}\;$ est uniformément bornée :

on prend
$$v = u_{\varepsilon}$$

 $a(u_{\varepsilon}, u_{\varepsilon}) + \frac{1}{\varepsilon}$
 $(Bu_{\varepsilon}, u_{\varepsilon}) = (f, u_{\varepsilon})$
 $\alpha \|u_{\varepsilon}\|_{V}^{2} \leq \|f\|.\|u_{\varepsilon}\|$ telque $(Bu_{\varepsilon}, u_{\varepsilon}) \geq 0$
 $\|u_{\varepsilon}\|_{V} \leq \frac{\|f\|}{\alpha} = c$

Remarque 2.7 $(Bu_{\varepsilon}, u_{\varepsilon}) \ge 0$ puisque f = min (0, f) = 0 B(0) = 0alors $(Bu_{\varepsilon} - B0, u_{\varepsilon} - 0) \ge 0$

3.
$$\beta_{\varepsilon}(u_{\varepsilon}) = (u_{\varepsilon} - g)_{-} \rightarrow 0$$
 lorsque $\varepsilon \rightarrow 0$:
 $(Bu_{\varepsilon} - Bv, u_{\varepsilon} - v) \geq 0$
 $(Bu^{*} - Bu^{*}, u_{\varepsilon} - u^{*}) \geq 0$
 $(\beta u_{\varepsilon}, u_{\varepsilon} - v) - (\beta v, u_{\varepsilon} - v) \geq 0$
donc

$$\begin{aligned} -(\beta v, u_{\varepsilon} - v) &\geq 0 \\ \alpha \|\beta u_{\varepsilon}\|_{V}^{\varepsilon} &\leq a(\beta u_{\varepsilon}, \beta u_{\varepsilon}) + \frac{1}{\varepsilon} (\beta u_{\varepsilon}, \beta u_{\varepsilon}) \\ &= a(u_{\varepsilon} - pu_{\varepsilon}, \beta u_{\varepsilon}) + \frac{1}{\varepsilon} (\beta u_{\varepsilon}, \beta u_{\varepsilon}) \\ (f, \beta u_{\varepsilon}) &- a(pu_{\varepsilon}, \beta u_{\varepsilon}) \\ c \|\beta u_{\varepsilon}\|_{L^{2}}^{2} &\leq \|f\|.\|\beta u_{\varepsilon}\|_{L^{2}} \\ \|\beta u_{\varepsilon}\|_{L^{2}} &\leq \|f\| \longrightarrow 0 \end{aligned}$$

4. on a $a(u_{\varepsilon}, u_{\varepsilon} - v) + \frac{1}{\varepsilon}(\beta u_{\varepsilon}, u_{\varepsilon} - v) = \langle f, u_{\varepsilon} - v \rangle$ $a(u_{\varepsilon}, u_{\varepsilon} - v) - \langle f, u_{\varepsilon} - v \rangle = -\frac{1}{\varepsilon}(\beta u_{\varepsilon}, u_{\varepsilon} - v) \leq 0$ $\limsup(a(u_{\varepsilon}, u_{\varepsilon} - v)) \leq \langle f, u^* - v \rangle$ $\limsup(a(u_{\varepsilon}, u_{\varepsilon} - v)) \geq a(u^*, u^* - v)$ $\varphi(u_{\varepsilon}) = a(u_{\varepsilon}, u_{\varepsilon} - v) \qquad telque \quad u_{\varepsilon} \rightharpoonup u^*$ $\langle f, u^* - v \rangle \geq a(u^*, u^* - v)$

$$a(u^*, v - u^*) \ge \langle f, v - u^* \rangle$$

		1	

2.3 LA FORMULATION VARIATIONNELLE MIXTE

Ici , nous réécrivons le probleme en utilisant λ comme une inconnue indépendante pour obtenir un point selle perturbé du problème , il s'ensuit que la force de réaction est non négative , c'est-a-dire qu'elle appartient à l'ensemble :

$$\Lambda = \{ \mu \in Q := Q : (\mu, v) \ge 0 \quad \forall v \in V, \quad v \ge 0 \}$$

$$(2.8)$$

 (\cdot, \cdot) désigne le produit scalair Q

la formulation (2.6) peut s'écrire sous la forme :

$$\begin{cases} \text{Trouver } (u,\lambda) \in V \times Q \quad \text{tel que} \\ a(u,v) - (\lambda,v) = \ell(v) \quad \forall v \in V \\ (u - \psi + \varepsilon \lambda, \mu - \lambda) \ge 0 \quad \forall \mu \in Q \end{cases}$$
(2.9)

Proposition 2.8 l'ensemble Λ est un ensemble convexe et fermé $deL^2(\omega)$.

Preuve.

1. il est claire que $0_{L^2} \in \Lambda$ donc $\Lambda \neq \emptyset$

2. $\forall t \in (0.1) , \forall \mu, \sigma \in \Lambda$

$$t < \mu, v > + (1-t) < \sigma, v \ge 0 \qquad \forall v \ge 0$$

3. so it $\mu_n \in \Lambda$ et $\mu_n \longrightarrow \mu \in L^2$

$$<\mu, v> = <\mu-\mu_n, v> + <\mu_n, v>$$

donc pour suffisamment grand on trouve que

$$<\mu,v>\geq 0$$

Théorème 2.9 le probléme primal (2.7) est équivalent au probléme dual (2.9).

Preuve.

1. $\operatorname{primal}(2.7) \longrightarrow \operatorname{dual}(2.9)$:

En utilisant le fait que a(.,.) est une forme bilinéaire sur $V \times V$ et que l(.) est une forme linéaire sur V , alors on déduit que : $a(u,.) - \langle f,. \rangle \in V' = H^{-1}(\Omega)$

Donc il existe $\lambda \in H^{-1}(\Omega)$ tel que

$$\langle \lambda, v \rangle = a(u, v) - \langle f, v \rangle \quad \forall v \in H_0^{-1}(\Omega)$$

Maintenant nous démontrons que $\lambda \ge 0$. Soit $w \in H_0^{-1}(\Omega)$ et $w \ge 0$. Alors puisque $w + \psi \ge \psi$ on peut utiliser $w + \psi$ comme fonction test dans le problème primal (2.7) on trouve que

$$<\lambda,w> = a(u,w) - < f,w> \ge a(u,u-\psi) - < f,u-\psi>$$

Mais si on prend à nouveau et dans le problème dual on trouve que

$$a(u, u - \psi) - \langle f, u - \psi \rangle = 0$$

 donc

$$a(\lambda, w) \le 0, \quad w \in H_0^{-1}(\Omega) \quad w \le 0$$

cela signifie que $\lambda \in \Lambda$.

