جامعة قاصدي مرباح ورقلة كلية الرياضيات وعلوم المادة رقم الترتيب:... قسم الفيزيــــاء رقم التسلسل:... مذكرة ماستر أكاديمي مجال: علوم المادة شعبة: فيزياء تخصص : فيزياء المواد مقدمة من طرف الطالبتين: بعافو سهيلة، شعبانة إصلاح بعنوان:

دراسة الخواص البنيوية وإلإلكترونية للناقل الفائق MgB₂ باستعمال البرنامج WIEN2k

نوقشت يوم: 2020/10/05 أمام لجنة المناقشة المكونة من:

رئيسا	جامعة قاصدي مرباح ـورقلة	أستاذ محاضر أ	بن طويلة عمر
مناقشا	جامعة قاصدي مرباح ـورقلة	أستاذ محاضر أ	تليلي صالح
مساعدا	جامعة قاصدي مرباح ـورقلة	أستاذ محاضر أ	بلعكروم كريمة
مشرفا	جامعة قاصدي مرباح ـورقلة	أستاذ محاضر ب	بوعزة/ حسين إيمان

الموسم الجامعي: 2019/ 2020

الإهداء

الهي..

لا يطيب الليل إلا بشكرك و لا يطيب الليل إلا بطاعتك الهي لا تطيب اللحظات إلا بذكرك ولا تطيب الآخرة إلا بعفوك

إلى من بلغ الرسالة و أدى الأمانة و نصح الأمة..

إلى نبي الرحمة و نور الدنيا

* محمد عليه الصلاة و السلام* .

إلى** <mark>والداي*</mark> ح*فظهما الله ورعاهما.

إلى**'إخوتي** و**أخواتي** و**أبنائهم** و**جميع أفراد عائلتي** حفظنا الله من كل سوء. إلى أبي الروحي**الأستاذ حمزة سينا** الذي كان

له فضل بعد الله عز وجل في مسيرتي الدراسية في المرحلة الثانوية أدام الله عافيته.

إلى من اخترته رفيقا لدربي وشريكا لحياتي وسندي ** زوجي** حفظه الله.

إلى صديقاتي الغاليات وأخص بالذكر شريكتي في هذا العمل عزيزتي **إصلاح** حفظها الله وبارك فيها وفي من ربّاها.

إلى كل من كان لي العون بعد الله تعالى.

إليكم أهدي هذا العمل

سهيلـــة

الإهداء

الهي..

لا يطيب الليل إلا بشكرك ولا يطيب الليل إلا بطاعتك الهي لا تطيب اللحظات إلا بذكرك و لا تطيب الآخرة إلا بعفوك

> ** الله جل جلاله** إلى من بلغ الرسالة و أدى الأمانة و نصح الأمة..

> > إلى نبي الرحمة و نور العالم

* محمد عليه الصلاة و السلام *

إلى من اقترن اسمهما باسم رب العالمين

أبي و**أمي** المبجلين متعهما الله بالصحة والعافية.

إلى** زوجي** ... رفيق الدرب وسندي في الحياة.

إلى **المولود المنتظر** من اشتاق القلب للقاه ادعو الله أن يبارك لي فيه وأن يجعله ذخرا لي ولوالده ويجعله من الصالحين.

إلى إخوتي ** نوال* * فضيلة* * محمد الساسي* * طلحة* * عبد الرحمان** أدام الله محبتنا وحفظنا من كل سوء.

إلى براعم أسرتنا **أروى* *هاجر*عبد القادر* *وئام* *إبراهيم أيوب* *جنان** حفظهم الله جميعا.

إلى الصديقة الغالية زميلتي في العمل** <mark>سهيلة</mark>** والتي لها فضل كبير علي أسأل الله القدير أن يحفظها من كل شر وأن ينفعها بعلمها و أخلاقها.

إلى كل أساتذتي الكرام و الأفاضل، وخاصة أستاذتي المشرفة التي لم تبخل علينابكل ما تستطيع لمساعدتنا* *بوعزة/حسين إيمان* .*

إلى جميع أحبابي و أصدقائي وكل من كان له كرم علي...

إليكم أهدي هذا العمل

إصــلاح

شکر وتقدیر

الحمد لله الذي وفّقنا في إنجاز هذا العمل وحقّق غايتنا وابلغنا الهدف وكان لنا العون في كل خطوة منه.

الشكر وكل الشكر لله سبحانه وتعالى، وبعد شكره نتقدّم بجزيل الشكر إلى الأستاذة المشرفة الدكتورة " بوعزة/ حسين إيمان " على قبولها الإشراف على هذا البحث و مجهوداتها المبذولة في توجيهنا و إرشادنا و سعة صدرها معنا ومتابعتها لهذا العمل حتى إتمامه، ولها منا خالص التقدير والدعاء

جعل الله لها ذلك في ميزان حسناتها.

ويسُرّنا أن نتقدم بالشكر الجزيل للأستاذة المساعدة الدكتورة " بلعكروم كريمة " على كل ما قدمته لنا وحسـن معاملتها لنا. ولا نفوت بالذكر الأسـاتذة الأفاضل أعضاء لجنة المناقشـة الذين شـرّفونا بقبولهم مناقشـة هذه المذكرة وإفادتنا بتصحيحاتهم.

والشكر موصول أيضا إلى رئيس القسم و إلى جميع أساتذة قسم الفيزياء الذين أثروا رصيدنا العلمي والمعرفي.

و كل الامتنان والعرفان لمن ساعد في هذا العمل و دعمه ولو بدعاء.

جزاكم الله خيرًا ووفَّقكم وسدّد خطاكم جميعًا.

سهيلة و إصلاح

الفهرس

الصفحة		العــــنــــوان		
Ι			2	إهداء بعافو سهيل
II			2	إهداء شعبانة إصلا
III			-	الشكر والتقدير
IV				الفــهـــرس
VII			لجداول	فهرس الأشكال وا
1				المقدمة
	نابعية وشفرة Wien2k وPWSCF.	طريقة الحساب نظرية الكثافة الت	الفصل الأول:	
4				تمهيد
4			معادلة شرودنجر للبلورة.	I.1
5			تقريب لورين – أوبن هايمر.	2 .I
6			تقريب هارتري-فوك.	3 .I
7	.DFT(I	Density Functional Th	نظرية الكثافة التابعية (eory.	4 . I
8		نظرية هوهنبيرج وكوهين	1.4.I	
8	النظرية الأولى.	1.1.4.I		
9	النظرية الثانية.	I.2.1.4		
9		طريقة كوهن- شام(KS).	2.4.I	
11	تقريب الكثافة الكلية LDA	1.2.4.I		
	local- density)			
	.(approximation			
11	تقريب التدرج المعمم GGA له معانية معمد م	1.2.4.I		
	.(generalized gradient			
	approximation)			
12		حل معادلة كوهن- شام.	3.4.I	
14	خطيا مع الكمون الكامل	طريقة الأمواج المستوية المتزايدة	4.4.I	
		.(FP-LAPW)		
16		تطبيقات نظرية DFT.	I.5.4	
16	طريقة كل الإلكترونات(all	1.5.4.I		
	.(electron calculation			
7	.DFT(I	Density Functional Th	نظرية الكثافة التابعية (eory.	4.I

8	نظرية هوهنبيرج وكوهين	I.1.4
8	1.1.4.I النظرية الأولى.	
9	2.1.4.I النظرية الثانية.	
9	(KS).	124
	طريفة توهن- سام(٢٠٥).	1.2.7
11	1.2.4.I تقريب الكثافة الكلية 1.2.4	
	local- density)	
	.(approximation	
11	GGA تقريب التدرج المعمم 2.2.4.I	
	.(generalized	
	gradient	
	approximation)	
12	حل معادلة كوهن- شام.	3.4.I
14	طريقة الأمواج المستوية المتزايدة خطيا مع الكمون الكامل	4.4.I
	.(FP-LAPW)	
16	تطبيقات نظرية DFT.	5.4.I
16	1.5.4.1 طريقة كل الإلكترونات	
	all electron)	
	.(calculation	
16	pseudo) طريقة شبه الكمون (2.5.4.I	
	.(potontiel	
18	.WIEN2k برنامج	I.6.4
18	UIEN2k برامج WIEN2k الفرعية.	
19	wien2k مميزات برنامج 2.6.4.I	
	-	

	ىصل الثاني: عموميات حول النواقل الفائقة والمركب \mathbf{MgB}_2 .	ย่า	
21	تمهيد		
21	النواقل الفائقة.		II .1
21	تصنيف المواد الصلبة.	1.1.II	
21	اكتشاف النواقل الفائقة.	2.1.II	
22	تعريف النواقل الفائقة.	3.1.II	
23	معادلة درجة حرارة الانتقال إلى الناقلية الفائقة.	4.1.II	
24	الخواص الفيزيائية للنواقل الفائقة.	5.1.II	
24	1.5.1.II الخواص الكهربائية.		
25	2.5.1.II الخواص المغناطيسية.		

26		أنواع النواقل الفائقة.	6.1.II	
26	النواقل الفائقة منخفضة الحرارة	1.6.1.II		
	الحرجة (LTC).			
27	النواقل الفائقة عالية الحرارة الحرجة (HTC).	2.6.1.II		
28		نظرية باردين، كروبر وشريفر	7.1.II	
	Bardeer و Schrieffer.	n, Cooper		
29	•.	تطبيقات النواقل فائقة التوصيل	8.1.II	
30	.M.	الموصّل الفائق المركبgB_2		2.II
30		نبذة عن المركب MgB _{2.}	1.2.II	
31		ما هو ال MgB _{2.}	2.2.II	
31	Ι.	البنية البلورية للمركب MgB ₂	II.3.2	
32	فائق MgB _{2.}	الخواص الإلكترونية للموصل ال	4.2.II	
32	DC) للمركب MgB2.	كثافة الحالات الإلكترونية (S	5.2.II	
33		استبدالات المركب MgB ₂ .	6.2.II	
	ب، مناقشة النتائج ومقارنتها.	الفصل الثالث: خطوات الحسار		
35		تمهيد		
35		أهم خطوات الحساب.		I.1JI
35		إنشاء مجلد الحساب.	I <u>I</u> I.1.1	
36		ادخال معلومات البنية والتنفيذ	III.1.2	
39		تميئة الحساب.	I.3.1]I	
40		تحسين طاقة القطع.	I.4.1 I I	
42	ن الأولى.	تحيئة النقاط k في منطقة بريلوا	I.5.1II	
43		دراسة الخواص البنيوية.	6.1.III	
43	تحسين الحجم و حساب ثوابت	1.6.1. I II		
	الشبكة.			
44		دراسة الخواص الإلكترونية.	7.1.III	
44	حساب كثافة الحالات (DOS).	1.7.1.III		
		11, 11, 11, 11, 11, 11, 11, 11, 11, 11,		
45	حساب كثافة الشحنة الإلكترونية.	2.7.1.III		
45 45	- حساب كثافة الشحنة الإلكترونية.	2.7.1.III مناقشة النتائج.		2.III
45 45 45	حساب كثافة الشحنة الإلكترونية.	2.7.1.III مناقشة النتائج. الخصائص البنيوية.	1.2 .III	2.III
45 45 45 46	حساب كثافة الشحنة الإلكترونية.	2.7.1.III مناقشة النتائج. الخصائص البنيوية. كثافة الحالات DOS.	1.2 .III 2.2 .III	2.III
45 45 45 46 46	حساب كثافة الشحنة الإلكترونية. كثافة الحالات الكلية.	2.7.1.III مناقشة النتائج. الخصائص البنيوية. كثافة الحالات DOS. 1.2.1.III	1.2 .III 2.2 .III	2.111
45 45 46 46 47	حساب كثافة الشحنة الإلكترونية. كثافة الحالات الكلية. كثافة الحالات الجزئية.	2.7.1.III مناقشة النتائج. الخصائص البنيوية. كثافة الحالات DOS. 1.2.1.III 2.2.2.III	1.2 .III 2.2 .III	2.111

	3.2 .III	كثافة الشحنة الإلكترونية.	48
الخلاصة			54
قائمة المراجع			56

فهرس الأشكال والجداول

	الأشكال	
الصفحة	محتوى الشكل	رقم الشكل
13	خوارزمية توضح الحلقة التكرارية لحساب وحل معادلة كوهن-شام.	1 -I
14	كمون كرة مافن- تين (M.T).	2 – I
17	أنواع مختلفة من الكمونات الزائفة من أجل الحالات s و p.	3 – I
23	استمرار سريان التيار بدون انقطاع في حلقة من سلك فائق التوصيل .	1 – I I
24	تغيّر المقاومة الكهربائية بدلالة درجة الحرارة للناقل العادي وللناقل الفائق.	2 -JI
25	انعدام مقاومة الزئبق مباشرة بعد وصول درجة الحرارة إلى أقل من K4.2.	3 - I I
25	تأثير مايسنر، رفع قطعة معدن بموصل فائق.	4 - I I
26	طرد الجحال المغناطيسي من داخل النواقل الفائقة.	5 – I I
27	الحقل الحرج في حالة الموصلات الفائقة منخفضة الحرارة الحرجة وكيفية تغيره بدلالة درجة الحرارة.	6 - II
28	الحقل الحرج في حالة الموصلات الفائقة عالية الحرارة الحرجة وكيفية تغيره بدلالة درجة الحرارة.	7 – I I
29	تفاعل الإلكترونات مع الشبكة البلورية مكونة أزواج كوبر.	8 – II
31	البنية البلورية للمركب MgB ₂ (الخلية السداسية).	9 – II
35	ىنافذة.w2web	1 - III
36	نافذة إنشاء ملف البنية.	2 - III
37	نافذة إدخال بيانات ملف البنية للـ MgB ₂ .	3 – IJI
38	البنية البلورية لديبوريد المغنيسيوم MgB ₂ .	4 - III
39	نافذة تميئة الحساب initialize calculation.	5 – I I I
40	نافذة حلقة SCF.	6 – I I I
41	تغير الطاقة الكلية للمركب MgB ₂ بدلالة طاقة القطع.	7 - III
42	تغير الطاقة الكلية للمركب MgB ₂ بدلالة عدد النقاط k في منطقة بريلوان الأولى عند	8 – I JI
	.k=300	
43	تغيّر الطّاقة الكلّية للمركّب MgB ₂ بدلالة الحجم.	9 – I I I
44	تغيّر الطاقة الكلية للمركب MgB ₂ بدلالة النسبة c/a.	10 – III
45	نافذة إدخال المجالات واختيار الحالة.	11 – IJI
46	مخطط كثافة الالات الكلية للMgB2.	12 – I I I
47	مخطط الكثافة الكلية للـ Mg ، MgB و B.	13 – I I I

48	مخطط كثافة الحالة الجزئية للمدارات s و p والكثافة الكلية لكل من ذرة Mg و B.	14 – I I I
48	مخطط مقارنة كثافة الحالة الكلية لكل من Mg و B وMgB2.	15 – I I I
49	توزيع كثافة الشحنة للمركبMgB ₂ .	16 – I I I
49	كثافة الشحنة الإلكترونية على المستوى (111) للMgB ₂ باستعمال الرسام	17 –I JI
	.XcreysDen	

	الجداول	
الصفحة	محتوى الجدول	رقم الجدول
33	يوضح قيم كثافة الحالات عند مستوى فيرمي لكل من MgB ₂ وبعض استبدالاته.	1-II
38	يبين معطيات إنشاء ملف البنية.	1-III
41	.k=300 المتحصل عليها عند كل قيمة لـ Rmt $_{ m min}$ *K $_{ m max}$ عند $E_{ m tot}$	2-III
42	${ m Rmt}_{ m min} { m *K}_{ m max}$ =7 قيم ${ m E}_{ m tot}$ المتحصل عليها عند کل قيمة ل	3-111

مقدمة

مقدمة:

العالم اليوم يشهد تطور اكبير افي مجال الالكترونيات والتي يعتمد عملها أساسا على مواد ذات خصائص فيزيائية وكيميائية محددة توسعت الدر اسات و البحوث المكثفة للتعرف على الخواص البنيوية المغناطيسية والكهربائية إضافة إلى العديد من الخواص لهذه المواد، لما لها من أهمية كبيرة في معرفة الاستخدام الصحيح و الأمثل لها. تعتبر المواد الصلبة من بين هذه المواد المذكورة آنفا وعلى وجه الخصوص المواد الفائقة التوصيل التي تتميز بانعدام مقاومتها للكهرباء عند درجة حرارة معينة.

