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Notations

ä BSS : Blind Source Separation.

ä HOS : Higher Order Statistics.

ä TF : fourier transform.

ä rv : random variable.

ä H,G : mixing, and separating operators.

ä R : Set of real numbers.

ä E[.] : mathematical expectation.

ä Var[.] : The variance.

ä Det(C) : determinant of matrix C.

ä z∗,x∗ : Complex conjugation.

ä (.)T : Transposition (without conjugation).

ä (.)† : Transposition and conjugation.



Notations viii

ä< : Real part.

ä= : Imaginary part.

ä Cum[.] : Cumulant.

ä Cum[x,y,z] : Cumulant des variables x,y,z.

ä µ
jk
x(i) : moments of random variables xi ,x∗j ,x

∗
k.

ä µ′x(p) : moments centered order p of x.

ä k
(2)
x(2) : cumulant cum[x,x,x∗,x∗].

ä k
j
xil : cumulants of random variables xi ,x∗j ,xl .

ä k
jk
xil : standardized cumulants of random variable xi ,x∗j ,xl .

ä I(p
X

) : mutual information of x.

ä k(p
V
,p

W
) : Kullback divergence between p

V
and p

W
.

ä S(px) : the entropy x



INTRODUCTION

Blind Source Separation (BSS) is an important signal processing problem, it was pro-

posed in the late 1980s by [1].Due to its great practical value, many researchers in the

area of signal processing and statistics have been focused on this problem in the aim

to propose algorithms. BSS has become an essential tool of development in many engi-

neering areas, mainly in the biomedical sciences, image processing, earth science, econo-

metrics, text data mining, and speech signal communication. The BSS problem consists

extracting and recovering a set of unknown source signals from a mixture of them, in

general case the sources assumed that are non-Gaussian signals and statistically inde-

pendent of one another. Mathematically, the BSS problem can be modeled as follows

.Let x(t) = (x1(t),x2(t), ...,xp(t))T the p×1 source vector, y(t) = (y1(t), y2(t), ..., yq(t))T the

q×1 observations vector, thus the BSS problem is defined by the following formula:

y(t) =H(x(t)) (1)

where H is called the mixing operator which is unknown , the sources vector x(t) is also

unknown and the observations vector y(t) is known. Indeed, the BSS problem estimates

the inverse function G such that:

x̂(t) = G[H(x(t))] (2)

where the vector x̂(t) is the estimation of the sources vector x(t).

In our dissertation, we focus on the linear BSS problems, where H is linear in eq (1)

and methods which are based on the higher order statistics (HOS) to estimate the source



INTRODUCTION x

signals. HOS have been proposed as a statistical tools to separate an i.i.d non-Gaussian

signals with at most a single signal having a Gaussian distribution. Concerning this

manuscript is organized as follows.

• Chapter 01: Blind Source Separation

This chapter is devoted to the presentation of BSS problem. We explain the math-

ematical formulation of this problem, the different models of mixture, and BSS

methods for instantaneous linear mixing systems.

• Chapter 02: Higher Order Statistics

In this chapter, we outline the higher order statistics (HOS) (cumulants and mo-

ments of order greater than two) with their theoretical properties in order to sepa-

rate systems of the class linear and instantaneous.

• Chapter 03:Blind source separation using an algebraic method

In this final chapter, we try to detail an algebraic technique [16] for BSS problems

which is based on the fourth-order cumulants. Experiments have been carried out

in this chapter with different signals using this method in the aim to validate the

effectiveness of HOS in the area of source separation.

Finally, a conclusion is written to summarize this work.



Chapter 1

Blind source separation

1.1 Overview of Blind Source Separation

Blind Source Separation is a powerful signal processing tool that was proposed by [1]

in the context of statistical signal processing, and information theory. BSS has become

a very important topic in different areas of research and development, such as biomedi-

cal engineering, speech signal communication, image processing, earth science, artificial

neural networks, econometrics, etc. In the broad sense, the problem of BSS consists ex-

tracting and recovering a set of unknown source signals from a set of observed signal

that result from an unknown mixture model of these signal sources. Blinde means that

the source signals are unknown (unobserved) [2]. As shown in [3] (BSS) is implicated in

different areas such as, in [4, 5, 6] authors use (BSS) in various applications of biomedical

engineering, N. Charkani in [7] is interested to apply the (BSS) in radio-communication

field, especially for mobile-phones, some authors utilize (BSS) as a tool in the nuclear re-

actor monitoring [12]. A detailed overview concerning the different applications of (BSS)

is shown in [2]. A famous example of (BSS) is the "cocktail party"problem. Suppose that

you are in a room where there are a variety of sounds, for example a people who are

talking. In this case, a person can distinguish between different voices getting mixed

up in his ears, and so he can identify a particular speaker’s voice and understand her.

Its the same case for the problem of (BSS) which that offers a solution of this problem by

separating the source signals from mixtures recorded by microphones placed in different



1.2 Mathematical modeling of the BSS problem: 2

locations. The Figure1.1 clarifies this example of blind source separation.

Figure 1.1: Blind source separation diagram

1.2 Mathematical modeling of the BSS problem:

As shown in [3],let x(t) = (x1(t),x2(t), ...,xp(t))T denotes the p×1 source vector and y(t) =

(y1(t), y2(t), ..., yq(t))T the q×1 observation vector.

The problem of BSS can be formulated mathematically as follows:

y(t) =H(x(t)) (1.1)

where H is called the mixing operator which is unknown , the source vector x(t) is also

unknown and the observation vector y(t) is known. The aim of BSS consists on the esti-

mation of an inverse function G such that:

x̂(t) = G[H(x(t))] (1.2)



1.3 Models and assumptions: 3

where the vector x̂(t) is the estimation of the source vector x(t). So we can represent the

steps of BSS in the figure 1.2 below.

Figure 1.2: BSS problem

The majority of source separation algorithms can be classified according to the type

of mixture, the assumptions assumed on the source signals and the number of observed

signals compared to the number of source signals.

1.3 Models and assumptions:

In the general case of BSS problem,H in eq(1) is non-linear function which depends on

the present and the past of the source signals, thus the BSS methods can be classified

into two classes

In the first class, we find methods for BSS problems of linear mixture, where the func-

tion H in eq (1) is linear, that means the observations are linear mixtures of source sig-

nals. The BSS methods which treats this kind of problems are the most studied due to

the simplicity of the linear model.