Il reste à vérifier la deuxième inégalité dans le problème mixte. En effet, si u est la solution du problème primal (2.7) alors, on a

$$(u - \psi, \mu) \geq 0 \quad \forall \mu \in \Lambda$$

Il suffit de démontrer que

$$(u - \psi, \lambda) = 0$$

Mais ceci découle directement du fait que

$$(\lambda, u - \psi) = a(u, u - \psi) - \langle f, u - \psi \rangle = 0$$

2. dual(2.9) \longrightarrow primal (2.7) :

soit $u \in k$ alors $v = \varphi + \psi$ avec $\varphi \in H_0^{-1}(\Omega)$ et $\varphi \ge 0$ de plus on a :

$$a(u,v-u) \ - \ <\lambda,v-u> \ = \$$

mais

$$<\lambda,v-u> = <\lambda,v-\psi> + <\lambda, \varphi> \geq 0$$

 donc

$$(\lambda, u - \psi) = a(u, v - u) - \langle f, v - u \rangle \ge 0 \quad \forall \ v \in K$$

La méthode des éléments finis stabilisés exploite la forme forte de l'équation (2.9) . En introduisant une fonction multiplicateur de Lagrange non négative $\lambda : \Omega \longrightarrow R$, on peut réécrire le probleme d'obstacle comme :

Proposition 2.10 Si $(u_{\varepsilon}, \lambda_{\varepsilon})$ est solution de (2.9) alors $(u_{\varepsilon}, \lambda_{\varepsilon})$ satisfait le système de complémentarité suivant :

$$\begin{aligned}
\mathscr{A} u_{\varepsilon} - \lambda_{\varepsilon} &= f \\
\lambda_{\varepsilon} \geq 0 \\
\frac{1}{\varepsilon} (u_{\varepsilon} - \psi) + \lambda_{\varepsilon} \geq 0 \\
\lambda \left(\frac{1}{\varepsilon} (u_{\varepsilon} - \psi) + \lambda_{\varepsilon} \right) &= 0
\end{aligned}$$

$$p.p. \ dans \ \Omega$$

$$(2.10)$$

$$\begin{pmatrix} -(u_{\varepsilon} - \psi) + \lambda_{\varepsilon} \end{pmatrix} = 0$$

$$u = 0 \quad et \quad \frac{\partial u}{\partial n} = 0 \quad sur \ \partial \Omega$$
 (2.11)

 $o \grave{u} \mathscr{A} =: D \Delta^2$

Preuve.

- 1. Si $(u_{\varepsilon}, \lambda_{\varepsilon})$ est une solution de (2.9) alors, on a
 - (a) Par intégration par parties,

$$\mathscr{A}u_{\varepsilon} - \lambda_{\varepsilon} = f$$
 p.p
 $\lambda_{\varepsilon} \ge 0$ p.p

(b) On utilise la deuxième ligne de (2.9), qui affirme que,

$$\left(\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)+\lambda_{\varepsilon},\mu-\lambda_{\varepsilon}\right)\geq 0,\quad\forall\mu\geq 0.$$

En particulier pour $\mu = \lambda_{\varepsilon} + \gamma$, avec $\gamma \in Q$ arbitraire, alors

$$\left(\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)+\lambda_{\varepsilon},\gamma\right)\geq 0,\quad\forall\gamma\geq 0.$$

donc on déduit que,

$$(\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)+\lambda_{\varepsilon}\geq 0 \quad \text{p.p dans} \quad \Omega.$$

(c) Finalement en utilisant le fait que :

$$\int ff_{-} = \int f_{-}^{2} \text{ et puisque on a } \lambda_{\varepsilon} = \frac{1}{\varepsilon}(u_{\varepsilon} - \psi)_{-}.$$

on déduit que

$$\int \lambda_{\varepsilon} \left(\frac{1}{\varepsilon} (u_{\varepsilon} - \psi) + \lambda_{\varepsilon} \right) = 0.$$

Soit $\mathcal{H} = V \times \Lambda$, on définit la forme bilinéaire $\mathscr{B} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ et la forme linéaire $\mathscr{L} : \mathcal{H} \to \mathbb{R}$ par :

$$\mathcal{B}((w,\xi);(v,\mu)) = a(w,v) - \langle \xi, v \rangle - \langle \mu, w \rangle - \varepsilon \langle \xi, \mu \rangle$$
$$\mathcal{L}(v,\mu) = \ell(v) - \langle \psi, \mu \rangle$$

Problème 1 : On considère le problème variationnel suivant :

$$\begin{cases} \text{trouver } (u,\lambda) \in V \times \Lambda & \text{tels que} \\ \mathscr{B}((u,\lambda); (v, \ \mu - \lambda)) \leq \mathscr{L}(v,\mu - \lambda), \quad \forall (v,\mu) \in V \times \Lambda \end{cases}$$
(2.12)

Théorème 2.11 (stabilité continue) pour chaque $(v, \mu) \in V \times Q$ il existe $w \in V$ tel que

$$\mathscr{B}(v,\mu;w,-\mu) \gtrsim |||(v,\mu)|||^2 \quad et \quad ||w||_2 \lesssim |||(v,\mu)|||$$
 (2.13)