فنظرا لعدم إمكانية تحضير بلورات مثالية تكون خالية تماما من العيوب البلورية، كان الاعتقاد السائد هو استحالة انعدام المقاومة الكهربائية والتي تنشأ إثر حيود البلورات الحقيقية عن سلوك الشبكة البلورية المثالية للمواد، والتي تساعد على تشتت الالكترونات أثناء عملية التوصيل الكهربائي مما يؤدي إلى فقد جزء كبير من الطاقة الكهربائية على شكل حرارة [4]. لكن بعد عام 1911 الذي لوحظ فيه سلوك التوصيل الفائق من قبل Heike KamerlinghOnnes وُجد أن المقاومة الكهربائية تؤول إلى الصفر أوم بجوار K4. ومن ثم أُطلق على هذه الظاهرة بالموصلية الفائقة.

بعد هذا الاكتشاف الهام اجتهد العلماء والباحثين من أجل فهم هذه الظاهرة أكثر وكيفية استغلالها في التطبيقات الصناعية والتكنولوجية، وكان الاهتمام الأكبر هو البحث عن مواد تكون ناقليتها صفر عند درجة حرارة الغرفة 25°م. فمن هذه المواد يمكن تصنيع أسلاك وأشرطة فائقة التوصيل موفرة للكهرباء كما أنها صالحة للاستخدام في التطبيقات الطبية حيث تُضفي على الأجهزة الطبية تحسينات جيدة. أحد أكثر المواد الملائمة ذات الناقلية الفائقة عالية الحرارة الحرجة التي يُمكن استعمالها لهذه الأغراض هو مركب ديبوريد المغنيسيوم وهو الذي تمت دراسته في هذا البحث.

اهتم ميكانيك الكم بدراسة خصائص بعض المواد و ذلك باستخدام معادلة شرودنجر وحلولها لعدد محدد من الذرات و الجزيئات، لكن في الأنظمة المعقّدة وبالاستعانة بالحاسوب تُستخدم بعض التقريبات التي تعتمد على نظريات محددة من أجل الحصول على معلومات دقيقة. من بين النظريات نجد دالية الكثافة التابعية (Density Functional Theory (DFT)، التي يُستعان بها لإيجاد الخصائص الفيزيائية و كذلك الكيميائية للأنظمة من خلال معرفة البنية الإلكترونية لها. و لقد اعتمدنا هذه النظرية حساب الخصائص البنيوية و الالكترونية للمركب MgB₂ و ذلك تحت برنامج المحاكة المحاكة

يتألف بحثنا هذا من ثلاث فصول:

الفصل الأول قدمنا فيه طريقة الحساب نظرية DFT، أي الجانب النظري المتعلق بهذه الدراسة وتطرقنا فيه إلى أهم المقادير الفيزيائية التي تعتمد عليها هذه النظرية و كذلك أهم التقريبات التي تستعملها.

أما الفصل الثاني قسمناه إلى جزأين، حيث في الجزء الأول قدّمنا فيه تعريف للموصلات الفائقة ولمحة عامة عن هذا الصنف من المواد بما في ذلك اكتشافها، أنواعها، بعض خصائصها و تطبيقاتها. وفي الجزء الثاني ركزنا على الناقل الفائق MgB₂ من حيث بنيته البلورية، الخواص والكثافة الالكترونية له وبعض استبدالاته.

وفي الفصل الثالث قمنا بفصله إلى جز أين، في الأول قدّمنا أهم خطوات الحساب مفصّلة نوعا ما أما في الجزء الثاني تمّ مناقشة النتائج المتحصل عليها من خلال هذه الدراسة.

تمهيد:

في عام 1927 توصّل عالم الفيزياء النّمساوي "اريون شرودنجر" إلى معادلة شكّلت أساس علم ميكانيكا الكم الذي يدرس الظواهر في المستوى الذري ودون الذري أي التي لا ترى بالمجهر، تتناول هذه المعادلة شكل الأمواج المحتمل أنها تحدد حركة الجسيمات الصغيرة، وأثبت شرودنجر صحة معادلته عندما طبّقها على ذرة الهيدروجين ليحدد كثيرا من خصائصه بدقّة متناهية ولذا أصبحت المعادلة تستخدم بكثرة في الفيزياء الذرية والنّووية وكذلك في فيزياء الحالة الصلبة أو كما تدعى الجوامد[1].

1.I. معادلة شرودنجر للبلورة:

إن أساس در اسة أنظمة البلور ات وحساب الطاقة الكلية لها هو حل معادلة شرودنجر [2]، للجسم الصلب حيث تعطى على الشكل:

$$\widehat{H}\Psi(r) = \widehat{E}\Psi(r_1, r_2 \dots, r_N)(1 - I)$$

حيث:

تمثل الطاقة الكلية لنظام يتكوّن من N جسيم. و H تمثل دالة هاملتون. أما $(r_1, r_2 \dots, r_N)$ دالة E الموجة والتي تتعلق بمواقع الجسيمات (إلكترونات وأنوية).

دالة هاملتون الكلي للجملة تكون مؤلفة من الطاقة الحركية للجسيمات وطاقة التفاعل فيما بينها، بحيث يمثل الحدّان الأول والثاني الطاقة الحركية، أما بقية الحدود فتمثل الطاقة الكامنة الناتجة عن: تجاذب أيّون- إلكترون، تنافر إلكترون- إلكترون وتنافر أيّون- أيّون على الترتيب[3].

عند غياب الحقل الخارجي تكتب دالة هاملتون بالشّكل الآتي:

$$H = T_{e} + T_{N} + V_{e-N} + V_{e-e} + V_{N-N}$$
 (2 - I)

مع:

$$T_{e} = -\sum_{i}^{n} \frac{\hbar^{2}}{2m} \nabla_{i}^{2}(3 - I)$$
 الطاقة الحركية للإلكترونات
 $T_{e} = -\sum_{\alpha}^{N} \frac{\hbar^{2}}{2m} \nabla_{\alpha}^{2}(4 - I)$ الطاقة الحركية للأنوية
 $T_{N} = -\sum_{\alpha}^{N} \frac{\hbar^{2}}{2m} \nabla_{\alpha}^{2}(4 - I)$ الطاقة التفاعل إلكترون-نواة
 $V_{e-N} = -\sum_{i,\alpha}^{N} \frac{Ze^{2}}{|r_{i} - R_{\alpha}|} (5 - I)$

لطاقة التفاعل إلكترون-إلكترون
$$V_{e-e} = \frac{1}{2} \sum_{i,j \neq i} \frac{e^2}{|r_i - r_j|} (6 - I)$$

 $V_{N-N} = \frac{1}{2} \sum_{\alpha,\beta \neq \alpha} \frac{Z_{\alpha} Z_{\beta}}{|R_{\alpha} - R_{\beta}|} (7 - I)$
أي:

$$\hat{H} = -\sum_{i}^{n} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{\alpha}^{N} \frac{\hbar^{2}}{2M} \nabla_{\alpha}^{2} - \sum_{i,\alpha} \frac{Ze^{2}}{|r_{i} - R_{\alpha}|} + \frac{1}{2} \sum_{i,j \neq i} \frac{e^{2}}{|r_{i} - r_{j}|} + \frac{1}{2} \sum_{\alpha,\beta \neq \alpha} \frac{Z_{\alpha}Z_{\beta}}{|R_{\alpha} - R_{\beta}|} \quad (8 - I)$$

N عدد الأنوية، n عدد الإلكترونات، Zو R شحنة الأنوية وموقعها. M كتلة الأنوية، m كتلة الإلكترونات، r و a هما موضع وشحنة الإلكترون على الترتيب المعاملات i و j خاصة بالإلكترونات، α و خاصة بالأنوية، Z شحنة الأنوية، $(R_{\alpha} - R_{\beta})$ المسافة بين نواتين βو α، $(r_i - R_{\alpha})$ المسافة بين الإلكترون والنواقα و $(r_i - r_j)$ المسافة بين الإلكترونين i و i.

حسب العلاقة السابقة، فإن در اسة نظام الإلكترونات في تفاعل مع بعضها البعض وتفاعل مع الأيونات لحساب خصائص الحالة الأساسية يكون صعبا جدا لنظام مكون منN ذرة [4]لذلك فإنه لابد من استعمال بعض التقريبات والتي منها:

2.I. تقريب لورين-أوبن هايمر:

نظرا هذين العالمين لحركة الإلكترونات السريعة جدا بالنسبة لحركة الأنوية. يهمل هذا التقريب الطاقة الحركية للأنوية على اعتبار أنها ساكنة أمام الإلكترونات، بسبب الفارق الكبير بين كتل الإلكترونات وكتل الأنوية. فكتلة الإلكترون أقل بكثير من كتلة النواة [5] بينما سرعة الإلكترون أكبر بكثير من سرعة النواة، أي أن الطاقة الحركية لها معدومة 0=TN، أما حد تفاعل الأيونات فيما بينها فيعتبر ثابتا N-N[6]. إذن يصبح الهاملتون الكلي للجملة على الشكل الآتي:

$$H = T_e + V_{e-e} + V_{e-N}$$
 (9 - I)
i.e.

$$\widehat{H} = -\sum_{i}^{n} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{i,\alpha} \frac{Ze^{2}}{|r_{i} - R_{\alpha}|} + \frac{1}{2} \sum_{i,j \neq i} \frac{e^{2}}{|r_{i} - r_{j}|} \quad (10 - I)$$

ومنه تكتب معادلة شرودنجر على الشكل:

$$(T_e + V_{e-e} + V_{e-N}) \Psi = E\Psi$$
 (11 - I)

لكن بالرغم من هذا التقريب إلا أن حل المعادلة بالنسبة لجسم صلب لا يزال صعبا رياضيا [4]. لذلك نستعين بحسابات تقريبية أخرى كتقريب هارتري و هارتري فوك.

3.I. تقريب هارتري فوك:

افترض أن كل إلكترونيتحرك بشكل مستقل في حقل ناشئ من الأنوية و الإلكترونات الأخرى وتم صياغة الدالة الموجة كجداء دوال تعبر عن حالة إلكترون مستقل، هذا التقريب ساعد في تحويل مشكلة دراسة N جسيم إلى دراسة إلكترون مستقل حيث صيغت دالة هاملتون كمجموع لدوال هاملتون جزئية يصف كل منها حالة إلكترون مستقل كالآتى:

 $\mathbf{H} = \sum_{i} H_i \quad (12 - \mathbf{I})$

حيث:

$$H_{i} = -\frac{\hbar^{2}}{2m}\nabla_{i} + U_{i}(r_{i}) + V_{i}(r_{i})$$
(13 - I)

الطاقة الكامنة للإلكترونات داخل حقل الأنوية:

$$U_{i}(r_{i}) = -\sum_{k} \frac{Z_{k}e^{2}}{(r_{i}-R_{k})}$$
 (14 - I)

مع Z_k:موضع النواة k.