In the second class, we find methods for BSS problems of non-linear mixture, in this
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case H in eq(1) is non-linear. The extension of BSS methods to the non-linear mixture is

still less studied due to their complexity. A non-linear models in this context have been

proposed as shown in [2], for example, the model post-non-linear where the mixture is

formed by a linear part and followed by a non-linear distortion. In our dissertation we

focus on the BSS problems of linear mixture.

1.3.1 Linear mixtures:

In the subject of source separation, linear mixtures models which have been studied

widely can be grouped in the following classes.

1.3.1.1 Instantaneous Linear Mixing:

This model assumes that, each observed signal from the L sensors is a linear combination

of K statistically independent sources. Thus the following formula expresses the linear

time-invariant instantaneous mixing model.

xi(t) =
K∑
j=1

aijsj(t) 1 ≤ t ≤N (1.3)

Where xi(t)/i = 1,L are the observed signals,aij(t)/i = 1,L; j = 1,K are mixing parameters,

and sj(t)/j = 1,K are the source signals.

This process of mixing can be written in the following matrix form:

X(t) = AS(t) (1.4)

WhereX(t) = (x1(t),x2(t), ...,xL(t) is the observed signals vector, S(t) = (s1(t), s2(t), ..., sK (t))T

is the source vector, and A ∈ML,K is the mixing matrix.

1.3.1.2 Linear Convolution Mixing Model:

The convolution mixing model assumes that there areK statistically independent sources

sj(t)/j = 1, k received by L sensors after the convolution mixing process. The observed

signals are denoted by xi(t)/i = 1,L and the convolution mixing model can be expressed
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by the following formula

xi(t) =
K∑
j=1

∞∑
τ=−∞

aij(τ)sj(t − τ) (1.5)

In this dissertation, we only concentrate on the instantaneous linear mixing models.

1.3.2 Assumptions:

Authors in [3] affirm that, in blind source separation it is widely used the following

assumptions

• Assumption 01:The sources are statistically independent. This assumption is an

important key for all blind separation algorithms.

• Assumption 02: The sources have a non-Gaussian distribution, or precisely, at

most one of them can be Gaussian.

• Assumption 03:The channel can be instantaneous and the matrix H is assumed to

be invertible.

1.4 BSS Methods for instantaneous linear mixing:

The instantaneous linear mixing style is the simplest model and forms the foundation

for the other mixing styles. Different methods have been developed for solving this kind

of BSS problem. As shown in [12], all types of BSS methods can be categorized as follows:

• Methods based on Independent Component Analysis (ICA)

• Methods which use Sparse Component Analysis (SCA) as an essential tool.

• Methods that involve Nonnegative Matrix Factorization (NMF) technique in the

separation process.

• Methods based on Bayesian Approach (BA).
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In our case, we try to focus on the first kind of methods which is based on Independent

Component Analysis (ICA).

1.4.1 Independent Component Analysis (ICA):

ICA ( independent component analysis) is among the most studied methods of Blind

Source Separation. The aim of these methods is to apply some transformations on the

observed signals in order to obtain a statistically independent signals output. From a

mathematical point of view, the probability density function (PDF) is used to define the

statistical independence concept of a random vector. If s = (s1, s2, ..., sL) is a random vector

with a joint PDF p(s1, s2, ..., sL) then: The random variables Si/i = 1,L are statistically inde-

pendent if and only if the probability p(s1, s2, ..., sL) can be decomposed into the product

of the marginal densities, that means

p(s1, s2, ..., sL) =
L∏
k=1

pk(Sk) (1.6)

The majority of ICA methods are based on the following assumptions, sources are sta-

tistically independent and have a non-Gaussian distribution, or precisely, at most one of

them can be Gaussian. A several criteria have been used to measure the statistical inde-

pendence between the source signals. In the next, we try to present the most well-known

criteria [12].

1.4.1.1 Maximization of non-Gaussianity:

The central limit theorem is a classical result in probability theory, tells that the distri-

bution of a sum of independent random variables tends toward a Gaussian distribution.

Among the most used criteria in the BSS methods based on ICA is the maximization

of non-Gaussianity. Indeed, the non-Gaussianity can be used as a necessary condition

to separate the i.i.d. source signals. This condition is based on the central limit theo-

rem (CLT) which is a classical result in probability theory, tells that the distribution of

a sum of independent random variables tends toward a Gaussian distribution. Thus, in

BSS problems, it suffices to increase the non-Gaussianity of the estimated sources to ob-

tain independent components. The famous measure of non-Gaussianity is the kurtosis
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(fourth-order cumulant) [14] defined by the following formula.

Kurt(X) =
E(X4)
E(X2)2 − 3 (1.7)

Where x is a centered random variable and E(.) is the mathematical expectation operator.

The kurtosis is a statistical measure that measures the distance between the probability

density of a random variable and a Gaussian density. Therefore, maximizing the absolute

value of the kurtosis equivalently to maximizing the non-Gaussianity of the estimated

variable, which allows to extract the independent sources. Many works have been pub-

lished in this context, among these works we cite the famous paper [13] where authors

propose a fast ICA method.

1.4.1.2 Mutual Information Minimization:

Mutual information is another criterion which is involved in the ICA methods by Comon

P in [15]. This criterion measures the statistical independence of random variables

by evaluating the similarity between the joint probability density and the product of

marginal densities. This similarity is calculated by the Kullback-Leibler divergence as

follows

I(X1,X2, ...,Xn) =
∫ ∞
−∞
p(x1,x2, ...,xn) log


p(x1,x2, ...,xn)

n∏
i=1
pi(xi)

 (1.8)

Where X1,X2, ...,Xn are random variables, p(x1,x2, ...,xn) is the joint probability density of

these random variables and pi(xi) is the marginal density of xi The mutual information

criterion is always positive and is zero only when the variables {Xi}i=1,n are statistically

independent.

1.4.1.3 Maximum Likelihood:

The idea of the ICA methods which are based on the maximization of likelihood is to find

the mixing parameters by maximizing the probability density of the observed sources

pX(x) .

Assuming that the source signals are i.i.d, and each observed signal consists of N sam-
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ples, the likelihood is calculated by the following formula

L =
N∏
j=1

[
|Det(B)|

L∏
i=1
pi(si(j))

]
(1.9)

Where B is the inverse of the mixing matrix A, and pi(si) is probability density of the

source si . The limitation of this kind of ICA methods is that, when using maximum like-

lihood as the objective function, we first need to know the probability density function

of the source signals to compute the likelihood function, otherwise we cannot.