Preuve. Définissant $p \in V$, par

$$a(p,q) = \langle q, \mu \rangle \quad \forall q \in V \tag{2.14}$$

la continuité de la forme bilinéaire a il s'ensuit que

$$\frac{\langle q, \mu \rangle}{\|q\|_2} = \frac{a(p,q)}{\|q\|_2} \lesssim \|p\|_2 \quad \forall q \in V$$
(2.15)

puisque q est arbitraire , nous avons

$$\|\mu\|_{-2} = \sup_{q \in V} \frac{\langle q, \mu \rangle}{\|q\|_2} \lesssim \|p\|_2.$$
(2.16)

de plus la coercivité de la forme bilinéaire a donne

$$\|p\|_{2}^{2} \lesssim a(p,p) = \langle p,\mu \rangle \le \|\mu\|_{-2} \|p\|_{2} \longrightarrow \|p\|_{2} \lesssim \|\mu\|_{-2}$$
(2.17)

On choisit w = v - p, on note que

$$\begin{aligned} \mathscr{B}(v,\mu;v-p,-\mu) &= a(v,v) - \langle v,\mu \rangle + \langle p,\mu \rangle + \varepsilon \langle \mu,\mu \rangle \\ &= \frac{1}{2}(a(v,v) + a(p,p)) + \frac{1}{2}a(v-p,v-p) + a(p,p) + \varepsilon \langle \mu,\mu \rangle \end{aligned}$$

et l'application des inégalités (2.9) \blacksquare

Chapitre 3

APPROXIMATION DU PROBLÈME D'OBSTACLE

3.1 LA MÉTHODE DES ÉLÉMENTS FINIS STABILISÉS

On suppose que Ω est polygonal et soit \mathcal{C}_h une triangulation quasi-uniforme de Ω . On introduit les espaces des éléments finis suivants :

$$V_h \subset V, \quad Q_h \subset Q. \tag{3.1}$$

De plus on définit l'ensemble

$$\Lambda_h = \{\mu_h \in Q_h : \mu_h \ge 0 \text{ dans } \Omega\} \subset \Lambda.$$
(3.2)

On introduit maintenant la forme bilinéaire \mathscr{B}_h et la forme linéaire \mathscr{L}_h définis par :

$$\mathscr{B}_{h}(w,\xi;v,\mu) = \mathscr{B}(w,\xi;v,\mu) - \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(w) - \xi,\mathscr{A}(v) - \mu)_{T}$$
(3.3)

$$\mathscr{L}_h(v,\mu) = \mathscr{L}(v,\mu) - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(f,\mathscr{A}(v) - \mu)_T$$
(3.4)

où $\alpha>0$ est le paramètre de stabilisation.

On introduit les normes suivantes :

$$\|\xi\|_{-2,h}^2 = \sum_{k \in \mathscr{C}_h} h_k^4 \|\xi_h\|_{0,h}^2$$
(3.5)

$$\||(w_h,\xi_h)\||_h^2 = \|w_h\|_2^2 + \|\xi_h\|_{-2}^2 + \|\xi_h\|_{-2,h}^2 + \varepsilon \|\xi_h\|_0^2$$
(3.6)

la méthode des éléments finis proposée par [7] consiste à résoudre le problème suivant : **Problème 2 :** Trouver $(u_h, \lambda_h) \in V_h \times \Lambda_h$ tels que :

$$\mathscr{B}_h(u_h,\lambda_h;v_h,\mu_h-\lambda_h) \le \mathscr{L}_h(v_h,\mu_h-\lambda_h) \quad \forall (v_h,\mu_h) \in V_h \times \Lambda_h$$
(3.7)

Théorème 3.1 le Problème (3.7) admet une unique solution.

Preuve.

$$\mathscr{B}_{h}(u_{h},\lambda_{h};v_{h},\mu_{h}-\lambda_{h}) \leq \mathscr{L}_{h}(v_{h},\mu_{h}-\lambda_{h}) \quad \forall (v_{h},\mu_{h}) \in V_{h} \times \Lambda_{h}$$
(3.8)

donc pour $v_h = 0$

$$\mathscr{B}_h(u_h, \lambda_h; 0, \mu_h - \lambda_h) \le \mathscr{L}_h(0, \mu_h - \lambda_h), \quad \forall \mu_h \in \Lambda_h$$
(3.9)

on a,

$$\mathscr{B}_{h}(u_{h},\lambda_{h};0,\mu_{h}-\lambda_{h}) = -\langle u_{h},\mu_{h}-\lambda_{h}\rangle + \alpha \sum_{T\in\mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(u_{h})-\lambda_{h},\mu_{h}-\lambda_{h})_{T}$$
$$\mathscr{L}_{h}(0,\mu_{h}-\lambda_{h}) = -\langle \psi,\mu_{h}-\lambda_{h}\rangle + \alpha \sum_{T\in\mathscr{C}_{h}} h_{T}^{4}(f,\mu_{h}-\lambda_{h})_{T}$$

donc (3.9) s'écrit :

$$-\langle u_h, \mu_h - \lambda_h \rangle + \alpha \sum_{T \in \mathscr{C}_h} h_T^4 (\mathscr{A}(u_h) - \lambda_h, \mu_h - \lambda_h)_T \le -\langle \psi, \mu_h - \lambda_h \rangle + \alpha \sum_{T \in \mathscr{C}_h} h_T^4 (f, \mu_h - \lambda_h)_T$$

donc on obtient

$$\langle u_h - \psi, \mu_h - \lambda_h \rangle \ge \alpha \sum_{T \in \mathscr{C}_h} h_T^4 (\mathscr{A}(u_h) - f - \lambda_h, \mu_h - \lambda_h)_T$$
$$\left\langle u_h - \alpha \sum_{T \in \mathscr{C}_h} h_T^4 (\mathscr{A}(u_h) - \lambda_h), \mu_h - \lambda_h \right\rangle \ge \left\langle \psi - \alpha \sum_{T \in \mathscr{C}_h} h_T^4 f, \mu_h - \lambda_h \right\rangle$$