الكمون الفعّال لهارتري:

$$V_{i}(r_{i}) = \frac{1}{2} \sum_{i} \frac{e}{|r_{i} - r_{j}|}$$
 (15 - I)

والكمون الفعال:

$$V_{eff} = V_{H}(r_{i}) + V_{ext}(r_{i}) \qquad (16 - I)$$

وتعطى معادلة شرودنجر كالأتي:

$$\left[-\frac{1}{2}\frac{\hbar^2}{m}\Delta_i + V_{eff}(r_i)\right]\Psi_i(r) = E_i\Psi_i(r) \qquad (17 - I)$$

حيث:

 $\Psi(\mathbf{r}_{1}.\mathbf{r}_{2}...,\mathbf{r}_{n}) = \Psi_{1}(\mathbf{r}_{1}).\Psi_{2}(\mathbf{r}_{2})...,\Psi_{n}(\mathbf{r}_{n})$ (18 - I)

كما تعطى الطاقة بـ:

$$\mathbf{E} = \sum_{i} E_i \tag{19 - I}$$

وبالتالي تصبح معادلة شرودنجر للإلكترونات كالآتي:

$$H\Psi_{i}(r, R) = E\Psi_{i}(r, R) \qquad (20 - I)$$

لكن اكتشف فـوك أن هذه الدالة لا تنفي إمكانية وجود إلكترونين بنفس الإحداثيات أي أنها تخالف مبدأ الاستبعاد لباولي. تم إدخال العزم اللّفيspin لحل هذه المشكلة وأصبحت معادلة شرودنجر بالشكل:

$$\Psi(\mathbf{r}_{1}.\mathbf{r}_{2}...,\mathbf{r}_{n}) = \frac{1}{\sqrt{N!}} \begin{pmatrix} \Psi_{1}(r_{1})\Psi_{2}(r_{1})...,\Psi_{n}(r_{1})\\ \Psi_{1}(r_{n})\Psi_{2}(r_{n})...,\Psi_{n}(r_{n}) \end{pmatrix} \quad (21 - \mathrm{I})$$

من بين الصعوبات التي تصادف حساب البنية لعصابات الطاقة هي تحديد الكمون داخل البلورة. تقريب هارتري- فوك لايستعمل تكاملات بل يستعمل تقر يبات ولم يصل إلى نتائج دقيقة بسبب هاته التقريبات المتتالية التي تؤدي إلى الابتعاد عن النتائج الحقيقية وبالتالي التوصل إلى نتائج تقريبية فقط وغير دقيقة مما استدعى استعمال طريقة حديثة وأكثر دقة وفعالية تعتمد على نظرية الكثافة التابعية والتي تتمثل في طريقة (). ab-initio

4.I. نظرية الكثافة التابعية (DFT (Density Functional Theory:

هي إحدى نظريات ميكانيكا الكم، تستعمل لتحديد خواص الجسم الصلب. الفكرة الرئيسية لهذه النظرية هي استبدال الدوال الموجية بدالة الكثافة الإلكترونية التي يمكن قياسها عمليا بهدف تقليل عدد المتغيرات التي تدخل في الحساب [5]، أي إعادة صياغة للمسألة الكمومية وتحويلها من مسألة لنظام متعدد الجسيمات، إلى مسألة أحادية الجسيمة وبالتالي يمكن التعبير عن طاقة نظام إلكتروني بواسطة الكثافة الإلكترونية له. ظهرت النظرية لأول مرة في عمل توماس فيرمي عام 1928، حيث اعتبر النظام أنه غاز متجانس بطاقة حركية مكافئة للكثافة الوظيفية [7]، لكن الظهور الحقيقي لها كنظرية أساسية كان من طرف بيير

هو هنبيرج و والتر كو هين في عام 1964.

1.4. I. نظرية هو هنبيرج وكو هين:

قام العالمان هو هنبيرج وكو هين بإعادة صياغة الدالة الوظيفية للكثافة المقترحة سابقا من قبل "لويلين توماس" و "انريكو فيرمي"[8] عام 1928 ووضعا نظرية دقيقة لنظام متعدد الجسيمات حيث تتلخص النظرية على نظريتين أساسيتين.

1.1.4.I. النظرية الأولى:

يعتبر فيها النظام كغاز الكتروني يخضع لجهد خارجي V_{ext}(r) (كمون الأنوية) [9]، وتعرف الطاقة الكلية E لهذا النظام المكون من N الكترون متفاعل في الحالة الأساسية على أنها دالة وحيدة للكثافة الإلكترونية ρ(r) [8].

أى لأن الطاقة الكلية للنظام تكون بالشكل التالى:

 $\mathbf{E} = \mathbf{E}(\mathbf{\rho}(\mathbf{r})) \tag{22 - I}$

إذن يمكن كتابة الطاقة كذلك كالآتى:

$$E[\rho] = T[\rho] + V_{e-e} + V_{ext} \qquad (23 - I)$$

ρ(r) هي كثافة الإلكترونات (عدد الإلكترونات) في نقطة r. ويتم الحصول عددها من خلال التكامل على كامل الفضاء:

$$\int \rho(r) dr = n \qquad (24 - I)$$

و:

$$V_{\text{ext}} = \int \rho(r) V_r \, dr \qquad (25 - I)$$

إذن يمكن كتابة عبارة الطاقة على الشكل التالي:

$$E[\rho] = F[\rho] + \int V_{ext}(r)\rho(r)d^{3}r$$
 (26 - I)

مع: [p] دالة شاملة للكثافة الإلكترونية:

$$F[\rho] = T[\rho] + V_{e-e}[\rho] \qquad (27 - I)$$

2.1.4.I. النظرية الثانية:

أظهر العالمان في هذه النظرية أن الكثافة الإلكترونية للحالة الأساسية توافق القيمة الدنيا للطاقة و بالتالي تكون هي الإلكترونية لحالة الاستقرار [10] وكل الخصائص الأخرى تكون تابعة لهذه الكثافة.

$$E(\rho_{o}) = \min E(\rho) \qquad (28 - I)$$

بالرغم من أهمية هذه النظرية، إلا أنها لا تتوفر على إجراءات حساب الطاقة E_o انطلاقا من p_o، ولا كيفية تحديدها دون تحديد دالة الموجة أولا [4]. لذا قام العالمان كوهن وشام بوضع طريقة تقريبية مساعدة.

2.4.I. طريقة كوهن- شام(KS):

عبارة الطاقة الدنيا للنظام هي دالة وحيدة في الكثافة الإلكترونية، ولهذه الأخيرة قيمة واحدة في حالة الاستقرار، ألا و هي القيمة الدنيا. إذن يبقى فقط كيفية حساب E_o.

قام العالمان كوهن وشام بوضع طريقة عملية لإجراء هذا الحساب بطريقة تقريبية، وتتم باستبدال نظام الجسيمات المتفاعلة الخاضعة لكمون خارجي(V(r)بنظام مكافئ وهميذو جسيمات مستقلة في الكمون الفعّال V_{eff}، حيث يكون لكلا النظامين نفس الكثافة الإلكترونية [11]. ويتم كتابة معادلة الطاقة بالشكل التالي:

$$E_{KS}[\rho] = T_{o}[\rho] + E_{H}[\rho] + E_{xc}[\rho] + \int V_{ext}(r)\rho(r)d^{3}r \quad (29 - I)$$

حيث:

الطاقة الحركية للغاز الإلكتروني في حالة الاستقرار. $T_o[
ho]$

د هارتري للإلكترونات و هو عبارة عن مقدار تفاعل الإلكترونات فيما بينها (تفاعل كولوم). $E_{\rm H}[
ho]$

[ρ] طاقة التبادل والارتباط، وتعطي الفارق بين الطاقة الحركية للنظام في تفاعل كولوم، والطاقة الحركية للنظام المستقل والخطأ الناتج عن اعتبار نظام الإلكترونات في حالة مستقلة [11] ، وتكتب بالشكل:

$$E_{xc}[\rho] = (T[\rho] - T_o[\rho]) + (V_{e-e}[\rho] - V_H[\rho])$$
(30 - I)

كمون خارجي يؤثر على النظام الإلكتروني. $V_{\rm ext}$

معادلة شرودنجر التي يتعين حلها في نموذج كوهن- شام تكون بالشكل التالي:

$$\left[\frac{1}{2}\nabla^2 + V_{eff}(r)\right]\Psi_i(r) = E_i\Psi_i \qquad (31 - I)$$

ويعرّف الكمون الفعال بـ:

$$V_{eff}(r) = V_{H}[\rho(r)] + V_{ext}[\rho(r)] + V_{xc}[\rho(r)]$$
(32 - I)

كمون التبادل والارتباط:

$$V_{xc}[\rho(r)] = \frac{\delta E_{xc}[\rho(r)]}{\delta \rho(r)}$$
(33 - I)

كمون هارتري:

$$V_{\rm H}[\rho(r)] = \frac{1}{2} \int \frac{\rho(r')}{|r-r'|} dr'$$
(34 - I)

وتكتب الكثافة الالكترونية كالتالى:

$$\rho(r)_{KS} = \sum_{i=1}^{N} |\Psi(r)|^2$$
 (35 - I)

إذن فالعلاقة التي تربط بين $\Psi_i(r)$ و(r)في حالة جزيئ واحد هي كالتالي:

$$\rho(r) = \sum_{i=1}^{N} \Psi_{i}^{*}(r) \Psi_{i}(r)$$
(36 - I)

لحل المعادلة (I - 36) يجب التعبير عن E_{xc} طاقة التبادل والارتباطبشكل تحليلي. تعرف E_{xc} بالشكل التالي:

$$E_{xc}[\rho] = F[\rho] - T_{o}[\rho] - V_{H}[\rho]$$
(37 - I)

هذه الطاقة ليس لها قيمة محددة مما يتطلب إجراء تقريب لهذا المقدار . من أهم التقريبات التي وضعت، تقريبLDAر GGA :

1.2.4.I. تقريب الكثافة الكلية (Local-Density Approximation). تقريب الكثافة

وهو التقريب الأبسط والأسرع والأكثر استعمال لتحديد طاقة التبادل والارتباط E_{xc}، وهذا التقريب يمكن من تحويل نظرية DFT من N جسيم إلى جسيم واحد[12]، وتجرى الدراسة على نظام متجانس أو شبه متجانس (غاز إلكتروني منتظم أي ρ إما ثابتة أو تتغير ببطء شديد)، و إهمال كل التأثيرات التي تجعل النظام غير متجانس، يُعبَّر عن طاقة التبادل والارتباط E_{xc}بالشكل التالي:

$$E_{xc}^{LDA}[\rho] = \int \rho(r) E_{xc}[\rho] \qquad (38 - I)$$

هذا التقريب يعتبر E_{xc} طاقة كلية وهي مقسمة إلى جز أين بحيث:

$$E_{xc}(\rho) = E_x(\rho) + E_c(\rho)$$
 (39 - I)

E_c طاقة الارتباط وE_x طاقة التبادل.

هذا التقريب يستعمل فقط في حالة غاز الكتروني منتظم، إلا أنه في الأنظمة الحقيقية، الكثافة الإلكترونية لا تكون منتظمة محليا (في منطقة معينة) لذلك يستعمل تقريب آخر يسمَّى التَّدرج المعمم.

هذا المقدار يأخذ بعين الاعتبار تدرّج الكثافة الإلكترونية، حيث يتم كتابة طاقة التبادل والارتباط بدلالته وبدلالة f_{xc} التي تتعلق بالكثافة الإلكترونية[13].

$$E_{xc}^{GGA}[\rho] = \int \rho(r) f_{xc}[\rho(r), \nabla \rho(r)] \qquad (40 - I)$$

وُضع هذا التقريب لتحسين دقّة النتيجة المتحصل عليها بواسطة تقريب LDA.

بالرّغم من أن تقريب GGA هو تصحيح لـ LDA، إلا أن هذا لا يعني أنها تعطي نتائج أحسن، فهذا يعتمد بالدرجة الأولى على نوع النظام والخواص المدروسة [4].

3.4.I. حل معادلة كو هن- شام:

ترتكز معظم حسابات عصابات الطاقة علىDFT حسب استخدامها للكثافة، الكمون ومدارات كوهن- شام من بين الطرق المعتمدة في هذا الحساب نجد طريقة الموجة المستوية المتزايدة خطيا LAPW و التي تعتمد على مدارات كوهن- شام[14]. و تعطي معادلة الموجة الأساسية بالشكل التالي:

> $\psi_i(r) = \Sigma C_{ilpha} arphi(r)$ (41-I) حيث: معامل النشر للدالة الموجية و arphi(lpha)المعادلة الأساسية.

حل معادلة كوهن شوم يتطلب تعريف المعامل _{ia} لكل مدار مشغول بحيث تكون الطاقة الكلية في قيمة دنيا، وتطبق على النقاط عالية التناظر في منطقة بريلوان الأولى لتسهيل الحساب و بحكم وجود تنافر بين الإلكترونات تستخدم حلقة تكرارية ولأجل تحقيق التقريب المطلوب أدخلت الكثافة الأولية للشحنة p_{in} في الحساب.

حلول معادلة كو هن شوم تعطى بـ:

 $(H-\varepsilon_i S)Ci=0 \qquad (42-I)$

حيثH : هملتونيان كو هن شوم و S مصفوفة التغطية.

الكثافة الكلية التي يتحصل عليها من جمع كل المدارات المشغولة هي التي تستخدم في الحساب, و في حالة عدم الحصول على التقريب المطلوب (المناسب) نقوم بالمزج ين الكثافتين ρin وρout وρout وρin

 $ho_{in}^{i+1} = (1+lpha)
ho_{in}^i + lpha
ho_{out}^i$ (43 - I) حيث : ho_{out} هي كثافة الشحنة الجديدة مؤلفة بالأشعة الذاتية الخاصة لمعادلة الحل (42 - I)

I درجة التكرار و αثابت الشبكة و نواصل الحلقة التكرارية على هذا النحو حتى نحصل على التقارب المطلوب[14].خوارزمية توضح الحلقة التكرارية لحساب و حل معادلة كوهن- شام موضح في الشكل (I) - 1).

4.4.I. طريقة الأمواج المستوية المتزايدة خطيا مع الكمون الكامل (FP-LAPW):

هذه الطريقة تم عرضها من طرف أندرسون (Andersen) من أجل تحسين طريقة الموجة المستوية المتزايدة (APW) لسليتر (Slater) [14]. ولكتابة دالة الموجة للإلكترونات أخذ سليتر شكل دالة

الإلكترونات الخاصة بكمون (خلية النحل) أو ما يسمى بكمون مافن - تين Muffin-Tin (M.T) ، والذي يقسم الفضاء المحيط بالذرات إلى منطقتين [14] كما في الشكل(I - 2).

الشكل (I - I): خوارزمية توضح الحلقة التكرارية لحساب و حل معادلة كوهن- شام.

4.4.I. طريقة الأمواج المستوية المتزايدة خطيا مع الكمون الكامل (FP-LAPW):

هذه الطريقة تم عرضها من طرف أندرسون (Andersen) من أجل تحسين طريقة الموجة المستوية المتزايدة (APW) لسليتر (Slater)[14].

ولكتابة دالة الموجة للإلكترونات أخذ سليتر شكل دالة الإلكترونات الخاصة بكمون(خلية النحل)أو ما يسمى بكمون مافن- تينMuffin-tin (M.T)، والذي يقسم الفضاء المحيط بالذرات إلى منطقتين[14] كما في الشكل (I - 2).

الشكل(I - 2):كمون كرة مافن- تين (M.T).

المنطقة الأولى داخل كرة (M.T) تشمل كل من الأنوية والإلكترونات القلبية شديدة الارتباط بها. المنطقة الثانية المنطقة الإقحامية تُحيط بالكرات وتشمل الإلكترونات للمدارات الخارجية ضعيفة الارتباط بالأنوية.