1.4.1.4 Higher-Order-Statistics (HOS):

Higher-Order-Statistics (HOS) ( cumulants and moments of order greater than two) have

been proposed as a useful tool to separate an i.i.d non-Gaussian signals with at most

a single signal having a Gaussian distribution. The basic idea of these methods is to

separate signals using a function based on higher order cumulants. Indeed, the cross

cumulants between signals are zero when these signals are independent. In practice , it

is difficult to determine the cross cumulants at all orders, therefore, the majority of BSS

methods using HOS are limited usually to order four.

Concerning our dissertation we try to detail the basic notions of HOS with their prop-

erties in chapter 02, and we present a BSS method based on HOS as an application in

chapter 03.



Chapter 2

Higher Order Statistics

2.1 Introduction

Higher Order Statistics (HOS), cumulants and moments of order greater than two are

extensions of second order statistics measures. They are well known tools that can be

used widely in the description of data and their statistical properties. HOS are implied

in BSS area due to its capability to separate mixing data, and allow for resolving insol-

uble problems in order 2. In this chapter we try to give the necessary definitions and

properties for the introduction of HOS.

2.2 Real scalar random variables

Definition 2.2.1. Let x be a real valueds scalar random variable.

The distribution function of a continuous random variable X can be expressed as the integral

of its probability density function px(u) as follows :

Fx(u) =
∫ u

−∞
px(t)dt (2.1)

Definition 2.2.2. The generalized moments of x are defined for any real application g by:

E[g(x)] =
∫ ∞
−∞
g(u)px(u)du (2.2)
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We use polynomial functions g(u), leading to moments different orders, we associate

with random variables characteristic functions.

Definition 2.2.3. The first characteristic function of x is :

Φx(v) = E[ejvx] =
∫ ∞
−∞
ejvupx(u)du (2.3)

where j denote the root of −1. When the random variable x admits a density of probability

px(u).

We find the density of probability from the first characteristic function by inverse

Fourier transformation :

px(u) =
1

2π

∫ ∞
−∞
e−jvuΦx(v)dv (2.4)

Definition 2.2.4. we define the second characteristic function as follows:

Ψx(v) = log
[
Φx(v)

]
(2.5)

2.2.1 Moments

Definition 2.2.5. The rth-order moment µx(r) of random variable x is defined by:

µx(r) = E[xr] = (−j)r d
rΦx(v)
dvr

∣∣∣∣∣
v=0

(2.6)

and µ′x(r) the centered moments:

µ′x(r) = E
[
(x −µx(1)

)r
]

(2.7)

2.2.2 Cumulants

Definition 2.2.6. The derivatives of the second characteristic function define cumulants.

Cum[x,x...x] = kx(r) = (−j)r d
rΨx(v)
dvr

∣∣∣∣∣
v=0

(2.8)
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Which are the Taylor series development coefficients of the second characteristic

function

We can calculate the cumulants of order r from moments of order lower or equal to r, for

example (for r = 4):

kx(1) = µx(1)

kx(2) = µ′x(2) = µx(2) −µ2
x(1)

kx(3) = µ′x(3) = E[(x −µx(1))
3] = µx(3) − 3µx(2)µx(1) + 2µ3

x(1)

kx(4) = µ′x(4) = µx(4) − 4µx(3)µx(1) − 3µ2
x(2) + 12µx(2)µ

2
x(1) − 6µ4

x(1)

In the case of centered random variables(µx(1) = 0), the expressions of cumulants are sim-

plified by:

kx(1) = 0

kx(2) = µx(2) = E[x2]

kx(3) = µx(3) = E[x3]

kx(4) = E[x4]− 3E[x2]2

When the variable x is Gaussian, the second characteristic function is:

Ψx(v) = jµx(1)v −
1
2
µx(2)v

2 (2.9)

Proof.

Φx(v) = E[ejvu] =
∫ ∞
−∞
ejvupx(u)du

Φx(v) =
1

σ
√

2π

∫ ∞
−∞
ejvu exp

(
−1

2µx(2)
(u −µx(1))

2
)

du

Φx(v) =
1

σ
√

2π

∫ ∞
−∞

exp
(
jvu − 1

2µx(2)

(
u2 +µ2

x(1) − 2uµx(1)

))
du

Φx(v) =
1

σ
√

2π

∫ ∞
−∞

exp

jvu − u2

2µx(2)
−
µ2
x(1)

2µx(2)
+
uµx(1)

µx(2)
+
µx(2)v

2

2
−
µx(2)v

2

2
+ jµx(1)v − jµx(1)v

du

Φx(v) =
1

σ
√

2π

∫ ∞
−∞

exp
(
−1

2µx(2)
(−2µx(2)jvu +u2 +µ2

x(1) − 2uµx(1) −µ2
x(2)v

2 + 2jvµx(2)µx(1)

)
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exp

jµx(1)v −
µx(2)v

2

2

du

Φx(v) =
1

σ
√

2π
exp

jµx(1)v −
µx(2)v

2

2

∫ ∞
−∞

−1
2µx(2)

(
u − (µx(1) + jvµx(2))

)2
du

So

Φx(v) = exp

jµx(1)v −
µx(2)v

2

2


Hence

Ψx = jµx(1)v −
µx(2)v

2

2

Remark. In the Gaussian distribution case, the cumulants of order greater than 2 are there-

fore all zero [8].

Definition 2.2.7. The standardized random variable defined by:

x∗ =
x −µx(1)√
kx(2)

(2.10)

Theorem 2.2.8. The skewness of a random variable X is the third standardized cumulant,

defined as:

Mx(3) =
E(x3)

E(x2)
3
2

Theorem 2.2.9. The kurtosis(the factor flattening) is the fourth standardized cumulant,defined

as :

Mx(4) =
E[x4]
E[x2]2 − 3
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2.2.3 Examples of random variables

Let’s take a look at some examples of random variables:

Uniform variable :

The distribution of a random variable in the part [-a, a] has the following characteristic

function :

Φx(v) = E[ejvx]

=
∫ a

−a
ejvxpx(u)dx

=
∫ a

−a
ejvx

1
2a

dx

=
1
2a

1
jv
ejvx

∣∣∣∣∣a
−a

=
1

2ajv
(ejva − e−jva)

=
1

2ajv
(cos(va) + jsin(va)− cos(−va)− jsin(−va))

=
1

2ajv
(cos(va) + jsin(va)− cos(va) + jsin(va))

Hence

Φx(v) =
sin(va)
av

the rth-order moments is µx(r) =
ar

r + 1
, and for kurtosis kx(4) =

µx(4)

(µx(2))2 − 3 =
−6
5

.