 $\mu_h = 0$ et $\mu_h = 2\lambda_h$ donne :

$$\left\langle u_h - \psi - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(\mathscr{A}(u_h) - \lambda_h - f), \lambda_h \right\rangle = 0$$

$$(v_h, \mu_h) = (v_h, 0) \implies \mathscr{B}_h(u_h, \lambda_h; v_h, -\lambda_h) \le \mathscr{L}_h(v_h, -\lambda_h)$$
$$(v_h, \mu_h) = (-v_h, 2\lambda_h) \implies \mathscr{B}_h(u_h, \lambda_h; -v_h, \lambda_h) \le \mathscr{L}_h(-v_h, \lambda_h)$$

donc

$$\mathscr{B}_h(u_h, \lambda_h; v_h, -\lambda_h) = \mathscr{L}_h(v_h, -\lambda_h).$$
(3.10)

$$\begin{aligned} a(u_h, v_h) - \langle v_h, \lambda_h \rangle + \langle u_h, \lambda_h \rangle - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(\mathscr{A}(u_h) - \lambda_h, \mathscr{A}(v_h) + \lambda_h) \\ &= (f, v_h) + \langle \psi, \lambda_h \rangle - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(f, \mathscr{A}(v_h) + \lambda_h) \end{aligned}$$

$$a(u_h, v_h) - \langle v_h, \lambda_h \rangle - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(\mathscr{A}(u_h) - \lambda_h, \mathscr{A}(v_h)) = (f, v_h) - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(f, \mathscr{A}(v_h))$$

$$\begin{aligned} a(u_h, v_h) - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(\mathscr{A}(u_h), \mathscr{A}(v_h)) - \langle v_h, \lambda_h \rangle + \alpha \sum_{T \in \mathscr{C}_h} h_T^4(\lambda_h, \mathscr{A}(v_h)) \\ &= (f, v_h) - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(f, \mathscr{A}(v_h)) \end{aligned}$$

$$a(u_h, v_h) - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(\mathscr{A}(u_h), \mathscr{A}(v_h)) + \alpha \sum_{T \in \mathscr{C}_h} h_T^4(\mathscr{A}(v_h) - v_h, \lambda_h)$$
$$= (f, v_h) - \alpha \sum_{T \in \mathscr{C}_h} h_T^4(f, \mathscr{A}(v_h))$$

$$\begin{cases} a_h(u_h, v_h) - b_h(v_h, \lambda_h) = \ell_h(v_h) \\ b_h(u_h, \mu_h - \lambda_h) + \langle \lambda_h, \mu_h - \lambda_h \rangle_h \ge g_h(\mu_h - \lambda_h) \end{cases}$$
(3.12)

où

$$a_{h}(u_{h}, v_{h}) = a(u_{h}, v_{h}) - \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(u_{h}), \mathscr{A}(v_{h}))_{T}$$
$$b_{h}(v_{h}, \mu_{h}) = \sum_{T \in \mathscr{C}_{h}} (v_{h} - \alpha h_{T}^{4} \mathscr{A}(v_{h}), \mu_{h})_{T}$$
$$\ell_{h}(v_{h}) = (f, v_{h}) - \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(f, \mathscr{A}(v_{h}))$$
$$g_{h}(\mu_{h}) = \left\langle \psi - \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}f, \mu_{h} \right\rangle$$
$$\langle \lambda_{h}, \mu_{h} - \lambda_{h} \rangle_{h} = \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\lambda_{h}, \mu_{h} - \lambda_{h})$$

il est claire que :

$$a_h(u_h, u_h) - b_h(u_h, \lambda_h) = \ell_h(u_h).$$

 donc

$$\begin{cases} a_h(u_h, v_h - u_h) - b_h(v_h - u_h, \lambda_h) = \ell_h(v_h - u_h) \\ b_h(u_h, \mu_h - \lambda_h) + \langle \lambda_h, \mu_h - \lambda_h \rangle_h \ge g_h(\mu_h - \lambda_h) \end{cases}$$
(3.13)

On définit :

$$\mathcal{A}_h((u_h,\lambda_h);(v_h,\mu_h)) := a_h(u_h,v_h) - b_h(v_h,\lambda_h) + b_h(u_h,\mu_h) + \langle \lambda_h,\mu_h \rangle_h$$
$$\mathcal{F}_h(v_h,\mu_h) := \ell_h(v_h) + g_h(\mu_h)$$

alors :

$$\begin{aligned} \mathcal{A}_h((u_h,\lambda_h);(v_h-u_h,\mu_h-\lambda_h)) \\ &= a_h(u_h,v_h-u_h) - b_h(v_h-u_h,\lambda_h) + b_h(u_h,\mu_h-\lambda_h) + \langle \lambda_h,\mu_h-\lambda_h \rangle_h \end{aligned}$$

On pose $U_h = (u_h, \lambda_h)$ et $V_h = (v_h, \mu_h)$. Alors, le problème (3.12) s'écrit :

$$\mathcal{A}_h(U_h, V_h - U_h) \ge \mathcal{F}_h(V_h - U_h), \quad \forall V_h \in$$

il existe $C_I > 0$ tel que :

$$C_{I} \|\mathscr{A}(w_{h})\|_{-2,h}^{2} = C_{I} \sum_{T} h_{T}^{4} \|\mathscr{A}(w_{h})\|_{0,T}^{2} \le a(w_{h}, w_{h}) \quad \forall w_{h} \in V_{h}$$
(3.14)

Observons que :

$$\mathcal{A}_{h}((v_{h},\mu_{h});(v_{h},\mu_{h})) = a_{h}(v_{h},v_{h}) - b_{h}(v_{h},\mu_{h}) + b_{h}(v_{h},\mu_{h}) + \langle \mu_{h},\mu_{h} \rangle_{h}$$

$$= a(v_{h},v_{h}) - \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(v_{h}),\mathscr{A}(v_{h})) + \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mu_{h},\mu_{h})$$

$$\geq (C_{I} - \alpha) \|\mathscr{A}(v_{h})\|_{-2,h}^{2} + \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mu_{h},\mu_{h})$$

$$\geq C_{h} \|(v_{h},\mu_{h})\|_{h}^{2}$$

donc on applique le théorème de Stampacchia de (2.3)

Lemme 3.2 (Inégalité inverse) il existe $C_I > 0$ tel que

$$C_I \|\mathscr{A}(w_h)\|_{-2,h}^2 \le a(w_h, w_h) \quad \forall w_h \in V_h$$

$$(3.15)$$

Lemme 3.3 Nous avons l'estimation suivante :

$$\|\xi\|_{-2,h}^2 \lesssim \|\xi\|_{-2}^2, \quad \forall \xi_h \in Q_h$$
 (3.16)

Preuve.