حيث: Rα يمثل نصف قطر الكرة (M.T)

Ra يُرمز له كذلك بـ R_{MT} (نصف قطر مافن- تين) يُحدد هذا الأخير الكثافة الإلكترونية لكل ذرة، حيث في الجانب الحسابي كلما كان R_{MT} صغيرا كلما كانت النتائج أكثر دقّة.

$$\emptyset(r.E) = \begin{cases} \frac{1}{\sqrt{\Omega}} \sum_{G} C_{G} e^{i(G+K)r} & r > R\alpha \\ \sum_{Im} A_{Im} U_{I}(r.E) Y_{Im}(r.E) & r < R\alpha \end{cases}$$
(44 - I)

- حجم الخلية الوحدة، $Y_{lm}(\mathbf{r})$ الدالة التوافقية الكروية، C_G معاملات النشر Ω

وتكون حلول معادلة شرودنجر كالآتي: 1- حلول شعاعيه داخل الكرة (M.T). 2- موجة مستوية في المنطقة الإقحامية.

و (Ul(r هي حلول منتظمة لمعادلة شرودنجر للجزء الشعاعي الذي يكتب:

$$\left\{\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r) - E_l\right\} r U_l^{(1)}(r) = 0$$
 (45 - I)

حيث V(r) الكمون الكروي و El الطاقة الخطية.

ولضمان استمرار الدالة (p(r) على سطح الكرة (M.T) تنشر المعاملات Alm بدلالة المعاملات CGالخاصة بالأمواج المستوية في المنطقة الإقحامية. كل ما سبق يخص طريقة الأمواج المستوية المتزايدة خطيا (LAPW).

أما بالنسبة لطريقة FP-LAPW فالدالة الأساسية داخل كرة (M.T) تكون على شكل ترتيبات خطية للدالة الشعاعية *Ul(r)Ylm(r)* وتمتاز باشتقاق Ul(r)Ylm(r) بالنسبة للطاقة[14].

$$\begin{split} & (46 - I) \\ & (46 - I) \\ & \left\{ \begin{array}{l} \frac{1}{\sqrt{\Omega}} \sum_{G} C_{G} e^{i(G + K)r} & r > R\alpha \\ \sum_{lm} \left\{ A_{lm} U_{l}(r) B_{lm} U_{l}^{(1)}(r) \right\} Y_{lm}(r) & r < R\alpha \end{split} \end{split}$$

الترتيبات الخطية تنتج أحسن دالة شعاعيه APWs معناه أن الدالة U_l يمكن أن تنشر على شكل الدالة المشتقة والطاقة E_L بالشكل التالى:

 $U_{l}(E,r) = U_{l}(E,r) + (E - E_{l})U_{l}(E,r) + 0 (E - E_{l})^{2}$ (47- I)

حيث $(E-El)^2$ تمثل الخطأ الرباعي للطاقة.

5.4.I. تطبيقات نظرية DFT:

تطبيقات الحسابات النظرية تمكننا من المعرفة الدقيقة لبنية الجسم المدروس، بعيدا عن استخدام الوسائل التجريبية أو الخوض في تجارب معقدة [15]، بحيث تستند هذه الحسابات على ميكانيكا الكم، وذلك بالنظر في الطبيعة الكمية للإلكترون، فهذا أمر ضروري لوصف ديناميكية ومستويات الطاقة لديها [16].

ويتم تحديد الطاقة والبنية الإلكترونية للنظام بإيجاد الدّوال الموجية Ψ_i لكل جسيمات النظام، ومن هذا المبدأ نميّز طريقتين لدراسة هذه الأنظمة[17].

1.5.4.I. طريقة كل الإلكترونات (All electron calculation):

سُمّيت بهذا الاسم لأنه تم اعتبار أن كل الإلكترونات في النظام المدروس في تفاعل مع أنوية النظام. وبما أنها تأخذ بعين الاعتبار جميع الإلكترونات فهي أقل سرعة نوعا ما وبالتالي تأخذ مدّة زمنية معتبرة لإجراء الحساب.

2.5.4.I. طريقة شبه الكمون (Pseudo potentiel):

وتسمّى كذلك طريقة الكمون الزّائف، تستعمل وصفا كمّيا للتفاعلات الإلكترونية وذلك في إطار نظرية الكثافة التابعية، وتعتبر هذه الأخيرة إلكترونات التكافؤ فقط هي المعنية بالتفاعل مع الذرات. تعتمد أساسا على الاقتران الناتج بين الأمواج المستوية والكمون الزّائف عبر الطريقة التحويلية لفوري، كما أن هذه الطريقة جد دقيقة وسريعة إلى حد ما (باختصار الإلكترونات الباطنية) [18].

وهي مصممة من أجل تبسيط الحسابات بحيث تقوم بتصغير النظام (أنوية +إلكترونات كلية) إلى نظام متعلق بإلكترونات التكافؤ وذلك في كمون زائف مكوّن من كمون الأنوية وكمون الإلكترونات الباطنية (شديدة الارتباط)، ومع هذا فإن الحساب يتم تحديده فقط للإلكترونات المختارة. هذا التقريب يبين أن المدارات الباطنية تمتلك طاقة منخفضة متموقعة قريبا من النواة، لا تشارك في أي روابط كيميائية وقليلة الحساسية مع الوسط، كما أنه يصعب تمثيلها في قاعدة بسبب امتلاكها لاهتزازات قوية حول النواة. تأثير الإلكترونات الباطنية استبدل بكمون زائف فعال وهو ما يماثل تغيير كمون خارجي بكمون ضعيف جدا[19].

هناك أنواع من الكمونات تصنف على حسب طريقة توليدها إلى مجموعتين وأكثرها شهرة واستخدام هو كمون انحفاظ التنظيم (المولد بطريقة حفظ المعيار). قام "فاندربلت" بإدخال بعض التحسينات العددية عليه، حيث توصّل إلى شكله الحالي المعروف باسم الكمون الناعم ذي الذبذبات الخفيفة (ultra soft). هذه الكمونات ليست إلا مقاربات عددية [3].

هناك بعض الخصائص التي يجب أن تتحقق لإنشاء كمون زائف نذكر منها:

- الخاصية التجميعية، أي أن يكون الكمون الزائف الكلي لعدة ذرات هو مجموع الكمون الزائف لذرات فردية.
- الخاصية التحويلية، أي يجب أن يكون شبه الكمون تحويلي، بمعنى أنه في الأوساط الكيميائية المختلفة يمكن استعمال نفس الكمون الزائف.
 - ا يجب أن ينتج من التغير ات المنخفضة للكمون كما في حالة الكمون الباطني الحقيقي.
- الكمون الزائف عليه أن يكون متعلق بالعزم الزاوي (كمون زائف غير محلي) أي أنه من الضروري استعمال كمونات زائفة مختلفة من أجل الحالات (s,p,d)، كما هو موضح في الشكل (I - 3).

الشكل(I - 3): أنواع مختلفة من الكمونات الزائفة من أجل الحالات s وp [19].

:WIEN2k برنامج 6.4.I

هو عبارة عن برنامج حاسوبي يُستعمل لإجراء الحسابات تحت إطار نظرية DFT باعتماد طريقة كل الإلكترونات، وباستعمال إحدى التقريبات المذكورة سابقا ك GGA مثلا.

هذا البرنامج أُستُّعين به في إنجاز هذا العمل.

صُمّم هذا البرنامج من قبل P.Blaha وزملائه: D.Krsnicka ، J.Luitz وحديثا أصبح من الممكن استخدامه تحت بجامعة فينا عام 1990[20]. يعمل تحت نظام لينكس (Linux).وحديثا أصبح من الممكن استخدامه تحت نظام ويندوز (Windows). يعتمد مبدأ عمل البرنامج على طريقة الموجة المستوية المتزايدة خطّيا (LAPW) التي عرضت من طرف "أندرسون"، تتم المعالجة بهذه الطريقة وفق مجموعة من البرامج المستقلّة لحساب الخواص البنيوية والإلكترونية، والعديد من الخصائص الأخرى للمادة الصلبة[4].من بين هذه البرامج نجد:

I.6.4 .I برامج WIEN2k الفرعية:

NN: يستعمل هذا البرنامج ملف البنية Case struct ليعطي المسافة بين أقرب جوار ويتحقق من أنها لا تتجاوز أنصاف الأقطار الذرية الموافقة.

LSTART: وهو برنامج يسمح بإدخال الكثافة الإلكترونية للذرات ويميز كيفية تأثير الاختلاف في المدارات الذرية على حساب بنية الحزم الإلكترونية.

SYMMETRY: يحسب كل عمليات التناظر للمجموعة الفراغية، ويحدد المجموعة النقطية لمواقع الذرات. يعرف كذلك بمصفوفة الدوران الكلي.

KGEN: يسمح بإدخال النقاط k في منطقة بريلوان الأولى (Z.B) ، كما يحدد عدد العناصر داخل منطقة بريلوان الأولى.

DSTART: يُصدر كثافة أولية لحلقة SCF من خلال تراكب الكثافة الذرية التي تعرف داخله ويقوم بتهيئة الحساب وإنشاء حلقة تكون منسقة ذاتيا ل SCF ثم يبدأ الحساب مع التكرار إلى غاية الوصول للتقريب المطلوب . يتم استدعاؤها بواسطةrun_lapw وهي منسقة في الخطوات التالية:

LAPWO: يحسب الكمون الكلي انطلاقا من الكثافة.

LAPW1: يحسب عصابات التكافؤ، القيّم الذاتية والمتجهات الذاتية لحلول معادلة شرودنجر.

LAPW2: يستخدم ملف Cas.rector ليحسب طاقة فيرمى، توسعات الكثافة الإلكترونية للتكافز.

LCORE: يحسب الحالات شديدة الارتباط للكمون في الجزيء الكروي.

MIXER: برنامج فرعي يستخدم الكثافة الإلكترونية القلبية، والحالات النصف قلبية وحالات التكافؤ لإنتاج الكثافة الكلية الجديدة [20].

لبرنامج WIEN2k مجموعة من الميزات سنذكر ها فيما يلي:

:WIEN2k مميزات برنامج 2.6.4.1

- يستلزم إدخال بعض المعطيات الخاصة بالبنية مثل: إحداثيات الذرات،معاملات الشبكة البلورية،
 المجموعة الفراغية ونوع الذرات.
- يمكن إرفاقه ببرنامجXcreysDen الذي يعطي صورة ثلاثية الأبعاد لبنية المادة والكثافة الإلكترونية لها.
- يقوم برسم بعض المنحنيات تلقائيا مع إرفاقها بالبيانات اللاّزمة واستنتاج المعاملات الفيزيائية بفضل قاعدة البيانات التي تتضمن معلومات حول عناصر الجدول الدوري.
- يقوم بحساب عدة خصائص للمادة مثل: عصابات الطاقة، كثافة الحالات، مساحات فيرمي، الكثافة الإلكترونية، معاملات البنية للأشعة X، الطاقة الكلية، طيف إصدار وامتصاص أشعةX...الخ[21].

نظرية DFT في تطور متناسب مع تطور قوة الأجهزة الحاسوبية، وسرعة تطبيق العمليات الحسابية. وكانت نتائجها متقاربة في كثير من حالات دراسة الجسم الصلب. وعلى العموم فالنتائج النظرية قريبة على نحو مرض مع البيانات التجريبية وبتكاليف منخفضة نسبيا ولا تستهلك الجهد ولا الوقت [4].

مع كل هذا إلا أن استخدام نظرية DFT به بعض الصعوبات التي تؤثر على نتائجها، ولهذا يتم تطوير طرق جديدة للنظرية من أجل تجاوز هذه المشكلة. وذلك بإجراء تعديلات على النظرية [22] أو من خلال إدراج شروط في برامج الحساب [23،24،25،26]، وهو موضوع البحث الحالي فيما يخص هذا المجال.

الفصل الثاني: عموميات حول النواقل الفائقة والمركب MgB₂

تمهيد:

نتطرق في هذا الفصل في الجزء الأول إلى دراسة شاملة عن النواقل الفائقة بشكل عام، من خلال التعرف على هذه المواد، اكتشافها، أنواعها، خواصها الكهربائية والمغناطيسية و تطبيقاتها المختلفة [4].

وفي الجزء الثاني ركزنا على الموصّل الفائق المتمثل في المركب MgB₂، الذي سوف تجرى عليه الحسابات لاحقا في هذا البحث،و على بنيته البلورية وخواصه الإلكترونية.

1.II. النواقل الفائقة:

1.1.11 تصنيف المواد الصلبة:

تصنف المواد الصلبة حسب ناقليتها الكهربائية عادة إلى ثلاث أصناف: مواد عازلة، مواد ناقلة و مواد نصف ناقلة، لكن بمعنى أدق جميع المواد ناقلة للكهرباء تحت ظروف مناسبة من درجة الحرارة لأن المقاومة متعلقة بها، فبعض المواد الناقلة لها مقاومة ضئيلة لمرور التيار الكهربائي كمعدن الذهب (Au) مثلا، حيث كلما ازدادت درجة حرارته زادت الاهتزازات داخل الشبكة البلورية للذهب وبالتالي يصعب على الإلكترونات التدفق خلالها، إذن فناقلية الذهب تقل في درجات الحرارة المرتفعة والعكس إذا ما بُرّد المعدن.

لكن ما إن يُبرَّد المعدن إلى درجات حرارة منخفضة جدا (قريبة من الصفر كلفن)، نحصل على صنف جديد من المواد والتي تدعى بالنواقل الفائقة أو المواد فائقة التوصيل.

2.1.II. اكتشاف النواقل الفائقة:

تمت ملاحظة الموصّلية الفائقة من قبل الفيزيائي الهولندي Trans الموصيل الكهربائي فقط عند درجة حيث قبل عام 1911 كان الاعتقاد السائد أن جميع المواد تصبح فائقة التوصيل الكهربائي فقط عند درجة حرارة صفر مطلق أي -273 درجة مئوية ولكن في تلك السنة لوحظ أن الزئبق النقي تصبح مقاومته مساوية للصفر عند درجة حرارة 4 مطلق أي -269° م ويمكن الحصول على هذه الدرجات المنخفضة بتسييل غاز الهليوم.

لقد كان هذا الاكتشاف مثيرا لاهتمام الكثير من العلماء لإيجاد تفسير علمي لهذه الظاهرة وخاصة بعد أن وجد أن هناك مواد أخرى لها نفس الخاصية عندما تُبرّد، وهذا ما كان مخالفا للاعتقاد السائد آنذاك ولكن تسييل غاز الهليوم مكلّف جدا من الناحية المادية، ولذلك كان البحث في هذا المجال محدوداً جداً إلى أن تم التوصل في عام 1986 إلى مركب فائق التوصيل للكهرباء، رمزه الكيميائي هو YBa₂Cu₃O₇ عند درجة حرارة -180°م، ويمكن الحصول على هذه الدرجة بتسييل غار النيتروجين و هذا غير مكلّف و من هنا بدأت البحوث و التجارب العلمية تنشط لمحاولة فهم هذه الظاهرة وكيفية استغلالها في تطبيقات صناعية وتكنولوجية، و كذلك في البحث عن مواد تكون مقاومتها صفر عند درجات حرارة الغرفة أي 25°م[27].