Gaussian variable :

The density of the centered Gaussian variable is :

px(u) = 1
σ
√

2π
exp(− u2

2σ2 )
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The characteristic function is:

Φx(v) =
1

σ
√

2π

∫ ∞
−∞
ejvu exp(

−1
2
u2

σ2 )du

=
1

σ
√

2π

∫ ∞
−∞

exp(jvu − 1
2
u2

σ2 )du

=
1

σ
√

2π

∫ ∞
−∞

exp(jvu − 1
2
u2

σ2 +
σ2v2

2
− σ

2v2

2
)du

=
1

σ
√

2π

∫ ∞
−∞

exp(
−1
2σ2 (u − jvσ2)2)exp(

−σ2v2

2
)du

= exp(
−σ2v2

2
)

Because

1

σ
√

2π

∫ ∞
−∞

exp(
−1
2σ2 (u − jvσ2)2) = 1

The odd moments are zero and even moments are equal:

µx(2r)=σ2r (2r)!
r!2r

generalized Gaussian variable :

the random variable x is called Gaussian generalized if its probability density is written

as follows :

px(u) = Bexp(−A|u|g)

g is a positive real number, and The coefficients A and B are introduced in order to

normalize the sum of px(.) to 1, and the variance to 1. These coefficients are :

A =
Γ (3/g)
Γ (1/g)

and B = g
Γ (3/g)1/2

Γ (1/g)3/2

where Γ (.) is the gamma function, Γ (x) =
∫∞

0
tx−1e−tdt. The moments in the odd order

are zero and the moments in the even order are :

µx(r) =
Γ (1/g)r−1

Γ (3/g)r
Γ

(
2r + 1
g

)
∀g ≥ 1

We find µx(r) = 1, if g = 2, we are in the Gaussian case, and we find the results given above

using the relationships Γ (1/2) =
√
π and Γ (n+ 1) = nΓ (n). By tending g towards infinity,

we find the uniform case mentioned above. if g = 1 we obtain a bilateral Laplace variable

[9].
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2.3 Multidimensional random variables

Multivariate random variables can be represented by the column vector

XT=(x1,x2...xN )

Definition 2.3.1. We define the first characteristic function of N random variables xn by the

relation :

Φ
X

(V ) = E
[
e
j
∑
n
vnxn

]
= E

[
ejV

TX

]
(2.11)

Where

V T = (v1,v2...,vN )

If the components xn of the random vector x admit a joint density px(u). The first characteristic

function of x is given by the Fourier transform of this density :

ΦX(V ) =
∫
RN
ejV

TUp
X

(U )dU (2.12)

Definition 2.3.2. the second characteristic function is :

Ψx(V ) = logΦx(V ) (2.13)

The characteristic functions can be used to generate moments and cumulants.

In the multidimensional random variables case, we take examples of cumulants and

write them as follows :

Second order cumulant

the second order cumulants, can be stored in a matrix (covariance matrix)

k
X(2)ij

= Cum[xi ,xj]

Third order cumulant

k
Xijk

= Cum[xi ,xj ,xk] = k
X(3)

k
Xiii

= Cum[xi ,xi ,xi] = k
xi (3)

Fourth order cumulant
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k
Xhijk

= Cum[xh,xi ,xj ,xk] = k
X(4)

k
Xiiii

= Cum[xi ,xi ,xi ,xi] = k
xi (4)

Definition 2.3.3. The cross moments define as follows :

µ
Xi1i2...ir

= E[x
i1
...x

ir
] = (−j)r ∂rΦx(V )

∂vi1∂vi2 ...∂vir

∣∣∣∣∣
V=0

(2.14)

With

r = i1 + i2 + ...ir

Remark. By developing the exponential function [ejV
TX] into a series around V = 0. The

cross moments is the coefficients terms of degree r : [jrµxij...k /r!], As shown in [17].

Definition 2.3.4. The cross cumulants define as follows :

k
Xi1i2...ir

= (−j)r ∂rΨx(V )
∂vi1∂vi2 ...∂vir

∣∣∣∣∣
V=0

(2.15)

As in the scalar case, and by developing the logarithm function in series, we can write a

relation between moments and cumulants.

For example the second-order cumulant is :

k
Xij

= µ
Xij
−µ

Xi
µ
Xj

Notation 2.3.5. The integer number that appears in bracket [m] is the number of characteris-

tic monomers that can be obtained by permutation. In short, we take the examples as follows:

[3]δijδkl = δijδkl + δikδjl + δilδjk

[3]aijbkcijk = aikbjcijk + aijbkcijk + ajkbicijk

[3]xiδjk = xiδjk + xjδik + xkδij

[6]xixjδkl = xixjδkl + xkxjδil + xlxjδki + xixkδjl + xixlδjl + xkxlδij

In the non-centered case, the third-order and fourth-order cumulants by the moments

function are given as follows:

kXijk = µXijk − [3]µXiµXjk + 2µXiµXjµXk (2.16)

kXijkl = µXijkl − [4]µXiµXjkl − [3]µ
Xij
µ
Xkl

+ 2[6]µ
Xi
µ
Xj
µ
Xkl
− 6µ

Xi
µ
Xj
µ
Xk
µ
Xl

(2.17)
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In the centered case, these expressions are simplified by:

k
Xij

= µ
Xij

k
Xijk

= µ
Xijk

k
Xijkl

= µ
Xijkl
− [3]µ

Xij
µ
Xkl

In the scalar case, we replace the above notation n[m] by nm.

Definition 2.3.6. [Leonov and Shiryayev]

From the definition of the second characteristic function, the cumulants are related to moments

by the formula called Leonov and Shiryayev, and it writes as follows:

Cum[x1...xr] =
∑

(−1)k−1(k − 1)!E
[∏
i∈v1

xi

]
E

[∏
j∈v2

xj

]
...E

[∏
k∈vp

xk

]
(2.18)

In the second-order , the possible partitions are (1,2) and (1)(2), so we find:

Cum[x1,x2] = (−1)00!E[x1x2] + (−1)2−11!E[x1]E[x2]

In the third-order, the possible partitions are (1, 2, 3), (1)(2, 3), et (1)(2)(3).