Soit $b_T \in P_6(T)$ la fonction de bulle du sixième ordre

$$b_T = (\lambda_{1,T} \lambda_{2,T} \lambda_{3,T})^2 \tag{3.17}$$

où $\lambda_{j,T}, j \in \{1, 2, 3\}$, désignent les coordonnées barycentriques de $T \in \mathscr{C}_h$ et définissant l'espace auxiliaire

$$W_h = \{ v_h \in H_0^2(\Omega) : v_{h|T} = b_T \xi_{h|T}, \xi_h \in Q_h \}.$$

Étant donné $\xi \in Q_h$ nous définissons maintenant $v_h \in W_h$ par

$$v_{h|T} = h_T^4 b_T \xi_{h|T}, \quad T \in \mathscr{C}_h.$$

De l'équivalence des normes et des estimations inverses, il s'ensuit que

$$(v_h, \xi_h) \gtrsim \|\xi\|_{-2,h}^2$$

 et

$$||v_h||_2 \lesssim |v_h|_2 \lesssim ||\xi||_{-2,h}^2$$

donc

$$\|\xi\|_{-2,h}^2 \lesssim \frac{(v_h,\xi_h)}{\|v_h\|}$$

on applique

$$\|\xi\|_{-2} = \sup_{v \in V} \frac{\langle v, \xi \rangle}{\|v\|_2}$$

pour conclude le résultat, donc l'affirmation découle de fait que

$$|\langle v_h, \xi_h \rangle| \lesssim ||v_h||_2 ||\xi_h||_{-2}$$

Lemme 3.4 il existe des constantes positives C_1 et C_2 telles que

$$\sup_{v_h \in V_h} \frac{\langle v_h, \xi_h \rangle}{\|v_h\|} \ge C_1 \|\xi_h\|_{-2} - C_2 \|\xi_h\|_{-2,h} \quad \xi_h \in Q_h$$
(3.18)

Preuve. la stabilité continue(v) implique qu'il existe $v \in L^2(\Omega)$ et c>0

$$\langle v, \xi_h \rangle \ge C \|v\|_2 \|\xi_h\|_{-2}$$
 (3.19)

pour tous $\xi \in Q_h$ soit $v^- \in V_h$ l'interpolant de clement [3] de v depuis $\xi \in L^2(\Omega)$ l'appariement de dualité est égale au $L^2(\omega)$ produit interieur puis(2.30) et l'inégalité de Cauchy Schwarz donne

 $< v^{-}, \xi_h > = < v^{-} - v, \xi_h > + < v, \xi_h >$ = $\sum_{k \in C_h} = (v - v^{-}, \xi_h)_k + C ||w||_2 ||\xi_h||_{-2}$

$$\begin{split} &\geq -\sum_{k\in C_h} \|v-v^-\|_{0,k} \|\xi_h\|_{0,k} + C\|v\|_2 \|\xi_h\|_{-2} \\ &= -\sum_{k\in C_h} h_k^{-1} \|v-v^-\|_{0,k} h_k \|\xi_h\|_{0,k} + C\|v\|_2 \|\xi_h\|_{-2} \\ &\geq -(\sum_{k\in C_h} h_k^{-2} \|v-v^-\|_{0,k})^{\frac{1}{2}} \|\xi_h\|_{-1,k} + C\|v\|_2 \|\xi_h\|_{-2} \\ &\text{d'aprés les propriétés de l'interpolant de clément nous avons} \\ &(\sum_{k\in C_h} h_k^{-2} \|v-v^-\|_{0,k})^{\frac{1}{2}} \leq C \cdot |v_h|_{2,k} \\ &\text{et} \\ &\|v_h^-\|_2 \leq C \cdot \|v_h^-\|_2 \\ &\text{qui avec le résultat précédent montre que} \\ &< v^-, \xi_h > \geq -C \cdot |v|_2 \|\xi_h\|_{-2,h} + C \|v\|_2 \|\xi_h\|_{-2} \\ &\geq -C \cdot \|v\|_2 \|\xi_h\|_{-2,h} + C \|v\|_2 \|\xi_h\|_{-2} \\ &\geq -C \cdot \|v\|_2 \|\xi_h\|_{-2,h} + C \|v\|_2 \|\xi_h\|_{-2} \\ &\geq C \cdot \cdot (C \|\xi_h\|_{-2} - C \cdot \|\xi_h\|_{-2,h}) \|v^-\|_2 \end{split}$$

la division par $||v^-||$ fournit le résultat \blacksquare

Théorème 3.5 (stabilité discréte) supposons que $0 < \alpha < C_1$. Alors pour tout $(v_h, \mu_h) \in V_h \times Q_h$ il existe $w_h \in V_h$ telle que

$$\mathscr{B}_{h}(v_{h},\mu_{h};w_{h},-\mu_{h}) \gtrsim |||(v_{h},\mu_{h})|||_{h}^{2}$$
(3.20)

$$\||(w_h, -\mu_h)||_h) \lesssim \||(v_h, \mu_h)\||_h \tag{3.21}$$

Preuve. Au vu de l'inégalité inverse (3.15), on trouve que :

$$\mathscr{B}(v_h, \mu_h; w_h, -\mu_h) = a(v_h, v_h) + \varepsilon \|\mu_h\|_0^2 - \alpha \|\mathscr{A}(v_h)\|_{-2,h}^2 \alpha \|\mu_h\|_{-2,h}^2$$

$$\geq (1 - \alpha C_I^{-1})a(v_h, v_h) + \min\{1, \alpha\}(\|\mu_h\|_{-2,h}^2 + \varepsilon \|\mu_h\|_0^2)$$

soit $q_h \in V_h$ la fonction correspondante au supremum du lemme (3.4), échelonnée en

$$\|q_h\|_2 = \|\mu_h\|_{-2}.$$

puis

$$\mathscr{B}(v_{h},\mu_{h};-q_{h},0) = -a(v_{h},q_{h}) + \langle q_{h},\mu_{h} \rangle + \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(v_{h}) - \mu_{h},\mathscr{A}(q_{h}))_{0,T}$$

$$\gtrsim -\|v_{h}\|_{2}\|q_{h}\|_{2} + C_{1}\|\mu_{h}\|_{-2}\|q_{h}\|_{2} - C_{2}\|\mu_{h}\|_{-2,h}\|q_{h}\|_{2}$$

$$-\alpha(\|\mathscr{A}(v_{h}))\|_{-2,h} + \|\mu_{h}\|_{-2,h})\|\mathscr{A}(q_{h})\|_{-2,h}$$
(3.22)