بعد اكتشاف الموصّلية الفائقة، اختبر العلماء جميع عناصر الجدول الدوري لمعرفة العناصر التي يمكن أن تصبح موصلات فائقة. فوجدوا أن غالبية المعادن الانتقالية يمكن أن تكون نواقل فائقة التوصيل[28].

3.1.II. تعريف النواقل الفائقة:

تُعرَّف على أنها مواد عند درجة حرارة أقل من قيمة معينة تُسمّى بدرجة الحرارة الحرجة (T_c) تعرَّف على أنها مواد عند درجة حرارة أقل من قيمة معينة تُسمّى بدرجة الحرارة الحرجة (T_c) تصبح مقاومتها للكهرباء مساوية للصفر، ولذلك سُمّيت بموصِّلات فائقة التوصيل. انعدام مقاومة الكهرباء لهذه الأخيرة يكسبها خاصية كهربائية مميزة [29].

كما تتميز هذه المواد بخواص مغناطيسية، تتعلق بقيمة محددة تُسمّى المجال الحرج (H_C) والذي سوف نتعرف عليه لاحقا[30].

فإذا ما وُجد تيار كهربائي في حلقة متصلة من المادة المذكورة فإنه سوف يسري داخل الحلقة بدون وجود مصدر للجهد الكهربائي [4].

هذه الظاهرة تحدث في بعض المواد عند تبريدها إلى درجة حرارة منخفضة جدا تقترب من الصفر مطلق(°0K)، باستعمال الهليوم السائل مثلا كما ذُكِر سابقا، وهذا موضّح في التجربة الممثلة في الشكل(II - 1) حيث استمر سريان التيار بدون انقطاع في حلقة من سلك فائق التوصيل لمدة عامين ونصف دون أي نقص في شدته، ودون تغذية الحلقة بأي مصدر كهربائي خارجي [31].

الخاصيتان السابقتان للظاهرة جعلتا منها مواد ذات أهمية كبيرة [32]. في الفقرة ما بعد الموالية سوف نستعرض كلا منهما.

الشكل (II - II): استمرار سريان التيار بدون انقطاع في حلقة من سلك فائق التوصيل [31].

4.1.11. معادلة درجة حرارة الانتقال إلى الناقلية الفائقة:

هذه المعادلة تُسمّى أيضا معادلة BCS(نظرية Bardeen, Cooper و Schrieffer) كالتالي:

 $K_{\beta}^{*}T_{c}=1.13^{*}\hbar^{*}\omega_{D}^{*}exp[-1/(V^{*}N(E_{f}))]. (1 - I)$

حيث:

K_β: ثابت بولتزمان.

T_c: درجة الحرارة الحرجة.

h: ثابت بلانك مقسوما على (1×2)، (h=h/(2*J).

ω_D: تواتر ديباي و هو التواتر المميز للاهتزازات الشبكية الذي يعمل على اقتران الإلكترونات في حالة الناقل الفائق.

V: قوة الاقتران بين الإلكترونات و الفونونات [33].

N(Ef): كثافة الحالات عند سوية فيرمي.

من الممكن تحقيق قيمة عالية ل T_c في حال وجود إقترانات كبيرة طالما أن البلورة لا تتشوه أو تفقد استقرار ها.

5.1.II. الخواص الفيزيائية للنواقل الفائقة:

1.5.1.II. الخواص الكهربائية:

الخاصية الأساسية لمادة فائقة التوصيل هي المقاومة المعدومة [28]، والتي هي عبارة عن خاصية كهربائية. فمن المعروف أن مقاومة التيار الكهربائي في جميع المواد العادية هي سبب ضياع وفقدان الكثير من الطاقة الكهربائية، وتتسبب في عطل الكثير من الأجهزة الكهربائية وارتفاع درجة حرارتها [29]، نظرا لزيادة حركة الإلكترونات على المستوى المجهري داخلها. أما المواد فائقة الناقلية فمقاومتها للتيار الكهربائي تصل إلى الصفر. وهذا ما هو موضّح في الشكل (II - 2) الذي يظهر تغير المقاومة الكهربائية للموصل العادي وموصل فائق بدلالة درجة الحرارة [29] من والشكل (II - 3) الذي يبين انعدام مقاومة الزئبق مباشرة بعد وصول درجة الحرارة إلى أقل من 4.23 [28].

أُسْتُخْلِص بعدها أن حالة الناقلية الفائقة هي حالة جديدة للمادة، بمعنى أدق هي حالة لها ترتيب معين جديد لنظام الإلكترونات داخل بلورة المادة. ومنه يمكن القول أن اجتياز درجة الحرارة الحرجة يتوافق معه تحول في الطور[28].

الشكل (II - 2): تغير المقاومة الكهربائية بدلالة درجة الحرارة، على اليمين للناقل العادي ولناقل فائق على اليسار [4].

الشكل (II - 3): انعدام مقاومة الزئبق مباشرة بعد وصول درجة الحرارة إلى أقل من 4.2 [28].

2.5.1.II. الخواص المغناطيسية:

في عام (1933)، أظهر مايسنر (Meissner) أن موصلا فائقا مغمورا في مجال مغناطيسي يطرد التدفق المغناطيسي من داخل حجمه و هو ما يُسمَّى بالديامغناطيسية المثالية [28] ويحدث هذا عند أقل من قيمة محدَّدة تُسمَّى المجال الحرج (H_C) [30]، والظاهرة ككل تدعى: تأثير مايسنر، أي أن هذه الأخيرة تحدث في الموصّلات الفائقة فقط . كما هو موضّح في الشكل (II - 4).

 $T > T_c$

الشكل (II - 4): تأثير مايسنر، رفع قطعة معدن بموصل فائق [28].

 $T < T_c$

الشكل (II - 5): طرد المجال المغناطيسي من داخل النواقل الفائقة [30].

6.1.II. أنواع النواقل الفائقة:

1.6.1.II.النواقل الفائقة منخفضة الحرارة الحرجة (LTC):

تُسمَّى كذلك المواد فائقة التوصيل التقليدية، تتميز بانخفاض درجة حرارتها الحرجة . و تدعى كذلك بموصلات فائقة من النوع الأول [29]. وتكون هذه الأخيرة عادة مواد نقية مثل القصدير (Sn)، الذهب (Au) والألمنيوم (AI). في هذا النوع المجال المغناطيسي يخترق الموصّل الفائق جزئيا على طول يدعى بطول لندن [28].

من خصائص الموصّلات الفائقة من النوع الأول LTC أنه عندما تتجاوز قيمة المجال المسلط H المجال المسلط المحال المسلط المجال المحال المعال (II - H أي (H > H_C) يتم تدمير الموصّلية الفائقة تماما، كما هو موضّح في الشكل (II - 6 - أ). عندها يدخل المجال المغناطيسي الخارجي إلى قلب الموصّل وتصبح قيمة العزم المغناطيسي صفرًا، فلا يعود الموصّل بعدها إلى التوصيل الفائق مرة أخرى إلا بعد تسخينه فوق درجة تحوله ثم تبريده ثانية [4].

- ب -

_ ĺ _

الشكل (II - 6): الحقل الحرج في حالة الموصّلات الفائقة منخفضة الحرارة الحرجة LTC وكيفية تغيره بدلالة درجة الحرارة[4،28].

HTC).النواقل الفائقة عالية الحرارة الحرجة (HTC):

تُسمَّى أيضاً بموصّلات فائقة من النوع الثاني. وهي مختلفة تماما عن النوع الأول، تمتاز بارتفاع درجة حرارتها الحرجة [4]. مثل المركبات $YBa_2Cu_3O_7$ و $YBa_2Cu_3O_7$ و S5:34 [4]. [4] و MgB_2 لديها مجالين مغناطيسيين حرجين H_{C1} و H_{C2} حيث H_{C2} حيث H_{C1} ، القيمة الأولى هي أقل MgB2. لديها مجالين مغناطيسيين حرجين ا H_{C1} و H_{C2} حيث H_{C2} مي أقل المسلط B_1 و أولى هي أقل المراب المعلم والمالي و القيمة الثانية هي أعلى قيمة نرمز لها B_1 هو المحال المسلط المعالي و ولم تتجاوز B_1 سيكون الاختراق جزئي للموصّل ولن يتحول إلى الحالة الاعتيادية، بل سيصل إلى حالة جديدة تُسمَّى بالحالة المختلطة (Vortex State).

أما إذا تجاوزت قيمة المجال المسلط القيمة ${\bf B}_2$ فسيتحول الموصّل إلى الحالة الاعتيادية، لأن المجال سيخترقه بصورة كلية [36]، كما هو موضّح في الشكل (II – 7 – أ).

أي يمكن أن نميز ثلاث (مجالات):

المنطقة 1 (H<H_{C1}) : سلوك الموصلات الفائقة يكون مشابه لسلوك النوع الأول.

المنطقة 2 $(H_{C_1} < H < H_{C2})$: الحالة المختلطة.

المنطقة3 (H>H_{C2}): تعود المادة إلى طبيعتها مرة أخرى [28].

الشكل (II - 7):الحقل الحرج في حالة الموصلات الفائقة عالية الحرارة الحرجة HTC وكيفية تغيره بدكل (II - 7): الحقل الحرج في حالة درجة الحرارة [4،28].

Bardeen, Cooper و Bardeen, Cooper و BCS) Schrieffer): نظرية باردين، كوبر وشريفر

هذه النظرية متعلقة بظاهرة الناقلية الفائقة. توجد في الحقيقة نظرية أخرى متعلقة بهذه الظاهرة إلا أننا ركزنا على هذه النظرية بالذات لأن أصل الموصلية الفائقة للمركب المدروس لدينا هو الفونونات الخاضعة لهذه النظرية حيث تفسر ارتفاع الحرارة الحرجة للمركب.

حدث تقدم ملحوظ في علم الناقلية الفائقة. بفضل الفيزيائيين الأمريكان Bardeen, Cooper و Schrieffer [37]. حيث أرسى هؤلاء العلماء الثلاثة نظرية (BCS) للموصلية الفائقة للمواد عند درجات الحرارة القريبة من الصفر مطلق حيث وجدت النظرية حلا يُفسّر ميكانيكية التوصيل الكهربائي في المواد الفائقة، والتي تُبنى على فكرة أزواج كوبر (نسبة إلى العالم كوبر)[4].

في معدن لا يتصف بالموصلية الفائقة تتبعثر الإلكترونات بسبب العيوب البلورية، حيث تكون سبب في المقاومة الكهربائية. وحسب هذه النظرية تحدث الموصلية الفائقة حين تُصبح الإلكترونات كأنها جسم واحد متّصل، يستطيع الحركة بشكل جماعي دون أن يتبعثر[38].

كل ما سبق يكون نتيجة تفاعل الإلكترون مع الشبكة البلورية، والتي تعمل على جعل أحد الإلكترونات كما لو كان محاطا بحاجز من الشحنات الموجبة. بحيث تكون أكبر بكثير من الشحنات السالبة التي يمتلكها الإلكترون الثاني، وبذلك تطغى قوى التجاذب على قوى التنافر ممّا يؤدي إلى تقارب الإلكترونين من بعضهما، مكونين بذلك أزواج كوبر كما هو مبيّن في الشكل (II - 8) [38،39].

الشكل (II - 8): تفاعل الإلكترونات مع الشبكة البلورية مكونة أزواج كوبر [38].

8.1.II. تطبيقات النواقل فائقة التوصيل:

الخواص الكهربائية للموصلات الفائقة جعلت لها تطبيقات عديدة في مجال الإلكترونيات، لما تمتاز به من قدرة عالية في فتح وإغلاق الدارة الكهربائية لتمرير التيار ومنعه، وهذا يشكل العنصر الأساسي في بنية الكمبيوتر، والبحث جاري الآن لإدخال هذه المواد في صناعة السوبر كمبيوتر، وإذا ما تُؤصّل إلى ذلك فإن هذا سوف يؤدي إلى تطور كبير في مجال الكمبيوتر. كما أن اكتشاف مواد فائقة التوصيل للكهرباء عند درجات حرارة مرتفعة نسبيا سوف يجعلها تدخل في تركيب العديد من الأجهزة [28].

من بين تطبيقات النواقل فائقة التوصيل هي الأسلاك فائقة التوصيل [28]. حيث يمكن الحصول على وسيلة غير مكلّفة لنقل التيار الكهربائي، لأن التكاليف المادية لنقل التيار عبر أسلاك النحاس مرتفعة نظرا للفقد الكبير في الطاقة على شكل حرارة متبددة نتيجة مقاومة السلك النحاسي، كذلك إذا ما قارنّا قيمة التيار الذي يمكن نقله عبر السلك النحاسي حيث تبلغ شدته 100 أمبير لكل سنتيمتر مربع بينما في السلك المصنوع من مركب ال 40%.

تُستخدم كذلك المواد فائقة التوصيل في تصميم المغناطيس الفائق، بحيث يتم تبريد المغناطيس الفائق في الهليوم السائل حيث تكون المقاومة الكهربائية للملفات مساوية للصفر، مما يجعل الطاقة المفقودة معدومة. ومن هنا فأن مصدر تيار منخفض يكون مناسبا لمرور تيار مرتفع، بشرط المحافظة على درجة حرارة الهليوم. وبالتالي فإنه يمكن الحصول على مجالات مغناطيسية تفوق المغناطيس المصنوع من الموصلات بعشرات المرات [41].

أما في مجال الطب فيمكن استعمال الموصلات فائقة التوصيل في التصوير بالرنين المغناطيسي [28]. فقد تم صنع أجهزة ذات حساسية عالية جدا للمجالات المغناطيسية منخفضة الشدة، وتُستخدم الآن كبديل للمواد المشعة المُستخدمة في تشخيص الأمراض التي قد تصيب الدماغ. حيث يتم الكشف عن التغير في المجال المغناطيسي المنبعث من الدماغ حيث مقدار شدته صغير جدا، لكن تلك الأجهزة قادرة على قياسه.

أيضا يمكن أن تُستخدم في البحث عن المعادن الدفينة في باطن الأرض وعن مصادر المياه والنفط لأنَّها تُحدث تغيراً طفيفاً في المجال المغناطيسي لأرض وهذا التغيُّر يمكن التقاطه بواسطة هذه الأجهزة [42].