Remark. There are 3 partitions of type (1)(2,3): Note that there are three partitions of type

(1) (2 , 3): We write the number of this partitions in bracket as we indicated in the above

notation:

(1) (2, 3); (2) (1, 3); (3) (1, 2)

The third-order cross cumulant is :

Cum[x1,x2,x3]=(−1)00!E[x1x2x3] + (−1)2−11![3]E[x1]E[x2x3] + (−1)3−12!E[x1]E[x2]E[x3]

In the fourth-order , the partitions are:

• (1,2,3,4) au nombre de 1,k − 1=0(k = 1partition).



2.4 Random variables with complex values 18

• (1)(2,3,4) number of 4,k − 1=1(k = 2partitions).

• (1)(2)(3,4) number of 6,k − 1=2(k = 3partitions).

• (1)(2)(3)(4) number of 1,k − 1=3(k = 4partitions).

• (1,2)(3,4) number of 3,k − 1=1(k = 2partitions).

The fourth-order cross cumulant is:

Cum[x1,x2,x3,x4] = (−1)00!E[x1x2x3,x4] + (−1)11![4]E[x1]E[x2x3x4] +

(−1)22![6]E[x1]E[x2]E[x3x4] + (−1)11![3]E[x1x2]E[x3x4] + (−1)33!E[x1]E[x2]E[x3]E[x4]

Remark. We can find the moments by the inverse formula of Leonov et Shiryayev :

E[x1...xr]=
∑
cum[xi , i ∈ v1].cum[xj , j ∈ v2]....cum[xk , k ∈ vp]

We find The fourth-order moment as follows :

µ
Xijkl

= k
Xijkl

+ [4]k
Xi
k
Xjkl

+ [3]k
Xij
kxkl + [6]k

Xi
k
Xj
k
Xkl

+ k
Xi
k
Xj
k
Xk
k
Xl

2.4 Random variables with complex values

Definition 2.4.1. z is the random variable with complex values, and it represente by a real

random variable of 2-dimension as :

z = x+ iy

With

x,y ∈ RN and j2 = −1

This complex random variable z has a density if and only if its real and imaginary parts admit

a joint density .

Definition 2.4.2. The characteristic function of the complex vector variable z is :
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Φz(u) = E
[
ej[X

T
V+y

T
w]

]
= E

[
ej<[z†u]

]
(2.19)

With

u = v + jw

Definition 2.4.3. We note that any function in x and y can be represented as a function From

z and z∗, the first characteristic function of z is:

Φz,z∗(u,u∗) = E
[
e

j[z†u +u†z]
2

]
Definition 2.4.4. The second characteristic function of z is :

Ψz,z∗(u,u∗) = log(Φz,z∗(u,u
∗)) (2.20)

We can find the relation of moments and cross cumulants between a variable z and its

conjugate z∗.

Definition 2.4.5. The moments for the complex random variable z are written as follows:

µ
(q)
z(p) = E[zpz∗q] (2.21)

Definition 2.4.6. The cumulants for the complex random variable z define as :

k
q
z(p) = Cum[z, ..., z;z∗, ..., z∗] = (−2j)r

∂rΨz,z∗(u,u∗)
∂uq∂u∗p

∣∣∣∣∣
u=0

(2.22)

Definition 2.4.7. The complex random vector z and his components zi ,the moments are:

µj1...jq
zi1...ip

= E[zi1 ...zip , z
∗
j1
...z∗jq] (2.23)

And his cumulants as follows :

k
j1...jq
zi1...ip

= Cum[zi1 , ..., zip , z
∗
j1
, ..., z∗jq] (2.24)



2.4 Random variables with complex values 20

2.4.1 Standardization

Definition 2.4.8. The Standardization is the affine transformation that is associated with x a

centered random vector, its covariance matrix is identity I. The standardization random vector

is:

x∗ =W (x −µx(1)) (2.25)

Where W is the matrix verifying WCW †=I , µx(1) is the random vector mean, C = kXij for real

value and C = k
j

xi for complex values.

we take :

W=Λ
−1
2 U†

where Λ is the diagonal matrix of eigenvalues of C and U is the unit matrix.

2.4.2 Circularity

Definition 2.4.9. A complex random vector Z of dimension N is circular, if and only if:

∀θ : Z and Zejθ have the same statistical properties

We will take the Necessary proprietes of circularity, as shown in [9]

1. If a complex random variable z is circular, then :

ΦZ(ejθu) = ΦZ(u),∀θ (2.26)

2. Z complex random vector, Z is circular if and only if all its moments of the form:

µ
(q)
Z(p) = E

[ ∏
∑
ai=p

zaii

∏
∑
bj=q

z
∗bj
j

]
(2.27)

It Equals zero when p , q and p+ q ≤ r, and :

µ
(q)
Z(p) = µ(q)

Zejα(p)
= µ(q)

Z(p)e
jα(p−q) (2.28)

The above properties of circular complex random variable prove that :

E[Z] = 0;E[Z2] = 0;E[Z2Z∗] = 0
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3. Z is a circular variable with order r if its density of probability is invariant by

rotation of angle 2π/r+1, and if Z and Ze2πj/r+1 have the same statistical properties.

In Gaussian case, the second order circularity leads to circularity of all orders. if z is

circular, then : E[ZZT ] = 0 implies that [xxT − yyT ] = 0 and E[xyT + yxT ] = 0.

2.5 Properties of moments and cumulants

2.5.1 Multilinearity

Moments and cumulants satisfy the property of multilinearity.

Definition 2.5.1. If y = Ax and A = {Aij} ∈ Rmn, the property of miltilinearity implies that

the moments of y are function linear moments of x and the same for cumulants.

For example, we have:

Cum[yi , yj , y∗k] =
∑
a,b,c

AiaAjbA
∗
kcCum[xa,xb,xc]

In the scalar case, we write :

kλx(r) = λrkx(r) (2.29)

The general case of multilinearity is :

Cum[x+ y,z1, ..., zp] = Cum[x,z1, ..., zp] +Cum[y,z1, ..., zp] ∀x,y,z1, ..., zp

Cum[λx,z1, ..., zp] = λCum[x,z1, ..., zp]

2.5.2 Translation invariance

The Cumulants are deterministic translation invariant. if y=x+ t (t is deterministic),

then the order cumulants greater or equal than 2 of y are identical with cumulants of x.