En utilisant l'inégalité inverse (3.15), l'inégalité de Young et la continuité de la forme bilinéaire a, nous concluons que

$$\mathscr{B}(v_h, \mu_h; -q_h, 0) \ge C_3 \|\mu_h\|_{-2}^2 - C_4(a(v_h, v_h) + \|\mu_h\|_{-2,h}^2).$$
(3.23)

où ε a été choisi assez petit, par conséquent

$$\mathscr{B}(v_h, \mu_h; v_h + \delta q_h, \xi_h) \ge \epsilon C_3 \|\mu_h\|_{-2}^2 - (C_5 - \delta C_4)(a(v_h, v_h) + \|\mu_h\|_{-2,h}^2).$$
(3.24)

et l'affirmation suit en choisissant $0 < \delta < c_5/c_4$. L'estimation

$$|||(w_h, \mu_h)||| \leq |||(v_h, v_h)|||$$

est trivial et la même limite dans la norme discrète découle de l'estimation inverse (3.16).

Lemme 3.6 pour tout $v_h \in V_h$ et $\mu_h \in Q_h$ on a

$$h_T^2 \|\mathscr{A}(v_h) - \mu_h - f\|_{0,T} \lesssim \|\mu - v_h\|_{2,T} + \|\lambda - \mu_h\|_{-2,T} + osc_T(f),$$
(3.25)

$$h_E^{3/2} \| \llbracket v_h \rrbracket \|_{0,E} \lesssim \| \mu - v_h \|_{2,\omega_E} + \| \lambda - \mu_h \|_{-2,\omega_E} + \sum_{T \subset \omega_E} osc_T(f), \qquad (3.26)$$

Preuve. Rappel de (2.28) la bulle du sixième ordre $b_T \in P_6(T)$ et soit :

$$z_T = b_T h_T^4(\mathscr{A}(v_h) - \mu_h - f_h),$$

pour chaque $(v_h, \mu_h) \in V_h \times \Lambda_h$. T est avec z_T dans le problème variationnel continu (2.9) donne l'identité

$$a_T(u, z_T) - \langle z_T, \lambda \rangle = (f, z_T)_T$$

on a

$$h_{T}^{4} \| (\mathscr{A}(v_{h}) - \mu_{h} - f_{h}) \|_{0,T}^{2} \lesssim h_{T}^{4} \| \sqrt{b_{T}} (\mathscr{A}(v_{h}) - \mu_{h} - f_{h}) \|_{0,T}^{2}$$

$$= (\mathscr{A}(v_{h}) - \mu_{h} - f_{h}, z_{T})$$

$$= (\mathscr{A}(v_{h}) - \mu_{h}, z_{T}) - (f, z_{T}) + (f - f_{h}, z_{T})_{T}$$

$$= a_{T} (v_{h} - u, z_{T}) + (z_{T}, \lambda - \mu_{h}) + (f - f_{h}, z_{T})_{T} \qquad (3.27)$$

La borne (2.37) découle de la continuité de a, l'inégalité de Cauchy Schwarz, l'inégalité inverse

$$\langle w, \mu \rangle \le \|\mu\|_{-2,\omega} \|w\|_{2,\omega} \quad \forall \mu \in H^{-2}(\omega)$$
(3.28)

en raison de la condition de régularité imposée sur le maillage , il existe pour chaque borde E un symétrique paire de triangles plus petits (k'_1, k'_2) qui satisfaisant $w' = k'_1 \bigcup k'_2 \subset w_E$ soit $w' = p'_2 \| [V_n(v_h)] \|$ où p'_2 est la bulle a huit cammandes qui prend la valeur l'une a parcoures de E et ensemble ses dérivés de premier ordre diparait sur $\partial w'_E$ par l'équivalence de la norme , nous avons d'abord

$$\|\llbracket V_n(v_h) \rrbracket \|_{0,E}^2 \approx \|w'\|_E^2 \lesssim < \llbracket V_n(v_h) \rrbracket, w' >_E$$
(3.29)

après

$$< [\![V_n(v_h)]\!] >_E = < [\![V_n(v_h)]\!], w' >_E.$$
 (3.30)

En raisson de la symétrie $\frac{\partial w'}{\partial n}|_E=0$ et de

$$a_R(w,v) = \int_R \mathscr{A}(w)vdx - \int_{\partial R} Q_n(w)vds - \int_{\partial R} (M(w)\frac{\partial v}{\partial n} + M_{ns}(w)\frac{\partial v}{\partial s}) \, ds.$$
(3.31)

où nous avons utilisé la notation abrégée

$$a_R(w,v) = \int_R M(w) : K(v)dx,$$

 et

$$\int_{S} Q_{w} v ds - \int_{s} M_{ns}(w) \frac{\partial v}{\partial s} ds = \int_{S} v_{n}(w) ds - |_{a}^{b} M_{ns}(w) v, \qquad (3.32)$$

donnent

$$< [\![V_n(v_h)]\!] >_E = < [\![V_n(v_h)]\!], w' >_E = \int_R M(v_h) : K(w')dx - (\mathscr{A}(w_h), w')_{w'_E}$$
(3.33)

s'étendant w' par zéro a Ω w'_E la forme variationnelle implique que

$$\int_{R} M(w) : K(v) dx - (f, w')_{w'_{E}} = 0$$

et l'in "galité de cauchy schwartz les estimations d'echelle et(26) donnent

$$\| [V_n(v_h)] \|_{0,E}^2 \lesssim (V_n(v_h), w')_E$$

= $-a_{\omega'_E}(v_h, w') + (\mathscr{A}(v_h), w')_{\omega'_E}$
= $a_{\omega'_E}(u - v_h, w') + (\mathscr{A}(v_h) - \mu_h - f, w')_{\omega'_E} + \langle w', \mu_h - \lambda \rangle,$