وهناك أيضا تطبيقات على مجال أوسع، ففي اليابان، تم تصميم قطار يعمل على قضبان مصنوعة من مواد فائقة التوصيل، وعندما تُبرّد هذه القضبان إلى درجة الحرارة المطلوبة فإن القطار بكامله يرتفع عن سطح القضبان نتيجة التنافر المغناطيسي ويصبح وكأنه يسير على الهواء وهذا يمنع الاحتكاك ممّا يقلل من استهلاك الوقود [28].

MgB_2 : الموصل الفائق المركب2.II

1.2.II. نبذة عن المركب MgB₂: نبذة عن

آخر الاكتشافات في الناقلية الفائقة مع ارتفاع الحرارة الحرجة أبدت نشاطا كبيرا في الدراسات التجريبية وكذا النظرية [43]، فلطالما كان Nb_3Ge هو الموصّل الفائق صاحب أعلى درجة حرارة حرارة T_c من بين الموصّلات البين المعدنية الفائقة الأخرى. ثم وُجِد كذلك المركب YPd_2B_2C الذي له نفس T_c للمركب السابق [44].

إلا أن البنية البلورية المعقّدة بالإضافة إلى تعدد العناصر بالمواد والمركبات يعيق دراسة وفهم الموصّلية الفائقة عالية الحرارة الحرجة مجهريا، وبالتالي فقد يسهل ذلك بدراسة خواص مركب بسيط كمركب ال MgB_2 ، الذي لا يملك فقط T_c عالية بل وأيضا بنية بلورية بسيطة مع إلكترونات طبقتين فرعيتين فقط s و p التي تشارك في عملية التوصيل الفائق ويمكن التعامل معها نظريا بسهولة. كما أن متوسط تردد الفونون الخاضع لنظرية BCS كبير جدا لل MgB_2 مقارنة مع باقي الموصلات الفائقة البين معدنية [43]. علاوة على ذلك فإن تكلفته المادية منخفضة وهذا ما جعل الباحثين يلتفتون إليه دون غيره من المواد.

2.2.II. ما هو ال MgB₂:

هو مركب بين معدني (intermetalic) [43]، يتكون من عنصرين خفيفين هما: البورون (B) و المغنيسيوم (Mg)، يُسمّى: ثنائي بوريد المغنيسيوم أو ديبوريد المغنيسيوم (Magnesium). (diboride).

يكتسب الناقلية الفائقة عند درجة الحرارة 39 كلفن أي (°234C-). درجة حرارته الحرجة بالتقريب 40 درجة مطلق (T_c ~40) [45]، ينتمي هذا المركب إلى النوع الثاني من الموصلات الفائقة HTC.

3.2.II البنية البلورية للمركب MgB₂ :

 $c = 3.522 \ e$ و a = 3.084 Å (النظرية)، A = 3.084 Å e و أبعاد شبكته (النظرية)، A = 3.084 Å و أبعاد شبكته (simple hexagonal) بطبقات متراصة لل Mg بالتناوب مع Å. ينتمي إلى بنية بلورية سداسية بسيطة (simple hexagonal) بطبقات متراصة لل Mg بالتناوب مع طبقات ال B كبنية الغرافيت كما في الشكل (II – 9 – 1) ، أي ذرات البور B تكون في زوايا (رؤوس) السداسي وكل ذرة من B لها ثلاث ذرات من البورون جوار أقرب في كل سطح الشكل (II – 9 – 1). ذرات ال Mg تتموقع في مركز السداسي المشكل من ذرات البور أقرب في المنتصف بين طبقتي البور

الشكل (II - 9): البنية البلورية للمركب MgB₂ (الخلية السداسية)[46، 45].

4.2.II. الخواص الإلكترونية للموصل الفائق MgB2:

وُجِد من بعض الدراسات، أن أيّونات ال Mg تمنح إلكترونات لحزمة النقل، لكن المدارات الذرية لها تلعب دورا صغيرا في عملية النقل، فطبقات البور(B) هي التي تحدد الخواص الكهربائية لهذا المركب [47].

فمن خلال دراسة مرتكزة على نظرية الكثافة التابعية لل MgB₂ ومن خلال بنيات عصابات الطاقة لهذا الأخير لوحِظ أن المدارات الفرعية p للبور تمتد ما بين 6.0eV- إلى غاية مستوى فيرمي. وهي التي تُساهم في عملية النقل [46]، وهذا ما يجعل ثنائي بوريد المغنيسيوم ذو ناقلية عالية للكهرباء.

5.2.II. كثافة الحالات الإلكترونية (DOS) للمركب MgB2:

الاختصار DOS هو الحروف الأولى من الجملة Density of states أي كثافة الحالات.

غالبا ما يُعتقد أن إلكترونات الطبقة الفرعية للمركبات بين معدنية تلعب دورا مهما في النقل الفائق. لذلك فإن البحث التجريبي حول الموصلات الفائقة الجديدة ركز إلى حد كبير على مركبات المعادن الانتقالية. و هذا بسبب أن مركبات المعادن الانتقالية عادة ما تمتلك كثافة حالات (DOS) عند سوية فيرمي أكبر من مركبات المجموعة الرئيسية (s p). الموصلات الفائقة BCS (التي تعتمد على نظرية BCS) هي أيضا تمتلك كثافة حالات كبيرة عادة عند مستوى فيرمي M(E_f) مثل 24] مثل MgB.

في منحنى كثافة الحالات بدلالة الطاقة لل MgB₂، قيمة(N(E_f صغيرة بالمقارنة بالموصلات الفائقة لمركبات المعادن الانتقالية وذلك لأنه معدن له (sp) فقط [44].

الجدول التالي يوضح قيم كثافة الحالات عند مستوى فيرمي لبعض المركبات.

الجدول (I - I): يوضح قيم كثافة الحالات عند مستوى فيرمي لكل من MgB₂ وبعض استبدالاته [43].

كثافة الحالات عند مستوى فيرمي	المركب
N(E _f) بالوحدة الأمريكية N(E _f)	
9.98	MgB ₂
6.309	BeB ₂
10.837	CaB ₂
4.732	SrB ₂
4.27	TiB ₂

أغلب المدارات التي تُساهم في كثافة الحالات عند مستوى فيرمي في الديبوريدات هي المدارات الفرعية p للبورون [43].

6.2.II. استبدالات المركب MgB₂:

المركب MgB₂ به ثلاث ذرات، يمكن تغيير إحدى الذرات بذرات من عنصر آخر من أجل هدف معين يعزز خاصية النقل الفائق ك T_c مرتفعة مثلا، وهذا ما يُسمّى بالاستبدال، ويُسمّى المركب المتحصل عليه مُستبدّل للمركب الأول. لل: MgB₂ عدة استبدالات سوف نستعرض بعضها فيما يلي.

بُذِلت عدّة محاولات لتعزيز T_c عن طريق الاستبدال بهذه العناصر مثل: A، Be ، Al، C، الذرة ال:Mg. واستبدال ذرة ال B بـ: C[43]، لكن لم يتم إحراز أي تقدم عملي حتى الآن. علاوة على ذلك فإن موقع استبدال وMg و B في البنية الالكترونية لل MgB2 مدروس نظريا [49]. إذن من المهم البحث عن مركبات ببنية إلكترونية مشابهة لبنية 2Mg. فمعرفة البنية الالكترونية، كثافة الحالات البحث عن مركبات ببنية إلكترونية مشابهة لبنية 2Mg. فمعرفة البنية الالكترونية، كثافة الحالات المحث عن مركبات ببنية الكترونية مشابهة لبنية وMgB. فمعرفة البنية الالكترونية، كثافة الحالات المحث عن مركبات ببنية إلكترونية مشابهة لبنية وMgB. فمعرفة البنية الالكترونية، كثافة الحالات الكترونية، كتافة الحالات الكترونية، كثافة الحالات الكترونية عن مركبات ببنية إلكترونية مشابهة لبنية وعلى المرتبطة كل هذا مهم لتقييم ميكانيزم وطبيعة التوصيل الفائق. في بحث عن الموصلية الفائقة بدرجة حرارة حرجة عالية للديبوريدات، وُجِد أن BB2 هو المرشح الأول بسبب ذرة البريليوم (Be) الخفيفة التي قد تؤدي إلى تواتر فونوني اكبر وبالتالي حرارة المرشح الأول بسبب ذرة البريليوم (Be) الخفيفة التي قد تؤدي إلى تواتر فونوني اكبر وبالتالي حرارة المرجة (T_c) أعلى. و إذا كانت نسبة الإلكترون للذرة مهمة للتوصيل الفائق في هذا الصنف، فإنه يجب المرشح الأول بسبب ذرة البريليوم (Be) الخفيفة التي قد تؤدي إلى تواتر فونوني اكبر وبالتالي حرارة المرشح الأول بسبب ذرة البريليوم (Be) الخفيفة التي قد تؤدي إلى تواتر فونوني اكبر وبالتالي حرارة المرشح الأول بسبب ذرة البريليوم (Be) الخفيفة التي قد تؤدي إلى تواتر فونوني اكبر وبالتالي حرارة المرشح الأول بسبب ذرة البريليوم (Be) الخفيفة التي قد تؤدي إلى تواتر فونوني اكبر وبالتالي حرارة المرشح الأول بسبب ذرة البريليوم (Be) الخفيفة التي قد تؤدي الى تواتر فونوني اكبر وبالة وعال ألى تواتر فونوني اكبر وبالتالي حرارة المرشح الأول بسبب ذرة البريوم (Be) الخفيفة التي قد تؤدي إلى مواتر في هذا الصنف، فإنه يجب الأخذ بعين الاعتبار الاستبدالات وBe و وBe و وقاع وقال موسبل المرة مومة الوليو في موليوني والي في موليو وال واليوس واللائم وليو والي في موليو والي في موليو والي في موليو والي موليو والي في موليو والي في موليو والي واليو في موليو والي في موليو والي والي واليو والي في موليو والي وليو والي في

الفصل الثالث: خطوات الحساب، نتائج الدراسة والمناقشة

تمهيد:

إن طرق المحاكاة والحسابات النظرية تُتيح لنا التنبؤ بالبنية البلورية والخواص الإلكترونية للأجسام الصلبة بشكل عام. طريقة شبه الكمون (Pseudopotentiel) هي طريقة توفر فرصة استعمال تلك الحسابات بعيدا عن استعمال طريقة كل الإلكترونات (All electron) التي تتطلب الكثير من الوقت [4].

في هذا الفصل أنجزنا دراسة بنيوية وإلكترونية للمركب MgB₂ باستعمال المحاكاة بواسطة شفرة WIEN2k وباستعمال طريقة كل الإلكترونات نظرا لأن حجم ذرات المركب المدروس لدينا صغيرة وبالتالي لا يأخذ منا الكثير من الوقت. المركب المدروس ذو بنية سداسية (hexagonal) كما ذكرنا سابقا لكن الدراسة تمت على وحدة خلية أي على وحدة خلية أولية وهي ذات بنية Irigonal بها ذرة مغنيسيوم (Mg) وذرتين بورون(B). حيث أن البنية السداسية هي عبارة عن تجمع 3 خلايا ذات بنية Trigonal.

1.III.أهم خطوات الحساب:

تُشير در اسات متاحة سابقة إلى أن كل من التقريبين (GGA) و (LDA) أستخدما وأعطيا نتائج معقولة، بل جيدة في بعض الأحيان في وصف الخصائص البنيوية والإلكترونية للأنظمة البلورية في هذه الدراسة وخلال حساباتنا ببرنامج WIEN2k، مقدار الترابط والتبادل المعتمد هو التقريب (GGA) [4].

1.1.III. إنشاء مجلد الحساب:

بعد استدعاء نافذة w2web التي تظهر كما في الشكل (I - III).

elect stored session	on:	Create new ses	sion:
	show only selection	Session_name	Create
192		edit hosts	

الشكل (III - III): نافذة w2web.

نكتب اسم الملف مكان session name ثم ننقر على التعليمة create، نُسمّي الملف MgB₂، ثم ندخل للملف لبداية العمل وذلك بالتعليمة select، تظهر لنا النافذة الشكل (III - 2).

الشكل ([]] - 2): نافذة إنشاء ملف البنية.

2.1.III. ادخال معلومات البنية والتنفيذ:

من أجل رؤية بنية المركب MgB₂ والتأكد من عدم تداخل البنية أو تباعدها نقوم بإدخال المعلومات حول البنية المدروسة وذلك من خلال التعليمة StructGenTM التي تظهر في الأعلى على اليمين.

بعدها نعين عدد الذرات 2، و نقوم بادخال معطيات الجدول (III –1) بعد أن تظهر نافذة إدخال البيانات كما في الشكل (III - 3).

IEN	Session: [<u>MgB2]</u> /home/souhila/WIEN2k
24	StructGen™
Execution >> 1	You have to click "Save Structure" for changes to take effect!
[StructGen™]	Save Structure
[run SCF]	
[<u>single prog_]</u> [<u>optimize(V.c/a)]</u> [<u>mini. positions]</u>	Title: MgB2
[<u>Utils.>></u>]	Lattice:
[Tasks >>]	Spacegroup: 191_P6/mmm_
[Files and]	183_P6mm 184_P6cc
[struct file(s)]	185_P63cm
[input files]	186_P63mc
[SCF files]	187_P-6m2 Spacegroups from 189_P-6c2 Billipao Cryst Server 1
[Session Mgmt. >>]	189 P-62m
[change session]	190_P-62c
[change info]	191_P6/mmm
[Configuration]	Splitting of equivalent positions not available.
Heerenuide	To split you must select a lattice type
[html-Version]	Lattice parameters in Å
[pdt-Version]	
	a= 3.08300001895 b= 3.08300001895 c= 3.52400025544
	α= 90.000000 β= 90.000000 Y= 120.000000
	Inequivalent Atoms: 2
	Atom 1: Mg Z= 12.000 RMT= 2.2900 [remove atom.]
	Pos 1: x= 0.00000000 y= 0.00000000 z= 0.00000000 < edit only this position!
	Atom 2: B Z= 5.000 RMT= 1.5700 [remove atom.]
	Pos 1: x= 0.33333333 y= 0.666666667 z= 0.50000000 < edit only this position!
	Pos 2: x= 0.666666667 y= 0.33333333 z= 0.50000000
	[add an atom]
	Number of symmetry operations: 24
	You have to click "Save Structure" for changes to take effect!
	Save Structure
Idea and realization by [/u/tz.af] © 2001-2006	JUNE SKIELDIE

الشكل (III - 3): نافذة إدخال بيانات ملف البنية للـ MgB₂.