The second characteristic function of y and x are linked by:

Ψ
y
(v) = j<[t†v] +Ψ

X
(v) (2.30)
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2.5.3 Independent random variables

Let x and y be two independent random vectors, with reals values or complex, of

respective dimensions n and p, and either ZT = xT yT

Hence

ΦZ = Φ
X
Φ
Y

Ψz(u,v) = Ψ
X

(u) +Ψy(v)

Remark. The cross cumulants between x and y are :

k
Zi1...in,j1...jp

= Cum[xi1 ...xin , yj1 ...yjp] = (−j)r
∂rΨ

Z
(U,V )

∂ui1 ...∂uin∂vj1 ...∂vjp

∣∣∣∣∣
V=0

(2.31)

Where

r = n+ p

The cross cumulants of x and y are zero if one of the ik and one of the jk are non-zero

simultaneously.

If x and y a independents vectors, for all z, we find :

Cum[x,y,z] = 0 (2.32)

2.6 Higher order statistics and probability density.

In this paragraph, we examine the link between higher order statistics and probability

density.

2.6.1 Tendency towards gaussianity

We consider N independent random variables, a bounded cumulant of order r is

denoted by k(r)(n). we put :

k(r) =
1
N

N∑
n=1

kx(r)(n) and y =
1
√
N

∑N
n=1(x(n)− k(1))
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The random variable y is the normalized sum of N random variables independent.

When N −→∞ the random variable y tends in law towards a Gaussian random variable

y.

λ(r) is the cumulants of the random variable y, and are define by:

λ(r) = ky(r) =
1

N r/2−1
k(r) ∀r ≥ 2 (2.33)

2.6.2 Gaussianity and independence criteria

This part is based on the concept of independent statistics, Entropy, Kullback

divergence and mutual information allow the introduction of criteria of gaussianity and

independence.

2.6.2.1 Entropy and gaussianity

The observation of a random density vector x of probability px(u) provides a quantity of

information quantified by entropy:

S(px) = −
∫
px(u) logpx(u)du (2.34)

To encrypt the Entropy deficit, compared to the random vector Gaussian xg , of a

random vector x belonging to the set we introduce the negoentropy.

J(pX) = S(pXg )− S(pX) (2.35)

2.6.2.2 Kullback divergence

The Kullback divergence measures the distance between two densities of probability,

p
V

(u) and p
W

(u) , by:

k(pV ,pW ) =
∫
pV (u) log

pV (u)
pW

(u)du

The divergence of Kullback k(p
V
,p

W
) is negative if p

V
, p

W
, it is zero if pV = pW .

Proof. (demonstration of Neguentropy)

we have :
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log w ≤ w − 1

If (p
V

= p
W

)

k(p
V
,p

W
) =

∫
p
V

(u) log
p
W

(u)
p
V

(u)
du ≤

∫
p
V

(u)(
p
W

(u)
p
V

(u)
− 1)du = 0

And we have

S(p
Xg

) = −
∫
p
Xg

(u) logp
Xg

(u)du = −
∫
p
X

(u) logp
Xg

(u)du

We find that the divergence of Kullback

J(p
X

) = S(p
Xg

)− S(p
X

)

= −
∫
p
X

(u) logp
Xg

(u)du +
∫
p
X

(u) logp
X

(u)du

=
∫
p
X

(u) log
p
X

(u)
p
Xg

(u)
du

= k(p
X
,p

Xg
)

Let be a random vector x of probability density p
X

(u). If this vector is made up of

independent variables its density of probability is the product of the marginal

probability densities of each of its components
∏
i pxi (ui).

The Kullback divergence between p
X

(u) and
∏
i pxi (ui) gives a measure of the statistical

independence of the components of x that are call: mutual information.

I(p
X

) = k(p
X
,
∏
i

pxi (ui)) =
∫
p
X

(u) log
p
X

(u)∏
i pxi (ui)

du (2.36)

The random vector x and the Gaussian random vector xg have the same first and second

order moments, we can write :

J(p
X

)−
∑
i
J(pxi ) = I(p

X
)− I(p

Xg
)

Proof.

J(p
X

)−
∑
i
J(pxi ) =

∫
p
X

(u) log
p
X

(u)
p
Xg

(u)
du −

∑
i

∫
pxi (ui) log

pxi (ui)
pxgi (ui)

dui
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We have ∑
i

∫
pxi (ui) logpxi (ui)dui =

∫
p
X

(u) log
∏
i

pxi (ui)du

J(p
X

)−
∑
i

J(pxi ) =
∫
p
X

(u) log
p
X

(u)
p
Xg

(u)
du −

∫
p
X

(u) log

∏
i pxi (ui)∏
i pxgi (ui)

du

=
∫
p
X

(u)
[
log

p
X

(u)
p
Xg

(u)
− log

∏
i pxi (ui)∏
i pxgi (ui)

]
du

=
∫
p
X

(u)
[
logp

X
(u)− logp

Xg
(u)− log

∏
i

pxi (ui) +
∏
i

pxgi (ui)
]
du

=
∫
p
X

(u)
[
logp

X
(u)− log

∏
i

pxi (ui)
]
−
[
logp

Xg
(u)− log

∏
i

pxgi (ui)
]
du

=
∫
p
X

(u)
[
log

p
X

(u)∏
i pxi (ui)

− log
p
Xg

(u)∏
i pxgi (ui)

]
du

= I(p
X

)− I(p
Xg

)

So :

I(p
X

) = J(p
X

)−
∑
i J(pxi ) + I(p

Xg
)

2.7 Estimation of moments and cumulants

If you use higher order statistic, you must pass by their estimate. This paragraph

presents some elements on estimation, in the scalar case.

2.7.1 moment estimators

Let x be a centered scalar random variable, and xn,1 ≤ n ≤N,N realisations of x.