Théorème 3.7 (estimation a priori) On a l'estimation suivante :

$$\| |(u - \mu_h, \lambda - \lambda_h) \| |$$

$$\lesssim \inf_{v_h \in V_h, \mu_h \in \Lambda_h} \left(\| |(u - v_h, \lambda - \mu_h) \| | + \sqrt{\langle u - g + \varepsilon \lambda, \mu_h \rangle} \right) + osc(f).$$
 (3.34)

Preuve. Soit $(v_h, \mu_h) \in V_h \times Q_h$ arbitraire et supposons que $w_h \in V_h$ est la fonction correspondant à $(u_h - v_h, \lambda_h - \mu_h)$ dans l'estimation discrète de stabilité exprimée en la norme continue $\||(.,.)\||$. L'énoncé du problème implique alors que

$$\begin{split} \||(\mu_{h} - v_{h}, \lambda_{h} - \mu_{h})\||^{2} &\lesssim \mathscr{B}_{h}(u_{h} - v_{h}, \lambda_{h} - \mu_{h}; w_{h}, \mu_{h} - \lambda_{h}) \\ &\lesssim \mathscr{L}(w_{h}, \mu_{h} - \lambda_{h}) - \mathscr{B}(v_{h}, \mu_{h}, w_{h}, \mu_{h} - \lambda_{h}) \\ &+ \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(v_{h}) - \mu_{h}, \mathscr{A}(w_{h}) + \lambda_{h} - \mu_{h})_{T} \\ &= \mathscr{B}(u - v_{h}, \lambda - \mu_{h}; w_{h}, \mu_{h} - \lambda_{h}) + \langle u - g + \varepsilon \lambda, \mu_{h} - \lambda_{h} \rangle \\ &+ \alpha \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(v_{h}) - \mu_{h} - f, \mathscr{A}(w_{h}) + \lambda_{h} - \mu_{h})_{T}. \end{split}$$

Analysons séparément chaque terme sur le côté droit. La continuité de la forme bilinéaire \mathscr{B} implique

$$\begin{aligned} \mathscr{B}_{h}(u_{h} - v_{h}, \lambda_{h} - \mu_{h}; w_{h}, \mu_{h} - \lambda_{h}) &\lesssim \||(u - v_{h}, \lambda - \mu_{h})\|||||(w_{h}, \mu_{h} - \lambda_{h})\||\\ &\lesssim \||(u - v_{h}, \lambda - \mu_{h})\|||||(u_{h} - v_{h}, \lambda_{h} - \mu_{h})\||.\end{aligned}$$

Pour le second terme on obtient :

 $\langle u - g + \varepsilon \lambda, \mu_h - \lambda_h \rangle \lesssim \langle u - g + \varepsilon \lambda, \mu_h - \lambda \rangle = \langle u - g + \varepsilon \lambda, \mu_h \rangle.$

Le troisième terme est majoré comme suit

$$\begin{split} \sum_{T \in \mathscr{C}_{h}} h_{T}^{4}(\mathscr{A}(v_{h}) - \mu_{h} - f, \mathscr{A}(w_{h}) + \lambda_{h} - \mu_{h})_{T} \\ &\lesssim \left(\sum_{T \in \mathscr{C}_{h}} h_{k}^{4} \| \mathscr{A}(v_{h}) - \mu_{h} - f \|_{0,T}^{2} \right)^{1/2} \left(\sum_{T \in \mathscr{C}_{h}} h_{T}^{4} \| \mathscr{A}(w_{h}) \|_{0,T}^{2} \right)^{1/2} \\ &\lesssim \left(\sum_{T \in \mathscr{C}_{h}} h_{T}^{4} \| \mathscr{A}(v_{h}) - \mu_{h} - f \|_{0,T}^{2} \right)^{1/2} \left(\sum_{T \in \mathscr{C}_{h}} h_{T}^{4} \| \lambda_{h} - \mu_{h} \|_{0,T}^{2} \right)^{1/2} \\ &\lesssim \left(\| u_{h} - v_{h} \|_{2} + \| \lambda_{h} - \mu_{h} \|_{-2} + osc(f) \right) \left(\sqrt{a(w_{h}, w_{h})} + \| \lambda_{h} - \mu_{h} \|_{-2,h} \right) \\ &\lesssim \left(\| \| (u - v_{h}, \lambda - \mu_{h}) \| \| + osc(f) \right) \| \| (u_{h} - v_{h}, \lambda_{h} - \mu_{h}) \| \|. \end{split}$$

Chapitre 4

TESTS NUMÉRIQUES SOUS FREEFEM++

Dans ce chapitre, on va consacrer le problème d'obstacle avec l'analyse numérique, cette analyse est illustrée et complété à l'aide de plusieurs exemples , en utilisant le logiciel Freefem++, ce dernier est un environnement de développement intégré dédié à la résolution numérique d'équations aux dérivées partielles en dimension 2 et 3, son langage ergonomique permet à l'utilisateur d'exploiter facilement ses nombreux outils de création des maillages et résolution des systèmes linéaires ainsi que ses bibliothèques d'éléments finis,...etc.

Dans cette étude nous basons sur la méthode des éléments finis stabilisés De plus à partir des fonctions de Freefem ++, on peut insérer plusieurs données, comme le type de maillage, le type d'élément finis...etc, avec le les détails.

FIGURE 4.1 – Maillage structuré

Dans ce partie nous appliquons la méthode des élements finis stabilisés , à laide de logiciel on définit deux plaque en contacte quand la 1^r plaque est déformé la deuxiéme plaque et on considére que la deuxiéme plaque est un obstacle élastique aprés faire des test et des changements numériques entre D_1 et D_2 ,(voire le tableau suivant).