نصف قطر ميفن-تين Rmt والعدد الذريZ يتم تعيينهما تلقائيا بواسطة البرنامج بعد ادخال باقي المعلومات حول البنية.

MgB ₂ -3	عنوان حفظ الملف				
191_P6/mmm	المجموعة الفراغية (spacegroup)				
a = 3.083Å [45]					
$b = 3.083 \text{\AA}$ [45]	ثوابت الشبكة				
c = 3.524Å [45]					
$\alpha = 90^{\circ}$					
$\beta = 90^{\circ}$	الزوايا				
$\gamma = 120^{\circ}$					
(0,0,0) [45]	Mg				
(1/3,2/3,1/2) [45]	مواضع الذرات B ₂				
(2/3,1/3,1/2) [45]	(ذرتين أيموضعين)				

الجدول (III - 1): يبين معطيات إنشاء ملف البنية.

بعد الإدخال، نختار التعليمة Save Structure ، نكون قد أنشأنا ملف البنية، وباستخدام برنامج XcreysDen يمكن رسم البنية ثلاثية الأبعاد للـ MgB₂ الشكل (III - 4). بعدها يمكننا البدء في الحساب بعد التهيئة.

الشكل (III - 4): البنية البلورية لديبوريد المغنيسيوم MgB₂.

3.1.III. تهيئة الحساب:

بعد اختيار التعليمة initialize calculation تظهر نافذة الشكل (III - 5) لتهيئة الحساب نتبع الخطوات من خلال النقر على التعليمات المُشار إليها باللون الأحمر فنبدأ ب nn x والتي تُشير إلي الجوار الأقرب (كما ذُكر في الفصل الأول)، ونواصل الخطوات ما لم يُصادفنا خطأ، إلى أن نصل إلى التعليمة symetrie فنختار No. وعند التعليمة Istart نختار طريقة الحساب GGA، بعد الوصول إلى الخطوة المهمة و التي نحدد فيها طاقة القطع Rmt*Kmax نحدد قيمة لها تكون محصورة بين 5 و12. ثم إلى الخطوة الخطوة من الخطوة القطع X منطقة بريلوان الأولى ونكمل إلى غاية آخر تعليمة فنختار الخطوة No.

Initialize calculation
Fast mode:
This is in general the recommended way of initialization (except for antiferromagnets, supercells and slabs). Specify RKMAX and K-mesh, adapted to your problem. Check STDOUT for errors. When errors court, run in individual mode (at least the symmetry programs)
select spin-polarized calculation
RMT reduction by X % (default: RMT not changed)
VXC option (13=PBE, 5=LDA, 11=WC, 19=PBEsol) [default=13]
energy seperation between core/valence (default: -6.0 Ry)
RKMAX (default: 7.0) [Click here for more info])
use TEMP with smearing by X Ry (default: TETRA)
use X k-points in full BZ (default: 1000; [Click hare for more info])
CHECK BATCH VALUES
Individual mode (phase 20)
For antiferromagnets, self-generated structures, supercells and surfaces we recommend to run at least the first steps (until instgen) manually and accept the recommendations of the symmetry programs.
x nn check Mg82_3.in1_st set RKmax (usualy 50-9.0). [Olick here view Mg82_3.outputd and cp Mg82_3.in0_std Mg82_3.in0 check if
View outputtn gmax-gmin check Mo2 3 lo2 ct set Fermi method and GMAX Perform spin-polarized calo.?
x sgroup Persava innut files
View outputsgroup No
x symmetry Yes
copy struct_st and view outputs
Instgen_lapw MgB2_3.inst exists, run instgen_lapw only for non-default
spin-configuration x dstart Linteractively
x btart
view outputst

الشكل (III - 5): نافذة تهيئة الحساب initialize calculation.

بعد آخر خطوة تظهر في الأسفل تعليمة continue with run SCF ، لإكمال حساب حلقة SCF . عندها تظهر نافذة حلقة SCF الشكل (III - 6). نحدد من خلالها عتبة الطاقة 10⁻⁴Ry وعتبة الشحنة نضعها e -10⁻³ ما هو ظاهر في الشكل (III - 6)، حيث أن قيمة التقارب للطاقة تُؤخذ عندما يكون فرق الطاقة بين آخر خطوتين متتاليتين أقل من عتبة الطاقة المأخوذة [4].

SCF Cycle	
Options: (help)	Expert options:
parallel no HNS 6 optimize positions (MSR1a) in1new 2 iterative diag in1new 2 iter. after full-diag q-limit 0.05 iter.diag (no Hinv) It-number 4 vec2pratt with iter.diag spinorbit	Scratch Directory:
 spin polarized FSM 0 constrain moment to 0 AFM calc. dm orbital pot (DFT+U) eece (hybrid-DFT for correlated e) DFT-D3 (dispersion corrections) hf (full hybrid-DFT, expensive!) diaghf (diagonal-only full hybrid-DFT) non-scf full hybrid-DFT) newklist (full hybrid-DFT with new k-list) redklist (full hybrid-DFT with red. k-list) 	Convergence criteria: Cenergy: 0.0001 Ry Force: 1 mRy/au Charge: 0.001 e
Type of execution: background V	
start SCF cycle Clear entries	only save parameters

الشكل (III - 6): نافذة حلقة SCF.

باختيار التعليمة start SCF cycle يبدأ تشغيل الحلقة خطوات الحساب داخل حلقة SCF تبدأ من LAPW0 إلى غاية MIXER المبينة في الفصل الأول.

4.1.III. تحسين طاقة القطع:

ككل الحسابات النظرية يجب اختيار بعض المقادير وتحسينها قبل بداية الحساب من أجل الحصول على دقة أعلى، بداية من طاقة القطع E_{cut-off} والتي تُمثل الطاقة الحركية للإلكترونات الحرة [4].

لتهيئة هذا المقدار نقوم بإعادة حلقة SCF وفي كل مرة نغير قيم Rmt_{min}*K_{max} ونحتفظ بعدد النقاط k داخل منطقة بريلوان الأولى ثابتة (k=300). فوجدنا أن طاقة القطع Rmt_{min}*K_{max} التي تستقر عندها طاقة النظام بداية من Ry 8 كما يُوضّح كل من الجدول (III - 2) و الشكل (III - 7). حيث K_{max} يُمثّل أكبر عدد للدّوال الموجية في أساس الأمواج المستوية المُستخدمة داخل المجال الذرّي [4].

سوف نستعمل في هذا الحساب Rmt_{min}*K_{max}= 8 Ry و كلما كانت هذه الأخيرة كبيرة تكون الحسابات دقيقة. التشكيلة الإلكترونية المستعملة لكل من الذرتين Mg و B, كالتالي:

 $Mg: 1s^22s^22p^63s^2$

 $\mathbf{B}:1s^22s^22p^1$

الجدول (Etot المتحصل عليها عند كل قيمة لـ Rmt_{min}*K_{max} عند Rmt عند 100 Rmt

E _{tot} (Ry)	Rmt _{min} *K _{max}
-500.07149997	5
-500.08093407	5.5
-500.08421075	6
-500.08545569	6.5
-500.08595574	7
-500.08616926	7.5
-500.08624471	8
-500.08627960	8.5
-500.08628484	9

الشكل (III - 7): تغير الطاقة الكلية للمركب MgB₂ بدلالة طاقة القطع عند k=300.

5.1.III. تهيئة النقاط k في منطقة بريلوان الأولى:

المقدار الآخر الذي يجب تحسينه هو عدد النقاط k في منطقة بريلوان الأولى، حيث تمت إعادة الحلقة SCF عدة مرات وفي كل مرة نغير عدد النقاط k من أجل طاقة قطع ثابتة عند القيمة 7.

حيث لاحظنا ثبوت الطاقة عند k = 1100، كما يوضح كل من الجدول (III - 3) والشكل (III - 8).

E _{tot} (Ry)	قیم k
-500.08595574	300
-500.08489675	500
-500.08465442	700
-500.08475919	900
-500.08475919	1000
-500.08476915	1100
-500.08476915	1200
-500.08476915	1300

الجدول (III - 3): قيم Etot المتحصل عليها عند كل قيمة لـ k عند 7=8. Rmtmin*Kmax

الشكل (III - 8): تغير الطاقة الكلية للمركب MgB₂ بدلالة عدد النقاط k في منطقة بريلوان الأولى.

6.1.III. دراسة الخواص البنيوية:

1.6.1.III. تحسين الحجم و حساب ثوابت الشبكة:

من أجل حساب ثوابت الشبكة البلورية للمركبMgB₂ باستعمال WIEN2k، نستعمل النتائج المتحصّل عليها من تحسين طاقة القطع و تهيئة النقاط k. أي نقوم بإدخال القيم: 1100 × و9 Rmt_{min}*K_{max} وبعد إتمام حلقة SCF نختار التعليمة (V,c/a) optimize (V,c/a) وذلك لتحديد قيم ثوابت الشبكة (a,b) الأقرب للقيم التجريبية المستخدمة في بداية الحساب، فتظهر نافذة بها عدة تعليمات، نتبع الخطوات الموجودة بها من اختيار نوع الشبكة وتحديد المجال إلى غاية رسم المنحنى (plot) وهي آخر تعليمة. نتحصل على المنحنى الموضح الشكل (III - 9) وهو منحنى للطاقة الكلية للنظام بدلالة الحجم. ثم باستعمال الثابتين d,b الناتجين من الحساب السابق وتوظيفهما في مجموعة حسابات ذاتية التناسق scf بنفس الطريقة السابقة [4] نحسن قيمة الثابت c من خلال رسم منحنى تغير الطاقة بدلالة النسبة مركم ما في الشكل (III - 10).

الشكل (III - 9): تغيّر الطّاقة الكلّية للمركّب MgB₂ بدلالة الحجم.

باستعمال قيمة V_0 المبينة في الشكل يمكن إيجاد الثابت a من خلال العلاقة:

$$a = 5.81$$
 Bohr فنتحصّل على ، $a = \sqrt[3]{\frac{V_0}{1.4133}}$ وبالتحويل إلى وحدة الأنغشتروم حيث: 1 Bohr =0.529Å وبالتحويل إلى $a = b = 3.0754$ Å

الشكل (III - III): تغيّر الطاقة الكلية للمركب MgB₂ بدلالة النسبة c/a.

1.7.1.III. حساب كثافة الحالات (DOS):

بعد إتمام حلقة SCF بالمعطيات الجديدة، نختار من شريط القوائم التعليمة tasks فتظهر قائمة خصائص نختار من بينها التعليمة DOS عندها تظهر نافذة بها عدّة تعليمات نتّبع الخطوات حتى الوصول خصائص نختار من بينها التعليمة Configure MgB2.int عندها تظهر نافذة بها عدّة تعليمات نتّبع الخطوات حتى الوصول إلى التعليمة MgB2.int من Configure MgB2.int دخل المدارات الذرية الخاصة بذرات المركب المدروس، في حالة 2B من Mg و B ونواصل الحساب إلى غاية التعليمة dosplot حيث نقوم بإدخال المدارين s و y لكل من Mg و B ونواصل الحساب إلى غاية التعليمة dosplot حيث نقوم بإدخال المدارين s و y لرسم المنحنى ثم نختار الكثافة التي نريد رسمها كما هو موضّح في الشكل (III - III) وبعد plot يظهر منحنى كثافة الحالة كما هو موضّح في كل من الأشكال (III - II).

Density of states

We are in Dosplot mode:								
Set ranges (optional):								
xmin=	xmax=	ymi	=	ymax=		PLOT		
You can select from 7 DOS in MgB2_2.int . Please select up to 4 lines to plot.								
no line line:1 (total DOS) of MgB2_2 line:2 (tot) of atom Mg line:3 (s) of atom Mg line:5 (tot) of atom B line:6 (s) of atom B line:7 (p) of atom B								
Define for first lin	e: Label=		Linetype(0-9)	= 1	Linewidth=	1		
Define for second	d line: Label=		Linetype(0-9)	= 2	Linewidth=	2		
Define for third lin	ne: Label=		Linetype(0-9)	= 3	Linewidth=	2		
Define for fourth	line: Label=		Linetype(0-9)	= 4	Linewidth=	2		
Plot DOS in ev v Color v Labelsize= 1 pt								
<u>[Show full menu]</u>								
save_lapw -do	s with nar	ne:						

الشكل (III - III): نافذة إدخال المجالات واختيار الحالة.

2.7.1.III. حساب كثافة الشحنة الإلكترونية:

بعد إتمام الحلقة SCF نختار من شريط القوائم التعليمة tasks ثم نختار منها El.Dens ونتبع الخطوات إلى غاية rhoplot لرسم كثافة الشحنة بشكل ثنائي الأبعاد و ثلاثي الأبعاد، فنتحصل على الشكلين (III - 10) و (III - 17).

2.III.مناقشة النتائج:

III. 1.2. الخصائص البنيوية:

بعد ما تم حساب الطاقة للحالة الأساسية بدلالة الحجم لخلية ديبوريد المغنيسيوم من أجل تحديد قيمة ثابت الشبكة a، لاحظنا أن منحنى طاقة الحالة يتلامس مع محور الحجم عند قيمة للحجم توافق a = 3.0754 Å وهي قيمة قريبة للقيمة التجريبية المنشورة a = 3.083 Å وبعد حساب الطاقة للحالة الأساسية بدلالة النسبة c/a، وجدنا أن c = 3.5169 Å وهي كذلك قيمة قريبة جدا من القيمة النظرية c Å

من خلال مقارنة نتائج ثوابت الشبكة البلّورية للناقل MgB₂، يمكن أن نستنتج توافق نتائجنا المحسوبة مع النتائج النظرية والتجريبية المنشورة [45].

2.2.III. كثافة الحالات DOS:

1.2.2.III. كثافة الحالات الكلية:

من خلال مخطط الكثافة الكلية والمبين في الشكل (III–12) نلاحظ أولا أنه لا وجود لتطابق منحنى الكثافة على محور الطاقة أي لا توجد فجوة خالية من الإلكترونات وهو الشيء الذي يميز الموصلات الفائقة عن غيرها من المواد. الطاقة المساوية ل0 توافق مستوى فيرمي. نلاحظ كذلك في:

أ)المجال [8.5-،12.5-]تكون كثافة الحالات محدودة في مجال طاقة كبير مما يدل على أن احتمال وجود إلكترون فيه ضئيل نوعا ما.