The classic estimator of the rth order moment of X is given by:

µ̂(r) =
1
N

N∑
n=1

xrn (2.37)

This estimator is unbiased [i.e E[µ̂(r)]=µ(r)], In addition, if xn is realizations independent

of x, the variance estimate is:
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V ar[µ̂(r)] =
1
N

Var[xr]

Note that the moment estimator is a consistent estimator when:

lim
N−→∞

V ar[µ̂(r)] = 0

2.7.2 Cumulants estimators

A cumulants estimator is obtained by substituting the moments in Leonov and

Shiryayev formula by their estimators.

Example of fourth-order cumulants

The fourth order cumulants are written by moments, as follows :

kx(4) = µx(4) − 3µ2
x(2) (2.38)

So, the fourth order cumulant estimator is:

k̂x(4) = �µx(4) − 3�µx(2)
2 (2.39)

=
1
N

N∑
i=1

x4
i − 3

 1
N 2

N∑
i,j=1

x2
i x

2
j

 (2.40)

=
1
N

N∑
i=1

x4
i −

3
N 2

 N∑
i=j=1

x2
i x

2
j +

N∑
i=1

x2
i

N∑
j=1,i,j

x2
j

 (2.41)

Study of bias :

From the above Eq(2.40), we put :

f (N )=
1
N

and g(N )=
−3
N 2
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We study the bias of fourth order cumulants:

E[k̂x(4)] = E

 1
N

N∑
i=1

x4
i −

3
N 2

 N∑
i=j=1

x2
i x

2
j +

N∑
i=1

x2
i

N∑
j=1,i,j

x2
j


 (2.42)

= µx(4) −
3
N
µx(4) −

3
N 2

(
N (N − 1)(µx(2))

2
)

(2.43)

= µx(4) −
3
N
µx(4) − 3µ2

x(2) +
3
N
µ2
x(2) (2.44)

= (µx(4) − 3µ2
x(2))−

3
N

(µx(4) −µ2
x(2)) (2.45)

= kx(4) −
3
N

(kx(4) + 3µ2
x(2) −µ

2
x(2)) (2.46)

= kx(4) −
3
N

(kx(4) + 2µ2
x(2)) (2.47)

From the Eq(2.43), we can write the bias of this form :

E[k̂x(4)] = (Nf (N ) +Ng(N ))µx(4) +N (N − 1)g(N )µ2
x(2) (2.48)

The bias is zero if :  Nf (N ) +Ng(N ) = 1

N (N − 1)g(N ) = −3

Then : 
f (N ) =

N + 2
N (N − 1)

g(N ) =
−3

N (N − 1)

The fourth k-statistic is :

k̂x(4) =
N + 2

N (N − 1)

N∑
i=1
x4
i −

3
N (N − 1)

N∑
i,j=1

x2
i x

2
j

Variance of estimator[17]

The k-statistic variance to 1/N order is:

V ar[k̂x(4)] =
1
N

(kx(8) + 16kx(6)kx(2) + 48kx(5)k(3) + 34k2
x(4) + 72kx(4)k

2
(2) + 144k2

x(3)kx(2) + 24k4
x(2))

The cumulants estimators are consistants since the estimator variance tends to 0 when

the number of N tends to infinity.

Tendency towards Gaussianity [18]

The K-order cumulant (kx(4)) is asymptotically normal. Then, the cumulants of order

greater than or equal to 3 is zero.
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2.7.3 Estimation of asymmetry and kurtosis

For the standardized random variable define :

• The skewness Mx(3) is estimated by the following quantity:

M̂x(3) =
k̂x(3)

k̂
3/2

x(2)

(2.49)

• The kurtosis Mx(4) is estimated by the following quantity:

M̂x(4) =
k̂x(4)

(̂kx(2))2
(2.50)

• In general, the standardized estimators defined as:

M̂x(r) =
k̂x(r)

k̂
r/2

x(2)

(2.51)

There are exact results in the Gaussian case, shown in [19]:

E[k̂x(3)] = 0

E[k̂x(4)] = 0

V ar[k̂x(3)] =
6N (N − 1)

(N − 2)(N + 1)(N + 3)
≈ 6
N

V ar[k̂x(4)] =
24N (N − 1)2

(N − 3)(N − 2)(N + 3)(N + 5)
≈ 24
N



Chapter 3

Blind source separation using an

algebraic method

3.1 Blind separation of sources using a new polynomial

equation

In this chapter, we present a simple algebraic method for estimating the mixing matrix

in the two source separation problem between two sources separation, this problem

proposed in [16].By using fourth-degree cumulants, then equating them with zero, and

we solve a second-degree polynomial equation.

We assume that the sources are a zero mean, non-Gaussian, and statistically

independent.

Model of mixtures:

Let x1(n) and x2(n) be the unknown sources. with help of two sensors, we observe two

instantaneous linear mixtures y1(n) and y2(n) of the two zero-mean sources x1(n) and

x2(n).

By defining H = (hij) the mixture matrix, we have :y1(n)

y2(n)

 =

 1 h12

h21 1


x1(n)

x2(n)


Where h12 and h21 are unknown. The diagonal of the matrix H has been set to one.
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Our objective is to finding the sources by a linear combination of the signals y1(n) and

y2(n). We define G = (gij) as the separation matrix, we obtain the outputs x̂1(n) and

x̂2(n):

x̂1(n)

x̂2(n)

 =

 1 g12

g21 1


y1(n)

y2(n)


=

 1 g12

g21 1


 1 h12

h21 1


x1(n)

x2(n)


=

k11 k12

k21 k22


x1(n)

x2(n)


If H is regular, that is: 1− h12h21 , 0, the separation is achieved by estimatiing a matrix

G such that GH = PD, where P is a permutation matrix and D a diagonal matrix.