On a la solution au problème de flexion de la plaque est plus régulière si l'obstacle est élastique, en particulier $u \in H^4(\Omega)$

Les principales questions , qui restent maintenant à réspodre , concernent les propriétés géométrique de l'ensemble de contacts $I(f,\psi)$ puisque u appartient à $C^2(\omega)$, alors $\partial\Omega$ existe en tout point de Ω . En supposant que le jeu de contacts est une surface lisse .

4.1 TRAITEMENT D'UN EXEMPLE

Soit ω un ensemble ouvert borné dans \mathbb{R}^2 , avec une frontiére continue de Lipschitz. Au vu de la section précédente, nous sommes amenés à considérer le système suivant :

$$\begin{cases} \mu_1 \Delta^2 u_1 + \lambda = f_1 & sur \ \Omega, \\ \mu_2 \Delta^2 u_2 + \lambda = f_2 & sur \ \Omega, \\ u_1 - u_2 \ge 0, \quad (\lambda + \frac{1}{\varepsilon}(u_1 - u_2)) \ge 0, \quad (\frac{1}{\varepsilon}(u_1 - u_2)\lambda = 0 & sur \ \Omega, \\ u_1 = \partial_n u_1 = 0 & sur \ \partial\Omega, \\ u_2 = \partial_n u_2 = 0 & sur \ \partial\Omega, \end{cases}$$

où les coefficients μ_1 et μ_2 sont des contantes positives . Les inconnues sont les déplacement μ_1 et μ_2 du deux plaques , et le multiplicateur de Lagrarange λ .On choisit le maillage Ω tel que : $\Omega =]0.1[^2$.

Maintenant, on donne quelque exemples représente le problème d'obstacle avec ses schémas numériques (la déformation finale du membrane qu'il est attachée à une obstacle élastique).

Dans le tableau suivant, on présente quelque exemples sur le problème décrit précédemment :

Figure	f_1	f_2	ψ_1	ψ_2	D_1	D_2
a	1	-1	0	0	1	2
b	0	0	0	0.05	1	2
С	1	-1	0	0.05	1	2
d	1	-1	0	0.05	10	2

Les schémas numériques de ce tableau illustrés par la figure (4.2).

FIGURE 4.2 – contact entre deux plaques élastiques

Chapitre 5

CONCLUSION

Dans ce mémoire, nous avons étudié la méthode des éléments finis stabilisés pour le probléme de contacte entre une plaque de Kirchhoff et un obstacle élastique, cette méthode conduit à la recherche d'une solution approchée à partir d'un problème sans contraintes ce qui simplifie la procédure de recherche de la solution numérique du problème, nous avons utiliseons la méthode des élements finis stabilisés pour discrétiser le multiplicateur de Lagrange pour mulation du probléme des obstacles .Nous avons montré que toutes les méthodes donnent des approximations d'erreur respectives a priori et a posteriori.

Nous espérons que cette approche peut produire une méthode numérique robuste pour le calcul de la solution numérique du problème d'obstacle.

BIBLIOGRAPHIE

- Brezzi, F., Hager, W.W., Raviart, P.A. : Error estimates for the finite element solution of variational inequalities. II.Mixed methods. Numer. Math. 31(1), 1-16 (1978/79).
- [2] Brezzi .H.R, G,Stampacchia; Sur la régularité de la solution d'inéquations elliptiques, France : Bull.Soc.Math, 1968.
- [3] CLEMENT , Approximation of finite element functions using local regularization , RAIRO Num . Anal, 9(1975), pp.77-84.
- [4] FORTAS Nour El Houda ,Méthode de pénalisation pour le problème d'obstacle , mémoire de master,Soutenu publiquement le : 26/05/2016 , Université de Ouargla.
- [5] Han, W., Hua, D., Wang, L. : Nonconforming

finite element methods for a clamped plate with elastic unilateral obstacle.J. Integr. Equ. Appl. 18(2), 267-284 (2006).

[6] Katharina Refetseder BSc, A New Appoach to Mixed Methods for Kirchhoff-Love Plates and Shells, Johannes Kepler Universitat Linz, 2018,

- [7] Tom Gustafsson, Rolf Stenberg and Juha Videman. A stabilised finite element method for the plate obstacle problem.BIT Numerical Mathematics Journal, Vol. 59, Issue N°1, 2019.
- [8] Tosone, C., Maceri, A. : The clamped plate with elastic unilateral obstacles : a finite element approach. Math. Models Methods Appl. Sci. 13, 1231-1243 (2003).

في هدا العمل نقدم تركيبة العناصر المحدودة المستقرة لمشكلة العقبة المرنة Kirchohoff plate ,و نشتق على حد سواء تقديرات الخطأ اللاحقة و المستندة إلى المتبقي باستخدام مطابقة **س** (عناصر محدودة و مستمرة). ماعدا حقيقة مهمة للغاية ان الدراسة الحالية تتعامل مع المشغل الحيوي .

الكلمات المفتاحية: مشكلة عقبة، صفيحة Kirchhoff، مستقر FEM، تقدير لاحق.

Abstract

We introduce a stabilised finite element formulation for the Kirchhoff plate with elastic obstacle problem and derive both a priori and residual-based a posteriori error estimates using conforming C¹-continuous finite elements, except for the very important fact that the present study deals with the biharmonic operator

<u>Keywords</u>: Obstacle problem \cdot Kirchhoff plate \cdot Stabilised FEM \cdot A posteriori estimate \cdot

<u>Résumé</u>

Dans ce travail, nous présentons la combinaison d'éléments finis stables du problème d'obstacle élastique de la plaque de kirchhoff et dérivons les estimations d'erreur subséquente et résiduelle en utilisant la correspondance C^1 (éléments limites continus), excepter le fait très important que le présent travail concerne le bilaplacien

Les mots clés :problème de obstacle , la plaque de kirchhoff , FEM stabilisé , estimation postérieure .