ب) مجال الطاقة [5،0] كثافة الحالات ضئيلة جدا أي أن احتمال تواجد الإلكترونات ضعيف.

د) مجالي الطاقة [8.5،0] و [7،5] توجد كثافة إلكترونات عالية خاصة في المجال الثاني الذي يمثل عصابة التوصيل وبالتالي زيادة احتمال وجود إلكترونات أي زيادة احتمال النقل الكهربائي.

الشكل (III– 12):مخطط كثافة الحالات الكلية للMgB2.

الشكل (III– 13) يوضح الكثافات الكلية للمركب وذرّتيه حيث نلاحظ أن الكثافة الكلية للMgB₂ هي مجموع الكثافتين ل Mg و B. كما نلاحظ أنه عند مستوى فيرمي الذرات الأكثر مساهمة في النقل هي ذرات البورون (B)، بينما ذرات المغنيسيوم أقل مساهمة في عملية التوصيل الكهربائي.

الشكل (III–13):مخطط الكثافة الكلية للـ Mg ، MgB₂ و B.

2.2.2.III. كثافة الحالات الجزئية:

من خلالمقارنة كثافة الحالة الجزئية للمدارين s و g والكثافة الكلية للMg و B الموضحة في الشكل (III-14)، نلاحظ بوضوح أن الكثافة الكلية للبورون ناتجة من كثافة المدار 2P (ب). بينما الكثافة الكلية للمغنيسيوم ناتجة عن كثافة المدار 35 (أ).

ومن الشكل (III- 15)، وملاحظة الشكل (III– 13) نستنتج أن إلكترونات المدارات الفرعية p لذرة B هي الأكثر مساهمة في النقل الكهربائي عند مستوى فيرمي والمسئولة عنه في هذا الموصل الفائق. MgB_2

الشكل (III–11):مخطط كثافة الحالات الجزئية للمدارات s و p والكثافة الكلية لكل من ذرة Mg الموضحة في الشكل - أ - و B الموضحة في الشكل - ب -.

الشكل (III– 15):مخطط مقارنة كثافة الحالة الكلية لكل من Mg و B وMgB.

III. 3.2. كثافة الشحنة الإلكترونية:

تبين كثافة الشحنة نوعية الرابطة بين ذرتين من خلال قوتها أو ضعفها. قمنا بحساب توزيع كثافة الشحنة الإلكترونية فتحصلنا على النتائج الموضحة في الشكلين (III–16) و(III–17)، الشكل (III–16) يمثل كثافة الشحنة في الخلية الأولية للمركب المدروس في فضاء ثلاثي الأبعاد (أ) وفي مستوي ثنائي الأبعاد (ب).

0

- ب -

الشكل (III– 16):توزيع كثافة الشحنة للمركبMgB₂ المستوى.(011)

ذرات المغنيسيوم و البورون موضّحة في الشكلين (III– 16 – ب) و (III–17). حيث يظهر تمركز الكثافة الإلكترونية حول كل ذرتين من البور بارتفاع نسبي 8 e/Å، ناتجة عن إلكترونات المدار B-2P. أي أن الرابطة بين ذرات البور المتواجدة في مركز الخلية قوية جدا مقارنة بالرابطة المشكلة بين ذرات المغنيسيوم والتي لها كثافة إلكترونية 0.1 e/Å، حيث يعبر رابطة ضعيفة نوعا ما.

ا**لشكل (III– 17):** كثافة الشحنة الإلكترونية على المستوى (111) للMgB₂ باستعمال البرنامج . XcreysDen.

الخلاصة

في عملنا هذا قمنا بدراسة الخواص البنيوية وكذا الإلكترونية لمركب ديبوريد المغنيسيوم وذلك باستخدام البرنامج WIEN2k والذي يعتمد بشكل أساسي على نظرية الكثافة التابعية DFT والتي لها عدّة تقريبات حيث استخدمنا في هذه الدراسة تقريب التدرج المعمّم GGA وتمكنا من خلاله من تحديد البنية البلورية للمركب MgB₂ وهي بنية الغرافيت السداسية والمتمثلة في تناوب طبقات المغنيسيوم مع طبقات البور، كما استطعنا تحديد الخواص الإلكترونية التي تمثّلت في كثافة الحالات الإلكترونية وتوزيع كثافة الشحنةللمركب. قد خلصنا منهما أن المدارات الأكثر مساهمة في عملية التوصيل الفائق هي المدارات الشحنةللمركب. قد خلصنا منهما أن المدارات الأكثر مساهمة في عملية التوصيل الفائق هي المدارات الفرعية p لذرة البور B . وقد تحصلنا على نتائج قريبة جدا من نتائج تجريبية و أخرى نظرية منشورة سابقا.

نأمل استكمال هذه الدراسة في مراحل متقدمة من البحث العلمي من أجل اكتشاف الخواص المغناطيسية للمركبMgB₂و اكتشاف البنى البلورية لاستبدالات جديدة له لربما يُستعان بها لصنع مغناطيس فائق .

- [1] <u>https://www.britannica.com/science/wave-function</u>, date : 06 Février 2020, temp : 10 :05AM.
- [2] Nathan Argaman1 ; 2Guy Makov2, Density functional Theory: An introduction, American Journal of Physics 68 (2000) 69-791.

[3] ع. بايزيد و ف. كتوت و م. صائم الدهر، الحساب من البدء لبنية بعض المواد وخواصها، مجلة جامعة دمشق للعلوم الأساسية. 21 (2005) 151-163.

[4] ع. ا. وهاب, "دراسة باستعمال نظرية الكثافة التابعية DFT للخصائص البنيوية والالكترونية والمغناطسية لنواقل فائقة مرتكزة على عنصر الحديد".

- [5] M. Born, J.R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. 87(1927) 457.
- [6] J.P. Pevdew, J. A. Chevary, S. H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671(1992).
- [7] A.MEZIANI, Thèse de Doctorat, Université Badji Mokhtar Annaba, (2012).
- [8] P.A.M. Dirac. Note on exchange phenomena in the thomas-fermi atom. Proc. Cambridge Phil. Roy. Soc. 26 (1930) 376.
- [9] J. Callaway and N. H. March, Density functional methods: Theory and applications, Solid State Physics, 38 (1989) 135.
- [10] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B 136.(1969) 864.
- [11] A. Ouahab, Thèse de Doctorat, Etude theorique et simulation d'une interface Metal-oxide; Université Elhadj Lakhdar Batna, Algérie, 2006.
- [12] W. Khon and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) 33-1138.
- [13] J. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
- [14] بري و السعدي, "تأثير الضغط على الخصائص الإلكتروضوئية محسوبة بطريقة FP-LAPW للبلورات الثنائية"، جامعة المسيلة-محمد بوضياف، 2008.
- [15] Levine, Ira N. Quantum Chemistry. Englewood Cliffs, New jersy: Prentice Hall. (1991) 455-544.

- [16] G. Chris, V. de Walle, and R. M. Martin, Theoretical calculations of heterojunction discontinuities in the Si/Ge system, Phys. Rev B. 34 (1986) 5621-5634.
- [17] R.G. Parr and W. yang, Density functional theory of atoms and molecules, Quantum Chemistry, 47 (1993) 101.
- [18] H. Zenasni, Etude théorique des propriétés magnétiques, électroniques et structurales des alliages Heusler, Thèse de doctorat, Université de Abou Bakr Belkaid, Telemcen, 2013.
- [19] M. Ferhat, B. Bouhafs, A. Zaouietal, J. Phys. : condens-Matter. 10 (1995) 7995.
- [20] P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Full-potential, linearized augmented plane wave programs for cristalline systems, Comput. Phys. Commun. 59 (1990) 399-438.
- [21] User's guide, wien2k 12.1 (release 30.08.2012) Peter BLAHA, Karlheinz SCHWARZ, Georg MADSEN, Dieter KVASNICKA, Joachim LUITZ.
- [22] G. Stefan, Semiempirical hybrid density functional with perturbative second-order correlation, Journal of Chemical Physics. 124 (2006) 034108.
- [23] Z. Urs, P. Michele, K. Petros, Dispersion corrections to density functionals for water aromatic interactions, Journal of Chemical Physics. 120 (2004) 2693-2699.
- [24] G. Stefan, Accurate description of Van der Waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry. 25 (2004) 1463-1473.
- [25] V. Lilienfeld, O. Anatole, T. Ivano, R. Ursula, S. Daniel, Optimization of effective atom centered potentials for London dispersion forces in density functional theory, Physical Review Letters. 93 (2004), 153004.
- [26] T. Alexandre, S.Matthias, Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data, Physical Review Letters, 102 (2009) 073005.

[27] ا. ضياء. ج. البير ماني, "التوصيل الفائق والموصلات فائقة التوصيل", 2011.

[28] A. Tnourji, "Les caractéristiques des matériaux supraconducteurs Présenté par : Abdellah Tnourji," no. February, 2019.

- [29] H.K Onnes, The Resistance of Pure Mercury at Helium Temperatures, Commun. Phy. Lab. Leiden, 12 (1911) 1.
- [30] W. Meissner and R. Ochsenfeld, A new effect on superconductivity, Natur wissen chaften. 21 (1933)787-788.
- [31] A. Bourdillon and N.X. Tan Bourdillon, High Temperature Superconductors, Boston : Academic Press, New York (1994).
- [32] T. P. Sheahen, Introduction to High-Temperature Superconductivity, Western Technology Incorporated Derwood, Maryland (2002).
- [33] K. N. Shrivastava, "Paramagnetic resonance study of the high-temperature superconductor YBa2Cu3O7-δ and the gap equation," J. Phys. C Solid State Phys., vol. 20, no. 29, p. L789, 1987.
- [34] J. G. Bednorz and K. A. Muller, Possible High Tc Supraconductivity in the Ba-La-La6O System, Z. Phys. B6Condesed Matter 64 (1986) 189-193.
- [35] H. B. G. Casimir, On Bose-Einstein condensation, Fundamental Problems in Statistical mechanics III, edE.G.D.Cohen, (1968) 188-196.
- [36] Thomas P. Sheahen. Introduction to High-Temperature Superconductivity, Kluwer Academic Publishers New York (2002).
- [37] J. Badreen, L.N. Cooper and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1657) 1175.
- [38] F. J. Owens and C. P. Pool, The New Superconductors, Kluwer Acadimic publishers, New York, London : Plenum, (1996).
- [39] F. London, H. London, The electromagnetic Equations of The supraconductor, Proc. Roy. Soc. London 149 (1935) 71-88.
- [40] A. Barone and G. Paterno A, Physics and Application of the Josephson Effect, Journal of Vaccum Science and Technology. 21 (1982) 1050.
- [41] Rohlf, James William, Modern Physics from A to Z, Wiley (1994).
- [42] D. G. Hinks, H. Claus, and J. D. Jorgensen, The complex nature of superconductivity in MgB₂ as revealed by the reduced total isotope effect, Nature 411, (2001) 457-460.
- [43] P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus, and H. Fjellvåg, "Detailed electronic structure studies on superconducting (formula presented) and related compounds," *Phys. Rev. B - Condens. Matter*

Mater. Phys., vol. 64, no. 22, pp. 1–15, 2001, doi: 10.1103/PhysRevB.64.224509.

- [44] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410 (2001) 63.
- [45] D. Sharma, J. Kumar, A. Vajpayee, R. Kumar, P. K. Ahluwalia, and V. P. S. Awana, "Comparative experimental and density functional theory (DFT) study of the physical properties of MgB 2 and AlB 2," *J. Supercond. Nov. Magn.*, vol. 24, no. 6, pp. 1925–1931, 2011, doi: 10.1007/s10948-011-1146-0.
- [46] S. Segura, J. A. R. Martínez, and M. G. Moreno-Armenta, "First-principles study of the (0001)-MgB2 surface finished in Mg and B," *J. Phys. Conf. Ser.*, vol. 480, no. 1, pp. 2–6, 2014, doi: 10.1088/1742-6596/480/1/012010.
- [47] P. C. Canfield and G. W. Crabtree, "Magnesium diboride: Better late than never," *Physics Today*, vol. 56, no. 3. pp. 34–40, 2003, doi: 10.1063/1.1570770.
- [48] A.K. Gangopadhyay, A.J. Schwetz, and J.S. Schilling, Physica C 246, 317 (1995).
- [49] N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, and A.J. Freeman, cond-mat/0103157 (unpublished).

الملخّص

في هذا العمل قمنا بدراسة الخواص البنيوية والالكترونية لأحد الموصّلات الفائقة المتبلورة في بنية الغرافيت، وهو ديبوريد المغنيسيوم MgB₂، حيث تمّت الدراسة بواسطة برنامج WIEN2k وذلك باستعمال نظرية (DFT)، اعتمادا على تقريب التدرّج المعمّم (GGA). الهدف هو حساب ثوابت الشبكة، تحديد كثافة الحالات الالكترونية وكثافة الشحنة. قيم ثوابت الشبكة موافقة للقيم التجريبية في دراسة في [45] و النتائج المتحصل عليها بالنسبة لكثافة الحالات وكثافة الشحنة الإلكترونية كانت مطابقة لنتائج تجريبية سابقة. المحلمات المفتاحية: ديبوريد المغنيسيوم، DFT، الخواص الإلكترونية ولا للاكترونية.

Résumé

Dans ce travail, nous présenté l'étude de propriétés structurales et électroniques pour un super conducteur cristallisant dans la structure de graphite (hexagonal), c'est le Dipurure de Magnésium MgB₂. L'étude utilisant le programme WIEN2k selon la théorie de la densité des états (DFT) gradient généralisé approximation GGA. Le but de travail est le calcule des paramètres de réseau, identifié la densité des états électroniques et la densité de charge. Les valeurs des paramètres de réseau est en accord avec les résultats expérimental dans [45] et les résultats obtenus pour la densité des états et la densité de charge étaient identiques à des résultats expérimental précédent.

Mots-clés : Dipurure de Magnésium, WIEN2k, DFT, les propriétés électroniques.

Abstract

In this work, we have studied the strucural and electronic properties of a supraconductor crystallized in the graphite structure, it's Magnesium Diboride MgB₂. This study used WIEN2k program according to the density functional theory (DFT) generalized gradient approximation (GGA). The aim of this project is the calculation of the lattice constants, identify the density of states and charge density.the equilibrium lattice constants is in agreement with an experimental results in [45] and the results of density of states and charge density are identical to a precedent experimental studies. **Keywords** : Magnesium Diboride, WIEN2k, DFT, electronic properties.