The above form of G leads to the two separation solutions :

g12 = −h12 g21 = −h21

or g12 = −1/h21 g21 = −1/h12

Now, we begin to compute the fourth order cross cumulants. And as explained earlier,

the sources must be zero-mean stationary, non-Gaussian and statistically independent

First, let us denote :

Momkl(y1, y2) = E[yk1(n)yl2(n)] (3.1)

cumkl(y1(n), y2(n)) = cum(yk1(n)yl2(n)) = ckl (3.2)

pi = E[x2
i (n)] (3.3)

γi = E[x4
i (n)] (3.4)

βi = cum(x4
i (n)) = E[(x4

i (n)]− 3[E(x2
i (n)]2 (3.5)

From [14], we’ve got:

cum13(y1(n), y2(n)) =Mom13(y1, y2)− 3Mom20(y1(n), y2(n))Mom11(y1(n), y2(n)) (3.6)
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cum31(y1(n), y2(n)) =Mom31(y1, y2)− 3Mom02(y1(n), y2(n))Mom11(y1(n), y2(n)) (3.7)

cum22(y1(n), y2(n)) =Mom22(y1, y2)−Mom02(y1(n), y2(n))Mom20(y1(n), y2(n))−2Mom2
11(y1(n), y2(n))

(3.8)

We calculate and substitute Eqns [(3.1), (3.2), (3.3) ,(3.4), (3.5)] in Eqns [(3.6) , (3.7),

(3.8)], we find this equations [10] :

c31 = h21β1 + h3
12β2 (3.9)

c13 = h3
21β1 + h12β2 (3.10)

c22 = h2
21β1 + h2

12β2 (3.11)

c40 = β1 + h4
12β2 (3.12)

c04 = h4
21β1 + β2 (3.13)

New separation solution:

We obtain the cross cumulants of the outputs x̂1(n) and x̂2(n) in the same method,

shown in [11].

cum31(x̂1(n), x̂2(n)) = k3
11k21β1 + k3

12k22β2 (3.14)

cum13(x̂1(n), x̂2(n)) = k11k
3
21β1 + k12k

3
22β2 (3.15)

cum22(x̂1(n), x̂2(n)) = k2
11k

2
21β1 + k2

12k
2
22β2 (3.16)

We have:

kii = 1 + hjigij (3.17)

kij = hij + gij (3.18)

We substitute Eqns[(3.17)-(3.18)] in Eqns [(3.14)-(3.15)], we find :

cum(x̂1
3(n), x̂2(n)) = c31 + g21c40 + 3g12[c22 + g21c31] + 3g2

12[c13 + g21c22] + g3
12[c04 + g21c13]

(3.19)

and

cum(x̂1(n), x̂2
3(n)) = c13 + g12c04 + 3g21[c22 + g12c13] + 3g2

21[c31 + g12c22] + g3
21[c40 + g12c31]

(3.20)
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We calculate the second partial derivatives of equations (3.19) and (3.20) and set it

equal to zero :

∂2cum(x̂3
1(n), x̂2(n))

∂2g12
= 6[c13 + g21c22] + 6g12[c04 + g21c13] = 0 (3.21)

∂2cum(x̂1(n), x̂3
2(n))

∂2g12
= 6[c31 + g12c22] + 6g21[c40 + g12c31] = 0 (3.22)

From Eqn (3.22), we find :

g21 = −
c31 + c22g12

c40 + g12c31
(3.23)

We substitute the Eqn (3.23) into Eqn (3.21), we obtain the following second-degree

polynomial equation of the variable g12:

c13c40 − c22c31 + [c40c04 − c2
22]g12 + [c31c04 − c13c22]g2

12 = 0 (3.24)

We replace cij by their estimates, and we calculate the discriminant of this

second-degree polynomial equation ∆ ≥ 0, we get the roots g12a and g12b as follows: g12a = −h12

g12b = −1/h21

3.2 Experiments and results

First experiment :

In this experiment we try to mixing two audio signals and we apply this method to

separate.The mixing matrix in this case is H =

 1 0.7

0.9 1

. we obtain the following visual

result :
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Figure 3.1: Original signals

Figure 3.2: Mixed signals
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Figure 3.3: Estimated original signals

Second experiment :

In this experiment we mix an ECG signal (100.dat from MIT-BIH) of 1000 samples with

a white Gaussian noise. In this case we choose the variance of the noise = 0.5, and the

mixing matrix is H =

 1 10

0.02 1

 .

We obtain the following result :

Figure 3.4: Original signals
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Figure 3.5: Mixed signals

Figure 3.6: Estimated original signals

Third experiment :

In this final experiment, we mix two images with mixing matrix H =

 1 0.7

0.9 1

.and we

obtain the following result :
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Figure 3.7: Original images

Figure 3.8: Mixed images
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Figure 3.9: Estimated original images



Conclusion

During the preparation of this modest work, we have tried in the first part to present

the Blind Source Separation (BSS) problem with mathematical formulation, and the

different techniques of separation concerning the instantaneous linear mixing systems,

then we outline the higher order statistics (HOS) (cumulants and moments of order

greater than two) with their theoretical properties and their effectiveness in the area of

source separation. At the end of this dissertation, we detail an algebraic technique for

separation which is based on the fourth-order cumulants with experiments have been

carried out on different signals using this method.

Finally, we hope to have the ability to explore this vast field of signal processing.
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Résumé
Notre objectif dans ce mémoire est d’englober les différents types de prob-

lèmes concernant la séparation aveugle des sources (SAS) , définir les statistiques

d’ordre supérieures (SOS) comme un outil de base dans les différentes techniques

de séparation, et effectuer des expériences sur des mélanges de signaux utilisant

une méthode de séparation basée sur les (SOS).

Les mots clés : Séparation aveugle des sources (SAS), Analyse en composantes

indépendantes (ACI), Divergence de Kullback, Information mutuelle, Entropie,

Statistiques d’ordre supérieures .

P�l�

�Of�A� Tql`tm�� ��AKm�� ��w�� �lt�� TyW�� w¡ T�AFr�� £@¡ ¨� An�d¡

TyFAF� � �� (� � �) Yl�¯� 	y�rt�� �Ay¶AO�� d§d��¤ (� � �) , C AOml� Ym�±�

Tq§rV ��d�tFA� ��CAJ³� Xyl� Yl� 
CA�� º�r��¤ , Tflt�m�� �Of�� �Aynq� ¨�

. (� � �) Yl� dmt`� �O�

d�Ab� , Tlqtsm�� �A�wkm�� �yl�� ,C AOml� Ym�±� �Of�� : Ty�Atfm�� �Amlk��

. Yl�¯� 	y�rt�� �Ay¶AO�� , Ay�¤rt�¯� , T� Abtm�� �A�wl`m�� , �Ably�

Abstract
Our aim in this dissertation is to cover the different kind of problems con-

cerning blind source separation (BSS), to define higher order statistics (HOS) as

a basic tool in different separation techniques, and to perform experiments on

signal mixtures using a separation method based on (HOS) .

Key-words: Blind source separation (BSS), Independent component analysis

(ICA), Kullback divergence, Mutual Information, Entropy, Higher order statis-

tics .
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